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Abstract. — In this note, we define the notion of F -analytic B-pairs and we prove that
its category is equivalent to the one of F -analytic (ϕq, ΓK)-modules.

Introduction

Let p be a prime and let K be a finite extension of Qp. One of the main tools to study
p-adic representations of GK = Gal(Qp/K) is to operate a “dévissage” of the extension
Qp/K through an intermediate extension K∞/K which contains most of the ramification
of Qp/K but such that K∞/K is nice enough (for example when K∞/K is an infinite
almost totally ramified p-adic Lie extension).

In some sense, the simplest extension one can choose for K∞/K is the cyclotomic
extension of K. Using the theory of fields of norms [21] attached to the cyclotomic
extension of K, Fontaine has constructed [13] a theory of cyclotomic (ϕ,ΓK)-modules,
which are finite dimensional vector spaces defined on a local field BK which is of dimension
2, and endowed with semilinear actions of a Frobenius ϕ and of ΓK = Gal(K(µp∞)/K)
that commute one to another. Moreover, Fontaine has constructed a functor V 7→ D(V )
which is an equivalence of categories between p-adic representations of GK and étale
(ϕ,ΓK)-modules (which means that ϕ is of slope 0). The main theorem of [6] show
that these (ϕ,ΓK)-modules are overconvergent and it allows us to relate the cyclotomic
(ϕ,ΓK)-modules with classical p-adic Hodge theory, using the fact that the resulting
overconvergent (ϕ,ΓK)-modules give rise to what we still call (ϕ,ΓK)-modules but defined
on the cyclotomic Robba ring B†rig,K .

The construction of the p-adic Langlands correspondence for GL2(Qp) [10] relies heav-
ily on this construction, and in particular on the computations made by Colmez in the
trianguline case [9].

In order to extend this correspondence to GL2(F ), it seems necessary to replace the
theory of cyclotomic (ϕ,ΓK)-modules by Lubin-Tate (ϕq,ΓK)-modules, where F ⊂ K and
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K∞/K is generated by the torsion points of a Lubin-Tate group attached to a uniformizer
of F . Specializing Fontaine’s constructions, Kisin and Ren have shown that we can attach
to each representation of GK a Lubin-Tate (ϕq,ΓK)-module D(V ) over a 2-dimensional
local field BK (which is not the same as in the cyclotomic case) and such that V 7→ D(V )
gives rise to an equivalence of categories when the image is restricted to the subcategory
of étale objects.

However, unlike in the cyclotomic case, the resulting Lubin-Tate (ϕq,ΓK)-modules are
usually not overconvergent. The main theorem of [2] shows that F -analytic (ϕq,ΓK)-
modules are always overconvergent. The generalization of trianguline representations in
the Qp-cyclotomic case to F -analytic representations has been studied in [15] (and Kisin
and Ren mainly studied F -analytic crystalline representations in [16]).

A generalization of trianguline representations in the cyclotomic case for GK has been
done by Nakamura in [18] using the language of Berger’s B-pairs [1] (and their natural
extension to E-representations which are called E−B−pairs in [18]) but as noted in the
introduction of [15], this language does not appear well suited to deal with Lubin-Tate
objects.

In [2, Rem. 10.3] Berger notes that his results and methods should extend to prove that
there is an equivalence of categories between F -analytic (ϕq,ΓK)-modules and F -analytic
B-pairs, and it is this result this note is meant to prove.

In the cyclotomic case, it is often useful to switch between cyclotomic (ϕ,ΓK)-modules
and B-pairs, some properties being easier to prove using one of the categories instead of
the other, and it so should be in the Lubin-Tate case, using the following:

Theorem 0.1. — There is an equivalence of categories between F -analytic B-pairs and
F -analytic (ϕq,ΓK)-modules.

In particular, a recent result of Porat [19, Thm. 6.8] shows that for F -analytic 2-
dimensional representations of GF , V is trianguline in the cyclotomic sense if and only
if it is trianguline in the sense of [15]. His theorem actually extends to F -analytic
representations of arbitrary dimension as a straightforward consequence of our theorem
0.1:

Theorem 0.2. — Let V be an F -analytic representation of GK. Then V is trianguline
in the cyclotomic sense if and only if it is trianguline in the sense of [15].

As stated above, the usual language of B-pairs is not well suited to deal with Lubin-
Tate objects. Ding has constructed in [11] a variant of Berger’s B-pairs with a Lubin-Tate
flavour. For any embedding σ : F → Qp, and for any B-pair D, Ding constructs what
he calls a Bσ-pair Dσ, such that D 7→ Dσ is an equivalence of categories between B-
pairs and Bσ-pairs. In the F -analytic case, we construct a functor D 7→ W (D) from
the category of F -analytic (ϕq,ΓK)-modules to the category of F -analytic Bid-pairs and
which is the natural Lubin-Tate analogue of the constructions of Berger [1]. In particular,
the following ensues from theorem 0.1 but the correspondence between objects is easier
to see:

Theorem 0.3. — The functor D 7→ W (D), from the category of F -analytic (ϕq,ΓK)-
modules to the category of F -analytic Bid-pairs is an equivalence of categories.
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Structure of the note

The first three sections of this note are meant to recall the setting, notations and few
properties of Lubin-Tate extensions, (ϕq,ΓK)-modules and locally analytic vectors from
[2] that are needed for the rest of this note. In particular, these are pretty much the
same as [2, §1, 2 and 3]. Section 4 explains the notion of F -analyticity in the case of F -
representations and (ϕq,ΓK)-modules. In section 5, we recall the notion of (B,E)-pairs,
define F -analyticity for (B,E)-pairs and prove the main theorem of this note, and how
to derive from it theorem 0.2 which is the generalization of Porat’s result. In section 6
we explain how to replace the category of F -analytic B-pairs by the one of F -analytic
Bid-pairs. The last section is a quick summary of the rings that appear throughout this
paper.
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1. Lubin-Tate extensions

Let F be a finite extension of Qp, let OF , π and kF denote respectively its ring of
integers, a uniformizer of OF and its residue field. Let h ≥ 1 be such that |kF | = q = ph.
We let F0 = W (kF )[1/p], the maximal unramified extension of Qp inside F , and we let e
to be the ramification index of F . Let Σ be the set of embeddings of F in Qp, and let σ
be the absolute Frobenius on F0. For τ ∈ Σ, there exists a unique n(τ) ∈ {0, . . . , h− 1}
such that τ = σn(τ) on kF . We also let E to be a field of coefficients which is a finite
Galois extension of Qp containing F (hence FGal), and write ΣE for Gal(E/Qp). We let
Σ0 = Σ \ {id}.

Let S be a formal OF -module Lubin-Tate group law attached to π, such that the
endomorphism of multiplication by π is given by the power series [π](T ) = T q + πT . For
a ∈ OF , we will denote [a](T ) the power series giving the endomorphism of multiplication
by a for S. Let Fn be the field generated by F and the points of πn-torsion, that is the
roots of [πn](T ). Let F∞ = ⋃

n≥1 Fn, ΓF = Gal(F∞/F ) and HF = Gal(Qp/F∞). Let χπ
be the attached Lubin-Tate character. Note that there exists an unramified character
η : GF → Z×p such that NF/Qp(χπ) = ηχcycl, where χcycl is the cyclotomic character.

If K is a finite extension of F , we write Kn = KFn and K∞ = KF∞. We let ΓK =
Gal(K∞/K) and HK = Gal(Qp/K∞). We let Kη

∞ = Qp
kerηχcycl , so that Kη

∞ ⊂ K∞ and
that ηχcycl identifies Gal(Kη

∞/K) with an open subgroup of Z×p .
Now let Γn = Gal(K∞/Kn) so that Γn = {g ∈ ΓK such that χπ(g) ∈ 1 + πnOF}.

Let u0 = 0 and for each n ≥ 1, chose un ∈ Qp such that [π](un) = un−1, with u1 6= 0.
We have vp(un) = 1/qn−1(q − 1)e for n ≥ 1 and Fn = F (un). We also let Qn(T )
be the minimal polynomial of un over F , so that Q0(T ) = T , Q1(T ) = [π](T )/T and
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Qn+1(T ) = Qn([π](T )) if n ≥ 1. Let logLT(T ) = T+O(deg ≥ 2) ∈ F [[T ]] denote the Lubin-
Tate logarithm map, which converges on the open unit disk and satisfies logLT([a](T )) =
a · logLT(T ) if a ∈ OF . Note that we have logLT(T ) = T · ∏k≥1Qk(T )/π. We also let
expLT(T ) denote the inverse of logLT(T ).

Let O[Cp
= {(x0, x1, . . .), with xn ∈ OCp/π and such that xqn+1 = xn for all n ≥ 0}.

This ring is endowed with the valuation vE(·) defined by vE(x) = limn→+∞ q
nvp(x̂n) where

x̂n ∈ OCp lifts xn. The ring O[Cp
is complete for vE(·). If the {un}n≥0 are as above, then

u = (u0, u1, . . .) ∈ O[Cp
and vE(u) = q/(q − 1)e. Let C[

p be the fraction field of O[Cp
.

Let WF (·) = OF ⊗OF0
W (·) be the F -Witt vectors. Let Ã+ = OF ⊗OF0

W (O[Cp
),

Ã = OF ⊗OF0
W (C[

p) and let B̃+ = Ã+[1/π] and B̃ = Ã[1/π]. These rings are preserved
by the Frobenius map ϕq = id ⊗ ϕh. By [7, §9.2], there exists u ∈ Ã+, whose image in
O[Cp

is u, and such that ϕq(u) = [π](u) and g(u) = [χπ(g)](u) if g ∈ ΓF .
Every element of B̃+[1/[u]] can be written uniquely as a sum ∑

k�−∞ π
k[xk] where

{xk}k∈Z is a bounded sequence of C[
p. For r ≥ 0, we define a valuation V (·, r) on

B̃+[1/[u]] by

V (x, r) = inf
k∈Z

(
k

e
+ p− 1

pr
vE(xk)

)
if x =

∑
k�−∞

πk[xk].

If I is a closed subinterval of [0; +∞[, then let V (x, I) = infr∈I V (x, r). We define B̃I

to be the completion of B̃+[1/[u]] for the valuation V (·, I) if 0 /∈ I. If I = [0; r], then let
B̃I be the completion of B̃+ for V (·, I).

For ρ > 0, let ρ′ = ρ · e · p/(p− 1) · (q − 1)/q as in [2, §3]. We have V (ui, r) = i/r′ for
i ∈ Z if r > 1 (see [2, §3]).

Let I be either a subinterval of ]1; +∞[ or such that 0 ∈ I, and let f(Y ) = ∑
k∈Z akY

k

be a power series with ak ∈ F and such that vp(ak) + k/ρ′ → +∞ when |k| → +∞ for
all ρ ∈ I. The series f(u) converges in B̃I and we let BI

F denote the set of f(u) where
f(Y ) is as above. It is a subring of B̃I

F = (B̃I)HF , which is stable under the action of
ΓF . The Frobenius map gives rise to a map ϕq : BI

F → BqI
F . If m ≥ 0, then we have

ϕ−mq (BqmI
F ) ⊂ B̃I

F and we let BI
F,m = ϕ−mq (BqmI

F ).
We will write B†,rrig,F for B[r;+∞[

F . Let B†,rF denote the set of f(u) ∈ B†,rrig,F such that
the sequence {ak}k∈Z is bounded. Let B†F = ∪r�0B†,rF . Its residue field EF is isomorphic
to Fq((u)). If K is a finite extension of F then by the theory of the field of norms (see
[21]), there corresponds to K/F a separable extension EK/EF , of degree [K∞ : F∞].
Since B†F is a Henselian field, there exists a finite unramified extension B†K/B

†
F of degree

f = [K∞ : F∞] whose residue field is EK (see §2 and §3 of [17]). There exist therefore
r(K) > 0 and elements x1, . . . , xf in B†,r(K)

K such that B†,sK = ⊕fi=1B
†,s
F ·xi for all s ≥ r(K).

Note that the rings B†K are actually contained inside B̃. We also let BK to be the p-adic
completion of B†K inside B̃, and AK its ring of integers for the p-adic topology (note
that we could have defined AF as the p-adic completion of OF [[u]][1/u] inside Ã, put
BF = AF [1/π] and used the same argument as in the beginning of [8, §6.1] to define
BK). Let B be the p-adic completion of ⋃K/F BK inside B̃.
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Let B†,rrig,K denote the Fréchet completion of B†,rK for the valuations {V (·, [r; s])}s≥r.
Let B†,rrig,K,m = ϕ−mq (B†,q

mr
rig,K ) and B†,rrig,K,∞ = ∪m≥0B†,rrig,K,m. Let B̃†,rrig denote the Fréchet

completion of B̃+[1/[u]] for the valuations {V (·, [r; s])}s≥r. Let B̃†rig = ∪r�0B̃†,rrig, B̃†,rrig,K =
(B̃†,rrig)HK and B̃†rig,K = (B̃†rig)HK .

Recall that Kη
∞/K is the extension of K attached to ηχcycl. Let Γ′K = Gal(Kη

∞/K).
Let B†K,η, BI

K,η and B†rig,K,η be as in [2, §8]. By the same arguments as in [2, §8], there
is an equivalence of categories between étale (ϕ,Γ′K)-modules over E ⊗Qp B†rig,K,η (it is
also true over E ⊗Qp B†K,η) and E-representations of GK . We will also denote by B̃†rig,η
the ring B̃†rig in the specific case of F = Qp, so that B̃†rig = F ⊗F0 B̃†rig,η. Note that the
ring B̃†rig,η does actually not depend on η but we use this notation for convenience.

A (ϕq,ΓK)-module over BK is a BK-vector space D of finite dimension d, along with a
semilinear Frobenius map ϕq and a commuting continuous and semilinear action of ΓK .
We say that D is étale if there exists a basis of D in which Mat(ϕ) belongs to GLd(AK).
By specializing the constructions of [13], Kisin and Ren prove the following theorem [16,
Thm. 1.6].

Theorem 1.1. — The functors V 7→ (B ⊗F V )HK and D 7→ (B ⊗BK
D)ϕq=1 give rise

to mutually inverse equivalences of categories between the category of F -linear represen-
tations of GK and the category of étale (ϕq,ΓK)-modules over BK.

We say that a (ϕq,ΓK)-module D is overconvergent if there exists a basis of D in which
the matrices of ϕq and of all g ∈ ΓK have entries in B†K . This basis generates a B†K-vector
space D† which is canonically attached to D. Theorem 1.1 extends more generally to an
equivalence of categories between the category of E-linear representations of GK and the
category of étale (ϕq,ΓK)-modules over E ⊗F BK .

2. Locally, pro-analytic and F -analytic vectors

In this section, we recall the theory of locally analytic vectors of Schneider and Teit-
elbaum [20] but here we follow the constructions of Emerton [12] as in [2]. We also
define the notion of F -analytic vectors relative to the Galois group of a Lubin-Tate ex-
tension, following the definitions of [2]. We will use the following multi-index notations:
if c = (c1, . . . , cd) and k = (k1, . . . , kd) ∈ Nd (here N = Z≥0), then we let ck = ck1

1 ·. . .·ckdd .
Let G be a p-adic Lie group, and let W be a Qp-Banach representation of G. Let H be

an open subgroup of G such that there exists coordinates c1, · · · , cd : H → Zp giving rise
to an analytic bijection c : H → Zd

p. We say that w ∈ W is an H-analytic vector if there
exists a sequence {wk}k∈Nd such that wk → 0 inW and such that g(w) = ∑

k∈Nd c(g)kwk
for all g ∈ H. We let WH-an be the space of H-analytic vectors. This space injects
into Can(H,W ), the space of all analytic functions f : H → W . Note that Can(H,W )
is a Banach space equipped with its usual Banach norm, so that we can endow WH-an

with the induced norm, that we will denote by || · ||H . With this definition, we have
||w||H = supk∈Nd ||wk|| and (WH-an, || · ||H) is a Banach space.

We say that a vector w of W is locally analytic if there exists an open subgroup H
as above such that w ∈ WH-an. Let W la be the space of such vectors, so that W la =
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⋃
HW

H-an, where H runs through a sequence of open subgroups of G. The space W la is
naturally endowed with the inductive limit topology, so that it is an LB space. Note that
in the Lubin-Tate setting, we have W la = ⋃

n∈N W Γn−an.
LetW be a Fréchet space whose topology is defined by a sequence {pi}i≥1 of seminorms.

Let Wi be the Hausdorff completion of W at pi, so that W = lim←−
i≥1

Wi. The space W la

can be defined but as stated in [2], this space is too small in general for what we are
interested in, and so we make the following definition, following [2, Def. 2.3]:

Definition 2.1. — If W = lim←−
i≥1

Wi is a Fréchet representation of G, then we say that a

vector w ∈ W is pro-analytic if its image πi(w) in Wi is locally analytic for all i. We let
W pa denote the set of all pro-analytic vectors of W .

We extend the definition of W la and W pa for LB and LF spaces respectively.

Proposition 2.2. — Let G be a p-adic Lie group, let B be a Banach G-ring and let
W be a free B-module of finite rank, equipped with a compatible G-action. If the B-
module W has a basis w1, . . . , wd in which g 7→ Mat(g) is a globally analytic function
G→ GLd(B) ⊂Md(B), then

1. WH-an = ⊕d
j=1B

H-an · wj if H is a subgroup of G;
2. W la = ⊕d

j=1 B
la · wj.

Let G be a p-adic Lie group, let B be a Fréchet G-ring and let W be a free B-module
of finite rank, equipped with a compatible G-action. If the B-module W has a basis
w1, . . . , wd in which g 7→ Mat(g) is a pro-analytic function G→ GLd(B) ⊂Md(B), then

W pa =
d⊕
j=1

Bpa · wj.

Proof. — The part for Banach rings is proven in [4, Prop. 2.3] and the one for Fréchet
rings is proven in [2, Prop. 2.4].

The map ` : g 7→ logp χπ(g) gives an F -analytic isomorphism between Γn and πnOF
for n � 0. If W is an F -linear Banach representation of ΓK and n � 0, then we say,
following [2], that an element w ∈ W is F -analytic on Γn if there exists a sequence
{wk}k≥0 of elements of W with πnkwk → 0 such that g(w) = ∑

k≥0 `(g)kwk for all g ∈ Γn.
Let W Γn-an,F-la denote the space of such elements. Let W F-la = ⋃

n≥1W
Γn-an,F-la.

Lemma 2.3. — We have W Γn-an,F-la = W Γn-an ∩W F-la.

Proof. — See [2, Lemm. 2.5].
If τ ∈ Σ, we let ∇τ denote the derivative in the direction τ , which belongs to E ⊗Qp

Lie(ΓF ). It can be defined as follows: the E-vector space HomQp(F,E) is generated by
the elements of Σ. If W is an E-linear Banach representation of ΓK and if w ∈ W la and
g ∈ ΓK , then there exists elements {∇τ}τ∈Σ of FGal ⊗Qp Lie(ΓF ) such that we can write

log g(w) =
∑
τ∈Σ

τ(`(g)) · ∇τ (w).
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With the same notation, there existm� 0 and elements {wk}k∈NΣ such that if g ∈ Γm,
then g(w) = ∑

k∈NΣ `(g)kwk, where `(g)k = ∏
τ∈Σ τ ◦`(g)kτ . We have ∇τ (w) = w1τ where

1τ is the Σ-tuple whose entries are 0 except the τ -th one which is 1. If k ∈ NΣ, and if
we set ∇k(w) = ∏

τ∈Σ∇kτ
τ (w), then wk = ∇k(w)/k!.

Remark 2.4. — If w ∈ W la, then w ∈ W F-la if and only if∇τ (w) = 0 for all τ ∈ Σ\{id}.

We have the following structure result for locally and pro-analytic vectors in the rings
B̃I :

Theorem 2.5. — Let I = [r`; rk] with ` ≤ k, let K be a finite extension of F , and let
m ≥ 0 be such that tπ and tπ/Qk belong to (B̃I

F )Γm+k-an,F-la.
1. (B̃I

F )Γm+k-an,F-la ⊂ BI
F,m;

2. (B̃I
K)F-la = BI

K,∞;

3. (B̃†,r`rig,K)F-pa = B†,r`rig,K,∞.

Proof. — This is [2, Thm. 4.4].

3. F -analyticity

We say, following [2, §7] that an F -linear representation V of GK is F -analytic if
Cp⊗τF V is the trivial Cp-semilinear representation of GK for all embeddings τ 6= id ∈ Σ.

The following lemma shows that the condition for an E-representation to be F -analytic
depends only on the restriction of the elements of ΣE to F .

Lemma 3.1. — If V is an E-representation of GK, then the following are equivalent:
1. V seen as an F -representation is F -analytic;
2. Cp ⊗gE V is the trivial Cp-semilinear representation of GK for all g ∈ Gal(E/Qp)

such that g|F 6= id.

Proof. — See [2, Lemm. 7.2].

Definition 3.2. — If D†rig is a (ϕq,ΓK)-module over B†rig,K , and if g ∈ ΓK is close
enough to 1, then the series log(g) = log(1 + (g − 1)) gives rise to a differential operator
∇g : D†rig → D†rig. The map Lie ΓK → End(D†rig) arising from v 7→ ∇exp(v) is Qp-linear,
and we say, following [16, §2.1], [15, §1.3] and [2, §7], that D†rig is F -analytic if this map
is F -linear. This is the same as asking the elements of D†rig to be pro-F -analytic vectors
for the action of ΓK .

Given τ ∈ Σ and f(Y ) = ∑
k∈Z akY

k with ak ∈ F , let f τ (Y ) = ∑
k∈Z τ(ak)Y k. For τ ∈

Σ, let ñ(τ) be the lift of n(τ) ∈ Z/hZ belonging to {0, . . . , h−1}. Recall that E is a finite
extension of F that contains FGal and that if τ ∈ Σ, then we have ∇τ ∈ E ⊗F Lie(ΓF ).
The field E is a field of coefficients, so that GK acts E-linearly below.

Let tπ = logLT(u) ∈ B+
rig,K . Note that we actually have tπ ∈ B+

rig,F , and that ϕq(tπ) =
πtπ and g(tπ) = χπ(g)tπ if g ∈ GF . Let yτ = (τ ⊗ ϕñ(τ))(u) ∈ OE ⊗OF Ã+. We have
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g(yτ ) = [χπ(g)]τ (yτ ) and ϕq(yτ ) = [π]τ (yτ ) = τ(π)yτ + yqτ . Let tτ = (τ ⊗ ϕñ(τ))(tπ) =
logτLT(yτ ), let Qn = Qn(u) and Qτ

n = Qτ
n(yτ ), so that tτ = yτ

∏
n≥1Q

τ
n/π.

We have ∇τ (yτ ) = tτ · vτ where vτ = (∂(T ⊕LT U)/∂U)τ (yτ , 0) is a unit (see §2.1 of
[16]). Let ∂τ = t−1

τ v−1
τ ∇τ so that ∂τ (yτ ) = 1. If τ, υ ∈ Σ, then ∂τ ◦ ∂υ = ∂υ ◦ ∂τ , and

∂τ (yυ) = 0 if τ 6= υ.

Lemma 3.3. — We have ∂τ ((E ⊗F B̃†rig,K)pa) ⊂ (E ⊗F B̃†rig,K)pa.

Proof. — See [2, Lemm. 5.2].

Proposition 3.4. — Let M be a (ϕq,ΓK)-module over E ⊗F (B̃†rig,K)pa. Let
Sol(M) = {x ∈M such that ∇τ (x) = 0 for all τ ∈ Σ0} .

If for all τ ∈ Σ0, ∇τ (M) ⊂ tτ ·M , then there exists a unique (ϕq,ΓK)-module D†rig
over E ⊗F B†rig,K such that Sol(M) = (E ⊗F (B̃†rig,K)F-pa) ⊗E⊗FB†rig,K

D†rig and such that
M = (E ⊗F (B̃†rig,K)pa)⊗E⊗FB†rig,K

D†rig, and D†rig is an F -analytic (ϕq,ΓK)-module.
Moreover, if D is a (ϕq,ΓK)-module over E ⊗F B†rig,K, and if M = (E ⊗F

B̃†rig,K) ⊗E⊗FB†rig,K
D, then D is F -analytic if and only if for all τ ∈ Σ0, ∇τ (Mpa) ⊂

tτ ·Mpa, and in this case we have D = D†rig.

Proof. — We first prove the first part of the theorem. Let M be a (ϕq,ΓK)-module over
E ⊗F (B̃†rig,K)pa. Theorem 6.1 of [2] shows that

Sol(M) = {x ∈M such that ∇τ (x) = 0 for all τ ∈ Σ0}

is a free E ⊗F (B̃†rig,K)F-pa-module of rank d such that

(E ⊗F B̃†rig,K)⊗
E⊗F (B̃†rig,K)F-pa)F-pa Sol(M) = (E ⊗F B̃†rig,K)⊗E D.

By (3) of theorem 2.5, we have (B̃†rig,K)F-pa = B†rig,K,∞ = ⋃
n≥0 B†rig,K,n. Since ΓK is

topologically of finite type, there exist n ≥ 0, and a basis s1, . . . , sd of Sol(M) such that
Mat(ϕq) ∈ GLd(E ⊗F B†rig,K,n) and Mat(g) ∈ GLd(E ⊗F B†rig,K,n) for all g ∈ ΓK . If
D†rig = ⊕di=1(E ⊗F B†rig,K) · ϕnq (si), then D†rig is a (ϕq,ΓK)-module over E ⊗F B†rig,K such
that Sol(M) = (E ⊗F (B̃†rig,K)F-pa)⊗E⊗FB†rig,K

D†rig.
The module D†rig is uniquely determined by this condition: if there are two such modules

and if X denotes the change of basis matrix and P1, P2 denote the matrices of ϕq, then
X ∈ GLd(E ⊗F B†rig,K,n) for n � 0, and the equation X = P−1

2 ϕ(X)P1 implies that
X ∈ GLd(E ⊗F B†rig,K).

Since Sol(M) is a free E ⊗F (B̃†rig,K)F-pa-module, D†rig is also free of the same rank.
Now, let D be a (ϕq,ΓK)-module over E ⊗F B†rig,K , such that M = (E ⊗F

B̃†rig,K)pa ⊗E⊗FB†rig,K
D is such that for all τ ∈ Σ0, ∇τ (M) ⊂ tτ · M . We then

have D ⊂ Sol(M) so that D is F -analytic by the above. If D is an F -analytic (ϕq,ΓK)-
module over E ⊗F B†rig,K , then we have ∇τ (x) = 0 for all x ∈ D by remark 2.4 and so
∇τ (M) ⊂ tτ ·M for M = (E ⊗F B̃†rig,K)pa ⊗E⊗FB†rig,K

D by lemma 3.3.
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We have
M = (E ⊗F B̃†rig,K)pa ⊗E⊗FB†rig,K

D = (E ⊗F B̃†rig,K)pa ⊗E⊗FB†rig,K
D†rig,

and by taking the F -analytic elements, since both D and D†rig are F -analytic, we get that

MF−pa = (E ⊗F B̃†rig,K)F−pa ⊗E⊗FB†,F−pa
rig,K

D = (E ⊗F B̃†rig,K)F−pa ⊗E⊗FB†,F−pa
rig,K

D†rig.

As above, if X denotes the base change matrix between D and D†rig, we obtain that
X ∈ GLd(E ⊗F B†rig,K) so that D = D†rig.

4. (B,E)-pairs

Let B+
dR,BdR,B+

cris and Bcris be the usual Fontaine’s rings of p-adic periods, defined
for example in [14]. These rings come equipped with an action of GQp , and the rings B+

cris
and Bcris are endowed with an injective Frobenius ϕ. We let Be = (Bcris)ϕ=1. Berger
defined in [1] the notion of B-pairs, that is pairs W = (We,W

+
dR), where We is a free

Be-module of finite rank, equipped with a semilinear continuous action of GK and where
W+
dR is a GK-stable B+

dR-lattice inside WdR = BdR ⊗Be We. To a p-adic representation V ,
one can attach the B-pair W (V ) = (Be ⊗Qp V,B+

dR ⊗Qp V ), and the functor V 7→ W (V )
is fully faithful since Be ∩B+

dR = Qp. Recall that t is the usual t in p-adic Hodge theory
(note that t corresponds to the element tp for F = Qp) and that B+

dR/tB+
dR = Cp.

Berger showed [1, Thm. 2.2.7] how to attach to any B-pair a cyclotomic (ϕ,Γ)-module
D(W ) on the (cyclotomic) Robba ring, and that this functor induces an equivalence of
categories.

Let E be a field of coefficients as previously. Let Be,E = E ⊗Qp Be, B+
dR,E =

E ⊗Qp B+
dR and BdR,E = E ⊗Qp BdR, where GQp acts E-linearly on E. A (B,E)-pair

is a pair W = (We,W
+
dR), where We is a free Be,E-module of finite rank, equipped with

a semilinear continuous action of GK and where W+
dR is a GK-stable B+

dR,E-lattice in-
side WdR = BdR,E ⊗Be,E

We. To an E representation V , one can attach the (B,E)-pair
W (V ) = (Be ⊗Qp V,B+

dR ⊗Qp V ), and this functor is once again fully faithful. Theorem
2.2.7 of [1] has been extended by Nakamura [18, Thm. 1.36] for (B,E)-pairs and cyclo-
tomic E-(ϕ,Γ)-modules, that is (ϕ,Γ)-modules over the cyclotomic Robba ring tensored
by E over Qp.

Let F,E be as in §1. Note that we have an isomorphism E ⊗Qp F '
∏
τ∈Σ

E, given by

a⊗ b 7→ (aτ(b))τ∈Σ. Since F ⊂ B+
dR, we have natural isomorphisms

E ⊗Qp B+
dR ' (E ⊗Qp F )⊗F B+

dR ' (
∏
τ∈Σ

E)⊗F B+
dR '

∏
τ∈Σ

B+
dR,τ

where B+
dR,τ = E ⊗τF B+

dR, and

E ⊗Qp BdR '
∏
τ∈Σ

BdR,τ

where BdR,τ = E ⊗τF BdR.
We thus get decompositions W+

dR '
∏
τ∈Σ

W+
dR,τ and WdR '

∏
τ∈Σ

WdR,τ .
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We say that a (B,E)-pair is F -analytic if for all τ ∈ Σ0, W+
dR,τ/tW

+
dR,τ is the trivial

Cp-semilinear representation of GK . The following lemma shows that this definition is
compatible with the one of F -analytic representation:

Lemma 4.1. — Let V be an E-representation of GK. Then V is F -analytic if and only
if the (B,E)-pair W (V ) = (We,W

+
dR) = (Be ⊗Qp V,B+

dR ⊗Qp V ) is F -analytic.

Proof. — We have B+
dR/tB+

dR = Cp, so that W+
dR/tW

+
dR = Cp ⊗Qp V '

∏
τ∈Σ

(Cp ⊗τF V ),

and W+
dR,τ/tW

+
dR,τ = Cp ⊗τF V , and so the equivalence is clear.

Lemma 4.2. — We have Be,E = E ⊗F (B̃†rig[1/t])ϕq=1.

Proof. — First, recall that Be = (B̃†rig,η[1/t])ϕ=1 (this is [1, Lemm. 1.1.7]). Since ϕq is
F -linear, we have (B̃†rig[1/t])ϕq=1 = (F ⊗F0 B̃†rig,η[1/t])ϕq=1 = F ⊗F0 (B̃†rig,η[1/t])ϕ

h=1. Now
since Gal(F0/Qp) acts F0-semi-linearly on (B̃†rig,η[1/t])ϕ

h=1 by ϕ, Speiser’s lemma implies
that (B̃†rig,η[1/t])ϕ

h=1 = F0 ⊗Qp Be. Thus, we get that
Be,E = E ⊗Qp Be = E ⊗F F ⊗F0 (F0 ⊗Be)

and what we just did implies that
Be,E = E ⊗F (B̃†rig[1/t])ϕq=1.

Lemma 4.3. —
1. The t-adic valuation of the τ ′-component of the image of tτ by the map B̃+

rig →
F ⊗Qp BdR = ∏

τ ′∈Σ BdR given by x 7→ {(τ ′ ⊗ ϕn(τ ′))(x)}τ ′∈Σ is 1 if τ ′ = τ−1 and 0
otherwise.

2. There exists u ∈ (F ⊗ Q̂p
unr)× such that ∏τ∈Σ tτ = u · t in B̃+

rig.

Proof. — These are items 2 and 3 of [5, Prop. 2.4], using B̃+
rig instead of F ⊗F0 B+

cris.

Lemma 4.2 allows us to see E ⊗F B̃†rig[1/t] as a Be,E-module.
Let Ω = {(τ, n) ∈ Gal(E/Qp) × Z such that n(τ |F ) ≡ n mod h}. For n ≥ 0, let

rn = pn−1(p − 1), and for r > 0, let n(r) be the least integer n such that rn ≥ r. For
r ≥ 0, we let Ωr = {(τ, n) ∈ Ω such that n ≥ n(r)}. For g = (τ, n) ∈ Ω, we let τ(g) = τ

and n(g) = n. If min(I) ≥ r and if g ∈ Ωr, we have a map ιg : E⊗F B̃I → E⊗τ(g)|F
F B+

dR =
BdR,τ(g)|F , defined in [2, §5] and given by x 7→ (g−1 ⊗ (g|−1

F ⊗ ϕ−n(g)))(x).

Lemma 4.4. — Let W be a (B,E)-pair of rank d, and let

D̃r(W ) =
{
y ∈ (E ⊗F B̃†,rrig[1/t])⊗Be,E

We such that ιg(y) ∈ W+
dR,τ(g)|F for all g ∈ Ωr

}
.

Then:
1. D̃r(W ) is a free E ⊗F B̃†,rrig-module of rank d;

2. D̃r(W )[1/t] = (E ⊗F B̃†,rrig[1/t])⊗Be,E
We.

Proof. — This is [1, Lemm. 2.2.1] tensored by E.
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If W is a (B,E)-pair, we let D̃(W ) = (E ⊗F B̃†rig) ⊗
E⊗F B̃†,rrig

D̃r(W ), and if I is a
subinterval of [r; +∞[, we let D̃I(W ) = (E ⊗F B̃I) ⊗

E⊗F B̃†,rrig
D̃r(W ). By the same

argument as in [1, Lemm. 2.2.2], this does not depend on the choice of r ∈ I.

Proposition 4.5. — IfW is a (B,E)-pair of rank d, then there exists a unique (ϕq,Γ′K)-
module Dη(W ) over E ⊗F0 B†rig,K,η such that (E ⊗F0 B̃†rig)⊗E⊗F0B†rig,K,η

Dη(W ) = D̃(W ).

Proof. — This is [1, Prop. 2.2.5] up to a tensor product, and using the twisted cyclotomic
case instead of the classical one, but again by using [2, §8], it does not change the
arguments of the proof.

For r ≥ 0 such that Dη(W ) and all its structures are defined over E ⊗F0 B†,rrig,K,η,
we let Dr

η(W ) be the associated (E ⊗F0 B†,rrig,K,η)-module so that Dη(W ) = (E ⊗F
B†rig,K,η) ⊗E⊗F0B†,rrig,K,η

Dr
η(W ). For I = [r; s], we let DI

η = (E ⊗F0 BI
K,η) ⊗E⊗F0B†,rrig,K,η

Dr
η(W ). Let D̃I

K(W ) = (D̃I(W ))HK and D̃K(W ) = D̃(W )HK , so that D̃I
K(W ) =

(E ⊗F B̃I
K) ⊗E⊗F0BI

K,η
DI
η(W ) and D̃K(W ) = (E ⊗F B̃†rig,K) ⊗E⊗F0B†rig,K,η

Dη(W ) (since
Dη(W ) is invariant under HK).

Proposition 4.6. — We have
1. D̃I

K(W )la = (E ⊗F B̃I
K)la ⊗E⊗FBI

K,η
DI
η(W );

2. D̃K(W )pa = (E ⊗F B̃†rig,K)pa ⊗E⊗FB†rig,K,η
Dη(W ).

Proof. — The same proof as [16, §2.1] shows that the elements of DI
η(W ) are locally

analytic vectors, and the result now follows from proposition 2.2.

Theorem 4.7. — IfW is an F -analytic (B,E)-pair of rank d, then there exists a unique
F -analytic (ϕq,ΓK)-module D(W ) over E ⊗F B†rig,K such that

(E ⊗F B̃†rig)⊗E⊗FB†rig,K
D(W ) = D̃(W ).

Proof. — Let W be an F -analytic (B,E)-pair of rank d, and let D̃K(W ) be as above.
Let r ≥ 0 and let y ∈ (D̃r

K(W ))pa. Let τ ∈ Σ \ {id} and let
Ωτ,r = {g ∈ Ω such that n(g) ≥ n(r) and τ(g) = τ} .

Let g ∈ Ωτ,r. We have ιg(y) ∈ W+
dR,τ . Write xg for the image of ιg(y) in W+

dR,τ/tW
+
dR,τ .

Since the filtration on WdR,τ is Galois stable, we get that xg is invariant under HK

(since ιg(y) is), and is a locally analytic vector of (W+
dR,τ/tW

+
dR,τ )HK using the fact that

y ∈ (D̃K(W )r)pa. Note that ∇id = 0 on ((W+
dR,τ/tW

+
dR,τ )HK )la since W is F -analytic and

by [2, Prop. 2.10]. This shows that ∇id(xg) = 0 and so ∇id(ιg(y)) = 0 mod tπ (recall
that t and tπ both generate the kernel of θ in B+

dR by lemma 4.3). Using the fact that
ιg ◦ ∇τ = ∇id ◦ ιg, this implies that tπ|ιg ◦ ∇τ (y) in W+

dR,τ . By lemma 4.3, this proves
that ιg((Qτ

n)−1 · ∇τ (y)) ∈ W+
dR,τ for n = n(g). By definition of D̃r(W ), this proves that

∇τ (y) ∈ Qτ
n · D̃r(W ) for all n ≥ n(r), and so ∇τ is divisible by

+∞∏
n=n(r)

Qτ
n in D̃r(W ) (the
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argument for the divisibility by an infinite product is the same as the one given in the
proof of [2, Lemm. 10.2]), hence by tτ .

In particular, for all τ ∈ Σ0, we have ∇τ (D̃r(W )pa) ⊂ tτ · D̃r(W )pa. By proposi-
tion 3.4, there exists a unique (ϕq,ΓK)-module D†rig over E ⊗F B†rig,K such that (E ⊗F
B̃†rig)⊗E⊗FB†rig,K

D†rig = D̃(W ), which is what we wanted.

Proposition 4.8. — If D is a ϕq-module over B†rig,K, then there exists r(D) ≥ r(K)
such that, for all r ≥ r(D), there exists a unique sub B†,rrig,K-module Dr of D such that:

1. D = B†rig,K ⊗B†,rrig,K
Dr;

2. the B†,qrrig,K-module B†,qrrig,K ⊗B†rig,K ,r
Dr has a basis contained inside ϕq(D). Moreover,

if D is a (ϕq,ΓK)-module, one has g(Dr) = Dr for all g ∈ ΓK.

Proof. — This is exactly the same proof as [1, Thm. I.3.3] but using Lubin-Tate (ϕq,ΓK)-
modules instead of cyclotomic ones, and tensoring by E over F .

Proposition 4.9. — If D is a (ϕq,ΓK)-module over E ⊗F B†rig,K, free of rank d, then

1. We(D) = (E ⊗F B̃†rig,K [1/t]⊗B†rig,K
D)ϕq=1 is a free Be,E-module of rank d which is

GK-stable;

2. W+
dR = ∏

τ∈Σ

(
(E ⊗F B+

dR)⊗ιg
E⊗FB

†,rn(g)
rig,K

Drn(g)

)
g∈Ωr,τ

does not depend on n(g) � 0

and is a free E ⊗Qp B+
dR = (B+

dRτ )τ∈Σ-module of rank d and GK-stable.
3. W (D) = (We(D),W+

dR(D)) is a (B,E)-pair. Moreover, if D is F -analytic, then so
is W (D).

Proof. — The proof of items 1 and 2 is the same as [1, Prop. 2.2.6]. Assume now that
D is F -analytic, and let us prove that W (D) is F -analytic. Let τ ∈ Σ \ {id}.

By item 2, we have W+
dR,τ = (E ⊗F B+

dR) ⊗ιg
E⊗FB

†,rn(g)
rig,K

Drn(g) for some g ∈ Ωr,τ . We

can find a basis e1, . . . , ed of Drn(g) over E ⊗F B†,rn(g)
rig,K such that the image of the basis

ιg(e1), . . . , ιg(ed) ofW+
dR,τ over E⊗FB+

dR modulo tπ is a basis of the E⊗FCp-representation
W+
dR,τ/tW

+
dR,τ .

Since the ei are pro-analytic vectors of Drn(g) for the action of ΓK , the same argument
as in the proof of theorem 4.7 shows that their image inW+

dR,τ/tW
+
dR,τ are invariant under

HK and locally analytic vectors of (W+
dR,τ/tW

+
dR,τ )HK . Since

∇τ

(
(E ⊗F B̃†,rn(g)

rig,K )pa ⊗
E⊗FB

†,rn(g)
rig,K

Drn(g)

)
⊂ tτ ·

(
(E ⊗F B̃†,rn(g)

rig,K )pa ⊗
E⊗FB

†,rn(g)
rig,K

Drn(g)

)
by lemma 2.4 and since

W+
dR,τ = (E ⊗F B+

dR)⊗ιg
E⊗FB

†,rn(g)
rig,K

((E ⊗F B̃†,rn(g)
rig,K )pa ⊗

E⊗FB
†,rn(g)
rig,K

Drn(g))

we get that ∇id(ei) = 0 mod tπ for all i since ιg ◦ ∇τ = ∇id ◦ ιg and since ιg(tτ ) = tπ.
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This implies that ∇id = 0 on (W+
dR,τ/tW

+
dR,τ )HK ,la so that (W+

dR,τ/tW
+
dR,τ ) is Cp-

admissible as an E ⊗F Cp representation of GK , using the discussion following [4, Thm.
4.11].

Theorem 4.10. — The two functors W 7→ D(W ) and D 7→ W (D) are inverse one
to another and induce an equivalence of categories between the category of F -analytic
(B,E)-pairs and the category of F -analytic (ϕq,ΓK)-modules.

Proof. — Let W = (We,W
+
dR) be an F -analytic (B,E)-pair and let D = D(W ). By

definition of W (D), we have

(E ⊗F B̃†rig[1/t])⊗Be,E
We(D) = (E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K

D

and by definition of D(W ), we have

(E ⊗F B̃†rig[1/t])⊗Be,E
We = (E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K

D

so that, taking the invariants by ϕq, we get that We ' W (D) as Be,E-representations.
Let τ ∈ Σ. By definition of W+

dR,τ (D), we have W+
dR,τ (D) = (E ⊗F B+

dR)⊗ιg Drn(g) for
some g ∈ Ωr,τ with r big enough, and hence

W+
dR,τ (D) = (E ⊗F B+

dR)⊗ιg D̃rn(g)

where D̃r = D̃r(W ) = (E ⊗F B̃†,rrig)⊗E⊗FB†,rrig,K
Dr by proposition 4.5. Recall that

D̃r(W ) =
{
y ∈ (E ⊗F B̃†,rrig[1/t])⊗Be,E

We such that ιg(y) ∈ W+
dR,τ(g)|F for all g ∈ Ωr

}
,

so that, after tensoring by E ⊗F B+
dR over ιg, we get W+

dR,τ (D(W )) = W+
dR,τ .

Let D be an F -analytic (ϕq,ΓK)-module and let W = W (D) and D̃ = (E ⊗F
B†rig)⊗E⊗FB†rig,K

D. The same reasoning as above shows that

(E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K
D = (E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K

D(W (D))

and that

(E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K
D̃ = (E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K

D̃(W (D)).

If M is a (ϕq,ΓK)-module over E ⊗F B†rig, note that we can recover M inside M [1/t]
by

M =
{
x ∈M [1/t] such that ιg(x) ∈ (E ⊗F B+

dR)⊗ιg
E⊗F B̃†rig

M for all g with n(g)� 0
}
.

In particular, since

(E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K
D̃ = (E ⊗F B̃†rig[1/t])⊗E⊗FB†rig,K

D̃(W (D)),

this shows that
D̃ = D̃(W (D)).
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Since D is F -analytic, we have∇τ ((D̃K)pa) ⊂ tτ ·(D̃K)pa) for all τ ∈ Σ\{id} by proposition
3.4, hence there exists, still by proposition 3.4, a unique F -analytic (ϕq,ΓK)-module D†rig
over E ⊗F B†rig,K such that

Sol(D̃pa
K ) = (E ⊗F (B̃†rig,K)F-pa)⊗

E⊗F B̃†rig,K
D†rig

and such that
D̃ = (E ⊗F B̃†rig,K)⊗E⊗FB†rig,K

D†rig

In particular, we have D = D(W (D)) = D†rig, which concludes the proof.

We now explain how to use this result to generalize Porat’s result [19, Thm. 6.8].
Recall that an E-representation V is said to be split trianguline if its corresponding
cyclotomic (ϕ,Γ)-module D†cycl(V ) over the Robba ring E ⊗ B†rig,K,η (here we take η to
be the trivial unramified character of GK) is a successive extension of (ϕ,Γ)-modules of
rank 1. Note that this is the same as asking that D = D†cycl(V ) is equipped with a
strictly increasing filtration Fil0(D) = {0} ⊂ Fil1(D) ⊂ · · · ⊂ Fild(D) = D of cyclotomic
(ϕ,Γ)-modules over E⊗B†rig,K,η which are direct summands of D as E⊗B†rig,K,η-modules,
where d = dimE(V ).

Recall (see the beginning of §3 of [3]) that it is equivalent to ask the (B,E)-pair W (V )
attached to V to be a successive extension of (B,E)-pairs of rank 1.

An E-representation V is said to be trianguline if there exists an extension E ′ of E
such that E ′ ⊗E V is split trianguline.

An F -analytic E-representation V of GK is said to be split Lubin-Tate trianguline if its
(ϕq,ΓK)-module over E ⊗B†rig,K is a successive extension of (ϕq,ΓK)-modules of rank 1,
and to be Lubin-Tate trianguline if there exists E ′/E a finite extension such that E ′⊗E V
is Lubin-Tate trianguline.

Theorem 4.11. — Let V be an F -analytic representation of GK. Then V is trianguline
in the cyclotomic sense if and only if it is Lubin-Tate trianguline.

Proof. — First note that it suffices to prove the result for split trianguline representations.
Now let V be an F -analytic representation of GK . Assume that it is trianguline in the
cyclotomic sense. Then its corresponding (B,E)-pair W (V ) is a successive extension of
(B,E)-pairs of rank 1. There exists therefore a triangulation of the (B,E)-pair W (V ),
that is a filtration

0 = W0 ⊂ W1 ⊂ · ⊂Wd = W (V )
by sub-(B,E)-pairs such that Wi is saturated in Wi+1 and the quotient Wi+1/Wi is a
rank 1 (B,E)-pair.

Since V is F -analytic, so is W (V ) by lemma 4.1, and thus so are the Wi. By theorem
4.10, for any i, Di := D(Wi) is an F -analytic Lubin-Tate (ϕq,ΓK)-module over E⊗B†rig,K ,
and we have

0 = D0 ⊂ D1 ⊂ · ⊂ Dd = D(W (V )) = D†rig(V ).
Moreover, because Wi is saturated in Wi+1 and the quotient Wi+1/Wi is a rank 1 F -
analytic (B,E)-pair, we get that Di is saturated in Di+1 and that the quotient is a rank



F -ANALYTIC B-PAIRS 15

1 F -analytic Lubin-Tate (ϕq,ΓK)-module, so that V is split trianguline in the Lubin-Tate
sense.

For the converse, assume that D†rig(V ) is a successive extension of rank 1 F -analytic
Lubin-Tate (ϕq,ΓK)-modules. Then we have a triangulation

0 = D0 ⊂ D1 ⊂ · ⊂ Dd = D(W (V )) = D†rig(V )
whereDi is saturated inDi+1 and the quotient is a rank 1 F -analytic Lubin-Tate (ϕq,ΓK)-
module. By theorem 4.10, if Wi = W (Di) then

0 = W0 ⊂ W1 ⊂ · ⊂Wd = W (D†rig(V )) = W (V )
is a triangulation of W (V ) such that Wi is saturated in Wi+1 and the quotient Wi+1/Wi

is a rank 1 (B,E)-pair and thus V is split trianguline in the usual sense.

5. A simpler equivalence in the F -analytic case

Let BLT
e,F = (B̃+

rig[1/tπ])ϕq=1 = (B̃†rig[1/tπ])ϕq=1. Following [11], we make the following
definition:

Definition 5.1. — 1. Let σ ∈ ΣE be any embedding. A Bσ-pair is the data of a
couple Wσ = (W LT

σ,E,W
+
dR,σ) where W LT

σ,E is a finite free E ⊗σF BLT
e,F -module equipped

with a semi-linear GK action and W+
dR,σ is a GK-invariant B+

dR,σ-lattice in WdR,σ :=
W LT
σ,E ⊗E⊗σFBLT

e,F
BdR,σ.

2. For two Bσ-pairs Wσ,W
′
σ, a morphism f : Wσ−→W ′

σ is a GK-invariant E ⊗σF BLT
e,F -

linear map fLT
σ,E : W LT

σ,E−→(W ′
σ,E)LT such that the induced BdR,σ-linear map fdR,σ :=

fLT
σ,E ⊗ id : WdR,σ−→W ′

dR,σ sends W+
dR,σ to (W ′)+

dR,σ.

Let W = (We,W
+
dR) be a (B,E)-pair. Let W LT

σ,E ={
w ∈ We : τ(w) ∈ W+

dR,σ◦τ−1 for all τ ∈ Gal(E/Qp), τ|F 6= id
}
.

By [11, Lemm. 1.3], this is an E ⊗σF BLT
e,F -module. Proposition 3.7 of [11] shows that for

σ ∈ ΣE, the functor Fσ : {(B,E) − pairs}−→{Bσ − pairs} given by W = (We,W
+
dR) 7→

Wσ = (W LT
σ,E,W

+
dR,σ) induces an equivalence of categories.

For σ ∈ ΣE, let Gσ denote the inverse functor of Fσ defined by Ding in [11, Lemm.
3.8]. We say that a Bid-pair W is F -analytic if for all σ ∈ ΣE such that σ|F 6= idF ,
then W+

dR,σ/tW
+
dR,σ is the trivial Cp-representation of GK , where W+

dR,σ is the second
component of the Bσ-pair Fσ ◦ Gid(W ). By [11, Lemm. 3.9], this is the same as asking
that the corresponding (B,E)-pair Gid(W ) is F -analytic.

Proposition 5.2. — If D is a (ϕq,ΓK)-module over E ⊗F B†rig,K, free of rank d, then

1. W LT
id,E(D) = (E ⊗F B̃†rig,K [1/tπ]⊗B†rig,K

D)ϕq=1 is a free E ⊗σF BLT
e,F -module of rank d

which is GK-stable;

2. W+
dR,id =

(
(E ⊗F B+

dR)⊗ιg
E⊗FB

†,rn(g)
rig,K

Drn(g)

)
g∈Ωid,r

does not depend on n(g)� 0 and

is a free B+
dR,id-module of rank d which is GK-stable.
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3. W (D)LT = (W LT
id,E(D),W+

dR,id(D)) is a Bid-pair. Moreover, if D is F -analytic, then
so is W (D).

Proof. — The proof of items 1, 2 and 3 is the same as in 4.9. The part on F -analyticity
now follows from the remark above and the fact that the Bid-pair W (D) we just con-
structed is exactly Fid(W ′) where W ′ is the (B,E)-pair attached to D constructed in
proposition 4.9.

Lemma 5.3. — Let D̃r(W )LT ={
y ∈ (E ⊗F B̃†,rrig[1/tπ])⊗E⊗FBLT

e,F
W LT

id,E, ιg(y) ∈ W+
dR,id, g ∈ Ωr, τ(g) = id

}
.

Then:
1. D̃r(W )LT is a free E ⊗F B̃†,rrig-module of rank d;

2. D̃r(W )LT[1/tπ] = E ⊗F B̃†,rrig[1/tπ]⊗E⊗FBLT
e,F
W LT

id,E.

Proof. — This is the same proof as in lemma 4.4 but here we do not need to keep track
of all the embeddings.

We know that there are enough pro-analytic vectors inside D̃(W )LT, just because we
already know by the constructions of §4 that it contains the F -analytic (ϕq,ΓK)-module
D(W ′) attached to W ′ = Gid(W ) of theorem 4.7. We can now recover it by taking the
pro-analytic vectors of D̃(W )LT and taking the module D†rig(D̃(W )LT) given by propo-
sition 3.4. In particular, the following is a straightforward consequence of our previous
constructions:

Theorem 5.4. — The functors D 7→ W (D)LT and Wid 7→ D†rig(D̃(W )LT) are inverse of
each other an give rise to an equivalence of categories between the category of F -analytic
(ϕq,ΓK)-modules and the category of F -analytic Bid-pairs.

6. Quick summary of the rings

While most of the rings mentioned in this paper should be well known to the experts,
we give here a description or an interpretation of those rings in order for the reader to
have a better intuition of what they are.

Recall that F0 is a finite unramified extension of Qp, F/F0 is a finite totally ramified
extension and K/F is a finite extension. We also let F∞/F denote the Lubin-Tate
extension of F attached to a uniformizer π of F . We letK ′ denote the maximal unramified
extension of F inside KF∞.

For I = [r, s] a compact subinterval of [0,+∞[ such that 0 ∈ I or I ⊂ [1,+∞[, we let
C(I) denote the annulus {

z ∈ Cp, p
−1/r′ ≤ |z|p ≤ p−1/s′

}
where if ρ ≥ 0, then ρ′ = ρ · e · p/(p− 1) · (q− 1)/q, and we admit that p−1/r′ = 0 if r = 0.

For I = [r,+∞[, we let C(I) denote the annulus{
z ∈ Cp, p

−1/r′ ≤ |z|p < 1
}
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Let X be a variable. Then we have the following description of the rings BI
K , B†,rK and

B†,rK,rig:

BI
K = {Laurent series f(X) with coefficients in K ′, which converges on C(I)}

B†,rK = {Laurent series f(X) with coefficients in K ′,which converges on
C([r,+∞[) and is bounded}

B†,rrig,K = {Laurent series f(X) with coefficients in K ′, which converges on C(I)}.
If F = K, then Gal(Qp/F ) acts on these rings by g(X) = [χπ(g)](X) and we have

maps ϕq : BI
K−→BqI

K ,B
†,r
K −→B†,qrK ,B†,rrig,K−→B†,qrrig,K defined by X 7→ [π](X).

When F 6= K, there is still a way to define actions of Gal(Qp/K) and ϕq, but they are
usually no longer explicit.

The elements of B̃I , B̃†,r and B̃†,rrig,K cannot be directly interpreted as functions on
some annulus, but one should think of them as limits of algebraic functions. With that in
mind, B̃I is the ring of limits of algebraic functions on C(I), B̃†,rrig is the ring of limits of
algebraic functions on C([r,+∞[), and B̃†,r is the subring of B̃†,rrig consisting of bounded
elements.

The rings B̃I , B̃†,r and B̃†,rrig,K come equipped with an action of Gal(Qp/F ), and with
maps ϕq : B̃I−→B̃qI , B̃†,r−→B̃†,qr, B̃†,rrig−→B̃†,qrrig , which coincides with the actions defined
above on BI

K , B†,rK and B†,rrig,K .
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