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Abstract

We discuss the Bose-Einstein condensation (BEC) for an ideal gas of bosons
in the framework of Tsallis’s nonextensive statistical mechanics. We study
the corrections to the standard BEC formulas due to a weak nonextensivity
of the system. In particular, we consider three cases in the D-dimensional
space: the homogeneous gas, the gas in a harmonic trap and the relativistic
homogenous gas. The results show that small deviations from the exten-
sive Bose statistics produce remarkably large changes in the BEC transition
temperature.
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A decade ago, Tsallis introduced a nonextensive statistical mechanics
(NSM) to describe systems for which the additivity property of entropy does
not hold.1 The NSM can describe systems for which long-range microscopic
memory, fractal space-time constraints or long-range interactions affect the
thermalization process.2 The NSM is characterized by a parameter q such
that (q − 1) is a measure of the lack of extensivity: in the limit q → 1
one recovers the familiar statistical mechanics but for q 6= 1 one obtains
generalized Boltzmann, Fermi and Bose distributions.3 In the last few years
the NSM has been applied in different contexts like solar neutrinos,4 high
energy nuclear collisions5 and the cosmic microwave background radiation.6

In such cases it has been found that a small deviation from standard statistics
is sufficient for eliminating the discrepancy between theoretical calculations
and experimental data.

Recently, there has been a renewed theoretical interest on Bose-Einstein
condensation (BEC) (for a review see Ref. 7), motivated by the experimental
achievement of BEC with trapped weakly-interacting alkali-metal atoms.8 In
this paper we analyze the consequences of weak nonextensivity on BEC for
an ideal Bose gas. From the generalized Bose-Einstein distribution we derive
the BEC transition temperature, the condensed fraction and the energy per
particle in three different cases: the homogeneous gas, the gas in a harmonic
trap and the relativistic homogenous gas. All the calculations are performed
by assuming a D-dimensional space.

For a quantum gas of identical bosons in the grand canonical ensemble,
the NSM predicts that the average number of particles with energy ǫ is given
by

〈n(ǫ)〉q =
1

[1 + β(q − 1)(ǫ− µ)]1/(q−1) − 1
, (1)

where µ is the chemical potential and β = 1/(kT ) with k the Boltzmann
constant and T the temperature.2 This generalized distribution follows from
the minimization of the Tsallis’s generalized entropy under the dilute gas
assumption, namely the different single-particle states of the systems are
regarded as independent. Thus, this is not an exact formula but it has been
shown to be extremely accurate, in particular near q = 1.9 When q < 1 the
generalized distribution has an upper cut-off: (ǫ − µ) ≤ kT/(1 − q). In the
limit q → 1 the generalized distribution becomes the standard Bose-Einstein
distribution. For q > 1 there is no cut-off and the (power-law) decay is slower
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than exponential. Because of the unphysical cut-off for q < 1, in this paper
we discuss only the case q ≥ 1.

We want study the effects of weak nonextensivity on the BEC properties.
We assume that (q − 1) < 1 and by performing a Taylor expansion of the
generalized Bose distributions in the parameter (q − 1), at first order we
obtain

〈n(ǫ)〉q =
1

eβ(ǫ−µ) − 1
+

1

2
(q − 1)

β2(ǫ− µ)2eβ(ǫ−µ)

(eβ(ǫ−µ) − 1)2
. (2)

This is the weak nonextensivity correction to the standard Bose-Einstein
distribution and the starting point for our calculations.

The total number of particle for our system of non-interacting bosons
reads

N =
∫

∞

0
dǫ ρ(ǫ) 〈n(ǫ)〉q , (3)

where ρ(ǫ) is the density of states. It can be obtained from the formula

ρ(ǫ) =
∫

dDqdDp

(2πh̄)D
δ(ǫ−H(p,q)) , (4)

where H(p,q) is the classical single-particle Hamiltonian of the system in
a D-dimensional space. It is easy to show that for a homogenous gas the
density of states in a D-dimensional box of volume V is given by

ρ(ǫ) =
V

Γ(D/2)

(

m

2πh̄2

)D/2

ǫ(D−2)/2 , (5)

where m is the mass of the particle. Instead, for a gas in a harmonic trap
one finds

ρ(ǫ) =
ǫD−1

(h̄ω̄)DΓ(D)
, (6)

where ω̄ is the geometric average of the trap frequencies. Γ(x) is the factorial
function.

At the BEC transition temperature Tq, the chemical potential µ is zero
and at µ = 0 the number of particles N can be analytically determined
from Eq. (2) and (3). By inverting the function N = N(Tq) one finds the
transition temperature. It is given by

kTq =

(

2πh̄2

m

)

(N/V )2/D

ζ(D/2)2/D

[

1 +
1

2
(q − 1)

Γ(D/2 + 2)ζ(D/2 + 1)

Γ(D/2)ζ(D/2)

]

−2/D

(7)
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for the homogenous gas, and by

kTq =
h̄ω̄

ζ(D)1/D
N1/D

[

1 +
1

2
(q − 1)

Γ(D + 2)ζ(D + 1)

Γ(D)ζ(D)

]

−1/D

(8)

for a gas in a harmonic trap. ζ(x) is the Riemann ζ-function. Obviously, for
q = 1 one recovers standard BEC formulas. Moreover one observes that for
D = 2 there is no BEC in the homogenous gas because ζ(1) = ∞. Instead,
BEC is possible with D = 2 in a harmonic trap. Note that the inclusion
of an attractive interaction can modify the stability of the Bose condensate.
A discussion of the the role of dimensionality in the stability of a weakly-
interacting condensate can be found in Ref. 10.

An inspection of Eq. (7) and (8) shows that the critical temperature Tq

grows by increasing the nonextensive parameter q and the space dimension
D. It is important to stress that such effect is quite strong. For example,
with q = 1.1 and D = 3 we have that the relative difference (Tq − T1)/T1

is 6.32% for the homogenous gas and and 15.48% for the gas in a harmonic
trap.

Below Tq, a macroscopic number N0 of particle occupies the single-particle
ground-state of the system. It follows that Eq. (3) gives the number N−N0 of
non-condensed particles and the condensed fraction is N0/N = 1−(T/Tq)

D/2

for the homogenous gas and N0/N = 1 − (T/Tq)
D for the gas in harmonic

trap. For the sake of completeness, we calculate also the energy

E =
∫

∞

0
dǫ ǫ ρ(ǫ) 〈n(ǫ)〉q . (9)

From the energy one can easily obtain the specific heat and the other ther-
modynamical quantities. We find

E

KT
= V

(

kT

2πh̄2

)D/2
D

2
ζ(D/2 + 1)

[

1 +
1

2
(q − 1)

Γ(D/2 + 3)ζ(D/2 + 2)

Γ(D/2 + 1)ζ(D/2 + 1)

]

(10)
for the homogenous gas, and by

E

KT
=

(

kT

h̄ω̄

)D

Dζ(D + 1)

[

1 +
1

2
(q − 1)

Γ(D + 3)ζ(D + 2)

Γ(D + 1)ζ(D + 1)

]

(11)
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for a gas in a harmonic trap. Note that our formulas of the energy can be
easily generalized above the critical temperature Tq by substituting the Rie-
mann function ζ(D) with the polylogarithm function LiD(z) =

∑

∞

k=1 z
k/kD,

that depends on the fugacity z = eβµ.
In the case of a relativistic gas, the total number of particles is not con-

served because of the production of antiparticles, which becomes relevant
when kT is comparable with mc2. The conserved quantity is the difference
between the number N of particles and the number N̄ of antiparticles, i.e.
the net conserved charge

Q = N − N̄ =
∫

dǫ ρ(ǫ) [〈n(ǫ)〉q − 〈n̄(ǫ)〉q] , (12)

where 〈n̄(ǫ)〉q is obtained from 〈n(ǫ)〉q with the substitution µ → −µ. Thus
the chemical potential µ describes both bosons and antibosons: the sign
of µ indicates whether particles outnumber antiparticles or vice. Moreover,
because both 〈n(ǫ)〉q and 〈n̄(ǫ)〉q must be positive definite, it follows that
|µ| ≤ mc2.11

As well known, the classical single-particle Hamiltonian of a relativistic
ideal gas is H =

√
p2c2 +m2c4 and the density of states reads

ρ(ǫ) =
V 2πD/2

(2πh̄c)DΓ(D/2)
ǫ(ǫ2 −m2c4)(D−2)/2 . (13)

It is interesting to observe that in the ultrarelativistic limit, the density
of states is ρ(ǫ) = (V 2πD/2)/((2πh̄c)DΓ(D/2))ǫ(D−1) and it has the same
power law of the non-relativistic gas in a harmonic potential. The critical
temperature Tq at which BEC occurs corresponds to |µ| = mc2. In the
ultrarelativistic region kT ≫ mc2 one can expand Q at first order in µ and
then obtains

kTq =

(

(2πh̄c)DΓ(D/2)

4πD/2Γ(D)ζ(D − 1)

|Q|/V
mc2

)1/(D−1)

×

×
[

1 +
1

2
(q − 1)

(D − 1)Γ(D + 1)ζ(D)

Γ(D)ζ(D− 1)

]

−1/(D−1)

. (14)

Note that, as in the non-relativistic case, for a homogenous gas there is BEC
only for D > 2. Also for the relativistic gas the critical temperature Tq is
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a growing function of the nonextensive parameter q (for q ≥ 1) and of the
space dimension D. By using the previously introduced values q = 1.1 and
D = 3 we find (Tq − T1)/T1 = 6.83%. Finally, we obtain that below Tq the
condensed fraction reads Q0/Q = 1− (T/Tq)

(D−1).
In conclusion, we have analyzed the consequences of Tsallis’s nonextensive

statistical mechanics on BEC. We have studied three non-interacting systems
with a generic spatial dimension: the homogeneous gas, the gas in a harmonic
trap and the relativistic homogenous gas. The calculations show that a
very small deviation from the extensive Bose statistics produces remarkable
changes in the BEC transition temperature. This result may have important
consequences, for instance in the formation of Quark-Gluon Plasma12 and in
the thermodynamics of the Higgs field in the early Universe.13 We observe
that the inter-particle interaction can strongly modify the BEC transition
temperature and the condensate properties: one of our future projects will
be the study of nonextensive statistical mechanics for interacting systems.
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