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Abstract: In the realm of computer vision, semantic segmentation is the task of recognizing objects in
images at the pixel level. This is done by performing a classification of each pixel. The task is complex
and requires sophisticated skills and knowledge about the context to identify objects’ boundaries.
The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it
simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work,
we provide a review of the literature on deep ensemble learning models for polyp segmentation and
develop new ensembles based on convolutional neural networks and transformers. The development
of an effective ensemble entails ensuring diversity between its components. To this end, we combined
different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation
techniques, optimization methods, and learning rates, which we experimentally demonstrate to
be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the
segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive
experimental evaluation, the average performance of the proposed ensembles over five prominent
datasets beat any other solution that we know of. Furthermore, the ensembles also performed better
than the state-of-the-art on two of the five datasets, when individually considered, without having
been specifically trained for them.

Keywords: polyp segmentation; computer vision; ensemble; transformers; convolutional neural
networks

1. Introduction

Colon polyps are among the preliminary manifestations of colorectal cancer, one
of the cancers with the highest incidence [1]. The identification of precancerous polyps
is essential during screening, as early detection and accurate diagnosis are the keys to
effective treatment and low mortality [2]. Each 1% increase in polyp detection reduces
the incidence of colon cancer by approximately 3% [3]. Currently, colonoscopy is the
gold standard adopted in clinical practice to detect diseased tissue in the gastrointestinal
tract. However, the accuracy of the actual match depends on the physician’s skill and
requires a great deal of effort. Therefore, for the clinical prevention of colorectal cancer,
it is crucial to have automatic methods that can point out all existing polyps with high
accuracy. Artificial intelligence and machine learning models have been widely applied
to the semantic segmentation of polyps in medical images. Two examples of colonoscopy
images of polyps and their segmentations are shown in Figure 1.
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(a) (b) (c) (d)

Figure 1. Two examples of the content of the ETIS-Larib [4] dataset for the semantic segmentation of
polyps: (a,c) original images; (b,d) ground truth.

Traditional approaches to segmentation have used, for example, geometric analysis
and a frame-based model [5] or a hybrid context–shape approach [6]. Such approaches
are hardly capable of extracting global context information and are not robust in complex
scenes, mainly because they rely on hand-crafted features [7]. Deep learning has brought
remarkable progress in the field of semantic segmentation: we refer the reader to [8] for
a modern survey on the topic. Recently, deep networks have been applied to automatic
polyp segmentation in colonoscopy images [9–11].

Regardless of the approach, the well-known “no free lunch” theorem for machine
learning highlights that there cannot be a single model that works well on all datasets.
Based on this evidence, an effective procedure is to adopt sets (ensembles) of classifiers,
often shallow or weak, whose predictions are aggregated to form the output of the system.
In an ensemble, individual classifiers are trained so that each generalizes differently in
the training space. Ensembles provide state-of-the-art results in many domains, but it is
important to secure some properties. One of them is to enforce some kind of diversity in
the set of classifiers.

In this scenario, with this work, we provide two main contributions.

• An up-to-date review of ensembles for polyp segmentation. Actually, to the best of
our knowledge, no earlier review on the topic is available in the open literature.

• A new ensemble for semantic segmentation based on the HarDNet-MSEG [12], Polyp-
PVT [13], and HSNet [14] network topologies. The empirical evaluation showed that
the performance for polyp segmentation was better than the state-of-the-art.

The idea behind the ensemble is to smooth the contribution of the fine-tuning of the
hyperparameters for a specific dataset while averaging the performance of a model to deal
with multiple domains [15]. We remark that the common practice of using an activation
function, such as sigmoid, as the final layer of the model, followed by normalization, actu-
ally goes against this purpose because it can cause the average or sum rule to become too
similar to a voting rule, thereby reducing the benefits of ensemble design. On the contrary,
our ensemble is scientifically relevant because it introduces an approach to obtain smoother
intermediate masks that are more suitable to be aggregated for the final segmentation. In
turn, this approach shows that a better way to add transformers (part of Polyp-PVT and
HSNet, tested in this work) to an ensemble is to modify the way the final segmentation
mask is obtained. The ensemble also provides evidence that applying different approaches
to the learning rate strategy is a viable method to build a set of segmentation networks.
Furthermore, we demonstrate that a fusion of different convolutional and transformer
topologies can achieve state-of-the-art performance.

The paper is organized as follows. Section 2 contributes a review of the literature
on ensembles for polyp segmentation. Full details about our ensemble are provided in
Section 3. Section 4 illustrates the results of our experiments and provides a comparison
with the state-of-the-art. The paper concludes with Section 5, which contains some final
remarks and outlines some research opportunities for the future.

2. Related Work

Several researchers have faced the problems of automatic polyp detection and seg-
mentation. As in other domains, early attempts (e.g., [7]) focused on detection and were
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based on features extracted manually. More recently, deep networks have been applied
to tasks, and interest has shifted toward segmentation [9–11,16]. Deep networks, together
with other techniques [17] (Section B), are also in use for image enhancement [18]. In
recent years, encoder–decoder architectures have gained popularity, with the most-widely
adopted network in this family being U-Net [19]. Other popular networks adopted for
polyp segmentation are, reportedly [20], DeepLabv3+, SegNet, FCNs, DeconvNet, PSPNet,
and Mask R-CNN. All of them have been proposed in other domains. Several public
datasets are available to researchers to train their networks and compare the performance.
A recent summary of such datasets can be found in [21]. Details about the datasets we used
in our experiments are provided in Section 3.3. In addition to segmentation accuracy, com-
monly measured by the Dice coefficient and the intersection over union (IoU) (definitions
provided in Section 3.2), a performance metric considered by some works is segmentation
time because the ultimate goal is to segment all frames of a colonoscopy video to identify as
many precancerous polyps as possible and complete the job as fast as possible. All authors
customarily report the mean value of the metrics over all the images in the test set, which
is the same approach we followed in this paper.

It is essential to mention that state-of-the-art results are obtained by resorting to
methods that increase performance beyond the level attained by baseline networks. Two
methods are almost universally adopted in the realm of polyp detection and segmen-
tation, as well as in other medical and nonmedical domains: data augmentation and
ensemble techniques:

• Data augmentation [22] increases the size of the training set by adding synthetic
samples. Such samples can be created in many ways: the most-common approach
in computer vision is to generate new images by simply altering existing ones, for
instance by flipping, cropping, or rotating them. However, other approaches are
possible, including the generation of completely artificial images [23].

• Ensemble techniques [24] increase accuracy by combining the responses of different
classifiers (per-pixel classifiers, in the case of semantic segmentation). As in the case
of data augmentation, many different solutions have been proposed to combine the
answers and to build the classifiers themselves.

Given the importance of ensemble techniques for this work, we now report on the
literature on ensembles for polyp segmentation. To the best of our knowledge, 15 published
works on the topic have been published. The salient features of these works are summa-
rized in Table 1 (structure of the proposed ensembles), Table 2 (datasets used), Table 3
(performance metrics adopted), and Table 4 (reported performance). Among the 15 papers,
we can report the following:

• Two [25,26] do not provide performance figures on public datasets. The source code is
not available as well; hence, any comparison is beyond the bounds of possibility.

• Four [27–30] have been superseded by newer publications from the same authors,
which show better performance on a wider range of datasets.

• Three [31–33] exhibit results that no longer represent the state-of-the-art for popular
datasets, the more so considering that such results were obtained with more benevolent
experimental protocols (e.g., ensembles trained and tested on the same dataset) than
the one [10] currently adopted by several researchers, including ourselves.

• Four [20,34–36] report outstanding performance figures, but again, they were obtained
with less stringent and/or incompletely documented protocols. Except for [36], the
source code is not available.

The remaining two works [37,38] were included in the comparisons made during
our experiments, as detailed in Section 4. We now briefly summarize, in chronological
order, what we consider to be the most relevant of the 15 works on ensembles for polyp
segmentation.

In [20], the polyp segmentation method was based on an ensemble built from three
different networks: U-Net, SegNet, and PSPNet. The final segmentation was obtained
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through per-pixel weighted voting of the outputs of the three networks. The weights
were proportional to the performance of the networks measured in the validation phase.
Training, validation, and testing were performed with images from three public datasets:
CVC-ColonDB [7] (300 images), CVC-ClinicDB [39] (612 images), and ETIS-Larib [4] (196
images). The training phase relied on transfer learning and data augmentation (scaling,
flipping, rotations at different angles, and changes in brightness).

In [31], an ensemble of two Mask R-CNN models with different encoding backbones
(ResNet-50 and ResNet-101 [40]) was proposed. The final segmentation was the bitwise
combination, using the union operator, of the outputs of the two subnetworks. Transfer
learning was adopted: the networks were pre-trained on the COCO dataset and fine-tuned
with images from the same three datasets considered in [20]. As in [20], data augmenta-
tion (scaling, flipping, cropping, padding, random rotations, random shearing, random
Gaussian blurring, random contrast normalization, and random changes in brightness) was
adopted during training. The authors stated that this was an effective tool for improving
segmentation performance, confirming the common conclusion in the literature.

In [34], the authors addressed the segmentation of multiple anatomical structures,
including polyps. The proposed segmentation ensemble combines three DeepLabv3+ [41]
variants trained with images at different resolutions and with different dilation strides. The
authors stated that the ensemble thus captures information at multiple scales. Furthermore,
a novel loss function was adopted that is a combination of the cross-entropy loss and
the Dice loss. The discussion seems to imply that the outputs of the three networks
were combined with a simple max function, that is if any of the three networks says
that a given pixel belongs to a polyp, then this is the final output. The ensemble was
trained and tested with images from the CVC-ColonDB, CVC-ClinicDB, and ETIS-Larib
datasets. The datasets were augmented with standard geometric alterations (reflection,
random cropping, translation rotation), elastic distortions, contrast normalization, and
boundary enhancement.

In [32], the segmentation network combines the predictions of two U-Net models with
ResNet-34 [40] and EfficientNet B2 [42] as their backbones; the details of how the outputs
of the two models are combined to provide the final segmentation were not reported. The
networks were trained with transfer learning, with initial weights obtained from ImageNet
and fine-tuning performed with the publicly available Kvasir-SEG dataset [43] (1000 im-
ages). The segmentation accuracy was then tested with 160 images from the MediEval
2020 challenge. As in the previous works, the training phase leveraged data augmentation
(scaling, flipping, random rotations, affine transformations, elastic deformations, CutMix
regularization, random changes in contrast, and addition of Gaussian noise). The authors
observed that CutMix regularization alone, which substitutes a block of pixels in a train-
ing image with a random patch from another image in the training batch, increased the
accuracy by up to 3% in the validation set.

In [35], different networks (namely, MobileNet, ResNet, and EfficientNet [42]) were
first tested as the backbones of U-Net, finding that EfficientNet provided the highest
performance. Then, a new ensemble was proposed that combines the segmentation results
of two U-Nets with EfficientNet B4 and EfficientNet B5 as the backbones. The outputs of
the networks are combined asymmetrically: the output of the second (i.e., the one based
on EfficientNet B5) is taken into account for a pixel only if its confidence level that such
a pixel belongs to a polyp is greater than 0.96. A novel loss function was adopted during
training to take into account the fact that the data were unbalanced, that is the number
of non-polyp pixels is much higher than that of polyp pixels. The proposed function is
a combination of the standard cross-entropy and asymmetric Fβ loss functions. As in all
the papers mentioned, data augmentation (random scaling, cropping, padding, flipping,
random rotations, random shearing, Gaussian blurring, random contrast normalization,
and random changes in brightness) was employed during training. Transfer learning
was also applied: the initial U-Net model was pre-trained on the ImageNet dataset and
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fine-tuned on the CVC-ClinicDB dataset. The performance of the ensemble was evaluated
on the CVC-ColonDB and ETIS-Larib datasets.

Finally, we briefly mention [44], since the authors used the term “ensemble” to describe
the networks they examined. However, what they did was test the variations of the U-
Net architecture with different encoders. Each tested model was a single network, not
an ensemble, with a different feature extractor. Based on the results of the experiments,
the best-performing feature extractors were DenseNet169 and InceptionResNetV2. As in
several other studies, extensive data augmentation (flipping, blurring, sharpening, random
changes in contrast and brightness) was applied during training.

All the aforementioned works combined the outputs of two or three networks. A recent
line of research has been the exploration of the accuracy advantages of bigger ensembles,
whose predictions may be combined hierarchically or in some other complex fashion.
In [36], two different ensembles for the semantic segmentation of polyps were discussed.
The first ensemble, named TriUNet by the authors, combines three U-Net networks. The
second ensemble, called DivergentNets, combines TriUNet with UNet++ [45], FPN [46],
DeepLabv3, and DeepLabv3+. The final segmentation mask was an average of the five
masks provided by these networks. DivergentNets can be considered an ensemble of size
eight, albeit the outputs of the three networks were pre-combined in TriUNet. In [29],
several ensembles were tested whose components differed in the backbones adopted, the
loss functions, and the optimizers used in the training phase. The base architectures for the
networks that made up the ensembles were DeepLabv3+ and HarDNet-MSEG [12]. The
size of the ensembles ranged from 2 to 60. The ensembles were trained on 1450 images taken
from the Kvasir-SEG and CVC-ClinicDB datasets, then tested on the remaining images
from the same datasets (100 from Kvasir-SEG, 62 from CVC-ClinicDB), as well as on three
“unseen” datasets: CVC-ColonDB, ETIS-Larib, and the test set from CVC-EndoSceneStill
[47]. This is an experimental protocol that was first introduced in [10]. In [37], the authors
proposed ensembles of the DeepLabv3+, HarDNet-MSEG, and Polyp-PVT [13] networks,
trained with different loss functions and data augmentation methods. A wider range of loss
functions was considered than in [29], including weighted combinations of base functions,
and more than ten data augmentation techniques were applied in the training phase. The
size of the ensembles ranged from 2 to 14. The datasets used for training and testing were
the same as in [10]. In [26], an ensemble was proposed that combines the predictions of Eff-
UNet [48], nnU-Net [49] and a hierarchical multiscale attention network [50]. The training
set was the one provided by the EndoCV2022 polyp segmentation sub-challenge, with the
addition of images from CVC-ColonDB, CVC-ClinicDB, and ETIS-Larib. The training set
was manually curated by the authors to remove images with implausible annotations; it
is not publicly available. Moreover, the only performance data provided by the authors
were on “folds” of data that do not have a documented relationship with public datasets.
In [38], the ensemble was made up of two different sub-ensembles, once again based
on DeepLabv3+ (backbone: ResNet-101) and HarDNet-MSEG (backbone: HarDNet-68),
respectively. Inside each sub-ensemble, diversity was provided by varying the activation
functions (15 different loss functions were considered) and the data augmentation strategies.
Additionally, in the sub-ensemble based on DeepLabv3+, polyps identified by different
networks were not allowed to overlap. The training and testing protocols were, once again,
those introduced in [10].
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Table 1. Ensembles for polyp segmentation: structure of the ensembles. The paper [44] does not appear in this table and in Table 2. The authors used the term
ensemble to describe the networks they examined. However, what they did was test variations of the U-Net architecture with different encoders.

Paper Ensemble Size
Deep
Labv3

Deep
Labv3+

Eff-
UNet FPN

HarDNet-
MSEG

Mask
R-CNN

MultiRes
UNet nnU-Net PSPNet

Polyp-
PVT SegNet U-Net Unet++

Guo2019 [20] 3 X X X
Kang2019 [31] 2 X

Nguyen2019 [34] 3 X
Shrestha2020 [32] 2 X

ThuHong2020 [35] 2 X
Hong2021 [33] 5 X

Lumini2021a [27] 14 X
Lumini2021b [28] 14 X

Nanni2021 [29] 2, 10, 20, 30, 60 X X
Thambawita2021 [36] 3, 7 X X X X X

Tomar2021 [25] 4 X
Nanni2022a [37] 2, 10, 14 X X X
Nanni2022b [30] 12, 14, 15, 16, 20 X X

Tran2022 [26] N/A X X
Nanni2023 [38] 2, 4, 10, 20, 30 X X



Sensors 2023, 23, 4688 7 of 19

Table 2. Ensembles for polyp segmentation: datasets used. Some names are abbreviated; see
Section 3.3. Datasets can be used for training, testing, or both. Datasets from other domains used as a
consequence of transfer learning are not listed.

Paper ColDB ClinDB CVC-T EDD
2020

Polyp-
Gen ETIS Hyper-

Kvasir Kvasir MediEval
2020

Guo2019 [20] X X X
Kang2019 [31] X X X

Nguyen2019 [34] X X X
Shrestha2020 [32] X X

ThuHong2020 [35] X X X
Hong2021 [33] X

Lumini2021a [27] X
Lumini2021b [28] X

Nanni2021 [29] X X X X X
Thambawita2021 [36] X X

Tomar2021 [25] X
Nanni2022a [37] X X X X X
Nanni2022b [30] X X X X X

Tran2022 [26] X X X X X
Nanni2023 [38] X X X X X

Table 3. Ensembles for polyp segmentation: performance metrics. “FPS” stands for “frames per
second”. The authors of [25] provided only a score specific to the EndoCV 2021 Segmentation
Generalization Challenge, named “generalization score”.

Paper Accuracy Dice F2 FPS IoU Precision Recall Sensitivity Specificity

Guo2019 [20] X X
Kang2019 [31] X X X

Nguyen2019 [34] X X X X X X
Shrestha2020 [32] X X X X X X X

ThuHong2020 [35] X X X X
Hong2021 [33] X X X X X X X

Lumini2021a [27] X X X X X X
Lumini2021b [28] X X X X X X

Nanni2021 [29] X X
Thambawita2021 [36] X X X X

Tomar2021 [25]
Nanni2022a [37] X X
Nanni2022b [30] X X X X X X

Tran2022 [26] X
Nanni2023 [38] X X

Table 4. Ensembles for polyp segmentation: performance (Dice coefficient and IoU) reported by the
authors, rounded to three significant digits. For papers that propose more than one ensemble, the
table reports the figures for the best ensemble. Papers and datasets for which no scores are available
do not appear in the table. Note that the results from different papers are, in general, not comparable
because they were obtained with different testing protocols.

Paper
Kvasir ClinDB ColDB ETIS CVC-T PolypGen MediEval 2020

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

Guo2019 [20] 0.967 0.983 0.962 0.980 0.970 0.985
Kang2019 [31] 0.695 0.661

Nguyen2019 [34] 0.891 0.896
Shrestha2020 [32] 0.760 0.838 0.755 0.832

ThuHong2020 [35] 0.798 0.891 0.702 0.823
Hong2021 [33] 0.571 0.619

Lumini2021a [27] 0.820 0.885
Lumini2021b [28] 0.825 0.888

Nanni2021 [29] 0.872 0.919 0.886 0.931 0.701 0.776 0.663 0.743 0.831 0.901
Thambawita2021 [36] 0.840

Nanni2022a [37] 0.874 0.920 0.894 0.937 0.751 0.826 0.717 0.787 0.842 0.904
Nanni2022b [30] 0.870 0.918 0.884 0.929 0.695 0.768 0.644 0.727 0.833 0.904

Nanni2023 [38] 0.871 0.920 0.903 0.947 0.720 0.787 0.688 0.756 0.846 0.909
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3. Methods

In this section, we introduce and describe the methods adopted in this work, as well
as the datasets and the functions used to assess the performance.

3.1. Structure of the Ensemble

As anticipated in Section 1, our ensemble is based on the HarDNet-MSEG [12], Polyp-
PVT [13], and HSNet [14] network topologies. These models were selected for the following
reasons: HarDNet-MSEG is a lightweight neural network that has shown very good
performance in the polyp segmentation task; Polyp-PVT is one of the first attempts to use
transformers in the field of polyp segmentation; HSNet is a mixed model including both
CNN and transformers in the encoder. Our final ensemble includes multiple instances of
the three models, trained in different ways as summarized in Section 3.4 and described in
full in Section 4. In our preliminary experiments, we observed that, in these models, the
last sigmoid layer followed by a normalization layer goes against the purpose of ensemble
design because it pushes the scores to the extremes of the range, making the average or
sum rule too similar to a voting rule.

A novelty in our network architecture is that we cut the normalization layer after the
last sigmoid in HarDNet-MSEG, Polyp-PVT, and HSNet. In the original networks, before
the output, each segmentation mask is normalized between [0, 1]: this implies that the
networks always find a foreground object, but this assumption cannot be made in a real
colonoscopy. Therefore, the reported results obtained using HarDNet-MSEG, Polyp-PVT,
and HSNet are slightly different from the ones in the original papers.

Another significant difference is that, while in the original Polyp-PVT and HSNet
topologies, the intermediate masks (two masks for Polyp-PVT and four for HSNet) are
summed and then passed to the sigmoid, we passed each mask separately to the sigmoid
and averaged the results. Consequently, our output is given by

n

∑
i=1

sigmoid(Pi)/n,

where Pi is an intermediate prediction mask and n is the number of the masks (n = 2 for
Polyp-PVT, n = 4 for HSNet). In Figure 2, we compare the output of HSNet and the related
four intermediate masks. It is clear that the output is sharper, so the sum rule is almost a
voting rule if the original outputs of HSNet and Polyp-PVT are used in an ensemble.

(a) (b) (c) (d)

(e)

Figure 2. Masks in HSNet. (a) Final segmentation mask. (b–e) Intermediate masks after the sig-
moid computation.

3.2. Performance Metrics and Loss Functions

In this section, we summarize the performance metrics and the loss functions adopted
in this paper. For an exhaustive overview of image segmentation and loss functions, we
point the interested reader to the recent survey [51].
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We adopted the Dice coefficient [52] to measure the overlap between the predicted
segmentation masks and the ground truth. This approach is widespread in semantic
segmentation. The Dice coefficient is defined as

Dice(Y, T) =
2× |Y ∩ T|
|Y|+ |T| ,

where Y is the predicted segmentation mask, T is the ground-truth mask, and the cardinality
is the number of pixels.

Another well-known performance measure is the intersection over union (IoU), which
was introduced in [53]:

IoU(Y, T) =
|Y ∩ T|
|Y ∪ T| .

Hence, an IoU of 1 corresponds to a perfect prediction, that is a pixel-perfect overlap
between the predicted segmentation mask and the ground truth. The corresponding loss
function is defined as

L′IoU = 1− IoU.

This could be an issue when dealing with imbalanced datasets. Therefore, as suggested
in [54], we used the weighted intersection over union (wIoU) instead of the standard IoU.
The corresponding loss function is

L′wIoU = 1− 1 + ∑N
i=1 ∑K

k=1 wikTik ∗Yik

1 + ∑N
i=1 ∑K

k=1 wik(Tik + Yik − Tik ∗Yik)
,

where N is the number of pixels, K is the number of classes, and wik is the weight given
to the i-th pixel of the image for the class k. These weights were computed as before. Tik
and Yik are, respectively, the ground truth value and the prediction value for the i-th pixel
belonging to the class k. We added 1 to both the numerator and the denominator to prevent
undefined divisions.

The cross-entropy (CE) loss function provides us with a measure of the difference
between two probability distributions. The goal is to minimize this difference, and in doing
so, it has no bias between small or large regions. This could be an issue when dealing
with imbalanced datasets. Hence, the weighted CE loss was introduced, and it resulted
in well-balanced classifiers for imbalanced scenarios [55]. The formula for the weighted
binary CE loss is

LwBCE = −
N

∑
i=1

K

∑
k=1

wikTik ∗ log(Pik),

where N is the number of pixels, K is the number of classes, and wik is the weight given
to the i-th pixel of the image for the class k. These weights were computed by using an
average pooling over the mask with a kernel of size 31× 31 and a stride of 1 to consider
also non-maximal activations. Tik is the true value for the i-th pixel, and it can be equal to
either 0 or 1. It is 1 if the i-th pixel belongs to the class k, 0 otherwise. Pik is the probability
that the i-th pixel belongs to the class k obtained by using the sigmoid activation function.
For P, we used the softmax activation function, which returns probabilities.

Based on the intuition in [12], the wIoU loss and the weighted binary CE loss were
considered together (structure loss function):

L′STR = LwIoU + LwBCE.

In our experiments, the structure loss function was used to train all the networks
except DeepLabv3+.
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3.3. Datasets and Data Augmentations

Polyp segmentation from colonoscopy images is a challenging task that requires two-
class discrimination between polyp pixels and the low-contrast colon background. We
present experimental results on five datasets for polyp segmentation:

• The Kvasir-SEG [56] dataset (“Kvasir”) contains medical images that have been labeled
and verified by doctors. The images depict different parts of the digestive system
and show both healthy and diseased tissue. The dataset includes images at different
resolutions (from 720 × 576 up to 1920 × 1072 pixels) and is organized into folders
based on the content of the images. Some of the images also include a small picture-
in-picture showing the position of the endoscope inside the body.

• CVC-ColonDB [7] (“ColDB”) is a dataset of 300 images that aims to include a wide
range of appearances for polyps. The goal is to provide as much diversity as possible
in the dataset.

• CVC-T (sometimes called “Endo”) is the test set of a larger dataset named CVC-
EndoSceneStill [47].

• The ETIS-Larib [4] dataset (“ETIS”) contains 196 colonoscopy images. Two frames
from the dataset and their corresponding ground truth masks are shown in Figure 1.

• CVC-ClinicDB [39] (“ClinDB”) contains 612 images from 31 videos of colonoscopy
procedures. The images have been manually labeled by experts to identify the re-
gions covered by the polyps, and ground truth information is also provided for light
reflections. The images are 576 × 768 pixels in size.

Our training set is made of 1450 images taken from the largest datasets, namely
900 images from Kvasir and 550 images from ClinDB. The remaining images (100 from
Kvasir, 62 from ClinDB, plus all the images from ColDB, CVC-T, and ETIS) were used for
the test set. As pointed out in Section 2, this experimental protocol was proposed in [10]
and has been followed by many, including the researchers behind the three base networks
we considered (see Section 3.1). Having a small training set is a common challenge in
deep learning and can often lead to overfitting, i.e., the model memorizes the training
data rather than learning generalizable patterns. In this work, we adopted two common
techniques for addressing this issue: fine-tuning and data augmentation. Fine-tuning was
used since all the models involved in our experiments were pre-trained on a large dataset.
Data augmentation is based on two different strategies, which aim to increase the effective
size of the training set and provide the model with more examples to learn from:

• “DA1”: a basic strategy that includes two image flips (up/down and left/right) and a
90-degree counterclockwise rotation; therefore, three synthetic images were created
for each original image.

• “DA2”: a sophisticated strategy that creates synthetic images in 13 different ways,
including the application of motion blur and shadows to the original images.

The two strategies were introduced in [37]; we refer the interested reader to this
work for a thorough description. Figure 3 highlights the images provided by the data
augmentation process for a sample polyp image.
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Figure 3. An example of images obtained through our data augmentation process. (Top) Original
polyp image. (Bottom) Synthetic images created from the original image by data augmentation.

3.4. Overview of the Experiments

In our experiments, we considered different ensembles built with the base networks
HarDNet-MSEG, Polyp-PVT, and HSNet (see Section 3.1). Polyp-PVT and HSNet are
based on transformers, introduced recently [57] in the domain of polyp segmentation.
Figure 4 shows the overall structure of the network for the most-complex ensemble we
investigated in the experimental section (Section 4, Ensemble Ens3). The networks were
trained for 100 epochs with a batch size of 20 for HarDNet-MSEG and 8 for Polyp-PVT and
HSNet. To avoid any overfitting, we used the default value for the number of epochs. The
networks were always trained using the structure loss function (see Section 3.2) except for
DeepLabv3+, and their outputs were combined with the sum rule or the weighted sum rule
depending on the experiment. We used resized training images of size 352 × 352. During
the test phase, masks were obtained by resizing the images and were subsequently scaled
back to the original dimensions to evaluate the performance of the model.
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Figure 4. Overall structure of the proposed method, including the training and testing procedures.

As optimization methods, we experimented with both Adam and stochastic gradient
descent (SGD) for HarDNet-MSEG, while we adopted AdamW for Polyp-PVT and HSNet,
like in the original papers.

We trained the networks with the two data augmentation techniques described in
Section 3.3. We also experimented with training two identical networks with the two
techniques and combining their outputs.

Finally, the following two learning rates were considered in the experiments:
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• 10−4 (learning rate “a”);
• 5× 10−5 decaying to 5× 10−6 after 30 epochs (learning rate “b”).

We also trained some networks twice with the two learning rates and, as we did with
the data augmentations, combined their outputs.

4. Experimental Results

In this section, we report on the experimental analysis carried out to assess the pro-
posed ensemble strategy.

4.1. Ablation Studies

Ablation in machine learning refers to removing parts of a machine learning model to
measure their impact on the performance. In this work, we employed an ensemble approach
by combining the predictions of the three models to improve the overall performance of
our system. To evaluate the contributions of the different components in our ensemble,
we conducted an ablation study by separately analyzing the potential of each model.
The results are summarized in Tables 5–7, respectively. Note that the performance of
the ensembles using multiple models will be described later, in Section 4.2. The Dice
coefficient was used to measure the performance on the five test sets defined in Section 3.3.
In the column DA, we specify which data augmentation approaches (see Section 3.3) were
considered. Where the column states “1 + 2”, we trained the network twice with Data
Augmentations 1 and 2. In the column LR, we specify which learning rates (see Section 3.4)
were used during training. Where the column states “a + b”, we trained the network
twice with Learning Rates a and b. In Table 5, the additional column OPT specifies which
optimization methods (see Section 3.4) were adopted:

• “SGD”: stochastic gradient descent.
• “Adam”: Adam.
• “SGD + Adam”: both.

If a network was trained multiple times with different choices, the outputs were
combined with the sum rule, and the final model was, therefore, an ensemble. Conse-
quently, the last three rows in the table represent ensembles of 4, 4, and 8 HarDNet-MSEG
networks, respectively.

Table 5. Dice coefficient for the (ensemble) networks built on HarDNet-MSEG. The best performance
figures are marked in bold.

OPT DA LR Kvasir ClinDB ColDB ETIS CVC-T Avg

SGD 1 a 0.893 0.875 0.745 0.667 0.882 0.812
b 0.862 0.794 0.705 0.628 0.873 0.772

SGD 2 a 0.914 0.944 0.747 0.727 0.901 0.847
b 0.871 0.875 0.702 0.650 0.885 0.797

Adam 1 a 0.906 0.924 0.751 0.716 0.903 0.840
b 0.910 0.910 0.748 0.702 0.884 0.831

Adam 2 a 0.896 0.927 0.778 0.774 0.893 0.854
b 0.895 0.916 0.758 0.716 0.885 0.834

SGD + Adam 1 + 2
a 0.918 0.947 0.778 0.756 0.909 0.862
b 0.907 0.928 0.775 0.770 0.899 0.856

a + b 0.915 0.931 0.785 0.781 0.904 0.863

The conclusions we can draw from the results in Table 5 are that, on average, Learning
Rate a provided better results than Learning Rate b. Learning Rate b appeared to perform
poorly when coupled with SGD. The best average performance was provided by the
ensemble that adopts both different data augmentation strategies and different learning
rates (last row of Table 5); however, the Dice coefficient was only marginally better than
that of the ensemble trained with Learning Rate a alone (Row 9).

In Tables 6 and 7, the additional column SM specifies whether we obtained the final
segmentation mask as in the original HSNet and Polyp-PVT networks (SM = “No”) or with
the novel approach we proposed in Section 3.1 (SM = “Yes”).
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Table 6. Dice coefficient for the (ensemble) networks built on Polyp-PVT. The best performance
figures are marked in bold.

DA LR SM Kvasir ClinDB ColDB ETIS CVC-T Avg

1 a No 0.911 0.926 0.788 0.773 0.871 0.854
1 b No 0.924 0.924 0.793 0.800 0.877 0.864
2 a No 0.910 0.923 0.804 0.749 0.891 0.855
2 b No 0.917 0.921 0.794 0.763 0.891 0.857

1 + 2 a No 0.918 0.926 0.803 0.755 0.873 0.855
1 + 2 a Yes 0.919 0.930 0.809 0.765 0.884 0.861
1 + 2 b No 0.931 0.920 0.792 0.776 0.876 0.859
1 + 2 b Yes 0.931 0.921 0.798 0.791 0.882 0.865
1 + 2 a + b No 0.926 0.932 0.821 0.800 0.891 0.874
1 + 2 a + b Yes 0.926 0.933 0.824 0.808 0.895 0.877

Table 7. Dice coefficient for the (ensemble) networks built on HSNet. The best performance figures
are marked in bold.

DA LR SM Kvasir ClinDB ColDB ETIS CVC-T Avg

1 a No 0.923 0.921 0.789 0.733 0.898 0.853
1 b No 0.930 0.934 0.821 0.783 0.901 0.873
2 a No 0.909 0.944 0.806 0.750 0.901 0.862
2 b No 0.913 0.947 0.816 0.783 0.903 0.872

1 + 2 a No 0.923 0.925 0.794 0.703 0.891 0.847
1 + 2 a Yes 0.922 0.929 0.808 0.746 0.903 0.862
1 + 2 b No 0.931 0.938 0.821 0.775 0.896 0.872
1 + 2 b Yes 0.929 0.943 0.822 0.783 0.903 0.876
1 + 2 a + b No 0.928 0.943 0.829 0.779 0.902 0.876
1 + 2 a + b Yes 0.928 0.945 0.828 0.791 0.905 0.879

The conclusions we can draw from the results reported in Tables 6 and 7 are that, on
average, Learning Rate b performed better than Learning Rate a when coupled with HSNet
and slightly better when coupled with Polyp-PVT. For both Polyp-PVT and HSNet, the
best average performance was obtained by the ensemble obtained by varying the data
augmentation and the learning rate.

Using the proposed approach to obtain the segmentation masks allowed us to increase
the performance of the Polyp-PVT/HSNet ensembles. Some inference masks obtained
using HSNet ensembles (HSNet a + b) with and without smoothing are reported in Figure 5,
where false positive pixels are highlighted in green, while the false negatives are in red.
They demonstrate that our ensemble model with smoothing produced better boundary
results and made more accurate predictions than the models without smoothing.

In Table 8, we report the output values before the sigmoid layer for HarDNet-MSEG
and the intermediate masks of Polyp-PVT and HSNet. All the networks were trained with
Data Augmentation 1 and Learning Rate a. In the last two columns, the non-saturation rate
of the resulting masks is reported using our averaging rule, compared to the original sum
rule followed by normalization. Non-saturation is measured as the percentage p of pixels
such that abs(p) < 6.9 (since sigmoid(6.9) ≈ 0.999). It can be observed that these output
values are all very close to saturating the sigmoid function. Summing them together would
exacerbate the situation by producing an almost binary output. As shown in the last two
columns, our approach has a higher rate of non-saturating pixels in the sigmoid function.
Our approach averages the intermediate masks and produces a smoother output, which
means that it maintains more information. This information can be visually appreciated
in Figure 5. In particular, it can be noticed that the final segmentation mask of HSNet
(Figure 5a) is very sharp, indicating an almost binary output, while the four intermediate
masks P1–P4 have more blurred edges.
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Table 8. Output values before the sigmoid layer. Pi is the i-th intermediate prediction mask. Avgmin

is the average of the minimum values (for each image) before the sigmoid. Avgmax is the average of
the maximum values (for each image) before the sigmoid. Maxmin is the max of the minimum values.
Minmax is the min of the maximum values. SatAvg is the rate of non-saturated pixels for fusion by the
averaging rule. SatSum is the rate of non-saturated pixels for fusion by the sum rule. Fusion is among
all Pis returned by a model.

Method Minmax Avgmax Avgmin Maxmin SatAvg SatSum

HarDNet-MSEG P 2.51 71.84 −6.53 −11.45 2.57% 2.57%

Polyp-PVT P1 26.22 70.15 −21.06 −30.04 1.62% 1.09%P2 19.53 38.55 −20.61 −29.47

HSNet
P1 24.21 67.81 −38.49 −69.06

2.92% 0.85%P2 33.19 87.04 −42.63 −84.26
P3 31.31 122.01 −63.13 −123.45
P4 36.47 160.11 −95.23 −165.40

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Masks in HSNet ensemble with and without smoothing. (a,e) Original image, (b,f) ground
truth, (c,g) HSNet ensemble without smoothing, and (d,h) HSNet ensemble with smoothing. False
positive pixels are green. False negative pixels are red.

4.2. Proposed Ensembles and Comparison with State-of-the-Art Models

In this section, we compared the performance of the three ensembles proposed in this
work with twenty state-of-the-art methods for polyp segmentation (Table 9). In our final
proposed ensembles, the models analyzed in Section 4.1 were combined with the weighted
sum rule. Each method was weighted so that its weight in the fusion is equal to the other
methods. We report the performance of the following ensembles:

• “Ens1”: an ensemble of 4 Polyp-PVT networks with the segmentation masks obtained
with our approach and trained with all possible combinations of Data Augmentations
1 and 2 and Learning Rates a and b (Table 6, last row), plus 4 HSNet networks with
the segmentation masks obtained with our approach and trained with all possible
combinations of Data Augmentations 1 and 2 and Learning Rates a and b (Table 7,
last row).

• “Ens2”: like Ens1, plus eight HarDNet-MSEG networks trained with all possible
combinations of the SGD and Adam optimizers, Data Augmentations 1 and 2, and
Learning Rates a and b (Table 5, last row).

• “Ens3”: like Ens2, plus the best ensemble introduced in [37] based on DeepLabv3+.

From the results reported in Table 9, it can be seen that the proposed ensembles
beat the state-of-the-art on the ColDB and ETIS datasets, which can be regarded as the
most-challenging since the corresponding Dice scores were consistently lower not only
for the ensemble components and ensembles (Tables 5–7 and 9, Rows 1–3), but also for
competing solutions in the literature (Table 9, Rows 4–23). We remark that this result was
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obtained without training the ensembles on ColDB and ETIS. Most importantly, all three
proposed ensembles performed better than state-of-the-art solutions when we averaged
across all datasets (Table 9, last two columns). Even the simplest of our ensembles, that
is Ens1, beat the state-of-the-art on average. The conclusion we can draw is that the
proposed ensembles were strong performers with all the datasets: even when they were
not the best, they were near the top. This is a benefit of the ensemble strategy. A change
in performance with the dataset remains unavoidable: images in different datasets were
obtained with different acquisition instruments, under different conditions, and created by
experts with different opinions on what is important to include in the dataset. For instance,
the authors of ColDB deemed it important to exclude similar frames from the dataset and,
in general, to maximize the variability between polyps in different images. Again, this
makes ColDB a challenging dataset. Of course, the three ensembles performed significantly
better than their baseline networks (Table 9, Rows 4–7), including the recent ensemble
introduced in [37]. The usefulness of transformers emerges clearly from the performance
difference between Ens1 (transformers) and HarDNet-MSEG (best CNN tested). Polyp-PVT
and HSNet were the best transformer-based methods; their fusion in Ens1 allowed for
clearly better performance than that obtained by any of the two methods alone, as seen
by comparing Ens1 with Polyp-PVT and HSNet. On the other hand, adding CNN-based
methods to Ens1, as was done in Ens2 and Ens3, only led to marginal improvements.

Table 9. Performance comparison between the proposed ensembles and recent models available in
the literature. The best performance figures are marked in bold. Underlined figures point out where
our ensembles beat, or were on par with, the state-of-the-art.

Method
Kvasir ClinDB ColDB ETIS CVC-T Avg

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

Ens1 0.886 0.930 0.892 0.936 0.764 0.839 0.738 0.812 0.841 0.904 0.824 0.884
Ens2 0.883 0.927 0.894 0.938 0.759 0.832 0.750 0.822 0.841 0.904 0.825 0.885
Ens3 0.882 0.928 0.894 0.937 0.752 0.824 0.760 0.830 0.840 0.905 0.826 0.885

HarDNet-MSEG [12] 0.857 0.912 0.882 0.932 0.66 0.731 0.613 0.677 0.821 0.887 0.767 0.828
Polyp-PVT [13] 0.864 0.917 0.889 0.937 0.727 0.808 0.706 0.787 0.833 0.9 0.804 0.869

HSNet [14] 0.877 0.926 0.905 0.948 0.735 0.81 0.734 0.808 0.839 0.903 0.818 0.879
FH(2) + 2× PVT(2) [37] 0.874 0.920 0.894 0.937 0.751 0.826 0.717 0.787 0.842 0.904 0.816 0.875

PraNet (from [12]) 0.84 0.898 0.849 0.899 0.64 0.709 0.567 0.628 0.797 0.871 0.739 0.801
SFA (from [12]) 0.611 0.723 0.607 0.7 0.347 0.469 0.217 0.297 0.329 0.467 0.422 0.531

U-Net++ (from [12]) 0.743 0.821 0.729 0.794 0.41 0.483 0.344 0.401 0.624 0.707 0.57 0.641
U-Net (from [12]) 0.746 0.818 0.755 0.823 0.444 0.512 0.335 0.398 0.627 0.71 0.581 0.652

Eloss101-Mix + FH [38] 0.871 0.920 0.903 0.947 0.720 0.787 0.688 0.756 0.846 0.909 0.806 0.864
MIA-Net [58] 0.876 0.926 0.899 0.942 0.739 0.816 0.725 0.8 0.835 0.9 0.815 0.877

P2T [59] 0.849 0.905 0.873 0.923 0.68 0.761 0.631 0.7 0.805 0.879 0.768 0.834
DBMF [60] 0.886 0.932 0.886 0.933 0.73 0.803 0.711 0.79 0.859 0.919 0.814 0.875
SETR [61] 0.854 0.911 0.885 0.934 0.69 0.773 0.646 0.726 0.814 0.889 0.778 0.847

TransUnet [62] 0.857 0.913 0.887 0.935 0.699 0.781 0.66 0.731 0.824 0.893 0.785 0.851
TransFuse [11] 0.87 0.92 0.897 0.942 0.706 0.781 0.663 0.737 0.826 0.894 0.792 0.855
UACANet [63] 0.859 0.912 0.88 0.926 0.678 0.751 0.678 0.751 0.849 0.91 0.789 0.85

SANet [64] 0.847 0.904 0.859 0.916 0.67 0.753 0.654 0.75 0.815 0.888 0.769 0.842
MSNet [65] 0.862 0.907 0.879 0.921 0.678 0.755 0.664 0.719 0.807 0.869 0.778 0.834

SwinE-Net [66] 0.87 0.92 0.892 0.938 0.725 0.804 0.687 0.758 0.842 0.906 0.803 0.865
AMNet [67] 0.865 0.912 0.888 0.936 0.69 0.762 0.679 0.756 - - - -

5. Conclusions

In this work, we provided a review of the literature on deep learning ensembles for
polyp segmentation and demonstrated the advantages of tackling semantic segmentation
with ensembles of convolutional and transformer neural networks. The main idea behind
ensembling is to combine the predictions of multiple models to improve the overall perfor-
mance. We introduced an effective way of doing this by averaging intermediate predictions
in a new fashion. This can help to smooth out the contribution of any specific model,
besides reducing the impact of overfitting to a particular dataset.

We plan to generalize our results to other application domains. For this reason, many
datasets will be used in the future to corroborate the conclusions reported here, namely to
prove that:

• A fusion of different convolutional and transformer topologies can achieve state-of-
the-art performance;
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• Applying different approaches to the learning rate strategy is a feasible method to
build a set of segmentation networks;

• A better way to add the transformers (Polyp-PVT and HSNet) in an ensemble is to use
the proposed approach for creating the final segmentation mask.

Furthermore, we plan to test our model with different distillation techniques and
pruning approaches to adapt this technique to low-cost hardware. This will allow us to
extend the usefulness of our model to situations where the available computational power
is restricted or constrained.
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