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Abstract

The next generations of vehicles will require data transmission rates in the order of terabytes

per driving hour, to support advanced automotive services. This unprecedented amount of data to be

exchanged goes beyond the capabilities of existing communication technologies for vehicular com-

munication and calls for new solutions. A possible answer to this growing demand for ultra-high

transmission speeds can be found in the millimeter-wave (mmWave) bands which, however, are subject

to high signal attenuation and challenging propagation characteristics. In particular, mmWave links are

typically directional, to benefit from the resulting beamforming gain, and require precise alignment of the

transmitter and the receiver beams, an operation which may increase the latency of the communication

and lead to deafness due to beam misalignment. In this paper, we propose a stochastic model for

characterizing the beam coverage and connectivity probability in mmWave automotive networks. The

purpose is to exemplify some of the complex and interesting tradeoffs that have to be considered

when designing solutions for vehicular scenarios based on mmWave links. The results show that the

performance of the automotive nodes in highly mobile mmWave systems strictly depends on the specific

environment in which the vehicles are deployed, and must account for several automotive-specific

features such as the nodes speed, the beam alignment periodicity, the base stations density and the

antenna geometry.

Index Terms

Vehicular communication (V2X), millimeter wave (mmWave), stochastic geometry, connectivity

analysis, mobility.

A preliminary version of this paper was presented at the 6th International Conference on Modern Circuits and Systems

Technologies (MOCAST), Thessaloniki, Greece, May 2017 [1].
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I. INTRODUCTION

In recent years, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications,

which are collectively referred to as vehicle-to-everything (V2X) communications, have been

investigated as a means to support emerging automotive applications ranging from safety services

to infotainment [2]. The standard V2V communication protocol is the so-called dedicated short-

range communication (DSRC) transmission service, which provides a nominal coverage range of

about 1 km, with achievable data rates in the order of 2-6 Mbps [3]. V2I communication, instead,

exploits the 4G-LTE connectivity below 6 GHz, enabling a data rate of up to 100 Mbps in high

mobility scenarios [4]. However, the next generation of automotive systems will include advanced

services based on sophisticated sensors to support enhanced automated driving applications and is

expected to require very high data rates (in the order of terabytes per driving hour) that cannot be

provided by current V2X technologies [5]. A possible answer to this growing demand for ultra-

high transmission speeds can be found in next-generation radio technologies and interfaces, such

as the millimeter-wave (mmWave) bands between 10 and 300 GHz [6].1 Besides the extremely

large bandwidths available at such frequencies, the small size of antennas at mmWaves makes

it possible to build complex antenna arrays and obtain high gains by beamforming (BF), thus

further increasing the transmission rates. In addition, the inherent security of communication is

also improved because of the relatively narrow beamwidth that can be achieved [7]. However,

there are many concerns about the transmission characteristics at these frequencies. The path

loss is indeed very large and the communication range is quite limited. Raindrops are roughly

the same size as the radio wavelengths and cause scattering of the radio signal [8]. Moreover,

mmWave signals do not pass through most solid materials, and movements of obstacles and

reflectors cause the channel to rapidly appear and disappear [9]. Additionally, mmWave links

are typically directional and require precise alignment of the transmitter and receiver beams

to maintain connectivity, an operation that resembles handover in cellular systems [10]. Those

limitations pose new challenges for the design of vehicular protocols and exemplify how the

connectivity performance of the automotive nodes operating at mmWaves is heavily influenced

by the specific features of the environment in which the vehicles are deployed.

1Although strictly speaking mmWave bands include frequencies between 30 and 300 GHz, the industry has loosely defined

it to include any frequency above 10 GHz.
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A. Related Work

Given the simplicity of their topology and their high level of automation, highway scenarios

have been heavily investigated in the literature for evaluating the connectivity performance of

moving nodes in vehicular networks [11]–[13]. In particular, [11] analyzes the performance of

multi-hop transport protocols in a multi-lane highway environment, with particular emphasis on

the effect (in terms of throughput and latency) of tuning the transmission power. In [12], the

authors conducted a realistic analysis of the vehicular ad hoc network topology by integrating

realistic microscopic mobility traces and real database traffic demand with realistic channel

models, taking into account the effect of vehicles on the received signal power. The article in [13]

provides a closed form expression of the achievable throughput of infrastructure-based vehicular

networks under a cooperative communication strategy, exploring the combined use of V2I and

V2V communications to facilitate the data transmission. However, such analyses strictly deal

with DSRC systems operating at 5.8 GHz, whose propagation characteristics are completely

different from those of mmWave channels. Furthermore, in conventional vehicular systems,

transmissions are mostly omnidirectional (though beamforming or other directional transmissions

can be performed after a physical link between the nodes has been established). These solutions

are therefore unsuitable for a mmWave scenario, which requires highly directional transmission

schemes instead.

The potential of the mmWave technology as a means to enable future Intelligent Transportation

System (ITS) communications has been first acknowledged in [14], which makes the case that

the mmWave band is the only viable approach to handle the massive data rates that can be

generated in next-generation vehicles. A non-exhaustive list of relevant works regarding V2X

communication systems operating at mmWaves includes articles [1], [5], [15], [16]. However,

the presented results were not analytically investigated nor validated, and suffer from scalability

issues.

In this context, stochastic geometry has emerged as a tractable approach to model and analyze

the performance of wireless systems via spatial processes, such as the Poisson Point Pro-

cess (PPP) [17], [18]. In [19]–[21], the authors exploit stochastic geometry and queuing theory to

develop tractable and accurate modeling frameworks to characterize and analyze the performance

of traditional vehicular networks in a multi-lane highway setup. However, it is not possible to

directly apply those results to mmWave automotive scenarios due to the specific features of
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this type of communication In this respect, several literature works, including [22]–[24], provide

general schemes to stochastically evaluate the coverage and rate performance in mmWave 2-D

cellular networks. However, it is not easy to translate such studies into the context of mmWave

systems for automotive scenarios, due to the more challenging propagation characteristics of

highly mobile vehicular nodes (VNs). Finally, to the best of our knowledge, paper [25] is

the only available contribution that models a highway communication network operating at

mmWave frequencies and characterizes its fundamental metrics. However, it does not consider

some important automotive-specific features, e.g., the vehicles speed or the beam alignment

probability, and adopts an approximated path loss model in which the Line-of-Sight (LOS) and

Non-Line-of-Sight (NLOS) probabilities are independent of the distance and distribution of the

nodes. Furthermore, it does not investigate the connectivity performance of the vehicular nodes

when modeling a dynamic environment.

B. Contributions

The above discussion makes it apparent that next-generation mmWave automotive networks

should support a mechanism by which the vehicles and the infrastructure can quickly determine

the best directions to establish the mmWave link, an operation which may increase the latency

and the overhead of the communication and have a substantial impact on the connectivity of

vehicular nodes. With this in mind, as an extension of our work [1], in this paper we provide

the first analytical model to evaluate the coverage, connectivity and throughput performance of

a dynamic V2X network operating at mmWaves. We therefore consider a typical unidimensional

multi-lane highway setup based on a V2I communication scenario, in which cars exchange data

with mmWave Base Stations (BSs) deployed on both sides of the road. The original contributions

of this paper can be synthesized as follows:

• We develop a novel tractable framework based on stochastic geometry to evaluate both the

coverage and the connectivity performance of an automotive node in a dynamic mmWave

vehicular environment, based on a realistic measurement-based distance-dependent path loss

model. In particular, this is the first contribution in which an analytical expression for the

beam alignment probability and connection stability (i.e., the probability that the vehicle

does not disconnect from its serving infrastructure over time) is evaluated considering a

dynamic scenario.
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• We prove that the performance of the automotive nodes in highly mobile mmWave systems

strictly depends on the specific environment in which the vehicles are deployed, i.e., on

the nodes speed, the beam alignment periodicity, the base stations density and the antenna

geometry.

• We show that an optimal value of throughput can be associated with a density threshold

above which the deployment of more BSs results in a considerable increase of the system

complexity while leading to worse communication performance.

• We evaluate and compare the connectivity capabilities of the V2X network adopting both

a rural path loss model, in which the communication between the endpoints is impaired by

large vehicles acting as blockages, and a distance-dependent urban path loss implementa-

tion, based on real-world measurements, in which environmental obstructions (i.e., urban

buildings) can occlude the path between the transceiver. The results prove that, although the

two models are intrinsically remarkably different, they yield comparable results in terms of

connectivity performance.

Overall, the purpose is to exemplify some of the complex and interesting tradeoffs to be consid-

ered when designing solutions for next-generation automotive scenarios operating at mmWaves.

The remainder of this paper is organized as follows. The system model is described in Sec. II.

In Sec. III we introduce the association rule for the vehicular nodes and we derive the expressions

of the coverage and connectivity probabilities and the achievable throughput in a general scenario.

In Sec. IV, we validate our theoretical framework through simulations and we present our main

findings and results. Finally, conclusions and suggestions for future work are provided in Sec. V.

II. SYSTEM MODEL

In this section we present the system model for evaluating the coverage and connectivity

performance of a mmWave vehicular network. The notation and the system parameters that will

be used throughout this manuscript are summarized in Tab. I, while their values will be detailed

in Sec. IV-A.

A. Network Model

The network model consists of VNs and BSs which are deployed over a section of a highway,

as depicted in Fig. 1. We consider two possible scenarios:
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Tab. I: Notation and meaning of the main system parameters.

Parameter Meaning

Φb, Φo, ΦL, ΦN PPP of BSs, obstacles, LOS BSs, NLOS BSs
λL, λN Density of LOS and NLOS BSs
pL, pN Probability of a BS being in LOS (or NLOS) w.r.t. the test VN
`i(r) Path loss component of BS ∈ Φi, for i ∈ {L, N}, at distance r from the VN

∆1 = Gb ·GVN Overall antenna gain (assuming perfect beam alignment)
∆Ij Antenna gain between the test VN and interfering BS j

|hi|2 ∼ Exp(1/µ) Small scale fading component of the i-th BS

f̄i(r) PDF of the distance r from the test VN to the serving BS ∈ Φi, for i ∈ {L, N}
Pi(r) Probability that the test VN connects to a BS ∈ Φi, for i ∈ {L, N}
Pcov SINR Coverage probability
PC Connectivity probability
B Achievable throughput within one slot

Tab. II: System parameters. Their values will be detailed in Sec. IV-A.

Parameter Meaning
Value

Rural Model ∼ [25] HIghway Model ∼ [26]

aLOS LOS parameter Not applicable 0.0149 m−1

αL LOS path loss exponent 2.8 2

αN NLOS path loss exponent 4 2.92

CL LOS path loss gain (unit distance) 10−6.1 dB 10−7.2 dB

CN NLOS path loss gain (unit distance) 10−6.1 dB 10−6.14 dB
λo Density of obstacles 20 obs/km Not applicable
τo Length of obstacle 11.1 m Not applicable
λb Density of BSs {0 . . . 45} BS/km
Wtot Total bandwidth 1 GHz
fC Carrier frequency 28 GHz
PTX Downlink transmission power 27 dBm

σ2 Thermal noise 10 log10(1.381 · 10−23 · 290 ·Wtot · 103) dBm
µ Rayleigh channel parameter 1
w Road lane width 3.7 m
Nl Number of lanes 4

Γ SINR threshold −5 dB
2W, L Total road width and length 2W = 14.8 m, L = 50 km
TS Slot duration {0.1, 0.3, 0.5, 1} s.
V Vehicle Speed {30, 60, 90, 100, 130} km/h
φ Beamwidth of VN main lobe 60◦

ψ Beamwidth of BS main lobe {30◦, 60◦, 90◦}
Gbi BF gain of main lobe of the i-th BS {20, 12, 6} dB
GVN BF gain of main lobe of the VN 12 dB

gbi , gVN BF gain of side lobes of the i-th BS and VN −10 dB
Nb ×Mb Number of antenna elements of the BS UPA {4, 16, 64}

NVN ×MVN Number of antenna elements of the VN UPA 16
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Fig. 1: Illustration of the considered highway system model, composed of Nl = 4 lanes of width w, with one car lane and one

obstacle lane in each traffic direction. The target VN is placed at the center of the scenario, while LOS (NLOS) BSs follow a

PPP ΦL (ΦN ) of density λL (λN ).

• A rural section of highway, denoted with superscript (R) throughout the paper, in which

the communication can be blocked by large vehicles. The communication follows the model

presented in [25].

• A urban section of highway , denoted with superscript (U) throughout the paper, in which

environmental obstructions (i.e., urban buildings) can occlude the path (via either reflections

or scattering) from the transmitter to the receiver. The communication follows the model

presented in [26].

We assume that the highway is composed of Nl = 4 infinitely long parallel lanes of width

w, making 2W = Nl · w be the total road width. In each driving direction, a car lane (closer

to the innermost part of the road) is used by fast vehicles (e.g., cars, motorcycles) whose data

traffic performance and behavior will be analyzed in this work. An obstacle lane (closer to the

outermost part of the road) is instead reserved for large and slow vehicles (i.e., trucks, buses),

which are therefore assumed to act as communication blockages (if they obstruct the LOS of

the vehicles in the car lane). Moreover, without loss of generality, we assume that the target VN

is deployed at the origin of a coordinate system centered on the point O = (0, 0), on the mid

line of the road.

We assume that the BSs form a one-dimensional homogeneous PPP Φb with density λb. Note

that the BSs can be located along either the upper or the lower side of the road with equal
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probability.

Furthermore, the vehicles in the obstacle lane form a one-dimensional homogeneous PPP Φo

with density λo. Each blockage node potentially obstructing the LOS of the vehicles in the car

lane is associated with a segment of length τo, while obstacles widths and heights are not part of

our model. When considering an urban scenario, we assume that blockages (typically buildings

in urban areas) form a process of random shapes on a plane. The distribution of the blockage

process is assumed to be stationary and isotropic (i.e., invariant to the motions of translation

and rotation) [22].

B. Path Loss Model

The path loss characterization follows either the model presented in [25] (if a rural environment

is considered) or that in [26] (if an urban scenario is considered). Since vehicles in the obstacle

lane or urban buildings can block the link connecting the test VN to its serving BS, it is

necessary to distinguish between LOS and NLOS BSs, respectively denoted with subscripts L

and N throughout the paper.2

• Rural path loss model. When considering a rural highway scenario, BS n is assumed to be

in LOS (with probability p(R)
n,L) if the ideal segment connecting the target VN and BS n does

not intersect with any of the segments of length τo describing the footprint of the vehicles

in the obstacle lane. According to [25], this probability is independent of the distance from

BS n to O and can be approximated as p(R)
L ' e−λoτo , for any n. Accordingly, a BS will

be in NLOS with probability p(R)
N = 1− p(R)

L .

• Distance-dependent urban path loss model. When considering an urban highway scenario,

BS n is assumed to be in LOS (with probability p
(U)
n,L(r)) if the ideal segment connecting

the test VN and BS n (at distance r) does not intersect with any building. According to

[26], p(U)
n,L(r) is independent among different links and is a non-increasing function of r: the

longer the link, the more likely to intersect with one or more blockages. When obstacles

are modeled as random shapes, it follows that p(U)
L (r) = e−aLOSr, where the parameter

aLOS = 0.0149 m−1 is derived from the measurement campaign conducted in [26]. Again,

a BS is in NLOS with probability p(U)
N (r) = 1− p(U)

L (r).

2For the tractability of the analysis, in this work we neglect the outage condition induced by severe attenuation and

incorporated in [26].
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By the thinning theorem of PPP [17], the PPPs of the LOS BSs ΦL ⊆ Φb and the NLOS BSs

ΦN ⊆ Φb are independent and have density λ
(s)
L = p

(s)
L λb and λ

(s)
N = p

(s)
N λb, respectively, with

s ∈ {R,U}. Therefore, the path loss component `i(r) affecting the propagation of the test VN,

at distance r from a BS ∈ Φi, for i ∈ {L,N}, is defined as

`i(r) = Cir
−αi , (1)

where αi is the path loss exponent and Ci is the path loss gain at unit distance.

C. Antenna Model and Beam Tracking

As mentioned, isotropic transmission at mmWave frequencies incurs severe path loss. To

overcome this problem, antenna arrays are typically deployed at both the BSs and the VNs, to

perform directional beamforming and benefit from the resulting antenna gain [1].

For the tractability of the analysis, following the model proposed in prior literature work (e.g.,

[22], [27]), the actual antenna array patterns are approximated by a sectored antenna model. We

therefore assume that BSs are equipped with a Uniform Planar Array (UPA) of Nb×Mb elements,

allowing to steer beams consisting of a main lobe with beamwidth ψ and a side lobe that covers

the remainder of the antenna radiation pattern. Similarly, VNs are equipped with a UPA of

NVN×MVN elements, allowing to steer beams consisting of a main lobe with beamwidth φ and

a side lobe that covers the remainder of the antenna radiation pattern.

Moreover, we let Gbn and gbn be the main lobe directivity gain (assumed constant for all

angles in the main lobe) and the side lobe gain of the n-th BS antenna, respectively. Similarly,

we let GVN and gVN be the main and side lobe gains of the VN antenna. Then, we define

∆1 = Gb ·GVN as the overall antenna gain in case of perfect beam alignment between the test

VN and its serving BS.

Also, the beam direction of an interfering link is modeled as a uniform random variable in

[0, 2π]. Therefore, the effective interference antenna gain between an interfering BS j and the

test VN is a discrete random variable ∆Ij described as

∆Ij =

Gbj ·GVN, with probability θb/π

gbj · gVN, with probability 1− (θb/π),
(2)

where θb is defined as the half beamwidth of the aggregate antenna radiation pattern.
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As far as beam tracking is concerned, according to the procedure described in [10], [28], [29],

we assume that measurement reports are periodically exchanged among the nodes so that, at the

beginning of every slot of duration TS , VNs and BSs identify the optimal directions for their

respective beams. Such configuration is kept fixed for the whole slot duration, during which

nodes may lose the alignment due to mobility. In case the connectivity is lost during a slot, it

can only be recovered at the beginning of the subsequent slot, when the beam tracking procedure

is performed again [1]. We also assume that, if the VN connects to BS n, at the beginning of

the slot the main lobes of the BS’s and VN’s transmit beams are perfectly aligned [24]. This

guarantees that, at every slot, the maximum gain ∆1 is experienced between the VN and its

serving BS.

D. Channel Model

Available measurements at mmWaves in the V2X context are very limited and realistic

scenarios are indeed hard to simulate. In fact, the reflectivity and scattering from common

objects and the poor diffraction and penetration capabilities of mmWaves are the main factors

preventing the reuse of existing lower frequency channel models for an automotive mmWave

scenario. Moreover, current models for mmWave cellular systems (e.g., [26]) present many

limitations for their applicability to a V2X context, due to the more challenging propagation

characteristics of highly mobile VNs [1]. It is thus necessary to adopt conservative assumptions

on signal propagation.

The channel between the test VN and its serving BS is described as a Rayleigh channel model3

with mean µ, i.e., |h1|2 ∼ Exp(1/µ) [18]. Similarly, to capture the clustering of interfering

communications, the channels between the interfering BSs and the test VN are modeled as

independent and identically distributed (i.i.d.) exponential random variables with mean µ [25].

We define the Signal-to-Interference-plus-Noise Ratio (SINR) measured between the test VN,

attached to a BS ∈ Φi, for i ∈ {L, N}, at distance r1, as

SINRi =
|h1|2∆1`i(r1)

(IL + IN) + σ2
=

|h1|2∆1`i(r1)( ∑
k∈ΦL

|hk|2∆Ik`L(rk) +
∑
k∈ΦN

|hk|2∆Ik`N(rk)

)
+ σ2

, (3)

3It has been observed in previous works (e.g., [23], [30]) that considering a general fading model such as Nakagami-m may

not provide significant design insights and performance improvements compared to Rayleigh fading, while complicating the

analysis significantly. Therefore, as a first step, in this paper we consider only Rayleigh fading, and leave extensions to more

general channel models as future work.
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where |hn|2 and ∆n are the small scale fading components and the overall antenna gains measured

between BS n and the test VN (at distance rn), respectively, while `i(rn) is the path loss

component affecting the propagation between BS n ∈ Φi and the VN, as given in (1). IL and IN

represent the interference produced to the test VN by BSs in ΦL and ΦN , respectively. Finally,

σ2 represents the thermal noise power, normalized with respect to the transmission power PTX,

which is assumed equal for all nodes.

III. COVERAGE AND CONNECTIVITY ANALYSIS

In this section, we analyze the coverage and the connectivity of a moving VN in the proposed

scenario. The purpose is to exemplify some of the complex and interesting tradeoffs that have

to be considered when designing solutions for mmWave automotive scenarios. First, we present

the association rule for the VN and we derive the expression of the probability density function

(PDF) of the distance r between the VN and its serving BS (LOS or NLOS). Second, we

derive the expressions for the SINR coverage probability and the probability of the moving VN

to stay in the communication range of its serving BS during one slot and, consequently, to

keep connectivity. Finally, we analytically determine an expression for the average achievable

throughput as a function of the vehicle speed V , the slot duration (or beam tracking periodicity)

TS and the beamwidth ψ.

A. Association Rule

According to the system model presented in Sec. II, every TS both the VN and the BSs estimate

the surrounding channels and then adjust their antenna orientation accordingly, to exploit the

maximum beamforming gain. We also assume that the measured channel information is perfect,

neglecting any estimation error. Therefore, letting rn be the distance between the VN and BS

n, the VN always connects to BS n∗ ∈ Φi, i ∈ {L,N}, that provides the maximum average

received power (i.e., the minimum path loss):

n∗ = arg max
∀i, ∀n

{`i(rn)}, (4)

where `i(rn) is as in Eq. (1).

Lemma 1: The probability density function of the distance r between the VN and the nearest

LOS (NLOS) BS is

f
(s)
i (r) =

∂

∂r

(
1− exp

(
−2λb

∫ b(r)

0

p
(s)
i (x)dx

))
, (5)
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where r is larger than the road width W , i.e., r > W , by construction, s ∈ {R,U} (according

to the simulated scenario4), i ∈ {L,N} (according to the path loss state of the nearest BS) and

b(r) =
√
r2 −W 2.

Proof: See Appendix A. �

However, the test VN may not always perform association to the closest BS, especially when

considering a very dense urban environment in which the nearest infrastructure may be NLOS.

On the contrary, the serving BS can be either the nearest BS in ΦL or the nearest one in ΦN

[22]. Assuming that the test VN connects to a LOS (NLOS) BS, there must be no NLOS (LOS)

BSs at distance greater than or equal to AN(r) (AL(r)), which is defined as

Ai(r) =

(
Ci∗

Ci
rαi
) 1

αi∗
, (6)

where i∗ indicates the LOS/NLOS state other than i.

We can therefore compute the probability that the test VN is associated with either a LOS or

NLOS BS as follows.

Lemma 2: The test VN connects to a BS ∈ Φi, for i ∈ {L, N}, with probability

P
(s)
i =

∫ ∞
W

exp

(
−2λb

∫ b(Ai(r))

0

p
(s)
i∗ (x)dx

)
f

(s)
i (r)dr (7)

where s ∈ {R,U} and b(Ai(r)) =
√
Ai(r)2 −W 2.

Proof: See Appendix B. �

Lemma 3: Given that the test VN connects to a BS ∈ Φi, for i ∈ {L, N}, the PDF f̄
(s)
i (r),

s ∈ {R, U}, of the distance r between the vehicular node and the serving BS is given by

f̄
(s)
i (r) = exp

(
−2λb

∫ b(Ai(r))

0

p
(s)
i∗ (x)dx

)
f

(s)
i (r). (8)

Proof: The proof is based on the same rationale used to prove Lemma 2, and is therefore

omitted here. �

4When considering a rural highway scenario, the path loss state (i.e., the probability of LOS/NLOS conditions) does not

depend on the distance r between the VN and the BS, therefore the expression in Eq. (5) simplifies to f (R)
i (r) =

2λ
(R)
i r

b(r)
exp

(
−

2λ
(R)
i b(r)

)
, i ∈ {L,N}. Similar simplifications apply for all the results referred to a rural environment presented throughout

the paper.
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B. SINR Coverage Analysis

The SINR coverage probability P
(s)
cov(Γ) is defined as the probability that the target VN

experiences an SINR larger than a predefined threshold Γ > 0, i.e., P (s)
cov(Γ) = P[SINR > Γ]. By

using the law of total probability, we get

P (s)
cov(Γ) = P[SINR > Γ, n∗ ∈ ΦL︸ ︷︷ ︸

SINRL>Γ

] + P[SINR > Γ, n∗ ∈ ΦN︸ ︷︷ ︸
SINRN>Γ

] (9)

where n∗ is the serving BS referred to the target VN. Based on the lemmas and the assump-

tions introduced in the previous sections, we present the main theorem on the SINR coverage

probability.

Theorem 1: The coverage probability P (s)
cov(Γ) for a target SINR threshold Γ > 0 is given by

P (s)
cov(Γ) =

∑
i∈{L,N}

∫ ∞
W

exp

(−µσ2Γrαi

∆1Ci

)
L(s)

ILi

(
µΓrαi

∆1Ci

)
L(s)

INi

(
µΓrαi

∆1Ci

)
f̄

(s)
i (r)dr, (10)

where L(s)

Iji
(t) is the Laplace functional of the interference from BSs ∈ Φj , for j ∈ {L, N}, to

the test VN, and is expressed as

L(s)

Iji
(t)= exp

(
−2λb

∫ ∞
(
Cj
Ci
rαi

) 1
αj

[
1−
(

1/µ(θb/π)
1/µ+tv−αjCjGbGVN

+
1/µ[1−(θb/π)]

1/µ+tv−αjCjgbgVN

)]
p

(s)
j (v)dv

)
.

(11)

Proof: See Appendix C. �

C. Connectivity Analysis

As we pointed out in Sec. II-C, a directional beam pair needs to be determined to enable the

transmission between two nodes, thus beam tracking heavily affects the connectivity performance

of a V2X mmWave system. Assuming that perfect beam alignment is obtained at the beginning

of every slot of duration TS , the vehicle can be in either a connected (C) or an idle (I) state,

depending on whether the endpoints experience an SINR larger than a predefined threshold Γ.

Starting from state C, the VN can either maintain connectivity to the serving BS for the whole

slot duration, or lose the beam alignment and get disconnected. This second event is illustrated

in Fig. 2. Starting from state I, instead, the vehicle can either remain out-of-range for the whole

slot, or enter the coverage range of a new BS within TS (catch-up). Even in this second case,

however, the connection will be established only at the beginning of the following slot, when the

beam alignment procedure will be performed. Therefore, preservation of the connectivity during



14

Slot of duration TS

BS

VN VN

car lane

obstacle lane
VN leaves the communication range of the 

BS and loses the connection.

Fig. 2: At the beginning of the slot of duration TS , the VN is connected and aligned to its serving BS. When moving at constant

speed V during the slot, the VN leaves the communication range of the BS. Since the beam direction cannot be updated during

the slot, the link between the VN and the BS will be lost until the beginning of the next slot.

a slot requires that the VN is within the coverage range of the BS at the beginning of the slot,

with sufficient signal quality, and does not lose beam alignment in the slot period TS .

In this subsection, we analytically derive the expression of the probability PC of the moving

VN not to disconnect from its serving infrastructure during a slot of duration TS .

Theorem 2: For s ∈ {R,U}, the probability that the VN is in the connected state C for the

whole duration of a slot is given by

P
(s)
C = P (s)

cov(Γ) · P (s)
NL, (12)

where P
(s)
cov(Γ) is the probability of being in state C at the beginning of the slot and P

(s)
NL =

P[TL > TS] represents the probability that the VN does not leave the communication range of

the serving BS during the slot.5 This can be expressed as a function of r as

P
(s)
NL = P[TL > TS] = P

r > V TS
sin(ψ/2)

W
r

sin(η) +

√
1−

(
W

r

)2

cos(η)

 , (13)

where η = π/2− ψ/2 and ψ is the beamwidth of the main lobe of the BS.

Proof: See Appendix D. �

5Notice that, according to (12), P (s)
NL is to be interpreted as a conditional probability, i.e., the probability that the VN remains

connected during a slot given that it is connected at the beginning (otherwise the endpoints would not be able to determine the

optimal directions for their beams and no communication would be possible).
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The last expression can be easily solved via numerical computation by determining the value r∗

for which the inequality in (13) is satisfied as an equality. Considering that the right-hand side

of the inequality in (13) is monotonically decreasing in r, we hence have

P
(s)
NL = P[TL > TS] =

∑
i∈{L,N}

∫ ∞
r∗

f̄
(s)
i (r)dr, (14)

where f̄ (s)
i (r) is as in Eq. (8).

D. Throughput Analysis

In this subsection, we determine the expression for the average throughput B experienced

by the target VN moving across the considered mmWave vehicular scenario. In particular, let

E[Tcomm] ∈ {0, TS} represent the average time (i.e., the portion of slot) during which the VN

is within the coverage range of its serving infrastructure and properly aligned with it. In this

case, the nodes are able to exchange data, on average, at a rate E[γ(r)] that depends on their

distance r. The average achievable throughput during one slot is therefore defined as

B(s)(r) = E[γ(r)] · E[Tcomm]

TS
, s ∈ {R,U}. (15)

Notice that B(r) = 0 if the VN is disconnected at the beginning of the slot, while B(r) = E[γ(r)]

if the VN is in the connected state for the whole duration of a slot (i.e., E[Tcomm] = TS).

The average rate E[γ(r)] in Eq. (15) can be computed using Lemma 4, while the average

communication duration E[Tcomm] is evaluated through Theorem 3.

Lemma 4: Given the SINR coverage probability Pcov(Γ), the average achievable rate expe-

rienced by the target VN, at distance r from its serving BS, is given by the following expression:

E[γ(r)] = WtotE{log2(1+SINR)} =
Wtot

log(2)

∫ ∞
0

P[SINR > et−1]dt =
Wtot

log(2)

∫ ∞
0

Pcov(e
t−1)dt.

(16)

Proof: See [18, Theorem 3] and [31, Section V]. �

Theorem 3: Being d(r) the maximum distance the VN can cover before leaving the commu-

nication range of its serving BS and being V TS the total distance covered by the VN, moving

at speed V , within the slot of duration TS , the average time (i.e., the portion of slot) in which

the VN experiences a non-zero throughput is expressed as:

E[Tcomm] = (1− PNL) · E[Tcomm,L] + PNL · E[Tcomm,NL]
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= (1− PNL) ·
(

1

V
·
∫ V TS

0
Fd(V TS)− Fd(u)du

Fd(V TS)

)
+ PNL · TS, (17)

where fd(x) and Fd(x) represent the PDF and CDF of the distance d(r), respectively, and PNL

is as in Eq. (13).

Proof: According to the analysis we developed in Appendix D, if the VN does not disconnect

during the slot (with probability P (s)
NL , i.e., with probability P[d(r) > V TS]) then E[Tcomm,NL] =

TS . Otherwise, the VN experiences a non-zero throughput only during the portion of the slot in

which the alignment with the serving infrastructure is maintained, and therefore:

E[Tcomm,L] =
E
[
d(r) | d(r) < V TS

]
V

(a)
=

1

V
·
∫ V TS

0
xfd(x)dx

P[d < V TS]

=
1

V
·
∫ V TS

0
dx
∫ u

0
fd(x)du

P[d < V TS]

(b)
=

1

V
·
∫ V TS

0
du
∫ V TS

0
fd(x)dx

P[d < V TS]

=
1

V
·
∫ V TS

0
Fd(V TS)− Fd(u)du

Fd(V TS)
, (18)

where step (a) derives from the definition of conditional expectation and from the fact that

d(r) < V TS , while step (b) has been obtained by changing the order of integration for the

integrals in dx and du. �

IV. NUMERICAL RESULTS

In this section, after introducing our main simulation parameters, we provide some numerical

results based on the analysis presented in Section III, with the following objectives.

(i) Comparing the coverage and connectivity performance of vehicles considering both a rural

and an urban path loss characterization, following the models of [25] and [26], respectively.

(ii) Evaluating the throughput performance of the VNs in a mmWave vehicular network. The

validity of the proposed theoretical model will be assessed by comparing the analytical

results representing Eq. (15) with simulation outcomes.

(iii) Providing insights on the impact on the performance of V2X nodes in highly mobile

mmWave networks of several automotive-specific features, e.g., the vehicles speed, the

beam tracking periodicity, the nodes density, the antenna configuration.
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A. System Parameters

The parameters used to derive the results are based on realistic system design considerations

and are summarized in Tab. I(b). In particular, we assume that the mmWave network is operated

at fC = 28 GHz, and the total available bandwidth is Wtot = 1 GHz. In addition, the mmWave

channel follows the model presented in Sec. II-D where the Rayleigh parameter µ is set to 1.

The BSs are equipped with an antenna array of Nb ×Mb = {4, 16, 64} elements. The resulting

main lobe width ψ and BF gain Gb are proportional to the array size, since narrower beams

can be steered and larger gains can be achieved when considering larger-scale arrays [32].

Therefore, we assume ψ ' {90◦, 60◦, 30◦} and Gb ' {20, 12, 6} dB, according to the respective

array dimension. On the other hand, the VN is equipped with NVN × MVN = 16 elements,

steering beams of width φ ' 60◦ and producing a gain GVN ' 12 dB. Finally, the side lobe

gain of both base stations and vehicular nodes is set to gb = gVN = −10 dB. The BSs are

positioned uniformly at random on both sides of the road according to a PPP with density

λL and λN for LOS and NLOS BSs, respectively. The road width is 2W = 14.8 m, while the

length is L = 50 km. As introduced in Sec. II-C, perfect alignment between the VN, moving

at constant speed V = {30, 60, 90, 100, 130} km/h, and its serving infrastructure is guaranteed

every TS = {0.1, 0.3, 0.5, 1} s. Conversely, interfering BSs steer their beams through random

angle configurations.

B. Results

Coverage and Connectivity (Urban Path Loss Model). Considering an urban path loss

characterization, Fig. 3 illustrates the probability P
(U)
NL that the VN does not leave the commu-

nication range of its serving BS within a slot of duration TS , as expressed by Eq. (13). We vary

the BSs density λb and consider different system configurations. We observe that P (U)
NL decreases

with λb. The reason is that, when considering denser networks, the distance r to the serving

BS decreases, thereby geometrically tightening the region shaped by the projection of the BS’s

beam onto the road surface and consequently reducing the maximum distance that the VN can

cover before leaving the communication range of its serving cell (see also Fig. 9).

Furthermore, from Fig. 3(a), we notice that P (U)
NL increases with ψ, since wider beams enlarge

the area in which the VN can benefit from the coverage of its serving BS and therefore guarantee

a more durable alignment within the slot.
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NL , with parameters ψ = 30◦, TS = 300 ms, for

different values of the VN speed.

Fig. 3: Probability of not leaving the communication range of the serving BS (P (U)
NL = P[TL > TS ]) within a slot of duration TS ,

when varying the BSs density λb. An urban path loss model is considered. The curves are analytically obtained from Eq. (13).

Finally, Figs. 3(b) and (c) show that P (U)
NL increases for shorter slots and/or lower vehicle

speeds because of the shorter distance covered by the VN during one slot.

Nevertheless, according to Theorem 2, the preservation of the connectivity during a slot

requires both accurate alignment between the endpoints and satisfactory signal quality. The value

of P (U)
NL therefore becomes particularly meaningful if weighted by and constrained with the VN’s

coverage probability at the beginning of the slot. In Fig. 4(a), we thus plot the SINR coverage

probability, i.e., the probability that the VN is connected at the beginning of a synchronization
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Fig. 4: Coverage and connectivity probabilities (P (U)
cov and P (U)

C , respectively) within a slot of duration TS , when varying the

BSs density λb. An urban path loss model is considered. The curves are analytically obtained from Eqs. (10) and (12).

slot, as expressed by Eq. (10), for different transmit antenna configurations. We note that P (U)
cov (Γ)

increases with the BSs density λb because of the higher probability of having a BS at shorter

distance which can offer better signal quality. However, the gain progressively reduces with

λb because of the increasing impact of the interference from the surrounding BSs. Anyway,

the increasing trend shown by P
(U)
cov (Γ) proves that the reduction of the attachment distance is

dominant over the increased interference. Finally, the figure shows that narrower beams result in

higher SINR (and higher P (U)
cov (Γ)) due to the higher gain achieved by beamforming, as expected.
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In Figs. 4(b), (c), (d) we report the connectivity probability P (U)
C representing the probability,

as expressed by Eq. (12), that the VN is connected during an entire slot of duration TS , i.e.,

the VN is still connected at the end of one slot given that it was connected at the beginning of

the same slot, as a function of ψ, V and TS . We observe that P (U)
C = P

(U)
cov (Γ) · P (U)

NL exhibits

a maximum for a given density λ∗b . In detail, we notice that P (U)
C increases with λb for sparse

networks. In this region, the reduction of the attachment distance r to the serving BS is more

significant than the increase of the interference coming from the neighboring BSs. Moreover,

r is still sufficiently large to allow for a loose beam alignment (thanks to the widening of the

beam’s projection on the road’s surface with the distance), so that the connectivity between

the endpoints is maintained for a relatively large number of slots. After a certain value of λb,

P
(U)
C starts decreasing. In this range, the coverage probability does not increase significantly, as

depicted in Fig. 4(a), while r keeps reducing and the resulting smaller beam projected on the

highway lanes contributes to increasing the risk of losing connectivity during a slot, as illustrated

in Fig. 3.

Finally, as mentioned above, Figs. 4(c) and (d) emphasize how more durable connectivity

capabilities are guaranteed for smaller values of TS and V , respectively.

Throughput Results (Urban Path Loss Model). As mentioned in Sec. III-D, a non-zero

throughput B is experienced when the vehicle is within the coverage of its serving infrastructure

and properly aligned with it. In Fig. 5 we plot the results representing the average throughput

measured by the target VN within a slot of duration TS . While the analytical connectivity results

presented in the previous paragraphs were exact, these throughput curves were obtained from an

approximate theoretical framework. To assess the accuracy of the approximation, we report in

the graphs also the simulation results obtained through a Monte Carlo approach, where multiple

independent simulations are repeated to get different statistical quantities of interest. At each

iteration, the simulator computes the path loss, according to the urban characterization proposed

in [26], from each BS to the test VN and (i) makes the optimal association decision according

to a max-path loss policy, (ii) measures the SINR from the VN to its serving cell, and (iii)

computes the data rate, according to the Shannon formula, for the fraction of time in which

the nodes are properly aligned. Finally, the throughput is estimated by averaging over the total

number of repetitions.

First, we observe that the numerical results closely follow the analytic curves representing
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Fig. 5: Average throughput (B) experienced within a slot of duration TS , when varying the BSs density λb. An urban path loss

model is considered. The dashed lines are drawn from Monte Carlo simulations, the markers are obtained from Eq. (15).

Eq. (15), thereby validating our theoretical framework. Moreover, it is interesting to observe

that, in all considered configurations, the throughput exhibits a similar trend when varying the

BSs density λb and, most importantly, follows the behavior of the connectivity curves presented

in Fig. 4. An optimal value of B(s) can therefore be identified, meaning that there exists a

density threshold λ∗b above which the deployment of more BSs results in a considerable increase

of the system complexity while leading to worse communication performance. Moreover, Fig. 6

exemplifies how B grows as V decreases, because of the higher probability of remaining
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PROOF OF LEMMA 2

Let rL and rN be the random variables expressing the distance to the closest LOS and NLOS

BSs, respectively. For s 2 {R, U}, consider the event in which the test UE connects to a LOS

BS, at distance rL (the same proof equivalently applies for the NLOS case). Such an event

requires the LOS BS to have smaller pathloss than that of the nearest NLOS BS, at distance rN .

Fig. 6: Histogram of the average throughput (B) experienced for different values of slot duration TS , speed V and BS’s

beamwidth ψ. An urban path loss model and a fixed BS density λb = 25 BS/km are considered.

connected during a slot. Similarly, B grows as TS decreases, because the beam alignment is

repeated more frequently, thus reducing the disconnection time. However, the overhead (which

is not accounted for in this analysis) would also increase, thus limiting or even nullifying such

a gain if TS drops below a certain threshold.

Path Loss Models Comparison. In Fig. 7, we compare the connectivity performance of the

V2X network adopting either a rural or an urban highway path loss model. It is interesting

to notice that the two models are intrinsically different and capture the characteristics of two

clearly distinct environments. In particular, for s ∈ {R, U}, Fig. 7(a) illustrates the probability

P
(s)
L that the target VN is attached to a LOS BS, as given by Eq. (7). For the rural case,

P
(R)
L does not vary much with the density λb, due to the assumption that the LOS probability

p
(R)
L is independent of the distance from the VN to the BS. This result is perfectly in line

with the simulation outcomes presented in [25]. On the other hand, for the urban case, P (U)
L

monotonically increases with λb because the probability of LOS conditions to one of the BSs

increases. Moreover, from the table superimposed to Fig. 7(a), we realize how the path loss

parameters (i.e., αL and αN ) of the two models are remarkably different. More specifically, the

path loss characterized by [25] is much more severe than its counterpart. It is interesting to

note that, although referred to different scenarios and channel characterizations, all connectivity

curves displayed in Fig. 7(b) show similar trends. Finally, notice that the rural characterization

has a significant impact mainly in sparse networks (i.e., λb < 15 BS/km, with the settings of
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dynamic mmWave vehicular network deployed along a multi-lane highway section. The key point

is that, in order to compensate for the increased isotropic path loss experienced at high frequen-

cies, next-generation mmWave automotive communication must provide mechanisms by which

the vehicles and the infrastructure determine suitable directions of transmission to exchange

data. In this context, our model characterizes the base stations as independent homogeneous

LOS and NLOS one-dimensional Poisson processes and implements both a rural and a distance-

dependent urban path loss model, in which the communication between the endpoints is impaired

by large vehicles acting as blockages or environmental obstructions, respectively. We derived

expressions for the downlink SINR coverage probability and the probability that the vehicle does

not disconnect from its serving cell over time, as a function of the infrastructure density. We

showed that

(i) the preservation of the connectivity requires both fine alignment between the endpoints and

satisfactory signal quality.

(ii) For sparse networks, the connectivity probability grows with the BS density. In this region,

the connectivity can be improved by considering narrower beams due to the resulting higher

gain achieved by beamforming.

(iii) For dense network, the connectivity probability presents a decreasing behavior when in-
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(a) LOS connection probability P
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L between the target

VN and its serving BS.
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Fig. 7: Comparison between the rural and the urban path loss models, denoted with superscript s ∈ {R, U} respectively, in

terms of (a) LOS attachment probability, as given by Eq. (7), and (b) connectivity probability, as given by Eq. (12), as a function

of λb.

Fig. 7), showing the worst connectivity performance, while the urban path loss model affects

the connectivity behavior of denser networks instead.

V. FINAL REMARKS AND OPEN CHALLENGES

In this work, we proposed a stochastic geometry framework to characterize the coverage (i.e.,

downlink coverage) and the connectivity (i.e., beam alignment probability) performance of a dy-

namic mmWave vehicular network deployed along a multi-lane highway section. The key point is

that, in order to compensate for the increased isotropic path loss experienced at high frequencies,

next-generation mmWave automotive communication must provide mechanisms by which the

vehicles and the infrastructure determine suitable directions of transmission to exchange data.

In this context, our model characterizes the base stations as independent homogeneous LOS and

NLOS one-dimensional Poisson processes and implements both a rural and a distance-dependent

urban path loss model, in which the communication between the endpoints is impaired by large

vehicles acting as blockages or environmental obstructions, respectively. We derived expressions

for the SINR coverage probability, the probability that the vehicle does not disconnect from its

serving cell over time, and the achievable throughput, as a function of the infrastructure density.

We showed that:
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(i) The preservation of the connectivity requires both accurate alignment between the endpoints

and satisfactory signal quality.

(ii) For sparse networks, the connectivity probability grows with the BS density. In this region,

the connectivity can be improved by considering narrower beams due to the resulting higher

gain achieved by beamforming.

(iii) For dense networks, the connectivity probability presents a decreasing behavior when in-

creasing the number of BSs. In this region, larger beams should be produced to generate

larger connectivity regions and ensure a more robust alignment between the nodes.

(iv) Better connectivity and throughput performance is achieved by considering frequent beam

re-alignment operations (which allow the endpoints to reduce the disconnection time) and

slower cars (because of the resulting higher probability of remaining connected during

one slot).

(v) Consistent connectivity trends have been observed under intrinsically diverse path loss

models (i.e., a rural model characterized by stringent path loss parameters and an urban

model featuring moderate LOS attachment probability values).

Most vehicular-related challenges are still largely unexplored, so that additional research is

needed. As part of our future work, we aim at further validating the presented results considering

innovative and original channel models specifically tailored to a next-generation V2X context.

Moreover, it would be interesting to formally characterize space and time dependent target

performance metrics to assess the connectivity performance of the nodes in the rapidly time-

varying mmWave environment, while investigating realistic scenarios and models.

APPENDIX A

PROOF OF LEMMA 1

Considering the LOS case, the VN is at distance r from the closest LOS BS if no other

LOS BSs lie at distance closer than r. Considering the highway scenario described in Sec.

II-A and taking Fig. 8(a) as a reference, there must be no other LOS BSs within the interval

[−b(r), b(r)], with b(r) =
√
r2 −W 2. Since the spatial distribution of the LOS BSs is modeled

as a 1-D Poisson process ΦL with density λ(s)
L (r), we have

F
(s)
L (r) =P

[
No LOS BSs within the interval [−b(r), b(r)]

]
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W
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BS

r

b(r)b(r)

car lane

obstacle lane

(a) The test VN is at distance r from the closest LOS (or

NLOS) BS, and b(r) =
√
r2 −W 2.

W

VN

BS

Ai(r)

b(Ai(r))b(Ai(r))

car lane

obstacle lane

(b) The test VN is at distance Ai(r) from a BS ∈ Φi, for

i ∈ {L, N}, and b(Ai(r)) =
√
Ai(r)2 −W 2.

Fig. 8: Illustration of a half section of highway of width W , as a support to the proof of Lemma 1 and Lemma 2.

= exp

(
−
∫ b(r)

−b(r)
λ

(s)
L (x)dx

)
(a)
= exp

(
−2

∫ b(r)

0

λ
(s)
L (x)dx

)
(b)
= exp

(
−2λb

∫ b(r)

0

p
(s)
L (x)dx

)
(19)

with s ∈ {R, U}. Step (a) follows from the symmetry of the scenario and (b) from the fact that

λ
(s)
L (x) = p

(s)
L (x)λb. The PDF of r can be computed as

f
(s)
L (r) =

∂

∂r

(
1− F (s)

L (r)
)

=
∂

∂r

(
1− exp

(
−2λb

∫ b(r)

0

p
(s)
L (x)dx

))
,

which gives Eq. (5) for the LOS case. With a similar reasoning, it is also possible to prove the

lemma for the NLOS case.

APPENDIX B

PROOF OF LEMMA 2

Let rL and rN be the random variables expressing the distance to the closest LOS and NLOS

BSs, respectively. For s ∈ {R, U}, consider the event in which the test VN connects to a LOS

BS, at distance rL. Such an event requires the LOS BS to have smaller path loss than that of

the nearest NLOS BS, at distance rN . The probability P
(s)
L of connecting to the LOS BS can

therefore be expressed as

P
(s)
L = P

[
CLr

−αL
L > CNr

−αN
N

]
= P

[
r−αNN <

(
CL/CN

)
r−αLL

]
= P

[
rαNN >

(
CN/CL

)
rαLL

]
= P

[
rN >

(
(CN/CL)rαLL

) 1
αN

]
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=

∫ ∞
W

P
[
rN > AL(r)

]
f

(s)
L (r)dr, (20)

where the last step follows from the fact that r > W by construction and that f (s)
L (r) is the PDF

of rL, as per Lemma 1. From Lemma 1 and considering the highway scenario represented in

Fig. 8(b), P[rN > AL(r)] can be regarded as the probability that there are no NLOS BSs within

the interval [−b(AL(r)), b(AL(r))], with b(r) =
√
b(AL(r))2 −W 2, and can be written as

P[rN > AL(r)] = exp

(
−2λb

∫ b(AL(r))

0

p
(s)
N (x)dx

)
. (21)

By substituting Eq. (21) into Eq. (20), we get Lemma 2 for the LOS scenario. The proof for

the NLOS case follows the same line of reasoning.

APPENDIX C

PROOF OF THEOREM 1

Let rn∗
i be the random variable expressing the distance to the serving BS n∗ ∈ Φi, for

i ∈ {L,N}. The joint probability P[SINR > Γ, n∗ ∈ Φi] in Eq. (9) can be expressed as

P
[
SINR > Γ, n∗ ∈ Φi

]
= Ern

∗
i

[
P[SINRi > Γ | rn∗

i ]
]

(a)
= Ern

∗
i

{
P
[ |h1|2∆1Cir

−αi
i

(IL + IN) + σ2
> Γ

∣∣∣ rn∗
i

]}
=

∫ ∞
W

P
[ |h1|2∆1Cir

−αi

(IL + IN) + σ2
> Γ

∣∣∣ r] f̄ (s)
i (r)dr

=

∫ ∞
W

P

|h1|2 >

[
(IL + IN) + σ2

]
Γrαi

∆1Ci

∣∣∣∣ r
 f̄ (s)

i (r)dr, (22)

where (a) has been obtained by using the definition of SINRi in Eq. (3). Now, since |h1|2 is

exponentially distributed with mean µ, the probability term inside Eq. (22) can be expressed as

P

|h1|2>

[
(IL+IN)+σ2

]
Γrαi

∆1Ci

∣∣∣∣r
=Er,IL,IN

P

|h1|2>

[
(IL+IN)+σ2

]
Γrαi

∆1Ci

∣∣∣∣r, IL, IN


=EIL,IN
[
exp

(−µσ2Γrαi

∆1Ci

)
exp

(−µILΓrαi

∆1Ci

)
exp

(−µINΓrαi

∆1Ci

)∣∣∣∣IL, IN]
(b)
=exp

(−µσ2Γrαi

∆1Ci

)
L(s)

ILi

(
µΓrαi

∆1Ci

)
L(s)

INi

(
µΓrαi

∆1Ci

)
, (23)

where (b) derives from the definition of Laplace functional LX (t) , E[e−tX ]. By substituting

Eq. (23) into Eq. (22), the coverage probability becomes
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P
[
SINR>Γ, n∗∈Φi

]
=

∫ ∞
W

exp

(−µσ2Γrαi

∆1Ci

)
L(s)

ILi

(
µΓrαi

∆1Ci

)
L(s)

INi

(
µΓrαi

∆1Ci

)
f̄

(s)
i (r)dr. (24)

Given that the test VN is associated to BS n∗∈Φi, the Laplace functional of the interference

from BSs ∈Φj to the test VN, is obtained as follows:

L(s)

Iji
(t),EΦj ,h,∆I

[
e−tI

]
=EΦj ,h,∆I

exp

−t∑
k∈Φj

|hk|2`j(rk)∆Ik


(a)
=EΦj

∏
k∈Φj

Eh,∆I

[
exp

(
−t|hk|2r−αjk Cj∆Ik

)]
(b)
=exp

(
−2λb

∫ ∞
(
Cj
Ci
rαi

) 1
αj

{
1−Ehk,∆Ik

[
exp

(
−t|hk|2v−αjCj∆Ik

)]}
p

(s)
j (v)dv

)
, (25)

where (a) follows from the i.i.d. distribution of the interferes’ channel parameters |hk|2 and

from the further independence from the point process Φj , (b) derives from the symmetry of the

scenario, and by applying the probability generating functional of the PPP [33]. Moreover, using

the moment generating function of exponentially distributed |hk|2’s, that is

Ehk

[
exp

(
− t|hk|2v−αjCj∆Ik

)]
=

1/µ
1/µ + tv−αjCj∆Ik

, (26)

and from the consideration that ∆Ik are discrete random variables with P[∆I = GbGVN] = θb/π

and P[∆I = gbgVN] = 1 − (θb/π), the expression for L(s)

Iji
(t) in (25) can be further written as:

L(s)

Iji
(t)= exp

(
−2λb

∫ ∞
(
Cj
Ci
rαi

) 1
αj

[
1−
(

1/µ(θb/π)
1/µ+tv−αjCjGbGVN

+
1/µ[1−(θb/π)]

1/µ+tv−αjCjgbgVN

)]
p

(s)
j (v)dv

)
.

(27)

By combining Eq. (24) and (27), the proof is concluded.

APPENDIX D

PROOF OF THEOREM 2

Suppose that, at the beginning of a slot of duration TS , the target VN is connected with a BS

at distance r (w.p. P (s)
cov(Γ)). According to the considerations we made in Sec. II, the main lobe

center of the BS’s transmit beam points at its associated VN, as illustrated in Fig. 9. According
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Fig. 9: Illustration of an half section of highway of width W , as a support to the proof of Theorem 2.

to the law of sines, the quantity d(r) that represents the maximum distance that the node can

cover before leaving the communication range of its serving BS is defined as

d(r) ,
r sin(ψ/2)

sin(β(r))
, (28)

where ψ is the beamwidth of the BS’s main lobe and, from the trigonometric identities, β(r) =

η + θ(r), with η = π/2 − ψ/2 and θ(r) = arccos(W/r). Notice that d(r) increases with r due

to the resulting wider geometric projection of the BS’s beam onto the road surface. That being

said, the probability that the VN does not disconnect from its serving infrastructure can be

viewed as the probability that the VN does not cover a distance greater than d(r) within the

slot. The distance covered by the VN, moving at speed V , within the slot of duration TS is

V TS , therefore

PNL = P[TL > TS] = P [V TS < d(r)]

=P
[
V TS <

r sin(ψ/2)

sin(β(r))

]
= P

[
r >

V TS sin(β(r))

sin(ψ/2)

]

= P

r >
V TS sin

( η︷ ︸︸ ︷
π/2 − ψ/2 +

θ(r)︷ ︸︸ ︷
arccos(W/r)

)
sin(ψ/2)


(a)
= P

[
r >

V TS
sin(ψ/2)

(
sin(η) cos(arccos(W/r)) + cos(η) sin(arccos(W/r))

)]
(b)
= P

r > V TS
sin(ψ/2)

W
r

sin(η) +

√
1 −

(
W

r

)2

cos(η)

 , (29)
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where (a) derives from the trigonometric addition formula sin(η + θ(r)) = sin(η) cos(θ(r)) +

cos(η) sin(θ(r)), and (b) from the trigonometric identities cos(arccos(x)) = x and sin(arccos(x)) =
√

1 − x2. The expressions in (29) and (13) coincide, concluding the proof.
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