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We prove the existence of generalized characteristics for weak, not necessarily
entropic, solutions of Burgers’ equation
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whose entropy productions are signed measures. Such solutions arise in connection
with large deviation principles for the hydrodynamic limit of interacting particle
systems. The present work allows to remove a technical trace assumption in
a recent result by the two first authors about the L2 stability of entropic
shocks among such non-entropic solutions. The proof relies on the Lagrangian
representation of a solution’s hypograph, recently constructed by the third author.
In particular, we prove a decomposition formula for the entropy flux across a given
hypersurface, which is valid for general multidimensional scalar conservation laws.
©2022 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CCBY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider bounded weak (not necessarily entropy) solutions of Burgers’ equation

2
Byu+ aI% -0,

or more generally a scalar conservation law

Ou+0,f(u)=0, t>0, zeR, (1.1)

with strictly convex flux f € C?(R). For any entropy-flux pair (n,q) i.e. n” > 0 and ¢ = n'f’, the
corresponding entropy production of a bounded weak solution wu is the distribution
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fin = On(u) + dzq(u). (1.2)
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Entropy solutions are weak solutions whose entropy production is nonpositive, i.e. u,, < 0 for all convex
entropies 7, and given any bounded initial condition ug(z) there exists a unique entropy solution [11].

Here in contrast we consider weak solutions whose entropy productions do not necessarily have a sign:
we call finite-entropy solution any bounded weak solutions of (1.1) such that

fty is a Radon measure for all convex 7, (1.3)

where fi,, is the entropy production defined in (1.2). This larger class of solutions is relevant in the study of
large deviation principles for the hydrodynamic limit of asymmetric interacting particle systems [7,18], or
for scalar conservation laws with appropriately small random forcing [2,17]. Known tools fail at completing
the large deviation analysis because finite-entropy solutions do not in general have bounded variation
(BV). Similar issues arise in the study of the so-called Aviles-Giga energy (see [12, Introduction] for
more details). In the past years, several works have proved BV-like structural properties for finite-entropy
solutions [6,13,15,16] but the large deviation principle still seems out of reach.

A key progress would be to obtain good estimates on the distance to entropy solutions in terms of the
positive part of the entropy production. Inspired by [9], the two first authors recently proposed a relative
entropy approach to that question [4], but they had to assume the existence of generalized characteristics:
Lipschitz curves z(t) such that 2/(t) = f/(u*(t,2(t))) for a.e. t at which u* (¢, 2(t)) = u™(t,2(t)), where

*(t,2(t)) are the left and right traces of u along (t,x(t)). It is well-known that BV solutions admit
generalized characteristics starting at any value x(0) = z¢ [5, § 10.2], but the argument uses a stronger
notion of traces than the one available for finite-entropy solutions (see the discussion in the introduction
of [4]). Existence of generalized characteristics is also crucial in several recent works using relative entropy
methods for hyperbolic systems of conservation laws (see e.g. [3,8,10]).

Our main result Theorem 1.1 establishes the existence of generalized characteristics for finite-entropy
solutions. As a corollary, the results in [4] are valid for any finite-entropy solution of Burgers’ equation.

Theorem 1.1. Let u:[0,7] x R — R be a finite-entropy weak solution of (1.1) with strictly convez flux
f € C?(R). For any o € R, there exists a generalized characteristic of u starting at xq, that is, a Lipschitz
curve x: [to, T] = R such that x(0) = z¢ and

' (t) = f'(uE(t, 2(t))) for a.e. t €[0,T] s.t. ut(t,z(t)) = u™ (¢, 2(t)),

where u™(t,z(t)) denote the left and right traces of u along (t,z(t)).

Remark 1.2. Finite-entropy solutions have traces which are reached strongly in L':

T
ess lim lu(t,z(t) +y) — ui(t,x(t))| dt = 0.
y—0T Jo
This is proved in [19] for entropy solutions, but the proof uses only a kinetic formulation which is also valid
for finite-entropy solutions [6]. In particular, for a.e. ¢t € [0,T] such that u™(¢,z(t)) # u™ (¢t,x(t)) we have
the Rankine-Hugoniot condition

o) L (o a0) — flu (o a(1)
wH(t,2(0) — w7, 2(0)

The strategy of proof relies on the Lagrangian representation recently introduced by the third author [15,
16], building on the kinetic formulation [14]. A central ingredient is valid for general multidimensional scalar
conservation laws and is of independent interest: in Theorem 1.4 we obtain a formula for the entropy flux
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across a hypersurface in terms of the Lagrangian representation. In order to state this result, we consider
finite-entropy solutions of
Ou+ V- flu)=0, te(0,T), xR (1.4)

where the flux f is now any C? function f:R — R?, and the finite-entropy condition amounts to

oy = 0m(u) + V- q(u) is a Radon measure for all convex 7,

and associated entropy flux ¢ given by ¢’ = n/ f’. In [16] the third author proves the existence of a Lagrangian
representation of the hypograph of u, that is, a nonnegative finite measure wy on the set of curves

I'={y= (v 7) € BV([0,T]);R? x [0,1]: 7, is Lipschitz} ,
with the following three properties.

o For all t € [0,7), the pushforward (e;)fwy, by the evaluation map e;:y — ~(¢*) is uniform on the
hypograph of u(t),
(e¢)fwp, = L1 {(z,v) € RY % [0,1]:v < u(t,x)} . (1.5)

e The measure wy, is concentrated on curves v € I" satisfying the characteristic differential equation
v (t) = f(1(t)) forae. te(0,T). (1.6)

In particular -, is S-Lipschitz for wp-a.e. v, where S = sup|f’|([0,1]) is the maximal speed.
e The total variation of ~, is controlled by

/ TotVar v, dwp, < oo. (1.7)
r

Remark 1.3. One can also define a Lagrangian representation w, of the epigraph of u. This representation
satisfies the same properties as the representation of the hypograph, where (1.5) is replaced by

(eo)fwe = L7 {(2,0) € R x [0,1]:0 > u(t,z)} .

We will sometimes loosely refer to typical curves chosen according to the measure wy, (respectively w,), as
curves of the hypograph (respectively epigraph).

Our second main result is a decomposition formula for the entropy flux across a given hypersurface, along
the curves of the Lagrangian representation.

Theorem 1.4. Letu be a finite-entropy solution of (1.4) with Lagrangian representation wy, of its hypograph.
Let ¥ C (0,T) x R? be a Lipschitz hypersurface. Then wy,-almost every curve v € I' intersects X at most a
finite number of times, in the sense that

{t€(0,T):(t,v.(t)) € X} is finite.

For any open set U C (0,T) x R? such that U \ X has two connected components X%, denote by v the unit
normal vector to X pointing from X~ to XT and by u* the traces of u on the corresponding sides. Then, for
any entropy—entropy flux pair (n,q) with

the entropy flux across X from X~ satisfies

/ v (n(u), q(u™)) B dH? = / (Fo 0@ 8) dwn(y) for all & € CX(U),
b I

3
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where

(Frn@ @)=Y ' (wt) @) = > 0/ () 8t 72(1) (1.8)

terd tely
+ > 0 () = 0 () B(t, 72(1))
teBy

Here Lff and B are disjoint subsets of the intersection times of (t,7,(t)) with U N X, It corresponding to
crossings from X~ to YT, I to crossings from Xt to X~, and B to bounces on X' from X_.

Remark 1.5. Specifically, the sets I,Yi, B appearing in Theorem 1.4 are given by

IF={te(0,T):(t,7(t) eUNX, (t+£5,7,(t+£0)) € £F for 0 <5 < 1},
I ={t€(0,T): (t,7.(t) e UNX, (t+8,7.(t +£0)) € T for 0 < < 1},
BT ={t € (0,T):(t,7.(t)) eUNX, (t£6,7.(t+6) e L™ for0 <6 < 1}.

Remark 1.6. For the Lagrangian representation w, of the epigraph of u (see Remark 1.3), the identity of
Theorem 1.4 becomes,

[t aw) v oty antn) =~ [ (F7 e ) duno),
b r
provided n(1) = 0 and ¢(1) = 0.

Once the first assertion of Theorem 1.4 is established, that typical curves of the hypograph have
finite intersection with X, the flux formula (1.8) follows from rather natural manipulation, using the
Lagrangian property (1.5) that (e;)fiwn = 1,<y(t,z) drdv in order to link values of u with the Lagrangian
representation. The finite intersection property is a consequence of a transverse intersection property:
tangential intersections are negligible, essentially thanks to the fact that X' is of codimension 1 while (e;)fwy,
is absolutely continuous with respect to the Lebesgue measure.

The proof of Theorem 1.1 uses the flux formula of Theorem 1.4 and the property, established in [15],
that for Burgers’ Eq. (1.1) curves of the hypograph cannot cross from the left curves of the epigraph. This
enables us to construct z(t) as a curve that cannot be crossed from the left by any curve of the hypograph,
nor from the right by curves of the epigraph. This implies, via the flux formula (1.8) from which some terms
can then be dropped, inequalities on the entropy flux across x(t) that can only be satisfied by a generalized
characteristic.

The article is organized as follows. In Section 2 we prove Theorem 1.1 as a consequence of Theorem 1.4,
whose proof is given in Section 3.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1, that is, the existence of characteristics for finite-entropy solutions
of Burgers. Aside from the flux formula from Theorem 1.4, the main tool is the existence of a curve x(t)
that cannot be crossed from the left by (typical) curves of the hypograph, nor from the right by curves of
the epigraph. This is the only place where we need the strict convexity of the flux f.

Lemma 2.1. Letu:[0,T] x R — [0,1] be a finite-entropy solution of (1.1) with strictly convex fluz f. For
any xo € R, there exists a Lipschitz curve x:[0,T] — R such that x(0) = xo, and

wr({y € I': 3ty < ta, va(t1) < x(t1),v(t2) > x(t2)}) =0, (2.1)
4
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and
we({v el 3t < to, %(h) > x(tl),’ym(tQ) < .’E(tQ)}) = 0. (22)

Proof of Lemma 2.1. For any (¢,z) € [0,T) x R we define a curve 4, ,: [t,T] — R by
Yra(s) = inf{y € R:wp{y € I': 12(t) < z,7(s) >y} = 0}.

In other words, 4; ,(s) is the right-most value of y that can be attained at time s > t by curves of the
hypograph passing left from = at time ¢. Note that 4; , is S-Lipschitz because v, is S-Lipschitz for wy-a.e.
.

To obtain a curve that cannot be crossed from the left by any curves of the hypograph, we iterate this
construction on small time intervals. For § > 0 we let t; = k& and define an S-Lipschitz curve 2°:[0,7] — R
iteratively on (to,t1], (t1,t2], etc., by setting

2°(0) = o,
20 (t) = Ay, ab (1) (1) for t € (t,tisa] N[0, T), k6 < T,
For all ¢ € [0, T], the sequence z'/2" (t) is monotone, and we set

z(t) = lim 22" (t) = supz'/?" (t).

n—o0 n>0

From the definitions of % and At we have that, for any m > n > 0,
W ({7: ity € 27N, ty > ty, Yolts) < 27 (t1), Yaults) > 2/ (tz)}> =0,

and since z(t) = lim z'/2" () we deduce that

wh, ({7:3t1 € U (27"N), to > t1, Ya(t1) < x(t1), V2 (t2) > x(@)}) =0.

n>0

Property (2.1) follows because x is Lipschitz, and so is v, for any v € I'.

Property (2.2) is a consequence of the fact, proven in [15, Proposition 6], that curves of the epigraph
cannot cross from the right curves of the hypograph, because f is strictly convex. The proof in [15] deals
with the case f(u) = u?/2, but the proof can be repeated as it is, replacing the characteristic condition
Yo (t) = 7, (t) valid for f(u) = u?/2, with the more general 4, (t) = f'(7,(t)) and using that f’ is increasing.
Specifically, exchanging the roles of w, and wy, in [15, Proposition 6], we have that w, is concentrated on a
set I, such that, for any ¥ € I, and t; < t2 € [0,T],

wh ({7:72(t1) < Fa(t1), 12(t2) > 72(t2)}) = 0. (2.3)

Assuming that I'. has non-empty intersection with the set in (2.2) and using the definition of z(t), we would
obtain a curve 7 € I, and t; < t9 such that

Foltr) > /2" (1) and  Fu(t2) < V%" (ta),
for some large enough n, and so there is k > 0, tx, = k/2", and ¢ € (tg, tp+1] such that
Yo(tr) > &/ (1) and 7, (t) < /¥ (1) = Vg1 /2% (1) (1)
By definition of 4; , this implies that
wh ({7172 (k) < a(tr), Y2(t) > Y2(t)}) > 0,

thus contradicting (2.3) and concluding the proof of (2.2). O
5
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The rest of Theorem 1.1’s proof consists in showing that the curve z(¢) provided by Lemma 2.1 is a
generalized characteristic. Thanks to the property (2.1) ensuring that curves of the hypograph typically do
not cross z(t) from the left, in the flux formula (1.8) for the flux F~ along a curve v across x(t), there will be
no contribution of the set LY+ (times of crossings from left to right). Moreover, at typical times ¢t where the
traces uT (¢, 2(t)) agree, the contribution of the set B (times of bounces from the left) will be negligible.
As a consequence, for monotone entropies 7 the flux across x(t) will have a sign, providing a lower bound
on z'(t). The matching upper bound is then obtained similarly by using the property (2.2) that curves of
the hypograph typically do not cross x(t) from the right.

Before proceeding to the proof of Theorem 1.1, let us be more specific about why the contribution of B
will be negligible at points where the traces agree. This is due to the fact that entropy dissipation can be
decomposed along the Lagrangian representation, and jumps in 7, create an amount of entropy dissipation
that is incompatible with the absence of jump u™ (¢, z(t)) = u™ (¢, z(t)). We recall here the relevant result
from [16]. We denote by v the total entropy dissipation

v="\" Il (2.4)

[n"<1

where \/ stands for the lowest upper bound of a family of measures (as defined e.g. in [1, Definition 1.68]).
As a consequence of [16, Propositions 5.11 & 5.12] there is a Lagrangian representation wy, such that

/ |Dyo|({t € A:7(t) € B}) dwn(y) = v(A x B), (2.5)
r
for any borelian sets A C [0,T], B C R.

Remark 2.2. It is proved in [15] that for Burgers equation the measure v is actually equal to || for
no(u) = u?/2, but we will not need it here.

Proof of Theorem 1.1. We assume without loss of generality that u takes values in [0, 1] and show that the
curve z(t) from Lemma 2.1 is a generalized characteristic. As a consequence of [6], at almost every to € [0, T
such that the traces u™(to, z(tg)) are equal, we must have

v(B,(to, x0))

li = 2.
lim . 0, (2.6)
where zg = x(tp) and v is the total entropy dissipation (2.4). Hence we fix ¢y a Lebesgue point of

2’ such that (t,x¢) is a Lebesgue point of u® satisfying (2.6), and prove that z'(ty) = f'(ug), where
ug = u (to, z(to)) = u™ (to, z(to)) € (0,1).

Let 1 be a nondecreasmg C? entropy such that 7(0) = 0 and ¢ be the associated entropy flux with
q(0) = 0. Given a non-negative test function @ and applying the flux formula of Theorem 1.4 to the curve
x, we obtain

/ a(u= (1, 2(1))) — ' (n(u= (t, 2(1))) B(t, 2(t))dt
= [ S ety don) - [ 3 a6 o a) da)

teld ter;
+ /P tg(n/(%(t)) — 1 (o (t4))) dwn (7).
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The first term on the right-hand side is zero thanks to the property (2.1) that typical curves of the hypograph
do not cross z(t) from the left. The second term is nonpositive because 7 is non decreasing, so we deduce

/0 g (1, 2(1))) — o/ (B(u (£ 2(1))) B(t, 2(1)) dt (2.7)
< / gm’m(t—)) — (o (t+))) deon (7)-

Next we choose

o(t5) = xs(000(0). 0600 = 33 (52 )

where x is a smooth cut-off function with 0 < (¢ 1)4<1 and Jx =1, and ¢ is any smooth compactly

supported non-negative function such that ¢(xg

) <
) = 1. Using the Lebesgue point properties of ¢y we may
pass to the limit 6 — 0 on the left-hand side of (2.7) a

nd obtain
q(uo) — ' (to)n(uo)

. 1
< Il timsup 5 [ 1DI({E € (to = Gito + 8):(0) = o(0)) dny).

§—0 4 r

Since z is S-Lipschitz and z(ty) = z¢, using (2.5) to further estimate the right-hand side we infer
/ 1 . 1
q(uo) — ' (to)n(uo) < [n" |loc lim sup <2(Bes (to, vo)),
6—0

where C = /1 + S2. Recalling (2.6) we deduce

q(uo) — @' (to)n(ug) <0,

for any nondecreasing C? entropy 7 with n(0) = 0, and associated entropy flux ¢ with ¢(0) = 0.
Approximating by C? functions, this is valid for any nondecreasing 7 with 77(0) = 0. Choosing

() = (z = a)laza, q(x) = (f(2) = f(a))1e2a

for any a € [0, ug), we deduce

’ f(u0) - f(a)
€T (to) > va

and letting a — ug this implies 2'(to) > f/(uo).
Using curves of the epigraph (see Remark 1.6) and the property (2.2) that typical curves of the epigraph
cannot cross z(t) from the right, we similarly obtain that

q(uo) — 2’ (to)n(uo) = 0

for all nonincreasing entropy 1 with n(1) = 0, and associated entropy flux ¢ with ¢(1) = 0, and applying
this to
n=(a—)li<a,q(x) = (f(a) = f(2))lo<a,

for any a € (ugp, 1] we deduce the opposite inequality «'(tg) < f'(ug). O
7
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3. Proof of the flux formula

In this section we prove Theorem 1.4. As in its statement, we fix u a finite-entropy solution of (1.4) with
Lagrangian representation wy, of its hypograph, X C (0,7) x R a Lipschitz hypersurface, and an open set
U C (0,T) x R? such that U \ ¥ has two connected components X*. We denote by v the unit normal vector
to X pointing from Y~ to Xt and by u the traces of u on the corresponding sides.

We start by establishing a first decomposition formula for the flux, where the flux along a curve + is not
yet in the geometrically meaningful form of F~ in Theorem 1.4.

Lemma 3.1. For any entropy—entropy flux pair (n,q) with n(0) =0, ¢(0) = 0 we have

/E (" )oaw)) v B(t.2) ) = [ (Frne D) Vo€ CEOU), (3.1)

where

T
Frone @) == [ 1, e 0t 0)D6 03 (@)

[ Lz o O)@P + 10 (0) - VBt O

Proof. For small enough 6 > 0 we may find a C/é-Lipschitz function G5: U — [0,1], with C > 0
independent of 4, such that

Gs=1lon Xt Gs=0o0n {(t,z) € X :dist((t,x), L) > 6}
and VG5 - v ® HfsmU as d = 0.

Then we have
@) aw) v 9tt.3) a0,
= lim [ (n(u),q(u)) - VGs(t,z) D(t, x) dtdz

Since n(0) = 0 and ¢(0) = 0 we may write n(u) = [ 1,<n'(v) dv and g(u) = [ 1,<n'(v) f'(v) dv. Combining
this with property (1.5) of the Lagrangian representation, (e;)fiwn = 1y<u(t,2) dz dv, we find

/ (n(w), a(u)) - VGs(t,2) B(t, ) dtdz
T
= [T Ou0) - TOs(0. 020 1 (20 (0) #(t,70(0) dt )

0
T
- / %[G5(ta%(t))]U’(’Yv(t))é(t,’yw(t))dtdwh(y)
rJo

)

T
+ /0 G5 (t’ Yz (t))n/(%) (t))(at D+ f/(’}/v (t)) : VI gp)(tv Y (t)) dt] dwh(’y)'

T
/0 G (72 (£) B(t, 70 (8)) D 0 70)(dt)

For the second equality we used the fact that w, is concentrated on curves satisfying the characteristic
Eq. (1.6). Note that Gs(t,z) — l(t 2 ETF for all (t,x) € U as 6 — 0, and that the Lagrangian representation
satisfies [}.(1 4 TotVar) v, dwp(y) < oo (1.7). Hence by dominated convergence we deduce

tim, [ (0(w.9(0) - VGs(t.2) #(t.2) deds = [ (Fon@ D),

which concludes the proof of (3.1). O
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Next we check that ﬁv = I, provided v intersects X' at most a finite number of times.

Lemma 3.2. If~ € I intersects X at most a finite number of times, that is,
Nx(y) =card {t € (0,T): (t,7:(t)) € X} < o0,

then
(Fy,n® &) = (F,n® &)  VYneCYR),d e CXU),

where ﬁ'y and F. are defined in Lemma 3.1 and Theorem 1.4.

Proof. Setting
00 =1, ez 00 =1 (u(6) 2t 7(0), (3.2

we rewrite ﬁ, as
<F7777® ) / 0(t) D (dt). (3.3)

Since v has a finite number of intersections with X', we know that the {0, 1}-valued function 6 is BV. Its
jump set can be decomposed as
Jo=17UI7,

where I,Yi are as in Theorem 1.4 the sets of intersection times where 7 crosses X from YF to X*. They
correspond to positive and negative jumps of 6. Note that ¢(t) = 1 for all ¢ € Jy. Moreover, the set B
of intersection times where v bounces on X' from X~ corresponds to the non-jump points of 8 at which its
pointwise value is different from its left and right limits: for t € BJ we have 6(t*) = 6(t~) = 0 but () = 1

The function v is also BV, and its jump set is included in J,, the jump set of 7. Given v : (0,7) — R
with bounded variation, we consider the decomposition of the measure Dv as in [1]: Dv = Dv + Div, where
we denote by Dv the sum of the absolutely continuous and Cantor parts of Dv and by D7v its atomic part.
In particular

(Fy,n® &) / O(t) Dep(dt) — > O(t —(t7)).
teJy

Since D = 0, we have D () = DI (6y) + D(6y) = D7 (0v) + 0D1p. Moreover 1) vanishes at the boundary
of (0,T), therefore, integrating by parts, we get

(Fyon® @)=Y (0 )w(t) =0t )(t7) = D 00@(t) = p(t7))
teJgUJy teJy

Splitting the first sum for ¢t € Jy U J, = (Jo \ J,) U (Jo N Jy) U (Jy \ Jg) and the second sum for
ted,=(JyNJdg)U(Jy\ (JoUBT))U(JyN B;), and rearranging the terms we get

(Fyn@ @)= > 1(t) —0)) + Y (OEN)YET) — 0t )e(t))
teJg\Jy teJyNJy
- Y @EH=w ) - D @) —v()
teJyNJy teJyNB
=D W)= > )+ > (W) —v(Eh)),
teld tely teBy

and recalling the definitions of 8,1 (3.2) this corresponds exactly to (Fy,n® ). O

Now Theorem 1.4 follows directly from Lemmas 3.1 and 3.2, provided we show that wy-a.e. v intersects
X a finite number of times:
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Proposition 3.3. Let ¥ C (0,7) x R? be a Lipschitz hypersurface. Then
wh ({7 € I''Ng(v) = 00}) = 0.
Proposition 3.3 follows from the following;:

Lemma 3.4. Let h:[0,7] x R¥"1 — R be Lipschitz and
2 ={(t,2,ht,2):(t,2) € [0,T] x R* '},
then Nx(v) < oo for wp-a.e. v € I

Proof of Proposition 3.3. First, we know that X is a locally finite union of Lipschitz graphs of the
form z; = h(%;,t) for some i € {1,...,d}, where &; = (z1,...,%i—1,%it1,...,2q) or of the form t = g(x).
Moreover for the graphs over z we can assume that |Vg| < 1/S, where S is the maximal speed for curves
v.. Therefore, wp-a.e v can have at most one intersection with such a graph. For the rest of the graphs, we
apply Lemma 3.4 to each graph, and we conclude that Nx () is finite for w,— a.e. y € I'. O

We will now prove Lemma 3.4. The strategy is to rule out non-transverse intersections, but this makes
sense only at points of the hypersurface which admit a tangent space. Hence we need a preliminary result
allowing us to leave out the non-differentiable points:

Lemma 3.5. Let E C [0,T] x R? be such that HY(E) = 0. Then
wp({y € I':3te[0,T] such that (t,v,(t)) € E}) = 0.
Proof of Lemma 3.5. Since H%(E) = 0, for any € > 0 there is a sequence of balls B((t;, x;),r;) such that
E Cc U2, B((ti,xi),74), irfl <e.
i=1
For wy-a.e. 7y, since 7, is S-Lipschitz we have the implication
(3t € 0,71, (t2w(®) € B(ti,wi)rs)) = lts) € Blai, (1+S)r),

and using the property (1.5) that (e;)fwn = 1y<y(t,0) drdv we deduce

wh ({7: 3t € (0,7, (t,7:(t)) € B((ti,z:),7:)})
< (e, )fwn (B(x, (L+ S)ry) x [0,1]) < Cr,

for some constant C' > 0. Summing over 4 this implies

wr({y: 3 €[0,T], (t,v(t)) € E}) < C’irf < Ck¢,
i=1

and letting € — 0 conclude the proof of Lemma 3.5. O

With Lemma 3.5 at hand we now prove Lemma 3.4.

10
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Proof of Lemma 3.4. Let R,e > 0, and d > 0. Since X' is Lipschitz, it has a tangent plane at almost every
point. We let X be the set of points on ¥ that have a tangent plane. Then by Lemma 3.5, we see that

wp(I') =0, where I'={yerl:3te0,T)], st. (t,7.(t) € T\ 2}, (3.4)

so we only need to show that N (v) < oo for wp-a.e. v. We obtain this by proving that for wy-a.e. v € I\TI,

all intersections with X~ must be transverse, i.e.

wh, (X*) = wy, (X*) =0, where (3.5)
X~ = {VZHtO € (0,7, (to,72(to)) € E? (1579/5(756)) € T(to,'yz(to))z}’
Xt = {’}/:Eh‘o S [O,T), (t077x(t0)) S E, (1,ﬁ/;(t8_)) € T(to)%(to))E} .

If v € I is such that N5 () = oo, then at an accumulation point ¢ € [0, T] of its intersection times with X,
we must have either (¢,v(¢)) € X'\ X, or the intersection is tangential. So we have

{yET:Ns(y)=cc} CTUX UXT,

and then we deduce from (3.4) and (3.5) that N5 (v) < oo for wp-a.e. y € I
It remains to prove (3.5). We will prove only wy, (X ) = 0, the argument for X' being analogous. First,

we remark that the set X~ satisfies

x~cUNUXp. where (3.6)

R>0e>05>0
ng,e = {7 € I':|7,(0)| < R and Jto € [0, 7], (to,V2(to)) € X,
dist((t, 72 (1)), £ 0 ({t} X Brysr)) < lto — ) VL€ (o — 8,t0) }.
This follows directly from the definitions of 4/, and T'X. Let indeed v € X . There obviously is an R > 0
such that |v,(0)] < R, and then 7,(t) € Brygr for all t since |y,| < S. Suppose that v intersects X
tangentially at time tg, that is, v,(to) = 2o = (&0, h(to,20)), where &5 € R?~! denotes the first (d — 1)

components of zp, and
Ve (ty) = (o, VA(to, 20) - (1,90))  for some go € R4~
Let € > 0. By definition of v/, (¢, ) and Vh(to,zo), there exists 6 > 0 such that, for all s € (=4, 0],

R R R €
|’72(t0 + 5) — X — (Syo,Vh(to,iE()) : (S, Syo))| < 5‘8"
R R R R R €
|h(to + s, &0 + s90) — h(to, £o) — Vh(to, Zo) - (s, s%0)| < §|S|,

which implies
|(to + 8, 7a(to + 8)) — (to + 5,20 + s7o), h(o) + h(to + s, &0 + 590)| < €],

and therefore dist((¢,v.(t)), X N ({t} x Br/)) < e(to —t) for all t € (tg — 6, to], proving (3.6).
Next we claim that the sets ng defined in (3.6) satisfy

limsup wy (X§, ) < Ce, (3.7)
6—0
for some constant C' > 0 depending only on S, R, T" and X. Since the union |J; X %,6 is nondecreasing, this
implies via (3.6) that wy (X ~) = 0 and concludes the proof of Lemma 3.4.
11
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Recall the definition
Xpo = {7 € T:1(0)] < R and 3to € [0,7), (to, (to)) € 5,
dist((t, 72 (), £ N ({t} x Brysr)) < e(to — ) V¢ € (to — 6, to)}.
and let N := |T/§]. For any « € X%E, there exists k € {1,..., N} such that
dist((k/N,v.(k/N)), X N ({k/N} x Brysr)) < €0,

and therefore
N k k
X% C r: (= - 5 N} x B B }
hecUdrer: (5 (§)) 20 « Bues) + 50,20

Using the Lagrangian property (1.5), we know that ey /nfiwn < L£411 and thus

wi (X o) < écd“ ((2 N ({;} X B,MT) + B(o,;;&)) x [0, 1])
k=1

d (2 N ({f]} X BR+ST) +B(O,55)) .

Letting L denote the Lipschitz constant of h, we have

o0 ({£} ¢ Bussr) 0,00
C {z = (#,24) € Brysr:|za — h(k/N,2)| < (L +1)ed},

and we deduce that

L4 (2 N <{]Iff} X BR+ST) + B(0, 55)> < c(L+1)ed (R+ ST)4 1,
for some absolute constant ¢ > 0. Therefore we have

wh(X%.) < e(L+1)e(R+ST)" ' NS < e(L+1) (R+ ST)'Te,

which implies (3.7). O
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