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Abstract—We present DeepCSI, a novel approach to Wi-Fi
radio fingerprinting (RFP) which leverages standard-compliant
beamforming feedback matrices to authenticate MU-MIMO
Wi-Fi devices on the move. By capturing unique imperfections
in off-the-shelf radio circuitry, RFP techniques can identify
wireless devices directly at the physical layer, allowing low-
latency low-energy cryptography-free authentication. However,
existing Wi-Fi RFP techniques are based on software-defined
radio (SDRs), which may ultimately prevent their widespread
adoption. Moreover, it is unclear whether existing strategies
can work in the presence of MU-MIMO transmitters – a key
technology in modern Wi-Fi standards. Conversely from prior
work, DeepCSI does not require SDR technologies and can be
run on any low-cost Wi-Fi device to authenticate MU-MIMO
transmitters. Our key intuition is that imperfections in the
transmitter’s radio circuitry percolate onto the beamforming
feedback matrix, and thus RFP can be performed without
explicit channel state information (CSI) computation. DeepCSI
is robust to inter-stream and inter-user interference being the
beamforming feedback not affected by those phenomena. We
extensively evaluate the performance of DeepCSI through a
massive data collection campaign performed in the wild with
off-the-shelf equipment, where 10 MU-MIMO Wi-Fi radios emit
signals in different positions. Experimental results indicate that
DeepCSI correctly identifies the transmitter with an accuracy of
up to 98%. The identification accuracy remains above 82% when
the device moves within the environment. To allow replicability
and provide a performance benchmark, we pledge to share the
800 GB datasets – collected in static and, for the first time,
dynamic conditions – and the code database with the community.

I. INTRODUCTION AND MOTIVATION

The sheer expansion of Internet of Things (IoT) is rapidly
saturating unlicensed spectrum bands [1]. With the global
mobile data traffic projected to reach 164 exabytes per month
in 2025 [2], spectrum congestion will soon decrease data
throughput to intolerable levels. To alleviate the issue, the Fed-
eral Communication Commission (FCC) has recently released
150 MHz additional bandwidth in the 3.5 GHz spectrum band
[3], as well as 1.2 GHz in the 6 GHz band (5.925–7.125), the
latter providing opportunities to use up to 320 MHz channels
to expand capacity and increase network performance [4].

The release of these spectrum bands for unlicensed use
implies that previously licensed users (also known as in-
cumbents), unlicensed Wi-Fi devices [5] and 5G cellular
networks [6] will need to coexist in the same spectrum bands.
This will necessarily require the enactment of strict, fine-
grained dynamic spectrum access (DSA) rules [7], which will
require spectrum administrators to continuously monitor which
unlicensed Wi-Fi device is using the spectrum, and when the

device is using it. To this end, cryptography-based techniques
are substantially unfeasible in this context, since a spectrum
observer should possess the private keys exchanged among all
the nodes in the network, which is unrealistic.

On the other hand, radio fingerprinting (RFP) has attracted
significant attention as reliable and effective spectrum-level
authentication technique [8–14]. RFP leverages naturally-
occurring circuitry imperfections to compute a unique “fin-
gerprint” of the device directly at the waveform level [15].
Although RFP for physical layer (PHY) Wi-Fi authentica-
tion has been explored, existing approaches require software-
defined radio (SDR) devices to extract RFP features. This
may ultimately prevent widespread adoption, since SDRs
require expert knowledge and are usually more expensive
than off-the-shelf devices. Moreover, existing work has tackled
Wi-Fi fingerprinting up to the legacy 802.11a/g/b standards,
which do not support multi-input, multi-output (MIMO) tech-
niques. However, newer Wi-Fi releases such as 802.11ac/ax
and the upcoming 802.11be will heavily rely on multi-user
MIMO (MU-MIMO) techniques to deliver significantly higher
throughput than previous standards [16–18]. Thus, it is still
unknown whether existing RFP strategies can be applied in
the significantly more complex MU-MIMO scenario, where
inter-user interference (IUI) and inter-stream interference (ISI)
can significant decrease the quality of the fingerprint itself.
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Fig. 1: Main operations of DeepCSI. The beamformer’s fingerprint can be
independently extracted from the feedback of any beamformee.

To fill the current research gap, in this paper we propose
DeepCSI, a brand-new technique for RFP of Wi-Fi devices
which is summarized in Fig. 1. The core intuition behind
DeepCSI is that the circuitry imperfections in the trans-
mitter’s radio interface will percolate onto the MU-MIMO
channel state information (CSI) feedback sent by the receiver
to the transmitter to perform beamforming. By demodulating
this PHY-level information and performing deep learning tech-
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niques on a processed version of the feedback, an observer can
fingerprint the transmitter without the need of SDR capabili-
ties. Note that the observer can leverage the feedback from any
beamformee associated with the target beamformer to compute
the beamformer’s fingerprint. The key advantage is that our
technique is not affected by ISI nor by IUI – see Section II-A.
As pointed our earlier, the effect of IUI and ISI may prevent
the correct devices’ authentication. We stress that previous
work only considered non-MIMO transmissions where IUI/ISI
are not present and, in turn, the plain CSI information suffices
to perform RFP. On the other hand, the core concern of
performing RFP without direct CSI access is that it is unknown
whether the imperfections will actually percolate onto the
beamforming feedback matrix. In this context, it is crucial
to evaluate the PHY fingerprinting techniques as a function of
different channels and different transmitter-receiver positions,
since these can significantly undermine the fingerprint [14].

To summarize, this paper makes the following contributions:
• We propose DeepCSI, the first approach to perform RFP

of MU-MIMO Wi-Fi devices. DeepCSI uses deep learning
of the standard-compliant beamforming matrices to learn the
device-unique imperfections located in the CSI and authenti-
cate MU-MIMO Wi-Fi devices directly at the PHY layer. The
core intuition is that imperfections in the transmitter’s radio
circuitry are also present in the beamforming feedback matrix
that is transmitted in clear text. Thus, conversely from prior
work, explicit CSI computation through SDR technologies are
not needed and DeepCSI can be run on any low-cost Wi-Fi
device. Through DeepCSI an observer can leverage the beam-
forming feedback matrix from any beamformee – one at a time
– associated with the beamformer to be authenticated. Given
the small memory footprint, the trained learning algorithm
can be run to perform the online inference on low-cost Wi-Fi
devices, e.g., laptops, without the need for powerful facilities.
• We extensively evaluate the performance of DeepCSI

through a massive data collection campaign performed in the
wild with off-the-shelf equipment, where 10 Wi-Fi radios emit
MU-MIMO signals to multiple receivers located at different
positions (and thus, with different beam patterns). Experimen-
tal results indicate that DeepCSI is able to correctly identify
the transmitter with an accuracy above 98%, which shows that
RFP of MU-MIMO devices can be performed leveraging the
CSI beamforming feedback matrices. We evaluate the impact
of the feedback quantization error on the performance – where
quantization is applied for transmission efficiency reasons as
per the Wi-Fi standards [19, 20] – observing an accuracy
increase of up to 63% when changing the feedback PHY
parameters. We show that DeepCSI achieves at least 17%
more accuracy than methods based on CSI phase cleaning,
since the latter partially remove the imperfections due to
the hardware circuitry. Finally, we evaluate the beamformer
identification accuracy on the move where DeepCSI achieves
an accuracy above 82%. We pledge to share our code and
800 GB datasets with the community, which will allow
replicability and provide a performance benchmark to
other researchers in the field [21].

II. BACKGROUND, RELATED WORK, AND CHALLENGES

Thanks to their capability of identifying transmitters without
the need of computation-hungry cryptography techniques, RFP
techniques have received a significant amount of attention
from the research community [9–11, 13, 22]. While early
work has demonstrated the feasibility of RFP, it has focused
on the extraction of complex hand-tailored features, which
do not scale well with the device population, or work in
ad hoc propagation settings only. Among the first works on
Wi-Fi-specific RFP, Vo et al. [13] propose RFP techniques
that extract features from the scrambling seed, the level of
frequency offset and transients between symbols. However,
the models achieve accuracy up to 50% on 100 devices. The
authors in [9], instead, demonstrated that up to 54 ZigBee
devices can be fingerprinted with about 95% accuracy through
PSK transients. More recently, Zheng et al. [8] studied and
evaluated in a testbed of 33 devices a model-based approach to
summarize imperfections in the modulation, timing, frequency
and power amplifier noise. It is not clear, however, whether the
approach in [8] generalizes to different channel environments.

In stark contrast with early work, recent RFP papers have
leveraged deep learning techniques to fingerprint wireless
devices [12, 23–26]. A key advantage of deep learning tech-
niques is that they are able to perform feature extraction and
classification at the same time, thus avoiding manual extraction
of device-distinguishing features. For example, Das et al. [26]
and Merchant et al. [25] deep neural networks (DNNs) achieve
more than 90% accuracy with a population of 7 ZigBee
devices and 30 LoRa devices. To further increase accuracy,
[12, 24] proposed the introduction of artificial impairments
at the transmitter’s side. However, without compensation,
this approach inevitably increases the bit error rate (BER).
The usage of complex-valued convolutional neural networks
(CNNs) has been explored by Gopalakrishnan et al. [27], while
in [23] and [28] the authors propose the usage of finite impulse
response (FIR) filters to compensate for the adverse action
of the wireless channel on the fingerprinting accuracy. The
key limitation of existing work is that it is entirely based on
SDRs, which is very specialized, expensive equipment that is
not widely available in common Wi-Fi networks. Moreover, to
the best of our knowledge, no prior work has tackled the issue
of assessing whether RFP is feasible in MU-MIMO Wi-Fi
networks. In this work, we address both issues at once by
presenting DeepCSI, a framework that (i) can be run on any
off-the-shelf Wi-Fi-compliant device, and (ii) can accurately
fingerprint MU-MIMO devices. We evaluate the performance
of DeepCSI in static and – for the first time – dynamic
conditions, assessing the robustness of the learned fingerprint
to changing transmission channel characteristics.

A. Challenges of MU-MIMO Fingerprinting

Performing RFP of devices operating in downlink (DL)
MU-MIMO mode is significantly more challenging than RFP
of devices operating with omnidirectional antennas. First,
transmissions are inevitably impaired by imperfect beamform-
ing weights that do not accurately compensate the wireless
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channel. Secondly, (i) inter-stream interference (ISI) occurs
between streams transmitted to the same receiver, and (ii)
inter-user interference (IUI) affects streams directed to differ-
ent receivers. The time-varying behavior of both ISI and IUI
complicates the identification of the device-specific imperfec-
tions. Moreover, it has been shown in prior work that the RFP
process may be adversely impacted by the presence of the
wireless channel [12, 14]. This reasoning led us to design a
different approach for extracting effective radio fingerprints.
Specifically, we use the beamforming feedback matrix Ṽ
described in Section III-B. The matrix Ṽ is estimated based
on the very high throughput (VHT)-long training fields (LTFs)
of the null data packet (NDP) that is sent in broadcast mode
without being beamformed. Moreover, the VHT-LTFs are
sent over the different antennas in subsequent time slots of
4 µs each. Therefore, the NDP and, in turn, Ṽ, are not
affected by IUI nor by ISI. However, since the feedback
matrix is quantized before transmission, quantization errors
are inevitable. In Section V, we analyze the effect of the
quantization error and investigate the generalization capability
of our RFP approach to multiple channels and beamformee
positions, and to beamformer’s mobility.

III. THE DEEPCSI FRAMEWORK

Henceforth, we will adopt the following notation for math-
ematical expressions. The superscripts T and † respectively
denote the transpose and the Hermitian of a matrix, i.e., the
complex conjugate transpose. By ∠C, we refer to the matrix
whose elements are the phases of the corresponding elements
in the complex-valued matrix C. diag(c1, . . . , cj) indicates
the diagonal matrix with elements (c1, . . . , cj) on the main
diagonal. The (c1, c2) entry of matrix C is denoted by [C]c1,c2 .
Finally, Ic refers to a c×c identity matrix while Ic×d is a c×d
matrix with ones on the main diagonal and zeros elsewhere.

A. Preliminaries on MU-MIMO in Wi-Fi

In the following, we will consider Wi-Fi devices operating
with the IEEE 802.11ac (Wi-Fi 5) standard and 802.11ax
(WiFi 6 and 6E) [19, 20]. These devices operate on the
2.4 GHz, 5 GHz and 6 GHz frequency bands with chan-
nels having up to 160 MHz of bandwidth. In Wi-Fi, data
is transmitted via orthogonal frequency-division multiplexing
(OFDM) by dividing the selected channel into K partially
overlapping and orthogonal sub-channels, spaced apart by
1/T . The input bits are grouped into OFDM samples, ak,
and symbols, a = [a−K/2, . . . , aK/2−1], collecting K samples
each. After being digitally modulated, the K samples of one
OFDM symbol are simultaneously transmitted though the K
OFDM sub-channels, occupying the channel for T seconds.
Up-converted to the carrier fc, the transmitted signal is

stx(t) = ej2πfct
K/2−1∑
k=−K/2

ake
j2πkt/T . (1)

To improve the signal-to-noise ratio (SNR), the transmitter
can use beamforming to focus the power toward the intended
receiver. The beamforming may also compensate the effect of

the wireless channel from the transmitter (beamformer) to the
receiver (beamformee). When both devices in the communi-
cation link are equipped with antenna arrays (MIMO system),
each pair of transmitter and receiver antennas forms a physical
channel that can be exploited for wireless communication.
This spatial diversity allows shaping multiple beams, referred
to as spatial streams, to transmit different signals to the
beamformee, in a parallel fashion. To this end, the signals are
combined at each transmitter antenna through steering weights,
W, derived from the channel frequency response (CFR) matrix
H. The CFR needs to be estimated for every OFDM sub-
channel over each pair of transmitter (TX) and receiver (RX)
antennas, thus obtaining a K × M × N matrix, where M
and N are respectively the number of TX and RX antennas.
In Fig. 2 we report an example of beamforming for a 3 × 2
MIMO system. At the beamformee side, the original signals
are retrieved from their combination exploiting the fact that,
ideally, [H]¯̀,̄i[W]`,i = 0 when ¯̀ 6= ` or ī 6= i.

MIMO TX 
Beamformer

MIMO RX 
Beamformee

MIMO
Channel

[H]1,1

[H]1,2

[H]2,2

[H]2,1

[H]3,1

[H]3,2

s1 s2

r2

r1

[W]1,1

[W]1,2

[W]2,2

[W]2,1

[W]3,1

[W]3,2

Fig. 2: 3×2 MIMO system. The grey triangles represent the antennas. s1, s2
and r1, r2 stand for the transmitted and received signals respectively. W is
the steering matrix containing the weights to shape the beams. H is the CFR.

A meaningful model for the CFR H in indoor spaces
is obtained by considering the proprieties of the wireless
propagation. After being irradiated by the transmitter antenna
m ∈ {0, . . . ,M − 1}, the signal is reflected by objects in the
environment and, in turn, P different copies of stx(t) are
collected at the receiver antenna n ∈ {0, . . . , N − 1}. Each
received signal is characterized by an attenuation Ap and a
delay τp that depends on the length of the path followed by
the transmitted wave. Thus, the (k,m, n) element of H is

[H]k,m,n =

P−1∑
p=0

Am,n,pe
−j2π(fc+k/T )τm,n,p . (2)

By knowing H, the beamformer can generate the steering
matrix W to maximize the power sent toward the beamformee
or simultaneously send parallel data streams to multiple
beamformees. These communication modes are respectively
referred to as single-user MIMO (SU-MIMO) and MU-MIMO.
While IEEE 802.11n only supports SU-MIMO mode, in
802.11ac and above MU-MIMO can be enabled in the DL
direction, i.e., at the access point (AP) side [19]. In 802.11ax
MU-MIMO can be also enabled in the uplink (UL) [20].
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B. Compressed Beamforming Feedback
In IEEE 802.11ac/ax, DL MU-MIMO is enabled by the pre-

coding and the channel sounding procedures [19]. Pre-coding
linearly combines the signals to be simultaneously transmitted
to the different beamformees. This procedure shapes the beams
focusing the power in the correct directions. The combination
weights are antenna-specific and are computed based on chan-
nel sounding performed through a NDP, transmitted without
beamforming. After receiving the NDP, each beamformee
estimates H based on a VHT-LTF for each spatial stream.
Next, the beamformee feeds back the matrix to the beamformer
in the form of a compressed beamforming feedback, which is
computed for each sub-channel k as follows.

Let Hk be the M×N sub-matrix of H containing the CFR
samples (see Eq. (2)) related to sub-channel k. Hk is first
decomposed via singular value decomposition (SVD):

HT
k = UkSkZ

†
k, (3)

where Uk and Zk are, respectively, N×N and M×M unitary
matrices, while Sk is an N ×M diagonal matrix collecting
the singular values. Next, the first NSS ≤ N columns of
Zk are extracted to form the complex-valued beamforming
matrix Vk that is used by the beamformer to compute the
pre-coding weights for the NSS spatial streams directed to
the beamformee. Note that the beamformee can be served
with at maximum NSS = N spatial streams (see Chapter 13
of [29]). Thus, the beamformee is required to send back Vk

to the beamformer. To do that efficiently, instead of sending
the complete matrix, the beamformee derives and transmits
its compressed representation. Specifically, the feedback is
a number of angles obtained by converting Vk into polar
coordinates. The transformation is based on the procedure in
Algorithm 1, where Dk,i and Gk,`,i are defined as

Dk,i =



Ii−1 0 . . . 0
0 ejφk,i,i 0 . . . ...
...

0
. . . 0

... 0 ejφk,M−1,i 0
0 . . . 0 1

 , (4)

Gk,`,i =


Ii−1 0 . . . 0

0 cosψk,`,i 0 sinψk,`,i ......
0 I`−i−1 0

− sinψk,`,i 0 cosψk,`,i 0
0 . . . 0 IM−`

 .
(5)

The obtained matrices allows rewriting Vk as

Vk = ṼkD̃k, (6)

with

Ṽk =

min(NSS,M−1)∏
i=1

(
Dk,i

M∏
l=i+1

GT
k,l,i

)
IM×NSS

, (7)

where the products represent matrix multiplications. Note that,
by construction, the last row of the complex-valued Ṽk matrix,

i.e., the feedback for the M -th transmitter antenna, consists of
non-negative real numbers. Next, the K ×M × NSS beam-
forming matrix Ṽ is obtained by stacking the Ṽk matrices for
k ∈ {−K/2, . . . ,K/2 − 1}. Thanks to this transformation,
the beamformee is only required to transmit the φ and ψ
angles from which the Ṽk matrices can be reconstructed. The
beamforming performance is equivalent at the beamformee
when using Vk or Ṽk to construct the steering matrix W
and, in turn, the feedback for D̃k is not sent [29].

Algorithm 1 Vk matrix decomposition
Input: Vk

Output: Dk,i and Gk,`,i for i ∈ {1, . . . ,min(NSS,M − 1)},
` ∈ {i+ 1, . . . ,M}

D̃k = diag(ej∠[Vk]M,1 , . . . , e
j∠[Vk]M,NSS )

Ωk = VkD̃
†
k

for i← 1 to min(NSS,M − 1) do
φk,`,i = ∠ [Ωk]`,i with ` = i, . . . ,M − 1

compute Dk,i through Eq. (4)
Ωk ← D†

k,iΩk

for `← i+ 1 to M do
ψk,`,i = arccos

(
[Ωk]i,i√

[Ωk]
2
i,i+[Ωk]

2
`,i

)
compute Gk,`,i through Eq. (5)
Ωk ← Gk,`,iΩk

The angles are quantized for transmission using bφ ∈ {7, 9}
bits for φ and bψ = bφ − 2 bits for ψ. Next, the quantized
values are packed into the VHT compressed beamforming
frame and transmitted without encryption, thus allowing any
device that can access the wireless channel to capture the
information sent by the beamformee to the beamformer. The
bφ and bψ values can be read in the VHT MIMO control field
of the frame, together with other information including the
number of columns (NSS) and rows (M ) in the beamforming
matrix and the channel bandwidth. At the beamformer, the
φ and ψ angles are retrieved from their quantized versions
qφ = {0, . . . , 2bφ − 1} and qψ = {0, . . . , 2bψ − 1} using

[φ, ψ] =

[
π

(
1

2bφ
+

qφ
2bφ−1

)
, π

(
1

2bψ+2
+

qψ
2bψ+1

)]
(8)

C. DeepCSI Workflow and Learning Architecture

Fig. 3 summarizes how DeepCSI leverages the sounding
protocol mechanism described in Section III-B to obtain a
fingerprint of the IEEE 802.11ac/ax AP (beamformer). The
sounding is triggered by the beamformer before sending data
in DL MU-MIMO mode to the beamformees, and concludes
with the transmission of the feedback angles. DeepCSI
exploits the fact that the angles can be easily collected by
any Wi-Fi compliant device by setting the Wi-Fi interface
in monitor mode and using a network analyzer toolkit, e.g.,
Wireshark [30], to capture the packet containing the feedback.
Notice that DeepCSI does not require the monitor device
to be authenticated with the target AP. Once obtained the
feedback angles, DeepCSI reconstructs Ṽ through Eq. (7).
Next, the beamforming feedback matrix is used as input for
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Ṽ

V
H

Fig. 3: DeepCSI workflow. The compressed beamforming feedback com-
puted by any of the beamformees as the final step of the sounding protocol
is leveraged by DeepCSI to obtain a fingerprint of the beamformer.

the DNN classifier depicted in Fig. 4 to extract the RFP of
the beamformer. Once trained, the DNN can be deployed
and utilized in real time for device authentication at the
PHY level. The observer can leverage the feedback from any
beamformee associated with the target beamformer to compute
a beamformer’s fingerprint. In turn, DeepCSI is independent
of the number of terminals connected to the AP. Moreover,
different fingerprints can be obtained for the same beamformer
and can be indifferently used to authenticate the device.

The elements of the feedback matrix are fed to the DNN
as follows. The I/Q components of the beamforming feed-
back are stacked into an Nrow × Ncol × Nch matrix, where
Ncol ≤ K identifies the number of selected OFDM sub-
channels, Nrow ≤ NSS and Nch < 2M refer to the columns
and rows of Ṽ used for fingerprinting and the 2-factor is
for the I/Q components. Note that the feedback for the last
transmitting antenna consists of the sole I information as, by
construction, the last row of each Ṽk (Eq. (7)) is composed
of non-negative real values [19]. The learning architecture is
inspired from [31] and consists of a series of Nconv convolu-
tional layers followed by selu activation function [32], and
by a max-pooling layer. The output of the previous block (in
blue and green in Fig. 4) is forward through an attention block
and – after being flattened – is processed by Ndense dense
layers with selu activation function. A final dense layer with
softmax activation is used for classification. Alpha-dropout
layers are interposed between the dense layers. The attention
block is inspired by the spatial attention module in [33]. First,
the maximum and the average feature maps are obtained by
computing respectively the maximum and the mean of the
input feature maps over the channel dimension. Next, the two
maps are concatenated and forwarded through a convolutional
layer with sigmoid activation function that outputs the
weights to attend the input feature maps. Specifically, the
attention operation consists in multiplying the input by the
computed weights. A skip connection is also implemented by
summing the output of the attention block with its input before
passing the result to the subsequent dense layers. Thanks to the
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Fig. 4: DeepCSI learning algorithm. The I and Q components of Ṽ serves as
input for a neural network classifier that computes the beamformer fingerprint
and returns, as output, the estimated Wi-Fi module ID.

attention block, the algorithm learns where the most relevant
information is located within the feature maps. This allows
the network to focus on the relevant regions obtaining a more
effective fingerprint.

We performed hyper-parameter evaluation in Section V,
and established through experiments that a good set of hyper
parameters is Nconv = 5 with 128 filters each, and Ndense = 2
dense layers with 128 and 64 neurons each. This architecture
yields a DNN containing 489,301 trainable parameters, which
is relatively small compared to state-of-the-art DNNs. The
DeepCSI learning algorithm is trained in an offline fashion by
back propagating the cross-entropy loss between the module
identifier (ID) predicted by the classifier and the actual one.

IV. EXPERIMENTAL SETUP

We evaluate the effectiveness of DeepCSI using off-the-
shelf devices and through extensive experimental evaluation.
To this end, we set up a Wi-Fi network consisting of one AP
(beamformer) and two stations (STAs) (beamformees). The AP
was implemented through a Gateworks GW6200 single board
computer (SBC) equipped with a Compex WLE1216v5-23
IEEE 802.11ac module, as shown in Fig. 5. Two Netgear
Nighthawk X4S AC2600 routers, with N ∈ {1, 2} out
of 4 antennas enabled, acted as STAs (beamformees). At
the AP, M = 3 antennas were used to sound the channel
for DL MU-MIMO transmission mode and the STAs were
served with NSS ∈ {1, 2} spatial streams each. Note that
implementation specific constraints prevent the use of M = 4
for DL MU-MIMO. For the data transmission between the
AP and the STAs, we used channel 42, i.e., fc = 5.21 GHz
with 80 MHz bandwidth. The number of OFDM sub-channels
sounded is K = 234 as the mechanism does not consider the
14 control sub-channels and the 8 pilot ones. The AP uses
the quantization parameters bφ = 9 and bψ = 7 for φ and ψ
feedback angles, respectively. We generated UDP traffic in the
DL direction to induce the AP to trigger the channel sounding
mechanism, and collected the angles (φ, ψ) that were sent back
by the beamformees using the Wireshark network analyzed
toolkit [30] running on an off-the-shelf laptop equipped with
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Compex Wi-Fi module

Gateworks SBC

Antennas

Fig. 5: DL MU-MIMO enabled Wi-Fi AP (beamformer). The Compex
WLE1216v5-23 Wi-Fi module was mounted on a Gateworks GW6200 SBC
platform. Four antennas were connected to the Wi-Fi module.

an IEEE 802.11ac Wi-Fi card. This allows retrieving the
Ṽ matrices associated with each sounding operation, and
computing the beamformer fingerprint (see Section III-C).

Two datasets – namely D1 and D2 – were collected. As
for the former, the STAs were deployed at different positions
as depicted in Fig. 6 to generate different beam patterns and
different SNR regimes. The number of enabled antennas is
N = 2 for each beamformee and each of them is served with
NSS = 2 spatial streams. Dataset D1 allows evaluating the
performance of DeepCSI in different static conditions. The
purpose of dataset D2 is to evaluate the impact of mobility in
the beamformer identification. The data were collected while
the AP was manually moved following the path described
in Fig. 6 by the yellow stars A-B-C-D-B-A, entailing both
vertical and horizontal movements. Here, N = NSS = 1 for
the first beamformee and N = NSS = 2 for the second. The
datasets were collected in two different indoor environments
reproducing the same configuration depicted in Fig. 6. This
allows evaluating the general applicability of the developed
algorithm in recognizing the beamformer in the wild.
We pledge to share our datasets with the community for
reproducibility and benchmarking purposes [21].

A. Datasets Structure

The datasets consist of the beamforming feedback angles
associated with Nmodules = 10 different Compex Wi-Fi
modules, which are the target of the proposed fingerprinting
mechanism. They are collected in two indoor environments
where the three entities constituting the experimental Wi-Fi
network are placed as shown in Fig. 6 and no obstacles are
present between the AP and the STAs. At the AP, the SBC,
the antennas and the coaxial cables remain the same across all
the considered network setups, by only changing the Compex
Wi-Fi module. This ensures that the fingerprint procedure only
relies on the hardware imperfections of the Wi-Fi module.

For the static dataset D1, we collected 9 different measure-
ments for each Compex module by keeping it fixed in position
A and changing the positions of the STAs. Specifically, the
beamformees are first placed in front of the beamformer,
i.e., with an angle of arrival (AoA) for the direct path of
nearly zero degrees, and next moved of multiples of 10 cm
respectively to the left and to the right with respect to their

1    2    3    4    5    6    7    8    9  9    8    7    6    5    4    3    2    1  

AP
Gateworks SBC +
Compex WiFi module

3 m

2.
6

m
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Netgear X4S AC2600

1.5 m

BEAMFORMEE 2
Netgear X4S AC2600

0.1 m

0.8 m B

A

C D0.8 m

0.
8

m

Fig. 6: Indoor environment configuration. For dataset D1, the position of the
AP remains the same for all the acquisitions (yellow star A). The beamformees
are first placed in front of the AP and next, for each new experiment,
beamformees 1 and 2 are respectively moved 10 cm to the left and 10 cm to
the right. The subsequent positions of the beamformees are marked with red
and blue stars respectively and labeled with a number ∈ {1, . . . , 9}. For the
dynamic dataset D2, the beamformees remain fixed in position 3 while the
AP moves following the path described by the yellow stars A-B-C-D-B-A.

initial position (see the colored stars in Fig. 6). The positions
of the STAs are maintained fixed for the entire duration of
each measurement. These configurations allow obtaining data
associated with different beam shaping for the ongoing DL
MU-MIMO transmissions. Overall, we collected 90 traces, i.e.,
9 traces for each of the 10 Compex Wi-Fi modules.

As for the dynamic dataset D2, we collected 11 mea-
surements for each Compex module. Four measurements are
collected with the AP fixed in position A. The remaining
seven traces are collected while moving the AP following the
path described above, i.e., first, the AP is moved 80 cm from
position A toward the beamformees reaching position B, next
is shifted 80 cm to the left and subsequently 160 cm to the
right – up to positions C and D respectively – and finally it is
brought back in position A passing from B. The beamformees
are kept fixed in position 3. This dataset allows evaluating
the performance of DeepCSI in the presence of beamformer
mobility. Overall, it consists of 11 traces for each of the 10
Compex Wi-Fi modules for a total of 110 traces.

Each trace contains the feedback angles sent by the two
beamformees during two minutes of transmission. Such feed-
backs can be promptly grouped based on the beamformee
identifier by applying a filter on the packets source address.

B. DeepCSI Training and Testing Procedure

The DeepCSI classifier (see Fig. 4) was trained using
different PHY configurations, to evaluate its robustness in
correctly identifying the beamformer device (the AP) as the
position of the beamformees change – dataset D1 – and when
the beamformer moves within the environment – dataset D2.

Table I summarizes the different training/testing sets that
were considered for dataset D1, where the beamformees
positions are depicted in Fig. 6. When the same positions are
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set
beamformees position

training testing
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

S1
S2
S3

TABLE I: Dataset D1, training/testing sets to assess the DeepCSI perfor-
mance when varying the beamformees position in {1, . . . , 9} (see Fig. 6).

set
measurement group identifier

training testing
fix1 fix2 mob1 mob2 fix1 fix2 mob1 mob2

S4
S5
S6

TABLE II: Dataset D2, training/testing sets. ‘Fix1’ and ‘fix2’ group two static
traces each, i.e., the AP is fixed in position A (see Fig. 6). ‘Mob1’ and ‘mob2’
contain respectively four and three mobility traces, i.e., collected while the
AP is manually moved following the path detailed in Fig. 6.

considered in the training and testing phase, the first 80% of
the collected data is used for training and validating the model,
while the remaining 20% serves as test data. In all cases, the
last 20% of training data is used for model validation. As part
of our evaluation, we also assess the performance of DeepCSI
on Ṽ sub-matrices. This makes it possible to evaluate the
impact of using (i) different groups of transmitter antennas
and spatial streams, and (ii) different portions of the radio
spectrum. For (i), we vary Nch and Nrow. For (ii), we pick a
subset of the K available sub-channels.

The training/test sets considered for dataset D2 are detailed
in Table II. For ease of readability, we combined the eleven
traces composing the dataset into four groups. ‘Fix1’ and
‘fix2’ collect the four traces – two traces each – acquired
keeping fixed the position of the AP. The mobility traces
– i.e., collected while the AP is manually moved in the
environment – are grouped in ‘mob1’ and ‘mob2’, where the
first group contains four measurements while the remaining
three traces compose the second group. Note that the mobility
traces encode variations associated with the manual movement
of the AP. This implies that the positions taken by the AP
during the acquisition of the traces are approximately the same
due to slight variations in the movements. Moreover, a person
is always present in the proximity of the AP to perform the
operation, introducing additional variability.

For each configuration, DeepCSI is independently trained
on the feedbacks from the two beamformees, obtaining one
model for each of them. In this way, we evaluate a realis-
tic usage scenario where each beamformee authenticates the
beamformer based on local information, without relying on
some other, possibly malicious, entities. The results consider-
ing both the beamformees are also reported for completeness.

V. EXPERIMENTAL RESULTS

DeepCSI was experimentally evaluated on the Wi-Fi net-
work setups of Tables I and II, assessing the effectiveness of
the extracted beamformer fingerprint for different beamformer
and beamformees configurations. We first briefly discuss the
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(a) DeepCSI accuracy by varying
the number of convolutional layers,
with 128 filters each, from 2 to 7.
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(b) DeepCSI accuracy by using 5
conv. layers and varying the no. of
filters in each layer, from 16 to 256.

Fig. 7: DeepCSI accuracy for beamformer 1, on S1 validation data, by
varying the DNN parameters.
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(c) S3. Acc. 42.97%
Fig. 8: Confusion matrices for beamformee 1, 3 TX antennas, spatial stream 0.
ID in this and in the following plots refers to the AP Wi-Fi module identifier.

DNN hyper parameters selection process and then present the
DeepCSI performance by varying the PHY parameters of the
MU-MIMO transmission mode. In the first part, the DeepCSI
performance are assessed on dataset D1, evaluating the effect
of the beamformees’ positions. Dataset D2 is considered in the
second part to analyze the impact of the beamformer mobility
on the device identification accuracy.
DeepCSI hyper parameters selection. Fig. 7a and Fig. 7b
respectively evaluate the effect of tuning the number of
convolutional layers and filters for the DNN presented in
Section III-C. Noticeably, the accuracy remains almost con-
stant when varying the number of layers. Also, the accuracy
increases with an increasing number of filters, at a cost of a
higher network complexity (i.e., more trainable parameters).
As a trade-off between accuracy and complexity, we selected
Nconv = 5 convolutional layers with 128 filters each and
kernel sizes of (1, 7) for the first three layers, (1,5) for
the fourth and (1,3) for the last one by using the elbow
method [34]. The max-pooling kernels are set to (1, 2) and
the alpha-dropout between the three dense layers is applied
with retain probability of 0.5 and 0.2, respectively.
DeepCSI performance using different beamformees con-
figurations. Fig. 8 shows the accuracy of DeepCSI in
correctly identifying the beamformer among the 10 Compex
Wi-Fi modules in the dataset. The results were obtained using
the beamforming feedback angles from a single beamformee.
The confusion matrices are reported for each of the three
training/testing configurations in Table I, where ID refers to
the AP module identifier. We notice that the accuracy increases
with more spatial diversity in the training data, reaching
98.02% when all the configurations are used at training time
(see Fig. 8a for set S1). With sets S2 and S3, the beamformee
positions at training and testing times differ. The lowest
accuracy is obtained with S3 (worst-case configuration). This

7



0 2 4 6 8

0

2

4

6

8

Predicted ID

A
ct

ua
l

ID
0 0.5 1

(a) S1. Acc. 97.62%

0 2 4 6 8

0

2

4

6

8

Predicted ID

A
ct

ua
l

ID

0 0.5 1

(b) S2. Acc. 77.38%

0 2 4 6 8

0

2

4

6

8

Predicted ID

A
ct

ua
l

ID

0 0.5 1

(c) S3. Acc. 47.28%
Fig. 9: Confusion matrices, mixed beamformees, 3 TX ant., spatial stream 0.
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Fig. 10: DeepCSI accuracy by varying the number of training positions
from the considered set (see Table I). Set S1 is trained on a maximum of 9
beamformee positions while S2 and S3 on 5.

is because S3 is the set with the largest difference between
training and testing positions. The performance improves when
going from S3 to S2, as the latter provides DeepCSI with
a more balanced set of positions during training, allowing
the classifier to fill the knowledge gaps by “interpolating”
the patterns learned from adjacent positions. The network
reuses information from similar beam patterns leading to an
identification accuracy of 75%, even when the beamformee is
at a position that was not contained in the training set (see
Fig. 8b). The same applies to Fig. 9, where the beamforming
feedback angles of both beamformees are used to build the
training set. This allows to slightly increase the DeepCSI
accuracy on sets S2 and S3. However, using this technique in
real-world scenarios poses security concerns associated with
the reciprocal trustworthiness of the beamformees in a Wi-Fi
network. The impact of the number of beamformee training
positions is evaluated in Fig. 10. We report the accuracy
obtained by increasing the number of positions used at training
time from 1 to 9 for set S1 and from 1 to 5 for sets S2
and S3, according to Table I. In all the cases, the accuracy
increases with more beamformee positions in the training
data, which confirms that the fingerprint is more effective
when high spatial diversity is present in the training data. In
Fig. 11, we evaluate the effect of swapping the beamformees
used at training and testing times for the same network
configuration. We trained DeepCSI with data from a given
beamformee and used the trained DNN model to identify the
AP module from the Ṽ matrices computed by a different
beamformee (for the same AP module). The learned fingerprint
in this case performs poorly as matrix Ṽ captures hardware
inaccuracies of both devices, i.e., the beamformer (the AP) and
the beamformee. While a well designed learning architecture
can identify with high accuracy the beamformer when the
beamformee remains the same at training and testing times,
it hardly succeeds when these devices differ. We reasonably
believe that in a real-world scenario the impact of this will
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Fig. 11: Confusion matrices for set S1, training on one beamformee and
testing on the other, 3 TX antennas, spatial stream 0.

S1 S2 S3

set

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
[%

]

80 MHz
40 MHz
20 MHz

(a) Accuracy by varying the channel
bandwidth, i.e., selecting respectively
Ncol = 234, 110, 54, out of the
K = 234 OFDM sub-channels.
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the beamforming feedback matrix Ṽ.

Fig. 12: DeepCSI accuracy by varying the channel bandwidth and the number
of transmitter antennas, using spatial stream 0.

be even stronger, as the beamformees can be from different
vendors and have different hardware configurations.

DeepCSI performance when varying the beamformer
transmission parameters. In Fig. 12a we compare the ac-
curacy of DeepCSI when considering different portions of
the radio spectrum. According to the IEEE 802.11ac OFDM
channels specifications [19], from the 234 sub-channels on an
80 MHz channel, we can group sub-channels belonging to two
40 MHz and four 20 MHz channels. Therefore, from the data
collected on the IEEE channel 42 at 80 MHz, we extracted 110
sub-channels for the 40 MHz channel 38 and 54 sub-channels
for the 20 MHz channel 36, and assessed the performance
of DeepCSI on these subsets. These results prove that the
accuracy increases with a larger bandwidth, especially when
considering the most challenging configurations S2 and S3.
Fig. 12b evaluates the impact of increasing from 1 to 3
the number of transmitter antennas used to compute the
fingerprint. Note that the accuracy mainly depends on the
number of selected antennas and only weakly depends on their
IDs. Thus, we only show results for a single selection pattern
out of the possible ones for each number of antennas. The
DeepCSI performance remains almost constant on set S1,
while the accuracy increases on S2 and S3 going from 1 to 3
transmitter antennas. These results confirm that exploiting to
the maximum extent the spatial diversity at the beamformer
– by considering all the OFDM sub-channels and transmitter
antennas – is key to designing robust RFP algorithms.

DeepCSI performance when changing the reference beam-
formee spatial stream. To evaluate the effect of changing the
DNN input spatial stream on the beamformer fingerprinting
accuracy, we consider the impact of the beamforming feedback
angles quantization on the columns of Ṽ, representing the
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Fig. 13: PDF of the Ṽ quantization error using the two standard-compliant
sets of values for the beamforming feedback angles quantization bits.
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Fig. 14: Time evolution of Ṽ for the first 75 OFDM sub-channels, in static
conditions. The columns refer to the transmit antennas while the rows to the
spatial streams.

spatial streams dimensions. From Algorithm 1, it follows that
the impact of the quantization error increases going from the
first to the last reconstructed stream. We verified this fact by
simulating an OFDM MU-MIMO channel, considering the ray
tracing model of [35]. We obtained the channel matrix H for
100,000 transmissions in MU-MIMO mode, and we derived Ṽ
via SVD. Hence, we computed the qφ and qψ quantized angles
following Algorithm 1 and using the quantization parameters
defined in the standards [19, 20]. These operations are the
same performed by the beamformees to generate the feedback.
Next, we reconstructed Ṽ from the quantized angles and
evaluated the reconstruction error on each combination of
transmitter antennas and spatial streams. We plot the proba-
bility density functions (PDFs) of the quantization error using
(bψ = 5, bφ = 7) and (bψ = 7, bψ = 9) bits for quantization in
Figs. 13a and 13b. We notice the reconstruction of the second
column of Ṽ, i.e., the second stream, is less accurate than
the reconstruction of the first, for all the three transmitter
antennas. This is intrinsically related to the construction of
the Dk,i and Gk,`,i matrices from the quantized angles, and
to their combination for the computation of Ṽ (see Eq. (7)).
Indeed, the algorithm has a recursive structure by which the
quantization error on the first stream propagates to the next
ones, leading to worse approximations for the higher order
columns of matrix Ṽ. The quantization error can also be
visualized from our empirical measurements. In Fig. 14, we
plot an excerpt of the Ṽ matrix reconstructed by DeepCSI
from the quantized angles obtained at the beamformee side
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Fig. 15: Confusion matrices, beamformee 1, 3 TX antennas, spatial stream 1.

in static conditions. The quantization error is clearly visible
for the second spatial stream (column 2 of matrix Ṽ). Thus,
the performance of DeepCSI decreases when considering as
DNN input the data associated with the second spatial stream
(Fig. 15) instead of the first one (Fig. 8). While on set S1 the
beamformer can still be identified with high accuracy using
data from the second spatial stream, when considering sets S2
and S3 – thus reducing the number of training positions – the
beamformer fingerprint can no longer be effectively extracted,
leading to a considerable drop in the classification accuracy.

DeepCSI performance compared with learning from a
processed input. DeepCSI learns beamformer-specific fea-
tures directly from the I/Q samples of matrix Ṽ. As an alterna-
tive approach, we evaluated the effect of pre-processing such
I/Q data before using it as input for the DNN. Specifically,
we applied to the beamforming feedback matrices the data
cleaning algorithm presented in [36]. The CFR estimated at
the beamformee on the NDP – and from which Ṽ is derived –
slightly deviates from the theoretical model in Eq. (2) due to
hardware imperfections causing undesired phase offsets [37].
Among these imperfections, the most significant are: (i) the
carrier frequency offset (CFO), which originates from the
difference between the carrier frequency at transmitter and
receiver sides; (ii) the sampling frequency offset (SFO), which
is due to clocks synchronization error; (iii) the packet detection
delay (PDD), i.e., the receiver decoding time; (iv) the phase-
locked loop offset (PPO), which is associated with the random
generation of the initial signal phase by the phase-locked loop
module; and (v) the phase ambiguity (PA), which accounts for
the phase difference (multiples of π) among the signals at the
transmitter antennas. By considering these contributions, the
overall phase offset, θoffs,k,m,n, can be formulated as

θoffs,k,m,n = θCFO−2πk(τSFO+τPDD)/T+θPPO+θPA, (9)

and, in turn, the CFR estimated at the beamformee during the
channel sounding procedure becomes

Ĥk,m,n = Hk,m,ne
jθoffs,k,m,n . (10)

Besides the PDD, all the other contributions to Eq. (9) are
associated with imperfections at the transmitter device, that in
our case is the target of our fingerprinting technique, i.e., the
AP. Our key intuition is that also the beamforming feedback
matrix Ṽ – derived from H as discussed in Section III-B
– would be affected by the phase offsets (i)-(v). Thus, we
may use the offsets cleaning algorithm of [36] to improve
its quality. Along this line of reasoning, we evaluate in
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Fig. 16: Comparison with the accuracy obtained by learning the fingerprints
from the processed version of Ṽ, i.e., after applying the offsets correction
(offs. corr.) in [36]. Beamformee 1, 3 TX antennas, spatial stream 0.

Fig. 16 the impact of a preliminary offset cleaning phase on
matrix Ṽ on the fingerprinting accuracy. DeepCSI (with no
offsets cleaning) outperforms its version with the described
offset correction capability across all the training/testing sets.
In other words, the offsets introduced by the beamformer
hardware imperfections are strategic to reliably recognize the
device, and any offset cleaning may result in their partial
removal, affecting the fingerprinting quality.
DeepCSI performance in the presence of beamformer
mobility. The robustness of DeepCSI on beamformer’s mo-
bility is evaluated through dataset D2. In Figs. 17a-17b we
report the performance of DeepCSI on set S4 (see Table II).
Specifically, in Fig. 17a the entire mobility path for both the
training and testing sets is considered. We remind that even if
the theoretical path is the same for all the measurements, the
operation is performed manually and, in turn, the actual shifts
undergo uncontrolled variations that reflect on the collected
traces. The results show that DeepCSI is able to effectively
learn a fingerprint of the AP from the MU-MIMO beamform-
ing feedback matrices even when the AP moves, reaching
an accuracy above 80%. The proposed learning architecture
allows compensating for the slight variations introduced by the
manual shifts of the AP and the presence of the person moving
in the vicinity. The fingerprint is less effective when the en-
vironmental conditions sharply depart from the training ones.
The high-scale modifications on the beamforming feedback
matrices – associated with the channel variations – prevent
the neural network from effectively capturing the small-scale
variations that descend from the hardware imperfections. We
show this behaviour in Fig. 17b, where DeepCSI is trained
and tested in different mobility conditions. The training and
validation phases are performed on the first half of the traces in
‘mob1’, i.e., the portions related to the sub-path A-B-C-B. The
test is executed on the fraction of the traces in ‘mob2’ collected
while the AP spans the segments B-D-B. Overall, the results
in Figs. 17a-17b indicate that the higher the variability in the
training set, the more likely DeepCSI will learn fingerprints
that are robust to changing radio channel conditions. The
variability in the training set allows the learning algorithm
to properly detect the elements that are in common to the
traces and, in turn, identify the hardware-related features. In
Figs. 17c-17d we report the performance of DeepCSI on sets
S5 and S6. When DeepCSI is trained on the sole static traces
– set S5 – the learned fingerprint is not effective in recognizing
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(d) S6. Train on mobility traces and
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Fig. 17: Confusion matrices, beamformee 1, 3 TX antennas, spatial stream 0.

the beamformer when it moves in the environment. On the
other hand, once trained on the dynamic traces, DeepCSI is
able to correctly identify the AP in static conditions (about
88% of accuracy on set S6). These last results confirm that
the diversity in the training set is desirable to obtain a robust
algorithm able to generalize over different conditions.

VI. CONCLUDING REMARKS

In this paper, we have presented a novel approach to Wi-Fi
radio fingerprinting (RFP) which leverages IEEE 802.11-
compliant steering matrices to authenticate MU-MIMO Wi-Fi
devices. The present work makes the following key advances:
•We have demonstrated for the first time the feasibility

of RFP for MU-MIMO Wi-Fi. To this end, DeepCSI lever-
ages the beamforming feedback matrices computed by any of
the beamformees and transmitted in clear to the beamformer.
We have verified that the matrices are affected by the
beamformer hardware imperfections and, in turn, can
be used to identify the device. Moreover, the feedback is
not affected by inter-stream and inter-user interference, thus
increasing robustness. DeepCSI is independent of the number
of beamformees associated with the target beamformer: differ-
ent beamformer’s fingerprints can be computed, one from each
beamformee. Conversely from prior work, DeepCSI does not
require direct CSI computation and, in turn, can be run on any
Wi-Fi device without requiring SDRs.
•We have performed a massive data collection campaign

with off-the-shelf Wi-Fi equipment, where 10 Wi-Fi radios
emit MU-MIMO signals in different positions. Experimental
results indicate that DeepCSI is able to correctly identify
the transmitter with accuracy above 98%. We have evaluated
DeepCSI fingerprinting accuracy by differentiating the set
of positions for the devices at training and testing times.
Our technique achieves accuracy of 73% when training is
performed on a more balanced set of spatial points, which
allows the classifier to interpolate the training patterns for the
missing points, using those from adjacent training positions.
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• For the first time, we evaluated the proposed RFP
technique with moving Wi-Fi devices. DeepCSI reaches
an accuracy above 82%, showing the robustness of the learned
fingerprint to changing radio channel conditions. Our results
show that the higher the variability in the traffic traces
used for the training phase, the higher is the accuracy
when the algorithm is used at run-time to identify the
devices. This indicates the need for extensive datasets to train
effective RFP algorithms. In this vision, we pledge to make
our contribution by sharing our datasets [21].

As part of ongoing work, we plan to further investigate the
effect of the beam patterns and of the positions of the receivers
on the fingerprinting performance, also in the presence of
interference from overlapping channels. As a further extension,
we intend to investigate lifelong machine learning techniques
to accumulate knowledge and improve the device’s fingerprint
as it moves in the environment.
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