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 The main aim of this paper is to apply non-negative matrix factorization to build a recommender system. 
In a recommender system there are a group of users that rate to a set of items. These ratings can be 
represented by a rating matrix. The main problem is to estimate the unknown ratings and then predict the 
interests of the users to the items which haven’t rated. The main innovation of this paper is to propose a 
new algorithm to compute matrix factorization in a way that the factorized matrixes would be a good 
approximation for the initial rating matrix and moreover would be a good source to predict the unknown 
ratings of the items precisely. The results show that the proposed matrix factorization improves the 
estimated ratings considerably. 
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1. Introduction 

Modern consumers are flooded with choices. Electronic vendors offer a huge selection of products, with extraordinary opportunities to meet a variety of 
special needs and tastes. Matching consumers with the most appropriate products is important to enhancing user satisfaction. Therefore, more retailers 
have become interested in recommender systems, which analyze patterns of user interest in products to provide personalized recommendations that suit a 
user’s taste. Because good personalized recommendations can add another dimension to the user experience, e-commerce leaders like Amazon.com and 
Netflix have made recommender systems a salient part of their websites. Such systems are particularly useful for entertainment products such as movies, 
music, and TV shows. Many customers will view the same movie, and each customer is likely to view numerous different movies. Customers have proven 
willing to indicate their level of satisfaction with particular movies, so a huge volume of data is available about which movies appeal to which customers. 
Companies can analyze this data to recommend movies to particular customers. 
Broadly speaking, recommender systems are based on one of two strategies: content filtering and collaborative filtering.  The content filtering approach 
creates a profile for each user or product to characterize its nature. The profiles allow programs to associate users with matching products.  
An alternative to content filtering relies only on past user behavior—for example, previous transactions or product ratings—without requiring the creation 
of explicit profiles. This approach is known as collaborative filtering. Collaborative filtering analyzes relationships between users and interdependencies 
among products to identify new user-item associations. 
A major appeal of collaborative filtering is that it is domain free, yet it can address data aspects that are often indescribable and difficult to profile using 
content filtering. While generally more accurate than content-based techniques, collaborative filtering suffers from what is called the cold start problem, 
due to its inability to address the system’s new products and users. In this aspect, content filtering is superior. 
The two primary areas of collaborative filtering are the neighborhood methods and latent factor models. Neighborhood methods are centered on 
computing the relationships between items or, alternatively, between users. The item oriented approach evaluates a user’s preference for an item based on 
ratings of “neighboring” items by the same user. A product’s neighbors are other products that tend to get similar ratings when rated by the same user.  
Latent factor models are an alternative approach that tries to explain the ratings by characterizing both items and users on factors inferred from the ratings 
patterns.  
 
1.1. Application of NMF in recommender systems 
NMF can be used to decompose the rating matrix to two factors which can represent the group of similar users and similar items (Berry et al., 2007). To 
recommend an item to a special user, the interesting of the similar users can be used. For example consider Figure 1 that shows 6 users and 6 books. The 
ratings of users to items are represented by a matrix. 



 

 JOURNAL OF MANAGEMENT AND ACCOUNTING STUDIES 8(3) (2020) 56–61, 57 
 

 

Figure 1. Application of NMF in collaborative filtering 
 
In this example we have 3 features (k=3) and these features can be related to users or items (books). Assume that we have to estimate the rating that user 1 
gives to item 3. At first, the rating matrix is decomposed using NMF. By this factorization, the group of similar users to user 1 will be determined. As 
shown in Figure 1, users 1, 2 and 3 have similar ratings so they can be considered in a group and users 4 and 5 are considered in a group and similarly user 
6 is in another group. Each row of the first factorization matrix represents that the corresponding user belongs to which group. In other words, each row of 
the first factorization matrix shows which feature is more important for the corresponding user. Each column of second factorization matrix shows that the 
corresponding book is more important for which group. In other words, which feature of the corresponding book is more important for users. So if the first 
row of the first factorization matrix would multiplied by the third column of the second factorization matrix, the result reveals that if the third book has 
which features that are important for user 1. 
 
1.2. Proposed Approach 
The aim is to find non-negative matrixes W and H in such a way that the equation (1) is satisfied: 
퐴 ≅ 푊퐻 = 퐴                                                          (1) 
Each row of matrix W represents the correlation between the corresponding user and the features (groups) detected by the factorization method. Also, 
each column of matrix H represents the correlation between groups and the corresponding items (Bertsekas, 1999). In another word, considering the 푖th 
row of matirx W which has 푘 elements and each element is representative of a group, if the 푙th element of the row is the largest one among the other 
elements of this row then the probability that user 푖 is related to group 푙 is larger. In addition, considering the 푗th column of matrix H which has 푘 
elements and each element is representative of a group, if the 푙th elemnt of this column is the largest one among the other elements of the column then it is 
more probable that group 푙 would be interested in item 푗 (Kim & Park, 2008).  
Hence, to predict the score which user i will give to item j, we can compute the multiplication of row i of matrix W to column j of matrix H. let represent 
ith row of matrix W with  푊    and jth column of matrix H with  퐻  , then: 
푎 = 푊퐻 = ∑ 푤 ℎ                                         (2) 
The difference between the actual score and the estimated score is called estimation error (Kim & Park, 2007). Estimation error may be positive or 
negative according to which of the actual score or the estimated score is higher than the other. Therefore the square of the estimation error is computed to 
prevent the sign difference: 
푒 = (푎 − 푎 ) = (푎 − ∑ 푤 ℎ )               (3) 
In fact, minimizing the estimation error is commonly reformulated as the following optimization problem: 
푚푖푛 , 	푓(푊,퐻) = ‖퐴 −푊퐻‖ = ∑ ∑ (푎 − ∑ 푤 ℎ ) 	, 푠. 푡.				푊, 퐻 ≥ 0  (4) 
The main goal is to minimize the estimation error. To this end, it is essential to determine in which direction the values of 푤  and ℎ  should be changed. 
In other words, it is nessessary  to compute the gradient of error according to  푤  and ℎ  and then inorder to provid KKT conditions to find the minimum 
value we should reduce the gradient in each iteration (Koren et al., 2009). Therefore, we compute the partial derivation of error according to 푤  and ℎ  as 
shown in raltions (5) and (6): 

= −2 푎 − 푎 ℎ = −2푒 ℎ                   (5) 
= −2 푎 − 푎 (푤 ) = −2푒 푤                   (6) 

Now to find the update rules, a coefficient of the above expressions are applied to build an additive form of the update rules: 
푤 = 푤 + 2훼푒 ℎ ,                                              (7) 
ℎ = ℎ + 2훼푒 푤 .                                              (8) 
By convergence of (W,H), the gradient becomes zero therefore KKT conditions are satisfied (Langville et al., 2014). In this situation the algorithm is 
converged to a local minimum. Parameter 훼	is a positive value which can be constant or can be updated during each iteration. Generally a little value is 
considered for this parameter otherwise the algorithm may miss the local minimum. 
 

2. Regularization 

During the iterations to minimize the estimation error, the value of the entries of the decomposed matrix may be increased that results in error 
enhancement in each iteration. To prevent the growth of the decomposed matrix entries inordinately, a coefficient of the Euclidean value of the row and 
column which the score prediction is based on them  is added up to the estimation error of the corresponding row and column. By this way, not only the 
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growth of estimation error is controlled but also the growth of the decomposed matrix entries are limited (Lee & Seung, 2011). Therefore we can rewrite 
the estimated error as the following formula:  
퐸 = (푎 − ∑ 푤 ℎ ) + 훽 ‖푊‖ + 퐻 = (푎 − ∑ 푤 ℎ ) + 훽(∑ 푤 +∑ ℎ ).      (9) 
So the partial derivations can be recomputed as follow: 

= −2푒 ℎ + 2훽푤 ,                                      (10) 
= −2푒 푤 + 2훽ℎ ,                                       (11) 

Therefore the update rules are defined as follow: 
푤 = 푤 + 2훼 푒 ℎ + 훽푤 ,                             (12) 
ℎ = ℎ + 2훼 푒 푤 + 	훽ℎ .                            (13) 
Usually in practice, parameter 훽 is set to value 0.01. Therefore, using the above update rules and an appropriate and small enough selection for the amount 
of parameter 훽	, the update rules are applied until the estimation error would be decreased to a desirable amount of value. 
 
2.1. Stop Criterion 
Nearly all NMF algorithm implementations use a maximum number of iterations as stopping criteria (Lee & Seung, 2001). However, a fixed number of 
iterations is not a mathematically appealing way to control the number of iterations executed. There are other choices to select as stopping criterion. A 
way to select the stopping criterion is to compare the original matrix A with the estimated matrix 퐴. The difference between the non zero elements of the 
original matrix and the corresponding elements in the estimated matrix should not exceed a special value. This limitation can be defined according to a 
special problem. In this paper, the total estimation error is considered as a factor to set the stopping criteria. The error square is computed as the following 
relation: 
퐸 = (푎 − ∑ 푤 ℎ ) + 훽(∑ 푤 +∑ ℎ ). (14) 
Now, if error is less than a predefined value (such as 0.0001) then the algorithm stops an outputs the estimated matrix. 
 
2.2. Initialization 
To start the factorization algorithm, W and H matrixes should be initialized. Usually, a weak initial value (such as random initialization) causes a slow 
convergence and sometimes irrelevant and incorrect results. Although a suitable initialization does not necessarily guarantee algorithm convergence, it 
certainly reduces the number of iterations. The performance of NMF algorithm is affected by the initial value of the W and H matrixes. So it is important 
to use consistent and efficient methods to select initial value for matrixes. In this paper, a multiplicative update rule algorithm is applied. The algorithm 
transforms the initial random matrixes to an approximation of NMF and then uses this approximation as an initial value for matrixes W and H.   
 
2.3. Multiplicative update algorithm 
Multiplicative update algorithm is one of the most applicable algorithms for solving NMF problem (Lin, 2005):  
푊 = 푟푎푛푑(푚, 푘) 
퐻 = 푟푎푛푑(푘, 푛) 
푓표푟	푖 = 1: 푡 
퐻 = 퐻.∗ (푊 퐴)./(푊 푊퐻 + 10 ) 
푊 = 푊.∗ (퐴퐻 )./(푊퐻퐻 + 10 ) 
end 
The symbol ./ represents element by element division. In each iteration, the fraction is added by 10 	to prevent divide by zero. 
 
2.4. convergence of the Multiplicative Update Algorithm to a Local Minimum 
If the initial matrixes W and H are strictly positive, then according to the update rules and by assumption that matrix A doesn’t have any zero row and 
column (if it has such row or columns, they can be removed without any damage to the problem), it is obvious that W and H remain positive in each 
iteration. If seqence (W,H) converges to (푊∗, 퐻∗) and the conditions W > 0 and H > 0 are satisfied then following relations are confirmed: 

( ∗, ∗) = 0                                                          (15) 
( ∗, ∗) = 0                                                          (16) 

We prove the first relation and the second relation can be proved in a same way. The update rule for H can be rewriten as follows: 
퐻 = 퐻 + [퐻./(푊 푊퐻)].∗ [푊 (퐴 − 푊퐻)].        (17) 
Raltion (17) can be defined as follows: 
퐻 = 퐻 + [퐻./(푊 푊퐻)].∗ [푊 (퐴 − 푊퐻)] 
= 퐻 + [퐻./(푊 푊퐻).∗ 푊 퐴] − [퐻./(푊 푊퐻).∗ 푊 푊퐻] 
= 퐻 + [퐻./(푊 푊퐻).∗ 푊 퐴] − 퐻 
= 퐻./(푊 푊퐻).∗ 푊 퐴                                         (18) 
Assume after each update, the resultant matrix H would be very close to the previous matrix H before update. In other words, assume that the matrix 
resulted from update would be a limitation point for the matrix before update and 퐻 > 0 then according to relation (18): 

[ ]
[푊 퐴] − [푊 푊퐻] = 0                 (19) 

Because  퐻 > 0 therefore: 
[푊 퐴] = [푊 푊퐻]                                           (20) 
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It means [ ] = 0. Therefore when the sequence (W, H) converges to  (푊∗, 퐻∗) then H would be a limitation point for 퐻∗ from on step onwards (Lin, 
2005; Paatero & Tapper, 1994). On the other hand because the assumption of initial matrixes positiveness, for each i and j, 퐻 > 0 and [ ] = 0. It 
means: 
= 0                                                                    (21) 

Obviously if the above partial derivations are zero, considering this fact that matrixes W and H are positive so the KKT conditions are satisfied. The local 
minimum is obtained according to 푊∗	and 퐻∗. Therefore if it is guaranteed that the initial matrixes are positive, the multiplicative update rules would 
converge to a local minimum. 
 
2.5. Experimental Results 
Error evaluation factors are applied on non zero elements of matrix. In fact, non zero elements are the actual rating that should be analyzed and zero 
elements implies that the correspond item is not rated by the user. So error is computed based on non zero elements of the rating matrix. 
Consider 푟  is a non zero vector of the rating matrix and 푝  is an approximation that the recommender system has computed and z is the number of the 
vector elements. 
 
2.6. Mean Absolute Error 
MAE is computed as follow (Wang & Zhang, 2013): 
푀퐴퐸 = ∑ |푟 − 푝 |					, 푗 = 1,2,… , 푧.                 (22) 
 
2.7. Root Mean Square Error 
RMSE is computed by the following formula: 
푅푀푆퐸 = ∑ (푟 − 푝 ) , 푗 = 1,2,… , 푧.              (23) 
 
2.8. Relative Error 
RE is one of the popular factors to measure error which is computed by the following formula: 
푅퐸 = | |

| |
                                                           (24) 

 
2.9. Error Comparision 
In this section, the proposed approch error is evaluated on Netflix data set (Zhou et al., 2008). RE diagram, as shown in Figures 2 and 3, represented as 
discrete points. In this diagram, the horizental and vertical axes represent index of data and the error related to that index correspondingly. In MAE and 
RMSE diagrams, shown in Figures 4 and 5, the horizental and vertical axes represent the number of data and error value correspondingly. 
 

 

Figure 2. Relative error based on simple NMF 
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Figure 3. Relative error of the proposed approach 

 

Figure 4. MAE comparison between the simple NMF and the proposed approach 
 

 

Figure 5. RMSE comparison between the simple NMF and the proposed approach 
 
The results show that the proposed approach introduces less amount of error compared to the simple NMF factorization in recommender system. 
 

3. Conclusion 

Matrix factorization techniques have become a dominant methodology within collaborative filtering recommenders. Experience with datasets such as the 
Netflix Prize data has shown that they deliver accuracy superior to classical nearest-neighbor techniques. At the same time, they offer a compact memory-
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efficient model that systems can learn relatively easily. What makes these techniques even more convenient is that models can reveal the group of users 
that have similar interesting. This paper proposes a new update rule algorithm to compute matrix factorization. The proposed method guarantees the 
convergence of the algorithm to a local minimum which is the best factorization with the least estimation error. 
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