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a b s t r a c t

We prove the existence of generalized characteristics for weak, not necessarily
entropic, solutions of Burgers’ equation

∂tu + ∂x
u2

2
= 0,

whose entropy productions are signed measures. Such solutions arise in connection
with large deviation principles for the hydrodynamic limit of interacting particle
systems. The present work allows to remove a technical trace assumption in
a recent result by the two first authors about the L2 stability of entropic
shocks among such non-entropic solutions. The proof relies on the Lagrangian
representation of a solution’s hypograph, recently constructed by the third author.
In particular, we prove a decomposition formula for the entropy flux across a given
hypersurface, which is valid for general multidimensional scalar conservation laws.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider bounded weak (not necessarily entropy) solutions of Burgers’ equation

∂tu+ ∂x
u2

2 = 0,

r more generally a scalar conservation law

∂tu+ ∂xf(u) = 0, t > 0, x ∈ R, (1.1)

ith strictly convex flux f ∈ C2(R). For any entropy-flux pair (η, q) i.e. η′′ ≥ 0 and q′ = η′f ′, the
corresponding entropy production of a bounded weak solution u is the distribution

µη = ∂tη(u) + ∂xq(u). (1.2)
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Entropy solutions are weak solutions whose entropy production is nonpositive, i.e. µη ≤ 0 for all convex
ntropies η, and given any bounded initial condition u0(x) there exists a unique entropy solution [11].

Here in contrast we consider weak solutions whose entropy productions do not necessarily have a sign:
e call finite-entropy solution any bounded weak solutions of (1.1) such that

µη is a Radon measure for all convex η, (1.3)

here µη is the entropy production defined in (1.2). This larger class of solutions is relevant in the study of
arge deviation principles for the hydrodynamic limit of asymmetric interacting particle systems [7,18], or
or scalar conservation laws with appropriately small random forcing [2,17]. Known tools fail at completing
he large deviation analysis because finite-entropy solutions do not in general have bounded variation
BV ). Similar issues arise in the study of the so-called Aviles-Giga energy (see [12, Introduction] for
ore details). In the past years, several works have proved BV -like structural properties for finite-entropy

olutions [6,13,15,16] but the large deviation principle still seems out of reach.
A key progress would be to obtain good estimates on the distance to entropy solutions in terms of the

ositive part of the entropy production. Inspired by [9], the two first authors recently proposed a relative
ntropy approach to that question [4], but they had to assume the existence of generalized characteristics:
ipschitz curves x(t) such that x′(t) = f ′(u±(t, x(t))) for a.e. t at which u+(t, x(t)) = u−(t, x(t)), where
±(t, x(t)) are the left and right traces of u along (t, x(t)). It is well-known that BV solutions admit
eneralized characteristics starting at any value x(0) = x0 [5, § 10.2], but the argument uses a stronger
otion of traces than the one available for finite-entropy solutions (see the discussion in the introduction
f [4]). Existence of generalized characteristics is also crucial in several recent works using relative entropy
ethods for hyperbolic systems of conservation laws (see e.g. [3,8,10]).
Our main result Theorem 1.1 establishes the existence of generalized characteristics for finite-entropy

olutions. As a corollary, the results in [4] are valid for any finite-entropy solution of Burgers’ equation.

heorem 1.1. Let u : [0, T ] × R → R be a finite-entropy weak solution of (1.1) with strictly convex flux
∈ C2(R). For any x0 ∈ R, there exists a generalized characteristic of u starting at x0, that is, a Lipschitz

urve x : [t0, T ] → R such that x(0) = x0 and

x′(t) = f ′(u±(t, x(t))) for a.e. t ∈ [0, T ] s.t. u+(t, x(t)) = u−(t, x(t)),

here u±(t, x(t)) denote the left and right traces of u along (t, x(t)).

emark 1.2. Finite-entropy solutions have traces which are reached strongly in L1:

ess lim
y→0+

∫ T

0

⏐⏐u(t, x(t) ± y) − u±(t, x(t))
⏐⏐ dt = 0.

his is proved in [19] for entropy solutions, but the proof uses only a kinetic formulation which is also valid
or finite-entropy solutions [6]. In particular, for a.e. t ∈ [0, T ] such that u+(t, x(t)) ̸= u−(t, x(t)) we have
he Rankine–Hugoniot condition

x′(t) = f(u+(t, x(t))) − f(u−(t, x(t)))
u+(t, x(t)) − u−(t, x(t)) .

The strategy of proof relies on the Lagrangian representation recently introduced by the third author [15,
16], building on the kinetic formulation [14]. A central ingredient is valid for general multidimensional scalar
conservation laws and is of independent interest: in Theorem 1.4 we obtain a formula for the entropy flux
2
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across a hypersurface in terms of the Lagrangian representation. In order to state this result, we consider
finite-entropy solutions of

∂tu+ ∇x · f(u) = 0, t ∈ (0, T ), x ∈ Rd, (1.4)

here the flux f is now any C2 function f :R → Rd, and the finite-entropy condition amounts to

µη := ∂tη(u) + ∇x · q(u) is a Radon measure for all convex η,

nd associated entropy flux q given by q′ = η′f ′. In [16] the third author proves the existence of a Lagrangian
epresentation of the hypograph of u, that is, a nonnegative finite measure ωh on the set of curves

Γ =
{
γ = (γx, γv) ∈ BV ([0, T ]);Rd × [0, 1] : γx is Lipschitz

}
,

ith the following three properties.

• For all t ∈ [0, T ), the pushforward (et)♯ωh by the evaluation map et : γ ↦→ γ(t+) is uniform on the
hypograph of u(t),

(et)♯ωh = Ld+1⌊
{

(x, v) ∈ Rd × [0, 1] : v < u(t, x)
}
. (1.5)

• The measure ωh is concentrated on curves γ ∈ Γ satisfying the characteristic differential equation

γ′
x(t) = f ′(γv(t)) for a.e. t ∈ [0, T ). (1.6)

In particular γx is S-Lipschitz for ωh-a.e. γ, where S = sup |f ′|([0, 1]) is the maximal speed.
• The total variation of γv is controlled by∫

Γ

TotVar γv dωh < ∞. (1.7)

emark 1.3. One can also define a Lagrangian representation ωe of the epigraph of u. This representation
satisfies the same properties as the representation of the hypograph, where (1.5) is replaced by

(et)♯ωe = Ld+1⌊
{

(x, v) ∈ Rd × [0, 1] : v > u(t, x)
}
.

We will sometimes loosely refer to typical curves chosen according to the measure ωh (respectively ωe), as
curves of the hypograph (respectively epigraph).

Our second main result is a decomposition formula for the entropy flux across a given hypersurface, along
the curves of the Lagrangian representation.

Theorem 1.4. Let u be a finite-entropy solution of (1.4) with Lagrangian representation ωh of its hypograph.
Let Σ ⊂ (0, T ) × Rd be a Lipschitz hypersurface. Then ωh-almost every curve γ ∈ Γ intersects Σ at most a
finite number of times, in the sense that

{t ∈ (0, T ) : (t, γx(t)) ∈ Σ} is finite.

For any open set U ⊂ (0, T ) × Rd such that U \ Σ has two connected components Σ±, denote by ν the unit
normal vector to Σ pointing from Σ− to Σ+ and by u± the traces of u on the corresponding sides. Then, for
ny entropy–entropy flux pair (η, q) with

η(0) = 0, q(0) = 0,

he entropy flux across Σ from Σ− satisfies∫
ν · (η(u−), q(u−))Φ dHd =

∫
⟨F−

γ , η ⊗ Φ⟩ dωh(γ) for all Φ ∈ C∞
c (U),
Σ Γ

3
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⟨F−
γ , η ⊗ Φ⟩ =

∑
t∈I+

γ

η′(γv(t−))Φ(t, γx(t)) −
∑

t∈I−
γ

η′(γv(t+))Φ(t, γx(t)) (1.8)

+
∑

t∈B−
γ

(η′(γv(t−)) − η′(γv(t+)))Φ(t, γx(t))

ere I±
γ and B−

γ are disjoint subsets of the intersection times of (t, γx(t)) with U ∩ Σ , I+
γ corresponding to

rossings from Σ− to Σ+, I−
γ to crossings from Σ+ to Σ−, and B−

γ to bounces on Σ from Σ−.

emark 1.5. Specifically, the sets I±
γ , B−

γ appearing in Theorem 1.4 are given by

I+
γ =

{
t ∈ (0, T ) : (t, γx(t)) ∈ U ∩ Σ , (t± δ, γx(t± δ)) ∈ Σ± for 0 < δ ≪ 1

}
,

I−
γ =

{
t ∈ (0, T ) : (t, γx(t)) ∈ U ∩ Σ , (t± δ, γx(t± δ)) ∈ Σ∓ for 0 < δ ≪ 1

}
,

B−
γ =

{
t ∈ (0, T ) : (t, γx(t)) ∈ U ∩ Σ , (t± δ, γx(t± δ)) ∈ Σ− for 0 < δ ≪ 1

}
.

Remark 1.6. For the Lagrangian representation ωe of the epigraph of u (see Remark 1.3), the identity of
Theorem 1.4 becomes,∫

Σ

(η(u−), q(u−)) · ν Φ(t, x) dHd(t, x) = −
∫
Γ

⟨F−
γ , η ⊗ Φ⟩ dωe(γ),

provided η(1) = 0 and q(1) = 0.

Once the first assertion of Theorem 1.4 is established, that typical curves of the hypograph have
finite intersection with Σ , the flux formula (1.8) follows from rather natural manipulation, using the
Lagrangian property (1.5) that (et)♯ωh = 1v<u(t,x) dxdv in order to link values of u with the Lagrangian
representation. The finite intersection property is a consequence of a transverse intersection property:
tangential intersections are negligible, essentially thanks to the fact that Σ is of codimension 1 while (et)♯ωh

is absolutely continuous with respect to the Lebesgue measure.
The proof of Theorem 1.1 uses the flux formula of Theorem 1.4 and the property, established in [15],

that for Burgers’ Eq. (1.1) curves of the hypograph cannot cross from the left curves of the epigraph. This
enables us to construct x(t) as a curve that cannot be crossed from the left by any curve of the hypograph,
nor from the right by curves of the epigraph. This implies, via the flux formula (1.8) from which some terms
can then be dropped, inequalities on the entropy flux across x(t) that can only be satisfied by a generalized
characteristic.

The article is organized as follows. In Section 2 we prove Theorem 1.1 as a consequence of Theorem 1.4,
whose proof is given in Section 3.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1, that is, the existence of characteristics for finite-entropy solutions
of Burgers. Aside from the flux formula from Theorem 1.4, the main tool is the existence of a curve x(t)
that cannot be crossed from the left by (typical) curves of the hypograph, nor from the right by curves of
the epigraph. This is the only place where we need the strict convexity of the flux f .

Lemma 2.1. Let u : [0, T ] × R → [0, 1] be a finite-entropy solution of (1.1) with strictly convex flux f . For
any x0 ∈ R, there exists a Lipschitz curve x : [0, T ] → R such that x(0) = x0, and

ω ({γ ∈ Γ : ∃t < t , γ (t ) < x(t ), γ (t ) > x(t )}) = 0, (2.1)
h 1 2 x 1 1 x 2 2

4
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P

and
ωe({γ ∈ Γ : ∃t1 < t2, γx(t1) > x(t1), γx(t2) < x(t2)}) = 0. (2.2)

roof of Lemma 2.1. For any (t, x) ∈ [0, T ) × R we define a curve γ̂t,x : [t, T ] → R by

γ̂t,x(s) = inf{y ∈ R : ωh{γ ∈ Γ : γx(t) < x, γx(s) > y} = 0}.

In other words, γ̂t,x(s) is the right-most value of y that can be attained at time s ≥ t by curves of the
hypograph passing left from x at time t. Note that γ̂t,x is S-Lipschitz because γx is S-Lipschitz for ωh-a.e.
γ.

To obtain a curve that cannot be crossed from the left by any curves of the hypograph, we iterate this
construction on small time intervals. For δ > 0 we let tk = kδ and define an S-Lipschitz curve xδ : [0, T ] → R
iteratively on (t0, t1], (t1, t2], etc., by setting

xδ(0) = x0,

xδ(t) = γ̂tk,xδ(tk)(t) for t ∈ (tk, tk+1] ∩ [0, T ], kδ ≤ T.

For all t ∈ [0, T ], the sequence x1/2n(t) is monotone, and we set

x(t) = lim
n→∞

x1/2n
(t) = sup

n>0
x1/2n

(t).

From the definitions of xδ and γ̂t,x we have that, for any m ≥ n > 0,

ωh

({
γ : ∃t1 ∈ 2−nN, t2 > t1, γx(t1) < x1/2m

(t1), γx(t2) > x1/2m
(t2)

})
= 0,

and since x(t) = lim x1/2m(t) we deduce that

ωh

({
γ : ∃t1 ∈

⋃
n>0

(2−nN), t2 > t1, γx(t1) < x(t1), γx(t2) > x(t2)
})

= 0.

Property (2.1) follows because x is Lipschitz, and so is γx for any γ ∈ Γ .
Property (2.2) is a consequence of the fact, proven in [15, Proposition 6], that curves of the epigraph

cannot cross from the right curves of the hypograph, because f is strictly convex. The proof in [15] deals
with the case f(u) = u2/2, but the proof can be repeated as it is, replacing the characteristic condition
γ̇x(t) = γv(t) valid for f(u) = u2/2, with the more general γ̇x(t) = f ′(γv(t)) and using that f ′ is increasing.
Specifically, exchanging the roles of ωe and ωh in [15, Proposition 6], we have that ωe is concentrated on a
set Γe such that, for any γ̄ ∈ Γe and t1 < t2 ∈ [0, T ],

ωh ({γ : γx(t1) < γ̄x(t1), γx(t2) > γ̄x(t2)}) = 0. (2.3)

Assuming that Γe has non-empty intersection with the set in (2.2) and using the definition of x(t), we would
obtain a curve γ̄ ∈ Γe and t1 < t2 such that

γ̄x(t1) > x1/2n
(t1) and γ̄x(t2) < x1/2n

(t2),

for some large enough n, and so there is k ≥ 0, tk = k/2n, and t ∈ (tk, tk+1] such that

γ̄x(tk) ≥ x1/2n
(tk) and γ̄x(t) < x1/2n

(t) = γ̂tk,x1/2n (tk)(t).

By definition of γ̂t,x this implies that

ωh ({γ : γx(tk) < γ̄x(tk), γx(t) > γ̄x(t)}) > 0,
thus contradicting (2.3) and concluding the proof of (2.2). □

5
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The rest of Theorem 1.1’s proof consists in showing that the curve x(t) provided by Lemma 2.1 is a
eneralized characteristic. Thanks to the property (2.1) ensuring that curves of the hypograph typically do
ot cross x(t) from the left, in the flux formula (1.8) for the flux F−

γ along a curve γ across x(t), there will be
o contribution of the set I+

γ (times of crossings from left to right). Moreover, at typical times t where the
races u±(t, x(t)) agree, the contribution of the set B−

γ (times of bounces from the left) will be negligible.
s a consequence, for monotone entropies η the flux across x(t) will have a sign, providing a lower bound
n x′(t). The matching upper bound is then obtained similarly by using the property (2.2) that curves of
he hypograph typically do not cross x(t) from the right.

Before proceeding to the proof of Theorem 1.1, let us be more specific about why the contribution of B−
γ

ill be negligible at points where the traces agree. This is due to the fact that entropy dissipation can be
ecomposed along the Lagrangian representation, and jumps in γv create an amount of entropy dissipation
hat is incompatible with the absence of jump u+(t, x(t)) = u−(t, x(t)). We recall here the relevant result
rom [16]. We denote by ν the total entropy dissipation

ν =
⋁

|η′′|≤1

|µη|, (2.4)

here
⋁

stands for the lowest upper bound of a family of measures (as defined e.g. in [1, Definition 1.68]).
s a consequence of [16, Propositions 5.11 & 5.12] there is a Lagrangian representation ωh such that∫

Γ

|Dγv|({t ∈ A : γx(t) ∈ B}) dωh(γ) = ν(A×B), (2.5)

or any borelian sets A ⊂ [0, T ], B ⊂ R.

emark 2.2. It is proved in [15] that for Burgers equation the measure ν is actually equal to |µη0 | for
0(u) = u2/2, but we will not need it here.

roof of Theorem 1.1. We assume without loss of generality that u takes values in [0, 1] and show that the
urve x(t) from Lemma 2.1 is a generalized characteristic. As a consequence of [6], at almost every t0 ∈ [0, T ]
uch that the traces u±(t0, x(t0)) are equal, we must have

lim
r→0

ν(Br(t0, x0))
r

= 0, (2.6)

where x0 = x(t0) and ν is the total entropy dissipation (2.4). Hence we fix t0 a Lebesgue point of
x′ such that (t0, x0) is a Lebesgue point of u± satisfying (2.6), and prove that x′(t0) = f ′(u0), where
u0 = u+(t0, x(t0)) = u−(t0, x(t0)) ∈ (0, 1).

Let η be a nondecreasing C2 entropy such that η(0) = 0 and q be the associated entropy flux with
(0) = 0. Given a non-negative test function Φ and applying the flux formula of Theorem 1.4 to the curve
, we obtain ∫ T

0
q(u−(t, x(t))) − x′(t)η(u−(t, x(t)))Φ(t, x(t))dt

=
∫
Γ

∑
t∈I+

γ

η′(γv(t−))Φ(t, x(t)) dωh(γ) −
∫
Γ

∑
t∈I−

γ

η′(γv(t+))Φ(t, x(t)) dωh(γ)

+
∫
Γ

∑
t∈B−

γ

(η′(γv(t−)) − η′(γv(t+))) dωh(γ).
6
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The first term on the right-hand side is zero thanks to the property (2.1) that typical curves of the hypograph
do not cross x(t) from the left. The second term is nonpositive because η is non decreasing, so we deduce∫ T

0
q(u−(t, x(t))) − x′(t)η(u−(t, x(t)))Φ(t, x(t))dt (2.7)

≤
∫
Γ

∑
t∈B−

γ

(η′(γv(t−)) − η′(γv(t+))) dωh(γ).

ext we choose

Φ(t, x) = χδ(t)φ(x), χδ(t) = 1
δ
χ

(
t− t0
δ

)
,

here χ is a smooth cut-off function with 0 ≤ χ(t) ≤ 1|t|≤1 and
∫
χ = 1, and φ is any smooth compactly

upported non-negative function such that φ(x0) = 1. Using the Lebesgue point properties of t0 we may
ass to the limit δ → 0 on the left-hand side of (2.7) and obtain

q(u0) − x′(t0)η(u0)

≤ ∥η′′∥∞ lim sup
δ→0

1
δ

∫
Γ

|Dγv|({t ∈ (t0 − δ, t0 + δ) : γx(t) = x(t)}) dωh(γ).

ince x is S-Lipschitz and x(t0) = x0, using (2.5) to further estimate the right-hand side we infer

q(u0) − x′(t0)η(u0) ≤ ∥η′′∥∞ lim sup
δ→0

1
δ
ν(BCδ(t0, x0)),

here C =
√

1 + S2. Recalling (2.6) we deduce

q(u0) − x′(t0)η(u0) ≤ 0,

or any nondecreasing C2 entropy η with η(0) = 0, and associated entropy flux q with q(0) = 0.
pproximating by C2 functions, this is valid for any nondecreasing η with η(0) = 0. Choosing

η(x) = (x− a)1x≥a, q(x) = (f(x) − f(a))1x≥a

or any a ∈ [0, u0), we deduce

x′(t0) ≥ f(u0) − f(a)
u0 − a

,

and letting a → u0 this implies x′(t0) ≥ f ′(u0).
Using curves of the epigraph (see Remark 1.6) and the property (2.2) that typical curves of the epigraph

cannot cross x(t) from the right, we similarly obtain that

q(u0) − x′(t0)η(u0) ≥ 0

or all nonincreasing entropy η with η(1) = 0, and associated entropy flux q with q(1) = 0, and applying
his to

η = (a− x)1x≤a, q(x) = (f(a) − f(x))1x≤a,

for any a ∈ (u , 1] we deduce the opposite inequality x′(t ) ≤ f ′(u ). □
0 0 0

7
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3. Proof of the flux formula

In this section we prove Theorem 1.4. As in its statement, we fix u a finite-entropy solution of (1.4) with
agrangian representation ωh of its hypograph, Σ ⊂ (0, T ) × Rd a Lipschitz hypersurface, and an open set
⊂ (0, T )×Rd such that U \Σ has two connected components Σ±. We denote by ν the unit normal vector

to Σ pointing from Σ− to Σ+ and by u± the traces of u on the corresponding sides.
We start by establishing a first decomposition formula for the flux, where the flux along a curve γ is not

et in the geometrically meaningful form of F−
γ in Theorem 1.4.

emma 3.1. For any entropy–entropy flux pair (η, q) with η(0) = 0, q(0) = 0 we have∫
Σ

(η(u−), q(u−)) · ν Φ(t, x) dHd(t, x) =
∫
Γ

⟨F̃γ , η ⊗ Φ⟩dωh(γ) ∀Φ ∈ C∞
c (U), (3.1)

where

⟨F̃γ , η ⊗ Φ⟩ = −
∫ T

0
1(t,γx(t))∈Σ+Φ(t, γx(t))D(η′ ◦ γv)(dt)

−
∫ T

0
1(t,γx(t))∈Σ+η

′(γv(t))(∂tΦ + f ′(γv(t)) · ∇xΦ)(t, γx(t))dt.

roof. For small enough δ > 0 we may find a C/δ-Lipschitz function Gδ : U → [0, 1], with C > 0
ndependent of δ, such that

Gδ = 1 on Σ+, Gδ = 0 on
{

(t, x) ∈ Σ− : dist((t, x),Σ+) ≥ δ
}

and ∇Gδ → ν ⊗ Hd
⌊Σ∩U as δ → 0.

hen we have ∫
Σ

(η(u−), q(u−)) · ν Φ(t, x) dHd(t, x)

= lim
δ→0

∫
(η(u), q(u)) · ∇Gδ(t, x)Φ(t, x) dtdx

ince η(0) = 0 and q(0) = 0 we may write η(u) =
∫

1v<uη
′(v) dv and q(u) =

∫
1v<uη

′(v)f ′(v) dv. Combining
his with property (1.5) of the Lagrangian representation, (et)♯ωh = 1v<u(t,x) dx dv, we find∫

(η(u), q(u)) · ∇Gδ(t, x)Φ(t, x) dtdx

=
∫ T

0
(1, f ′(γv(t))) · ∇Gδ(t, γx(t)) η′(γv(t))Φ(t, γx(t)) dt dωh(γ)

=
∫
Γ

∫ T

0

d

dt
[Gδ(t, γx(t))] η′(γv(t))Φ(t, γx(t)) dt dωh(γ)

= −
∫
Γ

[∫ T

0
Gδ(t, γx(t))Φ(t, γx(t))D(η′ ◦ γv)(dt)

+
∫ T

0
Gδ(t, γx(t))η′(γv(t))(∂tΦ + f ′(γv(t)) · ∇xΦ)(t, γx(t)) dt

]
dωh(γ).

For the second equality we used the fact that ωh is concentrated on curves satisfying the characteristic
Eq. (1.6). Note that Gδ(t, x) → 1(t,x)∈Σ+ for all (t, x) ∈ U as δ → 0, and that the Lagrangian representation
atisfies

∫
Γ

(1 + TotVar) γv dωh(γ) < ∞ (1.7). Hence by dominated convergence we deduce

lim
δ→0

∫
(η(u), q(u)) · ∇Gδ(t, x)Φ(t, x) dtdx =

∫
Γ

⟨F̃γ , η ⊗ Φ⟩dωh(γ),

hich concludes the proof of (3.1). □
8
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Next we check that F̃γ = F−
γ provided γ intersects Σ at most a finite number of times.

emma 3.2. If γ ∈ Γ intersects Σ at most a finite number of times, that is,

NΣ (γ) = card {t ∈ (0, T ) : (t, γx(t)) ∈ Σ} < ∞,

hen
⟨F̃γ , η ⊗ Φ⟩ = ⟨Fγ , η ⊗ Φ⟩ ∀η ∈ C1(R),Φ ∈ C∞

c (U),

here F̃γ and F−
γ are defined in Lemma 3.1 and Theorem 1.4.

roof. Setting
θ(t) = 1(t,γx(t))∈Σ+ , ψ(t) = η′(γv(t))Φ(t, γx(t)), (3.2)

e rewrite F̃γ as

⟨F̃γ , η ⊗ Φ⟩ = −
∫ T

0
θ(t)Dψ(dt). (3.3)

ince γ has a finite number of intersections with Σ , we know that the {0, 1}-valued function θ is BV . Its
ump set can be decomposed as

Jθ = I+
γ ∪ I−

γ ,

here I±
γ are as in Theorem 1.4 the sets of intersection times where γ crosses Σ from Σ∓ to Σ±. They

orrespond to positive and negative jumps of θ. Note that θ(t) = 1 for all t ∈ Jθ. Moreover, the set B−
γ

f intersection times where γ bounces on Σ from Σ− corresponds to the non-jump points of θ at which its
ointwise value is different from its left and right limits: for t ∈ B−

γ we have θ(t+) = θ(t−) = 0 but θ(t) = 1.
The function ψ is also BV , and its jump set is included in Jγ , the jump set of γ. Given v : (0, T ) → R

ith bounded variation, we consider the decomposition of the measure Dv as in [1]: Dv = D̃v+Djv, where
e denote by D̃v the sum of the absolutely continuous and Cantor parts of Dv and by Djv its atomic part.

n particular

⟨F̃γ , η ⊗ Φ⟩ = −
∫ T

0
θ(t)D̃ψ(dt) −

∑
t∈Jγ

θ(t)(ψ(t+) − ψ(t−)).

ince D̃θ = 0, we have D(θψ) = Dj(θψ) + D̃(θψ) = Dj(θψ) + θD̃ψ. Moreover ψ vanishes at the boundary
f (0, T ), therefore, integrating by parts, we get

⟨F̃γ , η ⊗ Φ⟩ =
∑

t∈Jθ∪Jγ

(θ(t+)ψ(t+) − θ(t−)ψ(t−)) −
∑
t∈Jγ

θ(t)(ψ(t+) − ψ(t−))

plitting the first sum for t ∈ Jθ ∪ Jγ = (Jθ \ Jγ) ∪ (Jθ ∩ Jγ) ∪ (Jγ \ Jθ) and the second sum for
∈ Jγ = (Jγ ∩ Jθ) ∪ (Jγ \ (Jθ ∪B−

γ )) ∪ (Jγ ∩B−
γ ), and rearranging the terms we get

⟨F̃γ , η ⊗ Φ⟩ =
∑

t∈Jθ\Jγ

ψ(t)(θ(t+) − θ(t−)) +
∑

t∈Jγ∩Jθ

(θ(t+)ψ(t+) − θ(t−)ψ(t−))

−
∑

t∈Jγ∩Jθ

(ψ(t+) − ψ(t−)) −
∑

t∈Jγ∩B−
γ

(ψ(t+) − ψ(t−))

=
∑

t∈I+
γ

ψ(t−) −
∑

t∈I−
γ

ψ(t+) +
∑

t∈B−
γ

(ψ(t−) − ψ(t+)),

nd recalling the definitions of θ, ψ (3.2) this corresponds exactly to ⟨Fγ , η ⊗ Φ⟩. □

Now Theorem 1.4 follows directly from Lemmas 3.1 and 3.2, provided we show that ωh-a.e. γ intersects

a finite number of times:

9
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Proposition 3.3. Let Σ ⊂ (0, T ) × Rd be a Lipschitz hypersurface. Then

ωh ({γ ∈ Γ :NΣ (γ) = ∞}) = 0.

Proposition 3.3 follows from the following:

emma 3.4. Let h : [0, T ] × Rd−1 → R be Lipschitz and

Σ = {(t, x̂, h(t, x̂)) : (t, x̂) ∈ [0, T ] × Rd−1},

then NΣ (γ) < ∞ for ωh-a.e. γ ∈ Γ .

Proof of Proposition 3.3. First, we know that Σ is a locally finite union of Lipschitz graphs of the
form xi = h(x̂i, t) for some i ∈ {1, . . . , d}, where x̂i = (x1, . . . , xi−1, xi+1, . . . , xd) or of the form t = g(x).

oreover for the graphs over x we can assume that |∇g| < 1/S, where S is the maximal speed for curves
x. Therefore, ωh-a.e γ can have at most one intersection with such a graph. For the rest of the graphs, we
pply Lemma 3.4 to each graph, and we conclude that NΣ (γ) is finite for ωh− a.e. γ ∈ Γ . □

We will now prove Lemma 3.4. The strategy is to rule out non-transverse intersections, but this makes
ense only at points of the hypersurface which admit a tangent space. Hence we need a preliminary result
llowing us to leave out the non-differentiable points:

emma 3.5. Let E ⊂ [0, T ] × Rd be such that Hd(E) = 0. Then

ωh({γ ∈ Γ : ∃t ∈ [0, T ] such that (t, γx(t)) ∈ E}) = 0.

roof of Lemma 3.5. Since Hd(E) = 0, for any ε > 0 there is a sequence of balls B((ti, xi), ri) such that

E ⊂ ∪∞
i=1B((ti, xi), ri),

∞∑
i=1

rd
i < ε.

or ωh-a.e. γ, since γx is S-Lipschitz we have the implication(
∃t ∈ [0, T ], (t, γx(t)) ∈ B((ti, xi), ri)

)
=⇒ γx(ti) ∈ B(xi, (1 + S)ri),

nd using the property (1.5) that (et)♯ωh = 1v<u(t,x) dxdv we deduce

ωh ({γ : ∃t ∈ [0, T ], (t, γx(t)) ∈ B((ti, xi), ri)})
≤ (eti

)♯ωh (B(xi, (1 + S)ri) × [0, 1]) ≤ Crd
i ,

or some constant C > 0. Summing over i this implies

ωh({γ : ∃t ∈ [0, T ], (t, γx(t)) ∈ E}) ≤ C

∞∑
i=1

rd
i < Cε,

nd letting ε → 0 conclude the proof of Lemma 3.5. □

With Lemma 3.5 at hand we now prove Lemma 3.4.

10
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Proof of Lemma 3.4. Let R, ε > 0, and δ > 0. Since Σ is Lipschitz, it has a tangent plane at almost every
oint. We let Σ̄ be the set of points on Σ that have a tangent plane. Then by Lemma 3.5, we see that

ωh(Γ̃ ) = 0, where Γ̃ := {γ ∈ Γ : ∃t ∈ [0, T ], s.t. (t, γx(t)) ∈ Σ \ Σ̄}, (3.4)

o we only need to show that NΣ̄ (γ) < ∞ for ωh-a.e. γ. We obtain this by proving that for ωh-a.e. γ ∈ Γ \ Γ̃ ,
ll intersections with Σ̄ must be transverse, i.e.

ωh

(
X−) = ωh

(
X+) = 0, where (3.5)

X− =
{
γ : ∃t0 ∈ (0, T ], (t0, γx(t0)) ∈ Σ̄ , (1, γ′

x(t−0 )) ∈ T(t0,γx(t0))Σ
}
,

X+ =
{
γ : ∃t0 ∈ [0, T ), (t0, γx(t0)) ∈ Σ̄ , (1, γ′

x(t+0 )) ∈ T(t0,γx(t0))Σ
}
.

f γ ∈ Γ is such that NΣ̄ (γ) = ∞, then at an accumulation point t ∈ [0, T ] of its intersection times with Σ̄ ,
we must have either (t, γ(t)) ∈ Σ \ Σ̄ , or the intersection is tangential. So we have

{γ ∈ Γ : NΣ̄ (γ) = ∞} ⊂ Γ̃ ∪X− ∪X+,

and then we deduce from (3.4) and (3.5) that NΣ̄ (γ) < ∞ for ωh-a.e. γ ∈ Γ .
It remains to prove (3.5). We will prove only ωh (X−) = 0, the argument for X+ being analogous. First,

we remark that the set X− satisfies

X− ⊂
⋃

R>0

⋂
ε>0

⋃
δ>0

Xδ
R,ε, where (3.6)

Xδ
R,ε =

{
γ ∈ Γ : |γx(0)| ≤ R and ∃t0 ∈ [0, T ], (t0, γx(t0)) ∈ Σ̄ ,

dist((t, γx(t)),Σ ∩ ({t} ×BR+ST )) ≤ ε(t0 − t) ∀t ∈ (t0 − δ, t0)
}
.

This follows directly from the definitions of γ′
x and TΣ . Let indeed γ ∈ X−. There obviously is an R > 0

uch that |γx(0)| < R, and then γx(t) ∈ BR+ST for all t since |γ′
x| ≤ S. Suppose that γ intersects Σ̄

angentially at time t0, that is, γx(t0) = x0 = (x̂0, h(t0, x̂0)), where x̂0 ∈ Rd−1 denotes the first (d − 1)
omponents of x0, and

γ′
x(t−0 ) = (ŷ0,∇h(t0, x̂0) · (1, ŷ0)) for some ŷ0 ∈ Rd−1.

et ε > 0. By definition of γ′
x(t−0 ) and ∇h(t0, x0), there exists δ > 0 such that, for all s ∈ (−δ, 0],

|γx(t0 + s) − x0 − (sŷ0,∇h(t0, x̂0) · (s, sŷ0))| ≤ ε

2 |s|,

|h(t0 + s, x̂0 + sŷ0) − h(t0, x̂0) − ∇h(t0, x̂0) · (s, sŷ0)| ≤ ε

2 |s|,

hich implies

|(t0 + s, γx(t0 + s)) − (t0 + s, x̂0 + sŷ0), h(x̂0) + h(t0 + s, x̂0 + sŷ0)| ≤ ε|s|,

and therefore dist((t, γx(t)),Σ ∩ ({t} ×BR′)) ≤ ε(t0 − t) for all t ∈ (t0 − δ, t0], proving (3.6).
Next we claim that the sets Xδ

R,ε defined in (3.6) satisfy

lim sup
δ→0

ωh(Xδ
R,ε) ≤ Cε, (3.7)

for some constant C > 0 depending only on S, R, T and Σ . Since the union
⋃

δ X
δ
R,ε is nondecreasing, this

implies via (3.6) that ω (X−) = 0 and concludes the proof of Lemma 3.4.
h

11
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Recall the definition

Xδ
R,ε =

{
γ ∈ Γ : |γx(0)| ≤ R and ∃t0 ∈ [0, T ], (t0, γx(t0)) ∈ Σ̄ ,

dist((t, γx(t)),Σ ∩ ({t} ×BR+ST )) ≤ ε(t0 − t) ∀t ∈ (t0 − δ, t0)
}
.

and let N := ⌊T/δ⌋. For any γ ∈ Xδ
R,ε, there exists k ∈ {1, . . . , N} such that

dist((k/N, γx(k/N)),Σ ∩ ({k/N} ×BR+ST )) < εδ,

and therefore

Xδ
R,ε ⊆

N⋃
k=1

{
γ ∈ Γ :

(
k

N
, γx

(
k

N

))
∈ Σ ∩ ({k/N} ×BR+ST ) +B(0, εδ)

}
.

sing the Lagrangian property (1.5), we know that ek/N ♯ωh ≤ Ld+1, and thus

ωh(Xδ
R,ε) ≤

N∑
k=1

Ld+1
((

Σ ∩
({

k

N

}
×BR+ST

)
+B(0, εδ)

)
× [0, 1]

)

=
N∑

k=1
Ld

(
Σ ∩

({
k

N

}
×BR+ST

)
+B(0, εδ)

)
.

etting L denote the Lipschitz constant of h, we have

Σ ∩
({

k

N

}
×BR+ST

)
+B(0, εδ)

⊂ {x = (x̂, xd) ∈ BR+ST : |xd − h(k/N, x̂)| ≤ (L+ 1)εδ} ,

nd we deduce that

Ld

(
Σ ∩

({
k

N

}
×BR+ST

)
+B(0, εδ)

)
≤ c(L+ 1)εδ (R+ ST )d−1,

or some absolute constant c > 0. Therefore we have

ωh(Xδ
R,ε) ≤ c(L+ 1)ε (R+ ST )d−1 Nδ ≤ c(L+ 1) (R+ ST )d−1T ε,

hich implies (3.7). □
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[11] S.N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81 (123) (1970)
228–255.

[12] X. Lamy, F. Otto, On the regularity of weak solutions to Burgers’ equation with finite entropy production, Calc. Var.
Partial Differential Equations 57 (4) (2018) 19, Paper (94).

[13] M. Lecumberry, Geometric Structure of Micromagnetic Walls and Shock Waves in Scalar Conservation Laws (Ph.D.
thesis), Université de Nantes, 2003.
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