BEC in Nonextensive Statistical Mechanics

Luca Salasnich

Istituto Nazionale per la Fisica della Materia, Unità di Milano, Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy

Abstract

We discuss the Bose-Einstein condensation (BEC) for an ideal gas of bosons in the framework of Tsallis's nonextensive statistical mechanics. We study the corrections to the standard BEC formulas due to a weak nonextensivity of the system. In particular, we consider three cases in the D-dimensional space: the homogeneous gas, the gas in a harmonic trap and the relativistic homogenous gas. The results show that small deviations from the extensive Bose statistics produce remarkably large changes in the BEC transition temperature.

PACS numbers: 05.30-d; 03.75.Fi

A decade ago, Tsallis introduced a nonextensive statistical mechanics (NSM) to describe systems for which the additivity property of entropy does not hold.¹ The NSM can describe systems for which long-range microscopic memory, fractal space-time constraints or long-range interactions affect the thermalization process.² The NSM is characterized by a parameter q such that (q - 1) is a measure of the lack of extensivity: in the limit $q \rightarrow 1$ one recovers the familiar statistical mechanics but for $q \neq 1$ one obtains generalized Boltzmann, Fermi and Bose distributions.³ In the last few years the NSM has been applied in different contexts like solar neutrinos,⁴ high energy nuclear collisions⁵ and the cosmic microwave background radiation.⁶ In such cases it has been found that a small deviation from standard statistics is sufficient for eliminating the discrepancy between theoretical calculations and experimental data.

Recently, there has been a renewed theoretical interest on Bose-Einstein condensation (BEC) (for a review see Ref. 7), motivated by the experimental achievement of BEC with trapped weakly-interacting alkali-metal atoms.⁸ In this paper we analyze the consequences of weak nonextensivity on BEC for an ideal Bose gas. From the generalized Bose-Einstein distribution we derive the BEC transition temperature, the condensed fraction and the energy per particle in three different cases: the homogeneous gas, the gas in a harmonic trap and the relativistic homogenous gas. All the calculations are performed by assuming a D-dimensional space.

For a quantum gas of identical bosons in the grand canonical ensemble, the NSM predicts that the average number of particles with energy ϵ is given by

$$\langle n(\epsilon) \rangle_q = \frac{1}{\left[1 + \beta(q-1)(\epsilon-\mu)\right]^{1/(q-1)} - 1} ,$$
 (1)

where μ is the chemical potential and $\beta = 1/(kT)$ with k the Boltzmann constant and T the temperature.² This generalized distribution follows from the minimization of the Tsallis's generalized entropy under the dilute gas assumption, namely the different single-particle states of the systems are regarded as independent. Thus, this is not an exact formula but it has been shown to be extremely accurate, in particular near q = 1.⁹ When q < 1 the generalized distribution has an upper cut-off: $(\epsilon - \mu) \leq kT/(1 - q)$. In the limit $q \rightarrow 1$ the generalized distribution becomes the standard Bose-Einstein distribution. For q > 1 there is no cut-off and the (power-law) decay is slower than exponential. Because of the unphysical cut-off for q < 1, in this paper we discuss only the case $q \ge 1$.

We want study the effects of weak nonextensivity on the BEC properties. We assume that (q - 1) < 1 and by performing a Taylor expansion of the generalized Bose distributions in the parameter (q - 1), at first order we obtain

$$\langle n(\epsilon) \rangle_q = \frac{1}{e^{\beta(\epsilon-\mu)} - 1} + \frac{1}{2}(q-1)\frac{\beta^2(\epsilon-\mu)^2 e^{\beta(\epsilon-\mu)}}{(e^{\beta(\epsilon-\mu)} - 1)^2} \,. \tag{2}$$

This is the weak nonextensivity correction to the standard Bose-Einstein distribution and the starting point for our calculations.

The total number of particle for our system of non-interacting bosons reads ∞

$$N = \int_0^\infty d\epsilon \ \rho(\epsilon) \ \langle n(\epsilon) \rangle_q , \qquad (3)$$

where $\rho(\epsilon)$ is the density of states. It can be obtained from the formula

$$\rho(\epsilon) = \int \frac{d^D \mathbf{q} d^D \mathbf{p}}{(2\pi\hbar)^D} \delta(\epsilon - H(\mathbf{p}, \mathbf{q})) , \qquad (4)$$

where $H(\mathbf{p}, \mathbf{q})$ is the classical single-particle Hamiltonian of the system in a D-dimensional space. It is easy to show that for a homogenous gas the density of states in a D-dimensional box of volume V is given by

$$\rho(\epsilon) = \frac{V}{\Gamma(D/2)} \left(\frac{m}{2\pi\hbar^2}\right)^{D/2} \epsilon^{(D-2)/2} , \qquad (5)$$

where m is the mass of the particle. Instead, for a gas in a harmonic trap one finds

$$\rho(\epsilon) = \frac{\epsilon^{D-1}}{(\hbar\bar{\omega})^D \Gamma(D)} , \qquad (6)$$

where $\bar{\omega}$ is the geometric average of the trap frequencies. $\Gamma(x)$ is the factorial function.

At the BEC transition temperature T_q , the chemical potential μ is zero and at $\mu = 0$ the number of particles N can be analytically determined from Eq. (2) and (3). By inverting the function $N = N(T_q)$ one finds the transition temperature. It is given by

$$kT_q = \left(\frac{2\pi\hbar^2}{m}\right) \frac{(N/V)^{2/D}}{\zeta(D/2)^{2/D}} \left[1 + \frac{1}{2}(q-1)\frac{\Gamma(D/2+2)\zeta(D/2+1)}{\Gamma(D/2)\zeta(D/2)}\right]^{-2/D}$$
(7)

for the homogenous gas, and by

$$kT_q = \frac{\hbar\bar{\omega}}{\zeta(D)^{1/D}} N^{1/D} \left[1 + \frac{1}{2}(q-1)\frac{\Gamma(D+2)\zeta(D+1)}{\Gamma(D)\zeta(D)} \right]^{-1/D}$$
(8)

for a gas in a harmonic trap. $\zeta(x)$ is the Riemann ζ -function. Obviously, for q = 1 one recovers standard BEC formulas. Moreover one observes that for D = 2 there is no BEC in the homogenous gas because $\zeta(1) = \infty$. Instead, BEC is possible with D = 2 in a harmonic trap. Note that the inclusion of an attractive interaction can modify the stability of the Bose condensate. A discussion of the the role of dimensionality in the stability of a weakly-interacting condensate can be found in Ref. 10.

An inspection of Eq. (7) and (8) shows that the critical temperature T_q grows by increasing the nonextensive parameter q and the space dimension D. It is important to stress that such effect is quite strong. For example, with q = 1.1 and D = 3 we have that the relative difference $(T_q - T_1)/T_1$ is 6.32% for the homogenous gas and and 15.48% for the gas in a harmonic trap.

Below T_q , a macroscopic number N_0 of particle occupies the single-particle ground-state of the system. It follows that Eq. (3) gives the number $N-N_0$ of non-condensed particles and the condensed fraction is $N_0/N = 1 - (T/T_q)^{D/2}$ for the homogenous gas and $N_0/N = 1 - (T/T_q)^D$ for the gas in harmonic trap. For the sake of completeness, we calculate also the energy

$$E = \int_0^\infty d\epsilon \ \epsilon \ \rho(\epsilon) \ \langle n(\epsilon) \rangle_q \ . \tag{9}$$

From the energy one can easily obtain the specific heat and the other thermodynamical quantities. We find

$$\frac{E}{KT} = V \left(\frac{kT}{2\pi\hbar^2}\right)^{D/2} \frac{D}{2} \zeta(D/2+1) \left[1 + \frac{1}{2}(q-1)\frac{\Gamma(D/2+3)\zeta(D/2+2)}{\Gamma(D/2+1)\zeta(D/2+1)}\right]$$
(10)

for the homogenous gas, and by

$$\frac{E}{KT} = \left(\frac{kT}{\hbar\bar{\omega}}\right)^D D\zeta(D+1) \left[1 + \frac{1}{2}(q-1)\frac{\Gamma(D+3)\zeta(D+2)}{\Gamma(D+1)\zeta(D+1)}\right]$$
(11)

for a gas in a harmonic trap. Note that our formulas of the energy can be easily generalized above the critical temperature T_q by substituting the Riemann function $\zeta(D)$ with the polylogarithm function $Li_D(z) = \sum_{k=1}^{\infty} z^k / k^D$, that depends on the fugacity $z = e^{\beta\mu}$.

In the case of a relativistic gas, the total number of particles is not conserved because of the production of antiparticles, which becomes relevant when kT is comparable with mc^2 . The conserved quantity is the difference between the number N of particles and the number \bar{N} of antiparticles, i.e. the net conserved *charge*

$$Q = N - \bar{N} = \int d\epsilon \ \rho(\epsilon) \left[\langle n(\epsilon) \rangle_q - \langle \bar{n}(\epsilon) \rangle_q \right] , \qquad (12)$$

where $\langle \bar{n}(\epsilon) \rangle_q$ is obtained from $\langle n(\epsilon) \rangle_q$ with the substitution $\mu \to -\mu$. Thus the chemical potential μ describes both bosons and antibosons: the sign of μ indicates whether particles outnumber antiparticles or vice. Moreover, because both $\langle n(\epsilon) \rangle_q$ and $\langle \bar{n}(\epsilon) \rangle_q$ must be positive definite, it follows that $|\mu| \leq mc^{2}.^{11}$

As well known, the classical single-particle Hamiltonian of a relativistic ideal gas is $H = \sqrt{p^2 c^2 + m^2 c^4}$ and the density of states reads

$$\rho(\epsilon) = \frac{V 2\pi^{D/2}}{(2\pi\hbar c)^D \Gamma(D/2)} \epsilon(\epsilon^2 - m^2 c^4)^{(D-2)/2} .$$
(13)

It is interesting to observe that in the ultrarelativistic limit, the density of states is $\rho(\epsilon) = (V2\pi^{D/2})/((2\pi\hbar c)^D\Gamma(D/2))\epsilon^{(D-1)}$ and it has the same power law of the non-relativistic gas in a harmonic potential. The critical temperature T_q at which BEC occurs corresponds to $|\mu| = mc^2$. In the ultrarelativistic region $kT \gg mc^2$ one can expand Q at first order in μ and then obtains

$$kT_q = \left(\frac{(2\pi\hbar c)^D \Gamma(D/2)}{4\pi^{D/2} \Gamma(D)\zeta(D-1)} \frac{|Q|/V}{mc^2}\right)^{1/(D-1)} \times \left[1 + \frac{1}{2}(q-1)\frac{(D-1)\Gamma(D+1)\zeta(D)}{\Gamma(D)\zeta(D-1)}\right]^{-1/(D-1)} .$$
 (14)

Note that, as in the non-relativistic case, for a homogenous gas there is BEC only for D > 2. Also for the relativistic gas the critical temperature T_q is

a growing function of the nonextensive parameter q (for $q \ge 1$) and of the space dimension D. By using the previously introduced values q = 1.1 and D = 3 we find $(T_q - T_1)/T_1 = 6.83\%$. Finally, we obtain that below T_q the condensed fraction reads $Q_0/Q = 1 - (T/T_q)^{(D-1)}$.

In conclusion, we have analyzed the consequences of Tsallis's nonextensive statistical mechanics on BEC. We have studied three non-interacting systems with a generic spatial dimension: the homogeneous gas, the gas in a harmonic trap and the relativistic homogenous gas. The calculations show that a very small deviation from the extensive Bose statistics produces remarkable changes in the BEC transition temperature. This result may have important consequences, for instance in the formation of Quark-Gluon Plasma¹² and in the thermodynamics of the Higgs field in the early Universe.¹³ We observe that the inter-particle interaction can strongly modify the BEC transition temperature and the condensate properties: one of our future projects will be the study of nonextensive statistical mechanics for interacting systems.

References

- 1. C. Tsallis, J. Stat. Phys. **52**, 479 (1988).
- 2. E.M.F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991).
- F. Buyukkilic, D. Demirhan, and A. Gulec, Phys. Lett. A 197, 209 (1995).
- G. Kaniadakis, A. Lavagno, and P. Quarati, Phys. Lett. B 369, 308 (1996).
- G. Kaniadakis, A. Lavagno, M. Lissia, and P. Quarati, in Proceedings of the VII Workshop on *Perspectives on Theoretical Nuclear Physics*, pp. 293, Ed. A. Fabrocini, G. Pisent and S. Rosati (Edizioni ETS, Pisa, 1999).
- 6. C. Tsallis, F.C.S. Barreto, and E.D. Loh, Phys. Rev. E 52, 1447 (1995).
- F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
- M.H. Anderson, et al., Science 269, 189 (1995); K.B. Davis, et al., Phys. Rev. Lett. 75, 3969 (1995); C.C. Bradley, et al., Phys. Rev. Lett. 75, 1687 (1995).
- 9. Q.A. Wang and A. Le Mehaute, Phys. Lett. A 235, 222 (1997).
- 10. L. Salasnich, Mod. Phys. Lett. B 11, 1249 (1997); 12, 649 (1998).
- H.E. Haber and H.A. Weldon, Phys. Rev. Lett. 23, 1497 (1981); J.I. Kapusta, Phys. Rev. D 24, 426 (1981).
- B. Muller, The Physics of Quark-Gluon Plasma (Springer, Berlin, 1985).
- 13. A.D. Linde, *Particle Physics and Inflationary Cosmology* (Harwood Academic, London, 1988).