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Abstract

The halo orbits of the spatial circular restricted three-body problem are largely
considered in space-flight dynamics to design low-energy transfers between celestial
bodies. A very efficient analytical method for the computation of halo orbits, and the
related transfers, has been obtained from the high-order resonant Birkhoff normal
forms defined at the Lagrangian points L1-L2. In this paper, by implementing
a non-linear Floquet-Birkhoff resonant normal form, we provide the definition of
orbits, as well as their manifold tubes, which exist in a large order approximation
of the elliptic three-body problem and generalize the halo orbits of the circular
problem. Since the libration amplitude of such halo orbits is large (comparable
to the distance of L1-L2 to the secondary body), and the Birkhoff normal forms
are obtained through series expansions at the Lagrangian points, we provide also
an error analysis of the method with respect to the orbits of the genuine elliptic
restricted three-body problem.

1 Introduction

In recent years, the scientific exploration of the vicinity of the Lagrangian points, par-
ticularly in the Sun-Earth and Earth-Moon systems, has been particularly intense. In
particular, the computation of trajectories which are in the manifolds asymptotic to or-
bits librating close the Lagrangian points L1-L2 has gained a high priority for space-flight
dynamics: typically, the transfer design has evolved from the familiar Earth-to-orbit con-
cept to an Earth-to-manifold strategy. The halo orbits of the spatial circular restricted
three-body problem have been largely considered to design low-energy Earth-to-manifold
transfers [7, 8]. For example, a basic halo orbit was incorporated into the trajectory for
the International Sun Earth Explorer-3 (ISEE-3) satellite, launched toward a Sun-Earth
L1 halo orbit in 1978 (the satellite was the first to successfully reach a libration point
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orbit). Since ISEE-3, several missions to Sun-Earth libration point orbits have been ac-
complished. A current example is the James Webb Space Telescope (JWST), designed
for observations of deep space in the infrared spectrum from an L2 orbit.

The halo orbits are defined in the Circular Restricted Three-Body Problem (CRTBP)
from the computation of large order resonant Birkhoff normal forms at the Lagrangian
point L1 or L2 [16, 25, 24, 4, 2, 29]. Precisely, the Birkhoff normal forms are used to
compute analytically all the orbits in the center manifold of the selected Lagrangian point
L1; therefore, from the Poincaré section of the dynamics restricted to the center manifold
one defines the halo orbits. In Figure 1 we represent an example of the output of such
a computation: on the left panel we represent the phase portrait of the Poincaré section
for a sample value of the reduced mass µ and of the Jacobi constant C, and on the right
panel we represent the corresponding halo orbits in space. We emphasize that using the
Birkhoff-normal forms, one obtains not only the orbits on the center manifold, but also the
orbits which are asymptotic to them and the orbits transiting in its neighbourhood. Thus,
they provide a complete analytic framework to study the Earth-to-manifold transfers in
the approximation of the CRTBP. The CRTBP is indeed the main model to introduce
the dynamics close to L1, L2 of a selected secondary body (for example the Earth). Due
to their importance for space-flight dynamics, many efforts to use halo orbits in models
more complicated than the CRTBP have been done in the literature [11, 13, 21, 22]. For
example, in the real Solar System the eccentricity of the orbits of the planet identified as
the secondary body, as well as the perturbations from the other planets, limit the study
to look for orbits with features similar to the orbits identified in the approximation of the
CRTBP (see for example [20, 3, 17, 33, 32, 23, 34]).

When we consider the short time-spans typical of space-flight dynamics or of close en-
counters of a comet with a planet, the major modification to the CRTBP is represented by
the Elliptic Restricted Three-Body Problem (ERTBP), where the orbit of the secondary
body P2 performs an elliptic motion around the primary body P1. The ERTBP is con-
veniently represented as a non-autonomous Hamiltonian system having the Lagrangian
solutions L1, L2 but without a global first integral, such as the Jacobi constant, which
is used to define the Poincaré sections and label the halo orbits in the CRTBP. In the
paper [28] we have introduced Floquet-Birkhoff normal forms for the ERTBP which al-
lowed us to generalize and compute the families of planar and vertical Lyapunov orbits
generating at L1, L2, as well as the low-energy transits from one side to the other of the
secondary body. In this paper we compute halo orbits for the ERTBP from resonant
Birkhoff-Floquet normal forms. Despite the lack of a global first integral for the ERTBP,
the resonant Birkhoff-Floquet normal form allows us to define a non-linear approximation
of large order of the dynamics, with an approximate local first integral, which we call
’local energy’, labelling the Poincaré sections close to L1, L2. From the Poincaré sections
we identify then the halo orbits, which are finally mapped to the Cartesian space using a
time-dependent canonical transformation. This method of computation of halo orbits (as
well as the method used for the CRTBP) is based on series expansions of the Hamiltonian,
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Figure 1: Examples of northern (red) and southern (blue) halo orbits (top-right panel) computed
in the CR3BP, for µ = 0.0123 (identifying the Earth-Moon system) and the Jacobi constant
C = 3.1637151. The top-left panel reports the phase portrait of the Poincaré section (the
variables Q1, P1 on the section will be defined in Section 4) for the same values of µ,C. In
the bottom panels we represent the projection of these halo orbits on the Cartesian planes (the
arrows indicate the sense of motion in each case).
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truncated at a large order. The dependence of the error on this truncation order is influ-
enced both by the singularity of the Hamiltonian corresponding to a collision with P2 (see
[27]) and by the well known problem of accumulation of small divisors (see for example [5]
and references therein). Since the family of halo orbits forms with a minimum libration
amplitude, it is necessary to perform a test on the error introduced with the truncation
of series.

The paper is organized as follows: in Section 2 we review some basic properties of halo
orbits in the CR3BP; in Section 3 we introduce the resonant Floquet-Birkhoff normal
forms of the ERTBP, and from these normal forms we define the halo orbits as well as
their asymptotic manifolds; in Section 4 we illustrate an application of the method to the
Earth-Moon ERTBP, with the error analysis.

2 Halo orbits: from the CR3BP to the ER3BP

The CRTBP is defined by the dynamics of a particle P of infinitesimal mass attracted
by two massive bodies P1, P2 revolving around their center of mass in circular orbits.
In a suitable rotating reference frame this model admits five equilibrium points, the so
called Lagrangian points L1, . . . , L5, and a first integral, the Jacobi constant, related to
the energy of the particle. In this paper we focus on the collinear Lagrangian points
L1, L2, which behave, linearly, as the product of two centers by a saddle. Due to the
center-center part, there are 4-dimensional center manifolds for L1 and L2, containing
also periodic orbits and invariant KAM tori [1, 18, 26]. It is convenient to consider the
3-dimensional levels of the center manifolds that we obtain when we fix the value of
the Jacobi constant; the stable and unstable manifolds of these sets are the so called
manifold tubes. The orbits on the manifold tubes approach exponentially orbits on the
center manifold in the future (the stable manifold tubes) or in the past (the unstable
manifold tubes). From the several types of families of orbits in the center manifolds two
families are of particular interest for Astrodynamics: the planar Lyapunov orbits and the
three-dimensional halo orbits.

The family of halo orbits results from a bifurcation in the corresponding L1 or L2

Lyapunov family [14, 15], and extends from the vicinity of the Lagrangian point toward
the nearest massive body P2. All halo orbits include an out-of-plane component, i.e. an
amplitude component in the (vertical) z-direction. In particular, for the L1 halo family,
the vertical amplitude increases as the orbit moves toward P2. Because the halo family
results from a pitchfork bifurcation in the planar family, the bifurcation introduces two
branches that extend both above and below the xy-plane. A halo orbit with a maximum
out-of-plane excursion in the positive z-direction is termed a northern halo orbit, while the
orbits with a maximum vertical amplitude in the negative z-direction is termed southern.
A sample northern orbit (red) with the corresponding southern halo (blue) is plotted in
Figure 1. Note that from a xy-projection, the direction of motion for both northern and
southern orbits about L1 is clockwise, but when viewed from a yz-projection, the motion of
the northern orbit is clockwise while the motion of the southern orbit is counter-clockwise.

The halo orbits of the CRTBP have been analytically computed from computer as-
sisted implementations of Hamiltonian perturbation theory as well as from numerical
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methods (see for example [16, 25, 4, 29] for the analytic methods and [8, 15, 12, 31, 30]
for the numerical ones). In this paper we consider the analytic computations based on
Hamiltonian perturbation theory, which allow not only to compute the halo orbits, but
also the orbits in their neighbourhoods, including their stable and unstable manifolds and
transit orbits. In the CR3BP the result is achieved by computing a resonant Birkhoff
normal form of large order N : by neglecting the large order remainder, one remains with
and integrable Hamiltonian system which is used to compute the Poincaré section of the
Hamiltonian flow on the center manifold, and consequently the halo orbits. We extend
these methods to the ERTBP by providing a definition of halo orbits in the elliptic prob-
lem, and a method of computation based on the resonant version of the Floquet-Birkhoff
normal forms which were introduced in [28]. The resonant Floquet-Birkhoff normal forms
will be used to define also the manifolds tubes and the transit motions associated to halo
orbits in the ERTBP.

The ERTBP is defined by the motion of a body P of infinitesimally small mass moving
in the gravity field generated by two massive bodies P1 and P2, which move around their
common center of mass according to the elliptic solutions of the two-body problem. It is
convenient to represent the motion of P using a rotating-pulsating reference frame (x, y, z)
whose origin is in the center of mass of P1 and P2, the z axis is orthogonal to their motion,
and the x, y axes are rotating-pulsating so that P1, P2 remain at fixed locations on the
horizontal axis x. With standard units of measure, the Hamiltonian representing the
motions of P in this pulsating-rotating frame is

h(x, y, z, px, py, pz,f ; e) =
p2x
2

+
p2y
2

+
p2z
2
− py x+ px y

+
1

1 + e cos f

(
1

2
e (x2 + y2 + z2) cos f

− µ√
(x− (1− µ))2 + y2 + z2

− 1− µ√
(x+ µ)2 + y2 + z2

)
,

(1)

where the independent variable, denoted by f , corresponds to the true anomaly of the
secondary body, the parameter µ ∈ (0, 1

2
] denotes the reduced mass, and e denotes the

eccentricity of the elliptic motion. The main advantage of using rotating–pulsating vari-
ables is that the Hamilton equations of (1) have five equilibrium points L1, . . . , L5 located
in the same positions (xLi , yLi , 0) of the corresponding circular problem; the collinear
points L1, L2 are denoted by (x, y, z, px, py, pz) = (xLi , 0, 0, 0, xLi , 0). For each selected
equilibrium Li we first introduce the variables (q,p) = (q1, q2, q3, p1, p2, p3):

x = q1 + xLi , px = p1 ,

y = q2 , py = p2 + xLi ,

z = q3 , pz = p3 ,

(2)

such that the equilibrium point Li is in the origin of the phase-space, and consider the
Taylor expansion of h in (q,p):

H(q,p, f ; e) = H2 +H3 + . . . (3)
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where each term Hj(q,p, f ; e) is a polynomial of degree j in the variables (q,p). Notice
that the zero-order term H0(f ; e) has been removed from the Hamiltonian; the term of
order 1 vanishes because we are expanding the Hamiltonian at an equilibrium point; the
term of second order is

H2(q,p, f ; e) =
p21
2

+
p22
2

+
p23
2
−p2 q1 +p1 q2 +

β (−2q21 + q22 + q23)

1 + e cos f
+

(e cos f) (q21 + q22 + q23)

2 (1 + e cos f)
(4)

with

β =
1

2

(
µ

|1− xLi − µ|3
+

1− µ
|xLi + µ|3

)
. (5)

Then, we use a combination of the Floquet theory and Birkhoff normalizations to conju-
gate the Hamiltonian (3) to a normal form which is autonomous up to a suitable large
order N :

K(Q,P, f ; e) = K2(Q,P; e) +K4(Q,P; e) + . . .+KN(Q,P; e) +RN+1(Q,P, f ; e) (6)

where each term Kj(Q,P; e) is an autonomous polynomial of degree j in the variables
(Q,P) and is 1-1 resonant in the sense explained below. The remainder RN+1(Q,P, f ; e)
of the Taylor expansion of K contains monomials from order N + 1 and is possibly
dependent on f .

To define the resonance properties of the polynomials Kj(Q,P; e) it is convenient to
introduce the Birkhoff variables q̂, p̂ canonically conjugated to the real variables (Q,P)
by the linear transformation:

Q3 = q̂3 , P3 = p̂3 , Qj =
q̂j + i p̂j√

2
, Pj =

i q̂j + p̂j√
2

, j = 1, 2. (7)

In this paper we consider the resonant Floquet-Birkhoff normal forms such that all the
terms Kj(Q,P; e), when represented using the variables q̂, p̂, are the sum of monomials

am,lq̂
m1
1 q̂m2

2 q̂m3
3 p̂l11 p̂

l2
2 p̂

l3
3

with m3 = l3 and (l1 −m1) + (l2 −m2) = 0. This means that, if we introduce the action-
angle variables I1, I2, θ1, θ2 for the elliptic motions and the hyperbolic variables I3, θ3 such
that:

q̂1 = −i
√
I1 ei θ1 , p̂1 =

√
I1 e−i θ1 ,

q̂2 = −i
√
I2 ei θ2 , p̂2 =

√
I2 e−i θ2 ,

q̂3 =
√
I3 eθ3 , p̂3 =

√
I3 e−θ3 ,

(8)

the terms Kj are independent of θ3, and depend on θ1, θ2 only through the resonant
combination θ1 − θ2.

Remark. In our paper [28] we constructed non-resonant Floquet-Birkhoff normal forms,
so that all the terms Kj(Q,P; e) were integrable in the sense that, when represented using
the variables q̂, p̂, they depended on the variables only through the combinations iq̂1p̂1,
iq̂2p̂2 (the actions of the elliptic motions expressed in Birkhoff complex variables ) and
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q̂3p̂3 (the action of the hyperbolic motion). This type of normal form, which is specifically
designed for the efficient analytic computation of the planar and vertical Lyapunov orbits,
as well as their manifold tubes, can be constructed if the three frequencies describing the
motion are strictly non resonant up to order N . As pointed in [29], while for the Earth-
Moon system (µ = 0.0123) indeed no exact low order resonance takes place, the linear
frequencies lay very close to a 1-1 resonance opening the door, for the CRTBP, to the
appearance of the halo orbits at suitable large values of the Hamiltonian. Therefore,
while very efficient in the context of planar Lyapunov orbits and their manifold tubes,
the construction presented in [28] obviously excludes the computation of Halo orbits.

Let us now define the halo orbits in the ERTBP using the resonant Floquet-Birkhoff
normal forms (6). Since the dependence on f is relegated within the remainder of the nor-
mal form, the definition of the halo orbits as well as of their manifolds tubes in the normal
form variables (Q,P) is obtained as in the CRTBP from the approximated Hamiltonian:

K(Q,P; e) = K2(Q,P; e) +K4(Q,P; e) + . . .+KN(Q,P; e), (9)

which we call local energy. Since the Hamiltonian K is integrable by quadratures, we can
compute and classify all the solutions of its Hamilton equations. In particular:

- for Q3, P3 = 0 we have the center manifoldM of the equilibrium (Q,P) = (0, . . . , 0)
for the Hamiltonian flow of K; we denote by Mκ the intersection of the center
manifold M with the level set K(Q,P; e) = κ of the local energy;

- for Q3 = 0, P3 6= 0 and for Q3 6= 0, P3 = 0 we have the local stable and unstable
manifolds of M;

- for suitably large values of κ we have the two periodic orbits of Mκ which are
identified as halo orbits;

- for initial conditions close to the manifold tubes of the halo orbits we find orbits
which approach the halo orbits from one side and then transit to the other side with
a fly-by with the halo orbit (which we call the halo transit orbits), as well orbits
which approach the halo orbits from one side and then bounce back.

Finally, the orbits found in the normal-form variables are mapped to the original Cartesian
variables with the f -dependent canonical transformation

(q,p) = X (Q,P; f)

conjugating the Hamiltonian (3) to the normal form (6). We remark that in the space of
the Cartesian variables the halo orbits are transformed by X to quasi-periodic orbits; we
call halo torus the set of all these periodic orbits.
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3 Construction of the resonant Floquet-Birkhoff nor-

mal form

The resonant Floquet-Birkhoff normal form, as well as the canonical transformation from
the Cartesian variables to the normal form variables, are represented as Taylor-Floquet
expansions of terms proportional to

eiνf q̂m1
1 q̂m2

2 q̂m3
3 p̂l11 p̂

l2
2 p̂

l3
3

up to truncation orders N1,N2 for the polynomial variables and for the true anomaly:

m1 +m2 +m3 + l1 + l2 + l3 ≤ N1 , |ν| ≤ N2 .

The coefficients of all these terms are represented in floating point numbers, obtained
from an algebraic manipulator program performing the transformation to the normal
form variables as the composition of:

(i) A canonical Floquet transformation:

(q,p) = C(f ; e)(q̃, p̃)

conjugating the Hamiltonian (3) to an Hamiltonian:

H̃(q̃, p̃, f ; e) = H̃2(q̃, p̃; e) + H̃3(q̃, p̃, f ; e) + . . . (10)

where each term H̃j(q̃, p̃, f ; e) is polynomial of degree j in the variables q̃, p̃ and
periodic in f with period 2π, while H̃2(q̃, p̃; e) is autonomous.

As it is well known, the Floquet transformation is not unique, since its definition
depends on the arbitrary choice of a logarithm of the monodromy matrix associated
to the equations of motion linearized at the Lagrange equilibrium. As pointed out
in [28], the subsequent Birkhoff normalizations of Hamiltonian (10) perform much
better if among all the possible Floquet transformations of (3) there is one which
is close to the identity. Also in this paper we define the Floquet transformation for
the ERTBP by selecting a close to the identity one, as shown in [28].

(ii) A linear canonical transformation:

(q̃, p̃) = D(q̂, p̂) (11)

giving H̃2(q̃, p̃; e) the normal form:

K̂2(q̂, p̂) = σ1
q̂21 + p̂21

2
+ σ2

q̂22 + p̂22
2

+ λq̂3p̂3. (12)

We denote by K̂j(q̂, p̂, f ; e) the image of all the other polynomials K̂j(q̂, p̂, f ; e) =
H̃j(D(q̂, p̂), f ; e).
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(iii) A sequence of N − 2 Birkhoff transformations giving the Hamiltonian the final
resonant normal form (6).

The Floquet transformation (i) and the linear transformation D are discussed in [28],
and require no modifications to adapt to the resonant case. Therefore we provide in
this paper all the details of the resonant Birkhoff transformations (iii). The two linear
transformations (i) and (ii) conjugate the Hamiltonian (3) to

Ĥ(q̂, p̂, F, f) = F + Ĥ2(q̂, p̂) +
∑
j≥3

Ĥj(q̂, p̂, f ; e) , (13)

where the variable F , conjugated to f , has been introduced in order to conveniently deal
with an autonomous Hamiltonian and the terms Ĥj for j ≥ 3 are polynomials of degree

j in the variables q̂, p̂ and periodic in f with period 2π. The terms Ĥj with j ≥ 3 are
represented as sum of monomials of the form

a
(j)
m,l,νe

iνf q̂m1
1 q̂m2

2 q̂m3
3 p̂l11 p̂

l2
2 p̂

l3
3 ,

3∑
i=1

(mi + li) = j . (14)

The objective of the resonant Birkhoff transformations is to tackle in a single algorithmic
procedure two different effects: to remove the explicit dependence of Ĥ on f up to a large
finite order N , and to define a normal form Hamiltonian which can be exploited to study
the resonance generating the halo orbits. This is achieved with a close to the identity
canonical transformation CN conjugating the Hamiltonian (13), that now we denote as
the initial Hamiltonian Ĥ(2), to a normal form Hamiltonian

Ĥ(N) = F +
N∑
j=2

K
(N)
j (q̂, p̂) +

∑
j≥N+1

Ĥ
(N)
j (q̂, p̂, f) (15)

where the functions K
(N)
j do not depend on F, f and are polynomials of degree j depending

on q̂, p̂ only through monomials of the form:

a(j,N)
m q̂m1

1 q̂m2
2 q̂m3

3 p̂l11 p̂
l2
2 p̂

l3
3 , (16)

with:

(l1 −m1) + (l2 −m2) = 0 and l3 = m3,
3∑
i=1

mi + li = j . (17)

The remainder terms Ĥ
(N)
j are polynomials of degree j with coefficients depending peri-

odically on f with period 2π, represented as sum of monomials of the form

a
(j,N)
m,l,νe

iνf q̂m1
1 q̂m2

2 q̂m3
3 p̂l11 p̂

l2
2 p̂

l3
3 ,

3∑
i=1

(mi + li) = j . (18)

The canonical transformation CN is constructed from the composition of a sequence of
N − 2 elementary canonical Birkhoff transformations. Precisely, we define the sequence
of canonical transformations:

CJ = Ĉχ
J
◦ CJ−1 , J = 3, . . . , N (19)

9



conjugating Ĥ := Ĥ(2) to the intermediate Floquet-Birkhoff normal form Hamiltonians:

Ĥ(J) := Ĥ(J−1) ◦ CJ = F +
J∑
j=2

K
(J)
j (q̂, p̂) +

∑
j≥J+1

Ĥ
(J)
j (q̂, p̂, f) (20)

with the property that K
(J)
j do not depend on F, f and are polynomials of degree j

depending on q̂, p̂ only through monomials of the form (16) with powers satisfying (17),

while Ĥ
(J)
j are polynomials of degree j with coefficients depending periodically on f with

period 2π.
The transformations are defined as follows: C2 is the identity while Ĉχ

J
is the Hamilto-

nian flow at time f = 1 of generating functions χ
J

defined from the coefficients of Ĥ(J−1).
Below we describe the definition of the generating functions χ

J
and the steps required

for the algorithmic computation of each canonical transformation CN and Hamiltonian
Ĥ(N) using the Lie series method (for an introduction to the method, see [6, 9]) and
implemented with a computer algebra system in the examples presented in this paper.
For each J ≥ 3 we assume that the Hamiltonian Ĥ(J−1) and the canonical transformation
CN−1 are known, and we proceed as follows.

First, from Ĥ(J−1) we compute the generating function χ
J
:

χ
J

=
∑

(m,l,ν)∈LJ

−a(J−1)ν,m1,m2,m3,l1,l2,l3

iσ1(l1 −m1) + i σ2(l2 −m2) + λ (l3 −m3) + i ν
eiνf q̂m1

1 q̂m2
2 q̂m3

3 p̂l11 p̂
l2
2 p̂

l3
3 (21)

where

L
J

=

{
(m, l, ν) ∈ N3 × N3 × Z :

3∑
j=1

(lj +mj) = J, and |l1 −m1 + l2 −m2|+ |l3 −m3|+ |ν| ≥ 1

}
.

Next, we compute explicitly the canonical transformation

Ĉχ
J
(q̂(J), p̂(J), F (J), f (J)) = (q̂(J−1), p̂(J−1), F (J−1), f (J−1)) ,

as the Lie series

ζ = eLχJ ζ ′ := ζ ′ + {ζ ′, χ
J
}+

1

2
{{ζ ′, χ

J
}, χ

J
}+ . . . , (22)

where Lχ
J

:= {·, χ
J
}, and ζ, ζ ′ denote any couple of variables q̂(J−1), q̂(J), p̂(J−1), p̂(J) or

F (J−1), F (J). The transformed Hamiltonian is computed as a Lie series as well:

Ĥ(J) = Ĉχ
J
Ĥ(J−1) = eLχJ Ĥ(J−1). (23)

The iteration ends for J = N , and finally, by reintroducing real canonical variables,

q̂
(N)
1 =

Q1 − iP1√
2

, p̂
(N)
1 =

P1 − iQ1√
2

,

q̂
(N)
2 =

Q2 − iP2√
2

, p̂
(N)
2 =

P2 − iQ2√
2

,

q̂
(N)
3 = Q3 , p̂

(N)
3 = P3 ,

(24)

and by suitably identifying the terms K̂j with Kj, and disregarding the dummy action
F (N), we recover the final Floquet-Birkhoff normal form as in Eq. (6).

10



4 Resonant dynamics in the center manifold of the

elliptic Earth-Moon system

In this Section we illustrate the use of the resonant Floquet-Birkhoff normal forms to
represent the dynamics related to the halo orbits in a model problem, which we identify as
the Earth-Moon ERTBP. The relevance of the Earth-Moon halo orbits for the space-flight
dynamics has been considered in several papers [10, 25, 19, 35]. The basic model to study
the dynamics of a spacecraft in the Earth-Moon system is the Circular Restricted Three-
Body Problem (CRTBP) with the Earth and the Moon as primaries. This model, although
simplistic compared to the model of the Solar System which is considered to compute
modern ephemerides, had nevertheless provided deep insights regarding the dynamics of
small bodies in the Solar System.

For the value of µ = 0.0123 and e = 0.0549006 considered in the present paper
(representing the Earth-Moon ERTBP), after 4 normalization steps (N = 6), the normal
form K(Q,P; e) introduced in (6) takes the form:

K(Q,P; e) = K2(Q,P; e) +K4(Q,P; e) +K6(Q,P; e) +R7(Q,P, f ; e)

where

K2(Q,P; e) =2.33662
Q2

1 + P 2
1

2
+ 2.27111

Q2
2 + P 2

2

2
+ 2.93590Q3 P3 ,

K4(Q,P; e) =− 1.76908P 4
1 + 1.74292P 2

1 P
2
2 − 1.58163P 4

2 − 3.53816P 2
1 Q

2
1

− 3.33654P 2
2 Q

2
1 − 1.76908Q4

1 + 10.15894P1 P2Q1Q2 − 3.33654P 2
1 Q

2
2

− 3.16326P 2
2 Q

2
2 + 1.74292Q2

1Q
2
2 − 1.58163Q4

2 − 16.44122P 2
1 P3Q3

− 15.03657P 2
2 P3Q3 − 16.44122Q2

1 P3Q3 − 15.03657Q2
2 P3Q3 − 9.57863P 2

3 Q
2
3

K6(Q,P; e) =− 3.13968P 6
1 + 6.82217P 4

1 P
2
2 + 5.97758P 2

1 P
4
2 − 1.99158P 6

2

− 9.41904P 4
1 Q

2
1 − 1.38474P 2

1 P
2
2 Q

2
1 − 7.06430P 4

2 Q
2
1 − 9.41905P 2

1 Q
4
1

− 8.20691P 2
2 Q

4
1 − 3.13968Q6

1 + 30.05816P 3
1 P2Q1Q2 + 26.08374P1 P

3
2 Q1Q2

+ 30.05816P1 P2Q
3
1Q2 − 8.20690P 4

1 Q
2
2 − 1.08671P 2

1 P
2
2 Q

2
2 − 5.97474P 4

2 Q
2
2

− 1.38473P 2
1 Q

2
1Q

2
2 − 1.08671P 2

2 Q
2
1Q

2
2 + 6.82217Q4

1Q
2
2 + 26.08374P1 P2Q1Q

3
2

− 7.06430P 2
1 Q

4
2 − 5.97474P 2

2 Q
4
2 + 5.97758Q2

1Q
4
2 − 1.99158Q6

2

− 11.98956P 4
1 P3Q3 − 96.12101P 2

1 P
2
2 P3Q3 − 3.55055P 4

2 P3Q3

− 23.97913P 2
1 P3Q

2
1Q3 − 15.47041P 2

2 P3Q
2
1Q3 − 11.98956P3Q

4
1Q3

− 161.30118P1 P2 P3Q1Q2Q3 − 15.47041P 2
1 P3Q

2
2Q3 − 7.10110P 2

2 P3Q
2
2Q3

− 96.12101P3Q
2
1Q

2
2Q3 − 3.55055P3Q

4
2Q3 − 105.42195P 2

1 P
2
3 Q

2
3

− 70.52337P 2
2 P

2
3 Q

2
3 − 105.42195P 3

3 Q
2
1Q

2
3 − 70.52337P 2

3 Q
2
2Q

2
3

− 54.46117P 3
3 Q

3
3

We exploit the tailored constructed resonant normal form in order to compute the halo
orbits, for a certain value of the local energy. First, we analyze the dynamics on the center
manifold by computing its Poincaré surfaces of section. We denote by K̂CM(Q1, Q2, P1, P2; e)
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the 2-degrees of freedom Hamiltonian of the system restricted to the center manifold, ex-
pressed with the real canonical variables Q,P (as a matter of fact, only Q1, Q2, P1, P2 are
needed):

KCM(Q1, Q2, P1, P2; e) := K(Q1, Q2, 0, P1, P2, 0; e)
:= KCM,2(Q1, Q2, P1, P2; e) +KCM,4(Q1, Q2, P1, P2; e) + ...(25)

For fixed values κ of the local energy, we consider the Poincaré section defined by the flow
of KCM and the surface:

Σκ = {(Q1, Q2, P1, P2) : KCM(Q1, Q2, P1, P2; e) = κ , Q2 = 0, P2 > 0}, (26)

which is parameterized by the variables Q1, P1. In figure 2 we represent a sample of
these Poincaré sections numerically computed for increasing values of the local energy
κ = 0.005, 0.025,0.050, 0.077; in figure 3 we represent these Poincaré sections in the space
of the Cartesian variables, via the transformation (2) computed for Q2, Q3, P3, f = 0. In
the phase-portraits of the Poincaré sections we identify the following families of peculiar
motions1

- Vertical Lyapunov tori: Since K̂2, K̂4, K̂6 do not contain monomials with l1 =
1,m1 = 0 or l1 = 0,m1 = 1, the origin (Q1, P1) = (0, 0) is a fixed point of all the
Poincaré sections, corresponding to a periodic orbit in the family of the vertical Lya-
punov orbits. Since the canonical transformation X (Q,P, f ; e) maps these periodic
orbits to tori of the Cartesian space, the origin of the Poincaré sections provides the
family of vertical Lyapunov tori.

- Planar Lyapunov tori: The borders of the Poincaré sections (which, strictly
speaking, do not belong to the section Σκ), which are obtained for the limit initial
conditions (Q2, P2) = 0 and Q1, P1 satisfying:

KCM(Q1, 0, P1, 0; e) = κ,

correspond to the family of the planar Lyapunov orbits, which are mapped to the
planar Lyapunov tori of the Cartesian space. In fact, since K̂2, K̂4, K̂6 do not con-
tains monomials with l2 = 1,m2 = 0, l3,m3 = 0 or l2 = 0,m2 = 1, l3,m3 = 0, each
solution of the Hamilton equations of KCM with (Q2(0), P2(0)) = (0, 0), satisfies
(Q2(t), P2(t)) = (0, 0) for all t, thus providing a planar periodic orbit. Since the
canonical transformation X (Q,P, f ; e) maps these orbits to tori of the Cartesian
space, the limit border of the Poincaré section provides the family of planar Lya-
punov tori. We remark that both the planar and vertical Lyapunov tori are more
efficiently computed with the non-resonant normal forms defined in the paper [28].

1The following description refers to the flow which is obtained from the Hamiltonian of the ERTBP
by neglecting the remainder R7 in the Floquet-Birkhoff normal form. When considering the non approx-
imated flow of the elliptic restricted three-body problem, the description is affected by an error which is
discussed in Sections 4.1 and 4.2.
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Figure 2: Representation of the Poincaré sections of the flow on the center manifold
originating at the Lagrangian solution L1 of the Earth-Moon system, for a sample of
values of the local energy κ, in the plane of the normal form variables Q1, P1.
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- Halo tori. We identify the halo orbits of the ERTBP as the fixed points of the
Poincaré section of the Hamiltonian system defined by KCM (which appear in addi-
tion to the central one identified by (Q1, P1) = (0, 0)) for all the larger values of the
local energy κ = 0.025,0.050, 0.077. As for the CRTBP (see [24, 2, 29]), the halo
orbits are better described by introducing normal form variables which are adapted
to the 1-1 resonance. First, we introduce on the center manifold the action-angle
variables θ1, θ2, I1, I2 defined in (8), and then the action-angle variables φ, χ, Jφ, Jχ
adapted to the 1-1 resonance defined by:

θ1 = φ+ χ , θ2 = χ

I1 = Jφ , I2 = Jχ − Jφ .
(27)

Since the representation of the Hamilton function KCM in the action-angle variables
does not depend on the angle χ, the conjugate action Jχ is a first integral and
the motion of the couple φ, Jφ is computed from the 1-degree of freedom reduced
Hamiltonian system obtained for fixed values of Jχ. The halo orbits are computed
as the equilibrium points of the reduced system, and correspond to fixed points of
the Poincaré section with Q1 = 0, P1 6= 0. Because the action-angle variables φ, Jφ
are singular for Jφ = 0, the computation of the equilibrium points of the reduced
system is better performed using the non-singular canonical variables:

x̃ =
√

2 Jφ sinφ , ỹ =
√

2 Jφ cosφ . (28)

Therefore, by computing KCM in the variables χ, Jχ, x̃, ỹ we obtain a function:

K̃CM := K̃CM(Jχ, x̃, ỹ)

which is a polynomial of order 6 in the variables x̃, ỹ, with coefficients depend-
ing polynomially on Jχ (up to order 3). We therefore proceed by computing the
equilibrium points of the reduced Hamiltonian K̃CM with x̃ = 0, ỹ 6= 0, and the
corresponding initial conditions on the Poincaré section obtained for χ = 0. Finally,
we remark that the equilibrium points of the reduced system provide periodic orbits
in the center manifold, which are projected to families of quasi-periodic orbits of
the Cartesian space, which we call the family of halo tori of the ERTBP.

Therefore the halo orbits obtained for large order approximations of the ERTBP, as it
happens with the Lyapunov orbits, are quasi-periodic orbits belonging to 2-dimensional
tori. In figure 4 we represent in the space of the Cartesian variables x, y, z the projections
of both the Poincaré section and the (southern and northern) families of the corresponding
halo tori computed for f = 0 and for κ = 0.025, 0.05 (left and right panels respectively).
As expected, the halo section of the halo tori for f = 0 cross the Poincaré section in the
corresponding fixed point.

4.1 Validation of the halo orbits and the halo manifold tubes

In order to test that the orbits generated from the normal form computations are a
good representation of the dynamics of the full ERTBP, and to determine the effects of
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Figure 3: Representation of the same Poincaré sections of fig. 2 in the plane of the
Cartesian coordinates x, y, computed by transforming the values of the normal form
variables for f = 0. The thick black curve corresponds to the section f = 0 of the
planar Lyapunov torus.

eventual small errors, we perform the following validation test. Along with the section
of the halo tori for f = 0, we first compute the sections of the torus for other values of
f , namely f = π, f = π/2, using the Hamiltonian flow of KCM . When transformed to
Cartesian variables x, y, z, these sections provide a segmented depiction of the halo torus
in the 3 dimensional space. Then, we numerically integrate the initial conditions of the
halo orbits (transformed to Cartesian variables) using a numerical integrator of the full
ERTBP represented by Hamiltonian (1). Since the halo torus is hyperbolic in the normal
form dynamics, we expect that the small errors introduced by neglecting the remainder
RN+1 are responsible of an hyperbolic drift of the numerically computed orbit from the
analytically computed halo torus. As usual with hyperbolic dynamics, even if for small
values of the norm of RN+1 the errors on the initial conditions are small, this small error
grows exponentially in time. As it happens for the computation of the Lyapunov orbits
of the CRTBP, the hyperbolic components is so strong that typically the numerically
integrated orbits depart from the analytically computed ones within few periods. We
check for how long the evolution of the numerically computed halo orbits remains close
to the corresponding analytically computed halo torus for a value of the local energy
κ = 0.025. In Figure 5 we represent a numerically integrated orbit which remains close to
the torus for a full circulation before departing exponentially from it. As expected, the
larger is the local energy energy, the larger is the amplitude of the corresponding halo
torus and the shorter is the time required for the orbit to depart from it. We also represent
with a color scale the variation of the value of the local energy κ during the numerical
integration, which represents the best estimator of the error. In fact, the variation of the
local energy remains small also when the orbit departs form the torus. The exponential
instability of individual orbits provides an opportunity to construct orbits of the full
ERTBP which arrive close to (or depart from) the halo torus or that transit close to it, as
it has been done in correlation with the Lyapunov tori of the ERTBP previously studied
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Figure 4: Representation in the space of the Cartesian variables x, y, z of the Poincaré
sections and the projection of the (southern and northern) families of the corresponding
halo tori computed for f = 0 and for κ = 0.025, 0.05 (left and right panels respectively).

in [28]. A sample of numerically computed orbits in the stable and unstable halo tubes,
whose initial conditions have been obtained using the Floquet-Birkhoff normal form, is
represented in Figure 6.

4.2 The remainder RN+1

Another validation test is performed with a direct computation of the norm of the re-
mainder RN+1 of the Floquet-Birkhoff normal form (6) along the halo orbit, as well as in
a neighbourhood. In fact, since the halo tori are characterized by large librations from
the corresponding Lagrangian solution, it is important to check that the remainder RN+1

(which is neglected in the definition of the torus) is indeed small in a neighbourhood of the
torus. Previously we have checked with an indirect method the norm of the remainder by
computing the variation of the local energy along a numerically integrated solution of the
ER3BP. Now we represent a direct computation of the norm of the remainder computed
along different halo tori and different normalizations orders.

We first define the maximum of the norm of the remainder on a set of points S as

|R(J)| := Max(q̂,p̂,f)∈S

10∑
j=J+1

|Ĥ(J)
j (q̂, p̂, f)| , (29)

for all the normalization orders J = 2, . . . , N , and then we compute it on a set S of
points sampling the Halo orbits. The results are summarized in Table 1, and show the
orders of magnitude of improvement in the error of our best Floquet-Birkhoff normal form
(of order J = 8) with respect to the classical Floquet approximation where no Birkhoff
transformations are implemented (corresponding to order J = 2).

Let us remark that the an effect of the error introduced by truncating the remainder
is that for the orbits with initial conditions which are on the halo orbits evolve as the
orbits which are in a small neighbourhood of the stable and unstable manifold tubes.
According the the position of the initial values of the hyperbolic variables with respect
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Figure 5: A solution of the ERTBP computed by numerically integrating the Hamilton equations
of (1) with an initial condition on the northern halo torus, for κ = 0.0025. The black points
belong to sections of the torus computed for f = 0 (the external one) and f = π (the internal
one). The numerically computed orbit (colored curve) moves close the f -section of the Halo
torus before departing exponentially from it. The upper panel represents the orbit in the xyz
space, the lower panels the projections on the xy (left) and xz (right) planes. The color on
the orbits represent the variation of the local energy, providing an estimate of the neglected
remainder of the Floquet-Birkhoff normal form along the solution.
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Figure 6: A sample of numerically computed orbits in the stable (blue) and unstable (red) halo
tubes, whose initial conditions have been obtained using the Floquet-Birkhoff normal form, for
κ = 0.025. The black dots are in the halo torus.
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µ = 0.012300 e = 0.0549006 (Earth-Moon system)
Center manifold Halos

Halo for κ = 0.025 Halo for κ = 0.030 Halo for κ = 0.050

J |R(J)| J |R(j)| J |R(j)|
2 1.45043×10−2 2 2.39118×10−2 2 1.12098×10−1

3 1.42105×10−3 3 2.39449×10−3 3 1.08179×10−2

4 5.40381×10−4 4 9.88391×10−4 4 5.55895×10−3

5 2.58946×10−4 5 5.10725×10−4 5 3.48433×10−3

6 1.09358×10−4 6 2.33717×10−4 6 1.96300×10−3

7 4.41467×10−5 7 1.01352×10−4 7 1.02467×10−3

8 1.47660×10−5 8 3.60189×10−5 8 4.25978×10−4

Table 1: Estimation of the norm of the remainder (29) for the three halo orbits of previous
section, for energies κ = 0.025, κ = 0.030, κ = 0.050.

to the values of the stable and unstable tubes provides orbits which have different transit
properties at the halo orbits. In figure 7 we represent orbits which are very close to the
stable and unstable tubes, but after they approach the halo torus, depending on their
position relative to the tubes they transit from one side to the other of the halo torus, or
instead they bounce back. We therefore find the same kind of transits behaviour that has
been previously found for the planar Lyapunov orbits.
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Figure 7: Numerically computed orbits in the stable and unstable halo tubes (in gray), together
with orbits which transit from one side of the halo torus to the other, or bounce back. The initial
conditions of all these orbits have been obtained using the Floquet-Birkhoff normal form, for
κ = 0.025, the black dots are in the halo torus.
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