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SYNOPSIS 

 

Despite their seemingly immobile nature, plants can move, a fact that has often gone 

overlooked. Recent discoveries have begun to furnish compelling evidence that plants are 

not passive organisms. They are capable of harboring intentions and translating them into 

goal-directed actions. This emerging evidence has sparked a lively discussion regarding the 

cognitive potential of plants. One innovative perspective for the study of plant behavior lies 

in examining it through the theoretical framework of motor cognition, which posits that 

cognition is fundamentally intertwined with action. My thesis is focused on investigating 

motor cognition in plant behavior through a combination of kinematic analysis and 

machine learning techniques. In particular, I dedicated myself to understanding decision-

making, which entails the evaluation of costs and benefits associated with actions carried 

out under different contexts. 

I shall begin this path by providing an in-depth exploration of motor cognition, and 

following this concept, behavior will be discussed as intentional by analyzing its final goal. 

Recent evidence that demonstrates goal-directed behavior in plants will be presented, and 

the possibility of these actions being intentional will be discussed (Chapter 1). This 

discussion highlights the “goal-directedness” of plant movement and sets the stage for my 
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investigation of motor intentions in the plant domain. Given the absence of a designated 

structural basis for cognition in plants, this exploration offers an alternative perspective on 

how cognitive processes may manifest. In doing so, the thesis will provide alternative 

theoretical frameworks –– post-cognitivist theories –– for studying plants that move beyond 

neurocentric paradigms. All of these theories will be used to interpret the experimental 

findings and addressed in the final discussion. 

The thesis will move forward to the topic of plant movement. In Chapter 2, I will 

introduce the physiological mechanisms that drive plant movement. Several types of plant 

movements will be discussed, which serve as the foundation for witnessing the presence of 

movements in plants. In particular, I shall focus on a universal movement exhibited by 

different organs in climbing plants –– circumnutation. 

The theoretical backdrop of motor intention and plant movements paves the way 

for a detailed examination of the experiments conducted. Given the relatively nascent nature 

of the study of plant movements, Chapter 3 will be dedicated to introducing common 

methods employed for this purpose, including time-lapse photography and 3D motion 

analysis. Additionally, the thesis will introduce the potential of machine learning for 

understanding plant movements, setting the stage for my subsequent experiments. 

After providing the theoretical background, in Chapter 4, I will highlight the aim of 

my research, grounded in two goals: first, to examine the motor intentions underlying plant 

support-searching and their associated decision-making processes; second, to enrich our 

approaches to understanding plants through the innovative application of machine learning. 

Then, in Chapter 5, I will describe the general methods employed. 
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Starting from Chapter 6, the experiments will be presented. The first study focused 

on the adaptive behavior of pea plants when faced with the presence/absence of a potential 

support. The results demonstrated not only that plants can discern the presence or absence 

of a support in the environment, but also that they can program their movements 

accordingly. 

In Chapters 7 and 8, I shall report on experiments explicitly designed to investigate 

the decision-making processes underlying plant support-searching. The results indicate that 

plants can make decisions when it comes to supports, and that they show preferences which 

may well stem from a careful evaluation of the environment. Moreover, I will demonstrate 

that the presence of alternatives determines a decisional complexity, that is played out in the 

kinematics of circumnutation. 

From Chapters 9 to 11, I will use machine learning techniques to analyze the plant 

behavioral data I have collected. I employed models for unsupervised anomaly detection, 

supervised machine learning, and ensemble learning. In supervised machine learning, the 

classifiers showed the ability to identify the distinct patterns of circumnutation to make 

predictions regarding plants’ growth across different conditions. Unlike traditional 

statistical analysis, which provides a general overview of the plant movement, the machine 

learning approach allows for the detection of subtle programming abilities nested in the 

kinematical patterning. For instance, I found that it is the movement of the “junction” below 

the “tendrils,” rather than the tendrils, to be modulated during support-searching. 

Harnessing the predictive capabilities of machine learning, these findings provide valuable 

insights into how plants navigate their surroundings and make informed choices. 
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After presenting my experimental work I shall offer a discussion referring to several 

sensory mechanisms, including touch sensitivity and a form of primitive vision, both of 

which could be proposed as potential mechanisms to support plants during the decision-

making process. In addition, I will introduce long-distance signaling pathways, shedding 

light on how plants assimilate information from diverse sensory inputs to make choices. 

The last part of the thesis will examine plant movement through the lens of post-

cognitivist theories that well-espouse the concept of motor cognition. Plants are open systems 

with a remarkable ability to deal with the complexities of an ever-changing environment, 

and they are capable of acquiring and integrating complex information in order to 

implement plastic responses. By nesting my findings within cognitive theories, I hope to 

develop a fresh perspective in understanding cognition and reveal its manifestations across 

taxa. 
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CHAPTER 1  

MOTOR COGNITION

 

“Plants move to survive, to thrive, and to interact with the world in ways we are only beginning to 

understand.” 

                                                                                                                Daniel Chamovitz 

 

Motor cognition entails concepts that generally refer to the integration of cognitive 

processes with motor functions. It often encompasses the notion of action representation 

and the subsequent execution of the action (Jeannerod, 1994, 2006). Action, in the context 

of motor cognition, involves the movements that are generated to satisfy an intention 

directed towards a specific motor goal or as a response to something of significance in the 

physical and social environments. Therefore, it is fundamental that these notions possess 

the nature of being anticipatory, goal-directed, and undergo evolvement in terms of both 

pace and time across various levels of complexity. 

Intention plays an indispensable role in the domain of action representations, as it 

pertains to states that are in close proximity to the execution of the action. Motor cognition, 
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as showing intention in action, is commonly referred to as motor intention because this term 

more precisely conveys the profound connection between intention and its direct 

consequence, which is a goal-directed movement; also, it is typically used to describe the 

early stages of action generation (Jeannerod, 1994). 

This chapter will focus on these concepts that serve to theoretically contextualize the 

kind of plant behaviors I have investigated. Motor cognition offers an ideal theoretical 

window to explain plant behavior because its core seizes the idea that cognition is embodied 

in action. Plant behavior can be discussed as intentional by analyzing its final goal. I shall 

discuss recent empirical evidence that demonstrates goal-directed behavior in plants, and 

consider the possibility of the action being intentional. As this chapter comes to a close, I 

shall introduce several cognitive frameworks that could provide theoretical shelters for the 

presence of cognition nested in plant behavior. 

1.1. Motor Intention1 

The term “intention” encompasses a multitude of concepts that pertain to various 

domains (Barresi & Moore, 1996; Bratman, 1987; Gallese & Goldman, 1998; Perner, 1991; 

Woodward & Guajardo, 2002). An individual can harbor and even voice an intention, a 

desire, an active striving or disposition to do something, just as they can refer to something 

that is purposeful or value-laden. Intention can also refer to beliefs and/or ideas (Searle & 

Willis, 1995), whereas intentionality, in the phenomenological sense, denotes a property of 

 
1 Published: Wang, Q., Guerra, S., Ceccarini, F., Bonato, B., & Castiello, U. (2021). Sowing the seeds of 
intentionality: Motor intentions in plants. Plant Signaling & Behavior, 16(11), 1949818. 
https://doi.org/10.1080/15592324.2021.1949818 
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the mind of representing or standing for states of affairs and/or objects (Searle, 1983), it has 

also been defined as a pervasive feature of many mental states, beliefs, and ideas (Brentano, 

1874; Husserl, 1891). 

The majority of studies in the literature dealing with the role of motor intention 

suggest that the intention of carrying out a specific action is something that precedes its 

actual motor execution (Ansuini et al., 2014; Bonini et al., 2013; Llinás, 2002). Plants were 

excluded from this debate because of being sessile. This isn’t the case though, as plants are 

actually very much in tune with their environment and are indeed capable of a variety of 

movements. Darwin and Darwin (1880), for example, observed that the tendrils of climbing 

plants tend to assume the shape of whatever surface they come into contact with; that is, 

they progressively learn the shape of potential support characteristics (Trewavas, 2017). The 

behavior described implies that the plants perceive the support and plan their movements 

appropriately. Climbing plants seem, in fact, to represent actions in terms of their 

perceivable consequences. To all appearances, the selecting, planning, and initiating of a 

movement is mediated by action-effect anticipations. In accordance with this theory, plants 

may possess a sort of intention that precedes their motoric behavior, that, as for animals, it 

becomes “visible” in the surface flow of an organism’s motion (Ansuini et al., 2014). 

The present section will focus on the theoretical framework pertaining to motor 

intention within a comparative study. Specifically, it will explore how intentions that lead to 

action are represented, as well as the signs of motor intentions observed in plants through 

modular growth and phenotypic plasticity. 



 19 

1.1.1. Motor intentions in animals 

According to Libet (1985), an act is regarded as intentional when (i) it arises 

endogenously, not in direct response to an external stimulus or cue; (ii) there are no 

externally imposed restrictions or compulsions that directly or immediately control subjects’ 

initiation and performance of the act; and (iii) most important, subjects feel introspectively 

that they are performing the act on their own initiative and that they are free to start or not 

to start the act as they wish. The majority of studies dealing with the concept of motor 

intentions in animals espouse the view that motor intention is specified in advance of the 

actual movement execution (Ansuini et al., 2014; Bonini et al., 2013). It was Merleau-Ponty 

(1945) who first coined the term “motor intentionality,” referring to a pattern of 

intentionality exemplified by purposive, goal-directed, unreflective bodily activities. 

According to this definition, there are two ways to explain motor intentions: one involving 

an intentional relation to the object that is essentially cognitive or can serve as the input to 

cognitive processes. Another involves a bodily set or preparation to deal with the object 

(Kelly, 2002). 

According to one authoritative view (Searle, 1983), motor intentions can be 

considered at two distinct levels: prior intention, defined as an intention to act formed in 

advance of the action itself, and intention-in-action, which refers to the representation of the 

desire that causes the act. The intentional content of an intention-in-action consists of self-

referential causality (Searle, 1980). While several theorists have embraced this dualistic 

approach (Brand, 1984; Bratman, 1987; Mele & William, 1992; Pacherie, 2018), nearly all 

theories focus on the motor goal, which –– although at different levels of complexity –– 



 20 

constitutes the core of what intentions represent, that is, “goals and the means to those goals” 

(Pacherie, 2018). 

1.1.2. Goal-directedness 

The concept of goal is central to the literature dealing with the correlates of 

intentional actions. Generally speaking, the undertaking of an action is associated with a 

goal. Movements can be considered goal-directed if they are tuned to the task, and their 

execution is under voluntary control. According to this definition, the desired result of the 

movement, that is, the final goal of the action persists in the agent’s phenomenological 

experience throughout the time the action is unfolding and until it has been completed. The 

goal entails a great deal of the environment around and the possible future events tied to it. 

Goals serve as a representation of the future, not only in a motivational nature, but also 

axiological, or deontic. That means not only about how the world is, but how the world 

should be, and how the organism would like the world to be (Pezzulo, 2008). 

Research on goal-directedness has produced insightful findings revealing, for 

example, how specific kinematic landmarks in reach-to-grasp movements are modulated 

depending on the object’s attributes, such as how far away it is, its size, shape, texture, 

fragility, and weight (Castiello, 2005, 2020, 2023). To attain a goal, an agent must organize 

a reaching-grasping action sequence, taking into account the structural features of the object 

and planning and executing the movement accordingly. A number of behavioral studies in 

humans have indicated that the first part of a complex action sequence (e.g., the arm 

reaching and the hand shaping to grasp an object) is influenced by the final goal and, more 
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specifically, by the motor acts that follow the first part (e.g., lifting, placing; Ansuini et al., 

2008; Ansuini et al., 2006; Armbrüster & Spijkers, 2006; Gentilucci et al., 1997; Marteniuk 

et al., 1987; Rosenbaum et al., 2012). 

1.1.3. Motor intentions in plants 

As pointed out by Marder (2012): “When animals intend to do something, they enact their 

directedness-toward by moving their muscles; their intentionality is expressed in modular growth and 

phenotypic plasticity.” Plants, instead, generate action potentials and synthesize the protein 

RHD3, which is responsible for the correct arrangement of root cell files underlying the 

direction of root growth (Baluška, 2010). This directionality, along with its deliberate 

regulation, is relevant to the quest for plant intentionality. Plant and animal behaviors are 

the outcomes of the goals underlying intentional comportments. In phenomenological 

terms, each type of plant perception expresses a mode of its intentionality: directedness 

toward the light in photosensitivity, directedness toward sources of heat in thermo-sensitivity, 

as well as toward (or away from) self and others in kin recognition. In each of these cases, it 

is not just a question of perceiving, but also of interpreting signals and making decisions in 

a non-automatic manner in the face of at times conflicting conditions. Intentionality here 

assumes the more colloquial sense of deliberate purposeful behavior, raising the questions: 

do plants intend to defend themselves against herbivores? Do they intend to resist the force 

of gravity and the common stresses they experience? 

Studies reporting on individual root systems that are growing to limit the resources 

of their competitors seem to imply that there is some form of intention (Gruntman & 
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Novoplansky, 2004; Maina et al., 2002). The communication network of the cells and tissues 

making up an individual plant may be the mechanistic basis of intention in plant behavior. 

Just like human beings, plants seem to gather information about their surroundings, check 

it out with their internal and external network systems, and make decisions that reconcile 

their own well-being with that of the environment. Spacers, defined as the plant’s 

underground root systems and above-ground stems or shoots that explore the environment 

in the quest for optimal patches of nutrient-rich soil (Bell, 1984), are relevant to this 

argument about plant intelligence and intentionality. As Marder (2012) suggested, spacers 

are another sign of plant intentionality and goal-directed behavior, and confirm that plants 

should not be considered organisms that are passive to their own needs and to what is going 

on in their environment. 

Evidence of intentional actions in plants 

Plants program their movements purposefully and in ways that are flexible and 

anticipatory (Bonato et al., 2023; Ceccarini et al., 2020a, 2020b; Guerra et al., 2022; Guerra 

et al., 2019; Raja et al., 2020; Wang et al., 2023a; Wang et al., 2023b). The tendrils of 

Passiflora exhibit an incredible flexible control of circumnutation while they are searching 

for supports (Baillaud, 1962). Circumnutating Passiflora tendrils can modify their direction 

in conformity with plant-made support that keeps moving from one place to another. The 

support was switched to a different position whenever the tendril approached it, and the 

tendril continued to change its circumnutating movement in pursuit of the support. 

Researchers focusing on the kinematic signatures characterizing the movement of 
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climbing plants have reported that pea plants (Pisum sativum) can program their movement 

in advance and can move their tendrils (i.e., specialized stems, leaves, or petioles used by 

climbing plants to seek, find and attach to a support) depending on the specific 

characteristics of the to-be-grasped support. When researchers studied the kinematic features 

of a pea plant’s movements while it approached and grasped a thick or a thin support, they 

found that the plant perceived the support and modulated the kinematics of its tendrils’ 

aperture depending on the support’s thickness (Ceccarini et al., 2020a; Guerra et al., 2019). 

The peak of the average and the maximum velocity of the tendrils were higher for the thin 

supports than for the thicker ones. Moreover, the times at which the tendrils reached peak 

velocity and the tendrils reached the maximum aperture, both calculated as a percentage of 

the movement duration, were later for the thinner than for the thicker supports. Likewise, 

the maximum distance between the tendrils was significantly greater for the thinner support 

than for the thicker one (Guerra et al., 2019). 

The movement of pea plants appears to comply with the speed–accuracy trade-off 

principle (SAT; Woodworth, 1899), which is the inclination or decision to choose speed 

over accuracy (Ceccarini et al., 2020b). While it has long been known that SATs are a key 

feature of animal movement, the idea that plants use SATs is coming into its own (Chittka 

et al., 2009). By studying the trajectories of the tips of the shoots of climbing pea plants 

leaning to reach a support, Ceccarini et al. (2020a) uncovered that the plants perceived the 

properties of the support even before they made contact with it. Additionally, similar to 

some animal species, the plants were able to modulate movement velocity strategically 

depending on the difficulty of the task. The average and the maximum velocities of the 
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tendrils were, in fact, faster when the plants had to reach and grasp a thinner with respect 

to a thicker support (Ceccarini et al., 2020a). In a subsequent study, Ceccarini et al. (2020b) 

set out to investigate if climbing plants are able to improve the accuracy of their movement 

plan by correcting their secondary submovements. Their findings showed that the plants 

were, in fact, able to correct their movement plan and, just as humans (Meyer et al., 1988), 

they can strategically increase the production of secondary submovements when the task 

requires more precision. These findings support the hypothesis that the movement of plants 

is not a cause-effect mechanism but an appropriately planned, controlled, and, if necessary, 

corrected operation. 

These findings are important because they demonstrate that plants exhibit forms of 

motor intentions that are similar to those of a variety of animal species (Castiello, 2005; 

Castiello & Dadda, 2019; Klein et al., 1985; Sustaita et al., 2013; Whishaw, 1996). They 

also contradict the scientific consensus that plants’ movement is driven exclusively by cause-

effect mechanisms and hard-wired inflexible reflexes. Ultimately, they have heralded a 

change in the way plant behavior is usually considered. 

1.1.4. Decision-making in goal-directedness 

The concept of goal-directedness is essentially intertwined with the ability to 

anticipate the future, wherein decision-making is inevitably involved. Anticipations generate 

goals, which are derived from the valuable information extracted from the environment. 

This means that the goals are anticipatory representations that can select and guide actions 

(Pezzulo, 2008). The act of selecting a comportment is a manifestation of the decision-
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making process. Therefore, an organism that exhibits anticipatory behavior must possess the 

capacity for decision-making. 

In On the Movements and Habits of Climbing Plants, Charles Darwin (1875) coined the 

term circumnutation to describe the elliptical/spiral growth movement around the plant’s 

central axis that could be modified for the good of the plant. He was of the opinion that the 

driving/regulating apparatus responsible for circumnutation was internal (i.e., Darwinian 

internal oscillatory model). This would explain climbing plants that are able to modify their 

circumnutation movement to reach and grasp a potential external support (e.g., a pole, a 

host plant) in the surrounding environment in an effort to grow vertically (Darwin, 1875; 

Gianoli, 2015; Guerra et al., 2019; Runyon et al., 2006; Tronchet, 1977). 

Darwin also advanced the hypothesis that climbing plants are able to sense the 

properties of support structures and to make decisions on the basis of that information. 

Indeed, he was able to illustrate plants’ purposeful behavior when he showed that climbing 

plants perceived a support that was objectively unsuitable because of its smoothness or 

thickness (Darwin, 1875; Gianoli, 2015). Commenting on his experiment with the Bignonia 

capreolata plant, he pointed out that the plant initially exhibited an oscillatory movement 

when an unclimbable smooth glass rod support was presented, but then began to show an 

irregular unwinding movement as if it were seeking to find a suitable support elsewhere. He 

provided in another experiment, the plant with a blackened zinc plate and noted that the 

tendrils initially bent themselves around the edges of the plate but soon recoiled and 

straightened themselves out, as if they were correcting an erroneous decision. In addition, 

he described experiments with the Solanum dulcamara, a plant that he found could twine 
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around supports with a 3 mm diameter but not around one with a 5 or 6 mm diameter, 

which was perceived, evidently, as inappropriate (Darwin, 1875). 

In recent years, a growing body of evidence has confirmed Darwin’s observations, 

and there are numerous reports that plants are able to put in place some forms of decision-

making. For instance, some have investigated the Cuscuta pentagona plant, which needs to 

find and attach itself to a host plant such as the cultivated tomato (Lycopersicon esculentum) 

in order to gain nutrient from it and survive. It has been demonstrated that the Cuscuta 

pentagona is able to locate a host plant via volatile compound cues and to direct its growing 

movement toward it (Runyon et al., 2006). Moreover, it is able to distinguish between 

different types of host plants such as the tomato and Impatiens plants (Impatiens wallerana), 

and to choose the one that is most appropriate for its needs (Runyon et al., 2006). Dener 

and colleagues (2016) investigated decision-making in the root development of the pea plant 

(Pisum sativum) using the risk sensitivity theory (RST). According to RST, the rational 

decision is the one that maximizes fitness (Mcnamara & Houston, 1992). In the study, root 

growth displayed both risk-prone and risk-averse behaviors, which better support the RST 

hypothesis than previous animal testing. It appears that pea plants make rational economic 

decisions in terms of risk sensitivity (Dener et al., 2016; Schmid, 2016). Plant decision-

making is also explored in the context of the social environment. Gruntman and colleagues 

(2017) compared the responses of Potentilla reptans, centered on their ability to out-compete 

their neighbors for accessing light. Observed shifts in the responses between vertical growth, 

shade tolerance, and lateral growth suggest that plants can choose adaptively from several 

alternatives under light-competition scenarios (Gruntman et al., 2017). 
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A theoretical framework in resonance with these experimental findings has been 

proposed by Karban and Orrock (2018). They delineated a judgment and decision-making 

(JDM) model that is specifically targeted to plant behavior, demonstrating that plant 

behavior can be constructively modeled by identifying four distinct components: (i) a cue or 

stimulus that provides information, (ii) a judgment whereby the plant perceives and 

processes this informative cue, (iii) a decision whereby the plant chooses among several 

options based on their relative costs and benefits, and (iv) action. 

Needless to say, this model entails a process leading to action starting from 

perception and passing through decision. To this end, I will now introduce the tenets of 

theories that challenge the necessity of attributing cognitive abilities only to the nervous 

system, as they emphasize the value of cognitive activities in all living systems, surpassing the 

limitations imposed by classic cognitive theories. These theories will serve as helpful lenses 

through which to interpret the experimental findings discussed in Chapter 12. 

1.2. Post-Cognitivism: Eschewing Neuron-Based Ascriptions 

Cognition, a concept often associated with refined mental processes, has traditionally 

been regarded as the hallmark of intelligent entities, predominantly humans and other 

mammals. It is often associated with the brain, implying that it requires a rationalization 

based on representations. For instance, Carey (2011) views the representations as states of the 

nervous system that have content, that refer to concrete or abstract entities, properties, and events. 

These classic cognitive approaches are founded on the notion that mental processes 

are computational processes that operate representations, and adhere to internalist and 
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neuro-centric perspectives, positing that cognition is exclusively confined to the brain 

(Gallagher, 2005). However, recent studies present a counter-argument to the conventional 

viewpoint by revealing a captivating finding: cognition may surpass the boundaries of the 

neurons and is pervasive across an extensive spectrum of living organisms (Baluška, 2010; 

Baluška & Levin, 2016; Calvo & Keijzer, 2011; Castiello, 2023; Souza et al., 2018; Trewavas, 

2017). 

Cognitive phenomena such as associative learning, which have commonly been 

linked to cognitive manifestation in humans, have also been observed in other species 

including plants (Gagliano et al., 2016), insects (Faber et al., 1999), and unicellular 

organisms (Gershman et al., 2021; Pershin et al., 2009; Saigusa et al., 2008). Plants 

demonstrate a diverse range of behaviors that imply the presence of cognitive processes such 

as decision-making, memory, learning, and problem-solving abilities (Gagliano et al., 2016; 

Gruntman et al., 2017; Parise et al., 2021; Runyon et al., 2006), thereby challenging and 

transforming our understanding of cognition. In a similar vein, it has been observed that 

unicellular organisms possess remarkable problem-solving abilities and learning capabilities, 

shedding light on the intricacies of cognition at a microscopic scale (Nakagaki et al., 2004; 

Nakagaki et al., 2000; Saigusa et al., 2008). 

After all, cognition is for doing, not for thinking, and accordingly, the basic concepts 

of cognitive science such as representations are being defined (Pezzulo, 2008). Post-

cognitivist theories including 4E cognition, extended mind theory (Clark & Chalmers, 

1998), ecological psychology (Gibson, 1979), active inference theory (Friston et al., 2017; 

Pezzulo et al., 2015) provide shelters to those “outsiders” in the realm of cognition. This 
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array of approaches offloads cognitive processes onto the environment, and in certain cases, 

they may be regarded as integral components of the cognitive system or exert a causal 

influence on cognitive behavior. Post-cognitivism sprung up as a result of the paradigm shift 

in understanding mental representation as a cognitive process. The majority of the theories 

here dismiss the commitments to representations, and instead, prioritize the relevance of 

bodily processes and interactions with the environment. 

The concepts of 4E cognition (embodied, embedded, extended, enactive) present 

transformative paradigms across the fields of cognitive psychology, molecular biology, 

neuroscience, and physiology. Unlike classic views that center exclusively on the brain as the 

primary locus of cognitive processes, the 4E cognition asserts that cognition is fundamentally 

influenced and dispersed throughout the entirety of the body, the environment around it, 

and the interaction between the organisms and the environment. The notion of body–

environment coupling is a fundamental principle within these frameworks although its 

precise definition may vary. 

Embodied cognition 

Embodied cognition can be referred to by various definitions that place emphasis on 

different subsets of claims while sometimes dismissing others (Gallagher, 2005, 2023). In 

general, the embodied cognition theory posits that both the neural and extra-neural 

processes, along with their interaction with the environment constitute significant factors 

(Gallagher, 2023). This perspective highlights the integral connection between the mind and 

the body, establishing that cognitive processes are deeply shaped by bodily experiences, 
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sensory-motor interactions, and emotional states. In this view, the body is not merely a 

passive container for the mind, but rather an engaged contributor that influences our 

thoughts, perceptions, and understanding of the world. Wilson (2002) put forth a six-view 

summarizing different perspectives in embodied cognition, and they are: (i) cognition is 

situated that the environment in which it happens plays a significant role; (ii) cognition is time-pressured; 

(iii) we offload cognitive work onto the environment; (iv) the environment is part of the cognitive system; 

(v) cognition is for action; (vi) offline cognition is body-based. It is argued that the fourth view to be 

the most problematic (Wilson, 2002), still, embodied cognition recognizes the reliance of 

organisms on environmental cues and signals to navigate their surroundings, locate 

resources, and respond to cues. 

Embedded cognition 

Embedded cognition expands upon the cognitive perspective by acknowledging that 

cognitive processes are not confined within the human mind but rather are deeply associated 

with the environment (Clark, 2008). The environment functions as an external repository 

of information and an extension of cognitive abilities, offering one to offload mental tasks 

onto the physical realm. Within the spectrum of organisms, embedded cognition points out 

that cognitive activities are deeply intertwined with the organism’s ecological niche which is 

resources and affordances (Gibson, 1977) provided by its environment. An example of 

cognitive offloading within the framework of embedded cognition can be observed in the 

behavior of a spider, which utilizes its web as an external memory to monitor the 

whereabouts of its prey. This strategy effectively alleviates the cognitive load on the spider’s 
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nervous system. This particular viewpoint offers a comprehensive comprehension of the 

manner in which cognitive processes are situated and distributed throughout living systems. 

Extended cognition 

Clark and Chalmers (1998) put forward the extended cognition hypothesis, stating 

that cognition has the potential to extend beyond the physical boundary of an organism into 

its environment, becoming both embodied and embedded within its environment. This 

perspective suggests that cognitive processes can incorporate external objects that are not 

inherently a part of the organism. Given this view, it is proposed that the environment exerts 

an active role in facilitating cognitive processes, and these processes extend beyond the 

central nervous system and the physical body, spanning the organism’s ability to engage 

actively with and manipulate the environment to optimize its cognitive abilities. Such as the 

case of extended spider cognition, which involves the outsourcing of information processing 

to the body or the environment (Japyassú & Laland, 2017). It has been demonstrated that 

web builder spiders adjust the tension of their thread by extending their cognition and 

adjusting the tension of the web threads. Tighter web threads lead to a lower threshold of 

disturbance needed to catch the spider’s attention. Thread tension thus calibrates the 

threshold level for attention. When tight, tinier objects such as prey items are registered, the 

causal chain is satisfied in one direction. The spider, in turn, adjusts its web tension based 

on its hunger state. In practice, a hungrier spider will tend to tighten the web as even smaller 

prey is worth its attention. This demonstrates that the cognitive capacities of the spider also 

affect its environment (Japyassú & Laland, 2017). 
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Enactive cognition 

Enactive cognition focuses on the active and dynamic features that define cognition, 

advocating that cognitive processes arise from an organism’s continuous interactions with 

the environment (Schlicht & Starzak, 2021). Cognition rather than seen solely as a passive 

representation of the external world, is conceptualized as a fluid process of sense-making and 

meaning construction enabled by embodied action and perception. There are several 

enactive proposals including the autopoietic (Thompson, 2010), the radical (Hutto & Myin, 

2012), and the sensorimotor approach (O’regan & Noë, 2001). Regardless of their 

differences, all of these approaches share the common view on cognition, that is the enactive 

approach depicted (Varela et al., 1991): “Perception consists in perceptually guided action, and 

cognitive structures emerge from the recurrent sensorimotor patterns that enable action to be 

perceptually guided.” Radical enactivists claim that experiencing organisms are set up to be set 

off by certain worldly offerings –– that they respond to such offerings in distinctive 

sensorimotor ways that exhibit a certain minimal kind of directedness and phenomenality 

(Hutto & Myin, 2012). The feature of the worldly offering are often identified with what 

Gibson (1979) called affordances, that is what the environment offers the organisms, and 

what it provides or furnishes, either for good or ill. The enactivistic theories rely heavily on 

Gibson’s ecological approach to perception. The idea of coupling and affordance are 

important conceptual tools in the accounts of perception (Hutto & Myin, 2012; O’regan & 

Noë, 2001; Schlicht & Starzak, 2021). 
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1.2.1. 4E: Implications for the explanation of plant behavior 

Recent findings suggest that plants interact with objects in the environment in an 

intentional manner (Ceccarini et al., 2020a, 2020b; Guerra et al., 2019; Raja et al., 2020). 

It has been demonstrated, for example, that they perceive a support and modulate their 

kinematics depending on its thickness. It has also been reported that the biological and 

behavioral dynamic nutation patterns of bean plants are influenced by the presence of a 

support in their vicinity (Raja et al., 2020). These findings are in line with some theories 

regarding motor intention. Merleau-Ponty’s definition of motor intention as purposive, 

unreflective goal-directed activities is a pretty accurate description of a climbing plant leaning 

toward a support. Further, as said above, according to Libet (1985), an act is intentional 

when (i) it arises endogenously, not in direct response to an external stimulus or cue; (ii) 

there are no externally imposed restrictions or compulsions that directly or immediately 

control subjects’ initiation and performance of the act; and (iii) subjects feel introspectively 

that they are performing the act on their own initiative and that they are free to start or not 

to start the act as they wish. The behavioral manifestations of climbing plants reported here 

seem to agree with Libet’s definition of intentional actions. In fact: (i) climbing plants can 

move and choose a support on the basis of their endogenous need to seek the sun. An 

unsuitable or no support fails to satisfy their intention; (ii) climbing plants control their 

circumnutation movement and interact with their surroundings without any externally 

imposed compulsions; it is a behavior that arises from their very nature; (iii) climbing plants 

act freely and are able to terminate the process when the support is not suitable or when 

there is no support. 
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Some may say that this conceptual framework does not work for plants because, in 

order to act in a goal-directed manner, they need to be able to construct a representation of 

the environment, including potential supports. And it goes without saying that many argue 

a priori that cognition is impossible in plants (Adams, 2018). In classical views, mental 

representations are created by a number of neurophysiological mechanisms in the brain that 

are activated after perceptual processing occurs. The events activating mental representations 

take place, according to this view, in the following order: physical signals are received 

through the perceptual systems and transmitted to the brain, then the physical signals are 

translated into mental representations (e.g., concepts, intentions) with the mind in charge 

of processing them, finally the motor system operationalizes the mind’s will. 

This explanation of mental representations does not take plants as cognitive agents 

into consideration since they lack a brain and a centralized nervous system (CNS) where 

mental states and representations can be localized. Scholars favoring the 4E cognition are 

challenging the notion of representational content by taking into consideration extra-neural 

bodily structures and the environment (Clark, 2008; Clark & Chalmers, 1998; Di Paolo et 

al., 2017; Gallagher, 2005, 2023; Gibson, 1977; Hutto & Myin, 2012, 2017; Noë & Noë, 

2004; Schlicht, 2018; Thomasson, 2007; Thompson, 2010; Varela et al., 1991). According 

to Gibson (1979), for example, cognitive activities do not necessarily depend on mental 

representations but on affordances. What an organism perceives of an object is not only its 

physical properties but also its affordances, in other words, what it can do with them (Gibson, 

1979). The key to understanding affordance is that it is relational and characterizes the 

suitability of the environment to the organism, which means that it depends on their current 
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intentions and capabilities. The notion of intention is crucial here because the same 

environment can provide various affordances to different organisms or to the same organism 

at different times. For instance, the defensive leaf-folding behavior of the Mimosa pudica 

plant in response to repeated physical disturbances exemplifies how affordances can be 

adjusted by the same organism (Gagliano et al., 2014). 

In the extended cognition theory, the environment plays an active role in cognitive 

processes that are not confined to the CNS or to the body (Clark, 2008). Plants too can 

extend their cognitive processing into their environment by actively modifying the 

rhizosphere and the soil directly influenced by root secretions, as well as shaping the root 

microbiome to the microbial community of the roots (Parise et al., 2020; Parise & Marder, 

2023). This process allows plants to extend their sensorial apparatus and externalize a part 

of their information-processing system. As a result, seeing plants as isolated organisms 

distinct from their surroundings becomes inadequate (Parise & Marder, 2023). It has been 

seen, for example, that the accumulation of exudates between obstacles and the roots is 

related to the plant perception of obstacles in the soil, causing inhibited root growth in the 

direction of the accumulated exudates (Falik et al., 2005). 

The enactivist approach to cognition is another alternative one that would allow us 

to consider plants as cognitive agents and circumvent some of the challenges linked to the 

mental representation theory (Calvo & Keijzer, 2011; Carello et al., 2012; Castiello, 2020; 

Maher, 2017). De Carvalho and Rolla (2020) proposed an enactivist–ecological approach 

according to which complex cognitive capacities such as ones involving representations are 

deeply rooted in the basic processes that enable biological organisms to survive and maintain 



 36 

their integrity in a dynamic environment. The approach offers a base upon which the theory 

of cognition in single-cell organisms, plants, animals, and humans can be constructed. 

The 4E cognition theories allow cognition to be not-just-in-the-head and extend 

beyond the constraints of the body. Putting aside a representational approach, plant 

behavior can be interpreted under a different light. The experiments on pea tendrils 

reported that they acted in an intentional goal-directed manner in an embodied form of 

cognition in which the plant and the stimulus (i.e., the support) interacted as a single unit 

(Guerra et al., 2019). The environment, in this case, could be considered part of the plants’ 

intention as it approached the support it intended to grasp. 

Contemporary theories aligned with the classic post-cognitivist theories by placing 

more emphasis on ascribing cognition to the entirety of mechanisms and processes that 

underlie information acquisition, storage, processing, and use, at any level of organization 

(Baluška & Levin, 2016; Lyon, 2015). The debate has also seen active involvement from 

various theories, including the anticipatory approach (Pezzulo, 2008; Sims, 2023), 

biosemiotics (Barbieri, 2008), information integration theory (IIT; Tononi, 2004), quantum-

based approaches (Barlow, 2015), free-energy principle (Friston, 2010, 2013; Sims, 2021b), 

and predictive-processing (Calvo & Friston, 2017; Hohwy, 2013; Sims, 2019). The shift in 

our understanding of cognition, transitioned from the question “whether the brain is a 

prerequisite for cognitive abilities” to the acknowledgment that “all biological systems 

possess some form of cognitive potential.” Plant behavior, in this context, requires no 

justification for being cognitive, as it is essential for all living systems to exhibit cognitive 

abilities to be adaptive to the environment. At its core, cognition refers to the ability to 



 37 

acquire, process, and interpret information to interact with the environment effectively. The 

differences in cognitive processes and manifestations in the species of life are clear, yet a 

common thread can be found in the remarkable adaptive behaviors and responses exhibited 

by these living systems (Levin, 2023; Lyon et al., 2021; Sims, 2021a).  

All in all, the post-cognitivism provides compelling arguments against the 

anthropocentric perspective on cognition. By acknowledging cognitive abilities in a broader 

spectrum of organisms and accepting the inseparable connection between cognitive agents 

and their environments.  
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CHAPTER 2  

PLANT ON THE MOVE 

 

“The more I study nature, the more I become impressed with ever-increasing force, that the 

contrivances and beautiful adaptations slowly acquired through each part occasionally varying in a 

slight degree but in many ways, with the preservation of those variations which were beneficial to the 

organism under complex and ever-varying conditions of life, transcend in an incomparable manner the 

contrivances and adaptations in which the most fertile imagination of [hu]man could invent.”  

                                                                                                                  Charles Darwin 

 

The understanding of plant movements has developed over time, stemming from 

the realization that plants are not as immobile as thought. This journey departs with Jean-

Baptiste Lamarck (1744 – 1829) who studied the touch-sensitive mechanisms of Mimosa 

pudica. Later on, René Desfontaines (1750 – 1833) asked his students to observe the 

behavior of Mimosa pudica by putting them in a hackney cab for a nonstop tour on the road 

of Paris (Mancuso, 2018). 

Then it was with Charles Darwin that plants movement was given the necessary 
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attention and was comprehensively examined. In the seminal work On the Movements and 

Habits of Climbing Plants, he extensively analyzed the behavior and physiology of climbing 

plants, and described how they interact with the environment by exhibiting movements in 

their growth patterns. In a subsequent book entitled The Power of Movement in Plants (1880), 

he and his son Francis explored various aspects of plant movements, encompassing the 

examination of phototropism and geotropism, the influence of music on plant growth in 

mimosa plants, the co-evolutionary relationship between plants and their pollinators, the 

nature of circumnutation in climbing plant organs, and most importantly, the recognition 

of the importance of external factors in shaping plant movements. The emergence of 

scientific investigation spearheaded by Darwin regarding the behavior and response of plants 

has resulted in significant changes in the comprehension of plant behavior. 

This chapter covers the many different domains of plant movement, starting with a 

comprehensive look at the hydraulic and mechanical instability processes that underpin 

these movements. Then moving forward to the realm of the movement types exhibited by 

plants. A pivotal focus of this investigation on plant movement lies in the enigmatic world 

of climbing plants, renowned for their unique ability to interact with and ascend preferred 

supports. The phenomenon of circumnutation movement and its mechanisms, which add 

a layer of complexity, will be introduced. 

2.1. Plant Movements: The Mechanisms 

Within the tranquil landscapes of the botanical sphere resides a realm characterized 

by hidden intricacies, whereby plant movements occur with precision and intentionality 
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(Castiello, 2020, 2023; Wang et al., 2021). Ever since Darwin’s pioneering work, it has been 

shown that plants display systematic movements as a means to compensate for their inability 

to move from their stationary position (Darwin, 1875; Darwin & Darwin, 1880). The 

diversity and extent of the mechanisms governing the movement of plants is broad. Unlike 

animals who rely on muscular coordination, plants have evolved specialized fluid-driven 

mechanisms to generate movements. Hydraulic processes are the primary engine of plant 

movements, with the majority of these movements occurring over extended periods of time. 

Nevertheless, a rapid motion might be facilitated in plants by means of mechanical instability, 

upon reaching a certain pressure threshold in the cell walls. 

Throughout all stages of growth, from shoot to root development, plants 

demonstrate both slow-motion movements driven by hydraulic principles and rapid motion 

facilitated by mechanical instability. In the long run, these mechanisms support plants to 

perform various adaptive movements for dealing with changes in their environment. 

2.1.1. Hydraulicity 

Plants deploy a hydraulic process that facilitates the flow of water in and out of their 

cells, via their semipermeable membranes. Turgor pressure and osmosis are the primary sources 

for generating movements in the modulation of cellular volume and tissue stiffness. Turgor 

pressure in plants arises from the osmotic flow of water, which is a force produced by the 

plasma membrane and the cell wall when they push against each other. An elevation in 

turgor pressure causes swelling in cellular volume, whereas a drop in turgor induces 

shrinkage. The range of turgor pressures fluctuates as small as 0.1 – 0.4 MPa in plant cells, 



 42 

and up to 4 MPa in the stomata (Franks et al., 2001; Taiz & Zeiger, 2002). Plants can be 

resilient by adjusting their internal pressure values through the process of osmosis. One 

feature that distinguishes plants from the majority of organisms is the presence of a cell wall 

that encloses their cells. This stiff cell wall, composed of cellulose microfibrils, is used to 

sustain a broad range of pressures, which is embedded inside a matrix of polysaccharides 

(Carpita & Gibeaut, 1993). The maintenance of pressure in cells is achieved through the 

continuous adjustment and equilibrium of an osmotic gradient between the cytoplasm of 

the cells and their surrounding environment. A high turgor pressure can induce a 

mechanical force, resulting in cellular deformation and observable macroscopic motion in 

plants. 

In addition to the basic water exchange, there exists another type of hydraulic 

movement known as small reversible changes in cell volume. This can be altered within the 

elastic range, a phenomenon often influenced by the transportation of ions through specific 

pumps. The opening and closing of stomata are the most widely recognized reversible 

movements observed in plants (Meidner & Mansfield, 1968). 

Hydraulic movements are widely observed in various plant species, and they operate 

as vital mechanisms in various fundamental processes involved in growth and development 

(Beauzamy et al., 2014; Cosgrove, 1987; Dodd, 2013; Fricke & Flowers, 1998; Steudle, 2000; 

Zimmermann et al., 2013). Growth, which manifests as the elongation of the stems, is the 

most pervasive phenomenon driven by hydraulicity. 

The movements in plants can be attributed to a specific organ known as the pulvinus, 

which is located at the junction between the leaf and stem. According to Hill and Findlay 
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(1981), the angle of motion in the pulvinus can be altered due to a discrepancy in osmotic 

swelling or shrinking between its opposing sides. The pulvinus movement usually takes time; 

however, in unusual cases such as Mimosa pudica, it can occur within a matter of seconds. 

The foliage of mimosa plant has a double pinnate structure, with the leaves positioned at an 

angle of 60 degrees in reference to the stem. When they encounter a mechanical stimulation 

such as touch, shaking, or blowing, this stimulus triggers an action potential that propagates 

from the stimulated leaflet to the pulvinus. Following that, the action potential spreads from 

the pulvinus to other parts of the mimosa along the petiole, which is a structure that attaches 

the leaf blade to the stem. The mimosa plant exhibits an interesting movement whereby its 

leaflets move in pairs, ascending and closing along their upper surfaces, while simultaneously 

bending towards the apex of the scion. The scion, which refers to the part of the grafted 

plant responsible for developing shoots, exhibits a concurrent downward bending. 

In addition to the hydraulic mechanisms driven by osmotic gradients, several events 

have demonstrated that osmotic gradients do not solely govern the processes of water 

exchange between cells and their external environment. Passive actuation, driven by humidity 

gradients, is one of the processes observed among others. When plants are exposed to a dry 

environment, they initiate passive movements that are influenced by the processes of 

hydration and dehydration. Plant species, including pollen grains, are consistently 

challenged by an uncomfortable osmotic environment (Katifori et al., 2010). When 

confronted with such a challenge, the phenomenon of evaporation occurs as cells are 

subjected to a dry environment characterized by a reduced partial hydraulic pressure, causing 

alterations in cellular volume. Hygromorphs, which are a different kind of humidity-induced 
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movements, are observed within the sclerenchyma tissue in dead cells (Jost & Gibson, 1907). 

A degree of asymmetry in the orientation of the fibrils within the sclerenchymal cell wall 

reforms the local swelling/shrinking at the cellular level into a perceptible bend movement 

(Reyssat & Mahadevan, 2009). 

2.1.2. Mechanical instability 

Plant cells and tissues permit the flow of water between the cell membrane and plant 

tissue in order to support growth and expansion. Therefore, the speed of water-driven 

movements is constrained by the maximum transportation velocity in the organ body 

(Skotheim & Mahadevan, 2005). Some plant species have evolved several mechanical 

instabilities to generate rapid movements, surpassing the capabilities of basic water-driven 

mechanisms. These strategies operate by taking advantage of the water flow, propelled by 

osmotic or humidity gradients, to gradually store elastic energy within the cell walls. Once 

the pressure surpasses a critical threshold, it causes the overcoming of the energy barrier, 

leading to the abrupt release of elastic stress (Dumais & Forterre, 2012). Landau and Lifshits 

(1986) described the concept of geometric frustration as a mechanism to empower a 

movement like snap-buckling instabilities. This phenomenon is predicated upon a 

deformation mode in terms of elastic energy. In carnivorous plants, a thin shell can be 

structured in a certain configuration when the maximum energy barrier is not surpassed. 

However, accumulating elastic energy with increasing pressure can trigger the shell to surpass 

the energy barrier. Then, the stored energy is discharged as the system snaps into the minimal 

elastic energy configuration. 
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The rapid closure of the Venus flytrap (Dionaea muscipula) is one of the most well-

known plant movements, which is marked by a snap buckling instability. The closure 

movements observed in Venus flytrap can be attributed to three phases: a slow initial phase 

lasting 1/3 second, followed by a rapid intermediate phase lasting 1/10 second, and finally 

a second slow phase lasting 1/3 second (Forterre et al., 2005). Upon the stimulation of the 

touch, the trap begins to operate, leading to the onset of a slow initial phase. During this 

phase, elastic energy is gradually stored until the energy storage reaches a critical threshold, 

at which point the open curvature of the trap becomes unsustainable. Then, the two lobes 

undergo a process of inward curvature during the phase of rapid intermediation. Lastly, a 

second slow snapping phase ensues to complete the motion. The closure process takes an 

extended period of time and exhibits a higher level of hydration compared to simply inertial 

snapping. 

2.2. Types of Plant Movements 

Plants demonstrate a remarkable assortment of movements that can often escape 

from our perception. They exhibit a remarkable ability to move, ranging from the curvature 

of their stems towards sunlight to the rapid folding of their leaves in reaction to tactile 

stimulation. The fascinating world of plant movements reveals complex dynamics that shape 

their interactions with the surrounding environment and bring out their ability to adapt. 

Among the plant movements, tropic and nastic movements emerge as captivating chapters 

in this narrative of botanical mobility (Darwin & Darwin, 1880). 
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2.2.1. Tropic movements 

Plant tropisms refer to the phenomenon of plants undergoing a reorientation 

process in reaction to environmental stimuli, such as light and touch. Tropic movements 

are characterized by their relatively slow pace and extended duration. Each tropic response 

consists of its own assemblage of chemicals/hormones that play essential roles in perceiving 

signals, amplifying and attenuating signals, and facilitating the development of the growth 

response (Esmon et al., 2004). Positive tropism is an expression used to describe the behavior 

in which a stem exhibits bending towards a light stimulus, whereas negative tropism relates 

to the behavior wherein a stem moves away from it. Tropism covers a wide range of 

movements, including phototropism (i.e., response to light), gravitropism (i.e., response to 

gravity), thigmotropism (i.e., response to touch), heliotropism (i.e., the sun-tracking 

movement), chemotropism (i.e., response to chemicals), and hydrotropism (i.e., response to 

moisture). Below, I will present a review of the main tropic movements. 

Phototropism 

Undoubtedly, the phenomenon of plants exhibiting positive phototropic growth 

towards light has been a subject of considerable scientific interest. However, the underlying 

mechanism that governs this light-responsive behavior remained unclear until the reports by 

Darwin (Darwin, 1875; Darwin & Darwin, 1880). Darwin’s observations focused on the 

phenomenon in which the tip of an oat coleoptile displayed a curvature towards the light 

source when exposed to lateral illumination. He hypothesized the existence of a light-sensing 

receptor located at the tip of the shoot. Following Darwin’s pioneering insights, Went (1928; 
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1935) made significant advancements in identifying auxin (indole-3-acetic acid; IAA) as a 

substance that fosters growth. The redistribution of auxin within plants may potentially serve 

as the driving force behind their phototropic response. Auxin synthesis takes place within 

the shoot tip and is subsequently transported in a downward direction from the apex, this 

process is known as the basipetal movement (Goldsmith, 1966). The coordinated action of 

this process produces a discernible disparity in auxin distribution within the plant. The 

highest concentration of auxin is found at the tip of the shoot and gradually decreases as it 

is transported throughout the plant. The fluctuation in auxin concentration also gives rise 

to contrasting sensitivities, with the shoot tip exhibiting decreased sensitivity while the root 

exhibits increased sensitivity. 

The Cholodny–Went theory elucidates the mechanistic underpinning of 

phototropic response, particularly in cases where the incident light does not exactly coincide 

with the apex of the shoot but instead arrives at an oblique angle (Trewavas, 1992). The 

arrival of imbalanced light input leads to varying amounts of illumination on opposite sides 

of the shoot tip. As a result, a greater influx of auxin is directed towards the less illuminated 

side, instigating cell expansion in that region, thereby inducing the curvature of the shoot 

towards the direction of the light source. 

While positive phototropism is a commonly observed phenomenon in plants, it is 

important to note that plant behavior also includes instances of negative phototropism. It is 

worth noting that certain climbing plants demonstrate a preference for growing in the 

direction of shaded areas. In a similar vein, Ruppel et al. (2001) determined that red light 

photoreceptors induce a reorientation of root tips away from the source of light in 
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Arabidopsis. These intriguing instances underscore the nuanced and diverse nature of plant 

responses to light stimuli. 

Thigmotropism 

Thigmotropism, a phenomenon that refers to directional response caused by the 

induction of differential growth upon physical touch. The core principle of thigmotropism 

is based on the phenomenon of unilateral growth inhibition, where the rate of growth on 

the side of the stem that is touched is suppressed compared to the opposing side. The 

development of elaborate growth patterns can be observed in flowering plants, fungi, tendrils, 

and twining plants. Darwin’s work (1875) contributed to the understanding of the tactile 

perception displayed by climbing plant species, something they employ to identify the most 

suitable structure. The circumnutation movements shown by the shoot enable them to come 

into close proximity with a surrounding support, then they bend towards and finally, they 

encircle around it. The thigmotropic modality enables climbing plants to efficiently look for 

and capitalize on vertical supports. The case of pea plants is noteworthy, as their tendrils 

embody the thigmotropic reaction. The tendrils engage in oscillatory movements until they 

come into contact with a sufficient support structure, at which point they securely attach 

themselves to the neighboring substrate. Nevertheless, in cases where the attempt proves 

unsuccessful, many outcomes may arise, including rigidity, coiling initiation, or withering 

away (Darwin, 1875). 

The interplay between thigmotropic movements and gravitropic responses reveals an 

intriguing dynamic (Massa & Gilroy, 2003). Root tip growth is an exquisite example of this 
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“symbiotic” relationship, as its ideal development requires the integration of both tactile and 

gravitational inputs. When faced with obstacles, roots clearly demonstrate an evident 

negative thigmotropic reaction, which is coupled by a simultaneous suppression of the 

gravitropic response. This allows the roots to effectively avoid obstacles. 

2.2.2. Nastic movements 

In parallel with tropism, nastic movements are directional responses that occur 

irrespective of the stimulus’s position. They are rapid, reversible, and non-directional 

movements exhibited by plants in response to various external stimuli. Nastic movements in 

plants allow rapid responses to environmental fluctuations, enhancing their prospects for 

survival and reproductive success. Some carnivorous plants, for instance, Dionaea trap, use 

orientational nastic movements in response to direction-independent stimuli. The initiation 

of these movements can be attributed to several causes, including temperature, mechanical 

stimulation, and circadian rhythms. It frequently arises from changes in the water content, 

ion concentration, or hormone distribution inside cells, leading to alterations to turgor 

pressure and the shape of cells. A range of nastic movements can be observed in plants, 

including nyctinasty (i.e., sleep movements), seismonasty (i.e., movements in response to 

mechanical stimulations), thermonasty (i.e., temperature response), epinasty (i.e., downward 

curvature), hyponasty (i.e., upward curvature), and circumnutation. 

Epinasty & Hyponasty 

Plants have developed intricate systems of movement in order to effectively respond 

and adapt to the ever-changing conditions in their environments. This adaptive reaction 
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allows them not only to survive but also thrive in their environment. These responsive 

mechanisms frequently originate from changes in turgor pressure or growth patterns, 

wherein epinasty and hyponasty emerge as prominent examples of these responses. 

Epinasty is featured as a downward curvature, driven by an augmented rate of cell 

expansion on the upper adaxial side of the organ compared to the lower abaxial side. It is 

jointly regulated by gravity, ethylene, and auxin. This movement is commonly observed in 

monocotyledons when the entire leaves show a curving response, or in dicotyledonous plant 

species where the upper side of the leaf petiole shows growth. Epinasty can also be observed 

in orthotropic structures, such as stems or pedicels. Notably, the region where the curvature 

is initially discernible undergoes subsequent acceleration in elongation, eventually 

culminating in an apical orientation, leading the organ’s tip to form an angle with the 

vertical stem (Palmer, 1985). This response is frequently triggered in the presence of 

unfavorable environmental conditions, such as drought, waterlogging, salinity stress, or 

pathogenic invasion. 

Hyponasty produces an upward bending curvature, contrasting with epinasty. This 

movement is frequently encountered in leaf clades of both monocotyledons and 

dicotyledons, as well as in leaf petioles (Voesenek & Blom, 1989). Notably observed among 

rosette species, hyponasty often emerges as a response to environmental challenges such as 

flooding, proximity to neighboring plants, or elevated ambient temperatures (Polko et al., 

2011). The coordination of hyponastic responses is supported by an intricate link between 

ethylene and auxin. An example of this can be seen in semiaquatic plants such as Rumex 

palustris, where younger petioles display an upward curvature as a reaction to being fully 
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submerged (Polko et al., 2011). In this scenario, auxin and gibberellins (GAs) function as 

downstream targets for ethylene, regulating specific stages of submersion-induced hyponasty. 

The onset of petiole hyponasty is primarily dependent on the transportation of auxin, but 

the initiation of hyponastic growth and the maintenance of maximal petiole angles are 

regulated by ethylene and gibberellins (Polko et al., 2011). The movement of hyponasty, 

when combined with increased linear elongation, enables plants to regain contact with the 

atmosphere, thereby facilitating the restoration of efficient gas exchange (Voesenek & Blom, 

1989). 

2.3. The Case of Climbing Plants 

Climbing plants, a unique class of species, survive and thrive by finding potential 

host/support in the environment through hydraulic mechanisms. They have evolved 

specialized anatomical structures and physiological mechanisms to climb, attach, and cline 

onto physical objects. These plants exhibit fascinating growth patterns and adaptive 

responses that enable them to ascend vertical surfaces and enhance light acquisition and 

other vital resources. 

Darwin (1875) described how he monitored the slow growth/movement of climbing 

plants that were visible to the human eye or carefully measured them at regular intervals. 

On the basis of these records, he was able to conclude that the leaves, stems, and roots of 

plants move in circles over long periods of time, coined as circumnutation (Darwin, 1875; 

Darwin & Darwin, 1880). He categorized climbing plants based on their climbing 

mechanisms into five main classes (see also Isnard & Silk, 2009): 



 52 

i. Twining plants: This category includes plants that exhibit a helical movement 

trajectory with extensive arcs during the exploration of the potential support. 

Typical twining plants such as Dioscorea spp. and Ipomoea spp. adopt the 

movements of circumnutation in its growing organs. 

ii. Leaf-climbers and irritable organs: Darwin described leaf-climbers as climbing 

with the help of a sensitive petiole that curves and grasps the support after 

contact. Leaf-climbers are commonly seen in tropical lianas and are known for 

their rapid circumnutating movements and sensitivity to touch (Treub, 1883). 

iii. Tendril-bearers: Circumnutation movement is also found in tendril-bearers, 

most evidently at the tendrils. Tendrils are long, delicate, specialized organs with 

a threadlike shape derived from stems, leaves, or peduncles. Plants like Pisum 

sativum use tendrils as a means of finding a support and securing an attachment. 

Jaffe and Galston (1968) have delineated the three main movements observed in 

tendrils. The initial movement, circumnutation, involves a winding movement 

around a stimulus, enhancing the likelihood of contact with support. Following 

by the second movement which is known as contact coiling, wherein the tendrils 

exhibit a coiling behavior around the support. The third movement observed is 

referred to as free coiling, which occurs autonomously regardless of the type of 

stimulation. In this case, the tendrils exhibit a helical tube structure that wraps 

around its own axis. 

iv. Root-climbers: Also known as clinging-climbers, are a class of climbing plants 

that uses their adventitious roots to attach and anchor themselves to vertical 
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surfaces. Root-climbing plants commonly have very little adhesive structures 

known as holdfasts or adhesive pads on their roots. These anatomical features 

are responsible for the secretion of substances that help with the adhesion of 

roots to surfaces, offering stability and support to the plant throughout its 

vertical growth. Some examples of plant species that fall under this category are 

Parthenocissus species and Hedera species. 

v. Hook-climbers: The class of hook-climbers encompasses plants that use passive 

means such as recurved spines, hooks, or thorns to ease their climbing behavior. 

Uncaria spp. and Rubiaceae are considered to be the most exemplary. According 

to Darwin (1875) and Putz (1984), hook-climbers may not display spontaneous 

circular movements and have a lower level of adaptability for climbing. Hook-

climbers use distinctive anatomical features in the form of unique hook-shaped 

structures that enable them to firmly adhere to various surfaces providing 

support. 

After providing an overview of plant movements and specifically discussing climbing 

plants, it becomes evident that the movements exhibited by plants hold a wealth of scientific 

inquiry. My research is primarily centered on the phenomenon of circumnutation, the 

forthcoming sections will further introduce circumnutation and its underlying mechanisms, 

elucidating the physiological, cellular, and molecular processes involved in it. I shall also 

present some evidence from previous observations that shed light on climbing plants’ 

preference toward supports characterized by specific features. 
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2.3.1. Circumnutation in climbing plants 

Darwin (1875) described circumnutation as “a continuous self-bowing of the whole shoot, 

successively directed to all points of the compass.” Derived through careful observation, he defined 

circumnutation as a helical movement of organs, exhibiting morphological variations. 

Circumnutations can be observed across the plant kingdom, as they occur from the roots to 

the shoots in different plant species. The tips of the shoots, the leaves, and the roots, all 

execute a similar movement trajectory as sway in circles as they grow. 

With circumnutations, shoots explore the outer world for finding a potential 

support while roots conquer the belowground to secure essential nutrient intake. Darwin’s 

investigative focus was directed toward twining plants, as these species exhibit pronounced 

circumnutation in their twining stems. The heightened circumnutation in twining plants 

serves to increase the likelihood of encountering a suitable support structure. Some twining 

plants, such as Dioscorea species and Ipomoea species, showcase an enlarged radius during 

circumnutation. In these instances, the circumnutating stem assumes a distinctive 

configuration: it maintains a vertical orientation at its base, transitions to a straight and 

horizontal alignment around the apex, and then curves within a plane in the central portion 

of the stem (Isnard & Silk, 2009). During circumnutation, the stem conducts an intricate 

rhythmic dance to undulate upward around the vertical support. Soon after, the coil 

surrounds the supporting pole and tightens basally in a helical shape. The rhythmic pattern 

is altered when the stem encounters vertical support and the duration varies from 

approximately 2 to more than 9 hours (Darwin, 1875). Circumnutation occurs only during 

the process of growing, it determines an oscillation either clockwise or counterclockwise. 
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Most oscillation frequencies are around 50 µHz, therefore special methods such as time-

lapse techniques are needed to estimate the trajectories. 

In an examination presented by Stolarz (2009), a comprehensive assessment was put 

forth regarding circumnutation as a movement, focusing on its physiological, cellular, and 

molecular underpinnings. When quantifying and qualifying circumnutation, four 

parameters are commonly considered for measuring circumnutation, they are (i) the 

amplitude of circumnutations; (ii) the period of circumnutations –– ultradian rhythm; (iii) 

the shape of circumnutations; (iv) the direction of circumnutations. 

Circumnutation possesses a multifarious nature, which can be attributed to the 

convergence of many different factors such as hormone gradients, development patterns, 

and external stimuli. The mechanisms driving circumnutation involve a number of 

physiological aspects such as changes in cell volume, alterations in turgor pressure, 

fluctuations in ion concentrations, and interplay of hormones (Johnsson, 1997; Stolarz, 

2009). These mechanisms are underpinned by distinct cellular events, including irreversible 

volume changes leading to elongation or contraction phenomena, or a combination thereof 

(Stolarz, 2009). To generate circumnutation, the coordinated and phase-synchronized 

cooperation of cells surrounding the circumnutating organ is essential. This collaborative 

effort involves key components such as the epidermis (Hejnowicz & Sievers, 1995), the 

endodermal cells (Hatakeda et al., 2003) and the interconnected plasmodesmata, facilitating 

intercellular communication (Stolarz, 2009). Ion channels that regulate ion and water fluxes 

also play a pivotal role. The distribution of ions, including Ca2+, K+, Cl–, and proton pumps, 

intricately modulates circumnutation by influencing parameters like bending, amplitude, 
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and period (Millet & Badot, 1996; Shabala & Newman, 1997a, 1997b; Zachariassen & 

Johnsson, 1988). This ion-mediated oscillation system contributes to the 

contraction/expansion model within the motor cells of organisms such as Desmodium 

motorium pulvinus (Engelmann, 1998). 

Hormones, particularly auxin, are also significant contributors to the process. 

Asymmetrical auxin distribution within the organ fosters differential growth rates and 

curvature (Trewavas, 1992), thus facilitating circumnutation. This uneven auxin distribution 

is further influenced by external factors such as light, gravity, and mechanical forces (Went, 

1935). 

The initial exploration into circumnutation’s regulatory mechanisms was made by 

Darwin, he described its endogenous nature (Darwin, 1875). He posited it as an inherent 

oscillator engendering a growth wave circumventing the elongating stem. Conversely, 

Israelsson and Johnsson (1967) proposed an exogenous model, attributing circumnutation 

generation to external stimuli such as gravity. They interpreted circumnutation as a gravity-

mediated tropic movement. Subsequent investigations on Helianthus annuus affirmed that 

alterations in gravitational forces impact circumnutation’s amplitude, period, and intensity 

(Andersen & Johnsson, 1972; Johnsson & Israelsson, 1968). Synthesizing these perspectives, 

an amalgamative view emerged, suggesting that circumnutation arises from the interplay 

between endogenous and exogenous influences. Brown’s work (1993) indicated that 

circumnutation arises from both intrinsic oscillation and gravitational effects, offering 

empirical evidence that gravity, while influential, is not an exclusive determinant. Through 

meticulous experimentation, Brown effectively invalidated gravity’s indispensability and 
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delineated a model involving growth-sensitive symplastic communication control. 

2.3.2. Host preference in climbing plants 

Scientists have long been intrigued by the specialized adaptations of climbing plants 

that enable them to compete for necessary resources, such as sunlight (Niklas, 2011). 

However, despite this prolonged fascination, we know surprisingly little about how climbing 

plants make decisions with regard to stimulus searching and attachment behaviors. In fact, 

climbing plants can be an ideal model system for studying the decision-making in plants 

because they show rapid changes in response to environmental cues (Gianoli, 2015). For 

them, finding a suitable support upon which they can climb is among the most important 

factors affecting their growth and development (Gianoli & Gonzalez-Teuber, 2005). Among 

the myriad aspects of support-searching behavior, one particularly fascinating phenomenon 

has garnered considerable attention: their distinct preference for supports of varying 

diameters. This distinctive preference has been widely documented across a spectrum of 

climbing plant species, prompting an extensive inquiry into the intricate interplay of 

underlying physiological, biomechanical, and ecological factors that underpin this 

remarkable behavior (Gianoli, 2015; Putz, 1984). 

Darwin (1875) noted that vines are not only able to locate potential supports and 

grow towards them, but they can even show an aversive response. He first described this 

effect with regard to the Bignonia capreolata tendrils that initially seized and then let go of 

sticks that were inappropriate in terms of size. If, because of its thickness, a stimulus was 

perceived as inadequate, after initially seizing it, the tendrils let go of it (Darwin, 1875). This 
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case provides a degree of support to speculative claims that some climbing plants can judge 

the thickness of potential supports and modify their circumnutation patterns to a greater or 

lesser extent, depending on the features of potential supports with respect to what would be 

expected by chance movement. 

Recent investigations conducted in forest settings have revealed a proclivity among 

climbing plants often display preferences for smaller supports over larger ones, owing to 

various factors including mechanical stability, resource allocation, and growth strategies 

(Gianoli, 2015; Givnish, 1995). Climbing plants, such as lianas, tend to flourish in early 

successional habitats where supports in smaller diameters prevail (Dewalt et al., 2000; 

Ladwig & Meiners, 2010; Putz, 1984), underpinning their augmented suitability for liana 

recruitment (Leicht-Young et al., 2010). In the scenario where fewer small diameter supports 

endure in the understory during the progression of forest successions, lianas in old-growth 

forests have typically established themselves during early succession or possess mechanisms 

like root-climbing that facilitate ascent onto larger diameter trees (Morrissey et al., 2009; 

Putz, 1984; Schnitzler, 1995). The abundance of liana species that use different climbing 

mechanisms is also predicted to change with succession. Stem twiners and tendril climbers, 

reliant on small diameter supports, dominate early successional stages, whereas root climbers, 

adhering to trunks instead of encircling them, are primed for ascending larger diameter trees 

in later stages of succession (Hegarty & Caballé, 1991; Putz & Holbrook, 1992). 
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CHAPTER 3 

APPROACHES TO STUDY PLANT MOVEMENT 

 

“The wonder is that we can see these trees and not wonder more.” 

                                                                                                         Ralph Waldo Emerson 

 

Over time, a wide range of approaches have been devised to gain a deeper 

understanding of plant behavior. I shall start the chapter by presenting a preliminary method 

to track plant movement, then move to outline cutting-edge methods –– time-lapse 

photography and motion analysis –– that enable us to observe and track plant movements 

with greater precision. Later, I will focus on the forefront of methodological advancement 

in current research, that is, the use of machine learning techniques and how they might 

contribute to the field of plant behavior. This new approach allows us to automatically 

identify diseases, stress, and electrophysiological signals in plants. At last, I will discuss the 

promise that machine learning holds in decoding plant movement. By combining classic 

approaches with computational capabilities current research is on the verge of uncovering 

novel aspects of plant behavior. 
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3.1. Classic Approach 

Darwin designed several methods to track and document the movements of plants 

(Darwin, 1875; Darwin & Darwin, 1880). Through methods that may appear limited, he 

characterized phototropism, geotropism, and circumnutation. Darwin made detailed 

documentation of plant growth and movement, such as the direction, rate of growth, the 

curvature of plant organs, and the patterns of movement observed over time. 

Darwin and his son Francis Darwin (1880), long before time-lapse photography came 

into play, they studied plant movements using a very time-consuming, low-tech procedure: 

they suspended a glass plate above a plant and marked on the glass the position of the tip of 

the plant every few minutes for several hours. By connecting the dots, they mapped out the 

exact movements of their subject. And they concluded that when comparing plant 

movements to animal movements, plant movements had “at least the ghosts of similar qualities” 

(Darwin, 1901). Following this path, in the early 20th century, Sir Jagadish Chandra Bose 

invented a device known as the “crescograph,” which uses a collection of mechanical gears 

and a smoked glass plate to register the movement of both the shoots and roots of the plants 

(Bose & Das, 1919). The precision of the apparatus enables to magnify negligible movements 

up to 10,000 times. 

Time-lapse photography/videography involves shooting a sequence of photos or 

frames of a plant at a regular interval, it generates videos where the frame rate is much lower 

than the rate used to view the sequence of the frames. When these frames are played in rapid 

succession, they form a video sequence that visually reveals changes and movements that 

take place slowly over time. This technique is widely used to study plant movements and 
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growth dynamics because of its ability to accentuate processes and motions that are typically 

imperceptible to the human eye. 

Wilhelm Pfeffer was inspired by the stop-motion gallop of a racehorse filmed by 

Eadweard Muybridge. Between the years 1898 and 1900, he created the first time-lapse 

videos for the purpose of scientific examination of plant movement. Videos were created to 

reveal the sleep movements of Desmodium gyrans and Mimosa spegazzinii, the root network 

development in Vicia faba, and the curving movement of gravitropism in Impatiens 

glandulifera. Pfeffer acknowledged the prospective value of imaging techniques, expressing 

his opinion that “Photographic registration will probably be largely employed in the future, for series 

of pictures may be obtained which when placed in a kinematograph show the phases of several days’ or 

weeks’ growth in a minute or so” (Pfeffer, 1900). 

The use of time-lapse photography has proven to be highly valuable for the study of 

plant movements, in particular, circumnutation/nutation (Caré et al., 1998; Guerra et al., 

2019; Head, 1965; Raja et al., 2020). By capturing frames at regular intervals, researchers 

can examine the patterns of circumnutation, revealing details about its amplitude, frequency, 

and symmetry. This examination and analysis of movements exhibited by plants usually 

requires the implementation of several techniques and methodologies. Time-lapse 

photography is usually combined with motion analysis to augment the findings through the 

quantitative study of the movements and behaviors in a two-dimensional (2D) plane or three-

dimensional (3D) space. Motion analysis can be autonomous and semi-autonomous, both 

involve the tracking of targeted movement within a given plane or space. Within these 

techniques, 3D motion analysis stands out as an effective tool for reconstructing the 
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trajectory of moving objects in space by the complete inclusion of movements in all three 

dimensions. Typically, it follows the path taken over time and space by a recognizable part 

of the observed plant organ (Fiorello et al., 2020). Motion analysis further enables the 

examination of kinematics and extraction of relevant features for motor control. The 

integrated approach provides the opportunity to understand plants’ patterns of behavior, 

and can boost our understanding on the biomechanics that govern plant behaviors. 

Although morphologies in circumnutation vary among different climbing species, 

several parameters (e.g., amplitude, period, shape, and direction) are typically estimated by 

tailoring them to individual experimental models. To investigate the mechanism responsible 

for circumnutation, which could be driven by changes in cell volume, the researchers 

analyzed the epidermal cells of Phaseolus vulgaris during the processes of cell elongation and 

oscillatory movement (Caré et al., 1998). Throughout the course of the experiment, a series 

of photographs were captured at ten-minute intervals using time-lapse photography. This 

methodology was employed to document the morphological changes of the epidermal cells 

and to concurrently record the movement of the shoot. Reversible changes in cell length 

were revealed in the bending area and were responsible for circumnutation. 

The integration of kinematic analysis obtained through time-lapse photography and 

motion analysis holds significant value not only in its present application for comprehending 

the features of organism behavior, but also in its potential to enhance the field by inspiring 

the development of artificial intelligence systems aimed at simulating plant-inspired robots 

(e.g., Plantoid robot) and constructing distributed cognitive process (Laschi et al., 2016; 

Wooten et al., 2018). 
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3.2. Machine Learning Approach 

The horizon of plant behavior research continues broadening through the 

integration of machine learning (ML) techniques. ML itself is a multidisciplinary approach 

to data analysis that embraces probability theory, statistics, decision theory, visualization, 

and optimization (Singh et al., 2016). ML is applied to achieve a higher degree of automation 

and reduce the need for manual intervention and subjective judgment in the process of data 

collection and analysis. Through learning, ML algorithms strive to produce results that are 

more objective and accurate. By efficiently learning from a substantial amount of data in a 

short time, it enables us to draw conclusions and make inferences, especially when faced 

with unstructured data that poses challenges in determining the appropriate dimensions. 

Therefore, in a transformative shift, ML algorithms may offer a novel lens through which to 

explore plant behaviors. Several ML approaches have recently achieved impressive 

performance on a variety of predictive tasks, such as species identification (Carranza-Rojas 

et al., 2017; Unger et al., 2020), plant distribution modeling (Botella et al., 2018; Zhang & 

Li, 2017), weed detection (Yu et al., 2019), stomatal classification (Aono et al., 2021), and 

forest monitoring (Jodas et al., 2022). They are also being applied to questions of 

comparative genomics (Xu & Jackson, 2019), gene expression (Mochida et al., 2018), and 

conducting high-throughput phenotyping (Singh et al., 2016; Ubbens & Stavness, 2017) for 

agricultural and ecological research. 

Taking the context of plant behavior, ML has been implemented and proved to be 

reliable in the detection and identification of plant disease and stress, mainly through 

phenotyping (Lowe et al., 2017; Rumpf et al., 2010; Singh et al., 2016; Singh et al., 2018), 
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and electrophysiology (Najdenovska et al., 2021; Parise et al., 2021). The standard approach 

to disease and stress detection/identification relies on checking the observable signs and 

symptoms that frequently manifest at the middle to late stages of infection. The procedure 

to identify the causal agent is through either manual detection or diagnostic tests, both of 

which require a lot of time and labor in the field. That said, the application of ML techniques 

for high throughput phenotyping which entails training models on large datasets of healthy 

and stressed plant parts, would enable researchers to obtain rapid disease diagnosis and stress 

detection. For instance, employing deep learning models such as convolutional neural 

networks (CNN) to process hyperspectral image analysis techniques for the detection and 

classification of plant disease and stress were tested and demonstrated the capacity in 

qualifying the disease and quantifying the severity (Lowe et al., 2017). 

ML algorithms can serve as a valuable tool for conducting phenotyping tasks that are 

time-consuming and demanding. More so, these algorithms have the capacity to detect and 

identify subtle phenotypic changes associated with disease or stress, leading to a pre-

symptomatic diagnosis even before the onset of the disease (Rumpf et al., 2010; Singh et al., 

2016). For instance, Rumpf et al. (2010) employed machine learning techniques based on 

Support Vector Machine and spectral vegetation indices to study the early detection and 

classification of sugar beet disease before it is visible. The potential of pre-symptomatic 

detection of the plant diseases was demonstrated, depending on the type and stage of disease 

the classification accuracy was between 65% and 90%. 

ML can be used to analyze electrophysiological signals emitted by plants under stress, 

as plants show the capacity of generating and propagating electrical signals (Trebacz et al., 
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2006; Volkov et al., 2000; Zimmermann et al., 2009), including action potentials (APs), 

variation potentials (VPs), also called slow wave potentials (SWPs), local electrical potentials 

(LEPs), and system potential (SP). Automated monitoring of plant development is becoming 

a key enabler for optimized agricultural production (Navarro et al., 2020), plant electrical 

signals as an early event in the plant–stimulus interaction (Li et al., 2021) could be highly 

informative. The application of ML techniques has been employed to investigate the 

electrical response of tomato plants cultivated in a conventional production setting 

(Najdenovska et al., 2021). This work aims to examine the plant’s electrical reaction to 

various stress factors, including drought, nutritional deficits, and infestation by spider mites. 

The classification has been shown to be effective in automating the monitoring of plant 

development and accurately classifying different types of stress in plants. 

A recent electrophysiological study used machine learning techniques to analyze data 

and revealed that dodder (Cuscuta racemosa) exhibits host-directed attention through 

electromic dynamics. Parise et al. (2021) provided clear evidence indicating a significant 

alteration in the electrical signaling of dodders when they perceive the presence of a nearby 

host. This observation suggests that dodders possess the ability to discern various host species 

even from a distance. 

Drawing inspiration from the above-mentioned studies, the potential to harness 

machine learning in the study of plant movements opens a promising avenue. While this 

application remains largely unexplored, it holds the potential to provide insights into 

cognitive behavior in plants and might be an alternative method of facilitating our 

understanding in plant movements and enabling predictive behavior in plants. 
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Predicting plant behavior through their movement is important for several reasons. 

Realistic predictions could aid in the formation of conservation strategies to combat the 

decline in biodiversity. For example, predicting movement might be important in the 

context of understanding the spread of infectious diseases through plant species. Many 

diseases are spread through different means of communication between individuals. 

Realistic predictions of the movement of infected individuals can suggest interventions that 

will optimally alleviate the further spread of diseases. Moreover, ML can catalyze 

advancements in modeling plant growth and development, along with the simulation of 

robotic plants (Fiorello et al., 2020; Laschi et al., 2016). Computational plant models or 

“virtual plants” are increasingly seen as useful tools for comprehending complex 

relationships between gene function, plant physiology, plant development, and the resulting 

plant form (Prusinkiewicz, 2004). 

We have seen great development, extending from Charles Darwin’s preliminary 

approaches to machine learning techniques. The study of plant behavior has evolved to 

encompass a broad spectrum of methodologies. Time-lapse analysis continues to provide 

sound and valuable insights into the movements of plants. Meanwhile, the integration of 

machine learning is expanding our understanding of plant responses, enabling disease 

identification, stress detection, and possibly, movement analysis. Hopefully, the potential 

convergence of traditional methodologies and machine learning holds promise for 

enhancing our understanding of plant behaviors and their interactions with the 

environment.  
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CHAPTER 4  

MY RESEARCH 

 

Understanding behavior in climbing plants is a continuous and evolving endeavor. 

The investigation of climbing plants has been approached from various perspectives, 

including phylogenetic, morphologic (Rowe et al., 2004; Rowe & Speck, 1996) as well as 

chemical composition and ultrastructural organization (Hoffmann et al., 2003). Little 

thought has been given to the organization of their movements as they show rapid changes 

in response to environmental cues such as a suitable support. Although the exploration of 

plant movements can be traced back to Darwin’s work (Darwin, 1875; Darwin & Darwin, 

1880), our knowledge of plant movements remains in its nascent stage. A reason behind this 

lack of interest is the fact that plants movements are so slow as to be imperceptible to the 

naked eye. 

Time-lapse photography may be used to speed up plant movements to a human 

perceptual level, allowing us to appreciate it. This methodological approach aims to 

accentuate the behavior of plants rather than artificially simulating animal movement. We 

can use this strategy to observe the real nature of plants’ behavior. Just as watching videos of 

animals in slow motion to observe hidden details, we can view time-lapse videos of plants 
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exposing meaningful variations. 

Since climbing plants require external hosts/supports for their growth, the 

characteristics of the support such as size, material, color, and shape also play a pivotal role 

(Darwin, 1875; Gianoli, 2015; Guerra et al., 2021; Guerra et al., 2019; Price & Wilcut, 2007; 

Runyon et al., 2006; Wang et al., 2023a). Finding, approaching, and grasping a potential 

support is crucial for climbing plants, potentially impacting upon the overall wellness of the 

plants. Although numerous studies conducted on the behavior of climbing plants have 

provided insights into the mechanisms involved in support-searching and attachment, far 

fewer studies have addressed the ecological significance of support-searching behavior and 

the factors that affect it. Among these, the diameter of supports influences their suitability. 

Climbing plants often display preferences for smaller supports over larger ones. However, 

the extent of our knowledge regarding the decision-making processes of climbing plants in 

relation to support-searching and attachment behaviors is rather limited. 

Another matter of concern is the predominant reliance on field observations that 

document morphological and physiological responses (Putz & Holbrook, 1992), as well as 

laboratory studies that focus on the characterization of movement patterning through the 

use of time-lapse photography (Guerra et al., 2021; Raja et al., 2020; Stolarz & Dziubińska, 

2017). Whilst this body of research provides quantitative data, the process might be 

admittedly subjective and rather preliminary. Machine learning approaches could potentially 

serve as an objective alternative to facilitate a precise phenotypic characterization. The 

application of machine learning in addressing questions related to plant biology is still in its 

infancy, yet the applicability of these methods to a broad range of problems is evident 
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(Botella et al., 2018; Carranza-Rojas et al., 2017; Mochida et al., 2018; Schuettpelz et al., 

2017; Singh et al., 2016; Unger et al., 2020). To date, employing machine learning 

approaches for the purpose of modeling or predicting plant movements remains unexplored. 

The ability to predict plant behavior on the basis of their movement is of great significance 

for both ecological purposes and agricultural applications. Realistic predictions could aid in 

the formation of conservation strategies to combat the decline in biodiversity. 

Therefore, the main objective of my research is twofold: firstly, to scrutinize the 

movements of pea plants through the combination of time-lapse photography and 3D 

motion analysis; secondly, to examine plant movement, specifically circumnutation, by 

exploiting the potential of machine learning techniques. 
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CHAPTER 5  

GENERAL METHODS 

 

In this chapter, I will describe the methodologies and procedures that are common 

to all experiments. Instances that deviate from what is included in this chapter will be 

reported within the Materials and Methods section for each specific experiment. 

5.1. Sample Description 

Pea plants (Pisum sativum var. saccharum cv Carouby de Maussane; from now on P. 

sativum) were chosen as the plant model. They are annual climbing plants with tendrils, 

modified leaves used by the plants to approach and grasp a suitable support in the 

environment (Figure 5.1). Healthy-looking P. sativum seeds were selected, potted, and kept 

under different experimental conditions. For each experiment, plants were randomly 

assigned to the experimental conditions. 

5.2. Type of Support 

The supports were wooden cylindrical poles of 54 cm in height varying in diameter 

(13, 30, and 40 mm) positioned at 10 cm in front of the plant. 
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Figure 5.1. A photograph representing a P. sativum plant grasping a wooden pole. 

5.3. Growth Setup 

Plants grew individually in a thermo-light-controlled growth chamber (Cultibox SG 

combi 80 ´ 80 ´ 160 cm; Figure 5.2a). The temperature was set at 26 °C by means of an 

extractor fan equipped with a thermo-regulator (TT125 vents; 125 mm-diameter; max 280 

mc/h) and an input-ventilation fan (Blauberg Tubo 100 – 102 m3/h). The two-fan 

combination allowed for a steady air flow rate into the growth chamber with a mean air 

residence time of 60 seconds. The fan was carefully placed so that air circulation did not 

affect the plants movements. Cylindrical pots (40cm in diameter, 20cm in depth) were filled 

with river sand (type 16SS, dimension 0.8/1.2 mm, weight 1.4) and positioned at the center 

of the growth chamber. Each plant was exposed for 12 hours (6 a.m. to 6 p.m.) to a cool 

white led lamp (V-TAC innovative LED lighting, VT-911-100W, Des Moines, IA, USA) that 
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was positioned 50 cm above each seedling. Photosynthetic Photon Flux Density at 50 cm 

under the lamp in correspondence with the seedling was 350 µmolph/(m2s) (quantum sensor 

LI-190R, Lincoln, Nebraska, USA). At the beginning of each experiment, the pots were 

fertilized using a half-strength solution culture (Murashige and Skoog Basal Salt 

Micronutrient Solution; see components & organics). The pots were watered three times a 

week using distilled water (Sai Acqua Demineralizzata, Parma, Italy). 

 
 

Figure 5.2. Graphical illustration of experimental setup and demonstration of how plants were captured by 
the infrared cameras. 

5.4. Kinematics 

5.4.1. Data acquisition and processing 

For each growth chamber, a pair of RGB-infrared cameras (IP 2.1 Mpx outdoor 

https://www.sigmaaldrich.com/IT/it/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/plant-tissue-culture/murashige-skoog
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varifocal IR 1080P) were placed 110 cm above the ground, spaced at 45 cm to record stereo 

images of the plant. The cameras were connected via Ethernet cables to a 10-port wireless 

router (D-link Dsr-250n) connected via Wi-Fi to a PC. The frame acquisition and saving 

process were controlled by CamRecorder software (Ab.Acus s.r.l., Milan, Italy; Figure 5.2b). 

Each camera’s intrinsic, extrinsic, and lens distortion parameters were estimated using a 

Matlab Camera Calibrator App. Depth extraction from the single images was carried out by 

taking 20 pictures of a chessboard (squares size 18 ´ 18 mm, 10 columns ´ 7 rows) from 

multiple angles and distances in natural non-direct light conditions. For stereo calibration, 

the same chessboard used for the single-camera calibration process was placed in the middle 

of the growth chamber. The two cameras synchronously acquired the frame every 180 

seconds (frequency 0.0056 Hz). RGB images were acquired during the daylight cycle and 

infrared images during the night cycle. 

The main anatomical landmarks of interest were the tendrils developing from the 

studied leaf. I considered the initial frame as the one corresponding to the appearance of 

the tendrils for the considered leaf. The end frame was defined as the frame in which the 

tendrils start to coil the support or before the plant falls, depending on the experimental 

conditions. Images from both left and right cameras in order to reconstruct 3D trajectories 

were used. An ad hoc software (Ab.Acus s.r.l., Milan, Italy) developed in Matlab was used to 

identify anatomical points to be investigated by means of markers, and to track their 

positions frame-by-frame on the images acquired by the two cameras to reconstruct the 3D 

trajectory of each marker. The markers on the anatomical landmarks of interest (i.e., the 

tendrils) were inserted post-hoc. The tracking procedures were at first performed 
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automatically throughout the time course of the movement sequence using the Kanade-

Lucas-Tomasi (KLT) algorithm on the frames acquired by each camera, after distortion 

removal. The tracking was manually verified by the experimenter, who checked the position 

of the markers frame-by-frame. The 3D trajectory of each tracked marker was computed by 

triangulating the 2D trajectories obtained from the two cameras. Finally, the trajectory was 

reconstructed in 3D (x, y, z), where the x-z plane is the horizontal plane, and the x-y plane 

and z-y plane as the vertical planes perpendicular to each other. 

5.5. Machine Learning Approach 

Machine Learning algorithms are a collection of algorithms that possess the unique 

characteristic of not being entirely determined by programmers. They iteratively learn the 

target function through the manipulation of data. In essence, data serves as the fuel behind 

the functioning of machine learning algorithms. The primary methodology employed for my 

experiments was the supervised machine learning classifiers. Anomaly detection was also 

employed as a novel exploratory technique. 

5.5.1. Supervised machine learning classification 

In the context of the supervised machine learning adopted in Chapters 10 and 11, 

the algorithms require a set of sample data in order to learn how to accurately predict the 

growth conditions of plants. This entails the development of functions that can effectively 

capture the relationship between the input variables and the target variable. These samples 

were represented in a matrix by means of two primary vectors: 𝑥 , and 𝑦. The vector 𝑥 

denotes a set of characteristics that the algorithms can use to distinguish between plants. 



 80 

Specifically, these characteristics correspond to the features extracted from plant movements. 

Hence, it is crucial to ascertain the salient features associated with the definition of vector 

𝑥. The vector 𝑦 represents the target variable (i.e., the growth condition of a plant), that is 

associated with the target function when considering the corresponding vector 𝑥 . The 

sample in this way, was referred to as a vector 𝑥 and its corresponding vector 𝑦, which are 

represented as follows: 
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𝑛: number of samples available in the dataset (i.e., plants); 

𝑚: number of features that are used to represent a sample (i.e., extracted features); 

 𝑝: the number of dimensions used to describe the target (unknown) function; 

𝑥	 ∈ 	ℝ%,(,&: the matrix of features where each row in this matrix is associated with 

the feature description of a single plant, and each column represents a single feature; 

𝑦	 ∈ 	ℝ%,(,): the target matrix, where the “ground truth” associated to the features 

matrix 𝑥. 

The matrices 𝑥, 𝑦 are the most important within the machine learning framework. 

These matrices enable the algorithms to acquire knowledge regarding a generalized function 

based solely on the samples present in the input dataset. Supervised learning requires making 

use of labeled data, wherein each input sample is paired with a matching answer. The labels 

serve as indicators of accurate results. After the classifiers have undergone training with 
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supervision, they will be tasked with performing classification on unlabeled datasets. The 

process of standard classification consisted of several sequential phases. 

Data preprocessing is a fundamental step in data analysis, involving various 

transformations done to raw data in order to obtain a refined and clean dataset. At this stage, 

the process of feature extraction is undertaken. This involves transforming the input data 

into a set of features that effectively capture pertinent characteristics or information related 

to the samples. These features serve as the foundation for the algorithm to identify and 

assimilate patterns. 

The selection of the machine learning model is determined by the characteristics of 

the dataset. The data are partitioned into a training set and a test set in order to reduce 

potential biases while addressing concerns related to overfitting. During the training process, 

the model develops the ability to establish a mapping between the input features and their 

associated output labels by iteratively modifying its internal parameters. 

The loss function, which evaluates the degree of concordance between the model’s 

predictions and the true labels, is established. Consequently, the disparity between the 

predicted and real values is measured (Hastie et al., 2009). In this particular scenario, a 

commonly utilized zero-one loss function 𝐿 was employed to evaluate the performance of a 

hypothesis function by quantifying the number of errors it generates on the training dataset. 

𝐿(𝑦5, 𝑦) = [𝑦5 ≠ 𝑦] 

After undergoing training, the phase of generalization and prediction was initiated. 

The model became capable of making predictions or classifying novel input data by 

employing a developed function that relates features to labels. The performance of the 
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models was evaluated using accuracy as the metric for classification. 

5.5.2. Unsupervised anomaly detection 

Unsupervised anomaly detection is a methodology employed to identify uncommon 

and atypical occurrences within a dataset, obviating the necessity of assigning labels to 

individual samples. The assumption of normality in the model posits that the majority of 

data points conform to regular distribution, whereas anomalies or outliers represent cases 

that vary from this presumed regular pattern. 

The anomaly score was determined by calculating the similarity score using various 

learning techniques, including clustering, density-based methods, dimension reduction, 

ensemble approaches, or by modeling typical patterns of behavior. After mode assignment, 

a list of anomalous points was generated based on a predetermined threshold or gradient. 
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CHAPTER 6  

A KINEMATICAL STUDY ON PEA PLANT MOVEMENT 

 

6.1. Introduction 

Experimental evidence demonstrates that some climbing plants are able to orient 

their movement towards a potential support (Raja et al., 2020). Based on prior kinematic 

findings (Ceccarini et al., 2020a, 2020b; Guerra et al., 2019), it can be inferred that the 

movement of pea plants is goal-directed and anticipatory. At the time the potential support 

is perceived trajectory for stem and tendrils start to veer towards it and the kinematic 

patterning differs with respect to when a plant moves in the absence of a potential support 

in the environment. Although the use of kinematic presents some limitations it remains the 

gold-standard approach to study movement in a variety of species and domains (Castiello, 

2005; Castiello & Dadda, 2019). And, therefore, it has the potential to unravel the nature 

of plants movements. 

The aim of this experiment is twofold. First, to validate the previously reported 

kinematical differences observed in pea plants depending on the presence or absence of a 

potential support. Second, to acquire data for the first implementation of machine learning 

classifiers based on the kinematics of plants movements (Chapters 9 & 10). 
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6.2. Materials and Methods 

6.2.1. Subjects 

A total of 32 snow peas (P. sativum) were chosen as study plants. Once germinated, 

one healthy-looking sprout was selected and randomly assigned to the experimental 

conditions. 

6.2.2. Type of support 

Wooden support of 13 mm in diameter was used. Support was 54 cm in height. The 

supports were inserted 7 cm below the soil surface, and were made available to the plants 

immediately after germination. 

6.2.3. Experimental conditions 

19 plants were grown individually in chambers without the presence of a support 

(“no support” condition; Figure 6.1a); 13 plants were grown individually in chambers where 

a potential support was present (“support” condition; Figure 6.1b). 

 
Figure 6.1. Graphical representation of the experimental conditions: (a) “no support” condition, and (b) 
“support” condition. 
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6.2.4. Dependent measures 

The anatomical landmarks of interest were the “tendrils” and the “junction” (Figure 

6.2), developing from the considered leaf. Kinematic features were analyzed to ascertain 

whether they differed for the “no support” and the “support” conditions. This aspect is 

fundamental to verify the ability of machine learning tools to discriminate between 

conditions. 

 
 

Figure 6.2. The anatomical landmarks of interest were the “tendrils” and the “junction” developing from the 
considered leaf. The “tendrils” refers to the tip of the shoot, and the “junction” refers to the point where the 
tendrils tie together. 

The considered dependent measures were: 

i. The junction and the tendrils velocity (Figure 6.3): 3D trajectories for the 

junction and the tendrils were acquired in Cartesian coordinates (x, y, z), where 
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the x and y axis form the vertical dimension, and the x and z form the horizontal 

dimension. The coordinates for the tendrils are termed as (xt, yt, zt), and those for 

the junction as (xn, yn, zn). The velocity of the junction was calculated by 

computing the absolute value between the difference with ni frames and ni+1 

frames (i: 1, 2, 3, …, n). The velocity of the tendrils and the junction for each axis 

(vx, vy, vz) and for each frame were acquired. 

ii. The junction and the tendrils acceleration: acceleration for the junction and the 

tendrils were calculated as a velocity derivative. 

iii. Tendrils aperture: relative vectors from the junction to the tip of the tendrils 

were extracted by calculating the mean of the tendrils (𝑋 t, 𝑌 t, 𝑍 t), minus the 

coordinates of the junction (xn, yn, zn). Depending on the number of tendrils that 

one plant possesses, the tendril number could be either two or three. The 

standard deviation of the tendrils (sx, sy, sz), indicates the variability of the 

tendrils’ aperture. 

iv. Overall movement duration: the total amount of time in minutes that plant used 

to circumnutate. 

v. Movement duration for single circumnutation: the amount of time in minutes 

that plant used to circumnutate once.  
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Figure 6.3. Graphical examples for (a) the junction velocity and (b) the tendrils velocity for the “no support” 
and the “support” conditions in time. 

6.2.5. Statistical analysis 

The Mann–Whitney U test as a non-parametric test was adopted. In this analysis, W 

is calculated as the smaller of the rank total between the two groups, and the size of the effect 

calculated as r = zÖN where z is the z-score and N is the total number of observations was 

also considered. 

6.3. Results 

6.3.1. Qualitative results 

For all plants and for both the experimental conditions (i.e., “no support” and 
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“support”), the tendrils and junctions displayed a circumnutating growing pattern. The 

plants that grew in the absence of the support continued to circumnutate toward the light 

source and then fell. For the plants that grew in the presence of the support, as soon as they 

sensed it, they strategically altered the movement trajectory so to bend towards it and prepare 

for grasping. 

6.3.2. Kinematical results 

The overall picture of the results mirrors what was reported in previous studies in 

which plants exhibit a significant difference with respect to dependent measures (Table 6.1; 

Guerra et al., 2019). The “junction velocity” and the “tendril velocity” were faster for the 

plants that grew in the presence of the support compared to the plants that grew in the 

absence of a potential support. For what concerns acceleration, plants with no support tend 

to exhibit a higher acceleration. Also, the tendrils tend to present a wider aperture for the 

no support than for the support condition. Finally, the duration of circumnutations was 

longer for the “no support” than the “support” condition. 

Table 6.1. Kinematical values comparing the considered dependent measures for the “no support” and “support” 
conditions. Statistical values are also reported. 
 Median    
 No Support Support W p r 
Junction velocity (mm/min) 1.7488 3.5035 166.000 0.007 0.299 
Junction acceleration (mm/min) 0.0006 −0.0001 51.000 0.021 0.257 
Tendril velocity (mm/min) 2.5289 4.4670 1242.000 0.000 0.510 
Tendril acceleration(mm/min) 0.0008 −0.0001 361.000 0.000 0.439 
Tendrils aperture (mm) 25.2039 14.7132 245.000 0.000 0.394 
Overall movement duration (min) 3744.000 1683.000 59.000 0.013 0.545 
Circumnutation movement duration (min) 201.0857 217.000 143.000 0.103 0.181 
Note. mm = millimeters; mm/min = millimeters by minutes. 
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6.4. Discussion 

The results of the present study showed kinematic differences depending on the 

presence/absence of the support. For example, the “junction” and “tendrils velocity” were 

higher for the “support” than for the “no support” condition. And the tendency for plants 

exposed to the “no support” condition is to accelerate more quickly and have a greater 

tendrils aperture than those exposed to the “support” condition. These findings confirm the 

findings reported in previous literature and show how flexible and anticipatory these 

movements are (Guerra et al., 2019). Therefore, they provide the necessary information to 

instruct machine learning models and explore further issues concerned with anticipatory 

behavior. For instance, are all types of support the very same for a pea plants? Do they choose 

based on support features such as size? This is what I explored in the following chapters. 
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CHAPTER 7  

DECISION-MAKING UNDERLYING 

SUPPORT-SEARCHING IN PEA PLANT: STUDY 12 

 

7.1. Introduction 

Darwin’s observations (1875) and more recent findings (Carrasco-Urra & Gianoli, 

2009; Goriely & Neukirch, 2006; Putz & Holbrook, 1992; Saito, 2022) suggest that the size 

of a potential support make a difference for climbing plants. Grasping a thicker support 

being considered more difficult with respect to grasping a thinner one because of energy 

demands. In the former case, the plant not only needs to increase the length of its tendrils 

in order to wrap the support efficiently (Rowe et al., 2006), but also strengthen its tensional 

forces to counteract gravity and kinematics (Gianoli, 2015; Sousa-Baena et al., 2021). But 

how did they make this choice? 

In light of these considerations, the aim of the current experiment is twofold. First, 

to ascertain what pea plants do when confronted with differently sized supports. To test this, 

pea plants were exposed to both a thin and thick support. If pea plants inevitably prefer thin 

 
2 Published: Wang, Q., Guerra, S., Bonato, B., Simonetti, V., Bulgheroni, M., & Castiello, U. (2023). Decision-
making underlying support-searching in pea plants. Plants, 12(8), 1597. 
https://doi.org/10.3390/plants12081597 
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supports, then a significantly higher frequency of movements directed toward them should 

be observed. Second, to ascertain whether such a decisional process impacts on the 

kinematics of the tendrils’ circumnutations. A choice condition termed the “double-support” 

(DS) condition, in which thin and thick supports were both present in the environment, 

and a “single-support” (SS) condition, where only a thin support was present in the 

environment, were compared. Differences between conditions were expected to be evident 

at the level of movement kinematics. Further, I also predict that the plants may keep into 

account both supports in response to an ever-changing environment. If so, I expect a hybrid 

kinematical patterning accounting for differently sized supports. 

7.2. Materials and Methods 

7.2.1. Subjects 

A total of 16 snow peas (P. sativum) were chosen as study plants. 

7.2.2. Type of support 

Two types of wooden support were considered: a “thin” support of 13 mm in 

diameter (Koto – 13 mm) and a “thick” support of 40 mm in diameter (Koto – 40 mm; 

Figure 7.1a). Both supports were 54 cm in height. The supports were inserted 7 cm below 

the soil surface (Figure 7.1b). The supports were made available to the plants immediately 

after germination. 

7.2.3. Experimental conditions 

The subjects were randomly assigned to two experimental conditions termed single- 
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support (SS) and double-support (DS) conditions. For the SS condition, eight plants were 

raised individually in the presence of the “thin” support (Figure 7.1c). For the DS condition 

(Figure 7.1d), eight plants were raised individually in the presence of both the “thin” and 

the “thick” support. The location of the differently sized supports was counterbalanced 

across subjects to avoid a potential bias due to the direction of circumnutation (clockwise or 

counter-clockwise). The supports were positioned so that the first leaf developed by a sprout 

faced the midpoint between the two supports. This was done to prevent a growing bias in 

favor of either one or the other support. It should be noted that here, a “thick” single-support 

condition was not included. This decision was based on the observation that, during data 

acquisition for the DS condition, none of the plants successfully touched or grasped the 

thick support –– they all went for the thin support. Consequently, it would be impossible 

to compare trials for a potentially thick SS condition with trials for the DS condition. 

Moreover, the differences between the thin and thick supports have been previously 

reported (Ceccarini et al., 2020a, 2020b; Guerra et al., 2019), and it has been established 

that the thicker support is not the best option for climbing plants (Carrasco-Urra & Gianoli, 

2009; Darwin, 1875; Goriely & Neukirch, 2006; Putz & Holbrook, 1992; Rowe et al., 2006; 

Sousa-Baena et al., 2021). Therefore, a comparison to plants that achieved the same 

outcome of touching and grasping the thin support under the DS and SS conditions was 

confined. 

In addition, the setting considered an equal distance between the plant and the 

surface of the supports and not necessarily the center of the support (Figure 7.1c,d). This 

appears to be a suitable positioning solution, given that I am focusing on the approaching 
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phase preceding the grasping of the support and not on the coiling phase of the support. 

 
 

Figure 7.1. Graphical depiction of the (a) “thin” and “thick” supports; (b) the location of the support in the 
pot and how it was inserted in the soil. The single-support and double-support conditions are represented in 
panels (c) and (d), respectively. 

7.2.4. Dependent measures 

The considered dependent measures were the following (Simonetti et al., 2021):  

i. The number of circumnutations: the number of circumnutations performed by 

a plant from the time it was potted to the time it touched the support.  

ii. The circumnutation duration (min): the time taken by a plant to complete a 

single circumnutation. 

iii. Distance from the circumnutation gravity center to the origin (cm; Figure 7.2. 

Segment a): the distance between the circumnutation gravity center and the plant 

origin. 
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iv. The length of the circumnutation major axis (mm; Figure 7.2. Segment b): the 

maximum distance between two points of the circumnutation trajectory. 

v. The circumnutation length (mm; Figure 7.2. Segment c): the length of the overall 

path computed as the sum of all the Euclidean distances between the subsequent 

points during a single circumnutation. 

vi. The circumnutation area (mm2; Figure 7.2. Segment d): the sum of pixels with a 

value equal to 1, obtained from the binarization of the circumnutation trajectory. 

vii. The amplitude of peak velocity (mm/min): the values for the average of the 

maximum velocity. 

 
 

Figure 7.2. Graphical representation for some of the considered dependent measures: (a) the distance from 
the circumnutation gravity center to the origin is represented as a red/dash line; (b) the length of the 
circumnutation major axis is represented as a blue/dash line; (c) the circumnutation length is represented as a 
yellow/solid line; (d) the circumnutation area is represented in green. 
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7.2.5. Statistical analysis 

The descriptive statistics, including the median, interquartile range (IQR), range, 

quartiles (Q1 and Q3) were calculated. Statistical analyses were conducted using the Bayesian 

approach. The objective of Bayesian estimation is to allocate credibility to a distribution of 

alternative parameter values (posterior distribution) that is consistent with the observed data 

by generating a large number of samples using the Markov chain Monte Carlo approach 

(MCMC). In this study, I adopted the two-sided Bayesian Mann–Whitney U test, given that 

the dependent variables were not normally distributed. The Mann–Whitney U test is a non-

parametric test that does not require the assumption of normality. The analysis was 

performed using JASP (Jasp, 2023), which was nested within the environment R (R, 2010). 

I chose the default that was prior defined by a Cauchy distribution, which was centered on 

a zero-effect size (δ) and a scale of 0.707 because prior knowledge regarding the exposition 

of plants to a double-support condition was absent (Ly et al., 2016; Van Doorn et al., 2021). 

Data augmentation was generated with five chains of 1000 iterations, allowing for a simpler 

and more feasible simulation from a posterior distribution. In the analysis, W was calculated 

in the Mann–Whitney U test as the smaller of the rank total between the two conditions. 

The Bayes factor (BF) was obtained to quantify the relative predictive performance 

of two hypotheses (Van Doorn et al., 2021). The BF quantifies evidence for the presence or 

absence of the difference between the DS and SS conditions. Here, the null hypothesis (H0) 

was that there was no difference in kinematics between the DS and SS conditions. The 

alternative hypothesis (H1) was that there was a difference. The BF10 value was the likelihood 

given H1 divided by H0. The BF01 value was calculated as H0 divided by H1. The results were 
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reported based on Jeffery’s scheme, which proposed a series of labels for which specific Bayes 

factor values could be considered as either “no evidence (0 – 1),” “anecdotal (1 – 3),” 

“moderate (3 – 10),” “strong (10 – 30),” “very strong (30 – 100),” or “decisive (> 100)” relative 

evidence for alternative hypotheses (Jeffreys, 1998). R-hat was also reported to check the 

degree of convergence of the MCMC algorithms based on outcome stability. The closer the 

value of R-hat is to 1, the better convergence to the underlying distribution. Credible 

intervals (CI) were set as 95%, which was simply the central portion of the posterior 

distribution that contains 95% of the values. 

7.3. Results 

7.3.1. Qualitative results 

For all plants and in both experimental conditions (i.e., DS and SS), the tendrils 

displayed a circumnutating growing pattern. As soon as a plant sensed the support, it 

strategically altered the tendril’s movement trajectory to bend towards the support (Figure 

7.3a,b). For the DS condition, plants exhibited a very strong preference for the thin support 

and grew less than the plants for the SS condition by the time they touched the support 

(Figure 7.3c,d). Eight of the nine plants for the DS condition began to grow and move 

toward the thin support relatively early, even though they were too tiny to reach out for any 

support. These plants were able to aim precisely toward the thin support and touch it by 

modulating/twisting the angles of the new petiole, and this is visible to the naked eye. Only 

one plant tried to cling onto the thick support but ultimately failed and fell. The data for 

this plant have not been analyzed further. Among the eight plants for the SS condition: two 
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circumnutated clockwise and two circumnutated counterclockwise. The remaining four 

exhibited both a clockwise and counterclockwise circumnutating pattern during the entire 

movement. As for the DS condition, four plants circumnutated clockwise, one plant 

circumnutated counterclockwise, and three circumnutated in a mixed manner. 

 
 
Figure 7.3. A frame representing an exemplar plant approaching the support for (a) the single-support (SS) 
condition with (b) a graphical representation of its trajectory. A plant approaching the thin support for (c) the 
double-support (DS) condition with (d) a graphical representation of its trajectory. 
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7.3.2. Kinematical results 

The descriptive statistics and the kinematic results, when comparing the DS with the 

SS conditions, are provided below (Table 7.1). 

Number of Circumnutations 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 314.656, 

suggesting that there is a decisive difference between the SS and the DS conditions with 

respect to the number of circumnutations (BF10 = 314.656, BF01 = 0.003, W = 14220, R-hat 

= 1.008, 95% CI: [–0.657, –0.229]). 

Circumnutation Duration 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 0.387, 

Table 7.1. Descriptive statistics for the considered dependent measures for the two conditions considered. 
   Condition Median IQR Range Q1 Q3 

Number of circumnutations 
 DS  26.000  5.000  28.000  24.000   29.000  

 SS  28.000  9.000  21.000  22.000   31.000  

Circumnutation duration (min) 
 DS  63.000  18.000  84.000  57.000   75.000  

 SS  69.000  15.000  114.000  60.000   75.000  

Distance from the circumnutation 
gravity center to the origin (cm) 

 DS  13.055  14.361  62.527  8.212   22.573  

 SS  16.017  32.062  96.865  9.394   41.456  

Length of circumnutation major axis 
(mm) 

 DS  88.867  54.434  169.439  60.080   114.513  

 SS  65.036  69.147  187.973  36.176   105.323  

Circumnutation length (mm) 
 DS  221.764  172.506  643.428  147.370   319.876  

 SS  166.488  196.104  503.609  85.797   281.900  

Circumnutation area (mm2) 
 DS  3580.500  6572.125  22965.250  1165.750   7737.875  

 SS  1943.688  5298.375  14870.563  199.438   5497.813  

Amplitude of the maximum peak 
velocity (mm/min) 

 DS  6.042  4.895  71.556  3.494   8.390  

 SS  4.038  3.813  14.054  2.499   6.313  

Note. DS = double-support condition; SS = single-support condition; IQR = interquartile range; Q1 = 25th 
percentage, Q3 = 75th percentage.  
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suggesting that there is no difference between the SS and the DS conditions with respect to 

the circumnutation duration (BF10 = 0.387, BF01 = 2.584, W = 17083, R-hat = 1.000, 95% 

CI: [–0.354, 0.029]). 

Distance from the Circumnutation Gravity Center to the Origin 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 136.096, 

suggesting that there is a decisive difference between the SS and the DS conditions with 

respect to the distance from the circumnutation gravity center to the origin (BF10 = 136.096, 

BF01 = 0.007, W = 15132, R-hat = 1.031, 95% CI: [–0.575, –0.169]. 

Length of the Circumnutation Major Axis 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 734.705, 

suggesting that there is a decisive difference between the SS and the DS conditions with 

respect to the length of the circumnutation major axis (BF10 = 734.705, BF01 = 0.001, W = 

24455, R-hat = 1.016, 95% CI: [0.275, 0.676]). 

Circumnutation Length 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 980.421, 

suggesting that there is a decisive difference between the SS and DS conditions with respect 

to the circumnutation length (BF10 = 980.421, BF01 = 0.001, W = 24433, R-hat = 1.015, 95% 

CI: [0.290, 0.693]). 

Circumnutation Area 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 1267.886, 
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suggesting that there is a decisive difference between the SS and DS conditions with respect 

to the area of circumnutation (BF10 = 1267.886, BF01 = 0.0008, W = 24611.5, R-hat = 1.008, 

95% CI: [0.299, 0.697]). 

Amplitude of Maximum Peak Velocity 

The Bayesian Mann–Whitney U analysis revealed a Bayes factor (BF10) of 4137.588, 

suggesting that there is a decisive difference between the SS and DS conditions with respect 

to the amplitude of maximum peak velocity (BF10 = 4137.588, BF01 = 0.0002, W = 25438, 

R-hat = 1.014, 95% CI: [0.380, 0.780]). 

Correlational Analyses 

A non-significant difference was found for the circumnutation duration across 

conditions, while the amplitude of peak velocity increased for the DS with respect to the SS 

condition. This might indicate the plants put in place a sort of isochrony principle (Viviani 

& Mccollum, 1983). The isochrony principle refers to a spontaneous tendency to increase 

the velocity of a movement depending on the linear extent of its trajectory to maintain the 

execution time as approximately constant (Sartori et al., 2013). To test this, I performed 

Pearson’s correlation analysis (Cohen et al., 2009) between the circumnutation length and 

the amplitude of peak velocity (Van Rossum & Drake Jr, 2009). The results indicate a 

significant correlation between these measures (Pearson’s r = 0.715, p-value = 0.000, 95% 

CI: [0.663, 0.760]; Figure 7.4). 
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Figure 7.4. Pearson’s correlation coefficient between the “circumnutation length” and the “amplitude of peak 
velocity.” 

7.4. Discussion 

In this study, the kinematics of tendrils’ circumnutation were examined from 

germination until the plants touched and grasped the support. The findings show that most 

of the considered dependent measures differed markedly between the DS and SS conditions. 

For instance, plants perform fewer and larger circumnutations, as evidenced by a lower 

“number of circumnutations,” a longer “length of circumnutation major axis,” and a longer 

“circumnutation length” for the DS than the SS condition. Further, the “circumnutation 

area” is greater for the DS than the SS condition. To achieve all this, plants increased the 

“amplitude of maximum peak velocity” for the DS condition. Altogether, this pattern of 

results might imply a more active and exploratory patterning for the plants facing a “choice” 

scenario. The “circumnutation duration,” on the other hand, remains the same for both 
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conditions. In this respect, the correlational analysis indicates that the “circumnutation 

length” and the “amplitude of the peak velocity” are strongly correlated. This suggests that 

the pea plants movement is based on the isochrony principle (Viviani & Mccollum, 1983). 

In these circumstances, plants maintain constant movement duration and scale velocity in 

order to cover longer distances, as witnessed by the longer circumnutation lengths. This 

appears to be an easy and appropriate organizational option adopted by the plant to program 

the patterning of circumnutation when a decision based on alternatives must be taken. 

At this stage, the question is more about how climbing plants avoid an unsuitable 

host and choose a suitable one. A common belief is that the physiological mechanisms 

underlying behavioral responses in plants tend to be caused by simple, local reactions 

(Karban, 2008). As proposed by Saito (2022), these reactions might also be at the basis of 

the decision-making processes related to support diameter. In this view, changes in the 

coiling responses may be caused by local reactions in the tendrils. For instance, in many 

climbing plants, the coiling of tendrils is thought to be caused by the contraction of the 

gelatinous fibers (G fibers) after support has been contacted (Bowling & Vaughn, 2009; 

Saito, 2022). That is to say, when a suitable support is detected and recognized, the tendril 

shows a reflex behavior and rapidly bends in the stimulated direction (Vidoni et al., 2013). 

Put simply, at the basis of plants’ support selection, there might be a mechanism that makes 

it possible to select a support with an appropriate diameter. 

The emerging picture from the “choice” that the plants made might suggest a trade-

off in terms of metabolic use. Touching and grasping a thick support would imply the growth 

of longer tendrils, which, in turn, would be more demanding in terms of energy exploitation. 
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This metabolically based decision would also reflect on movement kinematics. The 

movement towards thicker supports is much slower than for thinner supports (Guerra et al., 

2019) and shows a great deal of online adjustments, visible as submovements along the 

velocity profiles (Ceccarini et al., 2020a). Therefore, plants might have the ability to monitor, 

detect, and process information that determines the preference for a thin support. These 

aspects are particularly evident when comparing circumnutation between the thin support 

for the DS and the SS conditions. Plants move faster and execute less but larger 

circumnutations for the latter than for the former. This signifies that despite that the plants 

are aiming at supports of the same size, being exposed to an alternative (the thick support 

for the DS condition) determines a decisional complexity that is played out in the kinematics 

of circumnutation. Therefore, it appears that circumnutation is not only affected by a 

complex occurrence of factors, such as light, gravity, touch, and hormonal signals (Stolarz, 

2009), but also by the presence of alternative supports in the environment. 

A caveat of the present results at the observational level is that the direction of the 

circular movements could be either clockwise or counterclockwise, and it could change 

within the same plant. Whether climbing plants are right- or left-handers is an aspect tackled 

in previous literature (Schuster & Engelmann, 1997), and that may be pursued in 

connection with decision-making. Further research is required to establish such a link. 

In conclusion, the results of this study offer a contextual framework for the different 

well-known responses of climbing plants when searching for a support. More importantly, a 

decision-making ability in plants has been demonstrated, which allows them to adaptively 

choose between responses according to the diameter of the available supports. Overall, the 
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results of the study suggest that plants can acquire and integrate complex information about 

the environment in order to modify the extent of their plastic responses adaptively. Such 

complex decision-making could have important implications for the understanding of the 

processes that govern plant behavior. This is why I decided to further explore this issue in a 

second study described in the ensuing chapter. 
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CHAPTER 8  

DECISION-MAKING UNDERLYING 

SUPPORT-SEARCHING IN PEA PLANT: STUDY 2 

 

8.1. Introduction 

As shown in Chapter 7, climbing plants display preferences for smaller supports over 

larger ones, owing to various factors including mechanical stability, resource allocation, and 

growth strategies (Gianoli, 2015; Givnish, 1995). 

Based on these findings, it has been inferred that the absence of any instances of 

plants approaching and grasping the thick support (i.e., 40 mm in diameter) was an 

indication that the diameter of the thick support was both mechanically and metabolically 

demanding for the plants. Here I further investigated this issue to understand up to which 

point a potential support could be considered unsuitable in terms of size by pea plants. 

Pea plants were randomly assigned to three experimental conditions: (i) a “single” 

condition in which a group of plants was raised in the presence of a thin support (S-thin); 

(ii) a “single” condition in which a group of plants was raised in the presence of a thick 

support (S-thick); (iii) a “decision-making” (DM) condition, in which plants grew in the 

presence of both a thin and a thick support. Note that for the sake of the analyses, plants 
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that eventually grasped the thin support were termed as “DM-thin,” while those that grasped 

the thick support were termed as “DM-thick.” I predicted that plants would show differences 

at the level of kinematics between the single and the DM conditions. For the S conditions, 

I expected a kinematic patterning mirroring what was found in Chapter 7. For the DM 

condition, I hypothesized that reducing the size of the support to 30 mm in diameter would 

be preferable by the plant. If this might be the case, then I would expect that the choice 

among two supports equally acceptable by the plant would determine a distinctive kinematic 

patterning. 

8.2. Materials and Methods 

8.2.1. Subjects 

38 snow peas (P. sativum) were chosen as study plants. 

8.2.2. Type of support 

The supports were wooden poles of 13 mm (“thin” support; Koto – 13 mm) and 30 

mm (“thick” support; Koto – 30 mm) in diameter. Both supports were 54 cm in height. The 

supports were inserted 7 cm below the soil surface. 

8.2.3. Experimental conditions 

The experimental conditions were the following (Figure 8.1a-c): 

i. S-thin: the growth of individual plants in the presence of a single thin support. 

ii. S-thick: the growth of individual plants in the presence of a single thick support. 

iii. DM: a “decision-making” (DM) condition in which plants grew in the presence 
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of both the thin and the thick supports. The plants were split into two groups: 

plants that choose the thin support were categorized as “DM-thin,” plants that 

choose the thick support were categorized as “DM-thick.” 

For the DM condition, the location of the differently sized supports was 

counterbalanced across subjects as to avoid a potential bias in the results depending on 

whether the circumnutation was clockwise or counterclockwise. The supports were 

positioned at an equal side from the plant cotyledon so that the first leaf developed by a 

sprout faced the precise midpoint of the two supports. This was done to prevent a growing 

bias in favor of either support. 

 
 
Figure 8.1. Graphical depiction of the three experimental conditions: (a) S-thin, (b) S-thick, and (c) decision-
making. 

8.2.4. Dependent measures 

The considered dependent measures were the following (Simonetti et al., 2021): 

i. Total movement duration (min): the time it takes from the moment tendrils 
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developed from the apex to the time they approach the support and start coiling 

around it. 

ii. Circumnutation duration (min): the time taken by a plant to complete a single 

circumnutation. 

iii. Number of circumnutations: the number of circumnutations performed by a 

plant from the time when tendrils developed from the apex till the time they 

approached the support. 

iv. Length of the circumnutation major axis (mm): the maximum distance between 

the two points characterizing the maximum axis for the circumnutation 

trajectory. 

v. Circumnutation length (mm): the sum of all the Euclidean distances between 

subsequent points during a single circumnutation. 

vi. Circumnutation area (mm2): the sum of pixels with a value equal to 1 obtained 

from the binarization of the circumnutation trajectory. 

vii. Amplitude of average velocity (mm/min): the average velocity during the entire 

movement. 

viii. Amplitude of the maximum peak velocity (mm/min): the maximum peak 

velocity reached during the entire movement. 

ix. Maximum aperture (mm): the maximum distance between the tendrils. 

x. Direction switching: the times at which the plant switched the direction of 

circumnutation. 



 114 

8.2.5. Statistical analysis 

The descriptive statistics including median (Med), range, interquartile range (IQR), 

and quartiles (Q1 and Q3) were calculated. In this study, I adopted the Mann–Whitney U 

test since the dependent variables were not normally distributed. Assumption checks have 

been done to test the normality (Shapiro–Wilk), and results suggested a significant deviation 

from normality (p < 0.001) for the majority of dependent measures. Mann–Whitney U test 

is a non-parametric test that does not require the assumption of normality. The analysis was 

performed using JASP (Jasp, 2023) nested within the environment R (R, 2010). In the 

analysis, W was calculated in the Mann–Whitney U test as the smaller of the rank total 

between the two groups. 

8.3. Results 

8.3.1. Qualitative results 

For all 38 plants, the tendrils displayed a circumnutating growing pattern. Once 

plants sensed the support, they altered their movement to bend towards it. For the single 

conditions, eight plants grasped the thin support (S-thin) and 10 plants grasped the thick 

support (S-thick). For the decision-making condition, plants show a relative preference 

towards the thin support over the thick one. Out of 20 plants, six grasped the thick support 

(DM-thick), while 13 grasped the thin support (DM-thin). One plant preferred the thick 

support but failed to grasp it; therefore, it was not taken into account for the further steps 

of the analyses. Plants belonging to the DM-thin group developed relatively shorter tendrils 

compared to the DM-thick group. 
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8.3.2. Kinematical results 

Statistical descriptive for the comparisons across conditions and groups for all 

dependent measures are provided below (Figure 8.2; Table 8.1; Appendix I Table 1). 

Table 8.1. Statistical analysis for all comparisons. 
 S-thin 

vs. 
S-thick 

DM-thin 
vs. 

S-thin 

DM-thick 
vs. 

S-thick 

DM-thin 
vs. 

DM-thick 
Dependent measures W p W p W p W p 

Total movement duration (min) 59.000 0.101 45.000 0.645 16.000 0.147 50.000 0.368 

Circumnutation duration (min) 32994.000 < .001 34263.500 < .001 8662.000 < .001 20375.000 0.031 

Number of circumnutations 17115.000 < .001 15972.000 < .001 21069.000 < .001 31302.000 < .001 

Length of circumnutation major axis 
(mm) 

19361.000 0.098 34937.000 < .001 20899.000 < .001 20981.000 0.090 

Circumnutation length (mm) 19283.000 0.085 35616.000 < .001 19817.000 0.010 18840.000 < .001 

Circumnutation area (mm2) 18967.000 0.048 34687.000 < .001 18853.000 0.099 17703.000 < .001 

Amplitude of average velocity 
(mm/min) 

14025.000 < .001 33921.000 0.001 23962.000 < .001 20211.000 0.023 

Amplitude of maximum peak velocity 
(mm/min) 

14433.000 < .001 35322.000 < .001 24676.000 < .001 20679.000 0.054 

Maximum aperture (mm) 206.000 0.140 75.000 0.865 212.000 0.081 96.000 0.034 

Direction switching 28.500 0.314 48.000 0.792 43.500 0.143 54.000 0.191 

Note. The comparisons “S-thin vs. S-thick,” and “DM-thin vs. DM-thick” hypothesize that the maximum aperture is greater for the 
thick support than the thin one on the basis of previous findings in pea plants. 

S-thin vs. S-thick 

This comparison aims to confirm the kinematical differences previously documented 

with respect to the size of a potential support (Guerra et al., 2019). Confirming these 

differences is fundamental in order to draw firm conclusions regarding the DM condition. 

As shown in Table 8.1 the Mann–Whitney U test reveals that there is a significant difference 

in terms of “circumnutation duration,” “number of circumnutations,” “circumnutation 
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area,” “amplitude of average velocity,” and “amplitude of the maximum peak velocity” 

between the S-thin and the S-thick conditions. 

DM-thin vs. S-thin 

This comparison allows to validate the results reported in Chapter 7 (Wang et al., 

2023b). The Mann–Whitney U test reveals that there is a significant difference between the 

DM-thin and the S-thin in terms of “circumnutation duration,” “number of 

circumnutations,” “circumnutation major axis,” “circumnutation length,” “circumnutation 

area,” and “amplitude of average velocity.” 

DM-thick vs. S-thick 

This comparison allows for the detection of hypothetical kinematic differences in 

plants when exposed to a decision-making condition compared to a single condition, 

specifically in relation to the thick support. An aspect that was not considered in Chapter 7. 

As shown in Table 8.1, the Mann–Whitney U test reveals that there is a significant difference 

between the DM-thick and S-thick in terms of “circumnutation duration,” “number of 

circumnutations,” “circumnutation major axis,” “circumnutation length,” “amplitude of 

average velocity,” and “amplitude of the maximum peak velocity.” 

DM-thin vs. DM-thick 

This comparison was made to compare the kinematics of plants experiencing a 

decision-making environment in which a thin and a thick support were both present and 

exhibited a preference for either the thin or the thick support. As shown in Table 8.1, the 
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Mann–Whitney U test reveals that there is a significant difference in terms of 

“circumnutation duration,” “number of circumnutations,” “circumnutation length,” 

“circumnutation area,” and the “amplitude of average velocity” between the DM-thin and 

the DM-thick. Moreover, the “maximum aperture” is significantly greater for the DM-thick 

than for the DM-thin. 

 
 

Figure 8.2. The kernel density estimate (KDE) plots of dependent measurements “total movement duration” 
and “direction switching” for each group S-thin, S-thick, DM-thin, and DM-thick, respectively. The white dot 
within each plot represents the median; the bolded line indicates the interquartile range (IQR) between Q1 
and Q3, and the black line extending from the bolded bar reflects the range of the dataset between the 
minimum and maximum values. The width of the shape denotes the frequency of the data points. Note that 
the negative values where the plots may extend to are an artifact of KDEs, which means that the data contains 
values close to negative, namely 0. 
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8.4. Discussion 

The present experiment offers a more thorough investigation of the decision process 

underlying support-searching in pea plants. Plants, overall, exhibit inherent variations in 

kinematics and temporal dynamics in response to environmental fluctuations. Plants move 

faster, circumnutate less, and their circumnutations cover a broader area for the DM 

condition with respect to the S conditions. Furthermore, plants exhibited kinematic 

variations when targeting supports of identical size for the “DM-thin vs. S-thin” and “DM-

thick vs. S-thick” comparisons. This signifies that despite the plants oriented their movement 

toward supports of the same size, the presence of alternatives determines a decisional 

complexity that is played out in the kinematics of circumnutation. The presence of a 

relatively constant “total movement duration” across all conditions suggests that plants 

exhibit a tendency to maintain constant movement time while adjusting other features 

during circumnutations in order to accomplish their goals. Certain plants display the ability 

to change their direction of circumnutations multiple times prior to reaching a support. 

However, the frequency of direction switching does not differ significantly across conditions. 

In addition, plants also show kinematical differences depending on the size of the 

support, as evidenced when considering the comparisons “S-thin vs. S-thick,” and “DM-thin 

vs. DM-thick.” The behavior of plants growing in the presence of a single support display 

variations confirming the previously documented findings regarding the ability of plants to 

adjust their movements and growth in response to the size of the support (Guerra et al., 

2022; Guerra et al., 2019). However, plants appear to employ different strategies for supports 

of a similar size but nested within the DM condition. This implies that plants do not solely 
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program their movements based on the size information, but rather exhibit dependence on 

other sorts of environmental factors, such as the number of supports present. 

When looking at the plants exposed to the decision-making condition, kinematical 

differences between the “DM-thin vs. DM-thick” indicate that plants do not choose the 

support randomly. Rather, they seem to plan a purposeful goal-directed movement. The 

tendrils’ “maximum aperture” is smaller when comparing the thin than the thick support 

group, which is in accordance with previous findings (Guerra et al., 2019). This finding 

demonstrates that the perception and modulation of size information are contingent upon 

the diverse environmental conditions, pushing the degree of flexibility involved in the 

regulation of movement to a higher level of sophistication. 

The findings reported in Chapter 7 show that plants did not choose to grasp the 

thick support, which had a diameter of 40 mm, this was attributed to the higher energy 

demands and morphological expenses associated with such a support. Here it is revealed 

that a 30 mm diameter support is a viable option. A possible explanation is that this support 

may not disrupt homeostasis. It has been reported that the characteristics of a host can exert 

an impact on the liana distribution in forests (Leicht-Young et al., 2010). The phenomenon 

of “failsafe” properties has been observed in climbing plants, that is, if the tensile forces 

exceed a certain threshold, the hooks on the rachis will be detached and falls from trees with 

larger diameter (Isnard & Rowe, 2008; Rowe & Isnard, 2009; Rowe & Speck, 2014). 

However, some studies have identified a correlation between the tree size and the presence 

and abundance of lianas (Dewalt et al., 2000; Ladwig & Meiners, 2010; Pérez-Salicrup & 

De Meijere, 2005; Putz, 1984). It is possible that larger trees in mature forests are more likely 
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to support lianas owing to their ability to bear greater biomass. This, in turn, may result in 

increased canopy cover and improved light acquisition, eventually leading to greater liana 

abundance. In the current experimental scenario, it is conceivable that this subset of plants 

might be the “ambitious” ones, as they exhibit a tendency to actively pursue a sturdy 

attachment that can withstand greater weight, thereby facilitating their potential for future 

growth. 

Altogether, the above-mentioned findings indicate that plants possess the ability to 

engage in decision-making processes to adjust their behavior in response to their 

surroundings. The environmental distinctions provide open questions to the study of plants 

behavior. For instance, how did the plant acquire the support information and start to make 

these decisions? What is the most decision-sensitive anatomical landmarks? Which 

kinematical measures is more valuable and indicative for our understanding of plant 

movements and decisions? To answer these questions, I adopted explorative machine 

learning methods like anomaly detection via unsupervised machine learning (Chapter 9), 

and supervised machine learning classification (Chapter 10) by using the kinematical data 

collected in the above behavioral studies. 
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CHAPTER 9  

ANOMALY DETECTION: A MACHINE LEARNING METHOD 

TO INVESTIGATE PLANT BEHAVIOR 

 

9.1. Introduction 

Machine learning techniques are extensively used for uncovering movement features 

that go beyond what can be predicted on the basis of custom kinematical analyses. These 

features, if any, would allow for a better comprehension of already known behavioral 

patterns. 

Unsupervised anomaly detection (AD) is an unsupervised machine learning 

technique used to identify uncommon items or observations that exhibit a high degree of 

rarity by deviating significantly from the remaining data. Therefore, it is often used to 

identify patterns and deviations that do not adhere to the standard behavior of a given model. 

The models are trained on unlabeled data without the presence of any explicit designations 

by assuming that the majority of points within the dataset are representative of normal 

behavior. The decision to make use of this particular method is frequently employed in the 

context of exploratory data analysis. Therefore, it may be advantageous to investigate the 

atypicality in plant movements, which can be interpreted as a distinct deviation from the 
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typical circumnutation pattern. This deviation could potentially indicate varying executive 

decision-making processes in response to the environment. In contrast to classical kinematics, 

unsupervised AD offers particular benefits in identifying complex patterns that might not 

be readily discernible, and it can provide valuable insights into the timing of a plant’s 

decision-making process regarding the movement toward a potential support. 

The aim of this study is to provide a starting point in the application of machine 

learning techniques to plant behavioral data. An exploratory unsupervised AD was employed 

to investigate plants growing in the presence or absence of a potential support. The employed 

method allows for a more in-depth, but still preliminary, analysis of individual plants to 

identify potential variations in the movement patterning hidden within latent information 

processing and the decision-making dictated by an ever-changing environment. I anticipate 

that due to its exploratory nature, the insights obtained from the application of this method 

may not provide conclusive evidence. 

9.2. Materials and Methods 

9.2.1. Experimental conditions 

A pair of plants were chosen from the dataset reported in Chapter 6. One plant, 

designated as plant “N,” grew in a chamber without a potential support (“no support” 

condition), while the other one, designated as plant “S,” grew in a chamber with a potential 

support (“support” condition). 

9.2.2. Data preprocessing 

The PyCaret anomaly detection is a Python-based library (Van Rossum & Drake Jr, 
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2009) that utilizes unsupervised machine learning models to effectively identify rare 

observations (i.e., outliers) that deviate significantly from the majority of the data 

(Pycaret.Org, 2020). The dataset pertaining to the trajectories of plants N and S were 

imported, subjected to a thorough data report examination and subsequently visualized 

through the use of Kernel Density Plot, as depicted in Figure 9.1. Then, the environment 

was configured in order to facilitate the utilization of unsupervised machine learning models. 

The time windows of movements were selected to encompass only the circumnutations. 

Therefore, the final frame was defined as either the frame just before the plant fell on the 

ground for plant N in the “no support” condition (number of selected frames: 622, time 

window: 1866 mins; Figure 9.1a), or the frame in which the tendrils start to coil for plant S 

in the “support” condition (number of selected frames: 561; time window: 1683 mins; 

Figure 9.1b). The dataset of each plant consists of 3 features: axis_x, axis_y, and axis_z. The 

dataset was normalized using the z-score method, without any clustering and threshold set 

for data filtering. 

 
 
Figure 9.1. Distribution of values of the plants’ movement trajectories in axis_x, axis_y, and axis_z: (a) plant 
N and (b) plant S. 
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9.2.3. Anomaly detection 

Once the dataset had been prepared, the subsequent steps were carried out, which 

involved the selection and assignment of models to the respective tasks. Three unsupervised 

machine-learning models were employed: Isolation Forest, k-Nearest neighbor, and one-class 

Support Vector Machine. These were chosen based on their robustness and wide 

applicability across diverse domains (Cortes & Vapnik, 1995; Parise et al., 2021). 

i. Isolation forests (IF) are generated on the basis of binary decision trees. The 

algorithm as proposed by Liu et al. (2008), is designed to identify anomalies by 

segregating anomalous data points from normal ones by means of an ensemble 

of isolation trees (iTrees). Every iTree is trained using a subset of training 

observations that are sampled without replacement. The algorithm constructs an 

isolation tree by randomly selecting a split variable and split position iteratively, 

until each observation within a subset is assigned to a single leaf node. The 

occurrence of anomalies is infrequent and distinct, resulting in their placement 

in distinct leaf nodes that are closer to the root node. The anomaly scores in IF 

are determined by averaging the path lengths across all isolation trees to identify 

anomalies. 

ii. The k-Nearest Neighbor algorithm (KNN) is a non-parametric machine learning 

technique employed for data classification, relying on similarities and diverse 

distance metrics (Cover & Hart, 1967). The underlying premise of the KNN 

algorithm is that points with similar attributes tend to be located in closer 

proximity to one another, while outliers are typically isolated points. The 
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algorithm relies solely on the threshold values, so that the distance to the kth 

nearest neighbor can be interpreted as a local density estimate. According to 

Ramaswamy et al. (2000), the local density decreases as the distance to the k 

neighbors increases, thereby increasing the likelihood of the point being 

recognized as an outlier. 

iii. Support Vector Machines (SVMs) are considered one of the most resilient 

statistical algorithms for classification (Cortes & Vapnik, 1995). One-class SVM 

(OCSVM) is a model used in the field of AD. Its purpose is to develop the 

capability to distinguish between anomaly points from a given dataset (Moya & 

Hush, 1996). The algorithm operated on the fundamental principle of reducing 

the volume of the hypersphere encompassing the instances belonging to a 

specific class. It considers all the remaining data points lying outside this 

hypersphere as outliers. The mathematical formula (Noumir et al., 2012) for 

computing the volume of a hypersphere with center 𝑐 and radius 𝑟 is as follows: 

min
*,+

𝑟" 	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜, ‖𝜙(𝑥,) − 𝑐‖" ≤	𝑟"	∀𝑖 = 1, 2, … , 𝑛 

The dataset of Plants N and S were allocated to each model separately. The 

determination of an anomaly threshold occurs during the process of fitting the decision 

function, specifically it was set to a value of 0.05. This implies that 5% of points within the 

dataset were identified as anomalies or outliers. The function within assigned models was 

designed to generate a dataset that contains the detection of anomalies, and the presence of 

outliers was denoted by the value 1 while non-outliers was denoted by the value 0. 
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Additionally, the models included anomaly scores which served to quantify the level of 

significance of the anomaly in relation to previously observed anomalies (as illustrated in the 

Results section). Once the AD was completed for each model for both plants, the anomaly 

points were presented with relevant information such as “frame number,” “anomaly score,” 

“progress rate,” and “progress rate interval.” This was done to enable the interpretation of 

anomalies within the specific context of each plant. The term “frame number” referred to 

the numerical designation assigned to a specific frame outlined as anomaly. And the 

“anomaly score” denoted the score generated by each model that corresponded to the 

identified frame. The term “progress rate” represented at which percentage of movement, 

the plant movement pattern deviated from the norm. It was calculated by dividing the “frame 

number” by the total number of selected frames for each plant. The “progress rate interval” 

was used to quantify the temporal distance between successive anomaly frames. The Seaborn 

Pair Plot (Waskom, 2021) was adopted in matrix format to visually represent the pairwise 

relationships between axes within trajectories in each plant. The diagonal plots showed a 

univariate distribution plot that represented the marginal distribution of anomaly data 

points and the majority of data points in each column. 

9.3. Results 

There were 32 anomaly points out of the 622 outlined in plant N, and 28 anomaly 

points out of 561 outlined in plant S, which accounted for 5% of the total amount of frames. 

The majority of the anomaly points manifested during a rather late phase of the development 

for both plants. In the case of plant N, the movement appeared to be at a greater degree of 



 130 

random distribution and irregularity. In contrast, for plant S, the movements displayed a 

more consistent, rhythmic pattern that was comparable across all models. These patterns are 

depicted in Figures 9.2 to 9.4. 

 
 

Figure 9.2. Pair plots of anomaly distribution for the IF model with comparison to the general trajectory 
distribution for plants N and S. The anomaly points are marked in color “orange,” and the rest of the points 
are marked in color “blue.” The diagonal plots show a univariate distribution plot that represents the marginal 
distribution of anomaly data points and the majority of data points for each column. 

Plant N exhibited a notable departure from the previous pattern of movement at a 

relatively late stage. Furthermore, the plant movement pattern underwent an intensified 

change, particularly demonstrated by significant alterations in behavior during the final 

stages of the movement, just before it was about to fall. Plant S exhibited earlier and 

consistent progress in its movement, the pattern of the movement changed as it neared the 

end, particularly when it was in close proximity to the support. 
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9.3.1. Isolation Forest 

The performance of IF is presented in Figure 9.2 (see also Appendix II Table 1). The 

plant N (progress rate: 89.694%) initiated to move later than plant S (progress rate: 

68.036%). The progress rate interval is larger in plant S than in plant N, and the anomaly 

score is higher and varies more in plant N (IF: mean = 0.036, SD = 0.030) compared with 

plant S (IF: mean = 0.022, SD = 0.014). Nevertheless, the overall anomaly score does not 

exhibit a significant deviation from the remaining data points, indicating that the overall 

movement pattern remains relatively consistent when the IF model was employed. 

9.3.2. K-Nearest Neighbor 

The performance of KNN is presented in Figure 9.3 (see also Appendix II Table 2). 

The plant N (progress rate: 60.064%) started to move distinctively later than plant S 

(progress rate: 55.357%). The progress rate interval is larger in plant S than in plant N. The 

anomaly score is higher and varies more in plant N (KNN: mean = 0.967, SD = 0.533) 

compared with plant S (KNN: mean = 0.779, SD = 0.086). The overall movement pattern is 

relatively similar from one to another. 
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Figure 9.3. Pair plots of anomaly distribution in the KNN model with respect to the general trajectory 
distribution for plants N and S. The anomaly points are colored in “orange.” The remaining points are colored 
in “blue.” 

9.3.3. One-class Support Vector Machine 

The performance of OCSVM is shown in Figure 9.4 (see also Appendix II Table 3). 

The plant N (progress rate: 89.694%) started to move distinctively later than plant S 

(progress rate: 74.643%). The progress rate interval is larger in plant S than in plant N. The 

anomaly score is much higher and varies more in plant N (OCSVM: mean = 92.466, SD = 

4.444) compared with plant S (OCSVM: mean = 24.575, SD = 3.717). 
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Figure 9.4. Pair plots of anomaly distribution in the OCSVM model with respect to the general trajectory 
distribution for plants N and S. The anomaly points are colored in “orange.” The remaining points are colored 
in “blue.” 

9.4. Discussion 

The present study examined the movement of pea plants using an exploratory 

unsupervised AD method. Overall, a consistent pattern of outliers was detected for all three 

models, indicating a degree of uniformity in the atypical behavior exhibited by each plant. 

The models also demonstrated that plants N and S exhibited distinct behaviors, with plant 

N showing an intensified change in motion under the “no support” condition in contrast 

to plant S under the “support” condition. The anomaly score is different with respect to 

different models, this could be attributed to variations in the underlying principles of the 

algorithms. However, it can be noticed that the scoring pattern is mostly consistent across 

models, suggesting that plant N tends to exhibit more erratic movement, while plant S tends 

to perform movement in a more regular manner. 
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One thing worth noticing is that the occurrence of anomaly points appeared 

subsequent to the completion of half of the entire sequence of circumnutations. This 

observation suggests that the appearance of anomaly points cannot be attributed to the 

oscillatory nature inherent in circumnutation. In turn, this could suggest that the behavioral 

differences are expressed when circumnutations are well-developed in the corresponding 

tendrils. 

The finding that plant S showed more regularity in its movement suggests that the 

sensory input it receives from the environment is translated into controlled and steady 

movements towards its final goal, which is to grasp the support. The plant N increased 

irregularity during the final stage of movement indicating that it is moving in a relatively 

dysregulated manner, potentially resulting from the lack of a support in the environment. 

However, it is not possible to firmly demonstrate whether the detected differences between 

the plants are due to individual differences or the presence/absence of the support. 

In general, the utilization of machine learning methods can enhance the classic 

kinematical approach by leveraging computational power to recognize intricate patterns. 

Further investigation is necessary to validate novel methods used in implementing machine 

learning, and a more comprehensive understanding of plant behavior is required in order 

to accurately interpret anomalies. Additionally, the development of model explainers 

specifically tailored to the context at hand is essential. Further attempts in the use of machine 

learning for the classification in plants movements are provided in the next experimental 

chapters. 

  



 135 

 



 136 

CHAPTER 10  

CLASSIFYING CIRCUMNUTATION IN PEA PLANT 

VIA MACHINE LEARNING3 

 

10.1. Introduction 

As stated in Chapter 3, machine learning may have a great, yet unexplored potential, 

for analyzing the movement of plants. In this experiment, machine learning methods were 

employed to classify plants movement, and to predict movement patterns which will enable 

us to build stochastic movement generators, useful in scenarios where collecting actual 

movement data is laborious. 

Given that predicting plant movement is important when building simulators, I 

aimed to test whether machine learning methods could capture the movement patterns 

nested in actual kinematical data. Several machine learning classifiers were compared to 

model plants movement with the goal of generating models that, based on a binary labeled 

dataset, learn to discriminate between the presence/absence of a support in the environment 

to formulate precise predictions based on an unlabeled dataset. A difference might be found 

 
3 Published: Wang, Q., Barbariol, T., Susto, G. A., Bonato, B., Guerra, S., & Castiello, U. (2023). Classifying 
circumnutation in pea plants via supervised machine learning. Plants, 12(4), 965. 
https://doi.org/10.3390/plants12040965 
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in the pattern of circumnutation that can be learned and classified rather accurately 

depending on the presence or absence of the support. If so, the most distinctive kinematic 

features that contribute to the classification tasks would be identified to provide additional 

information for driving future studies on the matter. Overall, this first attempt was to test 

whether machine learning might be a valid tool for studying the movement of plants. 

10.2. Materials and Methods 

10.2.1. Experimental conditions 

The experimental conditions were described in Chapter 6. A total of 32 snow peas: 

19 plants were grown individually in chambers without the presence of a support (“no 

support” condition; Figure 10.1a), while 13 plants were grown individually in chambers 

where a potential support was present (“support” condition; Figure 10.1b). 

 
 
Figure 10.1. Experimental conditions and anatomical landmarks. (a) “No support” condition. (b) “Support” 
condition. (c) The anatomical landmarks of interest were the “tendrils” and the “junction” developing from 
the considered leaf. The “tendrils” refers to the tip of the shoot, and the “junction” refers to the point where 
the tendrils tie together. 
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10.2.2. Data processing 

The anatomical landmarks of interest were the “tendril” and the “junction” (Figure 

10.1c), developing from the considered leaf. The initial frame was the one corresponding to 

the appearance of the tendrils and the junction. The final frame was defined as either the 

frame in which the tendrils start to coil for the “support” condition (number of selected 

images: 699.62, SD = 379.28), or the frame just before the plant fell on the ground for the 

“no support” condition (number of selected images: 1617.11, SD = 1112.82). The 3D 

coordinates were obtained up to 15 digits after the decimal. The frames corresponding to 

the time at which the plants grasped the support or touched the ground in the absence of 

the support were removed from the data set. This was done to prevent classifiers from using 

these final frames to distinguish between the two conditions. Therefore, the classifiers were 

only fed with helical organ movements (i.e., circumnutation). Moreover, since each plant 

has its own starting position, the first frame was set as the origin (0, 0, 0) for all plants in 

order to prevent a location bias that could affect learning by the classification models (Figure 

10.2a-c). 

10.2.3. Derived features 

Kinematic features were analyzed to ascertain whether they differed for the “support” 

and the “no support” conditions mirroring what reported in Chapter 6. This aspect is 

fundamental in order to verify the ability of machine learning tools to discriminate across 

conditions. 

On this basis, the features considered for model classifications were the following: 
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“junction trajectory,” “tendril trajectory,” “junction velocity,” “tendril velocity,” “junction 

acceleration,” “tendril acceleration,” “tendrils aperture,” “overall movement duration,” 

“movement duration for each circumnutation,” and “all features” (i.e., full kinematics). 

 
 
Figure 10.2. Data acquisition. Coordinates of junction trajectory and plant vertical development in time. (a) 
Junction trajectory for all plants in the x-y dimension for the two experimental conditions. (b) Junction 
trajectory for all plants in the y-z dimension. (c) Junction trajectory for all plants in the x-z dimension. (d) 
Junction vertical development in time for the “support” condition. (e) Junction vertical development in time 
for the “no support” conditions. In panels “d” and “e,” different colors represent different plants. Note that 
for the “no support” condition, the length of the time index, indicated as the number of frames, has a longer 
range than the “support” conditions. 
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10.2.4. Data preprocessing 

The z-score (standard scaling) data normalization method was adopted, by using the 

formula z = (x−μ)/σ, where μ stands for the mean value of the feature and σ for the standard 

deviation of the features. A value equal to the mean of all the features was normalized to 0 

and the standard deviation to 1. To avoid biases toward features of the dataset and, at the 

same time, to prevent the classifiers from learning information from the test dataset, a 

transform method was used to keep the same features from the training data to transform 

the test data. To split the training and test sets, each derived feature was labeled with two 

different conditions, “support” and “no support,” as a binary labeled dataset. The stratified 

shuffle split cross-validator was applied to the dataset, which is a merge of StratifiedKFold 

and SuffleSplit to return stratified randomized folds (Pedregosa et al., 2011). The set number 

of re-shuffling and splitting iterations equals 25, test size as 0.25, default random state. 

10.2.5. Model’s classifications tasks 

The modeling process was carried out with Python (Van Rossum & Drake Jr, 2009). 

I performed modeling of pea plant behavior based on supervised classification frameworks. 

The purpose of a Machine Learning Classifier is to produce models that, on the basis of a 

binary-labeled training set, learn to discriminate between different growth circumstances and 

to provide exact predictions on the basis of an unlabeled test set. Random decision forests 

(RF), logistic regression (LR), and support vector classifier (SVC) are the classifiers that were 

applied and compared through cross-validation (Pedregosa et al., 2011). These approaches 

are optimized and validated in a variety of research areas (Salvatore et al., 2014; 



 141 

Wijeyakulasuriya et al., 2020). The percentage of test data that were successfully classified 

for the two conditions is counted under the accuracy of classification. The classification task 

employed each of the generated kinematic features separately, and the classification accuracy 

for each feature was evaluated. I also assessed the accuracy of “all features,” where 

permutation importance was computed following the fitting of the classifiers (Breiman, 

2001); feature importance was analyzed for all the derived features. The “overall movement 

classification” and the “circumnutation classification” are the two broad categories that 

constitute the model classification task. Each classification task consists of 25 trials, which 

include 25 iterations of the training and test. The absolute movement duration was typically 

longer for the plants growing in the presence of a support (Figure 10.2d) than for the plants 

growing in the absence of a support. For the “overall movement classification” task, I 

considered the features extracted from the whole movement for each individual plant 

(Figure 10.2e). For the “circumnutation classification task” the data were partitioned into 

circumnutations, smoothing the data set by generating an approximation function that 

captured the key patterns, namely the waves of the movement in coordinates (i.e., 

circumnutation). Then, the waves were divided into single circumnutation by splitting 

between the peaks of waves. The related features that were extracted from each 

circumnutation, then the classifiers were fitted to predict which condition a single 

circumnutation corresponded to. 

10.3. Results 

Classifiers performance: accurate predictions depending on the presence/absence of the support. 
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The classifiers generated models based on a binary-labeled training set, learned to 

discriminate between the presence/absence of the support, and formulated precise 

predictions based on an unlabeled test set. The performance corresponds to the accuracy of 

classification (i.e., the rate of discriminating plants growing in the presence/absence of the 

support on the test set correctly). When considering the totality of the circumnutations 

performed by the plant (i.e., “overall movement classification”), the classifiers were able to 

distinguish between the “support” and the “no support” conditions with a mean accuracy 

across all classifiers and all features of 66.80% (SD = 15.39; Table 10.1). When considering 

circumnutations singularly (i.e., “circumnutation classification”), the mean accuracy was 

68.52% (SD = 12.63; Table 10.2). These results demonstrate that the classifiers were capable 

of differentiating the pattern of circumnutation depending on the presence/absence of the 

support rather accurately above the chance level (>50.00%). 

Table 10.1. Accuracy in the “overall movement classification” task. This table shows the mean and standard deviation 
of the accuracy for each classifier. 

 
Accuracy % 

Mean (standard deviation) 
 

 Random forest Logistic regression Support vector  
Feature mean 

accuracy 
Junction trajectory 71.00 (18.30) 80.50 (13.54) 71.50 (9.89) 74.30 (14.80) 
Junction velocity 78.50 (12.24) 78.00 (9.04) 75.50 (12.23) 77.30 (11.19) 
Junction acceleration 66.50 (11.81) 72.00 (12.12) 71.00 (11.81) 69.80 (11.99) 
Tendril trajectory 67.00 (16.49) 56.50 (14.93) 66.00 (11.13) 63.2 (14.95) 
Tendril velocity 75.50 (10.51) 68.00 (15.34) 72.50 (10.21) 72.00 (12.47) 
Tendril acceleration 51.00 (11.92) 57.00 (10.87) 63.50 (10.16) 57.20 (12.01) 
Tendril aperture 62.50 (15.73) 49.50 (12.23) 60.00 (6.25) 57.30 (13.17) 
Movement duration  48.50 (17.43) 65.00 (16.54) 56.50 (10.90) 56.70 (16.48) 
All features 76.50 (12.14) 71.00 (13.84) 72.00 (10.38) 73.20 (12.27) 
Classifier’s mean accuracy 66.30 (17.36) 66.40 (16.37) 67.60 (11.94) 66.80 (15.39) 
Note. A string of accuracy for each classifier and feature is obtained after repeating the classification task 25 times. 
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Overall movement classification: specific contribution of the considered features across classifiers. 

As shown in Table 10.1, the SVC performs with a slightly higher average accuracy 

(mean = 67.60%, SD = 11.94) compared to the RF (mean = 66.30%, SD = 17.36) and LR 

(mean = 66.40%, SD = 16.37) classifiers. Regarding those features that contributed to the 

successful classification, the “junction velocity” (mean = 77.30%, SD = 11.99), the “junction 

trajectory” (mean = 74.30%, SD = 14.80), and “all features” (mean = 73.20%, SD = 12.27) 

show generally better performance compared with the “tendrils aperture” (mean = 57.30%, 

SD = 13.17), the “tendril acceleration” (mean = 57.2%, SD = 12.01), and “movement 

duration” (mean = 56.70%, SD = 16.48). With a mean accuracy of 80.50% (SD = 13.54) 

obtained with the LR classifier, “junction trajectory” seems to be the best indicator for 

distinguishing between the “support” and “no support” conditions. Overall, this suggests 

that the plants exhibit differences in behavioral patterns depending on the presence/absence 

of the support. 

Table 10.2. Accuracy for the “circumnutation movement classification” task. This table shows the mean and standard 
deviation for accuracy for each classifier. 

 
Accuracy % 

Mean (standard deviation) 
 

 Random forest Logistic regression Support vector 
Feature mean 

accuracy 
Junction trajectory 71.84 (10.71) 74.87 (12.14) 71.54 (14.03) 72.75 (12.29) 
Junction velocity 65.09 (11.09) 71.01 (15.23) 70.42 (14.44) 68.84 (13.78) 
Junction acceleration 67.12 (9.50) 70.27 (10.44) 69.33 (12.22) 68.91 (10.72) 
Tendril trajectory 59.49 (9.10) 68.65 (14.56) 67.38 (12.01) 65.17 (12.61) 
Tendril velocity 67.35 (11.39) 70.84 (15.23) 70.37 (14.28) 69.52 (13.63) 
Tendril acceleration 62.87 (10.42) 65.62 (12.31) 66.20 (11.23) 64.90 (11.29) 
Tendril aperture 64.82 (11.28) 65.60 (11.80) 64.67 (12.79) 65.03 (11.82) 
Circumnutation movement duration 63.24 (12.18) 72.98 (12.82) 69.92 (12.58) 68.71 (13.02) 
All features 73.74 (12.91) 73.37 (10.35) 72.14 (11.54) 73.08 (11.51) 
Classifier’s mean accuracy 66.20 (11.60) 70.29 (12.98) 69.07 (12.96) 68.52 (12.63) 
Note. A string of accuracy for each classifier and feature is obtained after repeating the classification task 25 times. 
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Circumnutation classification: specific contribution of the considered features. 

On the basis of the features derived from a single circumnutation, the classifiers can 

reliably predict whether the plants are moving in the presence/absence of a potential support 

(Table 10.2). In comparison to the RF (mean = 66.20%, SD = 11.60) and the SVC (mean = 

70.29%, SD = 12.98), the LR has a slightly greater average accuracy (mean = 69.07%, SD = 

12.96). As for the contribution of the different features, “all features” (mean = 73.08%, SD 

= 11.51), “junction trajectory” (mean = 72.75%, SD = 12.29), and “tendril velocity” (mean 

= 69.52%, SD = 13.63) exhibit better performance compared with “tendril trajectory” (mean 

= 65.17%, SD = 12.61), “tendrils aperture” (mean = 65.03%, SD = 11.82), and “tendril 

acceleration” (mean = 64.90%, SD = 11.29). With a mean accuracy of 74.87% (SD = 12.14) 

obtained with the LR classifier, “junction trajectory” seems to be the best indicator for 

distinguishing between the “support” and the “no support” conditions. This is in accordance 

with the findings for the “overall movement classification.” Again, this demonstrates that 

the classifiers are able to extract from the kinematics of circumnutation whether the plant is 

moving in the presence/absence of a potential support. 

The accuracy of the classification depends on organs and features. 

When looking more deeply into the contributory role played by the features considered 

for classification, the kinematic features for the tendrils appear to be less relevant with 

respect to junction-related features for both classification tasks. When considering 

movement duration, this feature appears to be less informative when the overall movement 

classification is considered. However, this very same feature appears to be a reliable indicator 



 145 

when single circumnutations are considered (68.71%, SD = 13.02). 

A full kinematic profile favors classification. 

When all the extracted features were considered, a high level of accuracy was 

obtained across all classifiers (overall movement classification: mean = 73.20%, SD = 12.27; 

Table 10.1; circumnutation classification: mean = 73.08%, SD = 11.51; Table 10.2). After 

the models had been fitted, the importance of kinematic features was determined by 

applying permutation importance (Figure 10.3a,b). Different feature importance is detected 

among classifiers when considering the overall movement and single circumnutations 

separately. For instance, when the overall movement is considered, “junction velocity,” 

“junction trajectory,” and “junction acceleration” appear to be the most crucial classification 

features, whereas “tendril acceleration,” “tendril aperture,” “tendril trajectory,” and 

“movement duration” appear to be less essential. The negative value (< 0.00) for the less 

important features mentioned above indicates that predictions based on shuffled data 

typically turn out to be more accurate than real data. “Junction trajectory” and “junction 

acceleration” appear to be more important than “tendril acceleration” and “tendril aperture” 

for classification when single circumnutations are considered. Movement duration is an 

important feature for distinguishing between the presence/absence of the support when it 

is referred to single circumnutation, but not when “overall movement duration” is 

considered.  
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Figure 10.3. Feature importance for “all features.” Kinematic feature importance of three classifiers random 
forest (RF, blue), logistic regression (LR, orange), support vector classifier (SVC, green). (a) Feature importance 
for the “overall movement classification” task. (b) Feature importance for the “circumnutation classification” 
task. 

10.4. Discussion 

Here, a general framework to classify pea plants’ circumnutation movement is 

proposed. This framework has been operationalized via various machine learning models 
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fed with kinematic data. The findings show that machine learning techniques have the 

ability to unveil how kinematic patterning is modulated in key organs when pea plants “hunt” 

for a support. 

Nutation kinematics of different organs has served to lay a foundation of several 

mechanisms responsible for the movement in question with tendrils being amongst the most 

investigated (Isnard & Silk, 2009; Raja et al., 2020; Simonetti et al., 2021). Tendrils serve 

climbing plants by providing a parasitic alternative to building independently stable 

structural supports, allowing the plant to wend its way to sunlight and numerous ecological 

niches (Gerbode et al., 2012). Accordingly, previous evidence provides a degree of support 

that some climbing plants can modify their circumnutation patterns to a greater or lesser 

extent depending on the presence/absence of a potential support in the environment 

(Tronchet, 1946, 1977). Experimental evidence demonstrating that this is the case has been 

forthcoming from recent studies that used kinematic analysis to characterize the movements 

of the tendrils of pea plants (Castiello, 2020; Ceccarini et al., 2020a, 2020b; Guerra et al., 

2022). Guerra et al. (2019), for example, demonstrated that pea plants (P. sativum) are able 

to perceive a support and modulate the kinematics of the tendrils according to the features 

of a potential support. Therefore, it seems that the tendrils of climbing plants reaching to 

grasp a support play a pivotal role as far as support detection is concerned. 

The findings of the present study, however, seem to suggest that, rather than the 

tendrils, the junction underneath them is a superior indicator for discerning the 

presence/absence of the support. The fact that the kinematics of the junction is a stronger 

predictor than the kinematics of the tendrils for the presence of the support points to this 
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organ as a navigator guiding the tendrils towards the support. Indeed, if one looks carefully 

at how circumnutation unfolds once the support has been somewhat detected, it is evident 

that the junction of the tendrils modifies its velocity and timing to launch the tendrils toward 

the support. In addition, once informed that the “take-off” is approaching, the tendrils open 

and assume a choreography so as to accommodate the thickness and the shape of the support 

(Guerra et al., 2019). All of this corroborates the idea that plant movements are adaptive, 

flexible, anticipatory, and goal directed. They are somewhat organized and structured, with 

different organs “cross-talking” to accomplish a crucial endeavor for the plant’s survival. This 

study using machine learning techniques illuminates and quantifies this proposal. 

Another novel observation that stems from the present investigation is the classifiers 

being able to extract a tremendous amount of information from a single circumnutation, 

which represents the smallest unit of the entire movement. The very fact that the classifiers 

can make accurate predictions from the emergence of the very first circumnutation reveals 

that the plants, at the time they initiated to circumnutate, were already well-aware of their 

surroundings. 

Further machine learning research should aim at characterizing how circumnutation 

changes as far as support characteristics are concerned. Predictions and modeling of the cost-

benefit analysis of climbing plant behavior should be helpful to infer the selective pressures 

that have operated to shape current climber ecological communities. In addition to plant 

movement, as a direct reflection of plants’ internal state, other physiological markers could 

be added to obtain a more complete, reliable, and consistent picture of how the environment 

shapes climbers’ behavior. Such technologies will enable the investigation of unknown 
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aspects of the helical growth performed by the tendrils and their junction on an evolutionary 

scale, shedding some light on the mechanisms involved in the acquisition and evolution of 

the climbing habits of terrestrial plants. 
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CHAPTER 11  

CLASSIFYING SUPPORT-SEARCHING VIA ENSEMBLE LEARNING 

 

11.1. Introduction 

Previous chapters have demonstrated the validity of machine learning as a viable 

approach for understanding plant movements (Wang et al., 2023a). The application of 

machine learning techniques presents compelling advantageous outcomes through its ability 

to enhance data processing, recognize hidden patterns, and boost interpretation of plant 

behavior. For instance, by employing unsupervised anomaly detection techniques as 

discussed in Chapter 9, machine learning algorithms were able to reveal concealed 

connections and emergent patterns in the movements of plants. More importantly, machine 

learning techniques possess a fundamental advantage, that is predictability. This ability 

allows classifiers to predict plant behavior by leveraging previously learned data, and it has 

the potential to facilitate the prediction of plants’ anticipatory responses to different 

scenarios or stressors. In the context of supervised machine learning classification, as 

discussed in Chapter 10, a new finding regarding plant movement control has come to light. 

I uncovered that the anatomical landmark, defined as the “joint” (i.e., the point where the 

tendrils tie together), plays a pivotal role in guiding the movement towards a potential 
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support. This was achieved by feeding the machine learning classifier with kinematical 

features. 

It must be said that although the classifier’s performance exhibited accuracy levels 

that were above chance, it did not achieve superiority. In relation to this matter, a refined 

approach, through the use of ensemble learning classifiers, could be adopted to boost the 

classifier’s robustness and precision. Ensemble learning classifiers contribute to the 

enhancement of machine learning performances through the amalgamation of many 

computational models (Sagi & Rokach, 2018). This methodology, in contrast to the 

utilization of other classifiers enables the generation of enhanced predictive performance, 

reduces the problem of overfitting, and enables the achievement of a balance between bias 

and variance (Breiman, 2001; Efron, 1992). 

In Chapter 10, by analyzing the extracted averaged features, the classifiers 

successfully predicted the specific conditions in which the plant grew in the 

presence/absence of the support. During that task, each feature of the plant was represented 

by a single value within the “overall classification task.” The classifier did not take into 

account the detailed profile of each circumnutation performed by a plant. The rationale 

behind choosing this approach is that plants show variation in the time lengths of their 

movements, leading to an unequal dataset that poses a challenge for the application of 

machine learning classifiers. The issue of unequal time series has been reported in several 

study domains when employing machine learning techniques (Soto et al., 2019; Widiputra 

et al., 2011). Here this issue could be resolved by employing a polynomial regression model 

that considers all circumnutations in a plant. As so, each circumnutation performed by a 
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plant could be regarded as interdependent. And the machine learning classifier could learn 

to make predictions regarding the growth condition of a plant by analyzing a sequence of 

circumnutations. 

The aim of the present study was to evaluate the efficacy of ensemble learning 

classifiers based on the data concerned with plant decision-making behavior during support-

searching reported in Chapter 8. I expected the new approaches would yield a superior level 

of accuracy in predicting plant movements. Moreover, by addressing the variation in time 

lengths among plants, I should be enabled to examine plants at an individual level. The 

overall purpose was to expand the understanding of plant decision-making behavior through 

the application of supervised machine learning techniques. 

11.2. Materials and Methods 

11.2.1. Subjects 

In the present study, a total of 37 pea plants (P. sativum) were chosen. 

11.2.2. Experimental conditions 

For details related to the experimental conditions please refer to Chapter 8. Eight 

plants were grown in the presence of a single thin support (i.e., S-thin condition); 10 plants 

were grown in the presence of a single thick support (i.e., S-thick condition). 19 plants were 

grown in the presence of both thin and thick supports (i.e., DM condition). The plants for 

the DM condition were further divided into two groups: the DM-thin group includes the 13 

plants that chose the thin support, and the DM-thick group includes the six plants that chose 

the thick support. During the experiment, the classifiers were assigned three tasks to learn 
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the behavioral patterns shown by the plants and then utilize this knowledge to make 

predictions about plant’s growth condition:  

i. DM vs. Single: to classify the plants grown under the DM and the Single 

conditions. 

ii. S-thin vs. S-thick: to classify the plants grown under the S-thin and the S-thick 

conditions. 

iii. DM-thin vs. DM-thick: to classify the plants preferred thin support or thick 

support under DM conditions. 

11.2.3. Derived features 

The anatomical landmarks of interest were the “tendril,” the “junction” developing 

from the considered leaf, as well as the “apex” which denotes the shoot apex where new leaf 

growth occurs (Figure 11.1). The final frame was defined as the frame at which the tendrils 

begin to coil. Moreover, in order to mitigate any possible location bias that may impact the 

learning performance of the classifiers, the first frame was designated as the origin (0, 0, 0) 

for all plants. The trajectory of the plant movement was described by a sequence of 

coordinates (xi, yi, zi) that were indexed by time. 
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Figure 11.1. The anatomical landmarks of interest were the tendril, junction, and apex. The tendril refers to 
the tip of the shoot, the junction refers to the point where the tendrils tie together, and the apex refers to the 
shoot apex where the new part of the plant will develop. 

11.2.4. Data preprocessing 

In order to classify plants at an individual level, the extraction of plant-related 

features was conducted based on the analysis of their circumnutations in tendrils, joints, 

and apexes. The circumnutations were split using a filtering method that employed a mobile 

average window on the plant’s trajectory, followed by the division of each plant’s trajectory 

(Simonetti et al., 2021). Plant’s trajectories were therefore divided into circumnutations 

(Figure 11.2). Subsequently, several features of circumnutations were computed so to 

describe the movement of a plant. 
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Figure 11.2. Coordinates of tendrils’ trajectory for the DM-thin and DM-thick conditions along the x, y, and 
z axes over time. 

The features extracted from the split circumnutation were: 

i. Circumnutation duration (min). 

ii. The circumnutation center of gravity (Figure 11.3. Segment a). 

iii. The velocity of the circumnutation center of gravity (mm/min). 

iv. Circumnutation length (mm; Figure 11.3. Segment b). 

v. The amplitude of circumnutation average velocity (mm/min). 

vi. Distance from the circumnutation center of gravity to the origin of the plant 
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(Figure 11.3. Segment c). 

vii. Distance from the circumnutation center of gravity to the support (Figure 11.3. 

Segment d). 

 
 

Figure 11.3. Graphical representation for some of the extracted features: (a) the circumnutation center of 
gravity represented by a red dot; (b) the circumnutation length marked in yellow; (c) the distance from the 
circumnutation center of gravity to the origin of the plant marked in green; (d) the distance from the 
circumnutation center of gravity to the support marked in blue. 

Due to variations in the duration and quantity of the circumnutations exhibited by 

individual plants, the result is a matrix containing rows of unequal data lengths. Generating 

a proper description of the dataset for this scenario was technically unfeasible, therefore, the 

approximation theory was employed (Powell, 1981). The study of approximation theory 

focuses on the optimal approximation of functions using simpler and fewer functions. This 

involves implementing several operations to achieve results that closely resemble the 

underlying reality. To achieve the standardization/normalization of feature lengths over a 
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predetermined number of features, a polynomial function regressor was utilized (Khuri & 

Conlon, 1981; Powell, 1981). This can be achieved by approximating the strings of features 

collected from each plant using a polynomial function 𝑓(𝑛), where 𝑛 is an input parameter 

representing the degree of the polynomial function approximation. The concept is 

articulated as: 

𝑓(𝑛, 𝑥) 	= 	𝑎%𝑥% 	+ 	𝑎%-!𝑥%-!	 +	⋯	+	𝑎!𝑥	 +	𝑎/ 

where the coefficients {𝑎%, 	𝑎%-!, ⋯ , 	𝑎!, 	𝑎/} are solutions from the minimization problem:  

{𝑎%, 	𝑎%-!, ⋯ , 	𝑎!, 	𝑎/} 	= 	𝑎𝑟𝑔	 min
{1!,	1!"#,⋯,	1#,	1$}

Y|𝑓(𝑛, 𝑥,) − 𝑦,|"
4

,5/

 

Figure 11.4 provides a representation of examples of the polynomial function 

regressor. The method of approximation yielded a fixed set of numbers representing the 

degree of the polynomial function approximator. In this way, the challenge of encoding 

features extracted from circumnutations for each plant was effectively solved by retaining 

the time evolvement of these features. Here, the degree of the polynomial function is set as 

six (i.e., hexic). The generated matrix, which has equal lengths in rows, and captures this 

temporal information, was then used as the input dataset for the classification models. 
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Figure 11.4. Exemplars of the polynomial function regressor over time on the features (a) “circumnutation 
length” in a joint, and (b) “circumnutation center of gravity” in tendrils are presented. The red line represents 
the real data over time, whereas the black line represents the polynomial approximation function. 

11.2.5. Classifications 

Once the input dataset has been prepared for classification, the procedure of 

training/test sets and classifiers’ assignment commenced. To split the training and test sets, 

each derived feature was labeled with two different conditions as a binary labeled dataset: 
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i. DM (label: 𝑦, = 1) and Single (label: 𝑦, = 0); 

ii. S-thin (label: 𝑦, = 1) and S-thick (label: 𝑦, = 0); 

iii. DM-thin (label: 𝑦, = 1) and DM-thick (label: 𝑦, = 0). 

The stratified shuffle split cross-validator was applied to the dataset to obtain the 

stratified randomized folds (Pedregosa et al., 2011). 90% of the dataset was allocated as the 

training set, while the remaining 10% was designated as the test set for classification. This 

process was iterated 100 times, whereby the shuffling operation is performed priorly. This 

ensures that each iteration of the process yields a training/test dataset that comprises 

different plants. The objective of this operation was to ascertain the statistical significance 

of accuracy evaluation concerning models, taking into account the ill-posed aspect of the 

issue caused by the limited number of plants. Given the unique characteristic of the dataset, 

the selection of ensemble models was deemed appropriate for the machine learning 

classification task. The chosen ensemble models were Decision Tree Classifier with bagging 

(Breiman, 1996; Von Winterfeldt & Edwards, 1986), Random Forest Classifier (Breiman, 

2001) and the Gradient Boosting Classifier (Breiman, 1996; Mason et al., 1999). 

i. The Decision Tree classifier with bagging is a composite model that integrates 

the principles of decision trees (Von Winterfeldt & Edwards, 1986) with bagging 

(Breiman, 1996; Efron, 1992). The decision tree is a hierarchical model used for 

decision analysis, which has a structure similar to that of a tree, depicting 

decisions and their possible corresponding outcomes. Bagging, also known as 

bootstrap aggregating, is a meta-algorithm that aims to enhance the stability and 

accuracy of machine learning classifiers (Breiman, 1996; Efron, 1992). The 
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implementation of bagging in statistical modeling can effectively decrease the 

variance and reduce the issue of overfitting. The bagging procedure often 

involves the reconfiguration of a dataset into three distinct types: the original 

dataset, the bootstrap dataset, and the out-of-bag dataset. The original dataset is 

inputted into the model, and the process proceeds to randomly choose items 

from the original dataset while maintaining its original size. The dataset that has 

not been selected for the bootstrap dataset is referred to as the out-of-bag dataset. 

The model will use bootstrap and out-of-bad datasets to create decision trees. 

ii. The Random Forest Classifier is regarded as a highly effective ensemble learning 

model for classification, characterized by the construction of a multitude of 

decision trees (Breiman, 2001). The classification output of the random forest 

model is determined by selecting the class that is most frequently chosen by the 

ensemble of decision trees. This approach integrates the decision tree algorithm 

with the techniques of bagging and random feature selection. This implies that 

the trees inside a random forest model possess knowledge just regarding the data 

associated with a variable number of samples, which is either fewer than or equal 

to the original dataset. Consequently, the trees would acquire a greater breadth 

of information through random processes. During the classification process, 

each tree contributes to the decision by voicing its decision, and the final result 

is determined based on the majority vote. 

iii. The Gradient Boosting is a machine learning classifier that generates a prediction 

model by combining many weak prediction models (Breiman, 1997; Hastie et al., 
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2009; Mason et al., 1999). The method that emerges when a decision tree is 

utilized as the weak learner is commonly referred to as a gradient-boosted tree. 

Empirical evidence suggests that gradient-boosted trees generally exhibit superior 

performance compared to Random Forest (Breiman, 1997). The construction of 

a gradient-boosted trees model follows a stage-wise strategy, similar to previous 

boosting techniques. However, it distinguishes itself by enabling the 

optimization of any differentiable loss function. Every successive model is trained 

with the goal of minimizing the loss function, which might be the mean squared 

error or cross-entropy, of the preceding model by the utilization of gradient 

descent. During each iteration, the algorithm calculates the gradient of the loss 

function in relation to the predictions made by the current ensemble. 

Subsequently, a new weak model is trained to minimize this gradient. The 

predictions generated by the novel model are then incorporated into the 

ensemble, and this iterative process is continued until a predetermined stopping 

threshold is satisfied. 

The classifiers ought to perform the three tasks by classifying the test set using the 

polynomial approximation of the features extracted from each circumnutation performed 

by tendrils, joints, and apexes. Then it will obtain a classification decision, indicating to 

which condition the plants belong to for each task. During classification, the parameters of 

each model were configured at random 100 times in order to identify the optimal 

combination for the best accuracy performance. The accuracy was computed in terms of 

average performance accuracy, represented by the mean and standard deviation (SD), as well 
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as the best performance accuracy, represented by the maximum value. 

11.3. Results 

All classifiers were assigned to three tasks, wherein they were required to learn the 

movement of each plant under varying conditions. The performance metrics of each 

classifier for all comparisons are reported in Table 11.1. 

In general, the ensemble learning classifiers demonstrated a high level of accuracy in 

predicting the specific growth condition associated with each plant. This accuracy was 

achieved by utilizing the features extracted from the relevant circumnutations (i.e., 

circumnutation duration, the circumnutation center of gravity, velocity of the 

circumnutation center of gravity, circumnutation length, the amplitude of circumnutation 

average velocity, distance from the circumnutation center of gravity to the origin of the plant, 

distance from the circumnutation center of gravity to the support), for the tendrils, the joint, 

and the apex nested of each plant. Furthermore, it is worth noting that all the classifiers 

exhibited superior performance compared to the classifies reported in Chapter 10. 

Task-specific classification performance 

For the task “DM vs. Single,” all the classifiers demonstrated successful learning and 

prediction regarding the growth condition of the plant, achieving a mean accuracy of 0.796, 

and a maximum accuracy of 0.859. The circumnutation patterns in a plant differ depending 

on whether it is grown with a single support or double supports. For the task “S-thin vs. S-

thick,” all of the classifiers accomplished the task of distinguishing between plants grown 

with a thin support and plants grown with a thick support. The classifiers achieved a mean 
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accuracy of 0.715 and a maximum accuracy of 0.799. 

The aim of the third task “DM-thin vs. DM-thick” was to make predictions regarding 

a plant’s preference for either a thin or a thick support, referred to as DM-thin and DM-

thick, respectively. The classifiers demonstrated a high level of accuracy in predicting the 

individual behavior of plants inside the same growing condition, with a mean accuracy of 

0.796, and a maximum accuracy of 0.857. 

Performance of classifiers 

The performance for all classifiers demonstrated refinement, with mean accuracy 

scores of 0.771 for the Decision Tree Classifier with bagging, 0.803 for the Random Forest 

Classifier, and 0.734 for the Gradient Boosting Classifier. The Random Forest achieved the 

highest maximum accuracy and average accuracy, with a mean of 0.803 and a maximum of 

0.859. The Decision Tree with bagging demonstrated superior stability as a predictor 

compared to the other models, as seen by its minimal variation reflected by the low standard 

deviation in classification. 

Table 11.1. Classifiers’ performance accuracy across comparisons. 

 Decision Tree Random Forest Gradient Boosting 

 Mean SD Max Mean SD Max Mean SD Max 

DM vs. Single 0.789 0.006 0.807 0.843 0.019 0.859 0.756 0.021 0.836 

S-thin vs. S-thick 0.728 0.007 0.743 0.727 0.005 0.749 0.690 0.012 0.799 

DM-thin vs. DM-thick 0.795 0.009 0.815 0.838 0.019 0.857 0.756 0.020 0.831 

Note. Accuracy is reported in average performance accuracy (i.e., mean and SD), and best performance 
accuracy (i.e., max). 
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11.4. Discussion 

The present study, I applied predictive classifiers to examine decision-making 

behavior of plants growing in the presence of a single support differing in size (i.e., S-thin 

and S-thick) or two differently sized supports (i.e., DM conditions). Further, plants that for 

the DM conditions grasped either the thin or the thick support were compared (i.e., DM-

thin vs. DM-thick). The ensemble approach was employed, which was found to be effective 

in generating valid predictive models. This approach exhibited a high level of accuracy in 

performing all the classification tasks. By implementing a polynomial function regressor to 

address the time lengths issue, the classifiers were able to learn the pattern of 

circumnutations performed by a plant and predict the corresponding growth condition at 

an individual level across all comparisons. 

Being successful in classification is in resonance with the kinematical findings 

reported in Chapters 7 and 8. In the current study, the behavior of plants was simulated 

mathematically using machine learning classifiers by formulating tailored functions. By 

doing so, the classifier demonstrated the capacity to learn the circumnutation pattern 

specific to each plant and make predictions on the condition. This suggests that variations 

in behavior among these plants match up at a group level. Plants exhibit distinct reactions 

when faced with different conditions, as evidenced by the accurate classification of plants 

growing in S-thin and S-thick conditions. Furthermore, plants can display divergent 

behaviors even when subjected to identical condition as shown in a preferential selection of 

the support for the DM condition. This implies that the decision-making process could be 

influenced by the plants’ perceptions and interpretations of the environmental cues, which 
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leads to a movement shaped by contextual factors such as the number and the size of the 

support. 

The findings of this study not only validate previous kinematical studies (Guerra et 

al., 2019; Wang et al., 2023b), but also strengthen these results by providing a holistic 

examination of plant movements. Especially, the classification tasks have considered not 

only features like velocity, but have also incorporated temporal and relative spatial features 

throughout time. Together with the tendrils and the joint from the considered leaf, and the 

apex, all of these features exhibited goal-directed and contextually sensitive movements. This 

in-depth data exploitation shows that when viewed from an interconnected and dynamic 

standpoint, it becomes evident that plant’s natural hallmark is to be able to exhibit 

anticipatory movement. 

Previous findings have already documented the anticipatory nature of the 

movements for the tendrils and the joint (Guerra et al., 2019; Wang et al., 2023a). Further, 

the apex of the plant was found in the current study to also exhibit similar goal-directed 

behavior, which can be classified accurately condition-wise. This implies that decision-

making triggered by conditioning does not occur exclusively at the tip of the grasping leaf, 

but rather in a more integrative manner. The shoot apex, which plays an essential role in 

morphogenesis, serves as the developing tip of the plant shoot and is responsible for the 

emergence of new leaves (Steeves & Sussex, 1989). In pea plants, the development of tendrils 

occurs at the apex and they, subsequently, have to be accountable for future support-

searching and -grasping. 

Overall, the use of machine learning approaches to plant movement investigation 
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has given encouraging findings, adding to a better understanding of plant behavior and 

decision-making processes. Researchers could gain useful insights into how plants make 

decisions, adapt to their surroundings, and demonstrate goal-directed actions by exploiting 

machine learning’s predictive capabilities. 
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PART V  

GENERAL DISCUSSION 
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CHAPTER 12  

INTERPRETING MY RESEARCH 

 

12.1. An Overview 

My thesis was developed with the aim of exploring the potential embodiment of 

motor cognition in plants movements. Six experiments were conducted by employing 

kinematic and machine learning approaches. 

The kinematic experiments revolved around the examination of whether and how 

the movement patterns of plants could be modulated under different conditions. To achieve 

this, I used time-lapse photography and 3D motion analysis to track the movements of pea 

plants. These three experiments exposed plants to different conditions including growing 

with or without a support, as well as growing with single supports of different sizes and two 

supports of different sizes. My analyses were based on a wide array of dependent measures 

that were extracted from the spatial and temporal features of circumnutation patterns. 

In the first experiment (Chapter 6), the primary goal was twofold: to substantiate 

previously observed kinematic differences in movements depending on the 

presence/absence of a potential support in the environment. These data served for the 

subsequent implementation of machine learning tasks. The results showed that in the 
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absence of a support, the plants explored their surroundings in a search for potential support, 

and if any, the plants stopped circumnutating and fell. In contrast, when the plants detected 

the presence of a support nearby, their circumnutation pattern underwent rapid adjustments, 

redirecting their movement toward the support, as purposefully approaching and attempting 

to grasp it. These variations observed in the plants provided empirical confirmation of 

previously reported findings in the literature (Guerra et al., 2019). 

The findings that plants can modulate their movements anticipatorily appear to 

indicate that plants are capable of making decisions. This aspect compelled me to conduct 

further experiments to examine the decision-making behavior underlying support-searching. 

Therefore, the next steps of my work were designed to investigate the decision-

making ability. To accomplish this, I conducted an experiment in which pea plants were 

subjected to a condition in which they were simultaneously exposed to both thin and thick 

supports (i.e., DS condition), with the results being compared to plants exclusively exposed 

to a single support (i.e., SS condition). Interestingly, the outcomes of this experiment 

revealed that plants in both conditions exhibited a proclivity for approaching and grasping 

the thin support. The considered dependent measures differed markedly between the DS 

and SS, suggesting that plants can factor in the presence of both supports while choosing 

one. This signifies that, despite achieving the same goal (i.e., approaching thin support), for 

the DS condition, they engaged in a different decision-making process that manifested in 

the kinematics of circumnutation. Further, the movement of pea plants conformed to the 

isochrony principle (Viviani & Mccollum, 1983). They tended to maintain their movement 

duration constant for differently sized supports by scaling velocity.  
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So, it became increasingly apparent that plants are endowed with the ability to make 

decisions with respect to the size of a potential support, thus choosing the most suitable 

option and avoiding the unsuitable one. At this stage, the natural question of “why do plants 

consistently prefer the thin support over the thick one” arises. A hypothesis posited that the 

plants’ decision might be rooted in metabolic considerations. Approaching and grasping a 

thick support would require the growth of longer tendrils, a process that exacts a greater 

metabolic toll in terms of energy consumption. This metabolic-based decision-making 

process was also reflected at the kinematic level. Therefore, the absence of instances where 

plants approached and grasped the thick support (with a diameter of 40 mm) strongly 

suggested that this support size represented a mechanical and metabolic demand that might 

surpass the plants’ capabilities. 

In the subsequent experiment (Chapter 8), the investigation continued by 

introducing a nuanced modification to the size of the thick support. Plants were grown 

under conditions akin to the previous experiment, with a single thin support, a single thick 

support, and decision-making where both thin and thick supports were present. This time, 

plant movements yielded even more complex patterns. Notably, differences emerged at the 

level of kinematics between the single and the DM conditions, mirroring the findings from 

Chapter 7. Within the DM conditions, where the size of the thick support was reduced to 

30 mm in diameter, certain alterations in the choice of preferred supports became evident. 

While the majority of plants still exhibited a preference for the thin support, a small portion 

of plants went for the thick support and succeeded in grasping it. In terms of movement 

pattern, plants for the DM conditions exhibited a swifter pace, reduced number of 
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circumnutations, and a broader coverage area compared to the single conditions, driven by 

the number of supports presented. Furthermore, distinct kinematic differences emerged 

based on the size of the support. 

In contrast to the findings presented in Chapter 7, in which plants refrained from 

grasping the thick support with a diameter of 40 mm possibly due to its heightened energy 

demands and associated morphological costs. A support of 30 mm in diameter (Chapter 8) 

emerged as a viable alternative, potentially favoring the future growth and development of 

plants, as it exhibited a greater capacity to bear additional mass and thereby facilitate their 

abundance. 

The second part of my experiments centered on the use of machine learning 

techniques for a better understanding of the above behavioral findings. In Chapter 9, I 

adopted an exploratory unsupervised anomaly detection to investigate the behavior of two 

plants: one growing in the presence of a support (i.e., Plant S) and the other in the absence 

of it (i.e., Plant N). The models revealed distinctions in the movement trajectories of these 

two plants. Plant N exhibited a more pronounced alteration in motion compared to plant 

S. The anomaly scoring patterns remained largely consistent across different models, 

implying that plant N displayed a propensity for erratic movements, whereas plant S 

demonstrated a tendency toward more regular and predictable motion. However, it is crucial 

to acknowledge that, as a case study, this experiment could not definitively determine 

whether the observed differences stemmed from individual variances or the influence of the 

support’s presence or absence. 

The experiment reported in Chapter 10 considered a widely validated method to 
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investigate plant movement by employing supervised machine learning classifiers to discern 

plants’ growing conditions (i.e., the presence or absence of a support). The outcomes of this 

experiment underscored the remarkable capacity of machine learning techniques to unveil 

the modulation of kinematic patterns in critical plant organs, namely the “tendrils” and the 

“junction”, with respect to support-searching.” Intriguingly, the results hinted that rather 

than the “tendrils,” the “junction” located beneath them emerged as a superior indicator for 

discriminating the presence/absence of a support. Another noteworthy revelation stemming 

from this investigation was the classifiers’ ability to extract a wealth of information from a 

single circumnutation, which is the smallest discernible unit within the overall movement. 

The aim of the study reported in Chapter 11 was to improve the machine learning 

approach by assessing the effectiveness of ensemble learning classifiers based on plant 

decision-making data (see Chapter 8). The results showed that the ensemble approach 

exhibited a remarkable level of accuracy across all classification tasks. To address the 

variability in unequal time length, a polynomial function regressor was integrated into the 

classifiers. This approach enabled the classifiers to grasp the distinct patterns of all the 

circumnutations performed by a plant and make predictions of corresponding growth 

conditions accurately across all comparisons. When viewed holistically within the context of 

plant behavior, it becomes evident that plants possess a natural propensity for anticipatory 

movements. Notably, the “apex” of the plant, as revealed in the current study, exhibits goal-

directed behaviors that can be accurately classified. This implies that the decision-making 

processes triggered by environmental conditioning are not exclusive to the tip of the grasping 

leaf, represented by the “tendrils” and “junction,” but rather occur in a more integrated 
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manner. These findings provide valuable insights into how plants navigate their 

surroundings, make informed choices, and exhibit goal-directed actions, harnessing the 

predictive capabilities of machine learning. 

In conclusion, by merging kinematics and machine learning, I was able to gain 

several insights into the fascinating interplay between plants and the environment. These 

findings provide valuable insights into how plants navigate their surroundings, make 

informed choices, and exhibit goal-directed actions. 

At this stage, the question is what are the possible mechanisms behind such behavior? 

In the next section, I shall provide, though at a very speculative level, some hypotheses 

regarding the mechanisms subserving the fascinating aspects of plant’s goal-directed actions. 

12.2. A Possible Mechanistic Hypothesis 

12.2.1. The path of choice 

The fact that plants adjust their behavior based on the presence or absence of a 

potential support raises questions regarding their decision-making ability and the 

mechanisms underlying them. My studies, with kinematics and machine learning classifiers, 

may ignite further inquiries into the cognitive abilities of plants. 

One particularly interesting behavior I have observed is the plant’s capacity to 

adaptively choose between supports of varying diameters. What are the mechanisms that 

might subserve such behavior? The choices made by the plants appear to be influenced by 

several factors, including the presence of a support, the number of supports available, and 

their respective sizes. In Chapter 7, for instance, plants consistently favored the thin support 
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when presented with a choice between two supports. This preference for the thin support 

suggests a potential trade-off related to metabolic energy expenditure. The act of touching 

and grasping a thick support may entail the growth of longer tendrils, which could demand 

more energy resources. This metabolic consideration could, in turn, impact the kinematics 

of their movements. 

Nevertheless, in Chapter 8, when I reduced the size of the thick support, a small 

group of plants approached the thick support instead of the thin one. One plausible 

explanation is that, this time, the diameter of the thick support, might not have significantly 

disrupted the plant’s homeostasis, making it a viable option. Interestingly, studies have 

suggested that certain characteristics of host trees can influence the distribution of climbing 

plants in forests. While it’s known that climbing plants have “failsafe” mechanisms (Isnard 

& Rowe, 2008; Isnard & Silk, 2009), larger trees were found to have more climbing plants 

attached to them (Dewalt et al., 2000; Ladwig & Meiners, 2010; Leicht-Young et al., 2010; 

Pérez-Salicrup & De Meijere, 2005; Putz, 1984). This might be due to larger trees in older 

forests being better at supporting larger biomass, thus securing more canopy space for light 

acquisition and increasing the abundance of climbing plants. 

The small portion of plants who chose thick supports might be more “ambitious.” 

They seem to seek stable and robust attachments that can potentially support more weight, 

increasing their chances of thriving in the future. If this hypothesis holds, it implies that 

plants possess the ability to perceive not only the size of a potential support but also other 

properties such as its color, density, and mass. Evidence for such perceptual abilities has 

been found in other studies (Gianoli & Carrasco-Urra, 2014; Price & Wilcut, 2007; Runyon 
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et al., 2006), where climbing plants exhibited preferences based on the material of the 

support, showing aversion to materials like glass (Darwin, 1875) or favoring natural objects 

over artificial ones (Runyon et al., 2006). 

Moreover, pea plants have demonstrated the ability to modulate their movements 

when facing one and two supports, suggesting that they may possess a sort of numerical 

competence. Especially since the differences in kinematics appear to be more fundamental 

when comparing decision-making with single conditions (Chapter 8). This indicates that 

plants could discern differences in the number of supports, pointing to a potential numerical 

competence that enables them to process quantitative magnitudes of the objects present in 

the surroundings. This is not unusual, as plant species have already demonstrated their 

numerical proficiency in nature. For example, the carnivorous plant Dionaea muscipula can 

monitor the frequency of stimulation experienced by the trigger hairs situated within the 

inner region of its snap trap (Böhm et al., 2016; Hedrich et al., 2016; Segundo-Ortin & 

Calvo, 2022). 

In general, when considering pea plant movements in the context of support-

searching, their goal-directedness aligns well with the Judgment and Decision-Making (JDM) 

model proposed by Karban and Orrock (2018). This model involves (i) a cue or stimulus 

that provides information, (ii) a judgment whereby the plant perceives and processes this 

informative cue, (iii) a decision whereby the plant chooses among several options based on 

their relative costs and benefits, and (iv) action. Originally conceived to elucidate plant-

herbivore interactions, this model appears to have broader applicability to various decision-

making processes. In the context of support-searching, the properties of support, such as 
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support size and number, act as informative cues. Subsequent judgments about these stimuli 

lead to decisions manifested as actions, such as grasping a specific support. Even when 

considering differing outcomes, such as the choice between thin and thick supports, it could 

be explained. Karban and Orrock (2018) contend that, with accurate judgments, plants may 

still exhibit variations in the decision-making process due to the influence of cost-benefit 

considerations that stem from their native range. This variation, shaped by selection 

pressures, could potentially lead to the development of highly successful adaptations. 

12.2.2. The sensory mechanisms 

The exact mechanisms by which plants perceive their surroundings and program 

specific actions remain uncertain. With over 20 senses, plants offer a plethora of sensory 

avenues that may shed light on their decision-making processes during support-searching. 

Within this realm of sensory capabilities, several mechanisms could potentially offer valuable 

insights into the processes underlying decision-making in plants during their search for 

suitable support structures. In the following discussion, I will focus on three mechanisms 

that hold the most promise for explaining how plants manifest decision-making behaviors 

in the context of support-searching. This exploration will be supplemented with evidence 

drawn from observations in various plant species. 

Mechanosensory perception 

Pea plants might be capable of detecting mechanical forces exerted on them as they 

meet a support. These forces could signal the support’s size, flexibility, and stability, and 

eventually affect plant growth and development (Coutand, 2010). The translation of these 



 180 

mechanical cues into growth responses may involve mechanosensitive channels or cells. 

One notable tropic movement in plants is thigmotropism, which requires the 

perception of a stimulus, signal transduction cascades that amplify the signal, and the 

capacity to respond to tactile stimulation through differential growth (Braam, 2005). 

Climbing plants, for instance, utilize touch sensitivity to optimize their vertical growth, 

avoiding the need to invest energy in developing a supporting trunk (Braam, 2005). The 

distal sections of tendrils exhibit high touch sensitivity, with even a slight 0.25 mg thread 

causing a rapid coiling response, typically within seconds, enabling secure attachment to an 

object (Simons, 1992). Remarkably, climbing plants can distinguish between touch stimuli 

and non-tactile factors, as evidenced by the absence of coiling response to water droplets, 

preventing nonproductive coiling during rainstorms (Jaffe & Galston, 1968). 

In my research, this mechanosensory pathway emerges as a plausible explanation for 

the precise plant responses associated with decision-making. The above-ground portion of 

the plant exhibited anticipatory responses in the tendrils, suggesting pre-planned actions 

before physical contact. However, considering that the support structure may also extend 

below ground, the roots could potentially access and come into contact with the support, 

thereby gathering information about it. Roots are capable of sensing the presence and 

properties of a support structure, and through root-to-shoot signaling, tendril growth can be 

directed to achieve specific goals. 

Darwin and Darwin (1880) contemplated the fate of roots encountering obstacles, 

such as stones, during their growth through the soil. They observed that when roots 

encountered obstructions that hindered their downward growth, the root tips would flatten, 
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assume an oblique shape, and pivot nearly 90° to establish a new growth direction along the 

surface of the obstacle. Darwin later postulated that the root apex possesses touch sensitivity, 

and upon contact, a signal is transmitted to induce growth changes in more proximal root 

regions. 

Roots serve as a focal point for integrating touch responses, with proper root 

development necessitating the coordination of gravitropic and thigmotropic reactions. 

Darwin conducted experiments involving the mechanical stimulation of young root apices 

by placing small, flat materials like sandpaper against the sides of the root tips. These 

experiments revealed a loss of gravitropic behavior as thigmotropic growth led to a 

movement away from the point of contact. Similarly, when Arabidopsis roots encounter glass 

barriers, gravitropism appears to be overridden by thigmotropism (Massa & Gilroy, 2003).  

Touch response is controlled by a group of genes known as the TOUCH (TCH) 

family identified in Arabidopsis (Esmon et al., 2004). TCH1 encodes calmodulin (CaM), 

while TCH2 and TCH3 encode calmodulin-like genes (Sistrunk et al., 1994). Calmodulin 

is a highly conserved protein that modulates specific target enzymes in response to calcium 

ions (Allan & Hepler, 1989). Consequently, it is reasonable to propose that calcium ions, 

acting as second messengers, may play a crucial role in touch-induced responses, much like 

other tropic reactions (Legué et al., 1997). Recent evidence from Arabidopsis thaliana and 

Nicotiana tabacum supports the important role that calcium ions play. Individual leaf 

epidermal cells have been found to synthesize genetically encoded calcium indicators (R-

GERCO and GCaMP3), leading to the induction of local calcium peaks preceding delayed, 

slowly moving calcium waves in response to compressive forces (Howell et al., 2023). 
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Different types of waves, such as those triggered by force release, evoke faster calcium waves, 

suggesting that plants possess the ability to distinguish between touch and release. 

Pea plants may use touch-response mechanisms as a fundamental component of their 

sensory inputs to make informed decisions during support searching. When the plant’s roots 

come into contact with or sense the support, a series of touch-sensitive processes might be 

awakened. At the cellular level, finely tailored to detect mechanical stimuli, 

mechanoreceptors initiate cascades of intracellular events. When plants are equipped with 

this tactile information, they undergo physiological changes by adjusting growth 

rate/direction and movement patterns so to direct their tendrils towards the support. 

Hypothesis of ocelli 

Besides the touch response, the hypothesis of ocelli draws inspiration from the 

behavior of young seedlings of the tropical vine Monstera gigantea, which have been reported 

to exhibit skototropism—a directional movement of plant organs toward darkness, enabling 

them to localize and securely support host trees (Strong Jr & Ray Jr, 1975). The concept of 

ocelli finds historical roots in Francis’s description (1967) of an eyespot in Nematodinium 

armatum, characterized by a pigment cup. This intriguing structure is believed to harbor light-

sensitive retinoids and possibly lenses capable of focusing and concentrating light rays, 

thereby contributing to image formation. Baluška and Mancuso (2016) revived this theory, 

positing that plants might perceive their environment through ocelli located in both shoot 

and root areas. Some evidence in roots suggests the plants’ ability to discern illuminated and 

darkened areas during development. This observation has led to the hypothesis that a form 
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of root apex vision may underlie the root apex’s skototropic response, possibly mediated by 

the blue-light phot 1 photoreceptor (Mo et al., 2015). 

Plants can mimic the host tree (Gianoli & Carrasco-Urra, 2014), and this 

phenomenon has been used to support the existence of ocelli in plants. A recent finding on 

Boquila trifoliolata mimics leaves of an artificial plastic host plant provides some evidence that 

plants can “see” (White & Yamashita, 2021). The plant can change its original three-lobed 

leaf shape into longitudinal leaves or any other shape depending on the non-living host plant 

next to its leaves. 

However, this assertion has generated controversy, with the discoverer of leaf 

mimicry highlighting the logical inadequacy of attributing plant mimicry behavior to ocelli, 

stating: “Just as animals do not need to photosynthesize, plants do not need to see” (Gianoli, 2017). 

The complexity involved in leaf mimicry, including alterations in size, shape, color, 

orientation, petiole length, vein conspicuousness, and the development of spiny tips, must 

be orchestrated in a coherent and integrated phenotype. Such morphological intricacies are 

unlikely to be driven solely by simple changes in light intensity, orientation, or quality that 

photoreceptors (or hypothetical plant ocelli) may detect. 

Based on the hypothesis of ocelli, my observations on plant decision-making could 

imply that plants can perceive their surroundings through ocelli located in both shoot and 

root regions, enabling them to make choices. Nevertheless, the clear evidence supporting 

the existence and physiological structure of ocelli remains elusive.  
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Integrated view: systemic signaling 

As mentioned above, in all the studies, the tendrils did not approach or make contact 

with the support before initiating coiling, indicating that the above-ground parts of the 

plants exhibited anticipatory movement. This observation led me to consider the possibility 

that roots might have access to the support and would send information to the upper parts 

of the plant. Recent research has demonstrated that root-to-shoot signaling plays a pivotal 

role in the ability of climbing plants to sense the presence and thickness of support, 

ultimately influencing the planning and execution of their reach-to-grasp movements 

(Guerra et al., 2021). Especially, when there was a discrepancy in the information about the 

support’s size between the shoot and root regions, it appeared to confuse the plants. The 

coding of support thickness seems to be achieved through a delicate equilibrium maintained 

by crosstalk between the rooted and aerial components of the plant (Guerra et al., 2022). 

Furthermore, plants can exhibit diverse behaviors guided by different types of 

sensory input, such as light and touch. For instance, Monstera vines exhibit a unique behavior 

of traveling along the ground, following the darkness of a tree’s shadow (Strong Jr & Ray Jr, 

1975). However, this traveling behavior comes to a halt when the vine’s apex detects a host 

tree through touch. In response to this touch, the vine undergoes an immediate change in 

growth direction, coiling upward along the host tree. Additionally, there are concurrent 

changes in leaf and stem development, which anticipate increased light exposure and 

enhanced photosynthesis (Braam, 2005; Strong Jr & Ray Jr, 1975). 

How do plants integrate different types of information and respond in ways that are 

beneficial for their survival? A well-established and plausible theory suggests that plants 
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possess a complex information network, with a focus on the symplastic and apoplastic 

infrastructure that supports long-distance signaling, in addition to downstream gene 

networks responsible for information synthesis (Brenner et al., 2006). 

In this network, long-distance signaling emerges as fundamental pathways for 

integrated communication in plants. Numerous studies have demonstrated that plants can 

activate hydraulic, chemical, or electrical long-distance signals in response to various 

environmental cues, including exposure to biotic and abiotic stressors (Huber & Bauerle, 

2016). The necessity of long-distance signaling between separate plant organs has been 

documented, encompassing bidirectional communication between roots and shoots, as well 

as shoot-to-shoot and root-to-root interactions (Giehl et al., 2009; Liu et al., 2009; Soler et 

al., 2013). It is plausible that the pea plants considered in my studies integrate information 

from multiple sensory inputs to make informed decisions about their choice of support. 

These sensory inputs may include tactile, chemical, photoreceptive, and growth-related cues, 

collectively aiding the plant in determining the suitability of a support for climbing. 

Plants may transport and exchange sensory inputs through electrical signals. The 

discovery of electrical signals in plants traces back to the first recorded instance in Dionaea 

muscipula (Haberlandt, 1890). Generally, there are four types of electrical signals 

documented in plants, which include action potentials (APs), variation potentials (VPs), also 

known as slow wave potentials (SWPs), local electric potentials (LEPs), and system potentials 

(SPs). These signals typically involve the initiation of changes in membrane potential, 

followed by the activation of secondary messengers that lead to alterations in physiological 

regulation. This process can span anywhere from seconds to days. These electrical signals 
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can induce the production of phytohormones, which play a crucial role in various aspects of 

plant growth and development, including the regulation of organ size and reproductive 

development. Furthermore, electrical signals can instigate metabolic changes in plants. 

Therefore, the electrical signaling network serves as a primary mechanism for plant responses 

to stimuli, such as physical damage or wounds. 

However, the electrical signaling alone may not provide a comprehensive 

explanation for the intricate systemic responses observed in plants. Hydraulic signaling, 

primarily regulated by turgor pressure in plant cells (Taiz, 1984), originates in the xylem 

vessel conduits and is interpreted by adjacent parenchyma cells. Due to low axial resistance, 

these signals can propagate rapidly into surrounding cells (Bramley et al., 2007) and 

potentially transmit throughout the entire plant. In this way, long-distance signaling could 

be facilitated via the plant’s vascular tissues (Notaguchi & Okamoto, 2015). The plant’s 

vascular system consists of xylem vessels, characterized by thickened cell walls that persist 

after programmed cell death, and phloem tissues, characterized by a complex of living cells, 

that span the entire plant body. Recent discoveries suggest that these vascular tissues serve 

as long-distance signaling pathways, coordinating behaviors within the plant as a unified 

organism (Lucas et al., 2013; Notaguchi & Okamoto, 2015). Phloem sieve element cells, for 

instance, form a transport network responsible for the long-distance allocation of 

photosynthates and signaling molecules (Lucas et al., 2013). This includes the directed flow 

of phloem sap from mature source leaves to various sink organs, as well as the flow of xylem 

sap from roots to shoots, driven by water loss during transpiration and photosynthesis 

(Notaguchi & Okamoto, 2015). 
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Do these long-distance signaling channels operate independently from each other? 

The answer is no, though the potential crosstalk among hydraulic, chemical, and electrical 

long-distance signaling pathways within plants represents an area that warrants further 

exploration (Huber & Bauerle, 2016). Some intriguing evidence has been observed in pea 

plants, suggesting an interaction between slow wave potentials (SWPs) and hydraulic signals. 

SWPs are not self-sustaining; instead, they are consistently preceded by a positive change in 

hydraulic pressure, making their depolarization hydraulically induced (Stahlberg & 

Cosgrove, 1996, 1997). For instance, positive pressure changes are succeeded by SWPs in 

pea epicotyls (P. sativum). Depending on the applied pressure, SWPs can also be delayed. 

However, when the hydraulic signal, in the form of positive pressure, reaches or exceeds 80 

kPa, both electrical and hydraulic signals occur simultaneously. The range of SWP intensities 

provides plants with a wealth of information about the injury’s intensity, allowing them to 

discern the distance from the source of damage based on subtle variations in signal pressure, 

shape, and intensity (Stahlberg et al., 2006). 

The discovery of systemic crosstalk which characterizes plant behavior suggests a 

coordinated process involving integrated signaling, communication, and response systems 

across the entire organism (Brenner et al., 2006). Examining plant behavior reveals a web of 

interconnected pathways and responses that allow plants to perceive, adapt to, and thrive in 

their environments. The evidence presented here highlights the role of electrical signals, 

hydraulic pathways, and chemical communication in orchestrating plant behaviors. 

The long-distance signals may serve as a means of communication within the plant, 

allowing information about the environment, especially the support, to be transmitted from 
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the point of sensory input to other parts of the plant. These signals could convey information 

regarding the size, material or general suitability of the support. These signals transfer from 

on point to another, and some local changes may occur. Or it may disperse throughout the 

entire plant, and the goal-directed behavior may be carried out locally as a result of 

integrative cooperation; especially when it comes to the very first exploration of support in 

peas life in my scenarios. 

12.3. Integrating Data into Theories 

Examining covert intentions through overt actions provides novel insights into the 

possible cognitive architecture of plants. Overall, my findings strongly suggest that plants 

demonstrate a remarkable level of adaptability and resource allocation, influenced by 

environmental conditions. By adopting a perspective that scrutinizes plant movements from 

the standpoint of motor intention, one can effectively study cognitive abilities in these 

organisms. In essence, plant movements can be construed as manifestations of intentionality, 

characterized by purposeful, goal-directed, and unreflective bodily actions. Their motor 

control is underpinned by a decision-making process, as evidenced by the programmed 

movements exhibited in the context of support-searching studies. It can be regarded as an 

integral facet of cognition, as it bears the functional responsibility of planning, coordinating, 

and executing movements –– a repertoire vital for comprehending and interacting with the 

surrounding environment. 

Undoubtedly, there exists a discernible convergence between plant movements and 

cognitive behaviors, irrespective of the degree of this overlap. So rather than striving to 
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establish this overlap, the focus should lie in understanding it. The challenge in interpreting 

plant behavior is the prevalent influence of anthropomorphism within the scientific 

community –– a tendency to employ human experiences as the primary reference point, 

often focusing on uniquely human cognitive activities (Bechtel & Bich, 2021). This 

approach consigns organisms without a brain to a secondary status, as it assumes that only 

species equipped with brains are capable of hosting mental representations, which, in turn, 

are the door to cognition. Consequently, researchers sometimes overlook the potential 

universality of cognitive phenomena across diverse forms of life. In this context, I shall try 

to discuss my data under the umbrella of a-representational cognitive theories. 

Does mental representation hold such significance that cognition cannot exist 

without it? As introduced in Chapter 1, the paradigms of post-cognitivism challenge this 

classic view by providing space for alternative forms of cognitive existence. Many theories 

within this framework do not require cognition to be grounded in mental representations 

such as ecological psychology (Gibson, 1979), enactivism (Varela et al., 1991), and extended 

cognition (Clark & Chalmers, 1998). Hutto and Myin (2017) contend that intentionality 

should not be perceived solely in the sense of mental states that translate into representations. 

Instead, they propose conceiving intentionality as an attitude directed toward an object. In 

this view, intentionality becomes an expression of the entire organism’s attitude, evident in 

its behavior (Hutto, 2012). This is not to suggest that 4E cognition disregards the importance 

of the nervous system for certain species; rather, it acknowledges that more advanced 

cognitive phenomena may indeed involve representational content (Schlicht & Starzak, 

2021). Intentionality therefore can be seen as a continuum across life forms, bridging the 
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biogenic and anthropogenic perspectives (Sims, 2021a). Especially that, even in humans, 

intentionality does not manifest as a predisposed toolkit; rather, it evolves over time. 

Intentionality can still exist in humans, even when the central nervous system is not fully 

developed. Sensorimotor behaviors exhibited before birth can incorporate anticipatory 

structures directed toward future consequences, even though such actions in early 

development may not necessarily be conceptually or cognitively complex (Hofsten, 2009; 

Lee, 2009; Legrand, 2006; Trevarthen, 1984). Derived from the efficient prospective motor 

control observed in humans from birth, an adaptive form of intentionality, primarily pre-

reflective and pre-conceptual, is termed “sensorimotor intentionality” (Delafield-Butt & 

Gangopadhyay, 2013). This highlights that even seemingly simple and discrete movements 

can be attributed to the purposeful actions of an intentional agent. All of this underscores 

that the concept of mental representation in the human context may not be as rigid as 

traditionally conceived. Consequently, the proposition of an embodied agent action at the 

core of cognition is put forth, suggesting that this concept resonates with human behavior 

as well. 

To explain cognitive behavior observed in plants, one should consider the body–

environment coupling as a fundamental principle. In the context of plant movements, a 

plant response to its environment can be viewed as a manifestation of embodied cognition. 

The plant perceives the support from its surroundings and enacts movements as a way to 

interact with and adapt to that support. Cognition is not just a function of the brain but is 

inherently linked to an organism’s interaction with its environment. When a plant 

encounters a potential support, it perceives the affordances of that support for climbing. 
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Remember that affordances are the potential interaction that an object or environment 

offers or enables. This perception-action coupling, where the plant movement is a direct 

response to perceived affordances, aligns with enactivist principles. In this scenario, their 

behaviors are not pre-programmed but are shaped by the meaningful properties of their 

environment. The concept of affordances emphasizes that organisms perceive opportunities 

for action in their environment. Following my results, peas connection with potential 

supports could be established by the environment offering physical objects (support), and 

peas in turn would imbue with meaning –– affordances. This is evident in their 

circumnutating pattern, which is goal-directed and responsive to perceived affordances in its 

environment. 

Further, plants making different decisions can be seen as attributing varying 

affordances to the decision-making condition. Some plants make metabolic decisions to 

approach the thin support, thereby avoiding the potential risk of expending excess energy 

and compromising their physical balance due to overreaching and asymmetrical 

morphological development in the tendrils. Alternatively, they may choose the thick support 

and take the risk in pursuit of greater abundance. The plant’s ability to make rational 

decisions based on the risk sensitivity theory (RST) has already been documented (Dener et 

al., 2016). RST might provide an explanation for why most plants tend to favor thin supports, 

as this choice could be seen as a rational decision driven by a preference for less risk 

(exhibiting risk-averse behavior). I contemplate that during support-searching, plants view 

any option that could disturb their homeostasis as potentially risky. The greater the potential 

disruption and energy-demanding, the higher the perceived risk. 
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Within the framework of the extended cognition theory, the relationship between 

plants and supports can be interpreted as the composition of a cognitive space encompassing 

both the pea plants and the supports themselves. Plants integrate information from their 

external structures, such as tendrils, with their internal processes to make decisions about 

support selection. These tendrils can be viewed as extensions of their cognitive processes, 

serving as tools for interacting with the environment and accessing new opportunities 

(affordances) for support. 

Taking the post-cognitivist approach, plants emerge as cognitive agents through their 

movements and interactions with their environment. Cognitive processes may not be 

exclusively tied to mental representation. Instead, they can be seen as embodied in action, 

an interconnectedness between organisms and their environment. 

The ability of biological systems to thrive in intricate, ever-changing, and fiercely 

competitive environments necessitates of some forms of cognitive abilities (Conrad, 1996; 

Holcombe & Paton, 2012). Debono and Souza (2019) suggest that plants may serve as plastic 

interfaces (PIs) mediated by the “electrome,” a term which involves constant spontaneous 

emission of low voltage potentials. It is considered that the electrome is an early marker and 

a unifying factor of whole plant reactivity in a constantly changing environment and is 

therefore the key to understanding the cognitive nature of plants. Plants could use 

perceptual binding as an operative mode through plasticity complexes (PCs) to detect their 

immediate environment without a nervous system, without the need to integrate or 

represent it but with the ability to locally bind or synchronize, deploying behaviors that are 

adapted to their survival or well-being. And the electrome could play a significant role in 
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processes such as perception, learning, memory, and cognition in general. Because it ensures 

a continuous spectrum of actions and a range of behaviors in response to environmental 

cues across all levels of plant organization. Local associations formed within the plant can 

prompt direct actions within the environment. These local associations, in conjunction with 

the plastic and protoneural organization of plants, might have contributed to the activation 

of the perception-action loop and the development of complex intellectual behaviors 

(Debono, 2013; Debono & Souza, 2019). 

In the light of the above, I feel that the integration of cognitive theories and empirical 

evidence I presented in my thesis not only challenges our preconceived notions of cognition 

but also highlights the diverse ways in which living organisms engage with and adapt to their 

environments. 

12.4. Conclusive Remarks 

Throughout the course of my thesis, I learned so many fascinating facts about plants 

that never ceased to amaze me. I attempted to utilize kinematic analyses and machine 

learning techniques to gain insights into the decision-making processes that govern the 

interactions of plants with their environment. Espousing the concept of motor intention, I 

have observed how pea plants respond to the presence, absence, and properties of supports 

through a series of experiments. The results show that plants can distinguish between 

supports of varying sizes, and make economic decisions, extending beyond mere simple 

reflexive responses. These findings challenged the traditional view of plants as passive 

organisms by demonstrating that they engage in purposeful, goal-directed actions that are 
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guided by motor control and decision-making processes. 

I have explored, speculatively, potential sensory mechanisms that could underpin 

these behaviors, including mechanosensory pathways, the hypothesis of ocelli, and other 

long-distance signaling pathways. While the precise mechanisms remain a subject of ongoing 

investigation, it is clear that plants integrate information from multiple sensory inputs to 

make informed decisions about support selection. And most importantly, I explored the 

possibility of interpreting plant movements under the framework of motor cognition and 

provided new resources for the debate on the nature of cognition. Through plant behavior, 

the concept of intentionality was highlighted in the way that it is a manifestation of an 

attitude toward an object. This broader perspective will enable us to recognize intentionality 

as a continuum. Taking the lens of post-cognitivism, plants were shown to make decisions 

based on the perceived affordances, demonstrating their ability to adapt to ever-changing 

environments. And that cognition could manifest itself through the body–environment 

coupling. 

My work opens to more questions. For instance, what kind of decisions plants would 

make when facing a size-suitable support and a material-suitable support? To what extent can 

plants intentionally plan their movements? Can plants change their intentions and redirect 

their movements accordingly? Can plants interpret the motor intentions of other organisms? 

In closing, I would like to conclude my thesis by stressing that plant behavior can 

serve as a reminder that intelligence can exist in the most seemingly humble organisms. 

Future research should continue to uncover new aspects of plant cognition and revolutionize 

our understanding.  
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APPENDIX I 

DESCRIPTIVE STATISTICS 

 

This appendix consists of the full statistic profile reported in Chapter 8 Decision-

making underlying support-searching in pea plants: study 2. The descriptive statistics, including 

the median, interquartile range (IQR), range, and quartiles (Q1, Q3) are provided for each 

dependent measure across all groups (i.e., S-thin, S-thick, DM-thin, DM-thick).  
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Table 1. Descriptive statistics for kinematics in all groups. 

   Group Median IQR Range Q1 Q3 

Total movement duration 
(min) 

 DM-thick  2091.000  296.250  1332.000  1872.000   2168.250  
 DM-thin  1764.000  552.000  1479.000  1551.000   2103.000  

  S-thick  2592.000  790.500  4005.000  2191.500   2982.000  
  S-thin  1828.500  693.750  1920.000  1638.000   2331.750  

Circumnutation duration 
(min) 

 DM-thick  69.000  20.250  90.000  60.000   80.250  
 DM-thin  72.000  26.250  102.000  60.750   87.000  

  S-thick  93.000  42.000  186.000  72.000   114.000  
  S-thin  69.000  15.000  114.000  60.000   75.000  

Number of 
circumnutations 

 DM-thick  26.000  6.250  20.000  22.750   29.000  

  DM-thin  25.000  7.000  11.000  20.000   27.000  
  S-thick  23.000  10.000  26.000  20.000   30.000  
  S-thin  28.000  9.000  21.000  22.000   31.000  

Circumnutation major axis 
(mm) 

 DM-thick  79.420  59.586  174.967  48.565   108.151  
 DM-thin  85.445  62.411  187.541  52.736   115.148  

  S-thick  59.085  48.122  173.508  37.754   85.875  
  S-thin  65.036  69.147  187.973  36.176   105.323  

Circumnutation length 
(mm) 

 DM-thick  181.838  154.001  520.083  106.952   260.954  
 DM-thin  230.532  181.438  548.856  134.550   315.988  

  S-thick  151.862  147.475  465.898  85.154   232.629  
  S-thin  166.488  196.104  503.609  85.797   281.900  

Circumnutation area (mm2)  DM-thick  1226.906  3775.906  18244.750  362.047   4137.953  
  DM-thin  2828.375  5518.469  19844.688  819.672   6338.141  
  S-thick  966.813  3256.500  17338.500  280.688   3537.188  
  S-thin  1943.688  5298.375  14870.563  199.438   5497.813  

Amplitude of average 
velocity (mm2/min) 

 DM-thick  2.914  2.477  5.873  1.551   4.028  
 DM-thin  3.164  2.269  6.023  2.016   4.284  

  S-thick  1.789  1.403  4.543  1.159   2.562  
  S-thin  2.738  2.647  6.271  1.430   4.077  

Amplitude of the maximum 
peak velocity (mm2/min) 

 DM-thick  4.653  4.374  18.271  2.906   7.280  
 DM-thin  5.324  4.212  16.558  3.437   7.649  

  S-thick  2.817  2.031  11.041  1.813   3.844  
  S-thin  4.038  3.813  14.054  2.499   6.313  

Maximum aperture (mm)  DM-thick  65.213  30.179  54.930  46.174   76.353  
  DM-thin  43.465  20.443  82.395  37.345   57.788  
  S-thick  53.400  29.349  208.128  36.932   66.281  
  S-thin  40.202  9.058  34.360  38.419   47.477  

Direction switching  DM-thick  2.5000  1.000  6.000  2.000   3.000  
  DM-thin  1.000  1.000  3.000  1.000   2.000  
  S-thick  0.500  2.000  4.000  0.000   2.000  
  S-thin  1.500  1.250  6.000  1.000   2.250  

Note. IQR = interquartile range; Range = the difference between the maximum and minimum values; Q1 = first quartile 
(25%); Q3 = third quartile (75%). 
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APPENDIX II 

ANOMALY REPORT 

 

This appendix consists of the complete report on anomaly points described in 

Chapter 9 Anomaly detection: a machine learning method to investigate plant behavior. Tables 1 to 

3 present the performance results of Isolation Forest, k-Nearest Neighbor, one-class Support 

Vector Machine, respectively.  
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Table 1. Anomaly report on Isolation Forest. 
No-support Support 

Frame 
number 

IF 
anomaly score 

Progress 
rate 

Progress 
rate 

interval 

Frame 
number 

IF anomaly 
score 

Progress 
rate 

Progress rate 
interval 

557 0.027 89.694% —     

558 0.055 89.855% 0.161%     

559 0.071 90.016% 0.161%     

560 0.080 90.177% 0.161%     

561 0.088 90.338% 0.161% 381 0.008 68.036% — 
562 0.084 90.499% 0.161% 382 0.018 68.214% 0.179% 
563 0.066 90.660% 0.161% 450 0.009 80.357% 12.143% 
564 0.039 90.821% 0.161% 451 0.014 80.536% 0.179% 
565 0.045 90.982% 0.161% 452 0.020 80.714% 0.179% 
566 0.053 91.143% 0.161% 453 0.006 80.893% 0.179% 
567 0.059 91.304% 0.161% 459 0.034 81.964% 1.071% 
568 0.083 91.465% 0.161% 483 0.010 86.250% 4.286% 
569 0.096 91.626% 0.161% 485 0.033 86.607% 0.357% 
570 0.047 91.787% 0.161% 486 0.027 86.786% 0.179% 
571 0.049 91.948% 0.161% 487 0.012 86.964% 0.179% 
572 0.025 92.110% 0.161% 495 0.011 88.393% 1.429% 
573 0.021 92.271% 0.161% 496 0.014 88.571% 0.179% 
574 0.009 92.432% 0.161% 509 0.016 90.893% 2.321% 
575 0.007 92.593% 0.161% 510 0.028 91.071% 0.179% 
576 0.013 92.754% 0.161% 511 0.038 91.250% 0.179% 
577 0.016 92.915% 0.161% 512 0.036 91.429% 0.179% 
578 0.012 93.076% 0.161% 513 0.050 91.607% 0.179% 
579 0.022 93.237% 0.161% 514 0.047 91.786% 0.179% 
580 0.009 93.398% 0.161% 515 0.036 91.964% 0.179% 
581 0.000 93.559% 0.161% 516 0.032 92.143% 0.179% 
583 0.009 93.881% 0.322% 520 0.000 92.857% 0.714% 
584 0.000 94.042% 0.161% 522 0.002 93.214% 0.357% 
599 0.020 96.457% 2.415% 523 0.012 93.393% 0.179% 
600 0.011 96.618% 0.161% 524 0.013 93.571% 0.179% 
601 0.016 96.779% 0.161% 525 0.042 93.750% 0.179% 
602 0.001 96.940% 0.161% 526 0.023 93.929% 0.179% 
603 0.003 97.101% 0.161% 560 0.014 100.000% 6.071% 
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Table 2. Anomaly report on k-Nearest Neighbor 
No-support Support 

Frame 
number 

KNN 
anomaly 

score 

Progress 
rate 

Progress rate 
interval 

Frame 
number 

KNN 
anomaly 

score 

Progress 
rate 

Progress 
rate 

interval 
373 0.583 60.064% —     

395 0.554 63.607% 3.543%     

497 0.572 80.032% 16.425%     

530 0.549 85.346% 5.314%     

534 0.648 85.990% 0.644% 310 0.809 55.357% — 
553 0.617 89.050% 3.060% 334 0.682 59.643% 4.286% 
554 0.711 89.211% 0.161% 335 0.788 59.821% 0.179% 
555 0.575 89.372% 0.161% 336 0.861 60.000% 0.179% 
556 1.232 89.533% 0.161% 337 0.834 60.179% 0.179% 
557 1.585 89.694% 0.161% 360 0.762 64.286% 4.107% 
558 1.799 89.855% 0.161% 361 0.713 64.464% 0.179% 
559 2.550 90.016% 0.161% 368 0.737 65.714% 1.250% 
560 2.351 90.177% 0.161% 369 0.692 65.893% 0.179% 
561 1.762 90.338% 0.161% 370 0.736 66.071% 0.179% 
562 1.331 90.499% 0.161% 371 0.754 66.250% 0.179% 
563 0.927 90.660% 0.161% 372 0.766 66.429% 0.179% 
564 0.652 90.821% 0.161% 373 0.736 66.607% 0.179% 
569 0.620 91.626% 0.805% 390 0.742 69.643% 3.036% 
571 0.634 91.948% 0.322% 391 0.774 69.821% 0.179% 
579 0.606 93.237% 1.288% 418 0.830 74.643% 4.821% 
580 0.575 93.398% 0.161% 419 0.771 74.821% 0.179% 
581 0.710 93.559% 0.161% 426 0.747 76.071% 1.250% 
582 0.820 93.720% 0.161% 443 0.778 79.107% 3.036% 
583 1.098 93.881% 0.161% 448 0.687 80.000% 0.893% 
584 1.111 94.042% 0.161% 449 0.779 80.179% 0.179% 
585 1.284 94.203% 0.161% 450 0.841 80.357% 0.179% 
586 0.787 94.364% 0.161% 495 0.915 88.393% 8.036% 
587 0.708 94.525% 0.161% 509 0.747 90.893% 2.500% 
588 0.568 94.686% 0.161% 510 0.683 91.071% 0.179% 
590 0.558 95.008% 0.322% 511 0.689 91.250% 0.179% 
620 0.708 99.839% 4.831% 525 1.092 93.750% 2.500% 
621 1.169 100.000% 0.161% 560 0.871 100.000% 6.250% 
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Table 3. Anomaly report on one-class Support Vector Machine 
No-support Support 

Frame 
number 

OCSVM 
Anomaly 

score 

Progress 
rate 

Progress 
rate interval 

Frame 
number 

OCSVM 
Anomaly 

score 

Progress 
rate 

Progress rate 
interval 

567 88.531 89.694% — 
    

558 91.372 89.855% 0.161% 
    

559 102.186 90.016% 0.161% 
    

560 104.441 90.177% 0.161% 
    

561 100.985 90.338% 0.161% 418 20.916 74.643% — 
562 97.107 90.499% 0.161% 419 21.120 74.821% 0.179% 
563 93.448 90.660% 0.161% 441 23.336 78.750% 3.929% 
564 91.759 90.821% 0.161% 443 23.307 79.107% 0.357% 
565 92.197 90.982% 0.161% 450 24.267 80.357% 1.250% 
566 92.572 91.143% 0.161% 451 24.754 80.536% 0.179% 
567 93.411 91.304% 0.161% 452 25.885 80.714% 0.179% 
568 94.369 91.465% 0.161% 453 22.699 80.893% 0.179% 
569 95.388 91.626% 0.161% 466 24.784 83.214% 2.321% 
570 92.900 91.787% 0.161% 467 23.354 83.393% 0.179% 
571 93.197 91.948% 0.161% 485 21.938 86.607% 3.214% 
572 91.563 92.110% 0.161% 486 21.988 86.786% 0.179% 
573 91.151 92.271% 0.161% 493 23.024 88.036% 1.250% 
574 90.718 92.432% 0.161% 494 28.352 88.214% 0.179% 
575 90.809 92.593% 0.161% 495 27.712 88.393% 0.179% 
576 90.635 92.754% 0.161% 496 21.668 88.571% 0.179% 
577 90.935 92.915% 0.161% 505 25.005 90.179% 1.607% 
578 90.967 93.076% 0.161% 511 20.740 91.250% 1.071% 
579 91.950 93.237% 0.161% 512 20.553 91.429% 0.179% 
580 92.547 93.398% 0.161% 513 25.843 91.607% 0.179% 
581 92.728 93.559% 0.161% 514 25.474 91.786% 0.179% 
582 93.324 93.720% 0.161% 515 22.754 91.964% 0.179% 
583 94.361 93.881% 0.161% 522 22.751 93.214% 1.250% 
584 93.465 94.042% 0.161% 523 26.132 93.393% 0.179% 
585 86.017 94.203% 0.161% 524 33.797 93.571% 0.179% 
599 84.894 96.457% 2.254% 525 37.213 93.750% 0.179% 
600 84.065 96.618% 0.161% 526 23.448 93.929% 0.179% 
621 84.930 100.000% 3.382% 560 25.282 100.000% 6.071% 

  
 


