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A B S T R A C T

Grasslands and pastures are critical ecosystems globally, essential for their agricultural and environmental roles. 
Extensive research from 2000 to 2022, comprising 504 articles, has explored the integration of remote sensing 
and statistical modelling for mapping and monitoring grassland and pasture ecosystems. These articles were 
sourced from the SCOPUS database and analysed using text mining and natural language processing techniques 
to investigate the evolution of publication trends over the past twenty-two years. The number of publications per 
year on this topic has grown consistently in the considered period, from 3 in 2000 to 93 in 2022, doubling their 
weight compared to the total number of Scopus publications. The quantitative analysis of satellite platform 
utilisation revealed the increasing importance of Sentinel-2, even though MODIS remained the most utilised 
satellite platform throughout the study period. The increasing availability of big data has helped spread the 
utilisation of machine learning algorithms, mostly in the last ten years. Among these, random forest appeared to 
be the most widespread for grassland and pasture studies. Researchers’ primary interest in this field centres on 
the technologies and their applications. This is evidenced by cluster analysis, which reveals a dominant focus on 
terms related to the ’Instruments’ (25.8 %) and ’Parameters’ (24.9 %) categories. This analysis aims to outline 
the progression of research, offering insights that could be useful in forecasting future trends and facilitating 
stakeholder engagement in this sector.

1. Introduction

Grasslands are among the most critical and widespread ecosystems in 
the world. In 2020, they covered >3 million ha worldwide [1] and 
stored approximately 30 % of terrestrial biomass [2].

The role that these ecosystems play regarding climate-changing 
emissions is prominent [3]; pastures and grasslands can both stock 
and emit carbon dioxide (CO2) [4] and other greenhouse gases, such as 
methane (CH4) and nitrous oxide (N2O) [5]. Several authors have 
investigated the role of grasslands as carbon sinks and highlighted their 
importance. Dass et al. [6] stated that in California, grasslands might be 
more resilient and reliable than forests as carbon sinks. Evidence from 
European grasslands shows that the soil C sequestration rate can reach 
0.77 g C m-2 [7], while a Swiss study by Guillaume et al. [8] concluded 
that the first 50 cm of grassland topsoil contains approximately 7 kg C 

m-2 and that including temporary grassland in crop rotation may in
crease carbon storage in agricultural soils. Compared with croplands, 
grasslands and pastures have the potential to act as C and N sinks and 
mitigate GHG emissions in livestock systems, as C and N sequestration 
can offset GHG emissions [7,8]. Recent studies developed remote 
sensing tools based on Sentinel-2 and Sentinel-5p to track and quantify 
GHG emissions [9].

Furthermore, grasslands are the cradle of vast plant and animal 
biodiversity [10,11].

Despite their role in mitigating greenhouse gas emissions, these 
ecosystems face significant threats from climate change. This is partic
ularly evident in issues like erosion [12] and reduced grass productivity 
[13].

From an agricultural point of view, using grasslands as pastures 
represents a vital resource. It is the least expensive way to produce 
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fodder, providing nearly half the feed requirements for global livestock 
production [14] and covering 67 % of agricultural land worldwide [1]. 
The amount and quality of forage produced in pastures significantly 
impact animal welfare and final production [15,16]. Grasslands 
covering marginal areas in agricultural environments as riverbanks, also 
have potential as biomass supplier for anaerobic digestion plants [17]. 
Changes in the botanical composition, production, and quality of pas
tures can affect final production, which can have important socioeco
nomic consequences for rural areas. The different characteristics of 
pastoral activities can change their effect on the grassland environment, 
both in terms of productivity and biodiversity. Sartorello et al. [18] 
identified four main categories of pastoral activities: (i) traditional 
management, defined as extensive grazing; (ii) overgrazing, represent
ing land overexploitation; (iii) Agri-Environmental Schemes (AESs), 
reducing overgrazing towards traditional extensive management to 
mimic and/or enhance biodiversity conservation; and (iv) land aban
donment following previous pastoral activities.

During the last decades, mountainous regions have experienced 
profound socioeconomic transformations [19,20]. These changes 
encompass land abandonment, a decline in agricultural practices, an 
ageing farming population, and increased urbanization [21]. Conse
quently, pastoral systems have deteriorated, with unpalatable grasses 
taking over, shrubs encroaching, and reforestation occurring [22–24]. 
This degradation of pastoral landscapes highlights the need for sus
tainable management and restoration efforts to preserve these vital 
ecosystems [19,25].

To ensure accurate information about the state of grasslands, char
acterisation, monitoring, and management are necessary. Additionally, 
understanding the potential of nearby environments is crucial. Tradi
tional ground-based methods are laborious and time-consuming [26], 
while remote sensing is efficient and fast and thus has the potential to 
provide large amounts of useful real-time data to improve pasture and 
grassland management at both large (regional) and small (farm) scales. 
The activity of researchers in this field has substantially increased in 
recent years, together with the tools and possibilities offered by remote 
sensing technologies [27]. Some of the most investigated topics include 
monitoring grassland degradation [28]; estimating vegetation-related 
parameters such as aboveground biomass [29–33], leaf area indices 
[34] or fractional vegetation cover [35]; and characterising grassland 
habitats [36]. Some of the most utilised satellite platforms include 
moderate-resolution imaging spectroradiometer (MODIS) (which is 
especially suitable for large-scale studies [37–39]), Landsat satellites 
from NASA [40,41], and the Sentinel constellation from the ESA 
[42–44]. Remote sensing multispectral and hyperspectral images and 
radar data can also be used to predict grassland taxonomic and func
tional plant diversity, as well as phenological traits [45–47]. Fauvel 
et al. [47] used a combination of optical data from Sentinel-2 and syn
thetic aperture radar from Sentinel-1 to compute several diversity 
indices, while Imran et al. [46] focused on the application of fine-scale 
hyperspectral imaging to estimate grasslands biodiversity.

Numerous studies have recently focused on integrating machine 
learning and deep learning techniques to extract valuable information 
about grassland vegetation from remote sensing data. Techniques such 
as random forest [48,49], regression models [50], neural networks [51], 
and clustering methods [52] have significantly enhanced the analysis 
and interpretation of complex datasets. These advancements have led to 
more accurate and comprehensive assessments of grassland ecosystems.

In recent years, several authors have reviewed the status of grassland 
observation methods and applications based on remote sensing data and 
machine learning applications, the advancements in technology and 
methodology for retrieving various grassland biophysical data and 
management traits and recognised the primary unmet needs and forth
coming trends for development [53–55].

The reviews included major advancements and trends from scientific 
researchers on the topic. However, a systematic quantitative review is 
missing. This review, similarly to other recent studies [56–59], would 

analyse trends and geographical and thematic clusters emerging from 
large quantities of scientific papers.

In this research, the scientific literature was analysed using a quan
titative method based on text-mining techniques. In fact, due to the 
vastness of the specific topic, the framework of the literature review 
should follow the guidelines presented in the PRISMA statement [60]. 
The present analysis aims to provide a comprehensive state-of-the-art 
review of the literature concerning the use of remote sensing technolo
gies for characterising and monitoring grasslands and pastures. The 
specific objectives of this review are to (i) describe the trend of the 
publications throughout the years, (ii) highlight the significant gaps in 
the research relating to the use of remote sensing in this field, both in 
terms of topics and geographical areas, with a focus on satellite plat
forms and machine learning algorithms, and (iii) categorise the in
terrelationships among the grassland and pasture monitoring and 
management activities and remote sensing-based tools, with a focus on 
satellite platforms, reported in the literature using cluster analysis.

2. Materials and methods

A systematic quantitative review was performed by extracting doc
uments from the Scopus database. This approach relies on selecting 
explicit and reproducible survey methods [61], which allow a holistic 
view of the literature. It enables the presentation of a clear and complete 
picture of the state of the art. Additionally, it highlights key topics raised 
by the scientific community and facilitates cluster analysis.

The analytic methodology approach makes it possible to map the 
gaps, not only from a theoretical point of view but also from a meth
odological and geographic point of view.

The analysis was conducted through a text-mining approach. This 
involved examining the words present in the “title – abstract – key
words”. The tools utilised included NumPy, Pandas, Matplotlib and 
Seaborn libraries in Python 3.0.11, Microsoft Excel and Gephi’s (Gephi® 
Consortium, Compiegne, France) graphical representation tools, which 
are open-source network analysis software. Text mining involves 
extracting meaningful numerical indices from texts by scrutinising un
structured textual data. Analysing these indices statistically unlocks the 
understanding of the text, yielding substantial and quality insights [36,
59,62].

2.1. Article selection

The analysis focused on the remote sensing technologies and tech
niques utilised to map and characterise grasslands and pastures. The 
article selection was based on the combination of the terms “grassland” 
and “pasture” with the general terms “remote sensing”, “UAV”, 
“drones”, and “satellite” and with the specific satellite platform names 
“Landsat”, “Sentinel”, “RapidEye”, “Planet”, “Worldview”, “Gaofen”, 
“Modis”, “Alos”, “Spot”, “Avhrr”, “Hyperion”, “Ikonos”, “Radarsat”, 
“Envisat”, “Formosat”, “Pleiades” and “Quickbird”. Only documents 
published in journals and written in English were utilised, and the 
considered timespan ranged from 2000 to 2022. The query string uti
lised is reported in Table 1.

Table 1 
Script for the extraction of research papers.

Query 
String

((TITLE (pasture*) OR TITLE (grassland*)) AND (TITLE (satellite*) OR 
TITLE (uav*) OR TITLE (drone*) OR TITLE (sentinel) OR TITLE 
(landsat) OR TITLE (rapideye) OR TITLE (planet) OR TITLE (gaofen) 
OR TITLE (worldview) OR TITLE (modis) OR TITLE (spot) OR TITLE 
(avhrr) OR TITLE (hyperion) OR TITLE (ikonos) OR TITLE (alos) OR 
TITLE (radarsat) OR TITLE (envisat) OR TITLE (formosat) OR TITLE 
(pleiades) OR TITLE (quickbird) OR TITLE (remote AND sens*))) AND 
(PUBYEAR > 1999 AND PUBYEAR < 2023) AND (LIMIT-TO 
(SRCTYPE,"j")) AND (LIMIT-TO (DOCTYPE,"ar") OR LIMIT-TO 
(DOCTYPE,"re")) AND (LIMIT-TO (LANGUAGE,"English"))
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A total of 504 articles were selected and downloaded using the .csv 
extension. Data relating to the following key metadata fields were 
selected: ‘Title’, ‘Authors’, ‘Year’, ‘Source title’, ‘Affiliation’, ‘Cited by’, 
and ‘Author Keywords’.

Due to the specific dataset and time period utilised, the study’s 
limitations in terms of generalizability are clear. Even though these 
constraints are explicitly addressed, Scopus is a broad database, and 
several reviews are based on sole Scopus database [56,57,63]. Accord
ing to Sampson et al. [64], “Searching additional databases with over
lapping coverage but fewer precision-enhancing features may 
reintroduce irrelevant material that has already been eliminated from 
the retrieval in the database with the fullest feature set”. By concen
trating on a well-defined dataset, we aim to ensure the robustness of our 
findings while acknowledging the inherent limitations of this approach.

2.2. Trend analysis

The dataset downloaded from Scopus was imported using Python’s 
panda’s library, which is renowned for its powerful data manipulation 
capabilities and was instrumental in processing and analysing these 
data. Preliminary analysis involved descriptive statistical techniques to 
summarise publication trends over time and the geographical distribu
tion of research contributions. Matplotlib and seaborn, Python’s primary 
libraries for statistical graphics, facilitated the visualisation of these 
trends.

2.3. Quantitative analysis of satellite platforms and machine learning 
algorithms

This segment of the analysis focused on extracting specific infor
mation about satellite platforms and machine learning algorithms from 
the corpus of articles. The objective was to ascertain the prevalence and 
usage trends of various satellites and algorithms within the field. The 
search for the occurrence of satellite platforms and machine learning 
algorithms was exclusively conducted within the ’Abstract’ section of 
each article in the dataset. This decision was based on the rationale that 
the abstracts provide a succinct and focused summary of the research, 
including key methodologies and technologies employed. The process 
involved the following detailed steps:

1. Defining Keywords: The first step was to compile comprehensive lists 
of keywords representing both satellite platforms and machine 
learning algorithms, as reported in Table 2.

2. One-Time Count per Abstract: To quantify the occurrence of these 
technologies, a distinct counting rule was applied: each term was 
counted only once per abstract, regardless of the number of times it 
appeared within that abstract.

3. Frequency Tallying: The Python script scanned each abstract for the 
presence of the predefined keywords, employing case-insensitive 
matching to ensure comprehensive detection. When a keyword was 

identified, it was counted for that abstract, and subsequent mentions 
within the same abstract were discarded.

4. Data Aggregation and Interpretation: The final tally provided insights 
into the prevalence of specific satellite platforms and machine 
learning algorithms within the field based on their utilisation in 
different studies.

2.4. Natural language processing, clustering and network analysis

The textual content of titles, author keywords and abstracts under
went extensive natural language processing, implemented through 
several Python libraries:

1. Text Cleaning and Normalization: Utilising regular expressions (via 
Python’s remodule), extraneous elements such as URLs, punctuation, 
and numerals were removed, and text normalization was achieved 
by converting all characters to lowercase.

2. Tokenization and Stop Words Removal: The nltk library (Natural 
Language Toolkit), a comprehensive suite for NLP in Python, facili
tated the tokenization of text, splitting it into individual words and 
removing common stopwords.

3. Stemming: Nltk’s PorterStemmer was applied to reduce word toke
nisation of their root form, aiding in consolidating various morpho
logical variants of words.

4. Bigram Collocation Analysis: Identification of frequently co-occurring 
word pairs (bigrams) was executed using nltk’s 
BigramCollocationFinder.

5. Word Frequency Counting: The collection library’s counter class was 
used to count the occurrence of each term within the corpus.

From the frequency distribution obtained by the analyses, we 
selected the 150 most common words. The CSV file was imported into 
Microsoft Excel for manual validation and clustering. The list of words 
was verified for synonyms and irrelevant words. The word list was ul
timately limited to the 70 most important and recurring words. The 
definition of the clusters was based on an initial topic modelling anal
ysis, which was then adapted by the authors in order to fit the relevant 
terms highlighted by the analysis.

The five identified clusters were ‘Vegetation’, ‘Instruments’, ‘Envi
ronment’, ‘Parameters’ and ‘Management’; the words composing the 
five clusters are shown in Table 3.

The co-occurrence matrix was then constructed using these 70 terms. 
The matrix was a two-dimensional array in which both the rows and 
columns represented the selected words. For each document in the 
dataset, the script iterated through pairs of these top words, recording 
the instances where both words in a pair appeared together in the same 
document. The value in each cell of the matrix corresponded to the 
count of co-occurrences for the word pair it represented. This was ach
ieved using Python’s data manipulation capabilities, specifically with 

Table 2 
Lists of keywords employed for the quantitative analysis of satellite platforms 
and machine learning algorithms.

Topic Keywords

Satellite Platforms ‘Sentinel’, ‘Landsat’, ‘Modis’, ‘Spot’, ‘AVHRR’, 
‘Worldview’, ‘RapidEye’, ‘Planet’, ‘Radarsat’, ‘Quickbird’, 
‘Alos’, ‘Gaofen’, ‘Hyperion’, ‘Envisat’, ‘Formosat’, ‘Hyspiri’, 
’Ikonos’, ‘Prisma’, ‘Venus’

Machine Learning 
Algorithms

‘Linear Regression’, ‘Logistic Regression’, ‘Partial Least 
Square Regression’, ‘Decision Tree’, ‘Random Forest’, 
‘Support Vector Machine’, ‘Naïve Bayes’, ‘K-Nearest 
Neighbors’, ‘Artificial Neural Network’, ‘Gradient 
Boosting’, ‘Generalized Additive Model’, ‘Convolutional 
Neural Network’, ‘Recurrent Neural Network’, ‘Principal 
Component Analysis’

Table 3 
Cluster composition.

Cluster Lemmas

Instruments Model, Remote Sensing, Image, Satellite, Modis, Sentinel, R, Map, 
Landsat, Regression, Algorithm, Random Forest, UAV, Correlation, 
Hyperspectral, Multispectral

Parameters Vegetation Index, Accuracy, Index, NDVI, AGB, Productivity, 
Spatial, Spectral, Time Series, Normalized Difference, LAI, GPP, 
Resolution, Temporal, Variability, Reflectance, Optical, Bands, 
Seasonal, EVI, RMSE

Vegetation Grassland, Pasture, Biomass, Species, Phenology, Plant, Grass, 
Agricultural, Canopy, Forage

Environment Soil, Ecosystem, Degradation, Water, Carbon, Ground, Drought, 
Land, Climate, Ecological, Precipitation, Fire, Steppe, Temperature, 
Alpine

Management Estimation, Monitoring, Classification, Grazing, Mapping, 
Conservation, Livestock, N
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pandas and collections. The final co-occurrence matrix provided a 
quantified representation of the relationships between key terms in the 
corpus. This matrix served as the foundation for constructing an edge 
list, in which each edge represented a pair of co-occurring terms, and the 
weight of the edge corresponded to their co-occurrence frequency.

The edge list was formatted for compatibility with Gephi, facilitating 
the visualisation of the term network and the exploration of thematic 
clusters within the research field. The concluding stage involved utilis
ing Gephi (Gephi® Consortium, Compiegne, France), which is open- 
source software for visualising the relationships between terms. In 
Gephi’s graphical representation, terms are depicted as interconnected 
nodes (possibly with assigned weights), and the vectors, which can be 
directed or undirected, represent the links between these terms. Fig. 1
depicts the conceptual flow of the analytical process.

3. Results

3.1. Analysis of trends

The first consideration concerns the number of articles published per 
year in the considered period (2000–2022) concerning remote sensing in 
the fields of Earth and planetary sciences and agricultural and biological 
sciences.

Fig. 2 compares them with the total number of publications pub
lished in Scopus during the same period. The number of total publica
tions in Scopus has grown constantly, from 1182,106 in 2000 to 
3971,310 in 2022. Even the number of publications concerning remote 
sensing in Earth and planetary sciences and agricultural and biological 
sciences has grown, going from 2446 in 2000 to 13,962 in 2022, but 
following a less constant trend. The upwards trend followed an up-and- 
down trajectory until 2017, when it grew steeply and constantly, with 
the only exception being 2021, when it reached its maximum in 2022.

In the second phase of the analysis, the focus moved from remote 
sensing applications to grassland and pasture monitoring and manage
ment topics and its ratio to the total number of publications in Scopus.

As shown in Fig. 3, the number of publications concerning our 
research topic has increased in the last 20 years, increasing from 3 
publications in 2000 to 93 in 2022. Additionally, the percentage of 
publications on the use of remote sensing for the management and 
monitoring of grasslands out of the total number of publications in 
Scopus increased significantly in 2022 and was more than two times 
greater than that in 2000. The increase in the number of publications is 

related to the general increase in the number of scientific publications 
and the growing interest in utilising remote sensing technologies, 
especially when related to environmentally relevant topics such as land 
management and monitoring of grasslands and pastures.

Fig. 3 shows the number of publications on our research topic (blue 
histogram) and the ratio of the total number of publications in Scopus 
(red line plot). The trend over the years has increased, reaching its 
maximum for both the number of publications and the ratio in 2022.

Another quantitative approach that has been used concerns the dis
tribution of scientific publications across major contributing countries. 
The most important contributing country is China, with 142 publica
tions corresponding to 28.2 % of the total, followed by the United States 
with 77 (15.3 %) and Germany with 51 (10.1 %) publications. Table 4
lists the top 10 contributing countries in 2000–2022 and shows the 
evolution of the number of publications in each country.

To compare the temporal trends of individual countries, Fig. 4, 
highlighting the individual trend of the top 5 publishing countries, 
clearly shows how China has become the main protagonist actor over the 
last 20 years, passing from 0 publications in 2000–2004 to the absolute 
leader in recent years, quadrupling the number of publications of the 
second most important publishing country in 2022, with 36 publications 
versus 9 publications from the United States of America.

The journals that published the most papers on the topic were also 
analysed, and Table 5 reports the 10 most important journals by number 
of publications. The journal ‘Remote Sensing’ has a prominent role, as it 
published >20 % of the articles, followed by the International Journal of 
Remote Sensing with 7.3 % and Remote Sensing of Environment with 
6.3 %. Even if the publications are distributed across 159 different 
journals, the first five account for >44 % of publications, showing that 
the topic is well identified and has a precise editorial placement.

3.2. Satellite platforms and machine learning quantitative analysis

Satellite platforms and machine learning algorithms have a promi
nent role in the application of remote sensing technologies to charac
terise and monitor grasslands and pastures [36,48,65].

A quantitative analysis was carried out to analyse and quantify the 
impact of individual satellite platforms and machine learning algo
rithms. UAVs are also important remote sensing data sources and were 
widely utilised in this review’s research. The decision to focus on the 
analysis of satellite platforms was made after a preliminary quantitative 
analysis of the considered scientific articles. The number of articles 

Fig. 1. The conceptual flux of the analysis: model and software used.
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including the words “UAV”, “drone” or “unmanned aerial vehicle” in 
their abstracts was 55, 11 % of the total, while the number of articles 
considering at least one of the considered satellite platforms was 445, 88 
% of the total.

Fig. 5 shows the results of the quantitative analysis of the number of 
studies in which each satellite platform was considered. The 10 most 
recurring platforms are plotted. MODIS is the most utilised, appearing in 
160 papers, followed by Sentinel-2 with 99 appearances and Landsat (all 

Fig. 2. The evolution of total publications in Scopus (red line) and publications related to remote sensing in Earth and planetary and agricultural sciences (blue line) 
during 2000–2022.

Fig. 3. The evolution of publications related to remote sensing applied to grassland and pasture studies in the Earth and planetary and agricultural sciences topics 
(blue column) and their ratio by the number of total publications in Scopus during 2000–2022.
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the Landsat satellites were analysed together), with 81. Among the other 
platforms not specifically cited in the plot, it is important to highlight 
the presence of Quickbird, which has been working since 2001, and the 
Gaofen constellation, a Chinese-based program first launched in 2013 
that includes multispectral, radar and electro–optical sensors, which will 
become popular in the coming years.

Considering the evolution of the employment of different satellites in 
the characterisation and monitoring of grasslands and pastures over 
time, as shown in Fig. 6, MODIS had led for many years, from 2008 to 
2019, but since its launch on the 23rd of June 2015, Sentinel-2 has 
rapidly gained popularity among scientists and researchers, and since 
2020, it has been the most utilised satellite platform in this field. In 
2022, Sentinel-2 was the most considered satellite, utilised in 32 studies, 
almost double that of Modis, which stopped at 17.

Using satellite platforms by researchers in grassland and pasture 
studies reveals notable differences based on the authors’ geographical 
origins. Fig. 7 illustrates the proportional usage of various satellite 
platforms by different countries. Each pie chart on the map represents 
the distribution of satellite platform usage for a particular country, with 

the chart size corresponding to the total number of publications 
involving these platforms. Countries such as China, the USA, Canada, 
and Brazil predominantly rely on NASA’s Modis and Landsat platforms. 
Modis is the most utilised platform in these countries, appearing in 59 %, 
48 %, 59 %, and 36 % of the studies, respectively. Landsat also plays a 
significant role, being used in 18 %, 29 %, 20 %, and 28 % of the studies 
in these countries.

Conversely, Australia, South Africa, and European countries such as 
Germany, Italy, and France display a more balanced distribution across 
several platforms, with a relevant presence of Sentinel-2 and Spot. This 
distribution highlights the diverse approaches and capabilities of each 
country in utilising satellite technology for their respective needs.

The use of advanced statistical modelling techniques as machine 
learning algorithms has gained much importance throughout the sci
entific world in recent years [66,67]. The application of remote sensing 
technologies to the monitoring and characterisation of pastures and 
grasslands often requires the manipulation of large amounts of data, and 
machine learning algorithms are increasingly the most utilised tools by 
scientists and professionals in the sector [28,68].

Fig. 8 shows the results of the quantitative analysis of the number of 
studies in which each machine learning algorithm was utilised, and the 
10 most recurring algorithms are plotted. Random Forest was the most 
common, with 66 papers, followed by linear regression and support 
vector machine, with 28 papers each.

Considering the evolution of machine learning algorithm utilisation 
over the past 20 years, it is important to note that, aside from linear 
regression, the first studies applying these techniques to monitor and 
characterise grasslands and pastures emerged only from 2012 onwards. 
Random Forest has gained significant popularity in the scientific com
munity, with its usage increasing rapidly in recent years. Notably, these 
studies, excluding those involving linear regression, reached their peak 
in 2022, with 22 publications focusing on grassland and pasture moni
toring and characterisation.

Table 4 
Lists of the top 10 contributing countries, their number of publications, per
centage of the total and evolution in the considered period (2000–2022).

Country Total number of publications Percentage

China 142 28.2 %
United States of America 77 15.3 %
Germany 51 10.1 %
Canada 31 6.2 %
Australia 24 4.8 %
Italy 24 4.8 %
France 19 3.7 %
Brazil 17 3.4 %
South 

Africa
11 2.1 %

New 
Zealand

10 2 %

Others (38 countries) 98 19.4 %

Fig. 4. The evolution in terms of the number of publications during 2000–2022 of the top 5 contributing countries in regard to the research topic.
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3.3. Cluster analysis

The last part of the review focused on analysing the most recurring 
words in titles, abstracts and keywords of the published journal articles 
concerning the applications of remote sensing to characterise and 
monitor grasslands and pastures.

The titles, abstracts and keywords were processed using natural 
language processing techniques, and a list of words and their number of 
occurrences was extracted. As some bigrams, made of two words, can 
have great relevance considered together (for example, “Remote 
Sensing” or “Climate Change”), our research considered bigrams 
occurring >30 times as single words.

The first 70 terms and bigrams among the pre-processed terms were 
grouped into five conceptual clusters. The weight of a cluster was 
determined by the sum of the weights of the terms that belong to it over 
the total number of term occurrences.

The cluster with the highest weight was that with the theme “In
struments”, at 25.83 %, which included all words and concepts 
regarding all the tools involved in the applications of remote sensing 
technologies to the monitoring and characterisation of grasslands and 
pastures, including both data collection tools (e.g., ‘Remote Sensing’, 
‘Satellite’, and ‘UAV’) and statistical data processing and modelling in
struments (i.e., ‘Model’, ‘Regression’, and ‘Algorithm’). The most com
mon terms in the cluster were, in descending order, model (20 %), 
remote sensing (13.8 %), image (11.3 %), satellite (7.9 %), MODIS (7.7 
%), Sentinel (7.4 %), R (5.2 %), map (4.8 %) and Landsat (3.5 %). Even 
the “Parameters” cluster had a similar weight, 24.96 %, as shown in 
Table 6.

The cluster “Parameters” included the terms and concepts linked to 
the applications of remote sensing for grasslands and pastures that can 
calibrate and evaluate the quality of the technological applications, such 

as the vegetation index (11.9 %), accuracy (9.9 %), index (9.9 %), NDVI 
(8.2 %), AGB (7 %), productivity (6.2 %) and time series (4.6 %).

As reported in Table 6, the “Vegetation” cluster was only slightly less 
important, with a weight of 24.15 %. We collected words and bigrams 
concerning grassland and pasture vegetation and habitats and their 
components, such as grassland (51.9 %), pasture (13.5 %), biomass (8.4 
%), species (5.6 %), plant (3.9 %), grass (3.9 %) and phenology (5 %). 
The “Environment” (13.11 %) and “Management” (11.94 %) clusters 
had lower but still significant weights. The “Environment” cluster con
tains those terms and concepts related to the environmental elements 
and processes that characterise and affect grasslands and pastures; the 
most important terms in the cluster are soil (11.4 %), ecosystem (11.3 
%), degradation (8.8 %), water (8.7 %), carbon (7.2 %), ground (6.6 %), 
drought (5.9 %), land (5.9 %), climate (5.7 %) and ecological (5.6 %). In 
the “Management” cluster, the terms that represent the most important 
actions involved in the applications of remote sensing to grassland and 
pasture monitoring and characterisation are estimation (34.9 %), 
monitoring (17 %), classification (13.9 %), grazing (10.3 %), mapping 
(8.5 %) and conservation (5.5 %). terms. Thus, for each of the 70 most 
commonly used words in the title, keywords, and abstract sections, 
pairings were made with the other 69 words, resulting in 1447 potential 
pairings. These pairings were analysed based on their frequency in the 
literature over 20 years and depicted visually, creating a complex 
network of relationships (Fig. 8). Additionally, the occurrences of these 
combinations grouped by cluster are also presented in tabular form 
(Table 7).

Given the centrality of the term “grassland” in the research topic, the 
“Vegetation” cluster was expected to have the highest number of co- 
occurrences. In contrast to expectations, the “Parameters” cluster 
showed the greatest number of co-occurrences, both between terms in
side the cluster and those belonging to different clusters. The “Envi
ronment” and “Vegetation” clusters were second and third, respectively, 
in terms of co-occurrences both within and between the clusters. How
ever, the reasons for their similar weights were different: while the 
environment cluster contained a large number of terms with very 
balanced weights, the vegetation cluster was characterised by the 
presence of the term “grassland”, which was the most important and 
common term in the whole research topic, as clearly visible in Fig. 9.

Interestingly, although the ’Instruments’ cluster had the highest total 
occurrences as shown in Table 5, it ranked fourth in terms of co- 
occurrences, both within the cluster and with other clusters. Finally, 
the "Management" cluster was identified as having the least interactions 
with other terms, also showing the lowest number of connections among 
words within the same cluster.

As shown in Fig. 9, the term showing the strongest connections was 
grassland. The connection between ‘grassland’ and ‘spatial’ was the 
strongest, but ‘model’, ‘satellite’, ‘monitoring’, ‘index’, ‘accuracy’ and 
‘biomass’ also showed strong relationships with the central term of the 
topic. It is not surprising to see how these terms and their combinations 
are central to the research topic, as they represent some of the main 
instruments, parameters and management operations that are central in 
characterising and monitoring grasslands and pasture environments. 
Overall, despite the ’Instruments’ cluster having more occurrences in 
the initial analysis, the ’Parameters’ cluster showed greater centrality in 
terms of word relationships and bigrams.

The analysis of single pairs of terms, without considering the cluster 
to which they belong, allowed us to show which topics were the most 
related.

Table 8 was constructed by taking the first 30 pairs of terms by re
lationships. The term “grassland” and its relationships were excluded 
because they would hegemonise the table, making the analysis less 
interesting and significant. Some of the most recurring terms were 
“spatial”, “Model”, “index”, “accuracy” and “resolution”, suggesting that 
the focus of studies related to the characterisation and monitoring of 
grasslands and pastures using remote sensing is the development of tools 
and the evaluation and tuning of their technical parameters.

Table 5 
Lists of the top 10 publishing journals on the topic of remote sensing applied to 
grassland and pasture studies, their number of publications, percentage of total 
publications, impact factor, SJR and Cite Score (all metrics are available for 
2022).

Journal Total 
number of 
publications

Percentage Impact 
Factor 
(2022)

SJR 
(2022)

Cite 
Score 
(2022)

Remote Sensing 103 20.4 
%

5.0 1.136 6.6

International 
Journal of 
Remote Sensing

37 7.3 % 3.4 0.732 7.0

Remote Sensing of 
Environment

32 6.3 % 13.5 4.057 24.8

Ecological 
Indicators

17 3.4 % 6.9 1.396 10.3

International 
Journal of 
Applied Earth 
Observation and 
Geoinformation

17 3.4 % 7.5 1.628 10.2

Canadian Journal 
of Remote 
Sensing

9 1.8 % 2.6 0.619 3.9

GIScience and 
Remote Sensing

8 1.6 % 6.7 1.340 9.4

ISPRS Journal of 
Photogrammetry 
and Remote 
Sensing

8 1.6 % 12.7 3.308 19.2

Journal of 
Applied Remote 
Sensing

8 1.6 % 1.7 0.388 3.4

Rangeland 
Ecology and 
Management

8 1.6 % 2.3 0.776 4.6

Others 
(149 journals)

257 51 % – – –
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Fig. 5. The top 10 utilised satellite platforms according to the number of studies in the field of remote sensing applied to grassland and pasture studies in 2000–2022.

Fig. 6. The evolution in terms of the number of studies during 2000–2022 of the top 5 satellite platforms in the research area.
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4. Discussion

The research utilised text-mining techniques to analyse the titles, 
abstracts, and keywords of each article. Key terms that were both critical 

and frequent were pinpointed and examined. Noteworthy connections 
were identified among specific terms as well as between aggregated 
clusters. Through a temporal analysis, the evolution of publications was 
tracked, highlighting topics that have become significant over time and 

Fig. 7. The proportion of the utilisation in grassland and pasture studies of satellite platforms in the most important contributing countries, the size of the pie chart is 
proportional to the total number of publications involving satellites platforms.

Fig. 8. The top 10 utilised machine learning algorithms according to the number of studies in the field of remote sensing applied to grassland and pasture studies 
in 2000–2022.
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relationships that have grown stronger.

4.1. Analysis of publication trends

Themes related to the application of remote sensing to Earth and 
agricultural sciences and, more specifically, to the characterisation and 
monitoring of grasslands and pastures, are relatively recent topics. 
During the last 22 years (2000–2022), interest in this topic has risen 

sharply, and the number of publications on remote sensing in the Earth 
and agricultural sciences grew slightly <11 times and >3 times the 
weight of total articles published in Scopus during the same period, 
respectively.

Analysing the publications concerning the applications of remote 
sensing to the characterisation and monitoring of grasslands and pas
tures, the growth was even sharper, with the number of publications 
growing by 31 times and the ratio of total Scopus publications growing 
by >9 times. Studies within this field have explored all facets related to 
the topic from various perspectives, as illustrated by the cluster analysis, 
with a focus on instruments and parameters.

The analysis of the geographic distribution of the literature carried 
out through the examination of the authors’ affiliations (Table 3) 
revealed that the most active nations were China (28.3 %), the USA 

Table 6 
Clusters and their composing terms reported by highest occurrence frequency.

Cluster Terms and Bigrams

Instruments 
(25.8 %)

Model (20 %), Remote Sensing (13.8 %), Image (11.3 %), 
Satellite (7.9 %), Modis (7.7 %), Sentinel (7.4 %), R (5.2 %), 
Map (4.8 %), Landsat (3.5 %), Regression (3.3 %), Algorithm 
(2.9 %), Random Forest (2.7 %), UAV (2.6 %), Correlation (2.3 
%), Hyperspectral (2.1 %), Multispectral (2 %)

Parameters 
(24.9 %)

Vegetation Index (11.9 %), Accuracy (9.9 %), Index (8.6 %), 
NDVI (8.2 %), AGB (7 %), Productivity (6.2 %), Spatial (6 %), 
Spectral (4.8 %), Time Series (4.6 %), Normalized Difference 
(3.7 %), LAI (3.4 %), GPP (3.1 %), Resolution (3 %), Temporal 
(3 %), Variability (2.8 %), Reflectance (2.5 %), Optical (2.3 
%), Bands (2.3 %), Seasonal (2.2 %), EVI (2.2 %), RMSE (2.1 
%)

Vegetation 
(24.1 %)

Grassland (51.9 %), Pasture (13.5 %), Biomass (8.4 %), 
Species (5.6 %), Plant (3.9 %), Grass (3.9 %), Phenology (5 %), 
Agricultural (2.8 %), Canopy (2.4 %), Forage (2.3 %)

Environment (13.1 
%)

Soil (11.4 %), Ecosystem (11.3 %), Degradation (8.8 %), Water 
(8.7 %), Carbon (7.2 %), Ground (6.6 %), Drought (5.9 %), 
Land (5.9 %), Climate (5.7 %), Ecological (5.6 %), 
Precipitation (5.2 %), Fire (4.8 %), Steppe (4.42 %), 
Temperature (4.4 %), Alpine (4.1 %)

Management (11.9 
%)

Estimation (34.9 %), Monitoring (17 %), Classification (13.9 
%), Grazing (10.3 %), Mapping (8.5 %), Conservation (5.5 %), 
Livestock (4.9 %), N (4.8 %)

Table 7 
Co-occurrences of terms within and between clusters.

Environment Instruments Management Parameters Vegetation

Environment 1986 1382 1003 2146 1669
Instruments – 1186 1020 2031 1530
Management – – 664 1530 1208
Parameters – – – 3932 2312
Vegetation – – – – 1412

Fig. 9. Graphical representation of the 70 most recurring words in the research topic. The font size is adjusted to be proportional to the number of occurrences, and 
the thickness and darkness of the connecting arrows represent the number of co-occurrences between linked terms.

Table 8 
Couples of terms with the highest co-occurrences (excluding ‘grassland’).

Source Target Weight Source Target Weight

Spatial Resolution 86 Monitoring Index 54
Satellite Spatial 82 Monitoring Accuracy 54
Model Spatial 81 Spatial Estimation 53
Spatial Index 80 Satellite Resolution 53
Accuracy Spatial 78 Satellite Land 52
Spatial Temporal 78 Biomass Estimation 50
Monitoring Spatial 72 Index Resolution 49
Model Accuracy 71 Pasture Satellite 49
Model Biomass 67 Model Monitoring 48
Model Index 65 Accuracy Index 48
Accuracy Satellite 65 Spatial Soil 47
Biomass Spatial 63 Index Temporal 47
Monitoring Satellite 63 Spatial Land 47
Accuracy Classification 61 Biomass Index 47
Model Estimation 54 Monitoring Resolution 46

D. Pinna et al.                                                                                                                                                                                                                                   Smart Agricultural Technology 9 (2024) 100571 

10 



(15.3 %) and Germany (10.1 %). China is unquestionably the largest 
contributor, with Fig. 4 indicating a rapidly increasing number of pub
lications. The analysis of the editorial distribution of publications 
highlighted that the selected topic has a precise editorial definition and 
allocation, as 44 % of published articles are in three journals, with 
“Remote Sensing” collecting 20.4 % of the considered articles on its 
pages.

4.2. Quantitative analysis of satellite platforms and machine learning 
algorithms

Satellite platforms are the most utilised source of remote sensing data 
[69–71], especially when related to the characterisation and monitoring 
of grasslands and pastures. Of the 503 papers collected for our analysis, 
88 % contained the word “satellite” in their title, abstract or keywords.

The quantitative analyses of the utilisation of the individual satellite 
platforms allowed us to identify some important facts, as shown in 
Fig. 5. Due to the high versatility, daily revisit time and availability of 
multiple pre-processed products, the Moderate Resolution Imaging 
Spectroradiometer (MODIS), which is mounted on the Terra (launched 
in 1999) and Aqua (launched in 2002) satellites from NASA, is the most 
utilised tool in grassland and pasture studies.

However, when analysing the temporal trend in the use of satellite 
platforms, it is worth noting that Sentinel-2, which was launched in 
2015 by the ESA, has gained massive popularity in the scientific com
munity and has become the most utilised platform in recent years.

The availability of 13 spectral bands ranging from 443 to 2190 nm at 
high spatial resolution, ranging from 10 to 60 m, with a revisit time of 5 
days, makes it a versatile and very suitable tool for Earth observation 
and monitoring studies [34,47,72,73]. Despite the high spatial resolu
tion, the data from these satellites suffer from long time intervals and 
cloud cover interference [74]. Several studies have fused data from 
different satellite sources to enhance temporal continuity and fill in data 
gaps [75]. In smaller grassland fields, the need for high-resolution im
ages is critical, and commercially available platforms such as Planet 
Scope and Worldview have gained significant importance in biomass 
estimation studies [71,76]. They offer daily revisit times with great 
spatial resolution (1.8 m for Worldview and 3 m for Planet Scope), even 
though the number of multispectral bands is still limited compared to 
that of Landsat and Sentinel platforms. While all satellite platforms 
provide valuable data for grassland and pasture monitoring, it is crucial 
to recognise the limitations and trade-offs associated with varying res
olution levels. Mid- to low-resolution products, such as those from 
MODIS, are well-suited for large-scale applications due to their exten
sive coverage and frequent revisit times, which are particularly useful in 
global and regional monitoring efforts [77–79]. However, these prod
ucts may need more detailed precision for more localised studies, where 
fine-scale vegetation characteristics and management practices must be 
accurately assessed [80,81]. Conversely, high-resolution data from 
platforms like Sentinel-2, PlanetScope, and Worldview are essential for 
small-scale, detailed analyses, such as distinguishing pasture species or 
monitoring phenological changes at the paddock level [82–84]. None
theless, these high-resolution datasets come with increased resource 
demands, including higher data acquisition costs and processing time, 
which can limit their feasibility for widespread use [85]. Therefore, 
selecting the appropriate resolution depends on the specific scale and 
objectives of the study, balancing the need for detailed information 
against the practical considerations of resource availability and pro
cessing capabilities.

With the rise in the availability of large volumes of raw and pro
cessed data, there is a growing need for statistical methods capable of 
handling this data and extracting significant and useful information. 
Machine learning algorithms have been increasingly utilised in studies 
related to the application of remote sensing technologies to the char
acterisation and monitoring of grasslands and pastures [86–88], as 
shown in Fig. 8. The choice of data analysis methods is influenced by 

several factors, such as the size and heterogeneity of the study area, the 
number of predictor variables, and the study’s objectives. Interestingly, 
random forest [89] and linear regression, the most utilised methods, 
have very different characteristics. Linear regression has a better ca
pacity for generalising the relationships among variables, thus produc
ing robust models that can perform well on different datasets. On the 
other hand, the random forest algorithm is known to adapt more to the 
training dataset; it can detect and model complex relationships among 
multiple variables. These features make it very suitable for modelling 
biological variables such as biomass production, but at the same time, it 
has an intrinsic tendency to overfit the data [90], producing models that 
do not generalise well and thus are not useful for practical purposes 
[91]. Although some authors, such as Smith et al. [68], have recently 
attempted to assess the performance and transferability of several ma
chine learning algorithms (particularly PCR, PLSR, LASSO, RF, SVM and 
GBM), the variability and complexity of grassland and pasture envi
ronments and features need further investigation and research.

4.3. Cluster and network analysis

The described cluster analysis shows that, during the last 20 years, 
the focus has been on the instruments and the evaluation and tuning of 
the parameters that are involved in the development of tools able to 
estimate, evaluate and monitor environmental variables, mainly vege
tation characteristics such as biomass content and quality. The high 
importance of the “Instruments” and “Parameters” clusters, visible in 
Table 5, perfectly highlights the abovementioned concepts, and the 
focus of scientists involved in the applications of remote sensing to 
grassland and pasture studies has been on the technologies and their 
development. The analysis of the most significant relationships, apart 
from the centrality of “grassland”, confirmed the centrality and impor
tance of the “Parameters” cluster, but the increasing importance of the 
“Environment” cluster, characterised by the presence of a high quantity 
of words, was quite balanced in terms of occurrences.

5. Conclusions

Over the past two decades, there has been an increasing focus on 
utilising remote sensing technologies to map and monitor grasslands and 
pastures. This surge in interest has led to a deeper exploration of various 
and distinct topics within the broad domain of remote sensing applica
tions in Earth and agricultural sciences. This research seeks to map these 
evolving trends by identifying and emphasizing the most significant 
terms or relationships based on their frequency in scientific 
publications.

The most important contributions are in three macroareas—China, 
North America, and China—while developing countries are less repre
sented. Although the publications are spread across 159 different jour
nals, the top five journals contribute to >44 % of the publications. This 
indicates that the topic is well defined and possesses a clear editorial 
niche.

The quantitative analysis of satellite platforms showed that Moderate 
Resolution Imaging Spectroradiometer (MODIS) data are the most 
widespread among grassland and pasture studies, mainly because of its 
availability and daily revisit time, even though Sentinel-2, characterised 
by a higher spatial resolution and relatively low revisit time (5 days), has 
become the most common choice in recent years.

Additionally, the results of the review suggest that future efforts 
might focus on the implementation, testing, and tuning of instruments 
and parameters related to mapping and monitoring tasks, especially 
with a focus on biomass estimation and land degradation monitoring. 
The major concern that researchers are facing regards the development 
of models and tools that reach a high level of accuracy. The increasing 
availability of large amounts of data from satellite sources will demand 
tools that can analyse and extract valuable information. Thus, machine 
learning algorithms will be increasingly involved. The quantitative 
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analysis of machine learning algorithms highlighted that the most 
commonly used algorithm for grassland and pasture studies is random 
forest, followed by linear regression and support vector machine 
methods.

Developing accurate and precise tools will aid farmers and policy
makers in better managing grassland and pasture environments [92]. 
This improvement will enhance these areas’ agricultural and environ
mental roles. It is particularly crucial in regions where grasslands are a 
fundamental resource [24]. Despite the growing availability of free or 
cost-effective satellite data from both public entities (e.g. NASA, ESA, 
CNMS, etc.) and private companies (e.g. AgroInsider, SPACETM, Data
Farming, GeoGraze, pasture.io, etc.), leveraging this data for effective 
grassland monitoring involves significant associated costs. These costs 
include data preprocessing, which requires computing infrastructure for 
downloading, storing, and processing raw satellite data into 
analysis-ready formats. The entry of high-tech corporations with ser
vices and platforms such as Microsoft Planetary Computer, Google Earth 
Engine, Amazon Web Services, and Oracle Cloud Infrastructure, which 
offer cloud computing solutions to support digital agriculture and earth 
monitoring platforms, may facilitate the development of user-friendly 
tools and services as GeoServer platforms, but involving direct costs 
for users and developers [85]. For example, while Microsoft Planetary 
Computer offers a free platform, users might still face costs depending on 
the amount of data processed and stored. Processing large datasets can 
necessitate an Azure Cloud Services subscription, with storage fees 
ranging from $0.003 to $0.15 per GB per month and data processing 
costs between $0.35 and $1.40 per GB per hour, depending on the ser
vice tier. Similarly, Google Earth Engine provides a free tier for re
searchers, but commercial users may encounter significant expenses. For 
instance, Google Cloud Platform charges between $0.006 and $0.023 
per GB per month for data storage, while virtual machine costs start at 
$0.038 per vCPU per hour, offering scalable processing capacity. 
Amazon Web Services (AWS) also presents a flexible pricing structure, 
with storage costs ranging from $0.005 to $0.024 per GB per month. 
AWS provides a variety of virtual machine options, including free-tier 
services like AWS Lambda, but more robust solutions may come with 
additional costs. In comparison, Oracle Cloud Infrastructure offers 
competitive rates, with storage fees as low as $0.002 per GB per month, 
scaling up to $0.30 per GB for premium options. Their virtual machines 
are priced at $0.032 per vCPU per hour, making them a cost-effective 
choice for intensive data processing tasks.

Additionally, collecting ground data to calibrate and validate satel
lite models involves fieldwork expenses and laboratory analysis costs. 
Moreover, developing and refining machine learning algorithms de
mands computational resources and expert personnel, while operational 
monitoring necessitates ongoing staff support and robust data manage
ment systems.

Finally, the implemented semiautomatic methodology integrates 
natural language processing techniques to quantify the occurrence of 
concepts and their relationships within a specific research topic, 
allowing the identification and quantitative analysis of the main trends 
within a specific research topic and laying the path for similar work in 
the future.

Future efforts might focus on implementing, testing, and tuning in
struments and parameters related to mapping and monitoring tasks, 
especially with a focus on biomass estimation and land degradation 
monitoring. The major concern that researchers are facing concerns the 
development of models and tools that reach a high level of accuracy. The 
increasing availability of large amounts of data from satellite sources 
will demand tools that can analyze and extract valuable information. 
Thus, machine learning algorithms will be increasingly involved.

Integrating data from various sources, advancing machine learning 
algorithms, assessing climate change impacts, conducting region- 
specific studies, developing user-friendly tools for stakeholders, and 
examining economic and environmental trade-offs are crucial areas for 
future research. These efforts will help improve the management of 

grassland and pasture environments, enhancing their agricultural and 
environmental roles.
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