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A Robust Approach to ARMA Factor Modeling
Lucia Falconi, Augusto Ferrante, Mattia Zorzi

Abstract—This paper deals with the dynamic factor analysis
problem for an ARMA process. To robustly estimate the number
of factors, we construct a confidence region centered in a finite
sample estimate of the underlying model which contains the true
model with a prescribed probability. In this confidence region,
the problem, formulated as a rank minimization of a suitable
spectral density, is efficiently approximated via a trace norm
convex relaxation. The latter is addressed by resorting to the
Lagrange duality theory, which allows to prove the existence
of solutions. Finally, a numerical algorithm to solve the dual
problem is presented. The effectiveness of the proposed estimator
is assessed through simulation studies both with synthetic and
real data.

Index Terms—Convex optimization, duality theory, dynamic
factor analysis, nuclear norm.

I. INTRODUCTION

We deal with the problem of constructing a dynamical
model from a high dimensional stream of data that are assumed
to be noisy observations of a process depending on a small
number of hidden variables. In the static case, this problem
is known as factor analysis. Its origins can be traced back to
the beginning of the last century and the amount of literature
produced on this topic is impressive: we refer the readers to the
recent papers [1], [2], [3], [4] for an overview of the literature
and a rich list of references. The solution of factor analysis
problems may be obtained by decomposing the covariance
matrix of the observed data as the sum of a diagonal positive
definite matrix (accounting for the noise covariance) and a
positive semidefinite matrix whose rank must be as small as
possible since it equals the number of hidden variables in the
model. The main problem of this solution is that it is inherently
fragile; in fact, even a minuscule variation in the covariance
matrix of the observed data usually leads to a substantial
variation of the number of hidden variables which is the key
feature of the modelling procedure. On the other hand such a
matrix must be estimated and is therefore subject to errors. To
address this fragility issue, a robust method has been recently
proposed, [5], for the static factor analysis problem. The
approach has been generalized with good results also to the
dynamic framework of learning AR latent variable dynamic
graphical models, [6], in which the problem of finding a
“sparse plus low-rank” decomposition of the inverse power
spectral density of the underlying process is considered.

Dynamic Factor Analysis (DFA) has been addressed much
more recently, the first contribution in this field being appar-
ently [7]. We refer to the surveys [8], [9] and to the recent
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paper [10] for an overview of the literature on this subject. In
[11] an interesting generalization is applied to modelization of
dynamical systems.

In this paper, we address the dynamic autoregressive moving
average (ARMA) case with the aim of extracting, from the
observed data, a model featuring a small number of hidden
variables. This is important both from the point of view of the
model simplicity and to uncover the structure of the mecha-
nism generating the data. The problem may be mathematically
formulated as that of decomposing the spectral density of the
process generating the data as the sum of a diagonal spectral
density and a low-rank one. The fragility issue in this case is
even more severe. We address the problem as follows:
• Given the observed data, we compute by standard meth-

ods (e.g. truncated periodogram) a raw estimate Φ̂ of the
spectral density Φ generating the data.

• We compute a neighbourhood N of Φ̂ that contains Φ
with prescribed probability; clearly the size of N depends
on the sample size.

• We compute a refined estimate Φ◦ ∈ N by imposing that
it admits an additive decomposition as a diagonal spectral
density and a spectral density with the lowest possible
rank. To this end we set up an optimization problem that
we address by resorting to duality. In particular, we prove
existence of solutions and provide a numerical algorithm
to compute a solution.

Our work may be cast in the rich stream of literature devoted
to learning dynamic models having a topological structure
describing the presence or the absence of interactions among
the variables of the systems; see the former works [12], [13],
[14] as well as their extensions to reciprocal processes [15],
[16], sparse plus low rank graphical models [17], [18], [6],
the Bayesian viewpoint proposed in [19], [20] and the case
of oriented graphical models [21], [22]. The common aspects
of these papers are a decomposition of the type “sparse +
low rank” of a certain spectral density and/or the fact that an
underlying graphical model (possibly with latent variables) is
considered where the presence of an edge of the graph depends
on the conditional dependence between the random process
and is therefore related to the inverse of the spectral density
of the observed process. In our work, instead, we consider a
“diagonal + low rank” decomposition and we do not consider
the presence of an underlying graphical model.

The contribution of this paper is twofold; first, we propose a
procedure to estimate the number of latent factors in dynamic
ARMA factor models: this is the most delicate aspect of factor
analysis problems; second, we derive an identification method
to estimate the parameters of a factor model describing the
observed data.

Dynamic factor models has been deeply investigated in the
last two decades in the fields of econometrics and statistics. We
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refer to [23] for an overview of the contributions provided by
such a community over the recent years and a rich list of refer-
ences. The fundamental results in this literature is to show how
principal component techniques can be used to consistently
estimate the latent components from the observable variables
as the cross sectional dimension m and the sample size N both
tend to infinity [24], [25], [26], [27]. An alternative likelihood-
based method has been shown in [28], where the factor model
is cast in state-space form and the likelihood is maximized
using the Expectation Maximization (EM) algorithm. Note
that in all these methods a preliminary first step consists in
identifying the number of common factors. Bai and Ng [29]
provide a class of information criteria to consistently estimate
the number of factors in static models while Hallin and Liška
[30] deal with the dynamic counterpart of the problem. Thus,
in the econometrics and statistics literature, the solution to the
dynamical factor analysis problem consists of 2-steps: first the
estimation of the number of factors and then identification of
the parameters of the model. Here, we present an alternative
optimization-based approach which simultaneously estimates
the number of dynamic latent factors and the parameters of
an ARMA factor model. We also remark that, whereas the
econometric literature focuses the attention on factor models
with weakly correlated idiosyncratic component and with a
divergent number of observed variables, in this paper we
consider fixed cross-sectional dimension factor models where
the idiosyncratic terms are assumed to be cross-sectionally
uncorrelated.

The outline of the paper is as follows. In Section II we
introduce the DFA problem for moving average (MA) models.
Section III shows that such a problem admits solution by
means of duality theory, while Section IV shows how to
reconstruct the solution of the primal problem from the dual
one. In Section V we propose an algorithm to compute
the solution of the dual problem. In Section VI we extend
the previous ideas to ARMA models. Section VII presents
some numerical results. Finally, in Section VIII we draw the
conclusions.

A. Notation

Given a matrix M , we denote its transpose by M> and by
M(i,j) the element of M in the i-th row and j-th column. If
M is a square matrix, tr(M), |M | and σ(M) denote its trace,
its determinant and its spectrum, respectively. The symbol
‖ · ‖ stands for the Frobenius norm. For A,B ∈ Rm×m,
we define their inner product as 〈A,B〉 := tr(A>B). Let
Qm be the space of real symmetric matrices of size m; if
M ∈ Qm is positive definite or positive semidefinite, then we
write M � 0 or M � 0, respectively. We denote by (·)∗ the
complex conjugate transpose. Φ(eiϑ) for ϑ ∈ [−π, π]} denotes
a function defined on the unit circle {eiϑ : ϑ ∈ [−π, π]}, and
the dependence on ϑ is dropped if necessary. If Φ(eiϑ) is
positive (semi-)definite ∀ϑ ∈ [−π, π] we write Φ(eiϑ) � 0 (
� 0). Integrals are always defined from −π to π with respect
to the normalized Lebesgue measure dϑ/2π.

II. IDENTIFICATION OF MA FACTOR MODELS

Consider the MA factor model whose order is n:

y(t) = WLu(t) +WDw(t) (1)

where

WL(eiϑ) =

n∑
k=0

WL,ke
−iϑk, WD(eiϑ) =

n∑
k=0

WD,ke
−iϑk,

WL,k ∈ Rm×r, WD,k ∈ Rm×m diagonal; u = {u(t), t ∈ Z}
and w = {w(t), t ∈ Z} are normalized white Gaus-
sian noises of dimension r and m, respectively, such that
E[u(t)w(s)>] = 0 ∀t, s. The aforementioned model has the
following interpretation: u is the process which describes
the r factors, with r � m, not accessible to observation;
WL is the factor loading transfer matrix; WLu(t) is the
latent variable; WDw(t) is idiosyncratic noise. Accordingly,
y = {y(t), t ∈ Z} is a m-dimensional Gaussian stationary
stochastic process with power spectral density

Φ = ΦL + ΦD (2)

where ΦL = WLW
∗
L � 0 and ΦD = WDW

∗
D � 0 belong to

the finite dimensional space:

Qm,n =

{
n∑

k=−n

Rke
−iϑk, Rk = RT−k ∈ Rm×m

}
.

By construction, rank(ΦL) = r, where rank denotes the
normal rank (i.e. the rank almost everywhere), and ΦD is
diagonal. Hence, y represents a factor model if its spectral
density can be decomposed as “low rank + diagonal” as in
(2).

Assume to collect a finite length realization of y defined in
(1), say yN = { y(1) . . . y(N) } where the order n is known.
We want to estimate the corresponding factor model, that is
the decomposition in (2) as well as the number of factors r.
To this aim, given our data yN , we first compute the sample
covariance lags R̂j as

R̂j =
1

N

N−j∑
t=0

y(t+ j)y(t)>, j = 0 . . . n.

Then, an estimate Φ̂ of Φ is obtained by the truncated
periodogram:

Φ̂ =

n∑
k=−n

R̂ke
iϑk. (3)

Notice that Φ̂ could be not positive definite for all ϑ; in that
case, we can add εIm to the right side of Equation (3), with
the constant ε > 0 chosen in such a way as to ensure the
positivity of Φ̂. On the other hand, Φ̂ may not admit a low
rank plus diagonal decomposition. Thus, we estimate directly
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the two terms ΦL and ΦD of the decomposition (2) by solving
the following optimization problem:

min
Φ,ΦL,ΦD∈Qm,n

tr

∫
ΦL

subject to ΦL + ΦD = Φ,

Φ � 0 a.e., ΦL,ΦD � 0,

ΦD diagonal,

SIS(Φ||Φ̂) ≤ δ.

(4)

Here, the objective function promotes a solution for ΦL having
low rank, see [17]. The first three constraints impose that
ΦL and ΦD provide a genuine spectral density decomposition
of type (2). The last constraint, in which SIS(Φ||Φ̂) is the
Itakura-Saito divergence defined by

SIS(Φ||Φ̂) =

∫
log |Φ̂Φ−1|+ tr[Φ̂−1Φ− Im],

imposes that Φ belongs to a set “centered” in the nominal
spectral density Φ̂ and with prescribed tolerance δ. Notice that
ΦD is uniquely determined by Φ and ΦL. Thus, Problem (4)
can be rewritten by removing ΦD:

(Φ◦,Φ◦L) = arg min
Φ,ΦL∈Qm,n

tr

∫
ΦL

subject to Φ � 0 a.e., ΦL,Φ− ΦL � 0,

Φ− ΦL diagonal,

SIS(Φ||Φ̂) ≤ δ.

(5)

A. The Choice of δ

Before solving our problem, we deal with the choice of the
tolerance parameter δ appearing in the constraint of (5). This
choice should reflect the accuracy of the estimate Φ̂ of Φ.
This can be accomplished by choosing a desired probability
α ∈ (0, 1) and considering a ball of radius δα (in the Itakura-
Saito topology) centered in Φ̂ and containing the true spectrum
Φ with probability α. The estimation of δα is not an easy task
because we do not know the true power spectral density Φ.
Next, we propose a resampling-based method to estimate it.
The idea is to approximate Φ with Φ̂, and use this model to
perform a resampling operation. Let

W (eiϑ) =

n∑
k=0

Wke
−iϑk, Wk ∈ Rm×m

be the minimum phase spectral factor of Φ̂ and define the
process ŷ = {ŷ(t), t ∈ Z} as ŷ(t) := W (eiϑ)e(t), where e(t)
is an m-dimensional normalized white noise. The truncated
periodogram (understood as estimator) based on a sample of
the process ŷ of length N is

Φ̂r(e
iϑ) =

n∑
k=−n

e−iϑk
1

N

N−k∑
t=0

ŷ(t+ k)ŷ(t)T ,

where the subscript “r” stands for resampling, as it is the
means by which we perform the resampling operation, and
the boldface notation Φ̂r is used to highlight that this is an
estimator, namely a random matrix and must not be confused

with the corresponding estimate which is denoted by Φ̂r.
The latter is a deterministic matrix obtained by replacing the
random process ŷ(t) with the corresponding realization ŷ(t).

By generating a realization ŷN = { ŷ(1) . . . ŷ(N) } from Φ̂
(i.e. by resampling the data), we can easily obtain a realization
of the random variable SIS(Φ̂||Φ̂r). Accordingly, it is possi-
ble to compute numerically δα such that Pr(SIS(Φ̂||Φ̂r) ≤
δα) = α by a standard Monte Carlo procedure. Numerical
simulations show that this technique indeed provides a good
estimate of δ.

It is worth noting that if the chosen α is too large with
respect to the data length N , the resulting δα may be too
generous yielding to a diagonal Φ obeying SIS(Φ||Φ̂) ≤ δα.
In this case Problem (5) admits the trivial solution ΦL = 0
and ΦD = Φ. To rule out this trivial case, δ in (5) must be be
strictly smaller than the upper bound

δmax := min
Φ∈S+

m

Φ diagonal

SIS(Φ||Φ̂)

where S+
m denotes the family of bounded and coercive func-

tions defined on the unit circle and taking values in the cone
of positive definite m×m Hermitian matrices. Since Φ must
be diagonal, by denoting with φi and by γ̂i the i-th element
in the diagonal of Φ and of Φ̂−1, respectively, we have

δmax =

[
m∑
i=1

min
φi∈S+

1

SIS(φi||γ̂−1
i )

]
+

∫
log |Φ̂ diag2(Φ̂−1)|

where diag2(·) is the (orthogonal projection) operator mapping
a square matrix M into a diagonal matrix of the same size
having the same main diagonal of M . Therefore, since the
Itakura-Saito divergence is nonnegative, the solution corre-
sponds to φopti (eiϑ) = (γ̂i(e

iϑ))−1, i = 1, ...,m for which
SIS(φopti ||γ̂

−1
i ) = 0. Accordingly,

δmax =

∫
log |Φ̂ diag2(Φ̂−1)|. (6)

The derivation of the aforementioned result is based on rea-
sonings similar to [6, Section IV].

A more generous upper bound can be derived by assuming
that Φ is the spectrum of an MA process of order n. However,
numerical experiments showed that δmax � δα even in the
case that N is relatively small.

III. PROBLEM SOLUTION

In this section we first provide a finite dimensional matrix
parametrization of Problem (5). The latter is then analyzed by
resorting to the Lagrange duality theory, which allows us to
prove the existence of a solution.

A. Matricial Reparametrization of the Problem

To study Problem (5) it is convenient to introduce the
following matrix parametrization for Φ,ΦL and Φ− ΦL:

Φ = ∆X∆∗ ∈ Qm,n
ΦL = ∆L∆∗ ∈ Qm,n

Φ− ΦL = ∆(X − L)∆∗ ∈ Qm,n
(7)
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where ∆(eiθ) is the so-called shift operator:

∆(eiϑ) := [Im eiϑIm . . . einϑIm]; (8)

X and L are matrices in Qm(n+1) and Xij denotes the block
of X in position i, j with i, j = 0, . . . , n, so that

X =


X00 X01 . . . X0n

X>01 X11 . . .
...

...
...

...
...

X>0n X>1n . . . Xnn

 .
Moreover, Mm,n denotes the vector space of matrices of the
form

Y := [Y0 Y1 ... Yn], Y0 ∈ Qm, Y1, ..., Yn ∈ Rm×m.
(9)

The linear mapping T : Mm,n → Qm(n+1) constructs a
symmetric block-Toeplitz matrix from its first block row so
that if Y is given by (9),

T (Y ) =


Y0 Y1 . . . Yn

Y >1 Y0
. . .

...
...

. . . . . . Y1

Y >n . . . Y >1 Y0

 .
The adjoint of T is the mapping D : Qm(n+1) → Mm,n

defined by D(X) = [[D(X)]0 . . . [D(X)]n] with

[D(X)]0 =

n∑
h=0

Xhh, [D(X)]j = 2

n−j∑
h=0

Xhh+j , j = 1, ..., n.

Next, the objective is to provide a more convenient formu-
lation of Problem (5) in terms of X and L. To this end, we
have to take into account the following points.

1) Positivity Constraints Φ � 0 a.e. and ΦL,Φ−ΦD � 0 :
It can been shown (see, for example, [17, Appendix A]) that,
for any Ψ ∈ Qm,n, Ψ � 0 if and only if there exists a matrix
P ∈ Qm(n+1) such that ∆P∆∗ and P � 0. Therefore, we
replace the conditions ΦL � 0 with L � 0, the condition
Φ−ΦL � 0 with X −L � 0. Note that these conditions only
guarantees X � 0 and thus Φ to be positive semidefinite,
however we will show that this is sufficient to guarantee that
Φ � 0 a.e. at the optimum.

2) Constraint Φ − ΦL diagonal: Let ofd : Rm×m →
Rm×m denote the linear operator defined as follows: given
A ∈ Rm×m, ofd(A) is the matrix in which each off-diagonal
element is equal to the corresponding element of A and
each diagonal element is zero. We define the “block ofd”
linear operator ofdB : Mm,n → Mm,n as follows. Given
Z = [Z0 Z1 . . . Zn ] ∈Mm,n, then

ofdB(Z) = [ ofd(Z0) ofd(Z1) . . . ofd(Zn) ].

It is not difficult that ofdB is a self-adjoint operator, since ofd
is self-adjoint as well. Then, it is easy to see that the condition
Φ− ΦL diagonal is equivalent to the condition [D(X − L)]j
diagonal for j = 0, . . . , n, that is ofdB(D(X − L)) = 0.

3) The Low Rank Regularizer: We have

tr

∫
ΦL = tr

∫
∆L∆∗ = tr

(
L

∫
∆∗∆

)
= tr(L)

where we exploited the fact that
∫
eijϑ = 1 if j = 0, and∫

eijϑ = 0 otherwise.
4) The Divergence Constraint: A convenient matrix param-

eterization of the Itakura-Saito divergence SIS(Φ||Φ̂) can be
obtained by making use of the following facts.

First, since Φ = ∆X∆∗ with X � 0, there exists A ∈
Rm×m(n+1) such that X = A>A. Then, by using the Jensen-
Kolmogorov formula we obtain∫

log |Φ| =
∫

log |∆A>A∆∗| = log |A>0 A0| = log |X00|
(10)

which holds provided that X00 � 0 and Φ is coercive (i.e. |Φ|
is bounded away from zero on the unit circle). We need to
generalize this result to spectral densities that may be singular
on the unit circle. This is possible because the zeros of a
rational spectral density, if any, have finite multiplicity so that
the logarithm of the determinant of a rational spectral Φ is
integrable as long as the normal rank of Φ is full.

Lemma 3.1: Consider a power spectral density Φ ∈ Qm,n
having full normal rank. Let X ∈ Qm(n+1) be such that X �
0, X00 � 0, and Φ = ∆X∆∗. Then∫

log |Φ| = log |X00|.

The proof is deferred to the appendix.
A second observation in order to conveniently parameterize

the Itakura-Saito divergence constraint is that, by exploiting
the cyclic property of the trace,∫

tr(Φ̂−1Φ) =

∫
tr(Φ̂−1∆X∆∗)

= tr

(
X

∫
∆∗Φ̂−1∆

)
= 〈X,T (P̂ )〉,

where P̂ is defined from the expansion

Φ̂−1 =

∞∑
k=−∞

P̂ke
−iϑk

as P̂ := [P̂0 . . . P̂n].

Summing up, we get the following matrix re-
parametrization of Problem (5):

(X◦, L◦) = arg min
X,L∈Qm(n+1)

tr(L)

subject to X00 � 0, L � 0, X − L � 0,

ofdB(D[X − L]) = 0,

− log |X00|+
∫

log |Φ̂|

+ 〈X,T (P̂ )〉 −m ≤ δ.

(11)

We remark once again that to prove the equivalence between
(5) and (11) we still need to show that Φ � 0 a.e. at the
optimum: this fact will be established after the variational
analysis.
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B. The Dual Problem

We reformulate the constrained minimization problem in
(11) as an unconstrained problem by means of Duality Theory.
If we use V,U ∈ Qm(n+1), V, U � 0 as the multipliers as-
sociated with the constraints on the positive semi-definiteness
of X − L and L, respectively; Z ∈ Mm,n as the multiplier
associated with the constraint ofdB(D(X − L)) = 0 and
λ ∈ R, λ ≥ 0, as the multiplier associated with the Itakura-
Saito divergence, then the Lagrangian of Problem (11) is

L(X,L, λ,U, V, Z) = tr(L)− 〈V,X − L〉 − 〈U,L〉+
〈Z, ofdB(D(X − L))〉+ λ

(
− log |X00|+∫

log |Φ̂|+ 〈X,T (P̂ )〉 −m− δ
)

= 〈L, I − U + V − T (ofdB(Z))〉+
〈X,T (ofdB(Z))− V + λT (P̂ )〉−

λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)
.

(12)

Note that we have not included the constraint X00 � 0 be-
cause, as we will show later on, this condition is automatically
met by the solution of the dual problem.

The dual function is defined as the infimum of L over X
and L. Thanks to the convexity of the Lagrangian, we rely on
standard variational methods to characterize the minimum.
• Partial minimization with respect to L: L depends on L

only through 〈L, I − U + V − T (ofdB(Z))〉 which is
bounded below only if

I − U + V − T (ofdB(Z)) = 0. (13)

Thus, we get that

inf
L
L =


〈X,T (ofdB(Z))− V + λT (P̂ )〉−
λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)

if (13)
−∞ otherwise.

• Partial minimization with respect to X: The terms in X00

are bounded below only if[
T (ofdB(Z))− V + λT (P̂ )

]
00
� 0 (14)

and are minimized if λ > 0 and

X00 =
([
T (P̂ ) + λ−1(T (ofdB(Z))− V )

]
00

)−1

. (15)

The Lagrangian is linear in the remaining variables Xlh,
for (l, h) 6= (0, 0), and therefore bounded below only if[
T (ofdB(Z))− V + λT (P̂ )

]
lh

= 0 ∀(l, h) 6= (0, 0).

(16)
Therefore, the minimization of the Lagrangian with re-
spect to X and L is finite if and only if (13), (14), and
(16) hold in which case

min
X,L
L = −λ

(
− log

∣∣[T (P̂ ) + λ−1(T (ofdB(Z))

−V )
]
00

∣∣− ∫ log
∣∣Φ̂∣∣+ δ

)
.

Otherwise the Lagrangian has no minimum and its infi-
mum is −∞.

To simplify the notation, let us define the vector space O
as:

O := {Z ∈Mm,n : ofdB(Z) = Z, j = 0, ..., n};

since Z always appears in the form ofdB(Z), we can replace
it with Z ∈ O. Then, we can formulate the dual problem for
the Lagrangian (12) as

max
(λ,U,V,Z)∈C̃

J̃ (17)

where

J̃ := λ
(

log
∣∣[T (P̂ ) + λ−1(T (Z)− V )

]
00

∣∣+

∫
log |Φ̂| − δ

)
and the feasible set C̃ is given by:

C̃ := {(λ,U, V, Z) : U, V ∈ Qm(n+1), U, V � 0, Z ∈ O,
λ ∈ R, λ > 0, I − U + V − T (Z) = 0, [λT (P̂ ) + T (Z)−
V ]00 � 0, [λT (P̂ ) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}.

Note that the constraints I−U+V −T (Z) = 0 and U � 0 are
equivalent to the constraint I + V − T (Z) � 0. Thus, we can
eliminate the redundant variable U ; moreover, by changing the
sign to the objective function J̃ and observing that

[
T (P̂ ) +

λ−1(T (Z) − V )]00 = P̂0 + λ−1(Z0 − V00), we can rewrite
(17) as a minimization problem:

min
(λ,V,Z)∈C

J (18)

where

J := λ
(
− log

∣∣P̂0 + λ−1(Z0 − V00)
∣∣− ∫ log |Φ̂|+ δ

)
and the corresponding feasible set C is:

C := {(λ, V, Z) : V ∈ Qm(n+1), V � 0, Z ∈ O,
I + V − T (Z) � 0, λ ∈ R, λ > 0, [λP̂0 + Z0 − V00] � 0,

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}.

C. Existence of solutions

The aim of this section is to show that (18) admits solution.
The set C is not compact, as it is neither closed nor bounded.
We show that we can restrict the search of the minimum
of J over a compact set. Then, since the objective function
is continuous over C (and hence over the restricted compact
set), we can use Weierstrass’s Theorem to conclude that the
problem does admit a minimum.

The first step consists in showing that we can restrict C to
a subset where λ ≥ ε with ε > 0 a positive constant.

Proposition 3.1: Let (λ(k), V (k), Z(k))k∈N be a sequence of
elements in C such that

lim
k→∞

λ(k) = 0.

Then, such a sequence cannot be an infimizing sequence.
The proof is essentially the same as the proof of Proposition
6.1 in [6] and it is therefore omitted.
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As a consequence, minimizing the dual functional over the set
C is equivalent to minimize it over the set:

C1 := {(λ, V, Z) : V ∈ Qm(n+1), V � 0, Z ∈ O,
I + V − T (Z) � 0, λ ∈ R, λ ≥ ε, [λP̂0 + Z0 − V00] � 0,

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}.

Next we show that we can restrict C1 to a subset in which
both (T (Z)− V ) and λ cannot diverge.

Proposition 3.2: Let (λ(k), V (k), Z(k))k∈N be a sequence of
elements in C1 such that either

lim
k→∞

‖ T (Z(k))− V (k) ‖= +∞

or
lim
k→∞

λ(k) = +∞

or both. Then, such a sequence cannot be an infimizing
sequence.
The above result is obtained by following arguments similar to
the proof of Proposition 6.2 in [6] with a few small differences;
we refer the interested reader to [31, Appendix C] for the
detailed proof.
It follows from the previous proposition that there exists β ∈ R
with | β |< ∞ such that T (Z) − V � βI, and 0 < γ < ∞
such that λ ≤ γ. Therefore, the set C1 can be further restricted
to the set:

C2 := {(λ, V, Z) : V ∈ Qm(n+1), V � 0, Z ∈ O, λ ∈ R,
βI � T (Z)− V � I, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] � 0,

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}.

In addition, it is not possible for V and Z to diverge while
keeping the difference T (Z)− V finite. Accordingly, we can
further restrict the search for the optimal solution to a subset
C3 in which neither V nor Z can diverge:

Proposition 3.3: Let (λ(k), V (k), Z(k))k∈N be a sequence of
elements in C2 such that

lim
k→∞

‖ V (k) ‖= +∞ (19)

or
lim
k→∞

‖ Z(k) ‖= +∞ (20)

or both. Then, such a sequence cannot be an infimizing
sequence.
The proof can be found in the appendix.
Thus, the minimization over C2 is equivalent to the minimiza-
tion over the subset:

C3 := {(λ, V, Z) : V ∈ Qm(n+1), αI � V � 0, Z ∈ O, λ ∈ R,
βI � T (Z)− V � I, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] � 0,

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}

for a certain α > 0 positive constant.
Finally, we consider a sequence (λ(k), V (k), Z(k))k∈Z ∈ C3

such that [(λ(k))−1
(
[Z(k)]0 − [V (k)]00

)
+ P̂0] tends to be

singular as k → ∞. This implies that |(λ(k))−1
(
[Z(k)]0 −

[V (k)]00

)
+ P̂0| tends to zero and hence J → +∞. Thus, such

a sequence cannot be an infimizing sequence. Therefore, the
final set CC is:

CC := {(λ, V, Z) : V ∈ Qm(n+1), αI � V � 0, Z ∈ O, βI �
T (Z)− V � I, λ ∈ R, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] � µI,
[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) 6= (0, 0)}

where α, β, γ, ε and µ such that |α|, |β|, |γ|, |ε| and |µ| < +∞.
Theorem 3.1: Problem (18) is equivalent to

min
(λ,V,Z)∈CC

J(λ, V, Z)

and it admits solution.
Proof. Equivalence of the two problems has already been
proven by the previous arguments. Since CC is closed and
bounded, hence compact, and J is continuous over CC , by the
Weierstrass’s Theorem the minimum exists. �

IV. SOLUTION OF THE PRIMAL PROBLEM

In this section, after proving that the primal problem (5) and
its matrix reformulation (11) are equivalent, we show how to
recover the solution of the primal problem.

Let (λ◦, V ◦, Z◦) be a solution of (18) and (X◦, L◦) be the
corresponding solution of (11). Since X◦00 is positive definite,
log |X◦00| is finite. By Lemma 3.1, at the optimum

∫
log |Φ|

must be finite as well; this implies that Φ(eiϑ), ϑ ∈ [−π,+π] ,
may be singular at most on a set of zero measure, or, in
other terms, ∆X◦∆∗ � 0 a.e.. This observation leads to the
following proposition:

Proposition 4.1: Let (X◦, L◦) be a solution of (11). Then
∆X◦∆∗ � 0 a.e.. Accordingly, (5) and (11) are equivalent.

Now we are ready to show how to recover the solution of
the primal problem; to this aim we need the following result,
see [32].

Lemma 4.1: Let Z ∈ Mm,n and W ∈ Qm. If W � 0 is
such that

T (Z) �
[
W 0
0 0

]
(21)

then T (Z) � 0.
Exploiting the constraints [λ(T (P̂ )) + T (Z) − V ]lh =

0,∀(l, h) 6= (0, 0) and [λP̂0 +Z0−V00] � 0, it is not difficult
to see that

V ◦ = λ◦T (P̂ ) + T (Z◦)−
[
W ◦ 0
0 0

]
(22)

where

W ◦ := Z◦0 − V ◦00 + λ◦P̂0 � 0. (23)

Since V ◦ � 0 and in view of Lemma 4.1, λ◦T (P̂ )+T (Z◦) �
0. Hence, V ◦ has rank at least equal to mn.

Since the duality gap between (11) and (18) is equal to zero,
we have that 〈V ◦, X◦ − L◦〉 = 0, which in turn implies

V ◦(X◦ − L◦) = 0 (24)

because V ◦, X◦−L◦ � 0. Recalling that rank(V ◦) ≥ mn, in
view of (24) the matrix X◦−L◦ has rank at most equal to m.
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Let rank(X◦ − L◦) = m̃ ≤ m. Then, there exists a full-row
rank matrix A ∈ Rm̃×m(n+1) such that

X◦ − L◦ = A>A. (25)

By (24), it follows that V ◦A> = 0. Let YD :=
[vo v1 ... vl] ∈ Rm(n+1)×l denote the matrix whose
columns form a basis of ker(V ◦). Note that the dimension l of
the null space of V ◦ is at least m̃ because Im(A>) ⊆ ker(V ◦)
and rank(A>) = m̃; also l ≤ m because rank(V ◦) ≥ mn.
Rewriting the matrix A> as A> = YDS with S ∈ Rl×m̃, from
(25) we obtain

X◦ − L◦ = YDQDY
>
D , (26)

with QD := SS> ∈ Ql unknown.
In a similar fashion, by the zero duality gap between

(11) and (18), the complementary slackness condition for the
multiplier associated to the positive semi-definiteness of L
reads as 〈U◦, L◦〉 = 0, which in turn implies U◦L◦ = 0.
Repeating the same reasoning as before, it can be seen that,
if the dimension of the null space of U◦ is r̃ with r̃ ≥ r and
YL := [uo u1 ... ur̃] ∈ Rm(n+1)×r̃ is a matrix whose
columns form a basis of ker(U◦), then L◦ can be written as

L◦ = YLQLY
>
L (27)

with QL ∈ Qr̃ unknown. Plugging (27) into (26), we then
obtain

X◦ − YLQLY >L = YDQDY
>
D . (28)

Assume now that each block of X◦−L◦ is diagonal, namely

ofd(
[
YDQDY

>
D

]
hk

) = 0 h, k = 0, ..., n. (29)

Remark 1: We can make the previous assumption without
loss of generality. Indeed, let (Φ◦, Φ◦L) be the solution of
Problem (5) and Φ◦D = Φ◦−Φ◦L; X , L and D = X−L are any
matrices in Qm(n+1) such that Φ◦ = ∆X∆∗, Φ◦L = ∆L∆∗

and Φ◦D = ∆D∆∗. We can always consider a different matrix
parametrization (X̃, L̃, D̃) for Φ◦, Φ◦L and Φ◦D as follows. First
notice that there always exists a matrix D̃ with all diagonal
blocks such that Φ◦D = ∆D̃∆∗; in other words, we can always
find δD ∈ Qm(n+1) such that ∆δD∆∗ = 0 and D̃ := D+δD

satisfies ofd(
[
D̃
]
hk

) = 0 for h, k = 0, ..., n. Now, let δX ∈
Qm(n+1) such that ∆δX∆∗ = 0 and X̃ := X + δX satisfies
(15). Define L̃ = X̃−D̃ = X−D+δL with δL := δX−δD.
It is easy to see that Φ◦ = ∆X̃∆∗ and Φ̂L = ∆L̃∆∗. This
means that (X̃, L̃) is still a solution of Problem (11) and it
allows us to restrict to solutions of (11) for which (29) holds.

By applying the ofd operator to both sides of (28) and
exploiting the assumption (29), it is not difficult to obtain:

ofd(
[
YLQLY

>
L

]
00

) = ofd(X◦00) (30)

which is a system of m(m − 1)/2 linear equations in the
r̃(r̃ + 1)/2 unknowns QL. Notice that X00 is given by (15).
Finally, once L◦ is computed, in order to retrieve QD we
exploit (29) and the following system of m(m + 1)/2 linear
equations: [

YDQDY
>
D

]
00

= X◦00 − L◦00. (31)

Since both the dual and the primal problem admit solution,
the resulting systems of equations (29), (30) and (31) do admit
solutions.

V. THE PROPOSED ALGORITHM

In this section we propose an algorithm to solve numerically
the dual problem. To start with, as observed in Section IV, we
rewrite (18) in a different fashion by getting rid of the slack
variable V ∈ Qm(n+1). This is done by introducing a new
variable W ∈ Qm defined, similarly to (23), as

W := Z0 − V00 + λP̂0 � 0 (32)

such that, as in (22), the variable V can be expressed as

V = λT (P̂ ) + T (Z)−
[
W 0
0 0

]
. (33)

Accordingly, the dual problem (18) can be expressed in terms
of the variables λ, W and Z as follows:

min
(λ,W,Z)∈C

J (34)

where

J := λ
(
− log

∣∣λ−1W
∣∣− ∫ log |Φ̂|+ δ

)
and the corresponding feasible set C is:

C := {(λ,W,Z) : W ∈ Qm,W � 0, Z ∈ O, λ ∈ R,

λ > 0, λT (P̂ ) + T (Z)−
[
W 0
0 0

]
� 0,

I + λT (P̂ )−
[
W 0
0 0

]
� 0}.

We can further simplify our problem as follows. First, we
observe that the constraint

V = λT (P̂ ) + T (Z)−
[
W 0
0 0

]
� 0 (35)

may be rewritten as

λT (P̂ ) + T (Z) �
[
W 0
0 0

]
and then, by Lemma 4.1, λT (P̂ ) + T (Z) � 0. Now, we can
easily rewrite (35) recalling the characterization of a symmet-
ric positive semidefinite matrix using the Schur complement.
To this aim, it is convenient to introduce the linear operators
T0,0 : Mm,n → Qm, T0,1:n : Mm,n → Mm,n−1 and
T1:n,1:n : Mm,n → Qmn that, for a given matrix H ∈Mm,n

construct a symmetric block-Toeplitz matrix and extract the
blocks in position (0, 0), (0, 1 : n) and (1 : n, 1 : n),
respectively. With this notation, we have

T (Z + λP̂ ) =

[
T0,0(Z + λP̂ ) T0,1:n(Z + λP̂ )

T>0,1:n(Z + λP̂ ) T1:n,1:n(Z + λP̂ )

]
and the constraint (35) is equivalent to require T1:n,1:n(Z +
λP̂ ) � 0 and W � Q(λ, Z) with

Q(λ, Z) := T0,0(Z + λP̂ )− T0,1:n(Z + λP̂ )× T−1
1:n,1:n(Z+

λP̂ )T>0,1:n(Z + λP̂ ).
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In a similar fashion, the last matricial inequality constraint
in C can be equivalently expressed as W � R(λ) where

R(λ) := I + T0,0(λP̂ )− T0,1:n(λP̂ )
(
I + T1:n,1:n(λP̂ )

)−1×
T>0,1:n(λP̂ ).

Therefore, Problem (18) can be formulated as

min
(λ,W,Z)∈C

J = λ
(
− log

∣∣λ−1W
∣∣− ∫ log |Φ̂|+ δ

)
(36)

where

C :={(λ,W,Z) : Z ∈ O, λ ∈ R, λ > 0, T1:n,1:n(Z + λP̂ ) � 0,

W ∈ Qm, W � 0, W � Q(λ, Z), W � R(λ)}.

Before solving this problem, notice that J in (36) is jointly
convex in (λ,W ) and at each feasible point (λ0,W0) (where
λ0 6= 0) it is strictly convex in all directions except for
the direction equal to the point itself, i.e. (λ0,W0). Thus, if
(λopt,Wopt) is an optimal value for λ and W , all the other
optimal values must lie on the non-strictly convex direction.
As a consequence there exist αmin ≤ 0 and αmax ≥ 0 such
that ((1+α)λopt, (1+α)Wopt) are optimal values for (λ,W )
for any α ∈ [αmin, αmax]. Moreover, if αmin = αmax = 0 then
the pair (λopt,Wopt) that, together with a certain Z, solves
(36) is unique. This is indeed the case. In fact, at the optimum
J is strictly negative so that at the optimum the derivative of
J along the only non-strictly convex direction (λopt,Wopt) is
not equal to zero. In other words, at the optimum and along
the only non-strictly convex direction J is not constant which
implies αmin = αmax = 0.

Uniqueness of Z is a much more problematic issue. Indeed,
we have observed in simulations that in some cases it may
happen that there are different optimal values of Z. The
corresponding number of identified latent factors, however, is
not affected and the predictive powers of the identified models
are essentially the same.

Solving Problem (36) simultaneously for λ, W, and Z is
not trivial because the inequality constraints W � Q(λ, Z)
and W � R(λ) both depend on λ. On the other hand, once
we fix the dual variable λ to a positive constant λ̄ > 0, the
problem:

min
(W,Z)∈Cλ̄

J(λ̄,W,Z) (37)

with

Cλ̄ := {(W,Z) : Z ∈ O, W ∈ Qm, T1:n,1:n(Z + λ̄P̂ ) � 0,

W � 0, W � Q(λ̄, Z), W � R(λ̄)}.

can be efficiently solved by resorting to the ADMM algorithm
[33]. To this aim, we rewrite Problem (37) by introducing a
new variable Y ∈ Qm defined as Y = Q(λ̄, Z)−W :

min
(W,Z)∈CW,Z ,

Y ∈Q+
m

J = λ̄
(
− log

∣∣λ̄−1W
∣∣− ∫ log |Φ̂|+ δ

)
subject to Y = Q(λ̄, Z)−W

(38)

where

CW,Z := {(W,Z) : Z ∈ O,W ∈ Qm, W � 0,

W � R(λ̄), T1:n,1:n(Z + λ̄P̂ ) � 0}

and Q+
m denotes the cone of symmetric positive semidefinite

matrices of size m×m. The augmented Lagrangian for (38)
is:

Lρ(W,Z, Y,M) := λ̄
(
− log

∣∣λ̄−1W
∣∣− ∫ log |Φ̂|+ δ

)
+

〈M,Y −Q(λ̄, Z) +W 〉+
ρ

2
‖ Y −Q(λ̄, Z) +W ‖2

where M ∈ Qm is the Lagrange multiplier, and ρ > 0 is
the penalty parameter. Accordingly, given the initial guesses
W (0), Z(0), Y (0) and M (0), the ADMM updates are:

(W (k+1), Z(k+1)) = arg min
(W,Z)∈CW,Z

Lρ(W,Z, Y (k),M (k)) (39)

Y (k+1) = arg min
Y ∈Q+

m

Lρ(W (k+1), Z(k+1), Y,M (k)) (40)

M (k+1) = M (k) + ρ
(
Y (k+1) −Q(λ̄, Z(k+1)) +W (k+1)

)
.

Problem (39) does not admit a closed form solution,
therefore we approximate the optimal solution by a gradient
projection step:

W (k+1) = Π
(
W (k) − tk∇WLρ(W (k), Z(k), Y (k),M (k))

)
Z(k+1) = ΠO

(
Z(k) − tk∇ZLρ(W (k), Z(k), Y (k),M (k))

)
where:

• ∇WLρ(W,Z, Y,M) denotes the gradient of the aug-
mented Lagrangian with respect to W :

∇WLρ = −λ̄W−1 +M + ρ(Y −Q+W ).

• ∇ZLρ(W,Z, Y,M) denotes the gradient of the aug-
mented Lagrangian with respect to Z:

∇ZLρ = D
( [ Im
−T−1

1:n,1:nT
>
0,1:n

] (
−M − ρ(Y−

Q+W )
) [

Im −T0,1:nT
−1
1:n,1:n

] )
where the omitted argument of the operators T0,1:n and
T1:n,1:n is intended to be equal to (Z + λ̄P̂ ).

• ΠO denotes the projection operator onto O:

ΠO(A) = ofdB(A).

• Π denotes the projection operator onto the convex cone
{S ∈ Qm : S � R(λ̄)}. It is not difficult to see that

Π(A) = R(λ̄)−Π+(R(λ̄)−A),

where Π+ is the projection operator onto the cone Q+
m.

• the step-size tk is determined at each step k in an iterative
fashion: we start by setting tk = 1 and we decrease it
progressively of a factor β, with 0 < β < 1, until the
conditions W (k+1) � 0 and T1:n,1:n(Z(k+1) + λ̄P̂ ) � 0
are met and the Armijo’s condition [34] is satisfied.

Problem (40) admits a closed form solution, which can be
easily computed as:

Y (k+1) = Π+

(
Q(λ̄, Z(k+1))−W (k+1) − 1

ρ
M (k)

)
.
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To define the stopping criterion, we need to introduce the
following quantities

RP = Y −Q(λ̄, Z(k+1)) +W (k+1)

RD = D
( [ Im
−T−1

1:n,1:nT
>
0,1:n

]
(ρ(Y (k+1) − Y (k)))×[

Im −T0,1:nT
−1
1:n,1:n

] )
which are referred to as the primal and dual residual, respec-
tively. Notice that the omitted argument of the operators T0,1:n

and T1:n,1:n is intended to be equal to (Z(k+1) + λ̄P̂ ).
Then, the algorithm stops when the following conditions are
met:

‖RP ‖ ≤ mεABS + εREL max{‖W (k)‖, ‖Q(λ̄, Z(k))‖, ‖Y (k)‖}

‖RD‖ ≤ m
√

(n+ 1)εABS + εREL‖D
( [ Im
−T−1

1:n,1:nT
>
0,1:n

]
×

M (k)
[
Im −T0,1:nT

−1
1:n,1:n

] )
‖

where εABS and εREL are the desired absolute and relative
tolerances.

It remains to determine the optimal value λ◦ for λ which
solves Problem (36). To this aim, we exploit the following
result (see [34, pp.87-88]):

Proposition 5.1: If f is convex in (x, y) and C is a convex
non-empty set, then the function

g(x) = inf
y∈C

f(x, y) (41)

is convex in x, provided that g(x) > −∞ for some x. The
domain of g is the projection of dom(f) on its x-coordinates.

This result guarantees that the function

g(λ) = min
(W,Z)∈Cλ

J(λ,W,Z)

is convex in λ. Hence, in order to determine λ◦ =
arg minλ>0 g(λ) we can choose an initial interval of uncer-
tainty [a, b] containing λ◦, and we progressively reduce it
by evaluating g(λ) at two points within the interval placed
symmetrically, each at distance h > 0 from the midpoint.
This is repeated until the width of the uncertainty interval is
smaller than a certain tolerance l > 0.

The overall procedure to solve the dual problem (36) is
summarized in Algorithm 1.

VI. IDENTIFICATION OF ARMA FACTOR MODELS

In this section we extend the proposed approach to ARMA
processes. Consider the ARMA factor model:

y(t) = a−1(WLu(t) +WDw(t)) (42)

where

a(eiϑ) =

p∑
k=0

ake
−iϑk, ak ∈ R

and WL,WD, u and w are defined analogously to (1). Notice
that yMA(t) := ay(t) = WLu(t) +WDw(t) is a MA process
of order n whose spectral density Φ = WLW

∗
L + WDW

∗
D ∈

Qm,n admits a low rank plus diagonal decomposition. Finally,
it is worth noting that it is not restrictive to assume that the

Algorithm 1
Input: b > a > 0, l > 0, h > 0
Output: (λ◦,W ◦, Z◦)

1: repeat
2: ã = (a+ b)/2− h; b̃ = (a+ b)/2 + h.
3: Compute g(ã) by applying the ADMM with λ = ã.
4: Compute g(b̃) by applying the ADMM with λ = b̃.
5: if g(ã) < g(b̃) then
6: b = b̃
7: else
8: a = ã
9: end if

10: until b− a < l
11: λ◦ = (a+ b)/2.
12: Compute (W ◦, Z◦) by applying the ADMM with λ = λ◦.

autoregressive part in (42) is characterized by a scalar filter a;
Indeed, any ARMA factor model can be written in the form
of (42).

Assume now to collect a realization yN = { y(1) . . . y(N) }
of numerosity N of the process y. Our aim is to estimate
the factor model (42) and the number of factors r. Before
proceeding, the following observation needs to be made:
there is an identifiability issue in the problem. Indeed, if
we multiply a(z), WL and WD by an arbitrary non-zero
real number c, the model remains the same. We can easily
eliminate this uninteresting degree of freedom by normalizing
the polynomial a(z), so that from now on we assume a0 = 1.
In addition, for identifiability of model (42), we assume that
there are not zero/pole cancellations between the roots of
the denominator a(z) and the numerator matrices WL(z) and
WD(z). In other words, we assume that (42) is a minimal
representation of the ARMA model.

The idea is to estimate first a, and then ΦL and ΦD by
preprocessing yN through a. In more detail, the proposed
solution consists of the following two steps:

1) The AR dynamic estimation. Given the realization yN ,
we estimate the p parameters of the filter a by applying
the maximum likelihood estimator proposed in [35,
Section II.b]. In doing so, we are estimating an AR
process whose spectral density is a−1(a−1)∗Im.

2) The MA dynamic factor analysis. Let yNMA be the finite
length trajectory obtained by passing through the filter
a◦(eiϑ) the trajectory yN with zero initial conditions.
After computing the truncated periodogram Φ̂ ∈ Qm,n
from yNMA, we solve Problem (5) with Φ̂ in order to
recover the number of latent factors.

Although the above procedure is suboptimal, the numerical
simulations showed that the resulting estimator of the number
of factors performs well, see Section VII-B.

VII. NUMERICAL SIMULATIONS

In this section, we test the performance of the proposed
approach both for MA and ARMA factor models. In all the
simulations, the parameter δ is computed according to the
empirical procedure of Section II-A for α = 0.5. Then,
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Proposed Hallin and Liška
method method

m = 20, r=2 0.32 0.72
m = 30, r=2 0.12 0.22
m = 40, r=2 0.02 0.02
m = 20, r=4 1.1 2.98
m = 30, r=4 0.62 2.04
m = 40, r=4 0.32 1.64

TABLE I: Mean absolute error between the estimated rank and
the true rank r.

Fig. 1: Estimated MA factor model with n = 2, m = 40, and
r = 2. Integral over the unit circle of the first 30 normalized
singular values of Φ◦L with N = 5000.

Problem (36) is solved by applying Algorithm 1 with l = 7
and h = 3. In regard to the ADMM algorithm, we set
εABS = 10−4, εREL = 10−4 and the penalty term ρ = 0.05.

A. Synthetic Example - MA factor models

We consider a Monte Carlo study composed by 50 experi-
ments, where for each experiment:

1) We build an MA factor model (1) of order n = 2, with
m manifest variables and r latent factors, computed by
randomly generating the zeros of the transfer functions
[WL](i,j)’s and [WD](i,i)’s for i = 1, . . . ,m, j =
1, . . . , r within the circle with center at the origin and ra-
dius 0.95 on the complex plane. The model is generated
in such a way that

∫
‖ΦL(eiθ))‖/

∫
‖ΦD(eiθ))‖ = 2,

that is the idiosyncratic component is not negligible with
respect to the latent variable.

Fig. 2: Estimated MA factor model with n = 2, m = 40, and
r = 4. Integral over the unit circle of the first 30 normalized
singular values of Φ◦L with N = 5000

2) We generate from the model a sample yN of length
N = 5000.

3) We apply the proposed identification procedure to es-
timate the number of common factors. More precisely,
we define

sj :=

∫
σj(Φ

◦
L(eiθ))

σ1(Φ◦L(eiθ))

where σj(Φ◦L(eiθ) denotes the j− th largest eigenvalue
of Φ◦L at frequency θ. It is clear that sj represents the
integral of the j − th largest normalized singular value
of Φ◦L over the unit circle. Let imax be the first i such
that si+1 < 0.05 and imin the last i such that si > 0.3.
Then, we define the “numerical rank” of Φ◦L as

r◦ := max
imin≤i≤imax

si/si+1. (43)

4) We compute the number of factors from the data se-
quence yN by applying the method proposed by Hallin
and Liška [30].

5) We assess the performance of the two estimators in terms
of the mean absolute error

ē =
1

50

50∑
i=1

|r − r̂|

where r̂ is one of the two previous estimates and r is
the true rank of the data generating process.

Table I shows the mean absolute error ē when r = 2, 4 and
m = 20, 30, 40.

We see that in the six Monte Carlo studies the proposed
method outperforms the Hallin and Liška’s algorithm. In par-
ticular, the performances of the two estimators are comparable
when the number m of observed variables is much higher than
the number r of latent factors. The problem becomes more
challenging when the ratio m/r decrases; improvements by
our method are more sizable in these situations.
Figures 1 and 2 plot the quantities sj obtained by applying
our estimation method in one of the previuos Monte Carlo
experiment with m = 40 manifest variables and r = 2 and
r = 4 latent variables, respectively. We can notice that there
is a knee point at j = 2 and at j = 4 in Figure 1 and Figure
2, respectively, so that we can recover the exact number of
common factors in both cases.

B. Synthetic Example - ARMA factor models

In order to test the robustness of the proposed algorithm also
in the case of a more general model class, i.e. the ARMA
model class considered in VI, we consider the following
Monte Carlo simulation study composed of 50 experiments.
We randomly build an ARMA factor model (42) with m = 40,
r = 2, n = 2 and p = 2; without loss of generality we
fix a0 = 1. Then, for each Monte Carlo experiment a data
sequence of length N = 5000 is randomly generated from the
model and the ARMA factor model identification procedure is
performed. The boxplot of the quantities sj for the estimated
Φ◦L’s are shown in Figure 3 and it reveals that the proposed
identification procedure is able to successfully recover the
number of latent factors.
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Fig. 3: Estimated ARMA factor model with m = 40, r = 2,
n = 2 and p = 2. Box-plot of the integral over the unit
circle of the first 15 normalized singular values of Φ◦L with
N = 5000.

C. Smart Building Dataset

The SMLsystem is a house built in Valencia at the Uni-
versidad CEU Cardenal Herrera (CEU-UCH). It is a modular
house that integrates a whole range of different technologies
to improve energy efficiency, with the objective to construct
a near zero-energy house. A complex monitoring system
has been used in the SMLsystem: it has indoor sensors for
temperature, humidity and carbon dioxide; outdoor sensors are
also available for lighting measurements, wind speed, rain,
sun irradiance and temperature. We refer the reader to [36]
for a detailed description of the building and its monitoring
system. Two datasets from the SMLsystem are available for
download at the UCI Machine Learning repository http://
archive.ics.uci.edu/ml. We take into account m = 17 sensor
signals extracted from these datasets: the indoor temperature
(in ◦C) of the dinning-room and of the room, the weather
forecast temperature (in ◦C), the carbon dioxide (in ppm) in
the dinning room and in the room, the relative humidity (in %)
in the dinning room and the room, the lighting in the dinning
room and the room (in lx), the sun dusk, the wind (in cm/sec),
the sun light (in klx) in the west, east and south facade, the sun
irradiance (in dW), the outdoor temperature (in ◦C) and finally
the outdoor relative humidity (in %). The data are sampled
with a period of T = 15min and each sample is the mean
of the last quarter, reducing in this way the signal noise. The
first dataset yN1 = { y(1), . . . , y(N1) } was captured during
March 2011 and has N1 = 2764 points (≈ 28 days), while
the second dataset yN2 = { y(N1 + 1), . . . , y(N1 +N2) } has
N2 = 1373 points (≈ 14 days) collected in June 2011.

It is reasonable to expect that the variability of the con-
sidered signals may be successfully explained by a smaller
number of factors. Motivated by this reason, we apply the
ARMA factor model identification procedure with parameters
n = 2 and p = 2 using the realization yN1 . As shown in
Figure 4, we obtain an estimate of 4 latent factors.

For the sake of comparison, we also use the Matlab function
armax() of the System Identification Toolbox to compute the
prediction-error method (PEM) estimate for an ARMA model
with polynomials A(z) and C(z), diagonal, of order 2 from
the realization yN1 . It is well know that the PEM estimate

has guarantees of optimality, at least for large samples, for the
identification of linear dynamic systems, so that it is interesting
to use it as a benchmark to which to compare the prediction
capability of our model.

We also compare our model with the factor model proposed
in [28] where, however, the number r of latent factors is
assumed to be a given input. We computed this input by
preliminarily applying the Hallin and Liska’s information
criterion (IC). The paper [28] assumes an underlying AR factor
model where the idiosyncratic components are temporarily and
cross-sectionally uncorrelated and it employs the expectation
maximization algorithm to compute the ML estimator. The
selection of the model order both for our method and for
the method proposed in [28] is obtained by applying the BIC
criterion. Notice that since the IC has a random step, it gives
different results when repeatedly applied to the same dataset
yN1 . In this particular case the IC method estimates either 1 or
4 latent factors: to be more than fair, we provided the method
proposed in [28] with the input r = 4 since the corresponding
model explains the training data much better than the one
corresponding to r = 1.

The second dataset yN2 is used in the validation step to test
the prediction capability of the three estimated models. The
results are summarized in Figure 5 which displays for each
output channel j = 1, . . . ,m the fit (percentage) term:

JFIT,j := 100

1−

√∑N1+N2

t=N1+1(yj(t)− ŷj(t|t− 1))2√∑N1+N2

t=N1+1(yj(t)− ȳj)2


where ȳj := 1

N2

∑N1+N2

t=N1+1 yj(t) and ŷj(t|t − 1) is the one-
step ahead prediction at time t computed with zero initial
conditions for the three estimated models. The figure shows
that the ARMA factor model estimated with the proposed
method matches quite well the measurement data yN2 , reach-
ing fit values that are essentially equal to the benchmark
PEM estimate. This allows us to conclude that the available
smart building dataset can be successfully modeled with the
proposed method. It is a remarkable result since the factor
model is parameterized by 257 coefficients, much less than
the 612 coefficients of the PEM estimate. Not only the factor
model is more parsimonious, but it is also able to organize
the complex, high dimensional dataset in a suitable structured
model, which is easier to understand and interpret. On the
contrary, the PEM model is much more complex and does not
give us any intuitive explanation of the underlying dynamics.
Finally we notice the AR factor model obtained by applying
the IC and the ML principle fails to provide good perfor-
mances for several output channels.

We have repeated the numerical simulations with the SML-
system dataset for different the values of the probability α,
specifically for α = 0.2 and α = 0.8. We obtain that
the estimated number of factors is still equal to 4 and the
prediction capabilities of the model remain essentially the
same: the algorithm appears to be robust with respect to the
choice of α.
We have also tested the proposed factor analysis method on the
Smart Building dataset by changing the values of the tolerance

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3274710

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



DRAFT 12

Fig. 4: Application of the ARMA factor models identification
procedure by using the measurements yN1 from the SMLsys-
tem as training data. The figure shows the integral over the
unit circle of the normalized singular values of ΦoL.

parameters εABS and εREL. By decreasing the value of the
tolerances the computation time grows, whereas the resulting
model remains essentially the same. On the other hand, for
larger values of the tolerance parameters the ADMM algorithm
may stop before reaching an accurate solution. As a matter
of fact, by setting εREL = εABS = 10−3, the factor analysis
procedure still recovers the exact number of latent factors, but
the resulting model shows poorer performances.
Remark. Another important consequence of dealing with sim-
ple models such as those considered in our setting, is the pos-
sibility of identifying systems from a limited dataset. Indeed
simple models have few parameters and hence highly reduce
the risk of overfitting. To concretely show this advantage in
our setting, we repeat the previous simulation by assuming that
we have only access to the first 800 measurements (≈ 8 days)
of the Smart Building dataset yN1 for the estimation step.
We then compute the one-step ahead prediction capabilities
of our ARMA factor model, the PEM model and the IC+ML
model on the second dataset yN2 . We find out that the proposed
ARMA factor model provides the best performances, reaching
an average fit term equal to 83.6% against the 45.9% and the
22.5% of the PEM and the IC+ML methods, respectively. In
particular the PEM method completely fails to predict the
channels number 11 and 12. We conclude that, differently from
the PEM model, our ARMA factor model does not suffer from
overfitting.

VIII. CONCLUSION

A procedure to estimate the number of factors and to learn
ARMA factor models has been proposed. This method is based
on the solution of an optimization problem whose solution has
been proven to exist via dual analysis. The simulations results
applying the procedure both to synthetic and real data provide
evidence of a good performance.

APPENDIX

Proof of Lemma 3.1

Since Φ = ∆X∆∗ with X � 0, there exists A ∈
Rm×m(n+1) such that X = A>A. The matrix A is such
that Φ � 0 admits the spectral factorization Φ = WW ∗

Fig. 5: Fit (in percentage) term JFIT,j for each output channel
for the model estimated via our factor analysis method, via
PEM and via the IC+ ML approach. The fit values are com-
puted by using the measurements yN2 from the SMLsystem
as validation data.

where W := ∆A>. Now, define Φn := Φ + 1
nI with

n ∈ N and let Wn := ∆An be a spectral factor of Φn with
An ∈ Rm×m(n+1). Clearly, limn→+∞ Φn = Φ; accordingly,
limn→+∞Wn = W and limn→+∞An = A. Since Φn � 0
∀ϑ we can exploit (10) to obtain∫

log |Φn| = log |A>n0
An0
|.

Then, applying the limit operator to both sides, we have

lim
n→+∞

∫
log |Φn| = log |A>0 A0| = log |X00|.

To conclude the proof, it remains to show that in the left
side of the previous equation it is possible to interchange the
limit and the integral operators. To this aim, we introduce
the sequence {fn}+∞n=1 where fn(t) := log |Φn(ϑ)| and the
function f(ϑ) := limn→+∞ fn(t) = log |Φ(ϑ)|. Observe
that, since the interval of integration [−π, π] is bounded and
f1(ϑ) < +∞ for any ϑ ∈ [−π, π], then

∫
f1(ϑ)dϑ < +∞. We

also define the sequence {gn}+∞n=1 as gn(ϑ) := fn(ϑ)− f1(ϑ)
and g(ϑ) := limn→+∞ gn(ϑ). {gn} is a pointwise non-
increasing sequence of measurable non-positive functions,

· · · ≤ g2(ϑ) ≤ g1(ϑ) ≤ 0, ∀ϑ ∈ [−π,+π]

converging to g(ϑ) from above. Hence, it satisfies all the
hypotheses of Beppo-Levi’s monotone convergence theorem
(applied with opposite signs), from which it immediately
follows that

lim
n→+∞

∫
gn(ϑ) =

∫
g(ϑ),

and consequently

lim
n→+∞

∫
fn(ϑ) =

∫
g(ϑ) +

∫
f1(ϑ). (44)

Now, since f1(ϑ) < +∞ for all ϑ,

g(ϑ) = f(ϑ)− f1(ϑ), (45)

and, by plugging (45) into (44), we finally obtain

lim
n→+∞

∫
fn(ϑ) =

∫
f(ϑ). �

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3274710

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



DRAFT 13

Proof of Proposition 3.3

Consider a sequence (λ(k), V (k), Z(k))k∈N in C2.
We first show that [Z(k)]0 cannot diverge. Indeed, assume

by contradiction that limk→∞ ‖ [Z(k)]0 ‖= +∞. Since it is a
symmetric and traceless matrix, this implies

lim
k→∞

min
α(k)∈σ

(
[Z(k)]0

)α(k) = −∞. (46)

In view of (46), since λ(k)P̂0 is bounded and V (k) positive
semidefinite ∀k, then (λ(k)P̂0 + [Z(k)]0 − [V (k)]00) has at
least a negative eigenvalue for k sufficiently large, so that the
sequence (λ(k), V (k), Z(k)) is not in C2. We conclude that

lim
k→∞

‖ [Z(k)]0 ‖<∞.

As a consequence, since βI � T (Z(k)) − V (k) � I (which
is one of the condition for the sequence to be in C2 ), and
[T (Z(k))]hh = [Z(k)]0 by construction, it holds that ∀k

‖ [V (k)]hh ‖<∞, h = 0, . . . , n.

Then, from V (k) � 0 it follows that also the off-diagonal
blocks of V (k) must be bounded ∀k, i.e.

‖ [V (k)]hl ‖<∞, l 6= h, l, h = 0, . . . , n. (47)

Finally, by the boundedness of (T (Z(k))− V (k)) and by (47)
we obtain that ∀k

‖ [Z(k)]h ‖<∞ h = 1, . . . , n, (48)

which concludes the proof. �

REFERENCES

[1] L. Ning, T. T. Georgiou, A. Tannenbaum, and S. P. Boyd, “Linear models
based on noisy data and the Frisch scheme,” SIAM Review, vol. 57, no. 2,
pp. 167–197, 2015.

[2] D. Bertsimas, M. S. Copenhaver, and R. Mazumder, “Certifiably optimal
low rank factor analysis,” Journal of Machine Learning Research,
vol. 18, no. 29, pp. 1–53, 2017.

[3] V. Ciccone, A. Ferrante, and M. Zorzi, “Learning latent variable dynamic
graphical models by confidence sets selection,” Kybernetika, vol. 55,
no. 4, pp. 74–754, 2019.

[4] M. Zorzi and R. Sepulchre, “Factor analysis of moving average pro-
cesses,” in European Control Conference (ECC), Linz, 2015, pp. 3579–
3584.

[5] V. Ciccone, A. Ferrante, and M. Zorzi, “Factor models with real data:
A robust estimation of the number of factors,” IEEE Transactions on
Automatic Control, vol. 64, no. 6, pp. 2412–2425, June 2019.

[6] ——, “Learning latent variable dynamic graphical models by confidence
sets selection,” IEEE Transactions on Automatic Control, vol. 65, no. 12,
pp. 5130–5143, 2020.

[7] J. Geweke, “The dynamic factor analysis of economic time series,” in
Latent variables in socio-economic models, D. Aigner and A. Gold-
berger, Eds. Amsterdam: North-Holland, 1977.

[8] M. Deistler and C. Zinner, “Modelling high-dimensional time series
by generalized linear dynamic factor models: An introductory survey,”
Communications in Information & Systems, vol. 7, no. 2, pp. 153–166,
2007.

[9] J. Stock and M. Watson, “Dynamic factor models,” 2010, internal report.
[Online]. Available: https://www.princeton.edu/∼mwatson/papers/dfm
oup 4.pdf
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pendence graphs for multivariate autoregressive models by convex
optimization: Efficient algorithms,” Signal Processing, vol. 133, pp. 122–
134, 2017.

[15] D. Alpago, M. Zorzi, and A. Ferrante, “Identification of sparse reciprocal
graphical models,” IEEE Control Systems Letters, vol. 2, no. 4, pp. 659–
664, Oct 2018.

[16] ——, “A scalable strategy for the identification of latent-variable graph-
ical models,” IEEE Transactions on Automatic Control, vol. 67, no. 7,
pp. 3349–3362, 2022.

[17] M. Zorzi and R. Sepulchre, “AR identification of latent-variable graph-
ical models,” IEEE Transactions on Automatic Control, vol. 61, no. 9,
pp. 2327–2340, Sept 2016.

[18] S. Maanan, B. Dumitrescu, and C. Giurcăneanu, “Maximum entropy
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