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Abstract

This dissertation is divided into two main parts, the common thread being the prominent

role of entropy-based metrics in the robust identiĄcation and control of stochastic models.

The Ąrst part is concerned with the dynamic factor analysis problem. Factor analysis

models boast a long tradition and Ąnd natural application in many engineering and

scientiĄc disciplines, including, for example, psychology, econometrics, system engineering,

machine learning and statistics. In general, the attention for this kind of models is

motivated by their effectiveness in complex-data representation. In this part of the

thesis, inspired by the previous contributions on robust estimation and robust static

factor analysis, we propose a novel approach to deal with the dynamic factor analysis

problem for the case of zero-mean Gaussian stochastic processes. To robustly estimate

the number of factors, we construct a conĄdence region centered at a Ąnite sample

estimate of the underlying model which contains the true model with a prescribed

probability. In this conĄdence region, we seek for the most parsimonious factor model by

solving a convex optimization problem. This paradigm is applied to the identiĄcation of

moving-average factor models. The obtained result is then generalized to the larger class

of autoregressive moving-average factor models by resorting to an iterative technique

in which the autoregressive and the moving-average part of the model are identiĄed

separately.

The second part of the thesis deals with a Ąnite-horizon distributionally robust

optimal control problem for linear stochastic uncertain systems. The linear quadratic

Gaussian optimal control, which is one of the most fundamental ideas in control theory,

suffers from a major disadvantage in that it does not provide systematic means for

addressing the issue of robustness. On the other hand, in designing any feedback control

law, a fundamental requirement is that of robustness, that is the ability to maintain

satisfactory performances even in presence of misspeciĄcations and perturbances in the

plant model. In this thesis, a new paradigm is proposed for the robustiĄcation of the linear

quadratic Gaussian controller against distributional uncertainties on the noise process.

Our controller optimizes the closed-loop performances in the worst possible scenario under

the constraint that the noise distributional deviation does not exceed a certain threshold

limiting the relative entropy pseudo-distance between the actual noise distribution and

the nominal one. The main novelty is that the bounds on the distributional deviation

can be arbitrarily distributed along the whole disturbance trajectory.
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Symbol Description
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C Field of complex numbers
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Cn×m Set of n × m matrices with complex entries.
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m Space of m × m matrix-valued coercive and bounded spectral
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Qm,n Set of m × m Hermitian pseudo-polynomial matrices of order
n

Aij Element of matrix A in the i-th row and j-th column
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A∗ Hermitian transpose of matrix A

A−1 Inverse of the square matrix A

A−T Transpose on the inverse of the square matrix A

det(A), ♣A♣ Determinant of the square matrix A
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tr Trace of a square matrix
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clear by the context)

⟨·, ·⟩ Frobenius inner product, ⟨A, B⟩ := tr(A⊤B) for A, B ∈ Rn×n

∥ · ∥ Frobenius norm induced by the Frobenius inner product
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∥ · ∥2 Matrix spectral norm

⪰, ≻ Partial ordering induced by the cone of symmetric positive
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σ(A) Spectrum of the matrix A

N (µ, Σ) (Multivariate) normal distribution with mean µ and
covariance Σ

Throughout the dissertation the abbreviation a.e. will stand for almost everywhere.

For instance, a property that holds Şa.e. in CŤ means that the set of point in C where this

property does not hold has zero-measure. Given a function Φ(ejϑ) deĄned over the unit

circle ¶ejϑ : ϑ ∈ [−π, π]♢, we write Φ(ejϑ) ≻ 0 ( ⪰ 0) if Φ(ejϑ) is positive (semi)deĄnite

∀ϑ ∈ [−π, π]. In Chapter 3 of Part I we use the shorthand notation
∫

Φ to denote the

integral of the function Φ(ejϑ) over the interval [−π, π] with respect to the normalized

Lebesgue measure dϑ/2π. We use both the symbols x(t) and xt, with t ∈ Z, to denote

the value at time t of the discrete-time stochastic process x = ¶x(t), t ∈ Z♢



List of abbreviations

Abbreviation Meaning

ADMM Alternating direction method of multipliers

AR Autoregressive

ARMA Autoregressive moving-average

AS Averaging sequence

BIBO Bounded-input bounded-output

DFA Dynamic factor analysis

DGFA Dynamic generalized factor analysis

DRC Distributionally robust control

D2-LQG Distributed uncertainty distributionally robust linear
quadratic Gaussian

ETFE Empirical transfer function estimate

FA Factor analysis

GFA Generalized factor analysis

LFT Linear fractional transformation

LQG Linear quadratic Gaussian

LTI Linear time-invariant

MA Moving-average

MIMO Multiple-input multiple-output

ML Maximum likelihood

PEM Prediction error method

SISO Single-input single-output



4 List of abbreviations



1
Introduction

The present dissertation focuses on two fundamental problems in Systems and Control

theory: the identiĄcation of dynamic factor analysis models and the optimal control of

stochastic uncertain systems. The leitmotiv connecting them is the prominent role of

entropic measures in guaranteeing robustness of the performance.

In modern society, the formidable development of technology has led to a frenetic

increase of the quantity of available data; the interpretation and understanding of the

information contained in these data is, on the one hand, an extremely challenging task

and, on the other one, a crucial step for any engineering application. For this reason, the

research literature has recently witnessed an increasing interest in developing efficient

methods to organize the available data in suitable structured models and to provide a

concise and parsimonious representation of them. One of the classical methods for this

purpose is based on factor analysis. This is a statistical tool which aims to describe the

variability among a large number of observed correlated variables in terms of a potentially

lower number of unobserved variables, called latent factors; the observed variables are

modelled as linear combinations of the latent factors plus a noisy term.

The origin of factor models goes back to the beginning of the last century in psychology.

Since then, they have been an active area of research with countless contributions in

many disciplines, from econometrics to statistics to system engineering, to name just a

few. Whereas the factor analysis problem was originally formulated in the static case, the

idea has been later generalized to the dynamic case, where the observed data originate

from stochastic processes. The solution to the dynamic factor analysis problem may be

obtained by decomposing the spectral density matrix of the observed data as the sum of

a diagonal spectral density matrix (accounting for the noisy component) and a positive

semideĄnite spectral density matrix, whose rank must be as small as possible since it

equals the number of latent factors in the model.
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Despite its long tradition, the problem of robustly identifying a dynamic factor analysis

model in the realistic situation in which only a Ąnite length realization of the process

is available is still an open problem. This has a strong motivation on the fact that

even if the underlying data generating process is genuinely low-rank, the minimum rank

solution of the classical factor analysis problem rapidly degrades when a certain degree of

uncertainty affects our knowledge of the spectral density. Part I of the present dissertation

deals with this problem. This part starts off with a general overview on the topic in

Chapter 2. Then, it proposes a strategy to robustly estimate dynamic factor models

by introducing an adequate conĄdence region, deĄned in terms of an entropic measure,

centered in a Ąnite sample estimate of the underlying model and containing the true

model with a prescribed probability. This paradigm is applied to the identiĄcation of MA

factor models in Chapter 3 and then extended to the ARMA case in Chapter 4. Part I

concludes with two appendices. Appendix A deals with the spectral estimation problem,

which represents a preliminary step of our robust dynamic factor analysis procedure.

It proposes an estimator of the spectral density which is proved to be mean-square

consistent under extremely weak assumptions. Finally in Appendix B we discuss an

interesting generalization of the exact factor models.

Part I is mostly based on the following works:

• F. Crescente, L. Falconi, F. Rozzi, et al., ŞLearning AR factor models,Ť in 2020

59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 274Ű279

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA Robust Approach to ARMA Factor

Modeling,Ť IEEE Transactions on Automatic Control, 2023

• L. Falconi, A. Ferrante, and M. Zorzi, ŞMean-square consistency of the f -truncated

M2-periodogram,Ť Automatica, vol. 147, p. 110 672, 2023

• G. Picci, L. Falconi, A. Ferrante, et al., ŞHidden factor estimation in dynamic

generalized factor analysis models,Ť Automatica, vol. 149, p. 110 834, 2023

Stochastic optimal control involves the design of a control policy that minimizes an

expected cost of interest under the assumption that the disturbance distribution is known

a priori. The most well-known method of this type is the Linear Quadratic Gaussian

(LQG) control, which assumes that the disturbance follows a Gaussian distribution with

known mean and covariance. Thus, it ignores possible inaccuracies in the distribution

information. However, estimating an accurate noise distribution is unrealistic, hence the

assumption of a perfect knowledge of the noise description turns out to be unreasonable
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in many practical situations. The use of these inaccurate models in the construction of an

optimal controller may signiĄcantly decrease the control performance and cause unwanted

behaviors. To overcome the issue of limited distribution information in stochastic control

and make the LQG technique robust against variations and errors in the noise distribution,

Part II of this dissertation investigates a distributionally robust control (DRC) approach.

Instead of assuming a given distribution, the DRC method seeks a control policy that

minimizes the expected cost under the worst-case distribution in a so-called ambiguity

set. The philosophy behind this approach is to treat the worst-case scenario: if you do

not know what you are up against, plan for the worst and optimize!

After a brief introduction in Chapter 5 on the robust and optimal control theory and

the DRC approach, we formulate a novel DRC problem where the ambiguity set is

speciĄed, for each time instant, as a ball centered at the nominal Gaussian distribution

and deĄned in the relative-entropy topology. In Chapter 6, we solve the worst performance

analysis problem in order to characterize the worst-case distribution in the ambiguity set.

Exploiting these results, we derive in Chapter 7 the optimal state-feedback control policy.

Part II is mostly based on the following works:

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA new perspective on robust performance

for LQG control problems,Ť in 2022 IEEE 61st Conference on Decision and Control

(CDC), 2022, pp. 3003Ű3008

• L. Falconi, A. Ferrante, and M. Zorzi, ŞDistributionally robust LQG control

under distributed uncertainty,Ť (preliminary version available at arXiv preprint

arXiv:2306.05227 (2023) )

1.1 Relative entropy and relative entropy rate

The Ąl rouge between the DFA problem introduced in Part I and the DRC problem

proposed in Part II is the use of entropic measures to deĄne suitable conĄdence regions,

with the aim of guaranteeing robustness of the performance when a certain degree of

uncertainty affects the nominal model of the underlying process. Entropic functionals

and divergence criteria have a long-standing tradition in the identiĄcation and control

of stochastic models and systems, a very popular choice being the relative entropy or

Kullback-Leibler pseudo-distance between probability density functions. Here, we brieĆy

recall the deĄnition and some well-known properties of the relative entropy; in doing so

we refer mainly to [42]. We further review the concept of relative entropy rate, which

may be seen as the generalization of the relative entropy to stochastic systems and may

be understood as a distance between spectral density functions.
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DeĄnition 1.1.1. Given two probability measures f̃ and f on Rn, the relative entropy

(or Kullback-Leibler divergence) between f̃ and f is deĄned as

R(f̃ ♣♣f) :=







∫

Rn ln f̃(x)
f(x) f̃(x)dx if f̃ ≪ f

+∞ otherwise

where f̃ ≪ f denotes the fact that the probability density f̃ is absolutely continuous

with respect to the probability density f .

In particular, for the case in which f̃ and f are multivariate normal distributions the

integral can be explicitly computed.

Lemma 1.1.2. Suppose that f̃ = N (ṽ, Ṽ ) and f = N (v, V ) are Gaussian density

functions on Rn with V, Ṽ ≻ 0, then

R(f̃ ♣♣f) =
1

2

(

tr(V −1Ṽ ) − n + (ṽ − v)⊤V −1(ṽ − v) + ln

(
det V

det Ṽ

))

.

R(·♣♣·) is not a distance since it is not symmetric, and, more importantly, it does not

satisfy the triangle inequality. However it is a pseudo-distance as it satisĄes the following

property: R(f̃ ♣♣f) ≥ 0 and R(f̃ ♣♣f) = 0 if and only if f̃(x) = f(x) a.e. It is well known

that, for a given probability density function f , R(f̃ ♣♣f) is a strictly convex function of f̃

on the set of probability density functions such that R(f̃ ♣♣f) < ∞. The next variational

formula is closely related to some analysis in this dissertation and will be applied on

numerous occasions throughout the book.

Lemma 1.1.3 (Relative Entropy and Free Energy duality). For a given probability

density function f : Rn → R+ and a bounded measurable function J : Rn → R, then

sup
f̃(·)∈P

∫

Rn
J(x)f̃(x)dx − R(f̃ ♣♣f) = log

∫

Rn
eJ(x)f(x)dx (1.1)

where the supremum is taken over the set P of all the probability density functions f̃(x)

on Rn. Let f̃o(x) denote the probability measure on Rn which is absolutely continuous

with respect to f and satisĄes

f̃o(x) = f(x)
eJ(x)

∫

Rn eJ(x̄)f(x̄)dx̄
. (1.2)

Then, the supremum in the variational formula (1.1) is uniquely attained at f̃o(x). The

quantity log
∫

Rn eJ(x)f(x)dx is called the free-energy of J with respect to f.
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When dealing with discrete-time stochastic processes a natural generalization of the

notion of relative entropy is the so-called relative entropy rate, interpretable, naively, as

the rate of growth of the relative entropy. Let y = ¶y(t); t ∈ Z♢ and z = ¶z(t); t ∈ Z♢ be

two zero-mean, jointly Gaussian, stationary processes taking values in Rn. Let y[−N,N ]

and z[−N,N ] be the random vectors obtained by considering the restriction of y and z to

the time interval ¶−N, −N + 1, . . . 0, . . . N − 1, N♢. Denote by py[−N,N ]
and pz[−N,N ]

the

corresponding joint density functions.

DeĄnition 1.1.4. The relative entropy rate between y and z is deĄned as

Rr(y♣♣z) := lim
N→∞

1

2N + 1
R(py[−N,N ]

♣♣pz[−N,N ]
).

provided that the limit exists.

The following profound, information-theoretic result provides an explicit formula

expressing the relative entropy rate between y and z in terms of their spectral densities

[70], [117].

Theorem 1.1.5. Let y = ¶y(t), t ∈ Z♢ and z = ¶z(t), t ∈ Z♢ be two zero-mean, jointly

Gaussian, stationary processes taking values in Rn with spectral density functions Φy and

Φz, respectively. Assume that at least one of the following conditions is satisĄed:

(a) ΦyΦ−1
z is bounded;

(b) Φy ∈ L2(π, π) and Φz is coercive, i.e. ∃α > 0 such that Φ(eiϑ − αIn > 0 a.e. on

¶eiϑ, ϑ ∈ [π, π]♢.

Then,

Rr(y♣♣z) =
1

4π

∫ π

−π

{

log ♣Φz(eiϑ)Φ−1
y (eiϑ)♣ + tr

[

Φ−1
z (eiϑ)

(

Φy(eiϑ) − Φz(eiϑ)
)]}

dϑ.

Observe that, in the case of scalar spectra, Rr(y♣♣z) = 1
2SIS(Φy♣♣Φz) where

SIS(Φy♣♣Φz) :=

∫ π

−π

{

Φy(eiϑ)

Φz(eiϑ)
− log

Φy(eiϑ)

Φz(eiϑ)
− 1

}

dϑ

is the celebrated Itakura-Saito distance widely used in signal processing [71]. Therefore,

the relative entropy rate may be viewed as a multivariate generalization of the classical

Itakura-Saito distance.
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Part I

Robust identification of dynamic

factor analysis models





2
Introduction to factor analysis

A main objective when modelling big data is to organize complex, high dimensional

datasets in suitable structured models, providing a simple and parsimonious representation

of them. Factor Analysis (FA) is a well-established and widely used technique to achieve

this goal. It is a statistical tool that explains correlations among a set of observed

variables in terms of a much smaller number of non-observed variables, called latent or

common factors, that inĆuence all the observations.

FA boasts a long history. Its origin can be traced back to the seminal work [113]

on general intelligence at the beginning of the last century. At the time, the English

psychologist Spearman developed a single-common-factor-model to intercorrelate the

mental test scores of 36 boys on different topics such as French, English, mathematics

and musical talent. Subsequently, in the early 1930s, Thurstone proposed a more general

model allowing for more than one common factor, representing different mental abilities,

[119]. From these Ąrst seeds a rich stream of literature was developed at the interface

between psychology and mathematics: [15], [73], [79]Ű[81], [107], [120]. The interest

for this kind of models has rapidly grown also outside the psychology community, and

analysis of factor models has become an important tool in several branches of Statistics

and Econometrics, as well as in many Engineering sciences: [9], [35], [36], [46], [51], [65],

[66], [74], [78], [93], [94], [99] just to name a few.

In all these applications, the key point is that the observable variables are the result

of a common, simple behavior plus local interactions. The typical visual representation

of this situation is that of a Ćock of birds where the trajectory of each single bird is

determined by the ŞaverageŤ trajectory of the Ćock and by a variation proper to the

individual bird. With this premise, FA describes each of the observed variables as the

sum of a component depending on few latent factors, common to all the observations, plus

idiosyncratic noise, affecting each of the variables independently of the others. The latent

factors capture the co-movements among the observations, whereas the idiosyncratic
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disturbances account for measurement errors and special features that are speciĄc to each

variable. The purpose of FA consists in characterizing the common factors, representing

the compressed information, and the idiosyncratic noise. Once the latent factors have

been extracted, the statistical description of the complex system could be reasonably

restricted to the common component and be based on the simple model thereof. This

is of paramount importance in order to reduce data dimensionality, as well as to gain

a better understanding and interpretation of the complex interrelationships among the

measured variables.

The idea of FA is particularly important if the cross-sectional dimension is large

with respect to sample size. In such situations, conventional identiĄcation methods

may lead to problems in which the number of parameters can be of the same order of

magnitude or even larger than the sample size. FA is believed to provide an answer to

this issue as it concentrates the explication of the high-dimensional data in a (hopefully)

small-dimensional vector of latent factors.

2.1 Static factor analysis problem

In the original formulation, a factor model is linear static model given by

y = WLu + WDw (2.1)

where WL ∈ Rm×r , with r ≪ m, and WD ∈ Rm×m diagonal; u := [u1 . . . ur]⊤ and

w := [w1 . . . wm]⊤ are Gaussian random vectors of dimension r and m, respectively,

with zero mean and covariance matrix equal to the identity. The vectors u and w

are assumed to be independent. Model (2.1) has the following interpretation: the m-

dimensional random vector y is the observed vector ; WL is the factor loading matrix, u

represents the (independent) latent factors and ŷ := WLu is the latent variable; Ąnally

ỹ := WDw corresponds to the idiosyncratic component. Note that an essential part

of the model speciĄcation in that the m components of the idiosyncratic error ỹ are

mutually uncorrelated. The aim of model (2.1) is to provide an explanation of the mutual

correlations of the observed variables yi in terms of a smaller number of common factors,

in the sense that E[yiyj ] = E[ŷiŷj ] for all i ̸= j.

From the FA model (2.1), it follows that y is itself a zero mean Gaussian random

vector with covariance matrix Σ given by

Σ = L + D (2.2)
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where L := WLW ⊤
L is a low-rank matrix - with rank equal to r - and D := WDW ⊤

D

is diagonal. Hence, in its original conception the construction of a factor model is

mathematically equivalent to the matrix additive decomposition (2.2) where Σ ⪰ 0 is

given and the rank r of L must be as small as possible. This can be seen as a special

kind of low rank plus sparse decomposition problem of the covariance matrix [29], [31], a

diagonal matrix being, in intuitive terms, as sparse as one could possibly ask for.

Clearly model (2.2) is maximally parsimonious if the rank of L is minimum. The

problem of minimizing the rank of L in decomposition (2.2) is known as FrischŠs problem.

It turns out that, in general, this is a formidable problem and, to date, no exact solution

is actually available, with the only exception of the special case when this minimum rank

is r = m − 1 [103]. This lack of explicit formulas has motivated a rich stream of literature,

where countless variations have been considered and studied; we refer the reader to the

recent papers [10], [16], [27], [92] where different approaches have been proposed. A Ąrst

difficulty related to the FrischŠs problem is the non-convexity of the rank function. A

typical strategy to practically compute a decomposition of type (2.2) where the rank of

L is small is to consider a convex relaxation of the problem, where, in place of the rank,

the trace norm of L is minimized, see [37], [52], [53]. In addition, it is a well-known fact

that estimation of FA models is an ill-posed problem. In fact, even a minuscule variation

in the covariance matrix Σ of the observed data usually leads to a substantial variation

of the number of hidden factors, which is the key feature of the modeling procedure.

On the other hand, from an applications standpoint such a matrix must be estimated

from Ąnite data records, hence it is inevitably subject to errors. This sample covariance

matrix may not have a low-rank decomposition even if the underlying true covariance

matrix does. The problem of estimating the number of hidden factors from the sample

covariance matrix is therefore of crucial importance. It has been addressed in [9] and

[77] by means of statistical methods, and in [92] by making use of the 2-Wasserstein

distance. An alternative optimization-based approach to robustly estimate the number of

factors is proposed in [27] leveraging on a scale invariance property of the relative-entropy

pseudo-distance.

2.2 Dynamic factor analysis problem

Whereas the initial approach to FA was oriented to the static case, the idea has been

further generalized to data originating from stochastic processes. Dynamic Factor

Analysis (DFA) has been addressed much more recently than its static counterpart, the

Ąrst contribution to this Ąeld being apparently [66]. Subsequently, dynamic factor models
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have been deeply investigated, in particular in the Ąelds of Econometrics and Statistics.

We refer to the surveys [10], [36], [84], [114] and to the recent paper [59] for an overview

of the contributions provided by such a community over the recent years and a rich list

of references. More recently, a growing interest on factor models has been witnessed

also in the Systems and Control engineering community due to their ability of modeling

time series data of large cross-sectional dimension, see e.g. [20], [27], [28], [135]. Indeed,

several modern engineering applications are characterized by interconnected systems with

hundreds or thousands of variables mainly ŞdrivenŤ by a small number of hidden factors,

for which the DFA decomposition proves useful; we will provide some examples at the

end of the Chapter.

The natural extension of model (2.1) to the dynamic case is

y(t) = WL(eiϑ)u(t) + WD(eiϑ)w(t), t ∈ Z, (2.3)

where WL(eiϑ) and WD(eiϑ) are transfer functions in the form

WL(eiϑ) =
+∞∑

k=0

WL,ke−iϑk, WL,k ∈ Rm×r (2.4)

WD(eiϑ) =
+∞∑

k=0

WD,ke−iϑk, WD,k ∈ Rm×m diagonal (2.5)

and u = ¶u(t), t ∈ Z♢ and w = ¶w(t), t ∈ Z♢ are i.i.d. Gaussian processes of dimension

r and m, respectively, where r ≪ m, with zero mean and covariance equal to the identity.

It is assumed that E[u(t)w(s)⊤] = 0 for all t, s ∈ Z. Here, u is the process which describes

the r latent factors not accessible to observations, WL is the factor loading transfer

matrix, ŷ := WLu is the latent variable and Ąnally ỹ := WDw is the idiosyncratic noise.

Accordingly, the process y = ¶y(t), t ∈ Z♢ is a zero mean Gaussian process with power

spectral density Φ given by

Φ = ΦL + ΦD (2.6)

with ΦL := WLW ∗
L low-rank - where by rank we mean the normal rank, i.e. the rank

almost everywhere - and ΦD := WDW ∗
D diagonal. Therefore, y represents a DFA model

if its spectral density can be decomposed as Şlow-rank plus diagonalŤ as in (2.6).

The basic formulation of DFA problem consists in determining the minimum r for

which a DFA decomposition (2.6) holds. This problem is extremely challenging and

it is still open. In the realistic situation in which only a Ąnite sample estimate Φ̂ of

the spectral density Φ of the observed data is available, solving this problem is even

more difficult. Indeed, as already observed for the static case, the solution to the DFA
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problem is extremely fragile so that the accuracy in the estimation of Φ may severely

affect the decomposition (2.6). Note that this problem may be cast in the rich stream of

literature devoted to the identiĄcation of dynamic graphical models with latent factors

where a decomposition of the type Şlow-rank plus sparseŤ of a certain spectral density

is considered, see for example [28], [87], [135]. Differently from the previous papers,

however, in DFA we do not take into account the presence of an underlying graphical

model and we try to Ąnd a Şlow-rank plus diagonalŤ decomposition.

A wide literature is available on dynamic factor models, with different strands of

research evolving around the topic. A Ąrst fundamental issue is that of estimating

the number r of latent factors. Up to now, the main contribution to this problem is

given by [68], where the authors proposed an information-based criterion based on some

asymptotic properties of the eigenvalues of the sample spectral density; they established,

under appropriate assumptions, the consistency of their method as the cross-sectional

dimension and the length of the observed series both tend to inĄnity.

Once r is known, the main research interests concern the identiĄcation of the factor model

parameters and the estimation the common factors from the observed data. Different

approaches are available: [45], [125] and [115] focused on time-domain techniques. They

consider a special dynamic factor model wherein the common (dynamic) factors are only

combined in a static way is considered. The parameters of the model are estimated

by maximum likelihood, then a Kalman Ąlter is used to obtain efficient estimates of

the factors. More recently, principal component techniques have been introduced to

consistently estimate the latent factors from the observable variables as the cross sectional

dimension m and the sample size N both tend to inĄnity [61]Ű[64]. An alternative

likelihood-based method has been shown in [41], where the factor model is cast in state-

space form and the likelihood is maximized using the Expectation Maximization (EM)

algorithm.

2.3 Contribution of the thesis

In this thesis, we propose a novel optimization-based paradigm for the estimation of

dynamic factor models in the realistic situation in which only a Ąnite sample estimate Φ̂ of

the underlying model is available. We remark that the proposed method simultaneously

solves the problem of estimating the number r of factors and identifying the DFA model

parameters. This differentiates it from the existing literature where the solution to the

DFA problem is typically performed in two steps, Ąrst the estimation of the number

of factors and then the identiĄcation of the model. To cope with the fragility issue
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characterizing the DFA problem and robustly estimate the number of factors, we deĄne

a conĄdence region in the Itakura-Saito topology centered at the sampled spectrum Φ̂

and containing the true model with a user-chosen probability. In this conĄdence region

we seek for the most parsimonious factor model admitting a Şlow-rank plus diagonalŤ

decomposition.

This paradigm is applied to the identiĄcation of MA factor models in Chapter 3. In

more detail, given a Ąnite sample estimate of the underlying data generating process, we

propose a resampling-based method to construct a conĄdence region containing the true

spectrum with prescribed probability. In this conĄdence region, the problem, formulated

as a rank minimization of a suitable spectral density, is efficiently approximated via a

trace norm convex relaxation. The latter is addressed by resorting to the Lagrange duality

theory, which allows to prove the existence of solutions. Finally, a numerical algorithm

to solve the dual problem is presented. The effectiveness of the proposed estimator is

assessed through simulation studies with synthetic data. The results of Chapter 3 are

published in

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA Robust Approach to ARMA Factor

Modeling,Ť IEEE Transactions on Automatic Control, 2023.

In Chapter 4 we extend the previous approach to ARMA processes. The proposed

solution consists of two steps: an AR dynamic estimation step, for which we introduce a

novel moment matching method, followed by a DFA identiĄcation step for MA models.

Although the above procedure is suboptimal, numerical simulations both with synthetic

and real data show that the resulting estimator performs well. Chapter 4 is based on

• F. Crescente, L. Falconi, F. Rozzi, et al., ŞLearning AR factor models,Ť in 2020

59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 274Ű279

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA Robust Approach to ARMA Factor

Modeling,Ť IEEE Transactions on Automatic Control, 2023.

The DFA techniques introduced in Chapter 3 and Chapter 4 build upon an estimate

of the spectral density function of the underlying system from a Ąnite length record

of observed data. We address the spectral estimation problem in Appendix A, where

we propose the f-truncated periodogram, that is a truncated periodogram where the

truncation point is a suitable function f of the sample size. We provide a uniĄed,

conceptually simple and self-contained proof of the asymptotic consistency of the proposed

estimator that holds for possibly multidimensional and multivariate random processes.

The results of this Appendix are published in
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• L. Falconi, A. Ferrante, and M. Zorzi, ŞMean-square consistency of the f -truncated

M2-periodogram,Ť Automatica, vol. 147, p. 110 672, 2023.

Finally, Appendix B discusses an interesting generalization of the factor model (2.3)

which allows cross-correlation among the idiosyncratic components. For this kind of

model, we address the problem of estimating the hidden factors from the observed data,

given a state-space representation of the underlying system. In particular, we analyze

the capability of Kalman estimators to tackle this problem. The results of this chapter

are published in

• G. Picci, L. Falconi, A. Ferrante, et al., ŞHidden factor estimation in dynamic

generalized factor analysis models,Ť Automatica, vol. 149, p. 110 834, 2023.

2.4 Motivating examples

We conclude this introductory chapter by presenting a selection of practical problems

relevant to the Systems and Control community where the application of DFA models

shows promise.

1) Air Pollution Monitoring: Assume that we want to monitor the concentration

over time of two pollutants, namely benzene (C6H6) and carbon monoxide (CO), in a

certain city by means of a large number of sensors spread all over the area. Assume that

each sensor measures either the concentration of C6H6 or CO. This situation can be

efficiently described by a DFA model where the latent variables correspond the average

concentration of the two pollutants at time t, and the observed signals correspond to

the outputs of the sensors. Since the concentration of the pollutants varies considerably

within the city, the sensor output at time t is a measure of the average concentration

corrupted by a random Ćuctuation related to its speciĄc position and to accidental

measurement error.

2) Smart Building Modelling: Consider the problem of reducing the energy consump-

tion of a smart building which integrates a whole range of different technologies and a

complex monitoring system. For example, suppose that the house has indoor sensors for

temperature, humidity and carbon dioxide; outdoor sensors for lighting measurements,

wind speed, rain, sun irradiance and temperature. In order to improve the energy

efficiency, one may want to forecast the evolution of some signals of interest. To this

end, it is necessary to derive a mathematical model of the system. In this scenario, we

have a large number of signals collected by the sensors which are strongly correlated and
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show a common behavior. Hence, it is reasonable to expect that most of the variability

can be explained in terms of a smaller number of factors, say heating or air conditioning

consumption, average temperature, humidity etc. The application of DFA techniques

may help in providing a parsimonious model of the smart building system, which is easy

to understand and interpret.

3) Dynamic texture modelling: Large-dimensional time series often occur in computer

vision and dynamic image processing, where we observe a signal y(t) with tens of

thousands of components, obtained by stacking the intensities at time t of each pixel

of an image. For instance, we may be interested in modelling and analyzing dynamic

textures, which are sequences of images showing temporal regularity, such as smoke,

Ćames, Ćowing water, or moving grass. Dynamic textures images may be described in

terms of hidden variables, say the state of the texture, corrupted by additive noise, see

[39]. Hence, we can use DFA techniques to identify these models and compress the high

dimensional vector y(t) into simple mathematical structures. Note that, in dynamic

textures modeling, typically the number of samples that can be used for identiĄcation is

in the same order or smaller than the data dimensionality. Indeed the number of images

in the sequences is in the order of a few hundreds while the dimension of y(t) (which is

equal to the number of pixels of the image) is in the order of a few hundreds or thousands

[39].

Other signiĄcant engineering applications for which factor models seem to have great

potential are presented in [20].



3
A robust approach to MA factor modeling

This chapter deals with the DFA problem for MA processes. The aim is to extract, from

a high dimensional stream of observed data, a linear MA model featuring a small number

of hidden variables. This is important both from the point of view of the model simplicity

and to uncover the structure of the mechanism generating the data.

Mathematically, the DFA problem may be formulated as that of decomposing the

spectral density of the process generating the data as the sum of a diagonal spectral

density and a low-rank one, with the minimum possible rank. One of the main difficulties

is that the solution is inherently fragile; in fact, even if the underlying data generating

process is genuinely low rank, the minimum rank solution to this problem rapidly degrades

when a certain degree of uncertainty affects the spectral density function. In this chapter

we propose a strategy to cope with this fragility issue by taking a point of view whose

nature is similar to the approach used by [27] in the static FA setting. More precisely,

given an estimate of the underlying model based on a Ąnite data sample, we propose a

method which accounts for the uncertainty in the estimation by computing a ŞconĄdence

neighbourhoodŤ containing the true model with a prescribed probability. We deĄne this

conĄdence neighbourhood as a ball centred at the estimated model and deĄned in the

Itakura-Saito topology. In this region,we search for a structured model which admits the

smallest number of latent factors.

The overall procedure may be summarized as follows:

• Given the observed data, we compute a raw estimate Φ̂ of the spectral density Φ

generating the data (see Appendix A for a discussion on spectral density estimation).

• We compute a neighbourhood N of Φ̂ that contains Φ with prescribed probability;

clearly the size of N depends on the sample size.

• We compute a reĄned estimate Φ◦ ∈ N by imposing that it admits an additive

decomposition as a diagonal spectral density and a spectral density with the lowest
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possible rank. To this end we set up an optimization problem that we address by

resorting to duality. In particular, we prove existence of solutions and provide a

numerical algorithm to compute a solution.

Notice that, whereas in the existing literature the solution to the DFA problem consists

of two steps, Ąrst the estimation of the number of factors and then the identiĄcation of

the model parameters, the proposed method simultaneously solves these two problems.

The present chapter is published in

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA Robust Approach to ARMA Factor

Modeling,Ť IEEE Transactions on Automatic Control, 2023

and it is outlined as follows. In Section 3.1 we introduce the DFA problem for moving-

average MA models; in Section 3.2 we prove that such a problem admits a solution

by means of duality theory; Section 3.3 shows how to reconstruct the solution to the

primal problem from the dual one; in Section 3.4 we propose an algorithm to compute

the solution to the dual problem; Ąnally Section 3.5 presents some numerical results.

Throughout the chapter integrals are always deĄned from −π to π with respect to the

normalized Lebesgue measure dϑ/2π; to simplify the notation, the interval of integration

and the normalized Lebesgue measure are omitted.

3.1 Problem formulation

Consider the MA factor model whose order is n:

y(t) = WLu(t) + WDw(t) (3.1)

where

WL(eiϑ) =
n∑

k=0

WL,ke−iϑk, WD(eiϑ) =
n∑

k=0

WD,ke−iϑk,

WL,k ∈ Rm×r, WD,k ∈ Rm×m diagonal; u = ¶u(t), t ∈ Z♢ and w = ¶w(t), t ∈ Z♢
are normalized white Gaussian noises of dimension r and m, respectively, such that

E[u(t)w(s)⊤] = 0 ∀t, s. The process u describes the r factors, with r ≪ m, not accessible

to observation; WL is the factor loading transfer matrix; WLu(t) is the latent variable;

WDw(t) is idiosyncratic noise. Accordingly, y = ¶y(t), t ∈ Z♢ is a m-dimensional

Gaussian stationary stochastic process with power spectral density

Φ = ΦL + ΦD (3.2)
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where ΦL = WLW ∗
L ⪰ 0 and ΦD = WDW ∗

D ⪰ 0 belong to the Ąnite dimensional space:

Qm,n :=







n∑

k=−n

Rke−iϑk, Rk = RT
−k ∈ Rm×m






.

By construction, rank(ΦL) = r, where rank denotes the normal rank, and ΦD is diagonal.

Hence, y represents a factor model if its spectral density can be decomposed as Şlow rank

+ diagonalŤ as in (3.2).

Assume to collect a Ąnite length realization of y deĄned in (3.1), say yN = ¶ y(1) . . . y(N) ♢,

where the order n is known. We want to estimate the corresponding factor model, that is

the decomposition in (3.2), as well as the number of factors r. To address this problem,

given the data yN , we Ąrst compute the sample covariance lags R̂j as

R̂j =
1

N

N−j
∑

t=0

y(t + j)y(t)⊤, j = 0 . . . n.

Then, an estimate Φ̂ of Φ is obtained by the truncated periodogram:

Φ̂ =
n∑

k=−n

R̂keiϑk. (3.3)

Notice that Φ̂ could be not positive deĄnite for all ϑ; in that case, we can add εIm

to the right side of Equation (3.3), with the constant ε > 0 chosen in such a way as

to ensure the positivity of Φ̂. On the other hand, Φ̂ may not admit a low rank plus

diagonal decomposition. Thus, we estimate directly the two terms ΦL and ΦD of the

decomposition (3.2) by solving the following optimization problem:

min
Φ,ΦL,ΦD∈Qm,n

rank(ΦL)

subject to ΦL + ΦD = Φ,

Φ ≻ 0 a.e., ΦL, ΦD ⪰ 0,

ΦD diagonal,

SIS(Φ♣♣Φ̂) ≤ δ.

(3.4)

The Ąrst three constraints impose that ΦL and ΦD provide a genuine spectral density

decomposition of type (3.2). The last constraint, in which SIS(Φ♣♣Φ̂) is the Itakura-Saito
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divergence deĄned by ( [56], [71] )

SIS(Φ♣♣Φ̂) :=

∫

log ♣Φ̂Φ−1♣ + tr
(

Φ̂−1Φ − Im

)

,

imposes that Φ belongs to a set ŞcenteredŤ at the nominal spectral density Φ̂ and with

prescribed tolerance δ. Problem (3.4) is in general an extremely hard problem because of

the non-convexity of the rank function. A tractable convex-relaxation of (3.4) is given by

min
Φ,ΦL,ΦD∈Qm,n

tr

∫

ΦL

subject to ΦL + ΦD = Φ,

Φ ≻ 0 a.e., ΦL, ΦD ⪰ 0,

ΦD diagonal,

SIS(Φ♣♣Φ̂) ≤ δ.

(3.5)

The substitution of the rank with the trace norm from Problem (3.4) to Problem (3.5) is

justiĄed by the fact that tr
∫

ΦL represents the convex hull of rank(ΦL) (see [135]).

Notice that ΦD is uniquely determined by Φ and ΦL. Thus, Problem (3.5) can be

rewritten by removing ΦD:

(Φ◦, Φ◦
L) = arg min

Φ,ΦL∈Qm,n

tr

∫

ΦL

subject to Φ ≻ 0 a.e., ΦL, Φ − ΦL ⪰ 0,

Φ − ΦL diagonal,

SIS(Φ♣♣Φ̂) ≤ δ.

(3.6)

3.1.1 The choice of δ

Before solving our problem, we deal with the choice of the tolerance parameter δ appearing

in the constraint of (3.6). This choice should reĆect the accuracy of the estimate Φ̂ of Φ.

This can be accomplished by choosing a desired probability α ∈ (0, 1) and considering a

ball of radius δα (in the Itakura-Saito topology) centered in Φ̂ and containing the true

spectrum Φ with probability α.

The estimation of δα is not an easy task because we do not know the true power

spectral density Φ. Next, we propose a resampling-based method to estimate it. The idea
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is to approximate Φ with Φ̂, and use this model to perform a resampling operation. Let

W (eiϑ) =
n∑

k=0

Wke−iϑk, Wk ∈ Rm×m

be the minimum phase spectral factor of Φ̂ and deĄne the process ŷ = ¶ŷ(t), t ∈ Z♢
as ŷ(t) := W (eiϑ)e(t), where e(t) is an m-dimensional normalized white noise. The

truncated periodogram (understood as estimator) based on a sample of the process ŷ of

length N is

Φ̂r(eiϑ) =
n∑

k=−n

e−iϑk 1

N

N−k∑

t=0

ŷ(t + k)ŷ(t)T ,

where the subscript ŞrŤ stands for resampling, as it is the means by which we perform

the resampling operation, and the boldface notation Φ̂r is used to highlight that this is

an estimator, namely a random matrix and must not be confused with the corresponding

estimate which is denoted by Φ̂r. The latter is a deterministic matrix obtained by

replacing the random process ŷ(t) with the corresponding realization ŷ(t). By generating

a realization ŷN = ¶ ŷ(1) . . . ŷ(N) ♢ from Φ̂ (i.e. by resampling the data), we can easily

obtain a realization of the random variable SIS(Φ̂♣♣Φ̂r). Accordingly, it is possible to

compute numerically δα such that Pr(SIS(Φ̂♣♣Φ̂r) ≤ δα) = α by a standard Monte Carlo

procedure. Numerical simulations show that this technique indeed provides a good

estimate of δ.

It is worth noting that if the chosen α is too large with respect to the data length N ,

the resulting δα may be too generous yielding a diagonal Φ obeying SIS(Φ♣♣Φ̂) ≤ δα. In

this case Problem (3.6) admits the trivial solution ΦL = 0 and ΦD = Φ. To rule out this

trivial case, δ in (3.6) must be be strictly smaller than the upper bound

δmax := min
Φ∈S+

m

Φ diagonal

SIS(Φ♣♣Φ̂)

where S+
m denotes the family of bounded and coercive functions deĄned on the unit circle

and taking values in the cone of positive deĄnite m × m Hermitian matrices. Since Φ

must be diagonal, by denoting with ϕi and by γ̂i the i-th element in the diagonal of Φ

and of Φ̂−1, respectively, we have

δmax = min
Φ∈S+

m

Φ diagonal

∫

log ♣Φ̂Φ−1♣ + tr
(

Φ̂−1Φ − Im

)
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= min
Φ∈S+

m

Φ diagonal

∫

log

∣
∣
∣
∣Φ̂
(

diag2(Φ̂−1)
)(

diag2(Φ̂−1)
)−1

Φ−1

∣
∣
∣
∣+ tr

(

Φ̂−1Φ − Im

)

= min
Φ∈S+

m

Φ diagonal

∫

log

∣
∣
∣
∣

(

diag2(Φ̂−1)
)−1

Φ−1

∣
∣
∣
∣+ tr[Φ̂−1Φ − Im] +

∫

log ♣Φ̂ diag2(Φ̂−1)♣

= min
Φ∈S+

m

Φ diagonal

∫

log

(
m∏

i=1

γ̂−1
i ϕ−1

i



+
m∑

i=1

γ̂iϕi − m +

∫

log
∣
∣
∣Φ̂ diag2(Φ̂−1)

∣
∣
∣

=


m∑

i=1

min
ϕi∈S+

1

∫

log(γ̂−1
i ϕ−1

i ) + γ̂iϕi − 1

]

+

∫

log
∣
∣
∣Φ̂ diag2(Φ̂−1)

∣
∣
∣

=


m∑

i=1

min
ϕi∈S+

1

SIS(ϕi♣♣γ̂−1
i )

]

+

∫

log
∣
∣
∣Φ̂ diag2(Φ̂−1)

∣
∣
∣

where diag2(·) is the (orthogonal projection) operator mapping a square matrix M into

a diagonal matrix of the same size having the same main diagonal of M . Therefore,

since the Itakura-Saito divergence is nonnegative, the solution corresponds to ϕopt
i (eiϑ) =

(γ̂i(e
iϑ))−1, i = 1, ..., m for which SIS(ϕopt

i ♣♣γ̂−1
i ) = 0. Accordingly,

δmax =

∫

log
∣
∣
∣Φ̂ diag2(Φ̂−1)

∣
∣
∣ . (3.7)

The derivation of the aforementioned result is based on reasonings similar to [28, Section

IV].

A more generous upper bound can be derived by assuming that Φ is the spectrum of

an MA process of order n. However, numerical experiments showed that δmax ≫ δα even

in the case that N is relatively small.

3.2 Problem solution

In this section we Ąrst provide a Ąnite dimensional matrix parameterization of Problem

(3.6). The latter is then analyzed by resorting to the Lagrange duality theory, which

allows us to prove the existence of a solution.

3.2.1 Matricial reparameterization of the Problem

To study Problem (3.6) it is convenient to introduce a matricial parameterization for

Φ, ΦL and Φ − ΦL. To this end, we Ąrst introduce the so-called shift operator:

∆(eiϑ) := [Im eiϑIm . . . einϑIm]; (3.8)
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and the Ąnite dimensional space Qm(n+1) of symmetric block-matrices with (n+1)×(n+1)

square blocks of dimension m×m. If X ∈ Qm(n+1), Xij denotes the block of X in position

i, j with i, j = 0, . . . , n, so that

X =













X00 X01 . . . X0n

X⊤
01 X11

. . .
...

...
. . .

. . .
...

X⊤
0n X⊤

1n . . . Xnn













.

Moreover, Mm,n denotes the vector space of matrices of the form

Y := [Y0 Y1 ... Yn], Y0 ∈ Qm, Y1, ..., Yn ∈ Rm×m. (3.9)

The linear mapping T : Mm,n → Qm(n+1) constructs a symmetric block-Toeplitz matrix

from its Ąrst block row so that if Y is given by (3.9),

T (Y ) =













Y0 Y1 . . . Yn

Y ⊤
1 Y0

. . .
...

...
. . .

. . . Y1

Y ⊤
n . . . Y ⊤

1 Y0













.

If [D(X)]0 =
∑n

h=0 Xhh and [D(X)]j = 2
∑n−j

h=0 Xhh+j , for j = 1, ..., n, the adjoint of T

is the mapping D : Qm(n+1) → Mm,n deĄned by D(X) =
[

[D(X)]0 . . . [D(X)]n]
]

.

Given X ∈ Qm(n+1), by direct computation we obtain

∆X∆∗ = [D(X)]0 +
1

2

n∑

j=1

e−ijϑ[D(X)]j + eijϑ[D(X)]⊤j , (3.10)

thus ∆X∆∗ ∈ Qm,n. Conversely, since D is a surjective map, any element in Qm,n may

be parameterized as (3.10). We conclude that

Qm,n =
{

∆X∆∗ s.t. X ∈ Qm(n+1)

}

,
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and we introduce the following matrix parameterization for Φ, ΦL and Φ − ΦL:

Φ = ∆X∆∗ ∈ Qm,n

ΦL = ∆L∆∗ ∈ Qm,n

Φ − ΦL = ∆(X − L)∆∗ ∈ Qm,n

(3.11)

with X and L matrices in Qm(n+1).

Next, the objective is to provide a more convenient formulation of Problem (3.6) in

terms of X and L. To this end, we have to take into account the following points.

1) Positivity Constraints Φ ≻ 0 a.e. and ΦL, Φ − ΦD ⪰ 0 :

It can been shown (see for example [135, Appendix A]) that, for any Ψ ∈ Qm,n, Ψ ⪰ 0 if

and only if there exists a matrix P ∈ Qm(n+1) such that ∆P∆∗ and P ⪰ 0. Therefore,

we replace the conditions ΦL ⪰ 0 with L ⪰ 0, the condition Φ − ΦL ⪰ 0 with X − L ⪰ 0.

Note that these conditions only guarantee X ⪰ 0 and thus Φ to be positive semideĄnite,

however we will show that this is sufficient to guarantee that Φ ≻ 0 a.e. at the optimum.

2) Constraint Φ − ΦL diagonal:

Let ofd : Rm×m → Rm×m denote the linear operator deĄned as follows: given A ∈ Rm×m,

ofd(A) is the matrix in which each off-diagonal element is equal to the corresponding

element of A and each diagonal element is zero. We deĄne the Şblock ofdŤ linear

operator ofdB : Mm,n → Mm,n as follows. Given Z = [ Z0 Z1 . . . Zn ] ∈ Mm,n, then

ofdB(Z) = [ ofd(Z0) ofd(Z1) . . . ofd(Zn) ]. It is not difficult to show that ofdB is a self-

adjoint operator, since ofd is self-adjoint as well. Then, it is easy to see that the condition

Φ − ΦL diagonal is equivalent to the condition [D(X − L)]j diagonal for j = 0, . . . , n,

that is ofdB(D(X − L)) = 0.

3) The Low Rank Regularizer:

We have

tr

∫

ΦL = tr

∫

∆L∆∗ = tr

(

L

∫

∆∗∆

)

= tr(L)

where we exploited the fact that
∫

eijϑ = 1 if j = 0, and
∫

eijϑ = 0 otherwise.

4) The Divergence Constraint:

A convenient matrix parameterization of the Itakura-Saito divergence SIS(Φ♣♣Φ̂) can be

obtained by making use of the following facts.

First, since Φ = ∆X∆∗ with X ⪰ 0, there exists A ∈ Rm×m(n+1) such that X = A⊤A.
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Then, by using the Jensen-Kolmogorov formula we obtain

∫

log ♣Φ♣ =

∫

log ♣∆A⊤A∆∗♣ = log ♣A⊤
0 A0♣ = log ♣X00♣ (3.12)

which holds provided that X00 ≻ 0 and Φ is coercive. 1 We need to generalize this result

to spectral densities that may be singular on the unit circle. This is possible because the

zeros of a rational spectral density, if any, have Ąnite multiplicity so that the logarithm

of the determinant of a rational spectral Φ is integrable as long as the normal rank of Φ

is full.

Lemma 3.2.1. Consider a power spectral density Φ ∈ Qm,n having full normal rank. Let

X ∈ Qm(n+1) be such that X ⪰ 0, X00 ≻ 0, and Φ = ∆X∆∗. Then
∫

log ♣Φ♣ = log ♣X00♣.

Proof. Since Φ = ∆X∆∗ with X ⪰ 0, there exists A ∈ Rm×m(n+1) such that X = A⊤A.

The matrix A is such that Φ ⪰ 0 admits the spectral factorization Φ = WW ∗ where

W := ∆A⊤. Now, deĄne Φn := Φ + 1
n

I with n ∈ N and let Wn := ∆An be a

spectral factor of Φn with An ∈ Rm×m(n+1). Clearly, limn→+∞ Φn = Φ; accordingly,

limn→+∞ Wn = W and limn→+∞ An = A. Since Φn ≻ 0 ∀ϑ we can exploit (3.12) to

obtain
∫

log ♣Φn♣ = log ♣A⊤
n0

An0 ♣. Then, applying the limit operator to both sides, we have

lim
n→+∞

∫

log ♣Φn♣ = log ♣A⊤
0 A0♣ = log ♣X00♣.

To conclude the proof, it remains to show that in the left side of the previous equation

it is possible to interchange the limit and the integral operators. To this aim, we

introduce the sequence ¶fn♢+∞
n=1 where fn(t) := log ♣Φn(ϑ)♣ and the function f(ϑ) :=

limn→+∞ fn(t) = log ♣Φ(ϑ)♣. Observe that, since the interval of integration [−π, π] is

bounded and f1(ϑ) < +∞ for any ϑ ∈ [−π, π], then
∫

f1(ϑ)dϑ < +∞. We also deĄne

the sequence ¶gn♢+∞
n=1 as gn(ϑ) := fn(ϑ) − f1(ϑ) and g(ϑ) := limn→+∞ gn(ϑ). ¶gn♢ is a

pointwise non-increasing sequence of measurable non-positive functions,

· · · ≤ g2(ϑ) ≤ g1(ϑ) ≤ 0, ∀ϑ ∈ [−π, +π]

converging to g(ϑ) from above. Hence, it satisĄes all the hypotheses of Beppo-LeviŠs

monotone convergence theorem (applied with opposite signs), from which it immediately

follows that limn→+∞
∫

gn(ϑ) =
∫

g(ϑ), and consequently

lim
n→+∞

∫

fn(ϑ) =

∫

g(ϑ) +

∫

f1(ϑ). (3.13)

1A spectral density Φ is said to be coercive if it is positive definite on the unit circle.
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Now, since f1(ϑ) < +∞ for all ϑ,

g(ϑ) = f(ϑ) − f1(ϑ), (3.14)

and, by plugging (3.14) into (3.13), we Ąnally obtain limn→+∞
∫

fn(ϑ) =
∫

f(ϑ). ■

A second observation in order to conveniently parameterize the Itakura-Saito diver-

gence constraint is that, by exploiting the cyclic property of the trace,

∫

tr(Φ̂−1Φ) =

∫

tr(Φ̂−1∆X∆∗) = tr

(

X

∫

∆∗Φ̂−1∆

)

= ⟨X, T (P̂ )⟩,

where P̂ is deĄned from the expansion Φ̂−1 =
∑∞

k=−∞ P̂ke−iϑk as P̂ := [P̂0 . . . P̂n].

Summing up, we get the following matrix re-parameterization of Problem (3.6):

(X◦, L◦) = arg min
X,L∈Qm(n+1)

tr(L)

subject to X00 ≻ 0, L ⪰ 0, X − L ⪰ 0,

ofdB(D[X − L]) = 0,

− log ♣X00♣ +

∫

log ♣Φ̂♣ + ⟨X, T (P̂ )⟩ − m ≤ δ.

(3.15)

We remark once again that to prove the equivalence between (3.6) and (3.15) we still

need to show that Φ ≻ 0 a.e. at the optimum: this fact will be established after the

variational analysis.

3.2.2 The dual problem

We reformulate the constrained minimization problem in (3.15) as an unconstrained

problem by means of Duality Theory, [21].

If we use V, U ∈ Qm(n+1), V, U ⪰ 0 as the multipliers associated with the constraints on

the positive semi-deĄniteness of X − L and L, respectively, Z ∈ Mm,n as the multiplier

associated with the constraint ofdB(D(X − L)) = 0 and λ ∈ R, λ ≥ 0, as the multiplier
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associated with the Itakura-Saito divergence, then the Lagrangian is

L(X, L, λ, U, V, Z) = tr(L) − ⟨V, X − L⟩ − ⟨U, L⟩ + ⟨Z, ofdB(D(X − L))⟩

+ λ
(

− log ♣X00♣ +

∫

log ♣Φ̂♣ + ⟨X, T (P̂ )⟩ − m − δ
)

= ⟨L, I⟩ − ⟨V, X − L⟩ − ⟨U, L⟩ + ⟨T (ofdB(Z)), X − L⟩ + ⟨X, λT (P̂ )⟩

− λ
(

log ♣X00♣ −
∫

log ♣Φ̂♣ + m + δ
)

= ⟨L, I − U + V − T (ofdB(Z))⟩ + ⟨X, T (ofdB(Z)) − V + λT (P̂ )⟩

− λ
(

log ♣X00♣ −
∫

log ♣Φ̂♣ + m + δ
)

.

(3.16)

where in the Ąrst equality of the previous equation we have Ąrst exploited the fact that the

operator ofdB is self-adjoint and then the fact that the mappings T and D are adjoints.

Note that we have not included the constraint X00 ≻ 0 because, as we will show later on,

this condition is automatically met by the solution to the dual problem.

The dual function is deĄned as the inĄmum of L over X and L. Thanks to the convexity

of the Lagrangian, we rely on standard variational methods to characterize the minimum.

• Partial minimization with respect to L:

The Lagrangian L depends on L only through ⟨L, I − U + V − T (ofdB(Z))⟩ which

is bounded from below only if

I − U + V − T (ofdB(Z)) = 0. (3.17)

Thus, we get that

inf
L

L







= ⟨X, T (ofdB(Z)) − V + λT (P̂ )⟩−
λ
(

log ♣X00♣ − ∫
log ♣Φ̂♣ + m + δ

)

if (3.17)

= −∞ otherwise.

• Partial minimization with respect to X:

The terms in X00 are bounded from below only if

[

T (ofdB(Z)) − V + λT (P̂ )
]

00
≻ 0 (3.18)

If (3.18) holds, by taking convexity into account, the matrix X00 achieving the

minimum is easily obtained by imposing the optimality condition δL(X00; δX00) = 0
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for any δX00 ∈ Qm. This is equivalent to

δL(X00; δX00) = tr
([

T (ofdB(Z)) − V + λT (P̂ )
]

00
δX00

)

− λ tr
(

X−1
00 δX00

)

= ⟨
[

T (ofdB(Z)) − V + λT (P̂ )
]

00
− λX−1

00 , δX00⟩

= 0, ∀δX00.

It follows that the terms in X00 are minimized if λ > 0 and

X00 =
([

T (P̂ ) + λ−1(T (ofdB(Z)) − V )
]

00

)−1
. (3.19)

The Lagrangian is linear in the remaining variables Xlh, for (l, h) ̸= (0, 0), and

therefore bounded from below only if

[

T (ofdB(Z)) − V + λT (P̂ )
]

lh
= 0 ∀(l, h) ̸= (0, 0). (3.20)

Summing up, the minimization of the Lagrangian with respect to X and L is Ąnite if

and only if (3.17), (3.18), and (3.20) hold true in which case

min
X,L

L = −λ

(

− log
∣
∣
∣

[

T (P̂ ) + λ−1 (T (ofdB(Z)) − V )
]

00

∣
∣
∣−

∫

log
∣
∣
∣Φ̂
∣
∣
∣+ δ

)

.

Otherwise the Lagrangian has no minimum and its inĄmum is −∞.

To simplify the notation, let us deĄne the vector space

O := ¶Z ∈ Mm,n : ofdB(Z) = Z♢;

since Z always appears in the form ofdB(Z), we can replace it with Z ∈ O. Then, we

can formulate the dual problem for the Lagrangian (3.16) as

max
(λ,U,V,Z)∈C̃

J̃ := λ

(

log
∣
∣
∣

[

T (P̂ ) + λ−1(T (Z) − V )
]

00

∣
∣
∣+

∫

log ♣Φ̂♣ − δ

)

(3.21)

where the feasible set C̃ is given by:

C̃ :=
{

(λ, U, V, Z) : U, V ∈ Qm(n+1), U, V ⪰ 0, Z ∈ O, I − U + V − T (Z) = 0, λ ∈ R,

λ > 0, [λT (P̂ ) + T (Z) − V ]00 ≻ 0, [λT (P̂ ) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)
}

.

Note that the constraints I −U +V −T (Z) = 0 and U ⪰ 0 are equivalent to the constraint

I + V − T (Z) ⪰ 0. Thus, we can eliminate the redundant variable U ; moreover, by
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changing the sign to the objective function J̃ and observing that

[

T (P̂ ) + λ−1(T (Z) − V )
]

00
= P̂0 + λ−1(Z0 − V00),

we can rewrite (3.21) as a minimization problem

min
(λ,V,Z)∈C

J := λ

(

− log
∣
∣
∣P̂0 + λ−1(Z0 − V00)

∣
∣
∣−

∫

log ♣Φ̂♣ + δ

)

(3.22)

where the corresponding feasible set C is:

C :=
{

(λ, V, Z) : V ∈ Qm(n+1), V ⪰ 0, Z ∈ O, λ ∈ R, λ > 0, I + V − T (Z) ⪰ 0,

[λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)
}

.

3.2.3 Existence of solutions

The aim of this section is to show that (3.22) admits a solution. The set C is not compact,

as it is neither closed nor bounded. We show that we can restrict the search of the

minimum of J over a compact set. Then, since the objective function is continuous over C
(and hence over the restricted compact set), we can use Weierstrass Theorem to conclude

that the problem does admit a minimum.

The Ąrst step consists in showing that we can restrict C to a subset where λ ≥ ε with

ε is a positive constant.

Proposition 3.2.2. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C such that

lim
k→∞

λ(k) = 0. (3.23)

Then, such a sequence cannot be an inĄmizing sequence.

Proof. The proof exploits arguments similar to [28, Proposition 6.1]. We consider two

possible scenarios separately.

Scenario 1: Let (λ(k), V (k), Z(k))k∈N be such that, besides (3.23), we have ∥ (λ(k))−1([Z(k)]0−
[V (k)]00) ∥→ +∞. Since we are dealing with symmetric matrices, this is equivalent to

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

) ♣α(k)♣ = +∞. (3.24)
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Next, we show that (3.24) leads to

lim
k→∞

min
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

)α(k) = −∞. (3.25)

Indeed, (3.24) implies that at least one of the two conditions (3.25) and

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

)α(k) = +∞ (3.26)

holds. To show that (3.26) implies (3.25), notice that, since V (k) ⪰ 0 and λ(k) > 0 ∀k,

then max
{

α(k) : α(k) ∈ σ
(

(λ(k))−1[Z(k)]0
)}

is greater than or equal to the argument of

the limit in the left-side of (3.26). Thus (3.26) implies

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1[Z(k)]0

)α(k) = +∞. (3.27)

But (λ(k))−1[Z(k)]0 is traceless ∀k, hence the sum of its eigenvalues is zero and

lim
k→∞

min
α(k)∈σ

(

(λ(k))−1[Z(k)]0

)α(k) = −∞. (3.28)

By the same argument as before, from V (k) ⪰ 0 and λ(k) > 0 we obtain that ∀k

min
{

α(k) : α(k) ∈ σ
(

(λ(k))−1[Z(k)]0
)}

is greater than or equal to the argument in the left

side of (3.25). This fact, together with (3.28), leads to (3.25). By (3.25), we obtain that

for k sufficiently large [Z(k)]0 − [V (k)]00 +λ(k)P̂0 = (λ(k))
(

(λ(k))−1([Z(k)]0 − [V (k)]00)+P̂0

)

has at least a negative eigenvalue, so the sequence (λ(k), V (k), Z(k)) is not in C.

Scenario 2: Consider now a sequence (λ(k), V (k), Z(k))k∈N for which, besides (3.23),

we have ∥ (λ(k))−1([Z(k)]0 − [V (k)]00) ∥→ c with 0 ≤ c < ∞. Since ∥ (λ(k))−1([Z(k)]0 −
[V (k)]00) ∥ is bounded, there exists l ∈ R such that for all k

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0 ⪯ lIm.

Then, since for any two matrices A, B ∈ Qm , if 0 ⪯ A ⪯ B then det(A) ≤ det(B), we

have

− log ♣(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0♣ −
∫

log ♣Φ̂♣ + δ ≥ −m log l −
∫

log ♣Φ̂♣ + δ.

If l1 := −m log l − ∫
log ♣Φ̂♣ + δ, it holds that J(λ(k), V (k), Z(k)) ≥ λ(k)l1 for any k. Note
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that λ(k)l1 → 0 thus ∀ε > 0, ∃k̄ such that

J(λ(k), V (k), Z(k)) ≥ λ(k)l1 > −ε, ∀k > k̄

Now, it is sufficient to Ąnd a triple (λ̄, V̄ , Z̄) ∈ C with J(λ̄, V̄ , Z̄) strictly negative to

conclude that such a sequence is not an inĄmizing sequence. Consider λ̄ sufficiently small,

but strictly greater than zero and Z̄j = −λ̄ ofd(P̂j) for all j = 0, . . . , n. Moreover, let

P̂j,d = diag2(P̂j), j = 0, . . . , n, P̂d = [P̂0,d♣ . . . ♣P̂n,d] and Tn+1,d = T (P̂d) . Observe that

Tn+1,d is deĄned from T (P̂ ) by the same Şblock by block diagonalizationŤ procedure

deĄned in [28, Lemma A.2], so it is positive deĄnite. Partition Tn+1,d as

Tn+1,d =




P̂0,d Kd

K⊤
d Tn,d





which deĄnes the matrices Kd and Tn,d and let

V̄ = λ̄




KdT −1

n,d K⊤
d Kd

K⊤
d Tn,d



 .

As already noticed, in view of [28, Lemma A.2], Tn,d is positive deĄnite, and from the

Schur Complement V̄ is positive semi-deĄnite. It is possible to see that the triple (λ̄, V̄ , Z̄)

belongs to C for λ̄ sufficiently small. Moreover, diag2(Φ̂−1) is the power spectral density

of the process whose covariance lags are P̂d,j . Hence, in view of [28, Lemma A.1] we have

that

J(λ̄, V̄ , Z̄) = −λ̄ log ♣P̂0,d − KdT −1
n,d K⊤

d ♣ − λ̄

∫

log ♣Φ̂♣ + λ̄δ

≤ −λ̄

∫

log ♣ diag2(Φ̂−1)♣ − λ̄

∫

log ♣Φ̂♣ + λ̄δ

= λ̄

(

δ −
∫

log ♣Φ̂ diag2(Φ̂−1)♣


= λ̄(δ − δmax)

< 0,

where in the last equality we have taken into account the expression (3.7) while the last

inequality follows from the assumption δmax > δ.

The only remaining possibility is the case in which limk→∞ ∥ (λ(k))−1([Z(k)]0 − [V (k)]00) ∥
does not exist. However, in this case it is always possible to consider a subsequence

for which the limit exists (Ąnite or inĄnite) and we can therefore reduce to one of the
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previous cases. ■

As a consequence of Proposition 3.2.2, minimizing the dual functional over the set C
is equivalent to minimize it over the set

C1 :=
{

(λ, V, Z) : V ∈ Qm(n+1), V ⪰ 0, Z ∈ O, I + V − T (Z) ⪰ 0, λ ∈ R,

λ ≥ ε, [λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)♢.

Next, we show that we can restrict C1 to a subset in which both (T (Z) − V ) and λ cannot

diverge.

Proposition 3.2.3. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C1 such that

either

lim
k→∞

∥ T (Z(k)) − V (k) ∥= +∞ (3.29)

or

lim
k→∞

λ(k) = +∞ (3.30)

or both. Then, such a sequence cannot be an inĄmizing sequence.

Proof. This proof follows arguments similar to the proof of Proposition 6.2 in [28], with

a few small differences. First, we show that (3.29) holds if and only if (3.30) holds as

well. We are assuming that the estimated model has a non-trivial dynamics, i.e. there

exists i ≠ 0 such that P̂i ̸= 0. Thus, [T (P̂ )]l̄h̄ ̸= 0 for some (l̄, h̄) ̸= (0, 0) . From

[λ(k)T (P̂ ) + T (Z(k)) − V (k)]l̄h̄ = 0, which is one of the conditions for the sequence to be

in C1, (3.30) holds if and only if [T (Z(k)) − V (k)]l̄h̄ diverges. It remains to show that if

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥= +∞, (3.31)

then (3.30) holds. Since we are dealing with symmetric matrices, (3.31) is equivalent to

lim
k→∞

max
α(k)∈σ

(

([Z(k)]0−[V (k)]00

) ♣α(k)♣ = +∞, (3.32)

which in turn implies at least one of the two conditions

lim
k→∞

min
α(k)∈σ

(

([Z(k)]0−[V (k)]00

)α(k) = −∞ (3.33)

lim
k→∞

max
α(k)∈σ

(

[Z(k)]0−[V (k)]00

)α(k) = +∞. (3.34)
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With similar reasonings to the proof of Proposition 3.2.2, it is possible to show that

(3.34) implies (3.33). Consequently, since (λ(k)P̂0 + [Z(k)]0 − [V (k)]00) ≻ 0, we conclude

that (3.30) holds. So far we have seen the equivalence between (3.29) and (3.30) and the

fact that (3.31) implies (3.30). Next, we show that (3.30) implies not only (3.31), but

the stronger condition

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥
λ(k)

̸= 0. (3.35)

Assume by contradiction that (3.35) does not hold. Then the corresponding sequence does

not belong to C1 as the constraint on the positive semi-deĄniteness of I+V (k)−T (Z(k)) fails

for k sufficiently large. Indeed, consider a principal minor of order 2 of I + V (k) − T (Z(k))

as follows. Select a block P̂h with h ̸= 0 and an element in position (p, q) such that

[P̂h](p,q) ̸= 0. Then, consider the 2 × 2 sub-matrix of I + V (k) − T (Z(k))






1 +
[

[V (k)]00 − [Z(k)]0
]

(p,p)
λ(k)[P̂h](p,q)

λ(k)[P̂h](p,q) 1 + λ(k)[P̂0](q,q)




 , (3.36)

where [P̂0](q,q) > 0 and the off-diagonal terms are obtained by employing the constraint

[λ(k)T (P̂ ) + T (Z(k)) − V (k)]lh = 0 for (l, h) ̸= (0, 0). It is possible to see that the

determinant of (3.36) diverges to −∞ as k → +∞. Recalling that a symmetric matrix is

positive semideĄnite if and only if every principal minor is non-negative, we conclude that

the constraint on positive semideĄniteness of I + V (k) − T (Z(k)) fails for k sufficiently

large, leading to a contradiction. Therefore the proof reduces to ruling out the following

two possible cases.

Scenario 1: Consider the case of a sequence (λ(k), V (k), Z(k))k∈N such that, besides (3.30),

we also have

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥
λ(k)

= +∞.

We can repeat the same reasoning of the Proof of Proposition 3.2.2 to conclude that

at least one eigenvalue of (λ(k))−1([Z(k)]0 − [V (k)]00) tends to −∞ as k → ∞. This

implies that for k sufficiently large the positivity of [Z(k)]0 − [V (k)]00 + λ(k)P̂0 =

λ(k)
(

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0

)

fails, which rules out this case.

Scenario 2: Finally, consider a sequence (λ(k), V (k), Z(k))k∈N in C1 for which ∥ [Z(k)]0 −
[V (k)]00 ∥→ ∞ at the same speed of λ(k) and ∥ [T (Z(k))−V (k)]lh ∥. Since (λ(k))−1([Z(k)]0−
[V (k)]00)+ P̂0 ⪰ 0, it holds that [V (k)]00 − [Z(k)]0 = λ(k)(P̂0 −C(k)) for a certain C(k) ⪰ 0.
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The latter together with [λ(k)T (P̂ ) + T (Z(k)) − V (k)]lh = 0 for (l, h) ̸= (0, 0) leads to

(λ(k))−1(V (k) − T (Z(k))) =




P̂0 − C(k) K

K⊤ T





with K := [P̂1 . . . P̂n] and T := T ([P̂0 . . . P̂n−1]). Therefore, we get that

(λ(k))−1(I + V (k) − T (Z(k))) =




P̂0 − C(k) K

K⊤ T



+ O(
1

λ(k)
).

By using the Schur complement, we get P̂0 − C(k) − KT −1K⊤ + O( 1
λ(k) ) ⪰ 0, thus

C(k) ⪯ C
(k)
max with C

(k)
max := P̂0−KT −1K⊤ +O( 1

λ(k) ). Consequently, P̂0 +(λ(k))−1([Z(k)]0−
[V (k)]00) ⪯ C

(k)
max. and ,

J (k) := J(λ(k), V (k), Z(k)) = λ(k)
(

− log
∣
∣
∣P̂0 + (λ(k))−1([Z(k)]0 − [V (k)]00)

∣
∣
∣−

∫

log ♣Φ̂♣ + δ

)

≥ λ(k)
(

− log
∣
∣
∣C(k)

max

∣
∣
∣−

∫

log ♣Φ̂♣ + δ

)

= λ(k)
(

− log
∣
∣
∣C(k)

max

∣
∣
∣+

∫

log ♣Φ̂−1♣ + δ

)

.

Notice that Φ̂−1 =
∑∞

k=−∞ P̂ke−iϑk is the power spectral density of an AR process of

order n, then by using [28, Lemma A.1], we get

J (k) ≥ λ(k)
(

− log
∣
∣
∣C(k)

max

∣
∣
∣+ log

∣
∣
∣P̂0 − KT −1K⊤

∣
∣
∣+ δ

)

= λ(k)
(

δ + O(
1

λ(k)
)

)

→ +∞ as k → ∞.

Thus (λ(k), V (k), Z(k)) cannot be an inĄmizing sequence. ■

It follows from Proposition 3.2.3 that there exists β ∈ R with ♣ β ♣< ∞ such that

T (Z) − V ⪰ βI, and 0 < γ < ∞ such that λ ≤ γ. Therefore, the set C1 can be further

restricted to the set

C2 :=
{

(λ, V, Z) : V ∈ Qm(n+1), V ⪰ 0, Z ∈ O, λ ∈ R, γ ≥ λ ≥ ε,

βI ⪯ T (Z) − V ⪯ I, [λP̂0 + Z0 − V00] ≻ 0,

[λ(T (P̂ )) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)
}

.

In addition, we prove that it is not possible for V and Z to diverge while keeping

the difference T (Z) − V Ąnite. Accordingly, we can further restrict the search for the

optimal solution to a subset C3 in which neither V nor Z can diverge:
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Proposition 3.2.4. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C2 such that

lim
k→∞

∥ V (k) ∥= +∞ (3.37)

or

lim
k→∞

∥ Z(k) ∥= +∞ (3.38)

or both. Then, such a sequence cannot be an inĄmizing sequence.

Proof. Consider a sequence (λ(k), V (k), Z(k))k∈N in C2. We Ąrst show that [Z(k)]0 cannot

diverge. Indeed, assume by contradiction that limk→∞ ∥ [Z(k)]0 ∥= +∞. Since it is a

symmetric and traceless matrix, this implies

lim
k→∞

min
α(k)∈σ

(

[Z(k)]0

)α(k) = −∞.

Therefore, since λ(k)P̂0 is bounded and V (k) positive semideĄnite ∀k, then (λ(k)P̂0 +

[Z(k)]0 − [V (k)]00) has at least a negative eigenvalue for k sufficiently large, so that the

sequence (λ(k), V (k), Z(k)) is not in C2. We conclude that limk→∞ ∥ [Z(k)]0 ∥< ∞. As a

consequence, since βI ⪯ T (Z(k))−V (k) ⪯ I (which is one of the condition for the sequence

to be in C2 ), and [T (Z(k))]hh = [Z(k)]0 by construction, it holds that ∀k ∥ [V (k)]hh ∥< ∞,

for h = 0, . . . , n . Then, from V (k) ⪰ 0 it follows that also the off-diagonal blocks of V (k)

must be bounded ∀k, i.e.

∥ [V (k)]hl ∥< ∞, l ̸= h, l, h = 0, . . . , n. (3.39)

Finally, by boundedness of (T (Z(k))−V (k)) and by (3.39) we obtain that ∥ [Z(k)]h ∥< ∞,

for h = 1, . . . , n, concluding the proof. ■

Thus, the minimization over C2 is equivalent to the minimization over the subset

C3 :=
{

(λ, V, Z) : V ∈ Qm(n+1), αI ⪰ V ⪰ 0, Z ∈ O, βI ⪯ T (Z) − V ⪯ I, λ ∈ R,

γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)
}

for a certain α > 0.

Finally, we consider a sequence (λ(k), V (k), Z(k))k∈Z ∈ C3 such that [(λ(k))−1
(

[Z(k)]0 −
[V (k)]00

)

+ P̂0] tends to be singular as k → ∞. This implies that ♣(λ(k))−1
(

[Z(k)]0 −
[V (k)]00

)

+ P̂0♣ tends to zero and hence J → +∞. Thus, such a sequence cannot be an
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inĄmizing sequence. Therefore, the Ąnal set CC is

CC := ¶(λ, V, Z) : V ∈ Qm(n+1), αI ⪰ V ⪰ 0, Z ∈ O, βI ⪯ T (Z) − V ⪯ I, λ ∈ R,

γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] ⪰ µI, [λ(T (P̂ )) + T (Z) − V ]lh = 0 ∀(l, h) ̸= (0, 0)♢

where α, β, γ, ε and µ such that ♣α♣, ♣β♣, ♣γ♣, ♣ε♣ and ♣µ♣ < +∞.

Theorem 3.2.5. Problem (3.22) is equivalent to

min
(λ,V,Z)∈CC

J(λ, V, Z)

and it admits solution.

Proof. Equivalence of the two problems has already been proven by the previous argu-

ments. Since CC is closed and bounded, hence compact, and J is continuous over CC , by

WeierstrassŠ Theorem the minimum exists. ■

3.3 Solution to the primal problem

In this section, after proving that the primal problem (3.6) and its matrix reformulation

(3.15) are equivalent, we show how to recover the solution to the primal problem.

Let (λ◦, V ◦, Z◦) be a solution to (3.22) and (X◦, L◦) be the corresponding solution to

(3.15). Since X◦
00 is positive deĄnite, log ♣X◦

00♣ is Ąnite. By Lemma 3.2.1, at the optimum
∫

log ♣Φ♣ must be Ąnite as well; this implies that Φ(eiϑ), with ϑ ∈ [−π, π] , may be singular

at most on a set of zero measure, or, in other terms, ∆X◦∆∗ ≻ 0 a.e.. This observation

leads to the following proposition:

Proposition 3.3.1. Let (X◦, L◦) be a solution to (3.15). Then ∆X◦∆∗ ≻ 0 a.e..

Accordingly, (3.6) and (3.15) are equivalent.

Now we are ready to show how to recover the solution to the primal problem; to this

aim we need the following result, see [111].

Lemma 3.3.2. Let Z ∈ Mm,n and W ∈ Qm. If W ≻ 0 is such that

T (Z) ⪰



W 0

0 0



 (3.40)

then T (Z) ≻ 0.
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Exploiting the constraints [λ(T (P̂ )) + T (Z) − V ]lh = 0, ∀(l, h) ̸= (0, 0) and [λP̂0 +

Z0 − V00] ≻ 0, it is not difficult to see that

V ◦ = λ◦T (P̂ ) + T (Z◦) −



W ◦ 0

0 0



 (3.41)

where

W ◦ := Z◦
0 − V ◦

00 + λ◦P̂0 ≻ 0. (3.42)

Since V ◦ ⪰ 0 and in view of Lemma 3.3.2, λ◦T (P̂ ) + T (Z◦) ≻ 0. Hence, V ◦ has rank at

least equal to mn.

Since the duality gap between (3.15) and (3.22) is equal to zero, we have that ⟨V ◦, X◦ −
L◦⟩ = 0, which in turn implies

V ◦(X◦ − L◦) = 0 (3.43)

because V ◦, X◦ − L◦ ⪰ 0. Recalling that rank(V ◦) ≥ mn, in view of (3.43) the matrix

X◦ − L◦ has rank at most equal to m. Let rank(X◦ − L◦) = m̃ ≤ m. Then, there exists

a full-row rank matrix A ∈ Rm̃×m(n+1) such that

X◦ − L◦ = A⊤A. (3.44)

By (3.43), it follows that V ◦A⊤ = 0. Let YD := [vo v1 ... vl] ∈ Rm(n+1)×l denote the

matrix whose columns form a basis of ker(V ◦). Note that the dimension l of the null

space of V ◦ is at least m̃ because Im(A⊤) ⊆ ker(V ◦) and rank(A⊤) = m̃; also l ≤ m

because rank(V ◦) ≥ mn. Rewriting the matrix A⊤ as A⊤ = YDS with S ∈ Rl×m̃, from

(3.44) we obtain

X◦ − L◦ = YDQDY ⊤
D , (3.45)

with QD := SS⊤ ∈ Ql unknown.

In a similar fashion, by the zero duality gap between (3.15) and (3.22), the complementary

slackness condition for the multiplier associated to the positive semi-deĄniteness of L

reads as ⟨U◦, L◦⟩ = 0, which in turn implies U◦L◦ = 0. Repeating the same reasoning as

before, it can be seen that, if the dimension of the null space of U◦ is r̃ with r̃ ≥ r and

YL := [uo u1 ... ur̃] ∈ Rm(n+1)×r̃ is a matrix whose columns form a basis of ker(U◦),



42 A robust approach to MA factor modeling

then L◦ can be written as

L◦ = YLQLY ⊤
L (3.46)

with QL ∈ Qr̃ unknown. Plugging (3.46) into (3.45), we then obtain

X◦ − YLQLY ⊤
L = YDQDY ⊤

D . (3.47)

Assume now that each block of X◦ − L◦ is diagonal, namely

ofd(
[

YDQDY ⊤
D

]

hk
) = 0 h, k = 0, ..., n. (3.48)

Remark 3.3.3. We can make the previous assumption without loss of generality. Indeed,

let (Φ◦, Φ◦
L) be the solution to Problem (3.6) and Φ◦

D = Φ◦ − Φ◦
L; X, L and D = X − L

are any matrices in Qm(n+1) such that Φ◦ = ∆X∆∗, Φ◦
L = ∆L∆∗ and Φ◦

D = ∆D∆∗. We

can always consider a different matrix parameterization (X̃, L̃, D̃) for Φ◦, Φ◦
L and Φ◦

D as

follows. First notice that there always exists a matrix D̃ with all diagonal blocks such that

Φ◦
D = ∆D̃∆∗; in other words, we can always Ąnd δD ∈ Qm(n+1) such that ∆δD∆∗ = 0

and D̃ := D +δD satisĄes ofd(
[

D̃
]

hk
) = 0 for h, k = 0, ..., n. Now, let δX ∈ Qm(n+1) such

that ∆δX∆∗ = 0 and X̃ := X + δX satisĄes (3.19). DeĄne L̃ = X̃ − D̃ = X − D + δL

with δL := δX − δD. It is easy to see that Φ◦ = ∆X̃∆∗ and Φ̂L = ∆L̃∆∗. This means

that (X̃, L̃) is still a solution to Problem (3.15) and it allows us to restrict to solutions

of (3.15) for which (3.48) holds.

By applying the ofd operator to both sides of (3.47) and exploiting the assumption

(3.48), it is not difficult to obtain

ofd(
[

YLQLY ⊤
L

]

00
) = ofd(X◦

00) (3.49)

which is a system of m(m − 1)/2 linear equations in the r̃(r̃ + 1)/2 unknowns QL. Notice

that X00 is given by (3.19). Finally, once L◦ is computed, in order to retrieve QD we

exploit (3.48) and the following system of m(m + 1)/2 linear equations:

[

YDQDY ⊤
D

]

00
= X◦

00 − L◦
00. (3.50)

Since both the dual and the primal problem admit solution, the resulting systems of

equations (3.48), (3.49) and (3.50) do admit solutions.
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3.4 The proposed algorithm

In this section we propose an algorithm to solve numerically the dual problem.

To start with, as observed in Section 3.3, we rewrite (3.22) in a different fashion by

getting rid of the slack variable V ∈ Qm(n+1). This is done by introducing a new variable

W ∈ Qm deĄned, similarly to (3.42), as W := Z0 − V00 + λP̂0 ≻ 0 such that, as in (3.41),

the variable V can be expressed as

V = λT (P̂ ) + T (Z) −



W 0

0 0



 . (3.51)

Accordingly, the dual problem (3.22) can be expressed in terms of the variables λ, W

and Z as follows:

min
(λ,W,Z)∈C

J (3.52)

where J := λ

(

− log
∣
∣
∣λ−1W

∣
∣
∣−

∫
log ♣Φ̂♣ + δ

)

and the corresponding feasible set C is:

C :=
{

(λ, W, Z) : W ∈ Qm, W ≻ 0, Z ∈ O, λ ∈ R, λ > 0,

λT (P̂ ) + T (Z) −



W 0

0 0



 ⪰ 0, I + λT (P̂ ) −



W 0

0 0



 ⪰ 0
}

.

We can further simplify our problem as follows. First, we observe that the constraint

V = λT (P̂ ) + T (Z) −



W 0

0 0



 ⪰ 0 (3.53)

can be rewritten as

λT (P̂ ) + T (Z) ⪰



W 0

0 0





and then, by Lemma 3.3.2, λT (P̂ ) + T (Z) ≻ 0. Now, we can easily rewrite (3.53)

recalling the characterization of a symmetric positive semideĄnite matrix using the Schur

complement, see [132] . To this aim, it is convenient to introduce the linear operators

T0,0 : Mm,n → Qm, T0,1:n : Mm,n → Mm,n−1 and T1:n,1:n : Mm,n → Qmn that, for a

given matrix H ∈ Mm,n construct a symmetric block-Toeplitz matrix and extract the

blocks in position (0, 0), (0, 1 : n) and (1 : n, 1 : n), respectively. With this notation, we
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have

T (Z + λP̂ ) =




T0,0(Z + λP̂ ) T0,1:n(Z + λP̂ )

T ⊤
0,1:n(Z + λP̂ ) T1:n,1:n(Z + λP̂ )





and the constraint (3.53) is equivalent to T1:n,1:n(Z + λP̂ ) ≻ 0 and W ⪯ Q(λ, Z) with

Q(λ, Z) := T0,0(Z + λP̂ ) − T0,1:n(Z + λP̂ )T −1
1:n,1:n(Z + λP̂ )T ⊤

0,1:n(Z + λP̂ ).

In a similar fashion, the last matricial inequality constraint in C can be equivalently

expressed as W ⪯ R(λ) where

R(λ) := I + T0,0(λP̂ ) − T0,1:n(λP̂ )
(

I + T1:n,1:n(λP̂ )
)−1

T ⊤
0,1:n(λP̂ ).

Therefore, Problem (3.22) can be formulated as

min
(λ,W,Z)∈C

J = λ

(

− log
∣
∣
∣λ−1W

∣
∣
∣−

∫

log ♣Φ̂♣ + δ

)

(3.54)

where

C :=
{

(λ, W, Z) : Z ∈ O, λ ∈ R, λ > 0, T1:n,1:n(Z + λP̂ ) ≻ 0,

W ∈ Qm, W ≻ 0, W ⪯ Q(λ, Z), W ⪯ R(λ)
}

.

Remark 3.4.1. Before solving this problem, notice that J in (3.54) is jointly convex

in (λ, W ), and at each feasible point (λ0, W0) (where λ0 ̸= 0) it is strictly convex in

all directions except for the direction equal to the point itself, i.e. (λ0, W0). Thus, if

(λopt, Wopt) is an optimal value for λ and W , all the other optimal values must lie on the

non-strictly convex direction. As a consequence there exist αmin ≤ 0 and αmax ≥ 0 such

that ((1 + α)λopt, (1 + α)Wopt) are optimal values for (λ, W ) for any α ∈ [αmin, αmax].

Moreover, if αmin = αmax = 0 then the pair (λopt, Wopt) that, together with a certain Z,

solves (3.54) is unique. This is indeed the case. In fact, at the optimum J is strictly

negative so that at the optimum the derivative of J along the only non-strictly convex

direction (λopt, Wopt) is not equal to zero. In other words, at the optimum and along the

only non-strictly convex direction J is not constant which implies αmin = αmax = 0.

The uniqueness of Z is a much more problematic issue. Indeed, we have observed in

simulations that in some cases it may happen that there are different optimal values of

Z. The corresponding number of identiĄed latent factors, however, is not affected and

the predictive powers of the identiĄed models are essentially the same.
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Solving Problem (3.54) simultaneously for λ, W, and Z is not trivial because the

inequality constraints W ⪯ Q(λ, Z) and W ⪯ R(λ) both depend on λ. On the other

hand, once we Ąx the dual variable λ to a positive constant λ̄ > 0, the problem:

min
(W,Z)∈Cλ̄

J(λ̄, W, Z) (3.55)

with

Cλ̄ = ¶(W, Z) : Z ∈ O, W ∈ Qm, T1:n,1:n(Z + λ̄P̂ ) ≻ 0, W ≻ 0, W ⪯ Q(λ̄, Z), W ⪯ R(λ̄)♢

can be efficiently solved by resorting to the ADMM algorithm, [22]. To this aim, we rewrite

Problem (3.55) by introducing a new variable Y ∈ Qm deĄned as Y = Q(λ̄, Z) − W :

min
(W,Z)∈CW,Z

Y ∈Q
+
m

J = λ̄
(

− log
∣
∣
∣λ̄−1W

∣
∣
∣−

∫

log ♣Φ̂♣ + δ
)

subject to Y = Q(λ̄, Z) − W

(3.56)

where CW,Z := ¶(W, Z) : Z ∈ O, W ∈ Qm, W ≻ 0, W ⪯ R(λ̄), T1:n,1:n(Z + λ̄P̂ ) ≻ 0♢
and Q+

m denotes the cone of symmetric positive semideĄnite matrices of size m × m. If

M ∈ Qm is the Lagrange multiplier, and ρ > 0 is the penalty parameter, the augmented

Lagrangian for (3.56) is

Lρ(W, Z, Y, M) :=λ̄

(

− log
∣
∣
∣λ̄−1W

∣
∣
∣−

∫

log ♣Φ̂♣ + δ

)

+ ⟨M, Y − Q(λ̄, Z) + W ⟩

+
ρ

2
∥ Y − Q(λ̄, Z) + W ∥2

Accordingly, given the initial guesses W (0), Z(0), Y (0) and M (0), the ADMM updates are:

(W (k+1), Z(k+1)) = arg min
(W,Z)∈CW,Z

Lρ(W, Z, Y (k), M (k)) (3.57)

Y (k+1) = arg min
Y ∈Q

+
m

Lρ(W (k+1), Z(k+1), Y, M (k)) (3.58)

M (k+1) = M (k) + ρ
(

Y (k+1) − Q(λ̄, Z(k+1)) + W (k+1)
)

.

Problem (3.57) does not admit a closed form solution, therefore we approximate the

optimal solution by a gradient projection step

W (k+1) = Π
(

W (k) − tk∇W Lρ(W (k), Z(k), Y (k), M (k))
)
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Z(k+1) = ΠO

(

Z(k) − tk∇ZLρ(W (k), Z(k), Y (k), M (k))
)

where:

• ∇W Lρ(W, Z, Y, M) denotes the gradient of the augmented Lagrangian with respect

to W, which is ∇W Lρ = −λ̄W −1 + M + ρ(Y − Q + W ).

• ∇ZLρ(W, Z, Y, M) denotes the gradient of the augmented Lagrangian with respect

to Z, ∇ZLρ = [Im − T0,1:nT −T
1:n,1:n]⊤, where the omitted argument of the operators

T0,1:n and T1:n,1:n is intended to be equal to (Z + λ̄P̂ ).

• ΠO denotes the projection operator onto O, that is ΠO(A) = ofdB(A).

• Π denotes the projection operator onto the convex cone ¶S ∈ Qm : S ⪯ R(λ̄)♢. It is

not difficult to see that Π(A) = R(λ̄) − Π+(R(λ̄) − A), where Π+ is the projection

operator onto the cone Q+
m.

• the step-size tk is determined at each step k in an iterative fashion: we start by

setting tk = 1 and we decrease it progressively of a factor β, with 0 < β < 1, until

the conditions W (k+1) ≻ 0 and T1:n,1:n(Z(k+1) + λ̄P̂ ) ≻ 0 are met and the ArmijoŠs

condition [21] is satisĄed.

Problem (3.58) admits a closed form solution, which can be easily computed as:

Y (k+1) = Π+

(

Q(λ̄, Z(k+1)) − W (k+1) − 1

ρ
M (k)

)

.

To deĄne the stopping criterion, we need to introduce the following quantities

RP = Y − Q(λ̄, Z(k+1)) + W (k+1)

RD = D








Im

−T −1
1:n,1:nT ⊤

0,1:n



 ρ(Y (k+1) − Y (k))
[

Im −T0,1:nT −1
1:n,1:n

]





which are referred to as the primal and dual residual, respectively. Notice that the omitted

argument of the operators T0,1:n and T1:n,1:n is intended to be equal to (Z(k+1) + λ̄P̂ ).

Then, the algorithm stops when the following conditions are met:

∥RP ∥ ≤ mεABS + εREL max
{

∥W (k)∥, ∥Q(λ̄, Z(k))∥, ∥Y (k)∥
}

∥RD∥ ≤ m
√

(n + 1)εABS + εREL

∥
∥
∥
∥
∥
∥

D
(




Im

−T −1
1:n,1:nT ⊤

0,1:n



M (k)
[

Im −T0,1:nT −1
1:n,1:n

] )

∥
∥
∥
∥
∥
∥
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where εABS and εREL are the desired absolute and relative tolerances.

It remains to determine the optimal value λ◦ for λ which solves Problem (3.54). To

this aim, we exploit the following result, see [21, pp.87-88]:

Proposition 3.4.2. If f is convex in (x, y) and C is a convex non-empty set, then the

function g(x) = infy∈C f(x, y) is convex in x, provided that g(x) > −∞ for some x. The

domain of g is the projection of dom (f) on its x-coordinates.

This result guarantees that the function g(λ) = min(W,Z)∈Cλ
J(λ, W, Z) is convex in

λ. Hence, in order to determine λ◦ = arg minλ>0 g(λ) we can choose an initial interval

of uncertainty [a, b] containing λ◦, then we progressively reduce it by evaluating g(λ) at

two points within the interval placed symmetrically, each at distance h > 0 from the

midpoint. This is repeated until the width of the uncertainty interval is smaller than a

certain tolerance l > 0.

The overall procedure to solve the dual problem (3.54) is summarized in Algorithm 1.

Algorithm 1 Dual problem solution
Input: b > a > 0, l > 0, h > 0
Output: (λ◦, W ◦, Z◦)

1: repeat
2: ã = (a + b)/2 − h;
3: b̃ = (a + b)/2 + h.
4: Compute g(ã) by applying the ADMM with λ = ã.
5: Compute g(b̃) by applying the ADMM with λ = b̃.
6: if g(ã) < g(b̃) then
7: b = b̃
8: else
9: a = ã

10: end if
11: until b − a < l
12: λ◦ = (a + b)/2.
13: Compute (W ◦, Z◦) by applying the ADMM with λ = λ◦.

3.5 Numerical simulations

In this section, we test the efficiency of the proposed approach to estimate the number

of factors through numerical simulations. We compare our method to the algorithm

proposed by [68].

We consider a Monte Carlo study composed by 50 experiments, where for each

experiment:
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1. We build an MA factor model (3.1) of order n = 2, with m manifest variables and r

latent factors, computed by randomly generating the zeros of the transfer functions

[WL](i,j)Šs and [WD](i,i)Šs for i = 1, . . . , m, j = 1, . . . , r within the circle with center

at the origin and radius 0.95 on the complex plane. The model is generated in such

a way that
∫ ∥ΦL(eiθ))∥/

∫ ∥ΦD(eiθ))∥ = 2, that is the idiosyncratic component is

not negligible with respect to the latent variable.

2. We generate from the model a sample yN of length N = 5000.

3. We apply the proposed identiĄcation procedure to estimate the number of common

factors. More precisely, we deĄne

sj :=

∫
σj(Φ◦

L(eiθ))

σ1(Φ◦
L(eiθ))

(3.59)

where σj(Φ
◦
L(eiθ) denotes the j − th largest singular value of Φ◦

L at frequency θ.

It is clear that sj represents the integral of the j − th largest normalized singular

value of Φ◦
L over the unit circle. In order to determine the rank of Φ◦

L, we search

for a ŞkneeŤ in the bar plot of sj . In mathematical terms, this is equivalent to

determining the index i maximizing the ratio si/si+1. More in details, let imax be

the Ąrst i such that si+1 < 0.05 and imin the last i such that si > 0.3. Then, we

deĄne the Şnumerical rankŤ of Φ◦
L as

r◦ := max
imin≤i≤imax

si/si+1. (3.60)

Here, the role of imax and imin is to exclude the normalized singular values which

are extremely small and the ones which are sufficiently large.

4. We compute the number of factors from the data sequence yN by applying the

method proposed by Hallin and Liška, [68].

5. We assess the performance of the two estimators in terms of the mean absolute

error

ē =
1

50

50∑

i=1

♣r − r̂♣

where r̂ is one of the two previous estimates and r is the true rank of the data

generating process.

In all the simulations, the parameter δ is computed according to the empirical

procedure of Section 3.1.1 with α = 0.5. Then, Problem (3.54) is solved by applying
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Proposed Hallin and Liška

method method

m = 20, r=2 0.32 0.72

m = 30, r=2 0.12 0.22

m = 40, r=2 0.02 0.02

m = 20, r=4 1.1 2.98

m = 30, r=4 0.62 2.04

m = 40, r=4 0.32 1.64

Table 3.1: Mean absolute error between the estimated rank and the true rank r.

Algorithm 1 with l = 7 and h = 3. In regard to the ADMM algorithm, we set εABS = 10−4,

εREL = 10−4 and the penalty term ρ = 0.05.

Table I shows the mean absolute error ē when r = 2, 4 and m = 20, 30, 40. We see that

in the six Monte Carlo studies the proposed method outperforms the Hallin and LiškaŠs

algorithm. In particular, the performances of the two estimators are comparable when

the number m of observed variables is much higher than the number r of latent factors.

The problem becomes more challenging when the ratio m/r decreases; improvements by

our method are more signiĄcant in these situations.

Figures 3.1 and 3.2 plot the quantities sj obtained by applying our estimation method in

one of the previous Monte Carlo experiment with m = 40 manifest variables and r = 2

and r = 4 latent variables, respectively. We can notice that there is a knee point at j = 2

and at j = 4 in Figure 3.1 and Figure 3.2, respectively, so that we can recover the exact

number of common factors in both cases.

The simulations results provide evidence of a good performance.
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Figure 3.1: Estimated MA factor model with n = 2, m = 40, and r = 2. Integral over the
unit circle of the first 30 normalized singular values of Φ◦

L with N = 5000.

Figure 3.2: Estimated MA factor model with n = 2, m = 40, and r = 4. Integral over the
unit circle of the first 30 normalized singular values of Φ◦

L with N = 5000



4
A robust approach to ARMA factor modeling

This chapter extends the robust approach to MA factor modeling presented in Chapter

3 to ARMA factor models. A 2-step procedure is proposed to robustly estimate the

number of factors as well as to identify the parameters of the model: a step of AR

dynamics estimation is followed by a robust MA DFA step. While this method hinges on

a suboptimal procedure, it provides accurate estimation of the number of factors and of

the dynamics of ARMA models: some simulation studies, both with synthetic and real

data, indeed show good performances of the method, even with a limited number of data

points.

The contribution of this chapter is twofold. Firstly, we propose a procedure to estimate

the coefficients of an AR model by means of moment matching. We show that the

estimated model has stability guarantees and coincides with the (unique) solution of

a certain maximum entropy problem. Secondly, we derive an identiĄcation method to

estimate the number of factors and the parameters of an ARMA factor model describing

the observed data.

The results of the present chapter are published in

• F. Crescente, L. Falconi, F. Rozzi, et al., ŞLearning AR factor models,Ť in 2020

59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 274Ű279;

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA Robust Approach to ARMA Factor

Modeling,Ť IEEE Transactions on Automatic Control, 2023.

The rest of the chapter is outlined as follows. In Section 4.1 we introduce the DFA

problem for ARMA models. Section 4.2 presents a 2-step algorithm to solve the problem;

in particular, Subsection 4.2.1 proposes a moment matching method for the identiĄcation

of the parameters of AR models. Finally Section 4.3 shows some numerical results with

synthetic data and then with a real dataset extracted from a smart building.
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4.1 Problem formulation

Consider the ARMA factor model:

y(t) = a−1(WLu(t) + WDw(t)) (4.1)

where

a(eiϑ) =
p
∑

k=0

ake−iϑk, ak ∈ R (4.2)

and

WL(eiϑ) =
n∑

k=0

WL,ke−iϑk, WL,k ∈ Rm×r

WD(eiϑ) =
n∑

k=0

WD,ke−iϑk, WD,k ∈ Rm×mdiagonal.

The processes u = ¶u(t), t ∈ Z♢ and w = ¶w(t), t ∈ Z♢ are normalized white Gaussian

noises of dimension r and m, respectively, such that E[u(t)w(s)⊤] = 0 ∀t, s. It is assumed

that the number r of latent factor is much smaller than the cross-sectional dimension m.

Notice that

yMA(t) := ay(t) = WLu(t) + WDw(t)

is a MA process of order n whose spectral density Φ = WLW ∗
L + WDW ∗

D ∈ Qm,n admits

a low rank plus diagonal decomposition.

Assume to collect a realization yN = ¶ y(1) . . . y(N) ♢ of length N of the process y

deĄned by (4.1) and suppose that the order p of the AR part and the order n of the MA

part are known. We face the problem of estimating the parameters of the factor model

(4.1) and the number of factors r.

Remark 4.1.1. It is not restrictive to assume that the autoregressive part in (4.1) is

characterized by a scalar Ąlter a; indeed, any ARMA factor model can be written in the

form of (4.1).

Remark 4.1.2. There is an identiĄability issue in the problem. Indeed, if we multiply a,

WL and WD by an arbitrary non-zero real number, the model remains the same. We

can easily eliminate this uninteresting degree of freedom by normalizing the polynomial

a(z), so that from now on we assume a0 = 1. In addition, for the identiĄability of model

(4.1), we assume that there are not zero/pole cancellations between the roots of the

denominator a(z) and the numerator matrices WL(z) and WD(z). In other words, we

assume that (4.1) is a minimal representation of the ARMA model.
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4.2 Problem solution

In this Section, we propose a 2-step procedure to solve the proposed ARMA DFA problem.

The idea is to estimate Ąrst the parameters of the Ąlter a, and then the spectral densities

ΦL and ΦD by preprocessing yN through a. In more details, the proposed solution

consists of the following two steps:

1. The AR dynamic estimation:

Given the realization yN , we estimate the p parameters of the Ąlter a. To accomplish

this task, we next propose a maximum likelihood estimator for AR models. In

doing so, we are estimating an AR process whose spectral density is a−1(a−1)∗Im.

2. The MA dynamic factor analysis:

Let yN
MA be the Ąnite length trajectory obtained by passing through the estimated

Ąlter a◦(eiϑ) the trajectory yN with zero initial conditions. We apply the MA

DFA procedure presented in Chapter 3 with the dataset yN
MA. More in details,

after computing the truncated periodogram Φ̂ ∈ Qm,n from yN
MA, we solve the

optimization problem (3.6) with Φ̂ in order to recover the number of latent factors

and identify the MA parameters Φ◦, Φ◦
L and Φ − Φ◦

L .

Although the above procedure is suboptimal, the numerical simulations show that the

resulting estimator of the number of factors performs well, see Section 4.3.1.

4.2.1 AR dynamics estimation

The Ąrst step is the AR dynamics estimation, for which we propose a moment matching

method. Consider the AR process of order p

y(t) = a(z)−1e(t) (4.3)

where e = ¶e(t), t ∈ Z♢ is a m-dimensional normalized white Gaussian noise. The process

y(t) is obtained by stacking together the output of m identical (scalar) Ąlters driven by

independent (scalar) white noises. Therefore y(t) may be viewed as a multivariate process

with m independent channels yi(t) all of which feature the same probability description.

This will be a key feature in what follows.

Given a Ąnite-length realization yN = ¶y(1) . . . y(N)♢ of the AR process (4.3), the

aim is to estimate the coefficients of the Ąlter a(z), namely a = [a1 · · · ap]⊤ ∈ Rp (as we

have Ąxed a0 = 1). To address this problem we resort to the maximum-likelihood (ML)
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principle and compute the estimate as

aML := arg min
a

ℓ(yN ; a) (4.4)

where the negative log-likelihood ℓ(y, a) is deĄned as

ℓ(yN ; a) := − log f

(

y(N), . . . , y(p + 1) ♣ y(p), . . . , y(1)

)

.

In other words, we estimate the parameter vector a in such a way that the model (4.3)

maximizes the likelihood of producing the Ąnite trajectory yN .

Scalar case: Firstly, we consider the scalar case m = 1. Since we are dealing with an

AR model the solution can be obtained by standard arguments in closed form. In fact,

by taking (4.2) into account, we can rewrite (4.3) as

p
∑

k=0

aky(t − k) = e(t),

so that

y(t) = −
p
∑

k=1

aky(t − k) + y(t).

Therefore,

f (y(t) ♣ y(t − 1) . . . y(t − p)) ∼ N
(

−
[

0 a⊤
]

Y (t) , 1
)

(4.5)

and

f (y(N) . . . y(p + 1) ♣ y(p) . . . y(1)) =
N∏

t=p+1

f (y(t) ♣ y(t − 1) . . . y(t − p)) (4.6)

where Y (t) :=
[

y(t) y(t − 1) . . . y(t − p)
]⊤

. Then, the negative log-likelihood (up to

constant terms) results

ℓ(yN ; a) =
1

2

N∑

t=p+1

([

1 a⊤
]

Y (t)
)2

=
1

2

N∑

t=p+1

tr





[

1 a⊤
]

Y (t)Y (t)⊤




1

a









=
1

2

[

1 a⊤
]





N∑

t=p+1

Y (t)Y (t)⊤








1

a



 .
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We now deĄne the matrix

T̂ :=
1

N − p

N∑

t=p+1

Y (t)Y (t)⊤ =




τ̃0 z⊤

z T̂22





where the partition is such that τ̃0 is a scalar and z is a column vector. In this way, we

have

ℓ(yN ; a) =
N − p

2

[

1 a⊤
]

T̂




1

a



 =
1

2

[

τ̃0 + 2z⊤a + a⊤T̂22a
]

.

Since ℓ(yN ; a) is clearly convex in a, Problem (4.4) is solved by annihilating the gradient

of ℓ(yN ; a) with respect to a, i.e. by imposing that

∂ℓ(yN ; a)

∂a
= 2zT + 2T̂22a = 0. (4.7)

Since ℓ(yN ; a) is a quadratic form in a, (4.7) provides a closed form formula which Ąnally

yields

aML = −T̂ −1
22 z. (4.8)

Multivariate case: Of course, the interesting case is the multivariate one, i.e. m > 1.

To address this case, we recall that the m components yi(t) of the vector process y(t) are

independent scalar processes, i.e. yk(t) ⊥ yl(s), ∀k ≠ l, ∀s, t, and they all have the same

probabilistic description, i.e. all the yk(t)Šs have the same spectral density

Φyk
(z) =

1

a(z)a(z−1)
, ∀i = 1, . . . , m. (4.9)

Hence, the multivariate case can be addressed as that of a scalar process with m-times as

many data. In fact, in view of the independence of the components of y(t), the likelihood

is

f (y(N) . . . y(p + 1) ♣ y(p) . . . y(1)) =
m∏

k=1

f (yk(N) . . . yk(p + 1) ♣ yk(p) . . . yk(1)) .

Moreover, in view of (4.9), we can repeat for each k the argument that led to (4.6) to

obtain an expression for f (yk(N) . . . yk(p + 1) ♣ yk(p) . . . yk(1)). This yields

f (y(N) . . . y(p + 1) ♣ y(p) . . . y(1)) =
m∏

k=1

N∏

t=p+1

f (yk(t) ♣ yk(t − 1) . . . yk(t − p)) .
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We can now repeat the previous computation and obtain

ℓ(yN ; a) =
1

2

m∑

k=1

[

1 a⊤
]





N∑

t=p+1

Yk(t)Yk(t)⊤








1

a





where Yk(t) :=
[

yk(t) yk(t − 1) . . . yk(t − p)
]⊤

. We now deĄne the matrix

T̂ :=
1

m(N − p)

m∑

k=1

N∑

t=p+1

Yk(t)Yk(t)⊤ =




τ̃0 z⊤

z T̂22



 (4.10)

where, as for the scalar case, the partition is such that τ̃0 is a scalar and z is a column

vector. In this way, we are exactly in the situation discussed for the scalar case and

the solution is thus given again by (4.8) with T and z now provided by (4.10). Such a

solution, however, is not guaranteed to correspond to a stable model (i.e. a model such

that all the zeros of a(z) are inside the unit circle). Notice that T̂ is an estimate of the

Toeplitz matrix T = E[Yk(t)Yk(t)⊤] ≻ 0. Although T̂ → T almost surely as N → ∞,

T̂ ≻ 0 is not Toeplitz for Ąnite values of N . To address such an issue, we consider the

biased estimate

T̂b =













τ0 τ1 . . . τp

τ1 τ0
. . .

. . .
. . . τ1

τp τ1 τ0













=




τ0 z⊤

b

zb T̂b,22



 (4.11)

where

τl =
1

mN

m∑

k=1

N∑

t=k+1

yk(t)yk(t − l), l = 0 . . . p.

It is not difficult to see that T̂b ≻ 0 generically. Accordingly, we can choose as estimate

of a:

aME = −T̂ −1
b,22zb. (4.12)

It is worth noting that (4.12) is the solution to a Yule-Walker equation, see [116].

Accordingly, aME(z) = 1 + [z−1 . . . z−p]aME is a stable polynomial. Hence, the estimated

spectral density of each ȳk(t) is ΦME(z) = (aME(z)aME(z−1))−1.
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Proposition 4.2.1. Let τ̌l = τlv
⊤T̂ −1

b v with v =
[

1 0 . . . 0
]⊤

. Then, ΦME is the

unique solution to the following maximum entropy problem:

ΦME = argmax
Φ

∫ π

−π
log det Φ(ejϑ)dϑ

s.t.

∫ π

−π
ejϑlΦ(ejϑ)dϑ = τ̌l, l = 0 . . . p.

(4.13)

Proof. Let Ťb := v⊤T̂ −1
b vT̂b. It is well known (see for example [116]) that the solution to

(4.13) is Φ(z) = σ2(a(z)a(z−1))−1 with a(z) = 1 + [z−1 . . . z−p]a such that

Ťb




1

a



 =




σ2

0



 . (4.14)

Notice that in (4.14) is a system of p + 1 equations. Consider the subsystem composed by

the second equation up to the last equation: since Ťb is invertible, its solution is (4.12).

It remains to show that σ2 = 1. Substituting (4.12) in the Ąrst equation, we have

σ2 = v⊤Ťb

[

1 a⊤
ME

]⊤
= (τ0 + z⊤

b aME)(v⊤T̂ −1
b v) = (τ0 − z⊤

b T̂ −1
b,22zb)(v

⊤T̂ −1
b v) = 1

where the last equality is due by the fact that τ0 − z⊤
b T̂ −1

b,22zb is the Schur complement of

the block T̂b,22 of T̂b. ■

Algorithm 2 summarizes the AR estimation procedure. It is clear from Proposition

4.2.1 that the resulting AR estimator matches the rescaled moments of yN .

Algorithm 2 AR dynamics Estimation

Input: p, yN

Output: aME

1: Let Yk(t) :=
[

yk(t) . . . yk(t − p)
]⊤

, k = 1 . . . m.

2: Compute T̂b and thus T̂b,22, zb from Yk(t)

3: Compute aME = −T̂ −1
b,22zb

4.3 Numerical simulations

In this section, we test the performance of the proposed 2-step procedure for ARMA DFA

both to synthetic and real data. As regards the second step of the procedure, i.e. the MA

DFA step, in all the simulations we apply the robust identiĄcation procedure presented

in Chapter 3 with the following parameters: the parameter δ is computed according to
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Figure 4.1: Estimated ARMA factor model with m = 40, r = 2, n = 2 and p = 2. Box-plot of
the integral over the unit circle of the first 15 normalized singular values of Φ◦

L with N = 5000.

the empirical procedure of Section 3.1.1 with α = 0.5. Then, Problem (3.54) is solved by

applying Algorithm 1 with l = 7 and h = 3. In regard to the ADMM algorithm, we set

εABS = 10−4, εREL = 10−4 and the penalty term ρ = 0.05.

4.3.1 Synthetic example

We consider a Monte Carlo simulation study composed of 50 experiments as follows. We

randomly build an ARMA factor model (4.1) with m = 40, r = 2, n = 2 and p = 2;

without loss of generality we Ąx a0 = 1. Then, for each Monte Carlo experiment:

1. We randomly generate a data sequence of length N = 5000 from the ARMA model;

2. We perform the 2-step ARMA factor model identiĄcation procedure proposed in

Section 4.2.

3. Given the estimated Φ◦
L, we compute the integral of the normalized singular values

sj deĄned in (3.59) for j = 1, . . . , m.

The boxplot of the quantities sj for the estimated Φ◦
LŠs are shown in Figure 4.1 and

it reveals that the proposed identiĄcation procedure is able to successfully recover the

number of latent factors.
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4.3.2 Smart building dataset

The SMLsystem is a house built in Valencia at the Universidad CEU Cardenal Herrera

(CEU-UCH). It is a modular house that integrates a whole range of different technologies

to improve energy efficiency, with the objective to construct a near zero-energy house.

A complex monitoring system has been used in the SMLsystem: it has indoor sensors

for temperature, humidity and carbon dioxide; outdoor sensors are also available for

lighting measurements, wind speed, rain, sun irradiance and temperature. We refer the

reader to [130] for a detailed description of the building and its monitoring system. Two

datasets from the SMLsystem are available for download at the UCI Machine Learning

repository http://archive.ics.uci.edu/ml. We take into account m = 17 sensor

signals extracted from these datasets: the indoor temperature (in ◦C) of the dining room

and of the bedroom, the weather forecast temperature (in ◦C), the carbon dioxide (in

ppm) in the dining room and in the bedroom, the relative humidity (in %) in the dining

room and the bedroom, the lighting in the dining room and the bedroom (in lx), the sun

dusk, the wind (in cm/sec), the sun light (in klx) in the west, east and south facade, the

sun irradiance (in dW), the outdoor temperature (in ◦C) and Ąnally the outdoor relative

humidity (in %). The data are sampled with a period of T = 15min and each sample is

the mean of the last 15 minutes, reducing in this way the signal noise. The Ąrst dataset

yN1 = ¶ y(1), . . . , y(N1) ♢ was captured during March 2011 and has N1 = 2764 points

(≈ 28 days), while the second dataset yN2 = ¶ y(N1 + 1), . . . , y(N1 + N2) ♢ has N2 = 1373

points (≈ 14 days) collected in June 2011.

It is reasonable to expect that the variability of the considered signals may be

successfully explained by a smaller number of factors. Motivated by this reason, we apply

the ARMA factor model identiĄcation procedure with parameters n = 2 and p = 2 using

the realization yN1 . As shown in Figure 4.2, we obtain an estimate of 4 latent factors.

For the sake of comparison, we also use the Matlab function armax() of the System

IdentiĄcation Toolbox to compute the prediction-error method (PEM) estimate for an

ARMA model with polynomials A(z) and C(z), diagonal, of order 2 from the realization

yN1 . It is well know that the PEM estimate has guarantees of optimality, at least for large

samples, for the identiĄcation of linear dynamic systems, so that it is interesting to use it

as a benchmark to which we can compare the prediction capability of our model. We also

compare our model with the factor model proposed in [41] where, however, the number r

of latent factors is assumed to be a given input. We computed this input by preliminarily

applying the Hallin and LiskaŠs information criterion (IC). The paper [41] assumes an

underlying AR factor model where the idiosyncratic components are temporarily and

cross-sectionally uncorrelated and it employs the expectation maximization algorithm
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Figure 4.2: SML system dataset: Application of the ARMA factor models identification
procedure by using the measurements yN1 from the SMLsystem as training data. The figure

shows the integral over the unit circle of the normalized singular values of Φo
L.

Figure 4.3: SML system dataset: Fit (in percentage) term JF IT,j for each output channel for
the model estimated via our ARMA DFA method, via PEM and via the IC+ ML approach.
The models are estimated using the dataset yN1 , with N1 = 2764, whereas the fit values are

computed by using the measurements yN2 from the SMLsystem as validation data.
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to compute the ML estimator. The selection of the model order both for our method

and for the method proposed in [41] is obtained by applying the Bayesian information

criterion (BIC). Notice that since the IC has a random step, it gives different results

when repeatedly applied to the same dataset yN1 . In this particular case the IC method

estimates either 1 or 4 latent factors: to be more than fair, we provided the method

proposed in [41] with the input r = 4 since the corresponding model explains the training

data much better than the one corresponding to r = 1.

The second dataset yN2 is used in the validation step to test the prediction capability of

the three estimated models. The results are summarized in Figure 4.3 which displays for

each output channel j = 1, . . . , m the Ąt (percentage) term:

JF IT,j := 100



1 −

√
∑N1+N2

t=N1+1(yj(t) − ŷj(t♣t − 1))2

√
∑N1+N2

t=N1+1(yj(t) − ȳj)2





where ȳj := 1
N2

∑N1+N2
t=N1+1 yj(t) and ŷj(t♣t − 1) is the one-step ahead prediction at time t

computed with zero initial conditions for the three estimated models. The Ągure shows

that the ARMA factor model estimated with the proposed method matches quite well the

measurement data yN2 , reaching Ąt values that are essentially equal to the benchmark

PEM estimates. This allows us to conclude that the available smart building dataset

can be successfully modeled with the proposed method. It is a remarkable result since

the factor model is parameterized by 257 coefficients, much less than the 612 coefficients

of the PEM estimate. Not only the factor model is more parsimonious, but it is also

able to organize the complex, high dimensional dataset in a suitable structured model,

which is easier to understand and interpret. On the contrary, the PEM model is much

more complex and does not give us any intuitive explanation of the underlying dynamics.

Finally we notice the AR factor model obtained by applying the IC and the ML principle

fails to provide good performances for several output channels.

Another important consequence of dealing with simple models, such as those con-

sidered in our setting, is the possibility of identifying systems from a limited dataset.

Indeed simple models have few parameters and hence highly reduce the risk of overĄtting.

To concretely show this advantage in our setting, we repeat the previous simulation

by assuming that we have only access to the Ąrst 800 measurements (≈ 8 days) of the

Smart Building dataset yN1 for the estimation step. We then compute the one-step ahead

prediction capabilities of our ARMA factor model, the PEM model and the IC+ML

model on the second dataset yN2 . Figure 4.4 shows the results. We Ąnd out that the

proposed ARMA factor model provides the best performances, reaching an average Ąt
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-220% -280%

Figure 4.4: SML system dataset: Fit (in percentage) term JF IT,j for each output channel for
the model estimated via our ARMA DFA method, via PEM and via the IC+ ML approach.
The models are estimated using the first 800 samples of the dataset yN1 , whereas the fit values
are computed by using the measurements yN2 from the SMLsystem as validation data. Fit
terms lower than −10% are not shown in the figure and they are specified by a label rounded

by a rectangular box on the corresponding bar.

term equal to 83.6% against the 45.9% and the 22.5% of the PEM and the IC+ML

methods, respectively. In particular the PEM method completely fails to predict the

channels number 11 and 12. We conclude that, differently from the PEM model, our

ARMA factor model does not suffer from overĄtting.

We have repeated the numerical simulations with the SMLsystem dataset for different

values of the probability α, speciĄcally for α = 0.2 and α = 0.8. We obtain that the

estimated number of factors is still equal to 4 and the prediction capabilities of the model

remain essentially the same: the algorithm appears to be robust with respect to the choice

of α. We have also tested the proposed DFA method on the Smart Building dataset

by changing the values of the tolerance parameters εABS and εREL. By decreasing the

value of the tolerances the computation time grows, whereas the resulting model remains

essentially the same. On the other hand, for larger values of the tolerance parameters

the ADMM algorithm may stop before reaching an accurate solution. As a matter of

fact, by setting εREL = εABS = 10−3, the DFA procedure still recovers the exact number

of latent factors, but the resulting model shows poorer performances.



A
Spectral density estimation

This appendix deals with the problem of estimating the spectral density function of a

stationary random process (or random Ąeld) from a Ąnite length record of observed data.

This problem is of paramount importance in control, signal processing and time-series

analysis. Just to highlight a few of the countless important applications where spectral

estimation plays a key role, we mention the problem of estimating the impulse response of

a single-input single-output (SISO) linear time-invariant (LTI) system through empirical

transfer function estimate (ETFE), [85], [110], the reconstruction of the topology of

dynamic network, [2], [8], [32], [136] and targets detection using radar signals, [43],

[44]. Even more complex and reĄned procedures, such as the THREE and THREE-like

methods [23], [56], [57] or the robust DFA paradigm introduced in Chapters 3 and 4,

start from a coarse estimate of the spectral density.

Spectral estimation has been extensively studied and many different approaches, both

parametric and non parametric, have been proposed; we refer the reader to [116] for an

overview of the literature and a rich list of references. The most basic and widely used

estimation method is the periodogram. Its statistical properties have been extensively

studied over the years. It is well known that the periodogram provides an asymptotically

unbiased estimate of the underlying spectrum, but it has some problems: indeed, it is

a mean-square inconsistent spectral estimator 1 so that, contrarily to what one would

expect, the estimate does not converge to the ŞtrueŤ spectral density as the number

of samples increases. Furthermore, the periodogram values at adjoining frequencies

are asymptotically uncorrelated, so that the estimate may exhibit an erratic behavior.

Finally, a crucial issue is enforcing positivity of the estimated spectral density. This can

be achieved by the so-called biased version of the periodogram. The latter, however,

forces the rank of the estimated spectral density to be equal to one which is a serious

1Recall that an estimator is said to be mean-square consistent if the mean square error of the estimator
tends to zero as the sample size tends to infinity.
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problem in many situations where multivariate processes are considered both in the

unidimensional and in the multidimensional case.

A traditional way of dealing with these problems is to smooth the periodogram across

frequencies; several methods to smooth the periodogram have been considered [11], [12],

[18], [33]. A viable and simple strategy to smooth the periodogram consists in truncating

the sum in its deĄnition formula, i.e. in windowing the periodogram with a rectangular

weight function. The effect of the truncation is to reduce the variance of the estimator at

the price of a higher bias. Hence, a proper choice of the truncation point is crucial to

correctly balance the tradeoff between bias and variance. This choice, however, is far

from being obvious.

In this appendix, we propose the f -truncated periodogram, i.e. a truncated peri-

odogram where the truncation point is a suitable function f of the sample size. By

focusing on discrete-time, second-order, stationary, Gaussian, possibly multivariate and

multidimensional random processes, we show that, under the only assumption that the

spectral density of the underlying process has absolutely summable Fourier coefficients,

our truncation method provides an estimator which is mean-square consistent. We

provide a uniĄed, direct, conceptually simple and self-contained proof of the consistency

of the f -truncated periodogram that holds for multidimensional and multivariate random

processes. The results of this appendix are published in

• L. Falconi, A. Ferrante, and M. Zorzi, ŞMean-square consistency of the f -truncated

M2-periodogram,Ť Automatica, vol. 147, p. 110 672, 2023.

A.1 The f-truncated periodogram

We give separate discussion for unidimensional random processes (Subsection A.1.1) and

multidimensional random Ąelds (Subsection A.1.2). Although the methodology is the

same, the unidimensional case is analyzed to better understand the paradigm.

A.1.1 Unidimensional case

Suppose that we have the m-valued, zero-mean, stationary random process

y(t) =
∞∑

σ=0

M(σ)e(t − σ), t ∈ Z, (A.1)

where e = ¶e(t), t ∈ Z♢ is normalized white Gaussian noise of dimension p. The impulse

response M(·) : Z → Rm×p is such that
∑∞

σ=−∞ ∥M(σ)∥ =
∑∞

σ=0 ∥M(σ)∥ < ∞, meaning
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that the system is causal and bounded-input bounded-output (BIBO) stable, which is

the case in most practical applications. Note that in (A.1) we have assumed that the

system generating the process y(t) is causal, i.e. M(σ) = 0 for all σ < 0, because this is

the most common situation in the unidimensional case, where t typically represents the

time variable. However, this restriction is not necessary and the results can be easily

extended to non-causal systems.

It is well-known that the autocovariance sequence Rk := E[y(t + k)y(t)⊤] depends only

on the lag k and it enjoys the property Rk = R⊤
−k. DeĄne the spectrum of the process as

the Fourier transform of the covariance function

Φ(eiθ) :=
k=∞∑

k=−∞

Rke−iθk, θ ∈ [0, 2π). (A.2)

Then, a simple estimator of the spectrum is

Φ̂(eiθ) :=
k=n∑

k=−n

R̂ke−iθk (A.3)

where R̂k is an estimate of the covariance lag Rk obtained from the available sample

yN = ¶y(t), t = 1, ..., N♢. There are two standard ways to obtain the sample covariances

required in (A.3)

R̂k :=
1

N − k

N−k∑

t=1

y(t + k)y(t)⊤ k = 0, . . . , n, (A.4)

R̂k :=
1

N

N−k∑

t=1

y(t + k)y(t)⊤ k = 0, . . . , n, (A.5)

which are the unbiased and the biased covariance estimates, respectively.

Next, we address the fundamental problem of selecting the parameter n in (A.3). A

typical choice is n = N − 1, in which case the estimator (A.3) is called the periodogram.

The main problem with the periodogram lies in its large variations about the true

spectrum, even for very large data samples. This effect can be reduced by truncating

the periodogram, i.e. by choosing n < N − 1. We may expect that the smaller the n,

the larger the reduction in variance and the lower the resolution. Hence, the choice of

n should be based on a trade-off between spectral resolution and statistical variance.

Here, we propose to select the length n of the truncated periodogram (A.3) as a function

f(N) of the numerosity N of the data sample. Clearly, the performance of the obtained

estimator is determined by the chosen function f ; to stress this dependence the estimator
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will hereafter be referred to as f -truncated periodogram. If

n := f(N), (A.6)

where f is a function taking values in N such that

lim
N→∞

f(N) = ∞, (A.7)

lim
N→∞

f(N)2

N
= 0, (A.8)

then the following theorem can be stated.

Theorem A.1.1. Given any stochastic process y of the form (A.1), the f-truncated

periodogram (A.3) with n deĄned by (A.6)-(A.7)-(A.8) and R̂k estimated through (A.4)

or (A.5) is a uniformly mean-square consistent estimator of the spectral density, that is

lim
N→∞

E∥∆(eiθ)∥2 = 0 uniformly over [0, 2π),

where ∆(eiθ) := Φ(eiθ) − Φ̂(eiθ).

The proof is given in the next subsection, where the result is stated in the more

general setting of a multidimensional and multivariate random Ąeld (see Theorem A.1.2

for the case in which unbiased estimates of the covariance sequence are considered and

Theorem A.1.3 for the biased estimates case).

A.1.2 Multidimensional case

We extend and prove the consistency of the f -truncated periodogram to the class of

multidimensional random Ąelds. For the sake of clarity, here we Ąrst discuss the case in

which the f -truncated periodogram is built with the unbiased sample covariances and

then with the biased covariance estimates.

Consider the second-order stationary random Ąeld

y(t) =
∑

σ∈Zd

M(σ)e(t − σ), t = (t1, .., td) ∈ Zd (A.9)

where the positive integer d is the dimension of the index set, M(·) : Zd → Rm×p is the

impulse response of a BIBO stable Ąlter, i.e.

∑

σ∈Zd

∥M(σ)∥ < ∞, (A.10)
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and e = ¶e(t), t ∈ Zd♢ is a p-dimensional normalized white Gaussian noise. Accordingly,

y = ¶y(t), t ∈ Zd♢ is a real-valued zero mean random Ąeld of dimension m. The covariance

matrix, deĄned as

Rk := E[y(t + k)y(t)⊤] (A.11)

does not depend on t by stationary and satisĄes the symmetric property Rk = R⊤
−k.

The spectral density of the random Ąeld is the Fourier transform of the matrix Ąeld

¶Rk, k ∈ Zd♢, i.e.

Φ(eiθ) :=
∑

k∈Zd

Rke−i⟨k,θ⟩, (A.12)

where θ = (θ1, . . . , θd) takes values in Td := [0, 2π)d, eiθ is a shorthand notation for

(eiθ1 , . . . , eiθd) and ⟨k, θ⟩ := k1θ1 + · · · + kdθd is the usual inner product in Rd.

Suppose that we observe the Ąnite-length realization of the Ąeld ¶y(t), 1 ≤ tj ≤
N for j = 1, . . . , d♢ and we want to estimate the spectrum from these observations. The

standard unbiased estimate of the covariance sequence is

R̂k :=
1

Nk

∑

t∈ΞN,k

y(t + k)y(t)⊤, (A.13)

where each component of the index t satisĄes







1 ≤ tj ≤ N − kj if kj ≥ 0

−kj + 1 ≤ tj ≤ N if kj < 0
(A.14)

and hence the set ΞN,k := ¶t ∈ Zd : tj satisĄes (A.14) for j = 1, .., d♢ with cardinality

Nk := ♣ΞN,k♣ = (N − ♣k1♣)...(N − ♣kd♣).
Consider a real function f satisfying the assumptions (A.7) and (A.8), and let n := f(N).

Then, the f -truncated periodogram is deĄned as

Φ̂(eiθ) :=
∑

k∈Λn

R̂ke−i⟨k,θ⟩ (A.15)

with Λn := ¶k ∈ Zd : ♣kj ♣ ≤ n for j = 1, . . . , d♢. The following theorem guarantees

consistency of Φ̂.

Theorem A.1.2. Given any random Ąeld y of the form (A.9), the f-truncated peri-

odogram (A.15) with n deĄned by (A.6)-(A.7)-(A.8) and R̂k estimated through (A.13)

is a uniformly mean-square consistent estimator of the spectral density, that is, given
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∆(eiθ) := Φ(eiθ) − Φ̂(eiθ),

lim
N→∞

E∥∆(eiθ)∥2 = 0 uniformly over Td.

Proof. By plugging (A.9) into (A.11), it is easy to get Rk =
∑

σ∈Zd M(σ + k)M(σ)⊤ and

therefore,

∥Rk∥2 =
∑

σa,σb

tr
(

M(σa)M(σa + k)⊤M(σb + k)M(σb)
⊤
)

.

Notice that the BIBO stability assumption (A.10) implies

∑

k∈Zd

∥Rk∥ ≤
∑

k,σ∈Zd

∥M(σ + k)∥ ∥M(σ)∥ =
∑

σ∈Zd

∥M(σ)∥
∑

k∈Zd

∥M(σ + k)∥ < ∞. (A.16)

From (A.9) and (A.13), we immediately obtain

R̂k =
1

Nk

∑

t∈ΞN,k

∑

σa,σb∈Zd

M(σa)e(t + k − σa)e(t − σb)
⊤M(σb)

⊤,

and clearly E[R̂k] = Rk for any k and N . Moreover,

E∥R̂k∥2 =E




 tr

(
1

N2
k

∑

ta,tb

∑

σa,σb,
σc,σd

M(σb)e(ta − σb)e(ta + k − σa)⊤M(σa)⊤

× M(σc)e(tb + k − σc)e(tb − σd)⊤M(σd)⊤
)






=
1

N2
k

∑

ta,tb

∑

σa,σb,
σc,σd

m∑

q,z=1

p
∑

i,j,h,l=1

Mqi(σb)Mzj(σa)Mzh(σc)Mql(σd)

× E

[

ei(ta − σb)ej(ta + k − σa)eh(tb + k − σc)el(tb − σd)

]

.

Now, in order to evaluate the expectation in the above formula, by recalling that e is a

white Gaussian noise, we distinguish the following cases: if







i = j, h = l

ta − σb = ta + k − σa,

tb + k − σc = tb − σd

ta − σb ̸= tb − σd

or
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i = h, j = l

ta − σb = tb + k − σc,

ta + k − σa = tb − σd

ta − σb ̸= tb − σd

or







i = l, j = h

ta − σb = tb − σd,

ta + k − σa = tb + k − σc

ta − σb ̸= ta + k − σa

,

then the expected value is 1. Moreover, if ta − σb = ta + k − σa = tb + k − σc = tb − σd,

then the expectation is 1 if i = j, h = l, i ̸= h or if i = h, j = l, i ̸= j or if i = l, j = h,

i ≠ j, whereas the expectation is equal to 3 if i = j = h = l. In all the other cases the

expected value is zero. In view of these observations, we have:

E∥R̂k∥2 =
1

N2
k

(
∑

ta,tb

∑

σb,σd

m∑

q,z=1

p
∑

i,h=1

Mqi(σb)Mzi(σb + k)Mzh(σd + k)Mq(σd)

+
∑

ta

∑

σa,σb,σd

m∑

q,z=1

p
∑

i,j=1

Mqi(σb)Mzj(σa)Mzi(σb + σd − σa + 2k)Mqj(σd)

+
∑

ta

∑

σa,σb,σc

m∑

q,z=1

p
∑

i,j=1

Mqi(σb)Mzj(σa)Mzj(σc)Mqi(σb + σc − σa)

)

≤∥Rk∥2 +
C1

Nk

+
C2

Nk

= ∥Rk∥2 +
C

Nk

(A.17)

where the inequality follows from the BIBO stability assumption (A.10) and C := C1 +C2

is a constant independent of k and N . Consequently,

E∥Rk − R̂k∥2 = E∥R̂k∥2 − ∥Rk∥2 ≤ C

Nk

. (A.18)

Now, deĄne

S1(eiθ) :=
∑

k∈Λn

(Rk − R̂k)e−i⟨θ,k⟩ (A.19)

S2(eiθ) :=
∑

k∈Zd\Λn

Rke−i⟨θ,k⟩, (A.20)

so that ∆ = S1 + S2. From (A.7) and (A.16) it follows that limN→∞ ∥S2(eiθ)∥ = 0.
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Moreover, E∥S1(eiθ)∥ = 0 and

E∥S1(eiθ)∥2 ≤
∑

ka,kb

√

E∥Rka
− R̂ka

∥2E∥Rkb
− R̂kb

∥2 ≤
∑

ka,kb∈Λn

√

C

Nka

C

Nkb

≤
∑

ka,kb∈Λn

C

(N − max¶ka1 , ..., kad
, kb1 , ..., kbd

♢)d
≤ (2n + 1)2d C

(N − n)d

where the Ąrst inequality is a consequence of the CauchyŰSchwarz inequality, and the

second inequality comes from (A.18). Notice that under the assumption (A.8), the right

hand side of the Ąnal inequality tends to zero as N grows to inĄnity. This suffices to

conclude the proof. Indeed, for each θ, limN→∞ E∥∆(eiθ)∥2 = limN→∞¶E∥S1(eiθ)∥2 +

∥S2(eiθ)∥2♢ = 0.

■

Next, we prove that the same consistency result of Theorem A.1.2 holds when, in

place of (A.13), we consider the biased covariance estimates

R̂k :=
1

N0

∑

t∈ΞN,k

y(t + k)y(t)⊤, (A.21)

with N0 := Nd, in the truncated periodogram (A.15).

Theorem A.1.3. Given any random Ąeld y of the form (A.9), the f-truncated peri-

odogram (A.15) with n deĄned by (A.6)-(A.7)-(A.8) and R̂k estimated through (A.21) is

a uniformly mean-square consistent estimator of the spectral density.

Proof. The proof is similar to the proof of Theorem A.1.2. The main difference is that

R̂k :=
1

N0

∑

t∈ΞN,k

∑

σa,σb∈Zd

M(σa)e(t + k − σa)e(t − σb)
⊤M(σb)

⊤

and then E[R̂k] = Nk

N0
Rk. Repeating the same reasoning as in the proof of Theorem A.1.2,

it is not difficult to see that inequality (A.17) becomes

E∥R̂k∥2 ≤
(

Nk

N0

)2

∥Rk∥2 +
NkC1

N2
0

+
NkC2

N2
0

≤
(

Nk

N0

)2

∥Rk∥2 +
C

N0
.

Consequently,

E∥Rk − R̂k∥2 =

(

1 − 2
Nk

N0

)

∥Rk∥2 + E∥R̂k∥2 ≤
(

1 − Nk

N0

)2

∥Rk∥2 +
C

N0
. (A.22)
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Let S1 and S2 be deĄned by (A.19) and (A.20) respectively, and ∆ = S1 + S2. We have

already observed in Theorem A.1.2 that limN→∞ ∥S2(eiθ)∥ = 0. Next, we prove that also

∥S1(eiθ)∥ converges to zero in the mean-square sense. To this end, we notice that

E∥S1(eiθ)∥2 ≤
∑

ka,kb

√

E∥Rka
− R̂ka

∥2E∥Rkb
− R̂kb

∥2

≤
∑

ka∈Λn

√
[

(1 − Nka

N0
)2∥Rka

∥2 +
C

N0

] ∑

kb∈Λn

√
[

(1 − Nkb

N0
)2∥Rkb

∥2 +
C

N0

]

≤
(
∑

k∈Λn

(1 − Nk

N0
)∥Rk∥

)2

+ 2

√

C

N0

∑

k∈Λn

(1 − Nk

N0
)∥Rk∥ + (2n + 1)2d C

N0
,

where the Ąrst inequality is a consequence of the CauchyŰSchwarz inequality, and second

inequality comes from (A.22). The right side of the last inequality is given by the sum of

three terms, of which the last one obviously tends to zero as N grows to inĄnity because

of (A.8). As regards the other two terms, notice that

∑

k∈Λn

(1 − Nk

N0
)∥Rk∥ ≤

d∑

j=0

(

d

j

(
n

N

)j ∑

k∈Λn

∥Rk∥,

where
(d

j

)
is the binomial coefficient. The right-hand side goes to zero if condition

(A.8) is satisĄed since the inĄnite sum
∑

k∈Zd ∥Rk∥ is assumed to be convergent. Hence

limN→∞ E∥S1(eiθ)∥2 = 0 and, as a consequence, also limN→∞ E∥S1(eiθ)∥ = 0. This

concludes the proof. Indeed, for each θ

lim
N→∞

E∥∆(eiθ)∥2 = lim
N→∞

{

E∥S1(eiθ)∥2 + ∥S2(eiθ)∥2 + 2 trE[S1(eiθ)]S2(eiθ)⊤
}

= 0.

■

So far we have assumed that y is a real-valued signal. However, the result can be

easily generalized to the complex-valued case by replacing the transpose operator (·)⊤

with the complex-conjugate operator (·)∗ in the previous deĄnitions and computations.

In [50], in order to illustrate the theory and to highlight the importance in practice

of the proposed estimator, we have performed numerical simulations concerning three

concrete identiĄcation problems: the impulse response estimation of a SISO system, the

problem of learning undirected graphical models and the target parameter estimation in

automotive radars. The results conĄrm that the proposed spectral estimator is indeed

effective.
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B
Generalized dynamic factor analysis

One essential feature of the exact factor models (2.1) and (2.3) is that the the idiosyncratic

disturbances are mutually uncorrelated at all leads and lags. However, in a number

of practical cases, assuming orthogonality of the noise components is too restrictive.

generalized factor analysis (GFA) and generalized dynamic factor analysis (GDFA) models

mitigate this requirement, allowing for a ŞweakŤ correlation between the noise components.

Obviously, this tends to make the FA problem ill-deĄned as the basic goal of uniquely

splitting the observed signal into a noiseless component plus Şadditive noiseŤ is made

vacuous, unless some extra assumptions are made on the model and on the very notion

of ŞnoiseŤ. Quite surprisingly, for models describing an inĄnite number of observables

a meaningful weakening of the uncorrelation property of the noise components can be

introduced, so as to guarantee uniqueness of the decomposition.

The static generalization of factor models was Ąrst rigorously discussed by Chamberlain

and Rothschild [24], [25]. Later, Forni, Lippi and collaborators introduced GDFA models

and their estimation in a series of widely quoted papers: [60]Ű[62], [65]. Although GDFA

models have been primarily of interest to econometricians, this modeling paradigm has

stimulated interest in the System IdentiĄcation community, see [3], [4], [20], [34], [36].

In this Appendix, we shortly review the structure of GDFA models and we investigate

the application of state-space estimation techniques to tackle the hidden factors estimation

problem in GDFA models. We show that the one-step ahead Kalman predictor does

not provide a perfect asymptotic estimate of the hidden factors. As a consequence, a

GDFA model cannot be a predictor-based innovation model. We prove that the pure

Ąlter, on the contrary, provides a perfect asymptotic estimate of the latent state variable.

Moreover, under reasonable assumptions, the Ąlter estimation error converges weakly to

the idiosyncratic noise generating the data so that GDFA models are weakly equivalent

to a pure-Ąlter type innovation models. The content of this appendix is based on
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• G. Picci, L. Falconi, A. Ferrante, et al., ŞHidden factor estimation in dynamic

generalized factor analysis models,Ť Automatica, vol. 149, p. 110 834, 2023,

to which we refer the reader for a thorough discussion.

B.1 State-space GDFA models

Before introducing the GDFA model, we need to introduce the concept of idiosyncratic

sequence. We formally write the covariance matrix of an inĄnite-dimensional zero mean

vector y = [y1 y2 . . .]⊤ as Σ := E[yy⊤]. We let ΣN indicate the top-left N × N block of

Σ, equal to the covariance matrix of the subvector made of the Ąrst N components of

y denoted yN . The inequality Σ > 0 means that all submatrices ΣN of Σ are positive

deĄnite, which we shall always assume in the following. Let ℓ2(Σ) denote the Hilbert

space of inĄnite sequences a := ¶ak, k ∈ N♢ such that ∥a∥2
Σ := a⊤Σa < ∞. When Σ = I,

we simply use the symbol ℓ2 and denote the corresponding norm with the symbol ∥ · ∥.

DeĄnition B.1.1 ([65]). Let ¶an, n ∈ N♢ be a sequence of elements of the space ℓ2∩ℓ2(Σ).

We say that ¶an, n ∈ N♢ is an averaging sequence (AS) if limn→∞ ∥an∥ = 0.

For instance, the sequence of elements in ℓ2 deĄned as

an =
1

n
[ 1 . . . 1
︸ ︷︷ ︸

n

0 . . . ]⊤

is an averaging sequence. An AS can be seen just as a sequence of linear functionals in

ℓ2 ∩ ℓ2(Σ) converging strongly to zero. The deĄnition is instrumental to the concept of

idiosyncratic sequence of random variables which will be introduced next.

DeĄnition B.1.2 ([65]). We say that the random sequence y is idiosyncratic if for

any averaging sequence ¶an ∈ ℓ2 ∩ ℓ2(Σ)♢ it holds that limn→∞ a⊤
n y = 0. The limit is

understood in mean square.

For example, a zero-mean sequence whose variance is a bounded operator in ℓ2 is

idiosyncratic. In fact let the operator norm ∥Σ∥ be bounded by α > 0. Then Σ ≤ αI

where I is the identity operator, so that,

E[(a⊤
n y)2] = a⊤

n Σan ≤ α∥an∥2 → 0

for any sequence ¶an♢ tending to zero in norm. In particular, uncorrelated (white)

sequences of zero-mean random variables having uniformly bounded variance are idiosyn-

cratic. The characterization actually goes both ways:
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Proposition B.1.3. A zero-mean sequence of random variables is idiosyncratic if and

only if its variance matrix is a bounded operator in ℓ2. It follows, as remarked in [65], that

a sequence y is idiosyncratic if and only if there exists M such that ∀N > 0, ∥ΣN ∥ ≤ M ,

where ΣN is the covariance of the vector yN obtained by selecting the Ąrst N components

of y (see [20] for more details).

We are now ready to introduce the GDFA model. Let t ∈ Z be the time variable

and denote by y := ¶y(t), t ∈ Z♢ a zero-mean, stationary vector process of inĄnite

cross-sectional dimension so that at each time t the random vector y(t) has countably

inĄnite random components. We consider the following Ąnite-dimensional1 dynamic

model where y(t) depends on a vector of n common factors, x, evolving according to a

linear dynamics of the form 2







x(t + 1) = Ax(t) + v(t)

y(t) = Cx(t) + w(t) .
(B.1)

The study of GDFAŠs (B.1) will be undertaken by considering sequences of truncated

models of increasing cross-sectional dimension N , each describing the subvector yN made

of the Ąrst N components of the original output vector y. More precisely, we consider a

class of truncated models of the form







x(t + 1) = Ax(t) + v(t)

yN (t) = CN x(t) + wN (t) ,
(B.2)

where the state dimension n of the model (B.1) is Ąxed (and therefore does not grow with

the output dimension N). Each output matrix CN ∈ RN×n is the top submatrix of C

of dimension N × n so that CN has the nested structure CN+t =
[

C⊤
N C̃⊤

k

]⊤
, and the

noise vectors wN (t) have a similar nested structure. Notice that, by these assumptions,

each yN (t) is a N-vector stationary process. We assume that

1. The n-dimensional latent factor x = ¶x(t); t ∈ Z♢ follows a stationary Markov

evolution described by the Ąrst equation in (B.1), where A ∈ Rn×n is an asymptotically

stable matrix (all its eigenvalues have modulus strictly less than one) and v(t) a white

noise process of dimension n whose covariance is denoted by Q. Hence the steady-state

1Of course, more general infinite-dimensional GDFA models are possible that are not included in our
systems’ class.

2For consistency with standard system-engineering notations (see e.g. [83]), we have denoted the
factor loading (also called output or observation) matrix by C instead of WL as in the previous Factor
Analysis models, and with x ∈ Rn instead of u ∈ Rr the common factor vectors.
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variance of x(t) is the unique solution of the Stein (discrete-time Lyapunov) equation

Σ = AΣA⊤ + Q.

2. The inĄnite-dimensional white noise vector ¶w(t), t ∈ Z♢ is not assumed to have

uncorrelated components as in standard Factor Analysis models and (without loss of

generality) is assumed to be uncorrelated with ¶v(t), t ∈ Z♢ at all times.

The following assumptions regarding the asymptotic behavior for N → ∞ of the sequence

of models (B.2) will be made:

3. C is an ∞ × n matrix with strongly linearly independent columns. This means that

limN→∞ λmin[C⊤
N CN ] = +∞, where λmin[·] denotes the smallest eigenvalue (see [100,

Appendix B] for a discussion and for more details on this).

4. The noise w(0) is an idiosyncratic sequence (with respect to the cross sectional

dimension).

Since wN (t) is a stationary white noise process (in t) for all N , it is easy to check

that Assumption 4 implies that, for any given t, w(t) is also idiosyncratic. To avoid

technicalities, we also assume that

5. The model is wide-sense stationary and minimal so that the pair (A, Q), where Q is

the covariance of the white noise v, is reachable.

6. The covariance RN of the output noise wN (t) is positive deĄnite, i.e. RN > 0, ∀N .

The Kalman predictor

For each Ąnite N one can estimate the latent variable x(t) in the GDFA model (B.2) by

Kalman Ąltering, see e.g. [75]. The usual understanding of Kalman Ąltering leads to

compute the one-step ahead estimate x̂N (t♣t − 1) of the hidden variable x(t) based on

previous outputs up to time t − 1. The estimator can obviously be implemented for Ąnite

truncations of the model of increasing dimension N and, assuming steady state, leads to

the following sequence of innovation models:







x̂N (t + 1♣t) = Ax̂N (t♣t − 1) + KN eN (t)

yN (t) = CN x̂N (t♣t − 1) + eN (t),
(B.3)

where the innovation eN (t) := yN (t) − CN x̂N (t♣t − 1) has covariance

ΛN = CN PN C⊤
N + RN (B.4)
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with PN being the stabilizing solution of the algebraic Riccati equation

PN = A[ PN − PN C⊤
N (CN PN C⊤

N + RN )−1CN PN ]A⊤ + Q (B.5)

from which one can compute the Kalman gain KN := APN C⊤
N Λ−1

N . The question is how

the estimates behave for N → ∞. In particular the question is whether the (stationary)

innovation representation (B.3) of yN (t) is a legitimate GDFA representation for N → ∞.

Given the standing assumption on C, this will be true if and only if the limit innovation

process eN (t) is idiosyncratic. The answer is given by the following theorem.

Theorem B.1.4. Consider a class of truncated models of the form (B.2) with Assumptions

(1) to (6). For N → ∞ the innovation process eN in the steady-state innovation

representation (B.3) does not tend to an idiosyncratic process. Hence for N → ∞ the

innovation model (B.3) does not tend to a legitimate GDFA model.

Proof. By minimality of the model (B.2), (A, Q) is reachable and hence the stabilizing

solution PN of the algebraic Riccati equation (B.5) is positive deĄnite for each Ąxed N .

Then we can rewrite (B.5) as

PN = A
(

P −1
N + C⊤

N R−1
N CN

)−1
A⊤ + Q (B.6)

and hence, for each Ąxed N , we have PN ≥ Q. Since in the original GDFA model w

is idiosyncratic, the noise covariances RN are uniformly bounded, i.e. there exists α

(independent of N) such that RN ≤ αI. Therefore,

P −1
N + C⊤

N R−1
N CN ≥ 1

α
C⊤

N CN ≥ λmin[C⊤
N CN ]

α
I

and, as a consequence,

(

P −1
N + C⊤

N R−1
N CN

)−1
≤ αI

λmin[C⊤
N CN ]

N→∞−→ 0. (B.7)

This inequality together with (B.6) implies that PN converges monotonically to Q. Hence,

the perturbation term CN PN C⊤
N of RN in (B.4) must have at least one eigenvalue tending

to inĄnity (actually as many as the rank of Q) and must therefore tend to an unbounded

operator so that eN (t) is not an idiosyncratic process. In conclusion, the innovation

model (B.3) does not satisfy the conditions of a GDFA model. ■

Since, as shown in the previous proof, PN converges to Q, which is not the zero

matrix, we have the following corollary.



78 Generalized dynamic factor analysis

Corollary B.1.5. Under the assumptions of Theorem B.1.4, the steady state prediction

error of the state does not converge to zero (in mean square) as N diverges. In particular,

the one step ahead predictor of the common component vector χN (t) := CN x(t) does not

converge either to Cx(t) or to the measured signal y(t), as N → ∞.

Proof. The one step ahead predictor of χN (t), χ̂(t ♣ t − 1) := CN x̂N (t ♣ t − 1) is just

the one step ahead predictor of yN (t) and one can write yN (t) = χ̂N (t ♣ t − 1) + eN (t)

where eN is the output prediction error i.e. the innovation. Since, as we have shown,

the covariance matrix of the prediction error eN becomes unbounded as N → ∞, the

predictor χ̂N (t ♣ t − 1) cannot be consistent in mean square. In fact, as we have already

seen, the term CN PN C⊤
N , namely the steady state covariance matrix of the prediction

error CN x(t) − CN x̂N (t ♣ t − 1) must have at least one eigenvalue tending to inĄnity and

there must then be at least one direction along which the error covariance diverges in

mean square. This is a fortiori true for the covariance matrix CN PN C⊤
N + RN of the

difference yN (t) − χ̂N (t ♣ t − 1). ■

The fact that the innovation model (B.3) cannot in the limit be interpreted as a valid

GDFA model has important consequences. Among them, it suggests that the application

of standard subspace identiĄcation methods to the identiĄcation of GDFA models (see

e.g. [88]), while effective in deriving a good generative model for the observed data, may

lack the capability of extracting the very GDFA feature of the model itself. In fact, these

methods are based (typically, via standard canonical correlation analysis of the future

onto the strict past of the process y(t)) on the construction of a particular basis on the

predictor space, [83]. Indeed, the results of the following subsection seem to suggest that

considering the pure Ąlter estimator in place of the predictor may be advantageous.

We may attempt a frequency-domain analysis of our result. Obviously the matrix

transfer function of each model of the type (B.3) is the unique3 outer (i.e. stable and

minimum-phase) spectral factor of the spectral density of the truncated process yN (t).

For N → ∞ these spectral factors (which are N × N rational outer matrices of full rank

N) have zeros inside the open unit circle. Hence, the limit spectral factor will have all

of its zeros (at most) in the closed unit circle. Therefore the limit spectral factor could

also be called outer, or (weakly) minimum phase. However, since the innovation process

corresponding to this factor is not idiosyncratic, the limit model cannot be a GDFA

model. This could be stated by saying that there cannot exist prediction-error innovation

models in the class of GDFA descriptions.

3Up to uninteresting multiplication on the right side by an orthogonal matrix.
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The pure filter estimator

Since the output noise covariance of the one step-ahead innovation model is in a sense

Ştoo bigŤ as it has an unbounded component, one may wonder if to obtain a viable GDFA

model, one could choose the (pure) Ąlter estimate E[x(t) ♣ yt], where yt is the inĄnite past

up to the time t, instead of the one-step ahead state predictor. It is in fact well-known

that this estimate leads to a model with smaller state error variance. To verify this

conjecture, consider the steady state estimate x̂N (t) := E[x(t) ♣ yt
N ], given the inĄnite

past up to the time t, which satisĄes the recursion

x̂N (t + 1) = E[x(t + 1) ♣ yt
N ] + E[x(t + 1) ♣ eN (t + 1) ]

which for a model with uncorrelated state and output noises, yields

x̂N (t + 1) = Ax̂N (t) + LN eN (t + 1)

where LN := PN C⊤
N Λ−1

N . This yields the Ąltered innovation model







x̂N (t + 1) = Ax̂N (t) + LN eN (t + 1)

yN (t) = CN x̂N (t) + êN (t)
(B.8)

where (note the hatted symbol) êN := yN (t) − CN x̂N (t) is the Ąlter innovation which is

a white noise process. In fact eN and êN are related by the formula

eN (t) = [ I − CN LN ]−1êN (t) (B.9)

which follows from (B.8) as

êN (t) := yN (t) − CN (x̂N (t ♣ t − 1) + LN eN (t)) = eN (t) − CN LN eN (t) .

This agrees with the fact that the noise term in the second equation of (B.8) is uncorrelated

with yt
N and hence with x̂N (t). The variance of êN (t) has the representation

Λ̂N := E[êN (t)êN (t)⊤] = [ I − CN PN C⊤
N Λ−1

N ]ΛN [ I − CN PN C⊤
N Λ−1

N ]⊤ = RN Λ−1
N RN .

Theorem B.1.6. Consider a class of truncated models of the form (B.2) with Assumptions

(1) to (6). Then, the state and output noises in the associated model (B.8) are uncorrelated

and the output noise variance Λ̂N tends to a bounded operator as N → ∞. Therefore

(B.8) converges to a legitimate GDFA representation of the process y.
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Proof. That vN (t) := eN (t + 1) and wN (t) := êN (t) are uncorrelated follows readily

from the equation (B.9) because êN (t) is white. Moreover, all the eigenvalues of ΛN =

CN PN C⊤
N + RN are positive and bounded below. Hence, Λ̂N remains bounded for

N → ∞.

■

A remarkable property of the pure Ąlter realization which follows already from the

calculation in (B.7) of the previous paragraph, is recast in the following statement.

Corollary B.1.7. Under the assumptions of Theorem B.1.6, consider the (steady-state)

covariance matrix of the state Ąltering error

ΠN := E [x(t) − x̂N (t)] [x(t) − x̂N (t)]⊤ =
[

P −1
N + C⊤

N R−1
N CN

]−1
.

Then, as N → ∞, the Ąlter error covariance ΠN converges to the zero matrix.

These results imply that the limit for N → ∞ of the (steady-state) Ąltered state

estimate must converge to the true state x(t), in other words we may say that the Ąltered

estimate is a consistent estimator. This should not be surprising since it agrees with

the previous general observation that in any bona Ąde GDFA model (B.2) the hidden

variable x(t) can asymptotically be recovered exactly as a linear functional of the inĄnite

cross sectional history of the process.

Observe that even if the Ąltered state estimation error converges to zero (in mean

square), in general we cannot recover the original idiosyncratic noise. In fact, if the

output noise covariance is uniformly coercive (that is there is a c > 0 independent of N

such that RN ≥ cIN ) then the steady-state covariance of δ̂N (t) := ŷN (t)−wN (t) does not

converge to zero as it is a rank n matrix whose n non-zero eigenvalues are bounded from

below by a positive constant. However, we can show that if CN is uniformly bounded,

then for each Ąxed i the i − th component of δ̂N (t) converges to zero in mean square.



Part II

Distributionally robust control

with distributed uncertainties





5
Introduction to optimal and robust control

Optimal control is arguably one of the most fundamental ideas in control theory, with

applications in virtually all the Ąelds of the discipline, from robotics to bioengineering to

Ąnance [17], [19], [76], to name but a few. Traditional optimal control techniques are

concerned with designing controllers which are optimal, with respect to some performance

measure, for a system evolving over time, on the basis of a mathematical model of it.

However, plant variability and uncertainty are formidable adversaries and, soon after

their introduction, it was recognized that, as for a kind of waterbed effect, optimality

makes these controllers vulnerable to model uncertainties [40].

The potential lack of robustness of traditional optimal controllers has motivated a

formidable stream of research. Today, the examination of uncertainty in the mathematical

model of a system is a central part of feedback control design and controllers which

guarantee an adequate level of performance even in the presence of model misspeciĄcations

and inaccuracies are called robust controllers. A major stepping stone, which is often

considered as the beginning of modern robust control, was the formulation of the H∞

control theory. Initiated in the early 1980s by George Zames with the pioneering work

[129], the objective of H∞ optimization is to obtain a controller that minimizes the the

H∞ norm of a certain transfer function, which is related to the unknown disturbance. This

paradigm includes problems of disturbance attenuation, model matching, and tracking.

From this Ąrst seed, a multitude of alternative approaches to address the robust optimal

control problem has been proposed. We mention the mixed H2/H∞ control methods,

which minimize an H2 performance criterion subject to a prespeciĄed H∞ constraint on

the closed-loop transfer function [67], [90], [133]; the guaranteed cost control approach,

which involves the minimization of a performance measure upper bound to obtain a

control law that guarantees a given level of performance for all admissible parameter

variations [26], [124]; the optimal control problem for uncertain systems subject to integral

quadratic constraints [89], [104], to name just a few. We refer the reader to [13], [38],
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[97] and the references therein for a rather comprehensive review on the topic.

Whereas robust control has been traditionally dealt with deterministic approaches, in

the last two decades stochastic optimization under uncertainty has received considerable

attention. In particular, one emerging paradigm in this area is represented by the

Distributionally Robust Control (DRC), [96], [122], [127]. Traditional stochastic optimal

control techniques are based on the assumption that the probability distribution of the

noise variables is fully known. However, in practice, such a probability distribution is

usually only vaguely (or even very vaguely) known, and the use of inaccurate distributions

may drastically decrease the control performance and cause unwanted system behaviors

including instability, see for example [91]. DRC has emerged as a promising method

to hedge against this effect. Instead of assuming a given distribution function, DRC

considers a speciĄed ambiguity set containing the possible distributions. Then, it designs

a control policy which minimizes a given cost under the worst-case distribution in the

ambiguity set.

The ambiguity set is a key ingredient of any DRC problem. A good ambiguity

set should be rich enough to contain the true data-generating distribution with high

conĄdence, and at the same time small enough to exclude pathological distributions,

which would incentives overly conservative decisions. Moreover, the ambiguity set should

facilitate a tractable reformulation of the DRC problem. A wide range of ambiguity sets

was suggested and analyzed in the literature of DRC and distributionally robust optimiza-

tion [14], [101], [106]. They can be broadly classiĄed into moment-based ambiguity sets

and discrepancy-based ambiguity sets. The use of moment ambiguity sets goes back to a

pioneering paper by Scarf [105] where it was applied to inventory modeling. They contain

all distributions that satisfy certain moment constraints, see for example [123] and the

references therein. An attractive alternative is to deĄne the ambiguity set as a ball in the

space of probability distributions by using a probability distance function. It is assumed

that there is a reference probability distribution and the ambiguity set consists of all

probability measures which are ŞcloseŤ to it. Several possible choices for quantifying

the concept of closeness between probability densities have been proposed, such as the

total variational distance [121], the Wasserstein metric [106], [127], and ϕ-divergences [14]

such as the Kullback-Leibler divergence [96]. By adjusting the radius of the ambiguity

set, the modeler can control the degree of conservatism of the controller and trade off

optimality and robustness. If the radius drops to zero, then the ambiguity set shrinks to

a singleton that contains only the nominal distribution, and the DRC problem reduces

to a traditional optimal stochastic control problem without uncertainty. On the other,

by increasing the radius of the ambiguity set, we improve robustness of the controller.
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5.1 Contribution of the thesis

This thesis proposes a new paradigm for the robustiĄcation of the linear quadratic

Gaussian (LQG) control problem [5], [6], which we call the Distributed uncertainty

Distributionally robust Linear Quadratic Gaussian (D2-LQG) controller. Distributionally

robust because, by adopting the DRC approach, the proposed control scheme proves robust

against variations in the probability density function underlying the system. Distributed

uncertainty because the modeler is allowed to arbitrarily distribute the uncertainty along

the time interval. In detail, in our problem we consider discrete-time, linear, stochastic,

uncertain systems deĄned over a Ąnite time interval. These systems are described in

terms of a nominal system, driven by white Gaussian noise, and a class of perturbations

that may affect the noise distribution. At each time instant, a relative entropy tolerance is

used to model a limit on the admissible noise distributions. Our controller optimizes the

closed-loop performances with respect to a quadratic cost function in the worst possible

scenario.

The ambiguity set based on relative entropy pseudo-distance has several attractive

features. First, relative entropy is a prominent metric in information theory which

satisĄes important structural properties. In addition, it is the natural ŞmetricŤ between

systems when they are identiĄed from data, [69], [137]. Finally, it turns out that minimax

LQG control problem with a relative entropy constraint admits closed-form solutions

in the form of a parameterized, risk-sensitive LQG optimal controller (see [72], [126]

for a thorough description of the risk-sensitive LQG problem). Thus it provides a new

interpretation for the risk-sensitive paradigm.

Our work is closely related to the seminal paper [96] by Petersen et al. that proposed

an entropy-based DRC optimal control problem for stochastic uncertain systems. A

major difference between our paper and [96] concerns the distribution of the uncertainty

along the time interval. Indeed, [96] assumes a single constraint on the overall noise

distribution on the entire time interval. Conversely, our approach allows to arbitrarily

distribute the uncertainty along the time interval. Indeed, it imposes a constraint to each

time step, taking a point of view whose nature is similar to the approach used by [82],

[134], [1], [128] in the robust Ąltering setting. PetersenŠs approach is the natural way

to model the uncertainties when the discrepancy between the nominal and the actual

system is due to the action of an adversary who can manage a limited mismatch budget

to perturb the nominal system and, when convenient, is allowed to concentrate most (or

all) such a budget in a few time points. However, in most practical situations the model

mismatch is a consequence of modelling approximations and random Ćuctuations, and
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there is no a real adversary. In these cases, since the same effort is usually made to model

each time step, it is more realistic to deĄne a speciĄc ambiguity set at each step of the

time interval. For this reason, we address the latter problem. The reason for our choice is

that in PetersenŠs approach it may happen that most of the uncertainty is concentrated

on few time steps, leading to unrealistic scenarios and to overly conservative conclusions.

We believe that this point may better clariĄed by two examples. Assume that we want to

design a robust LQG optimal controller for an airplane. The Gaussian noise models the

effects of the wind which, in practice, is not Gaussian. Therefore, we need to guarantee

robustness against different distributions of the wind disturbance. By adopting the

approach in [96], it may happen that the worst-case distribution differs from the nominal

one at just one time interval but in that time interval the difference is unreasonably large:

the controller must be able to counteract a totally unrealistic wind concentrated at a single

time point with potential degradation of the performances. The possibility of distributing

the uncertainty along the whole trajectory and to select different uncertainties radii

depending on the reliability of the wind forecasts at each point is clearly an interesting

feature in this scenario. A second example is the case when the difference between the

nominal Gaussian noise and the actual one is used to account for errors in the model

parameters. Also in this case, the possibility of distributing the uncertainty along the

whole trajectory is clearly advantageous with respect to a potential worst-case where the

model mismatch may be unreasonably concentrated at a single time instant.

By adopting the D2-LQG paradigm, in Chapter 6 we solve the worst-case performance

analysis problem for autonomous systems. The problem is formulated as a stochastic

constrained maximization problem in which the objective function is maximized with

respect to the uncertain distributions of the system. At each time instant, a relative

entropy tolerance is used to model a limit on the admissible noise distributions. The main

result of this chapter consists in showing that the solution to the robust performance

analysis problem takes the form of a risk-sensitive cost with time-varying risk-sensitive

parameter and that the least favorable probability distribution is Gaussian, with a

perturbation of both the mean and the variance with respect to the nominal one. The

results of this chapter are published in

• L. Falconi, A. Ferrante, and M. Zorzi, ŞA new perspective on robust performance

for LQG control problems,Ť in 2022 IEEE 61st Conference on Decision and Control

(CDC), 2022, pp. 3003Ű3008.

The results of Chapter 6 put the basis for the state-feedback D2-LQG controller

synthesis faced in Chapter 7. Our controller optimizes the closed-loop performances in

the worst possible scenario under the constraint that the noise distributional aberrance
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does not exceed a certain threshold limiting the relative entropy pseudo-distance between

the actual noise distribution and the nominal one. The bounds on the distributional

aberrance can be arbitrarily distributed along the whole disturbance trajectory. Using

the results of Chapter 6, we were able to transform the D2-LQG problem into an

equivalent risk-sensitive LQG optimal control problem with state-feedback depending on

a time-varying parameter. Chapter 7 is based on

• L. Falconi, A. Ferrante, and M. Zorzi, ŞDistributionally robust LQG control

under distributed uncertainty,Ť (preliminary version available at arXiv preprint

arXiv:2306.05227 (2023) ).

Finally, Appendix C summarizes the main ideas and the formulas arising in the LQG

and risk-sensitive LQG problem.

Notice that the results presented in this thesis rely on the hypothesis of linearity of

the underlying system. Nevertheless, this theory is extremely relevant even when dealing

with non-linear systems. Indeed, by linearizing the actual dynamics of the system, we can

apply the proposed D2-LQG procedure and, in doing so, we provide a local approximation

of the optimal control strategy for the underlying non-linear system.
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6
D

2-LQG: worst performance analysis

LQG control represents a well-known and profound optimal control design method [5],

[6], [118] (see also [54], [55], [58] for the deterministic counterpart). It is indeed the most

widely used technique for control of multiple-input and multiple-output (MIMO) systems

and the basis for many advanced control techniques, such as all the MPC and MPC-like

methods [102]. The LQG method involves the design of a controller which optimizes the

closed-loop performance, with respect to a quadratic cost function, assuming that the

underlying process is affected by a Gaussian distributed disturbance with known mean

and covariance. However, assuming Gaussianity and complete knowledge of the noise

description is unrealistic in most practical situations. Therefore, the LQG control may

lead to poor performances when applied to the real system, because it does not guarantee

robustness with respect to real disturbances and/or modelling uncertainties [40]. This

potential lack of robustness has motivated a formidable stream of research aiming to

ensure that the controller provides satisfactory performances even in the presence of

model misspeciĄcations and inaccuracies.

The results of this chapter can be placed in the broad area of robustiĄcation of

LQG control and, more speciĄcally, in the framework of DRC, which takes into account

uncertainty in the probability distribution underlying a stochastic system. Instead of

assuming a given distribution, DRC methods design a control policy which minimizes the

expected value of a given cost under the worst-case distribution in a certain ambiguity

set. In our work, we express the ambiguity set as a ball deĄned in the relative-entropy

topology and centered at the nominal Gaussian distribution. The main novelty with

respect to the existing literature on DRC with relative entropy [95], [96] is that the

model uncertainty can be arbitrarily distributed along the system trajectory. This is

accomplished by imposing a relative entropy constraint for each time instant, instead of

assuming a single constraint for the entire disturbance trajectory as in [96]. For these

reasons, we call our approach the distributed uncertainty distributionally robust LQG
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control problem.

Within the D2-LQG framework, in this chapter we consider the worst-case performance

analysis problem, that is the problem of evaluating the worst performance with respect to

the admissible noise probability distributions. We consider a class of discrete-time, linear,

stochastic, uncertain systems deĄned over a Ąnite time interval, which are described in

terms of a nominal system, driven by white Gaussian noise with known statistics, and

a perturbed system, in which a general class of stochastic noise processes are allowed.

At each time instant, a relative entropy ambiguity set is used to model a limit on the

admissible noise distributions. The robust performance analysis problem is formulated

as a stochastic constrained maximization problem in which the objective function is

maximized with respect to the uncertain distributions of the system. To address this

problem, we adopt a dynamic programming technique to break down the overall problem

into simpler subproblems, one for each time-instant, starting from the last timestep

and going backward in time. Each subproblem consists in a constrained stochastic

maximization problem; we address it by exploiting the Lagrange duality theory. Finally,

by using the duality between relative entropy and free energy we are able to convert

this problem into the problem of evaluating a LQG risk-sensitive cost for autonomous

systems with a time-varying risk-sensitive parameter [72], [126].

The proposed worst-case performance analysis problem is a preliminary step towards

the solution of the problem of synthesizing a D2-LQG controller that we will address in

the following Chapter.

This chapter is outlined as follows. Section 6.1 collects some preliminary results;

Section 6.2 deĄnes the class of stochastic uncertain system considered in this work; the

worst case performance analysis problem is treated in Section 6.3 and the least-favorable

state-space model is derived in Subsection 6.3.1; an illustrative example is presented in

Section 6.4 which shows the advantages of distributing the model uncertainty.

6.1 Preliminary results

We collect some relevant results underlying the solution to the D2-LQG problems proposed

in this thesis.

6.1.1 Gaussian integrals

Lemma 6.1.1. [131] If A ∈ Qn, A ≻ 0, x, b ∈ Rn and c ∈ R, then

∫

Rn
e− 1

2
x⊤Ax+b⊤x+c dx =

√

(2π)n

♣A♣ e
b⊤A−1b

2
+c.
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Lemma 6.1.2. Let f(x) be the probability density function of a n-dimensional normal

random vector x ∼ N (µ, Σ) with Σ ≻ 0, and let J(x) = 1
2x⊤Gx where G ∈ Q+

n . Assume

(Σ−1 − G) ≻ 0. Then

f̃(x) = f(x)
eJ(x)

∫

Rn eJ(x̄)f(x̄)dx̄

is a Gaussian density function, f̃ = N (µ̃, Σ̃), with µ̃ = (I−ΣG)−1µ and Σ̃ = (I−ΣG)−1Σ.

Proof. By applying Lemma 6.1.1, it is easy to obtain that

∫

Rn
eJ(x̄)f(x̄)dx̄ =

∫

Rn

1
√

(2π)n♣Σ♣ exp

{
1

2
x̄⊤Gx̄ − 1

2
(x̄ − µ)⊤Σ−1(x̄ − µ)

}

dx̄

=
1

√

(2π)n♣Σ♣

∫

exp

{
1

2
x̄⊤(G − Σ−1)x̄ + µ⊤Σ−1x̄ − 1

2
µ⊤Σ−1µ

}

dx̄

=
1

√

♣I − ΣG♣ exp

{
1

2
µ⊤Σ−1

(

(I − ΣG)−1 − I
)

µ

}

where in the third equality we have used Lemma 6.1.1. Moreover, by completing the

square, we can see that

f(x)eJ(x) =
1

√

(2π)n♣Σ♣ exp

{

−1

2
(x − µ̃)⊤Σ̃−1(x − µ̃) +

1

2
µ⊤Σ−1

(

(I − ΣG)−1 − I
)

µ

}

where µ̃ = (I − ΣG)−1µ and Σ̃ = (I − ΣG)−1Σ. The thesis follows immediately. ■

6.1.2 Optimization and convexity

Lemma 6.1.3. [21, p.81] Let X be a normed space. Let ¶fα(x)♣α ∈ I♢ be a collection of

functions with the same domain K. If K is a convex subset of X and fα(x) is a convex

function for each α, then g(x) := supα∈I fα(x) is also convex.

Lemma 6.1.4. [21, p.87] Let f(x, y) be convex in (x, y) and K be a convex non-empty

set. Then the function g(x) = infy∈K f(x, y) is convex in x provided that g(x) > −∞ for

some x.

Theorem 6.1.5 (Von NeumannŠs Minmax Theorem, [7]). Let X and Y be linear vector

spaces, and Ω and Ψ be convex subsets of X and Y , respectively. If f(x, y) is concave in

x and convex in y, then maxx∈Ω miny∈Ψ f(x, y) = miny∈Ψ maxx∈Ω f(x, y).

Theorem 6.1.6 (Strong duality, [86] ). Let X be a linear vector space and Ω be a convex

subset of X. Let f be a real-valued concave function on Ω and g : X → R a convex map.
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Suppose there exists x1 ∈ Ω such that g(x1) < 0. Let

µ0 = sup
x∈Ω

g(x)≤0

f(x)

and assume µ0 is Ąnite. Then,

sup
x∈Ω

g(x)≤0

f(x) = min
τ≥0

sup
x∈Ω

[f(x) − τg(x)]

and the minimum in the right side is achieved for a τ o ≥ 0.

Lemma 6.1.7. [6, Lemma 3.1 p. 260] Let X and U be linear vector spaces. Assume that

the function f(x, u) has a unique minimum with respect to u ∈ U for all x ∈ X. Then

min
u(x)

E [f(x, u) ] = E [min
u

f(x, u) ].

6.2 Stochastic uncertain System

We consider a class of discrete-time stochastic uncertain system deĄned over a Ąnite time

interval, described in terms of a reference (or nominal) system and a perturbed system.

1) Reference system: The reference system is described by

xt+1 = Axt + vt, t = 0, . . . , N (6.1)

where xt ∈ Rn is the state vector and ¶vt, t = 0, . . . , N♢ is a zero-mean, white Gaussian

noise sequence with covariance matrix V . We assume that the noise vt affects all the

components of the dynamics so that V ≻ 0; this is a typical assumption in problems where

the relative entropy is used to measure the proximity of statistical model (see for example

[82]). The matrices A and V have appropriate dimensions and, for ease of notation,

they are assumed time independent. Generalization to time-varying systems only entails

heavier notation; the conclusions however can be reached by the same arguments. Model

(6.1) speciĄes the nominal transition density function

f(xt♣xt−1) ∼ N (Axt−1, V ), t = 1, . . . N + 1. (6.2)
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Assume that the initial state x0 = x̄0 is a deterministic quantity. Then, the joint nominal

probability density of the state sequence x0:N+1 = [x⊤
0 . . . x⊤

N+1]⊤ can be expressed as

f(x0:N+1) = δ(x0 − x̄0)
N+1∏

t=1

f(xt♣xt−1).

2) Perturbed system: The corresponding perturbed system is described by the state

equation

xt+1 = Axt + ṽt, t = 0, . . . , N (6.3)

where the noise input sequence ¶ṽt, t = 0, . . . , N♢ is deĄned by an unknown probability

density function. The joint probability measure of the perturbed system is denoted by

f̃(x0:N+1) and it is assumed to admit a similar Markov structure of the form

f̃(x0:N+1) = δ(x0 − x̄0)
N+1∏

t=1

f̃(xt♣xt−1).

Hereafter, we use the symbol E[·] to denote the expectation with respect to the nominal

conditional density f(·), whereas Ẽ[·] denotes the expectation with respect to the per-

turbed density f̃(·).

3) Relative Entropy Constraints: We use the relative entropy between the true and the

nominal densities to measure modeling errors. In our setting, instead of applying a single

constraint to the relative entropy of the true and nominal probability densities of the

state sequence x0:N+1 over the whole time interval as done in the seminal paper [96], we

specify separate modeling tolerances for each time step of the transition density (6.2). In

other words, we use the relative entropy between the true and nominal transition densities

at time t, namely f̃(xt♣xt−1) and f(xt♣xt−1), to measure modeling errors. SpeciĄcally,

after introducing the quantity

Rt :=

∫

ln

(

f̃(xt♣xt−1)

f(xt♣xt−1)



f̃(xt♣xt−1)dxt,

the model mismatch at time t, with t = 1, . . . , N + 1, is expressed by the constraint

Ẽ[Rt] ≤ dt, (6.4)

where we recall that the expectation is taken with respect to the true marginal

f̃(xt−1) =

∫

f̃(xt−1♣xt−2)...f̃(x1♣x̄0)dx1...dxt−2.
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The ambiguity set is deĄned by the convex ball of functions Bt := ¶f̃(xt♣xt−1) ∈ P :

Ẽ[Rt] ≤ dt♢ where P is the set of all probability density function on Rn. Note that Bt is

parameterized by the density f̃(x0:t−1). The tolerance parameter dt > 0 quantiĄes the

mismatch budget at time t.

6.3 Worst performance analysis

We consider the problem of characterizing, for the above stochastic uncertain system,

the worst case performance with respect to the cost functional

J(x0:N+1) =
1

2

N∑

t=0

x⊤
t Qxt +

1

2
x⊤

N+1QN+1xN+1, (6.5)

where Q ⪰ 0, QN+1 ≻ 0. This is the typical cost function in LQG problems for autonomous

systems like (6.3). More precisely, the problem under consideration is to Ąnd

max
f̃(x1♣x0)∈B1

. . . max
f̃(xN+1♣xN )∈BN+1

Ẽ[J ]. (6.6)

Assumption 6.3.1. The couple (A, Q) is observable.

Because of the constraintsŠ and the objective functionŠs special structure, we can

obtain the overall solution by optimizing a sequence of N + 1 single-variable constrained

optimization problems by adopting a backward dynamic programming technique [102,

ch. I]. We start by optimizing the objective function with respect to f̃(xN+1♣xN ). More

precisely, the problem to be solved at this last stage is

max
f̃(xN+1♣xN )∈BN+1

Ẽ [J ] (6.7)

for a given f̃(x0:N ). Exploiting the duality theory, we show that Problem (6.7) can be

replaced by an equivalent unconstrained optimization problem. Let τN+1 ∈ R be the

Lagrange multiplier associated with the constraint (6.4) for t = N + 1 and deĄne the

Lagrangian LN+1(τN+1) := J − τN+1[RN+1 − dN+1]. We denote by WN+1(τN+1) the

value of the following unconstrained optimization problem

WN+1(τN+1) = max
f̃(xN+1♣xN )∈P

Ẽ[L(τN+1)]. (6.8)

By applying Theorem 6.1.6 to the current optimization problem (6.7), we obtain the

following theorem.
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Theorem 6.3.2. Consider the stochastic uncertain system (6.1), (6.3) and (6.4) with

cost functional J given by (6.5). Then the value of the stochastic optimization problem

(6.7) is Ąnite if and only if ΓN+1 := ¶τN+1 > 0 ♣ WN+1(τN+1) < ∞♢ is non empty. In

this case,

max
f̃(xN+1♣xN )∈BN+1

Ẽ[J ] = min
τN+1>0

WN+1(τN+1). (6.9)

Proof. The theorem is obtained by sensibly applying Theorem 6.1.6 to the current

optimization problem with X as the linear vector space of functions from Rn to R and Ω

the set of probability density functions on Rn. The objective function corresponds to Ẽ[J ]

which is a linear (thus concave) map of f̃(xN+1♣xN ). The function g(·) corresponding to

Ẽ[RN+1−dN+1] is a convex function of f̃(xN+1♣xN ) thanks to the properties of the relative

entropy. Finally, the transition probability density function f̃(xN+1♣xN ) = f(xN+1♣xN )

satisĄes Ẽ[RN+1 − dN+1] = −dN+1 < 0. Hence, the conditions of the lemma are satisĄed.

Now, the main clariĄcation is that we can rule out the case in which the minimum in

(6.9) is achieved at τN+1 = 0. Indeed, if τN+1 = 0 we have L(τN+1) = J. Since QN+1 is

strictly positive, it is straightforward to verify that WN+1 = ∞ for any f̃(x0:N ). ■

Now, we evaluate the quantity WN+1(τN+1) for τN+1 > 0. By exploiting Ąrst Lemma

1.1.3 and then Lemma 6.1.1, it follows

WN+1 = Ẽ



1

2

N∑

t=0

x⊤
t Qxt + τN+1

(

max
f̃(xN+1♣xN )∈P

Ẽ



x⊤
N+1QN+1xN+1

2τN+1
− RN+1

∣
∣
∣ xN

]]

+ τN+1dN+1

= Ẽ



1

2

N∑

t=0

x⊤
t Qxt + τN+1 ln

(
∫

exp
{x⊤

N+1QN+1xN+1

2τN+1

}

f(xN+1♣xN )dxN+1

]

+ τN+1dN+1

= Ẽ



1

2

N−1∑

t=0

x⊤
t Qxt + x⊤

N ΠN xN

]

− τN+1

2
ln

∣
∣
∣
∣I − QN+1V

τN+1

∣
∣
∣
∣+ τN+1dN+1 (6.10)

where

ΠN = Q + A⊤
(

Q−1
N+1 − V

τN+1

)−1

A (6.11)

provided that
(

Q−1
N+1 − V

τN+1

)

≻ 0. (6.12)

The latter condition is necessary for WN+1 to be Ąnite. We know from Theorem 6.3.2

that Problem (6.7) is Ąnite if and only if the set ΓN+1 is non-empty, hence if and only if

there exists τN+1 > 0 such that (6.12) is satisĄed.
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Lemma 6.3.3. If (6.12) is satisĄed, then ΠN deĄned by (6.11) is positive deĄnite.

Proof. It is clear that ΠN ⪰ 0 as it is the sum of three positive semideĄnite matrices.

We must show that it is invertible. Assume by contradiction that there exists y ̸= 0 such

that y⊤ΠN y = 0. It follows that Qy = 0 and Ay = 0. But then, y ̸= 0 belongs to the

non-observable subspace, contradicting Assumption 6.3.1. ■

In view of (6.9), if ΓN+1 is non-empty, Problem (6.6) can be rewritten as

max
f̃(x1♣x0)∈B1

. . . max
f̃(xN ♣xN−1)∈BN

min
τN+1>0

WN+1(τN+1).

Notice that WN+1 is a dual function, thus it is convex with respect to the Lagrange multi-

plier τN+1 [21]. Since WN+1 is convex in τN+1 and linear (thus concave) in f̃(xN ♣xN−1),

in view of Theorem 6.1.5 we can switch the minimization and maximization operation

without affecting the result. Hence, Problem (6.6) is equivalent to

max
f̃(x1♣x0)∈B1

. . . min
τN+1>0

max
f̃(xN ♣xN−1)∈BN

WN+1(τN+1).

The knowledge of the structure of WN+1 as derived in (6.10) allows us to move to

the next stage of the dynamic programming recursion. In the next stage, if we neglect

the constant terms, we are concerned with the solution to the problem

max
f̃(xN ♣xN−1)∈BN

Ẽ



1

2

N−1∑

t=0

x⊤
t Qxt + x⊤

N ΠN xN

]

with f̃(x0:N−1) as a parameter. This problem is identical in structure to the problem

(6.7) that we have just solved, thus we can rearrange Theorem 6.3.2 and Lemma 6.3.3

and write out the solution by simply renaming variables. By repeating the dynamic

programming recursion N + 1 times we derive the following result.

Theorem 6.3.4. Consider the stochastic uncertain system (6.1)-(6.3), the model mis-

match constraints (6.4) and the cost functional (6.5). Introduce the risk-sensitive-like

Riccati recursion

Πt = Q + A⊤
(

Π−1
t+1 − V

τt+1

)−1

A, t = N, . . . , 0. (6.13)

with ΠN+1 = QN+1, which is required to satisfy the condition

(

Π−1
t+1 − V

τt+1

)−1

≻ 0 t = N, . . . , 0. (6.14)
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The minimax optimal control problem (6.6) is Ąnite if and only if there exist τtŠs strictly

positive such that (6.14) is satisĄed. In this a case, Problem (6.6) is equivalent to

min
τ1>0,...,τN+1>0

W1(τ1, .., τN+1) :=
1

2
x̄⊤

0 Π0x̄0 −
N+1∑

t=1

(
τt

2
log ♣I − Πt

V

τt
♣ − τtdt

)

. (6.15)

To prove Theorem 6.3.4, we need the following preliminary lemma.

Lemma 6.3.5. For any probability density f̃(x0:t), the function Wt+1(τt+1, .., τN+1)

deĄned as

Wt+1 := Ẽ
[ t−1∑

k=0

x⊤
k Qxk

2
+

x⊤
t Πtxt

2

]

−
N+1∑

k=t+1

(τk

2
log ♣I − ΠkV

τk

♣ − τkdk

)

with ΠtŠs given by (6.13) is jointly convex in (τt+1, .., τN+1) for any t = 0, . . . , N.

Proof. The function Wt+1(τt+1, ..., τN+1) can be equivalently written as

Wt+1 = max
f̃(xt+1♣xt)...f̃(xN+1♣xN )∈P

Ẽ[J −
N+1∑

k=t+1

τk(Rk − dk)].

Thus, since Wt+1 is the pointwise maximum of a set of affine functions in the variables

τt+1, . . . , τN+1, it is convex by Lemma 6.1.3. ■

Proof of Theorem (6.3.4). The proof follows from the line of reasoning leading up to

the theorem statement. The only necessary clariĄcation is that at each time step t, with

t = 0, . . . , N,

max
f̃(xt♣xt−1)∈Bt̄

min
τt+1,..,τN+1>0

Wt+1 = min
τt+1,..,τN+1>0

max
f̃(xt♣xt−1)∈Bt

Wt+1

for any given f̃(x0:t−1). This follows from Theorem 6.1.5 since the function Wt+1 is linear

in f̃(xt♣xt−1) and convex in (τt+1, .., τN+1) by Lemma 6.3.5. ■

We immediately recognize that our solution has the same structure of the solution

to the robust performance analysis problem considered in [96, Section IV.B]. However,

instead of using a constant Lagrange multiplier τ, here τt is time-dependent. Indeed,

whereas in the previous work [96] a single relative entropy constrained was imposed,

resulting in a unique Lagrange multiplier, here each f̃(xt+1♣xt) has an associated relative

entropy constraint. Moreover, by writing θt = τ−1
t , we easily see that the solution to

our problem takes the form of a risk-sensitive cost (see the state feedback control results

given in [72] in the special case where there is no control input). However, while in
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standard risk-sensitive control problems the risk-sensitive parameter θ appearing in the

exponential of the quadratic loss function is constant, here θt is time-dependent. As a

matter of fact, in the present paper we tackle the robust analysis problem by evaluating

N + 1 risk-sensitive costs with a time-varying risk-sensitive parameter, namely

∫

exp
{ 1

2τt+1
x⊤

t Πtxt

}

f(xt♣xt−1)dxt t = N + 1, . . . , 1.

As a result we obtain a risk-sensitive Riccati recursion with a time-dependent sensitivity

parameter 1/τt.

6.3.1 Least favorable model

The solution scheme presented in the previous section does not require an explicit

computation of the maximizing players f◦(xt+1♣xt)Šs of Problem (6.6). However, for

simulations and performance evaluation, it is instructive to construct the least favorable

model. Let τ o
1 , . . . , τo

N+1 be the solutions to Problem (6.15) and Πo
0, . . . , Πo

N+1 be the

matrices obtained from the Riccati recursion (6.13) with τt = τ◦
t . Note that in the above

calculations we leveraged on Lemma 1.1.3 in order to evaluate the worst scenario for

each time step t. As a consequence, the least favorable model is given by

f̃o(xt♣xt−1) =
exp

{
1

2τo
t

x⊤
t Πo

t xt

}

f(xt♣xt−1)
∫

exp
{

1
2τo

t
x̄⊤

t Πo
t x̄t

}

f(x̄t♣xt−1)dx̄t

.

By Lemma 6.1.2, we conclude that f̃o(xt♣xt−1) = N (µ̃t, Σ̃t) with

µ̃t =

(

I − Πo
t V

τ o
t

)−1

Axt−1, Σ̃t =

(

I − Πo
t V

τ o
t

)−1

V. (6.16)

Therefore, the least-favorable density of the noise ṽt is itself again Gaussian, but it

involves a perturbation of both the mean and the variance with respect to the nominal

distribution.

6.4 Simulations

We present a numerical example in order to point out the differences between the uncertain

system presented in this chapter and the one proposed by Petersen, James and Dupuis

in [96]. Consider the system (6.1) with A = 1.3 and initial condition x̄0 = 0 over the

Ąnite time interval [0, N + 1] with N = 49; the reference noise signal is assumed to be a

white Gaussian noise with covariance V = 10−4; the quadratic cost functional (6.5) is
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deĄned by Q = 2.5 · 10−4 and QN+1 = 5 · 10−5; Ąnally we set the tolerance parameters

dt = 10−2 for all t = 1, . . . , N. We adopt the coordinate descend algorithm [112] to solve

Problem (6.15). At each iteration of the algorithm, we have to solve a single variable

optimization problem in τt. In order to do this, we solve the Riccati equations (6.13) for

different values of τt, we then evaluate the quantity W (τ1, . . . , τN+1) as a function of τt

and we choose the value of the variable for which the minimum is achieved. By applying

the aforementioned algorithm we Ąnd that the solution to the worst performance analysis

problem (6.6) is 1.28 · 104. It is interesting to compare this value with the result obtained

by considering the stochastic uncertain system where a single relative-entropy constraint

is applied, i.e. where the joint probability density function f̃(x0:N+1) is assumed to

satisfy

R(f̃(x0:N+1)♣♣f(x0:N+1)) ≤ d, (6.17)

where

d =
N+1∑

t=1

dt (6.18)

is set to d = 0.5. The procedure to solve this problem is presented by Petersen, James

and Dupuis in [96, Section IV.B]. We Ąnd that the result is equal to 2.33 · 104, which is

considerably higher than ours. Figure 6.1 gives a deeper insight to the difference between

the two models. It compares the relative entropy distance

∫

Rn
R
(

f̃o(xt+1♣xt)♣♣f(xt+1♣xt)
)

f̃o(xt)dxt

at each time step for the worst model obtained by applying the single relative entropy

constraint (6.17) and the worst model for which the uncertainty is expressed incrementally

(6.4). It is evident that in the standard model the maximizing player allocates most

of the mismatch modeling budget to the Ąrst time intervals. This leads to unrealistic

and extremely pessimistic conclusions. On the other hand, imposing a relative entropy

constraint to each time step promotes an equal distribution of the uncertainty during the

time interval, which is more reasonable in most practical situations.

It is also signiĄcant to analyze the uncertainty distribution over the interval [1, N + 1] of

the two least-favourable models for progressively larger values of the tolerance parameter

dt (the constant d is updated according to the usual relation (6.18) ). Figure 6.2 illustrates

this comparison for dt = 0.002, dt = 0.01 and dt = 0.02. The Ągures reveal that PetersenŠs,

JamesŠ and DupuisŠ least favourable model considerably changes as dt increases, with a

concentration of the model mismatch budget in few time steps that becomes more and

more evident. On the other hand, our model is less sensitive to parameter variations.
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Figure 6.1: Relative entropy distance
∫

Rn
R
(
f̃o(xt+1|xt)||f(xt+1|xt)

)
f̃o(xt)dxt between

the worst case conditional distribution f̃o(xt+1|xt) and the nominal model f(xt+1|xt) for
t = 1, . . . , 50. We compare the case in which the worst model is obtained by considering a
single relative-entropy constraint (6.17) for the whole time interval (in blue) and the case in

which a distributed relative entropy constraint (6.4) is considered (in red).

Finally, we remark that the strategy proposed in this paper gives the opportunity to

set a time-varying tolerance level dt. This can be useful if we know that the modeler has

not exercised the same level of effort to characterize each time component of the model.
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(a) dt = 0.002

(b) dt = 0.01

(c) dt = 0.02

Figure 6.2: Relative entropy distance
∫

Rn
R
(
f̃o(xt+1|xt)||f(xt+1|xt)

)
f̃o(xt)dxt between

the worst case conditional distribution f̃o(xt+1|xt) and the nominal model f(xt+1|xt) for
t = 1, . . . , 50 by considering the single relative-entropy constraint (6.17) (in blue) and the
distributed relative entropy constraints (6.4) (in red) for increasing values of the tolerance

parameter dt.
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7
D

2-LQG: state feedback control

This chapter extends the worst-performance analysis problem presented in Chapter

6 to the problem of synthesizing a state-feedback D2-LQG control policy. The main

contributions of this chapter can be summarized as follows. We propose a generalization of

the stochastic uncertain systems considered in Chapter 6 which allows for more Ćexibility

in modelling the system uncertainty. The uncertain systems are described in terms of a

nominal system, driven by white Gaussian noise, and a perturbed system, in which a

general class of stochastic noise processes are allowed. At each time instant, a relative

entropy tolerance is used to model a limit on the admissible noise distributions. For this

class of uncertain systems, we propose a Ąnite-horizon state-feedback D2-LQG control

problem. To address this problem, we adopt a dynamic programming technique, where

each subproblem consists in an inĄnite-dimensional minimax optimization problem over

a time interval of length one. By exploiting the Lagrange duality theory and the duality

between free-energy and relative entropy, we are able to convert this problem into an

equivalent risk-sensitive LQG optimal control problem with full-state information which

can be solved by using existing results in [72]. The overall solution takes the form of a

risk-sensitive LQG controller with a time-varying risk-sensitive parameter.

The outline of the chapter is as follows. Section 7.1 introduces the class of stochastic

uncertain systems and the relative-entropy ambiguity set, providing a generalization

of the uncertain systems considered in Chapter 6. The proposed uncertain system is

interpreted in terms of the linear fractional transformation (LFT) model in Subsection

7.1.1. In Section 7.2 we address the problem of synthesizing the D2-LQG controller with

state feedback. In Section 7.3 we present some simulations to show the effectiveness of

the proposed control strategy in trading off optimality and robustness.
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7.1 Stochastic uncertain Systems

We extend to actuated systems and we generalize the class of uncertain systems deĄned

in Chapter 6.

1) Reference system: The reference system is described by

xt+1 = Axt + But + vt t = 0, . . . , N (7.1)

where xt ∈ Rn is the state vector, ut ∈ Rm is the control input and v = ¶vt ∈ Rn, t =

0, . . . , N♢ is a zero-mean, white Gaussian noise sequence with covariance matrix V ≻ 0.

The matrices A, B and V have appropriate dimensions, and, for the ease of notation, they

are assumed time independent. The initial state x0 = x̄0 is assumed to be a deterministic

quantity.

2) Perturbed system: The corresponding perturbed system is modelled as

xt+1 = Axt + But + ṽt, t = 0, . . . , N

zt = E1xt + E2ut

(7.2)

where the noise input sequence ṽ = ¶ṽt, t = 0, . . . , N♢ is deĄned by an unknown

probability density function. The signal zt ∈ Rp is introduced to add more Ćexibility in

modelling the systemŠs uncertainty; it is used to deĄne the set of allowable uncertain noise

probability measures via the relative entropy constraints. One possible interpretation of

this signal will be given at the end of the section. The matrices E1 and E2 are known

matrices which, for ease of computation, are assumed to satisfy the relation E⊤
1 E2 = 0.

Our results can be easily extended to the case in which we drop this assumption.

3) Admissible Controller: We suppose that the whole state is accessible with negligible

measure noise and we consider state feedback control policies of the form

ut = πt(xt), t = 0, . . . , N (7.3)

where πt is a measurable map from Rn to Rm. As discussed later, if we enlarge the set of

feasible control policies by allowing πt to depend on the the whole past history of the

state, the optimal solution remains the same. In other words, there is no limitation in

considering only the control policies (7.3). This is indeed rather intuitive if we consider

the Markovian property of the state.

For any admissible control law π = ¶πt, t = 0, . . . , N♢, the nominal joint probability
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density function of the state sequence x0:N+1 = [x⊤
0 . . . x⊤

N+1]⊤ can be expressed as

fπ(x0:N+1) = δ(x0 − x̄0)
N+1∏

t=1

fπ(xt♣xt−1) (7.4)

where fπ(xt♣xt−1) = N (Axt−1 + But−1, V ). We consider a similar decomposition for the

joint probability measure f̃π(x0:N+1) of the perturbed system,

f̃π(x0:N+1) = δ(x0 − x̄0)
N+1∏

t=1

f̃π(xt♣xt−1).

Hereafter, we use the symbols Eπ[·] and Ẽπ[·] to denote the expectation with respect to

the nominal conditional density fπ(·) and the perturbed density f̃π(·), respectively, given

the control law π.

3) Relative Entropy Constraints: Given an admissible control law π, we measure the

model mismatch at time t between the perturbed and the nominal systems in terms of

the relative entropy distance between f̃π(xt♣xt−1) and fπ(xt♣xt−1),

Rt := Rt

(

f̃π(xt♣xt−1)♣♣fπ(xt♣xt−1)
)

=

∫

Rn
ln

(

f̃π(xt♣xt−1)

fπ(xt♣xt−1)



f̃π(xt♣xt−1)dxt.

Then, the admissible perturbed density functions f̃π(xt♣xt−1)Šs satisfy

Ẽπ[Rt] ≤ Ẽπ[
1

2
∥zt−1∥2] + dt (7.5)

where the expectation is taken with respect to the true marginal

f̃π(xt−1) =

∫

f̃π(xt−1♣xt−2)...f̃π(x1♣x̄0)dx1 . . . dxt−1.

The ambiguity set is deĄned by the convex ball of functions

Bt := ¶f̃π(xt♣xt−1) ∈ P : Ẽπ[Rt] ≤ Ẽπ[
1

2
∥zt−1∥2] + dt♢

where P is the set of all probability density functions over Rn. The tolerance parameter

dt > 0 quantiĄes the constant mismatch budget allowed at time t. Clearly, Bt is

parameterized by the density function f̃π(xt−1). It is worth noting that the model

uncertainty is spread over the Ąnite interval, unlike [96] where the model uncertainty is

characterized using one relative entropy constraint regarding the entire interval. The

latter characterization allows to concentrate the uncertainty in one step, which is not a
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common situation in practice. In contrast, the former promotes an equal distribution of

uncertainty along the time interval.

7.1.1 Relation with the linear fractional transformation model

We can motivate the above stochastic uncertainty description by interpreting it in terms

of LFT models [98]. LFT is a very general and powerful tool to represent various sources

of uncertainty in dynamical models, frequently used in robust control theory. It consists

in separating the nominal model from the uncertainty in a feedback interconnection

as shown in Figure 7.1. The uncertainty operator ∆ is a quantity which is typically

unknown but bounded in magnitude. This is a very general paradigm both conceptually

and practically. In fact, in most cases the uncertainty on the system dynamics can be

effectively modelled by suitably selecting the admissible structure of ∆ and the way in

which ∆ is bounded in magnitude. We can interpret the signal zt in (7.2) as the input of

the uncertain block ∆ in the LFT model. Then the uncertain system (7.1)-(7.2)-(7.5)

allows for any uncertainty block ∆ whose norm is bounded. Notice that ∆ can be

dynamic and time-varying: in this case the notation ∆t is adopted.

Lemma 7.1.1. Consider the stochastic uncertain system (7.1)-(7.2) with control input

(7.3). Assume that the perturbed noise signal ṽ is generated according to the LFT model of

Figure 7.1 where the uncertainty block is a time-varying matrix ∆t ∈ Rn×p, i.e. ṽt = vt+v̄t

with v̄t = vt +∆tzt for t = 0, . . . , N. Then, the relative-entropy constraint (7.5) is satisĄed

at each time step t if

∆t∆
⊤
t ⪯ V, t = 0, . . . , N. (7.6)

Proof. From the deĄnition of ṽ, it follows that f̃π(xt+1♣xt) = N (Axt + But + ∆tzt, V ).

Hence, given xt ∈ Rn,

Rt+1 =
1

2
z⊤

t ∆⊤
t V −1∆tzt ≤ z⊤

t zt,

where the equality follows from Lemma 1.1.2 and the inequality from the norm bound

(7.6). Now, the thesis is obtained by taking into account the monotonicity of the expected

value operator and the positivity of dt+1. ■

In conclusion, our paradigm appears to be the natural framework to address the

robustiĄcation of LQG control solutions in all the situations in which the uncertainty may

be represented as in Figure 7.1. The main advantage with respect to existing literature

on DRC with relative entropy is that our formulation is ideally suited to capture the

essence of the problem whenever the uncertainty is distributed along the whole time

interval.
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Nominal
System

∆

ut xt

ztv̄t

Uncertain noise

ṽt

Reference noise

vt

Figure 7.1: Linear fractional transformation (LTF) uncertain model.

7.2 Minimax optimal control

We consider the problem of constructing a state feedback controller which minimizes the

worst case performance for the above stochastic uncertain system. The main result of this

section is to show that this problem can be converted into an equivalent state-feedback

risk-sensitive LQG optimal control problem with a time varying risk-sensitive parameter.

We consider the class of stochastic uncertain systems introduced in Section 7.1. The

performance index is the standard symmetric quadratic function of state and control

action

J =
1

2

N∑

t=0

(x⊤
t Qxt + u⊤

t Rut) +
1

2
x⊤

N+1QN+1xN+1, (7.7)

where the matrices Q ⪰ 0, QN+1 ≻ 0 and R ≻ 0 are designed according to the control

speciĄcations. This index measures the state deviation from the origin at the Ąnal time

step and during the transient phase, as well as the energy spent for the control. The

lower the index takes value, the more the control strategy satisĄes the speciĄcations. We

are concerned with the control problem

min
¶ut=πt(xt), t=0,..,N♢

max
¶f̃(xt♣xt−1)∈Bt, t=1,..,N+1♢

Ẽπ[J ]. (7.8)

Assumption 7.2.1. The pair (A, Q) is observable.

Similarly to Chapter 6, we address this problem by adopting the dynamic programming

technique. Consider the situation at time N : the state variable xN has been observed and

the control signal uN = πN (xN ) should be determined by solving the minimax problem

min
uN =πN (xN )

max
f̃(xN+1♣xN )∈BN+1

Ẽπ[J ] (7.9)
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where the density function f̃(x0:N ) and the input sequence u0:N−1 := [u⊤
0 ; . . . u⊤

N−1]⊤ are

considered as parameters. Problem (7.9) can be replaced by an equivalent unconstrained

stochastic game by means of the duality theory.

Theorem 7.2.2. Consider the uncertain system (7.1)-(7.5) with cost functional (7.7).

Assume that f̃(x0:N ) and u0:N−1 are Ąxed and let

WN+1(τN+1) := min
uN =πN (xN )

max
f̃(xN+1♣xN )∈P

Ẽπ[LN+1(τN+1)], (7.10)

where LN+1(τN+1) := J − τN+1[RN+1 − 1
2∥zN ∥2 − dN+1] and τN+1 ∈ R is the Lagrange

multiplier. Problem (7.9) is Ąnite if and only if ΓN+1 := ¶τN+1 > 0 ♣ WN+1(τN+1) < ∞♢
is nonempty. In this case,

min
uN =πN (xN )

max
f̃(xN+1♣xN )∈BN+1

Ẽπ[J ] = min
τN+1>0

WN+1(τN+1). (7.11)

The proof follows similar steps to the proof of Theorem 6.3.2 of Section 6 and it is

therefore omitted.

Now, we evaluate the quantity WN+1(τN+1) for τN+1 > 0. We have that

WN+1 = min
uN

Ẽπ






1

2

N−1∑

t=0

(x⊤
t Qxt + u⊤

t Rut) + τN+1

(

max
f̃(xN+1♣xN )

Ẽ

[
1

2τN+1

(

x⊤
N Q̄τN+1xN

+ u⊤
N R̄τN+1uN + x⊤

N+1QN+1xN+1

)

− RN+1

∣
∣
∣xN

])




+ τN+1dN+1,

where Q̄τN+1 := Q + τN+1E⊤
1 E1 and R̄τN+1 := R + τN+1E⊤

2 E2. By applying Lemma 1.1.3

it follows that

WN+1 = min
uN

Ẽ






1

2

N−1∑

t=0

(x⊤
t Qxt + u⊤

t Rut) + τN+1 logE

[

JRS,N+1

∣
∣
∣xN

]




 + τN+1dN+1,

where

JRS,N+1 := exp
{x⊤

N Q̄τN+1xN + u⊤
N R̄τN+1uN + x⊤

N+1QN+1xN+1

2τN+1

}

.

Here the subscript RS stands for risk-sensitive. Indeed, this is a risk-sensitive criterion with

risk-sensitivity parameter 1/τN+1. From Lemma 6.1.7, we can switch the minimization
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with respect to uN = πN (xN ) and the expectation with respect to xN so that

WN+1 = Ẽπ






1

2

N−1∑

t=0

(x⊤
t Qxt + u⊤

t Rut) + τN+1 min
uN

logEπ

[

JRS,N+1

∣
∣
∣xN

]




+ τN+1dN+1.

(7.12)

Notice that the problem minuN
Eπ log[JRS,N+1♣xN ] is a one-step risk-sensitive LQG

control problem with state feedback and initial condition xN . The solution to this

problem is obtained by Jacobson [72] and involves the Riccati recursion

ΠN = Q̄τN+1 + A⊤
(

Π−1
N+1 + BR̄−1

τN+1
B⊤ − V

τN+1

)−1

A (7.13)

with ΠN+1 = QN+1, which is required to satisfy the condition

(Π−1
N+1 − V/τN+1) ≻ 0. (7.14)

Then, the optimal controller is

uN = −R̄−1
τN+1

B⊤
(

Π−1
N+1 + BR̄−1

τN+1
B⊤ − V

τN+1

)−1
AxN

and, accordingly,

min
uN

logEπ

[

JRS,N+1

∣
∣
∣xN

]

=
x⊤

N ΠN xN

2τN+1
− 1

2
log

∣
∣
∣
∣I − ΠN+1V

τN+1

∣
∣
∣
∣ . (7.15)

Lemma 7.2.3. If (7.14) is satisĄed, then ΠN deĄned by (7.13) is positive deĄnite.

The proof follows similar steps to Lemma 6.3.3 and it is therefore omitted.

By plugging (7.15) into (7.12), we obtain that for τN+1 ∈ ΓN+1,

WN+1 = Ẽπ

[N−1∑

t=0

x⊤
t Qxt + u⊤

t Rut

2
+

x⊤
N ΠN xN

2

]

− τN+1

2
log

∣
∣
∣
∣I − ΠN+1V

τN+1

∣
∣
∣
∣+ τN+1dN+1.

(7.16)

In view of (7.11), if ΓN+1 is non-empty, Problem (7.8) can be rewritten as

min
¶ut=πt(xt), t=0,...,N−1♢

max
¶f̃π(xt♣xt−1)∈Bt, t=1,...,N♢

min
τN+1>0

WN+1(τN+1).

Now, in order to move to the next stage of the dynamical programming recursion, we

switch the minimization over τN+1 and the maximization over f̃(xN ♣xN−1), so that we
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can consider the problem

min
uN−1=πN−1(xN−1)

max
f̃π(xN ♣xN−1)∈BN

Ẽπ[WN+1(τN+1)].

By looking at expression (7.16), we immediately recognize that this problem is identical

in structure to Problem (7.9) (except for some terms which are constant with respect

to f̃(xN ♣xN−1) and uN−1). Therefore, we can rearrange Theorem 7.2.2 and repeat all

the previous reasoning to tackle it. We hasten to remark that the switch between the

minimization and the maximization operators may in general affect the result. Sufficient

conditions to perform this switch without changing the result are provided in Theorem

6.1.5. In order to apply this theorem, we notice that linearity (thus concavity) of the

function WN+1 with respect to f̃π(xN ♣xN−1) for any Ąxed τN+1 immediately follows

from (7.16). As regards convexity with respect to τN+1 given f̃π(xN ♣xN−1), we have

to distinguish two cases: when the matrix E2 in (7.2) is equal to zero and when it is

different from zero. We Ąrst analyze the case E2 = 0.

Theorem 7.2.4. Consider the stochastic uncertain system (7.1)-(7.5) with E2 = 0 and

the cost functional (7.7). Let ΠN+1 = QN+1, and introduce the risk sensitive Riccati

recursion

Πt = Q̄τt+1 + A⊤
(

Π−1
t+1 + BR̄−1

τt+1
B⊤ − V

τt+1

)−1

A, t = N, . . . , 0 (7.17)

where

Q̄τt+1 := Q + τt+1E⊤
1 E1, (7.18)

R̄τt+1 := R, (7.19)

provided that
(

Π−1
t+1 − V

τt+1

)

≻ 0 t = N, . . . , 0. (7.20)

Assume that there exist τtŠs strictly positive such that (7.20) is satisĄed. Then, the

minimax optimal control problem (7.8) is Ąnite and it is equivalent to

min
τ1>0,...,τN+1>0

W1(τ1, .., τN+1) :=
x̄⊤

0 Π0x̄0

2
−

N+1∑

t=1

(
τt

2
log ♣I − ΠtV

τt
♣ − τtdt

)

. (7.21)

Moreover, if τ◦
1 , . . . , τ◦

N+1 solve Problem (7.21) and Π◦
0, . . . , Π◦

N+1 are the matrices ob-
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tained from (7.17) with τt = τ◦
t , then the optimal control input for problem (7.8) is

u◦
t = −R̄−1

τ◦

t+1
B⊤

(

Π◦
t+1

−1 + BRτ◦

t+1

−1B⊤ − V

τ◦
t+1

)−1

Axt. (7.22)

To prove this theorem, we need the following preliminary Lemma.

Lemma 7.2.5. Assume that E2 = 0. Given the input sequence u0:t and the density

function f̃π(x0:t−1), the function Wt+1(τt+1, .., τN+1) deĄned as

Wt+1 := Ẽπ


t−1∑

k=0

x⊤
k Qxk + u⊤

k Ruk

2
+

x⊤
t Πtxt

2

]

−
N+1∑

k=t+1

(
τk

2
log ♣I − ΠkV

τk

♣ − τkdk

)

,

(7.23)

with ΠtŠs given by (7.17), is jointly convex in (τt+1, .., τN+1) for any t = 0, . . . , N.

Proof. The function Wt+1(τt+1, .., τN+1) can be equivalently written as

Wt+1 = min
ut,..,uN

max
f̃(xt+1♣xt),..,f̃(xN+1♣xN )∈P

Ẽπ

[

J −
N+1∑

k=t+1

τk(Rk − 1

2
∥zk∥2 − dk)

]

.

It is not difficult to see that the objective function in the previous problem is jointly

convex in (τt+1, ..., τN+1, ut, .., uN ) for any
(

f̃(xt+1♣xt), ..., f̃(xN+1♣xN )
)

if E2 = 0. Then,

by Lemma 6.1.3, the maximization with respect to (f̃(xt+1♣xt), ..., f̃(xN+1♣xN )) returns

a convex function of (τt+1, ..., τN+1, ut, ..., uN ). Finally, in view of Lemma 6.1.4, the

partial minimization over the variables (ut, ..., uN ) preserves convexity with respect to

(τt+1, . . . , τN+1). ■

Proof of Theorem 7.2.4. The proof follows from the line of reasoning leading up to

the theorem statement, repeating the dynamic programming recursion N + 1 times. The

main clariĄcation is that at each time step t, with t = 0, . . . , N, given u0:t and f̃π(x0:t−1),

max
f̃(xt♣xt−1)∈Bt

min
τt+1,..,τN+1>0

Wt+1 = min
τt+1,..,τN+1>0

max
f̃(xt♣xt−1)∈Bt

Wt+1, (7.24)

The saddle-point equality (7.24) derives from Theorem 6.1.5, since the function Wt+1 is

clearly linear in f̃(xt♣xt−1) and jointly convex in (τt+1, .., τN+1) by Lemma 7.2.5. ■

If E2 ≠ 0, we can not use Lemma 7.2.5 to show convexity of Wt+1 in (τt+1, .., τN+1).

At each time step t, the switch between the max and the min operator may generate

an inequality sign Ş ≤ Ť (see [21, p.238]). Consequently, we have a weaker version of

Theorem 7.2.4.
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Theorem 7.2.6. Consider the stochastic uncertain system (7.1)-(7.5) with E2 ̸= 0 and

the cost functional (7.7). Let the matrices Πt ∈ Rn×n be computed according to the Riccati

difference equation (7.17) where formula (7.19) is substituted with

R̄τt+1 := R + τt+1E⊤
2 E2.

Assume that there exist τtŠs strictly positive such that (7.20) is satisĄed. Then Problem

(6.6) is Ąnite and Problem (7.21) provides an upper bound to it.

Proof. The proof follows from the line of reasoning leading up to the theorem statement,

repeating the dynamic programming recursion N + 1 times. Note that, differently from

Theorem 7.2.4, at each time step t, given f̃(x0:t−1) and u0:t, we can only state that

max
f̃(xt♣xt−1)∈Bt

min
τt+1,..,τN+1>0

Wt+1 ≤ min
τt+1,..,τN+1>0

max
f̃(xt♣xt−1)∈Bt

Wt+1. (7.25)

Therefore, when we switch the max and min operators to proceed in the dynamic

programming recursion, we may in general generate an upper bound to Problem (6.6). ■

We propose a coordinate descend algorithm [112] to solve Problem (7.21). At each

iteration of the algorithm, we have to solve a single variable optimization problem in

τt. In order to do that, we solve the Riccati equations (6.13) for different values of

τt, then we evaluate the quantity W1(τ1, ..τN+1) as a function of τt and we choose the

value of the variable for which the minimum is achieved. If E2 = 0, we have theoretical

guarantees that Problem (7.21) is a convex optimization problem, thus the coordinate

descent algorithm converges to the optimal point.

Remark 7.2.7. If the matrix E2 ̸= 0, we have already noticed that we can not extend

the proof of Lemma 7.2.5 to show convexity of the function Wt+1 in (τt+1, .., τN+1). Our

conjecture, supported by numerical simulations, is that this function is quasi-convex

[21] in (τt+1, .., τN+1) for each t = 0, . . . , N. If this conjecture holds true, then by SionŠs

minimax theorem [109] the inequality sign (7.25) can be substituted with an equality

sign, and Problem (7.21) is actually equivalent to (6.6). Thus, if our conjecture holds

true, the conclusions of Theorem 7.2.4 hold also for E2 ≠ 0. Numerical simulations

in practical examples show that our paradigm provides good performances even when

E2 ̸= 0. Example 1 of Section 7.3 is an example of such simulations.

Remark 7.2.8. We have assumed in Section 7.1 that the admissible control policies (7.22)

are functions of the state vector only at the current time step t. We hasten to remark

that this hypothesis is not restrictive. In fact, we can repeat the previous argument

under the assumption that the controller has access to the whole past history x0:t. The
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computations are essentially the same and the optimal control policy does not change.

In other words, no additional information about the future development of the system is

obtained if past measurements are included.

7.3 Simulations

We present some numerical example in order to illustrate the theory developed above.

We compare the solution obtained by our scheme both to the standard LQG solution and

to the solution obtained by employing the state of the art method proposed by Petersen

and James [96] to make the LQG solution resilient against model uncertainties.

7.3.1 Example 1

Consider the uncertain system (7.1)-(7.2) of dimension n = 3 over an interval of length

N = 100 with state and input matrices

A =









0.5773 −0.6335 −0.0457

0.5477 1.7583 0.0524

−0.4011 −0.4754 1.0043









, B =









0.3212

0.3689

−0.2741









,

and nominal noise variance V = I. The uncertainty input zt is a scalar quantity deĄned

by the matrices E1 = 0 and E2 = 0.5. The initial condition is x0 =
[

0.5 0.1 −0.7
]⊤

;

the quadratic cost functional (7.7) is deĄned by the weight matrices

Q = 0.0025 ·









1 1 1

1 1 1

1 1 1









, QN+1 = 0.1 · I, R = 10−3.

We set the tolerance parameters dt = 10−10 for all t in (7.5) . We apply the D2-LQG

procedure proposed in Section 7.2 to control the system. To test the performances, we

compute the expected closed-loop cost when the real unknown noise process ṽ is generated

according to the LFT model of Figure 7.1. In particular, we assume that ∆ = c
[

1 1 1
]

is a time-invariant matrix with c ∈ R ranging in the interval [−1/
√

3, 1/
√

3]. This ensures

that ∥∆∥2 ≤ 1, and consequently, in view of Lemma 7.1.1, that the relative entropy

constraint (7.5) is satisĄed at every time t. It is of interest to compare the results with the

ones obtained by applying the standard LQG procedure, as well as the controller proposed

by Petersen and James in [96, Section IV.B]. The authors of [96] propose a minimax
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Figure 7.2: Expected closed loop cost versus the real uncertain parameter ∆. We compare the
performances of the standard LQG controller (in black), the minimax LQG controller obtained
by considering a single relative-entropy constraint (7.26) for the whole time interval (in blue)
and the proposed D2-LQG controller in which an incremental relative entropy constraint (7.5)

is considered (in red).

LQG controller for stochastic uncertain systems where the uncertainty is expressed in

terms of a single relative-entropy constraint for the whole time interval. Namely, given

the control law π and the nominal Gaussian density function fπ(x0,N+1), the admissible

perturbed density functions f̃π(x0,N+1) are assumed to satisfy the constraint

R(f̃π(x0:N+1)♣♣f(x0:N+1)) ≤ d + Ẽπ



1

2

N+1∑

t=0

∥zt∥2

]

. (7.26)

The tolerance d is positive scalar, and, for a fair comparison, we set

d =
N+1∑

t=1

dt. (7.27)

A plot of the expected closed-loop cost (7.7) versus the uncertainty parameter ∆ for the

three controllers is given in Figure 7.2. When ∆ = 0 the perturbed system corresponds

to the nominal one, for which the standard LQG controller is the optimal one. However,

the performances of the standard LQG controller rapidly deteriorate when the magnitude

of ∆ increases, causing the cost of the system to increase dramatically. It is also evident

that the minimax controller with a single relative entropy constraint [96] does not show

a satisfactory behavior. The explanation lies in the fact that the maximizing player is
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q

θ

2l

Mc

mp

u

Figure 7.3: Inverted pendulum system.

Symbol Parameters Name Value

Mc Mass of the Cart 3 kg

mp Mass of the Pendulum 1.5 kg

l Half of Pendulum length 2 m

g Gravity Acceleration 9.8 m/s

Table 7.1: Parameters of the inverted pendulum system.

allowed to allocate most of the mismatch modeling budget to the Ąrst time intervals; this

leads to extremely pessimistic and conservative conclusions. Finally we notice that the

proposed procedure is able to trade off optimality and resiliency. Indeed, when the real

system coincides with the nominal one, the expected closed-loop cost is slightly larger

than the optimal one. This cost remains almost constant when the perturbation matrix ∆

is different from zero, giving evidence to the robustness properties of the control system.

7.3.2 Example 2

We consider the control of the inverted pendulum on a cart, which is a typical benchmark

in control theory. The inverted pendulum system is depicted in Figure 7.3. It consists of

a pendulum which is attached to a cart equipped with a motor driving it. The movement

of the cart is constrained to the horizontal direction, whereas the pendulum can rotate

in the vertical plane. The model parameters are listed in Table 7.1. The motion of the
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system can be represented by [108]

mplθ̈ cos θ − mplθ̇2 sin θ + (Mc + mp)q̈ = u

Jθ̈ − mplg sin θ + mpl cos θq̈ = 0,
(7.28)

where θ (in rad) is the angle between the vertical axis and the rod of the pendulum,

q (in m) is the horizontal displacement of the pendulum and u (in N) is the input

acceleration. The quantity J = (I + ml2) is the pendulum moment of inertia around

the pivot. When the rod of the pendulum is close to the unstable equilibrium point

θ = 0, any non-linearities in model (7.28) can be neglected. Thus, by deĄning the state

variables x =
[

θ θ̇ q q̇
]⊤

, the system can be represented by the linear model [108]

ẋ =












0 1 0 0

3(Mc+mp)g
4Mcl+mpl

0 0 0

0 0 0 1

− 3mpg
4Mc+mp

0 0 0












x +












0

− 3
4Mcl+mpl

0

4
4Mc+mp












u. (7.29)

Assuming that the system lies in the linear region, the aim is to stabilize it at the

equilibrium x = [0 0 0 0]⊤. To solve this problem, we Ąrst discretize the continuous-time

model (7.29) using zero-order hold on the input with sample time of Ts = 0.2 sec . The

resulting state and input matrices are:

A =












1.0996 0.2066 0 0

1.0123 1.0996 0 0

−0.0664 −0.0044 1 0.2

−0.6749 −0.0664 0 1












, B =












−0.0023

−0.0230

0.0060

0.0597












.

Then, we design a controller by applying the proposed D2-LQG control strategy. SpeciĄ-

cally, we consider the initial state x0 =
[

0.1 −0.1 0.05 0.02
]⊤

and the quadratic cost

(7.7) for a time interval of length N = 75 with weights Q = QN+1 = diag(1, 1, 10, 1) and

R = 1, where diag(v) denotes the diagonal operator returning a square diagonal matrix
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with the elements of vector v on the main diagonal. We set

E1 =












−0.0224 0.2295 −0.1318 −0.0035

0.1201 0.1169 0.0139 −0.1209

−0.1291 −0.0602 0.2178 −0.0656

0.1179 −0.0579 −0.09106 0.0530












, E2 =
[

0 0 0 0
]⊤

,

and the tolerance dt = 0.0132 for any t, such that d =
∑

dt = 1. Finally, vt is assumed to

be a white Gaussian noise with covariance V = diag(0.1, 0.5, 0.1, 0.5). Figure 7.4 shows

the closed-loop system response x and the control action u, together with the value of

the cost J deĄned in (7.7), in the nominal (deterministic) case in which the underlying

system is governed by the dynamics

xt+1 = Axt + But. (7.30)

We compare the performances of the linear quadratic regulator, the minimax LQG

controller proposed in [96] and the proposed D2-LQG strategy. Form the Ągure, it is

evident that the proposed procedure exhibits an intermediate behavior between the

standard LQG control strategy and the single constraint minimax LQG one.

To evaluate the robustness of the three control schemes to model uncertainties and

parameter perturbations, we consider the situation in which model (7.29) is an inaccurate

representation of the underlying system. SpeciĄcally, we assume that the real underlying

system is governed by the dynamics

xt+1 = (A + ∆A)xt + (B + ∆B)ut (7.31)

with

∆A =












0.0269 0.0316 −0.0243 0.0288

−0.0296 −0.0290 −0.0163 −0.0312

0.0332 0.0046 0.0348 −0.0093

−0.0246 −0.0042 −0.0284 0.0138












, ∆B =












−0.0004

0.0011

0.0012

−0.0002












.

The results are summarized in Figure 7.5. In this perturbed situation, the system

controlled with the LQG technique lacks stability. This causes the state vector x and

therefore the cost J to diverge. On the other hand, the robustness introduced by the

minimax controllers prevents system instability. We can also observe that the proposed
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technique exhibits better performances than the single constraint one, as it achieves a

smaller value of the index J. Moreover, it requires the application of a smoother and

lower-energy control signal, which is more suitable and realistic in practice.

Remark 7.3.1. The matrices ∆A and ∆B and E1 deĄned above are randomly generated.

By repeating the simulations for different E1, ∆A and ∆B (with approximately the same

norms) we obtain similar results.

Our simulation experiments suggest the following conclusions:

1. The standard LQG solution is quite fragile. In fact, the LQG optimal control policy

applied to a system featuring modest perturbations with respect to the nominal

model may yield an unstable closed-loop system. Both our method and the method

proposed in [96] are, on the other hand, resilient to perturbations.

2. Our method to deal with uncertainties appears to be much less conservative than

that in [96]. In fact, our performances are not signiĄcantly different from the

optimal LQG ones for the nominal model while the performance index obtained by

using the method in [96] is much larger. Moreover, even when the difference between

the nominal and the actual model is signiĄcative, robustness against instability is

guaranteed by both methods but in our method the value of the performance index

is signiĄcantly smaller.
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Control Scheme J

standard LQG 40.5

single constraint LQG 340.9

D2-LQG 102.1

Figure 7.4: Inverted pendulum on a cart system: nominal case in which the underlying
system is governed by the dynamics (7.30). Evolution of the closed-loop response x and the
control input u over the time interval [0, 10s], and value of the resulting cost J (7.7). We
compare the performances of the standard LQG controller (in black), the minimax LQG
controller obtained by considering a single relative-entropy constraint (7.26) for the whole
time interval (in blue) and the proposed D2-LQG controller in which an incremental relative

entropy constraint (7.5) is considered (in red).
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Control Scheme J

standard LQG 32273.0

single constraint LQG 392.7

D2-LQG 171.9

Figure 7.5: Inverted pendulum on a cart system: perturbed case in which the underlying
system is governed by the dynamics (7.31). Evolution of the closed-loop response x and
the control input u over the time interval [0, 10s], and value of the resulting cost J (7.7).
We compare the performances of the minimax LQG controller obtained by considering a
single relative-entropy constraint (7.26) for the whole time interval (in blue) and the proposed
D2-LQG controller in which an incremental relative entropy constraint (7.5) is considered (in
red). The evolution of the system controlled with the standard LQG technique is not shown

as the signals diverge.



C
LQG and risk-sensitive LQG control with

state-feedback

In this appendix, we review two fundamental classes of discrete-time, Ąnite horizon,

linear optimal control problems: the LQG control and the risk-sensitive LQG (or linear

exponential-of-quadratic Gaussian) control. After formulating the optimal control prob-

lems, we present formulas for optimal policies and optimal cost. In doing so, we mainly

refer to [6], [126].

C.1 LQG control

Consider the discrete-time linear dynamic system

xt+1 = Axt + But + vt (C.1)

where xt ∈ Rn represents the vector of state variables and ut ∈ Rm is the control input.

The system is affected by the white Gaussian noise v = ¶vt, t ∈ Z♢ with vt ∼ N (0, V )

and V ≻ 0. The initial state x0 = x̄0 is assumed to be a deterministic quantity. Suppose

that the state is measurable and assume state-feedback control policies ut = πt(xt), where

πt is a measurable function mapping Rn into Rm. Introduce the quadratic cost function

J =
1

2

N∑

t=0

(

x⊤
t Qxt + u⊤

t Rut

)

+
1

2
x⊤

N+1QN+1xN+1, (C.2)

where Q ⪰ 0 and R, QN+1 ≻ 0. Given the system (C.1) and the cost function (C.2), the

objective of the LQG control is to Ąnd the control policy minimizing the expected cost

JLQG = min
¶ut, t=0,...,N♢

E[J ].
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It turns out that the optimal LQG control policy is given by

ut = −Ktxt,

where the feedback gain matrix Kt is given by

Kt = R−1B⊤(Π−1
t+1 + BR−1B⊤)−1A,

where the matrices Πt can be determined by solving the backward Riccati difference

equation

Πt = Q + A⊤
(

Π−1
t+1 + BR−1B⊤

)−1
A

ΠN+1 = QN+1.

The corresponding minimum value of the cost function is

JLQG =
1

2
x̄⊤

0 Π0x̄0 +
1

2

N+1∑

t=1

tr(V Πt).

Notice that, when V = 0 (deterministic case), the optimal policy remains the same, but

the optimal cost decreases.

C.2 Risk-sensitive LQG control

In the previous LQG control problem, the optimal feedback is independent of the noise

statistics and, indeed, it coincides with the control law of the deterministic linear quadratic

regulator. An alternative control scheme, which shows enhanced robustness properties

and explicitly takes into account the disturbance distribution, is the risk-sensitive LQG

control introduced by Jacobson in 1973, [72].

Consider the linear time system (C.1) and the quadratic function (C.2). Suppose that

the state is measurable and assume state-feedback control policies ut = πt(xt), where πt

is a measurable function mapping Rn into Rm. The risk-sensitive LQG problem seeks

the control policy which minimizes the cost function

JRS = min
¶ut,t=0...,N♢

1

θ
logE[eθJ ], (C.3)

where θ > 0 is the risk-sensitive parameter measuring the optimizerŠs adversion to risk.
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It is obtained in [126] that the Riccati recursion for the risk-sensitive LQG becomes

Πt = Q + A⊤
(

Π−1
t+1 + BR−1B⊤ − θV

)−1
A

ΠN+1 = QN+1

as long as

Π−1
t+1 − θV ≻ 0, t = 0, . . . , N.

Then, the optimal control policy is ut = −Ktxt where the feedback gain is given by

Kt = R−1B⊤
(

Π−1
t+1 + BR−1B⊤ − θV

)−1
A.

The corresponding optimal cost is

JRS =
1

2
x̄⊤

0 Π0x̄0 − 1

2θ

N+1∑

t=1

log ♣I − θΠtV ♣ .

Note that in case θ = 0, the risk-sensitive LQG reduces to the standard LQG problem.
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Summary and outlook

This thesis dealt with two different, yet intimately connected, problems. In the Ąrst part

of the dissertation, we faced the problem of robustness in the identiĄcation of dynamic

factor analysis models. We focused on discrete-time, linear, Gaussian, stochastic processes

described in terms of few latent variables, and we considered the realistic situation in

which only a Ąnite sample estimate of the underlying model is available. Then, we

proposeed an entropic-based criterion to construct a conĄdence region around the given

estimate and to take into account the uncertainty in the estimation. In this conĄdence

region, we sought for the most parsimonious factor analysis model by solving a convex

optimization problem. This paradigm was applied to the identiĄcation of moving-average

factor models in Chapter 3 and it was extended to autoregressive moving-average factor

models in Chapter 4. Simulations studies, both with synthetic and real data, conĄrmed

the good performances of the procedure even when the cross-sectional dimension is large

with respect to sample size. Some ancillary results that are both interesting per se and

strictly related to the main topic were discussed in Appendix A and Appendix B. More in

detail, in Appendix A a mean-square consistent spectral density estimator was proposed.

In Appendix B we addressed the generalized dynamic factor analysis problem.

It is clear that the applications of the proposed robust approach are not limited to the

dynamic factor analysis problem considered in this dissertation. In fact, it can be applied

to a wider class of problems in which one may want to learn a structured second-order

model having access to a Ąnite-sample estimate of it.

One further application of this paradigm was presented in the second part of the

dissertation, where we dealt with the problem of designing an optimal control policy for

stochastic uncertain systems. We considered discrete-time, linear, stochastic systems for

which only an inaccurate estimate of the underlying probability distribution function

is available. We considered a conĄdence region in the relative entropy topology around

the estimated nominal distribution, then we designed an optimal control policy for the

Şworst systemŤ in the prescribed conĄdence region. The main novelty with respect to the

existing literature on relative entropy distributionally robust control is that the bounds

on the distributional uncertainty can be arbitrarily distributed along the whole system

trajectory. In Chapter 6, we derived a closed-form expression of the worst admissible

system, for which we designed a state-feedback controller in Chapter 7. Numerical

simulations showed the advantages of the proposed procedure and its ability to trade off

optimality and robustness.

Directions for future research regard, in particular, the generalization of the proposed

control scheme to the case in which only some noisy linear combinations of the state are



126 Summary and outlook

available to the closed-loop controller. A second compelling direction is to integrate the

proposed approach in more advanced control techniques, such as the model predictive

control and the regret-optimal control paradigms.
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