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Abstract

Technologies based on Artificial Intelligence (AI) have gained tremendous
popularity in the past few years. This is made possible by the fact that Machine
Learning models can now achieve amazing performance, even outperforming hu-
mans in several application domains. Unfortunately, there is still one fundamental
aspect in which humans succeed and machines fail miserably: trustworthiness.
Countless cases of unintended harm caused by AI-enabled technologies have
been reported and have attracted wide media coverage. While unintentional, the
consequences of these events could be devastating and affect our quality of life.
Even more so if we consider that AI is being increasingly adopted in sensitive
domains to support high-stakes decisions. In light of these observations, the
need for Trustworthy AI is particularly pressing.

In this thesis, we profoundly investigate the properties of popular models that
have been used for years in academia and industry and provide tools to improve
their trustworthiness. The focus is on two specific dimensions in the space of
Trustworthy AI, i.e., interpretability and robustness, and on two application
domains of great practical interest, i.e., Anomaly Detection and Computer Vision.
In the context of Anomaly Detection, we introduce novel model-specific methods
to interpret the Isolation Forest, a popular model in this field, at both the global
and local scales. In Computer Vision, we address the problem of robust image
classification with Convolutional Neural Networks. We first unveil unknown
properties of adversarially-trained models, elucidating inner mechanisms through
which robustness against adversarial examples may be enforced by Adversarial
Training. We also showcase failure modes related to the simplicity biases induced
by Adversarial Training that may be harmful when robust models are deployed
in the wild. Finally, we design a novel filtering procedure aimed at removing
textures while preserving the image’s semantic content. Such filtering procedure
is then exploited to design a defense against adversarial attacks.

Keywords: Anomaly Detection, Computer Vision, Deep Learning, Interpretabil-
ity, Robustness, Trustworthy Machine Learning

vii





Sommario

Le tecnologie basate sull’Intelligenza Artificiale (IA) hanno guadagnato
un’enorme popolarità negli ultimi anni. Ciò è reso possibile dal fatto che i
modelli di Machine Learning possono ora raggiungere prestazioni sorprendenti,
superando persino gli umani in diverse applicazioni. Sfortunatamente, c’è ancora
un aspetto fondamentale in cui gli umani hanno successo e le macchine falliscono
miseramente: l’affidabilità. Sono stati segnalati innumerevoli casi di danni non
intenzionali causati da tecnologie abilitate dall’IA che hanno attirato un’ampia
copertura mediatica. Sebbene non intenzionali, le conseguenze di questi eventi
potrebbero essere devastanti e influire sulla qualità della nostra vita. A maggior
ragione se si considera che l’IA viene sempre più usata in domini delicati per
supportare decisioni ad alto rischio. Alla luce di queste osservazioni, la necessità
di un’IA affidabile è particolarmente urgente.

In questa tesi, vengono analizzate in profondità le proprietà di modelli popo-
lari che sono stati utilizzati per anni nel mondo accademico e industriale e
vengono forniti strumenti per migliorarne l’affidabilità. L’attenzione è rivolta a
due dimensioni specifiche nell’ambito del Trustworthy AI, ovvero interpretabilità
e robustezza, e a due domini applicativi di grande interesse pratico, ovvero
Anomaly Detection e Computer Vision. Nel contesto dell’Anomaly Detection,
vengono introdotti nuovi metodi ‘model-specific’ per interpretare la Isolation
Forest, un modello popolare in questo ambito, sia su scala globale che locale.
In Computer Vision, viene affrontato il problema della classificazione robusta
delle immagini con reti neurali convoluzionali. Per prima cosa vengono svelate
proprietà sconosciute dei modelli allenati con il paradigma Adversarial Training,
chiarendo i meccanismi interni attraverso i quali la robustezza contro gli adver-
sarial examples può essere indotta da Adversarial Training. Vengono messe in
luce anche modalità di errore relative ai simplicity bias indotti da Adversarial
Training, che possono rivelarsi dannose quando i modelli robusti vengono utiliz-
zati nel mondo reale. Infine, viene proposta una nuova procedura di filtraggio
volta a rimuovere le texture e al tempo stesso preservare il contenuto semantico
dell’immagine. Tale procedura di filtraggio viene quindi sfruttata per progettare
una difesa contro gli adversarial examples.
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Chapter 1

Introduction

1.1 Trustworthy AI

In the last decade, amazing progress has been made in challenging tasks in
Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI),
ranging from Speech Recognition [Han et al., 2020,Baevski et al., 2020,Shi et al.,
2021], and Natural Language Processing [Brown et al., 2020,Devlin et al., 2018]
to Computer Vision [Vaswani et al., 2017, Yu et al., 2022], and Time Series
Forecasting [Oreshkin et al., 2019,Lim et al., 2021]. Researchers and practitioners
have been pushing the boundaries of predictive performance to the point that
many ML models completed the shift from research laboratories to the real world
and started being deployed in the wild, spanning basically every aspect of our
lives. For example, virtual assistants like Apple’s Siri, Microsoft’s Cortana, and
Amazon’s Alexa are now embedded in smartphones and other devices that we use
daily. Waymo’s self-driving taxis are being tested across the roads of California.
Netflix’s recommender engine drives the choice of the movie we will watch after
dinner. Fitbit devices can help us spot signs of Atrial Fibrillation so that we
can monitor the health status of our heart. The list could continue endlessly
and we would find out that our relationship with AI-enabled technologies is
tighter than one would imagine. Not only ML affects our everyday routine, but
it is also increasingly being used to tackle long-standing problems in science.
AlphaFold [Jumper et al., 2021] is boosting research in biology and medicine,
e.g., by supporting the design of vaccines to prevent malaria [Ko et al., 2022] or
by accelerating the engineering of enzymes to fight plastic pollution [DeepMind,
]. AlphaTensor [Fawzi et al., 2022] discovered novel and more efficient algorithms
for matrix multiplication. GraphCast [Lam et al., 2022], an ML model based on
Graph Neural Networks for weather forecasting, outperforms the most accurate
deterministic medium-range weather forecasting system in the world. In light
of this pervasive presence of AI algorithms, it is clear that the reliability of
their predictions and the means by which interaction with human beings is
implemented are aspects of the utmost importance to ensure safe and ethical

1
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use of AI. Although it is obvious that these technologies should undergo socio-
political deliberation and consensus before deployment [Floridi, 2019], along with
extensive testing routines to prevent unexpected behaviors, this was not standard
practice, and many AI-based products have been prematurely launched on the
market. Some ignominious failures attracted great attention from the media
and we learned the lesson the hard way, i.e., by directly witnessing technologies
we were overexcited about failing miserably. On March 18th, 2018 a woman in
Tempe (Arizona) died after being hit by an Uber self-driving car while jaywalking
with her bicycle [Wakabayashi, ]. IBM’s Watson, a supercomputer designed
to provide cancer treatment recommendations, suggested a fake patient with
severe bleeding be given a drug that could cause the bleeding to worsen [Chen, ].
OpenAI’s large language model GPT-3 suggested a fake patient with suicidal
thoughts to kill himself [Quach, ]. Amazon’s Alexa, after being asked to propose
a challenge, told a child to touch an electrical plug with a penny [Shead, ]. These
are only a few examples of how harmful AI can turn in the wild - although not
deliberately - if extensive analysis and adequate stress tests are not included in
the design phase.

The (unintended) untrustworthy sides of AI that emerged in the last few years
pose new challenges for all stakeholders, which lead to new research questions for
AI scientists, the need for new regulations for lawmakers, and the redefinition of
AI-related operations for industrial players. Most importantly, as Trustworthy
AI [Kaur et al., 2022,Floridi, 2019,Liu et al., 2022] is a strongly multidisciplinary
field, academia, industry, and governments are called to cooperate closely to
carry out a joint research agenda aimed at building the new generation of
Trustworthy AI technologies. The promise to create AI operating in the service
of humanity with no harm and in a way that we can fully trust is exciting, but it
does not come without obstacles, especially when bringing together people with
extremely different backgrounds. Establishing a common ground for effective
communication is not an easy task and requires ad-hoc training to make non-
technical professionals aware of what can and cannot be achieved with currently
available technologies. Domain experts, on the other hand, should encompass
ethical principles in their workflow and figure out how to translate them into
technical characteristics of the algorithms to be developed. Moreover, as often
happens for new areas of research that have no clear and unique definitions
of the core concepts, there are currently more than 70 frameworks and lists of
principles about the ethics of AI [Floridi, 2019]. This generates confusion among
stakeholders and offers the possibility of cherry-picking the kind of ethics that is
best retrofitted to justify their behaviors, rather than revising their behaviors to
make them consistent with a socially accepted ethical framework [Floridi, 2019].

The path toward Trustworthy AI will not be smooth and will require much
more effort compared to the standard design paradigms that are only concerned
with the improvement of predictive performance. But if we fail at it, we run the
risk of deploying unreliable and flawed models that could be misused and harm
users, breaking the promises of a safe and trusted AI designed for the benefit



1.2. The Dimensions of Trustworthy AI 3

of the whole mankind. In the long term, being people aware of the flaws and
limitations of AI, these technologies might be abandoned, and soon all that will
be left will be disquisitions about their unfulfilled potential.

1.2 The Dimensions of Trustworthy AI

In this Section, we follow [Liu et al., 2022] and briefly overview six main
dimensions along which the principles of Trustworthy AI are usually implemented:
robustness, interpretability, fairness, accountability, privacy, and environmental
well-being. There exists some overlap between concepts defined under different
dimensions and the landscape of Trustworthy AI is way richer than the picture
given below. Nevertheless, here we focus on the most prominent and established
perspectives on the field, leaving other more recently introduced dimensions out
of the discussion. This allows us to substantiate the analysis with references
to a solid body of research works that is missing for dimensions with limited
literature (such as human agency and creditability). The main focus is on the
robustness and interpretability dimensions, which will be central concepts in the
methods and analyses described in Chapters 3, 5 and 6.

1.2.1 Robustness

The robustness of ML models can be broadly defined as the ability to provide
high accuracy under perturbations of the data that do not compromise their
semantics. In other words, a trustworthy ML model should not exhibit unstable
behaviors when irrelevant characteristics of the input data are slightly altered.
At the present moment, this ability represents a substantial difference between
AI and human beings: while the former struggles to maintain satisfactory
performance in noisy settings, the latters are extremely effective and efficient at
this task. In the robustness literature, it is usually assumed the existence of a
malign attacker that is willing to undermine the performance of an ML model.
Depending on whether the attack takes place during training or at test time, we
distinguish between

• Poisoning attacks: the attacker has access to the training set and designs
fake training samples to impair the training process globally [Biggio et al.,
2012] or to get bad predictions for specific subgroups of data [Zügner
et al., 2018]. Notice that, in practice, poisoning attacks can occur when
training samples are generated by the users themselves, e.g., for training
recommender systems. In this case, poisoning the training set simply
means altering the online behavior with malicious intent. Backdoor attacks
[Gao et al., 2020,Liu et al., 2020] are a special case of poisoning attacks,
where the attacker adds a trigger to specific training samples, associated
with a target wrong label. This attack biases the training process and



4 Chapter 1. Introduction

Figure 1.1: Typographic attack against CLIP with text patch (image from [Goh et al.,
2021]).

Figure 1.2: Typographic attack against CLIP with plain text (image from [Goh et al.,
2021]).

induces the model to leverage the trigger shortcut. At test time, all the
samples where the trigger is present will be assigned the target label.

• Evasion attacks: the attacker does not have access to the training set,
and the model has already been trained. The objective of evasion attacks
is to craft fake test samples that fool the trained model. If the attacker has
also access to the structure of the trained model (e.g., to the architecture,
weights, and gradients of a DL model) and leverages that information, the
attack is called white-box. Black-box attacks, instead, no information about
the model is available.

Another interesting type of attack against OpenAI’s multi-modal vision
and language model Contrastive Language-Image Pre-training (CLIP) has been
recently discovered [Goh et al., 2021]. The attack, dubbed typographic attack,
leverages the multi-modal nature of representations learned by CLIP. Specifically,
the authors discovered neurons in CLIP that respond to the same concept,
independently of the modality in which it is represented (e.g., image or text).
The attack consists of superimposing text patches or plain text over the original
image, where the content of the text is deliberately unrelated to the object
represented in the image. Some examples are given in Figures 1.1 and 1.2.

It is worth mentioning that the robustness of ML models can be questioned
also in cases where there is no explicit adversary. Indeed, distribution shifts
arising from the natural diversity of real data can completely impair the perfor-
mance of ML models, including those trained with ad-hoc countermeasures to
prevent harm from other types of attacks [Taori et al., 2020].
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In Chapters 5 and 6 we will deal with a specific class of white-box evasion
attacks, i.e., ℓp-bounded attacks. The necessary background on ℓp-bounded
attacks will be overviewed in Chapter 4.

1.2.2 Interpretability

Most of the advances in AI in terms of predictive performance have come
at the price of reduced interpretability1 of the models’ inner workings. In other
words, the best performing models are usually considered as black-boxes, being
the underlying logic governing their behavior hardly understandable by humans.
This does not necessarily represent a problem per se, indeed in many practical
use cases, interpretability is not required. For example, in finance, one would
surely prefer an extremely complex DL model over a fully interpretable linear
model if the former guarantees 10× profits compared to the latter. The crucial
point here is that the model can be tested in the wild with no risk of harm to
people. This is simply not possible in many other domains, such as in healthcare,
where a flawed model could put at risk human lives. In this case, we could
only leverage historical data to test the generalization capabilities of a trained
model, but we would not have the possibility to simulate every possible scenario
that could occur in the real world. For instance, we could not anticipate the
model behavior under distribution shifts [Quinonero-Candela et al., 2008]. This
is an emblematic example where interpretability could be useful: if the model
is equipped with some interpretability traits describing the logic behind its
predictions, a clinician would have more information to decide whether or not
to trust the model’s outcomes. More generally, the need for interpretability
stems from an incompleteness in the problem formalization [Doshi-Velez and
Kim, 2017]. This means that ML models are optimized so as to minimize the
prediction error, but in real-world applications, we usually seek additional feats
that cannot be explicitly optimized during training. For this reason, eXplainable
Artificial Intelligence (XAI) [Arrieta et al., 2020] has become a driving subfield
for the advance of AI research. The general goal of XAI is to shed light on the
inner workings of ML and DL models so that developers and users can easily
inspect the models’ inner structure and check whether other desiderata (such as
fairness, robustness, etc.) have been successfully enforced.

With respect to the scope of interpretability methods, local methods provide
explanations associated with individual predictions, while global methods explain
the model as a whole. Depending on whether or not the peculiar structure of
the ML model to be analyzed is exploited to produce explanations, we further
distinguish between model-specific and model-agnostic methods, respectively.
Model-specific methods are characterized by high translucency [Molnar, 2022],
i.e., they heavily rely on the inherent structure of the specific ML model under

1Throughout this thesis, we will use the terms interpretability and explainability interchange-
ably. Some works highlighted subtle differences between the two [Gilpin et al., 2018,Rudin,
2019], that can, however, be overlooked for the purposes of this thesis.
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examination, while model-agnostic methods earned remarkable interest due to
their high portability, i.e., they can be applied to a wide range of models.

Model-specific methods A major focus in the XAI field is put on Deep
Neural Networks (DNNs) [Che et al., 2016], and ensemble methods [Tolomei et al.,
2017], two emblematic examples of algorithms classes that provide models that
are highly accurate but hard to be understood by humans. As regards ensemble
methods, we mainly relate our work to Random Forests (RFs) [Breiman, 2001],
but several works on the interpretation of other ensembles (such as Gradient
Boosting Decision Trees) can be found in literature [Valdes et al., 2016,Wang
et al., 2018b]. RFs are ensembles of classification or regression trees leveraging
bagging to reduce the variance of predictions. Compared to single Decision
Trees, RFs significantly improve performance in terms of accuracy at the price
of reduced interpretability. In this context, many works address the problem
of improving standard feature importance score methods. Relevant examples
are [Strobl et al., 2008], which proposes an improvement of the permutation
importance measure based on a conditional permutation scheme, and [Li et al.,
2019], in which the authors introduce a variant of the Mean Decrease Impurity
(MDI) feature importance measure aimed at overcoming the problem of MDI
feature selection bias. Besides single-feature importance measures, it is worth
mentioning some recent works focused on the detection of interactions between
features [Basu et al., 2018, Lundberg et al., 2018,Devlin et al., 2019]. Given
the fact that DNNs achieve state-of-the-art performance on several complex
tasks, it comes as no surprise that a considerable volume of research in the
XAI field focused on the problem of DNNs interpretability. The latter can be
tackled with the purpose of either providing explanations about the predictions
(i.e., the outputs) produced by the model [Zeiler and Fergus, 2014, Simonyan
et al., 2013,Murdoch et al., 2018], e.g., in the form of saliency maps as shown
in Figure 1.3, or interpreting the internal representations of the processed data
[Sharif Razavian et al., 2014,Bau et al., 2017]. It is worth highlighting a third
promising line of research aimed at designing inherently interpretable DNNs
[Melis and Jaakkola, 2018,Li et al., 2018,Oreshkin et al., 2019].

Model-agnostic methods Among the most prominent model-agnostic tech-
niques used to explain individual predictions, popular approaches are Local
Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016], An-
chors [Ribeiro et al., 2018] and SHapley Additive exPlanations (SHAP) [Lundberg
and Lee, 2017]. Instead, Partial Dependence Plots [Friedman, 2001] and Accu-
mulated Local Effects plots [Apley, 2016] represent examples of model-agnostic
methods used to explain the model’s behavior at a global level. While on one
hand, high portability may appear as an attractive feature for interpretabil-
ity methods, on the other hand, the interpretability problem is usually dealt
with only once a specific model type has been chosen and the usefulness of
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Figure 1.3: Saliency maps for the top-1 predicted class from ImageNet test samples
(image from [Simonyan et al., 2013]).

model-agnostic methods simply lies in the lack of model-specific alternatives for
several ML models classes. Moreover, model-agnostic methods usually exhibit
not negligible shortcomings:

• Since the inner structure of the model being examined is not exploited,
the user might suspect that the provided explanation is just a simplistic
and coarse approximation of the true underlying relationship between the
input and the output.

• The majority of model-agnostic methods are based on the manipulation of
inputs and evaluation of the effects said manipulations induce on the corre-
sponding predictions. This represents a delicate process as the artificially
created input instances might not belong to the original data manifold,
potentially causing stability issues and raising doubts about the actual
information conveyed by the interpretability method.

• In light of the need for further restrictive assumptions and/or opaque
methodological choices (e.g., independence between features, the creation
of perturbed input instances), the user is asked to take a leap of faith
and consider the method as reasonable while not fully understanding the
theoretical underpinnings. This shifts the problem from the lack of trust
in the model to the lack of trust in the interpretability method itself.

Exhaustive descriptions, analyses, and examples of model-specific and model-
agnostic approaches can be found in [Guidotti et al., 2019,Molnar, 2022].

1.2.3 Fairness

Algorithms based on ML are increasingly being used in sensitive applications
where their outcome may influence high-stake decisions, e.g., to determine
whether a loan should be granted or not [Purificato et al., 2022], in justice to assess
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the risk of recidivism [Hillman, 2019], or for organizations to screen job candidates
[van Esch et al., 2021]. It is clear that any of the decisions mentioned above
could affect the quality of someone’s life for quite a long time. Unfortunately,
countless episodes of discriminatory behaviors in similar scenarios have been
reported. For example, the Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) software, used to support decisions in U.S.
courts by assessing the risk of recidivism, was found to be biased against African-
American2. Decision support systems used for loan applications management
leverage protected attributes such as race [Hardt et al., 2016]. An algorithm
designed to promote job opportunities in the Science, Technology, Engineering,
and Math (STEM) fields favored males over women for the visualization of
advertisements, supporting a known gender stereotype regarding STEM careers
[Lambrecht and Tucker, 2019]. Some products based on AI have been retired
from the market because of improper behaviors, like Microsoft’s Tay chatbot
experiment, which was shut down only 24 hours after deployment since it was
generating tweets with racist, sexist, and anti-Semitic language [Wolf et al.,
2017]. The major problem with regard to fairness in ML is represented by the
fact that ML models are trained on data that are not free of biases, especially
when the data are generated by humans (e.g., tweets, reviews of products, news).
As a result, without specific countermeasures to control the data collection and
training processes, we would end up with models that not only inherit but also
amplify undesired biases. To avoid this, a growing body of research works is
currently addressing these issues, with the objective of formalizing novel practices
in the engineering of AI systems to account for fairness principles by design.
Since the fairness dimension is not the main focus of this thesis, we refer the
curious reader to [Mehrabi et al., 2021,Verma and Rubin, 2018].

1.2.4 Privacy

Trustworthy AI systems should guarantee the safety of private information
encoded in the data exploited in the training process and avoid the risk of privacy
leakage. In the past few years, researchers have explored the extent to which
sensitive and private information can be extracted from trained models and
potential countermeasures to alleviate these issues, initiating a novel strand of
research dubbed Privacy-preserving Machine Learning. If we assume to have
access to the outcomes of a trained ML model, a great deal of information can be
retrieved even though training data are no longer available. Membership inference
attacks can infer whether or not a specific data point was exploited to train the
model [Shokri et al., 2017]. This can be done even without access to the model
parameters. The model is fed with fake data points whose features are tuned
until the outputs produced by the model have very high confidence. In this way,
the attacker can reconstruct data points that are, likely, similar to the original

2https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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training samples and with them can train an auxiliary model to predict whether
a data point was used or not to train the target model. Similar techniques can be
leveraged to craft model inversion attacks to retrieve information about the input
data, which may include sensitive and private information, from the output of
the model [Fredrikson et al., 2015] or from gradient information [Zhu et al., 2019].
Another malicious attack that can reveal basically everything about a trained
model is represented by the so-called model extraction attack [Tramèr et al.,
2016]. This consists in mimicking the input-output behavior of a target model
from queries so that a substitute model can be trained and used to infer sensitive
information. To minimize the effect of the abovementioned attacks, a number of
privacy-preserving techniques have been proposed. They can be partitioned into
three main categories: confidential computing, federated learning, and differential
privacy. For more details on privacy-preserving techniques see [Al-Rubaie and
Chang, 2019,Boulemtafes et al., 2020].

1.2.5 Accountability

The concept of accountability is broad and extends beyond the context of ML
models. According to Bovens, ’a relationship qualifies as a case of accountability
when there is a relationship between an actor and a forum in which the actor
is obliged to explain and justify his conduct, the forum can pose questions, pass
judgement, and the actor may face consequences’ [Bovens, 2007]. Starting from
Bovens’ notion of accountability, in [Wieringa, 2020] the authors specialize the
concept to the case where the request for explanation and justification regards
a general algorithmic system - of which an AI system is a particular case. In
this scenario, accountability can be viewed as the problem of making clear the
responsibility distribution amongst all the parties involved in the functioning
of the AI system. We can distinguish between system designers who design
the system so that it meets the users requirements, system deployers who are
in charge of the proper deployment of the system, decision makers who decide
whether or not the system should be adopted and the characteristics it should
have to comply with regulations and meet performance specifications, end users
who directly interact with the system, and system auditors who are responsible
for assessments of the system. Accountability is intimately connected to the
interpretability of the AI system [Kim and Doshi-Velez, 2021]: interpretable
models can provide explanations associated with their predictions and their inner
logic is less opaque compared to that of black-box models. This helps making
sense of the model’s behavior, so as to ease the allocation of responsibility when
an AI system does not work as expected.

1.2.6 Environmental Well-being

The new trend in AI is to train general-purpose models with billions of
parameters that can be then adapted to solve multiple downstream tasks. These
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models are called foundation models [Bommasani et al., 2021] and are trained
on huge amounts of training samples, with sophisticated training routines that
can last months on hundreds of Graphics Processing Units. Examples include
BERT [Devlin et al., 2018], GPT-3 [Brown et al., 2020], and CLIP [Radford
et al., 2021], but the list is set to grow in the years to come as companies and
organizations are literally racing against each other to push the limits of AI.
So far, most of the work on foundation models focused on Large Language
Models, but it is reasonable to expect the design of foundation models for other
domains, such as computer vision and healthcare. One of the main drawbacks
of foundation models is the huge carbon footprint associated with the training
and fine-tuning processes, along with inference elaborations. Even worse, since
the issues discussed above, such as the lack of robustness or the presence of
discriminatory biases, could affect the reliability of foundation models, it might
be necessary to retrain them from scratch incorporating novel countermeasures to
improve their trustworthiness. Model compression techniques could help reduce
the energy consumption of AI algorithms. These include knowledge distillation
[Gou et al., 2021], pruning [Anwar et al., 2017,He et al., 2017], and quantization
[Han et al., 2015,Cai et al., 2017]. Another promising line of research investigates
novel hardware designs that explicitly optimize training and inference energy
efficiency [Chen et al., 2020c].

1.3 Thesis Outline

This thesis aims to profoundly investigate the properties of popular models
that have been used for years in academia and industry, and provide tools
to improve their trustworthiness. This is done along two dimensions in the
space of Trustworthy AI: interpretability and robustness. Instead of focusing
on the design of brand-new architectures or learning algorithms that deliver an
infinitesimal improvement in accuracy, we take a step back and analyze existing
models widely adopted in the field of Anomaly Detection and Computer Vision.

On one hand, we recognize the value of proposing new approaches to solve
challenging problems, so as to minimize the risk of allocating all the efforts to a
research direction that might prove unprofitable. On the other hand, we believe
that thorough analyses of what has been done so far by generations of scholars are
necessary to get a complete picture of a specific problem before moving forward
with the design of novel strategies to solve it. For example, Vision Transformers
(ViT) [Vaswani et al., 2017] achieve amazing performance on image classification
tasks, and nowadays, the vast majority of papers in top AI conferences revolve
around ViT, but we still do not know enough about Convolutional Neural
Networks (CNNs) [Gu et al., 2018] to consign them to oblivion. Moreover,
CNN is still the best model architecture for robustness against natural and
system noises [Tang et al., 2021]. From a practical perspective, when a trained
model has been deployed, and potentially integrated into a complex pipeline, the
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improvement derived from retraining or the replacement with some brand-new
state-of-the-art model is always weighted by the costs associated with these
operations. As a result of this trade-off, it is often more convenient to equip less
recent models with novel feats post-hoc, instead of re-running the training and
deployment operations from scratch.

The thesis is outlined as follows. In Part I, we address the lack of inter-
pretability in Anomaly Detection problems and provide novel tools to equip a
popular Anomaly Detection model with interpretability traits. More specifically:

• In Chapter 2, we describe the Anomaly Detection task, discuss the related
challenges and quickly overview traditional models. We also review the
concepts at the core of the Isolation Forest algorithm.

• In Chapter 3, we introduce novel model-specific methods to explain the
Isolation Forest model at both global and local scales. Specifically, we
introduce i) a global interpretability method, dubbed Depth-based Isolation
Forest Feature Importance (DIFFI), to provide global feature importance
scores which represent a condensed measure describing the macro-behavior
of the Isolation Forest model on training data; ii) a local version of the
DIFFI method, called Local-DIFFI, to provide local feature importance
scores aimed at interpreting individual predictions made by the Isolation
Forest model at test time; iii) a simple and effective procedure to perform
unsupervised feature selection for Anomaly Detection problems based on
the DIFFI interpretability method. We also discuss an industrial case
study in the field of semiconductor manufacturing. The work presented in
this Chapter is based on articles [J1] and [C1].

The Part II of the thesis is devoted to the interpretability and robustness
of Convolutional Neural Networks for image classification problems. More
specifically:

• In Chapter 4, we revise basic notions on DL models, with a special focus
on CNNs for image classification and Adversarial Training, a learning
paradigm that enforces robustness against adversarial examples.

• In Chapter 5, we investigate the Adversarial Training paradigm for robust
image classification and analyze the structural and functional properties
of adversarially-trained models. The analysis can be broadly construed
as a step toward increasing the interpretability of adversarially-trained
models. Indeed, our findings shed light on their inner workings, elucidating
mechanisms through which robustness may be enforced. Specifically, we
show that: i) adversarially-trained CNNs have a greater number of spatially
dense feature maps than natural models, reducing model expressivity; ii)
feature maps of adversarially-trained CNNs are more redundant, reducing
the effective number of active channels in hidden layers; iii) the latent
space of adversarially-trained CNNs offers representations with varying
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levels of robust and natural accuracy, demonstrating (contrary to common
belief) that latent features of robust models are not inherently robust; iv)
adversarially-trained models are trivially biased towards color, potentially
leading to undesired behaviors under simple content-preserving color per-
turbations that do not compromise other robust features such as shape.
Taken together, our findings show that adversarially-trained models do not
exploit efficiently the model capacity and that the simplicity biases induced
by Adversarial Training, while useful to improve robustness to adversarial
examples, might be harmful in other contexts. The work presented in this
Chapter is based on article [S1].

• In Chapter 6, we tackle the problem of robustness against adversarial
examples and introduce a novel defense based on the manipulation of the
input image. Specifically, we introduce an iterative filtering framework,
dubbed Image-Graph Extractor (IGE), designed to explicitly remove tex-
tures from images while preserving the semantic content. Based on the IGE
framework, we define a defense called Filtering As a Defense (FAD) that
successfully improves the robustness of pre-trained CNNs. Additionally,
filtered images produced by IGE can be leveraged as data augmentation
during training to improve robustness against common data corruptions.
The work presented in this Chapter is based on article [S2].

We conclude by summarizing the contributions of this thesis in Chapter 7,
where we also highlight the potential impact the proposed methods could have
on future research in the field of Trustworthy AI.
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Chapter 2

Background on Anomaly
Detection

2.1 The Anomaly Detection Task

Anomaly Detection (AD) techniques aim at automatically identifying pat-
terns, within a given collection of data, that do not conform to an expected
regular behavior [Chandola et al., 2009]. Such patterns are usually referred to
as anomalies or outlier in the AD literature, but also discordant observations,
exceptions, aberrations, surprises, peculiarities or contaminants, depending on
the application domain and community. Throughout this thesis, we will use the
terms ‘outlier’ and ‘anomaly’ interchangeably and refer to Hawkins’ definition
given in Definition 2.1.1.

Definition 2.1.1. According to Hawkins’ definition [Hawkins, 1980], an outlier
is an observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism.

As stated in [Ben-Gal, 2005], an exact definition of anomaly depends on
assumptions on the data structure and on the specific class of AD methods
adopted. Nevertheless, Hawkins’ definition is general and broad enough to cope
with different scenarios in terms of the characteristics of both the data and the
AD method. The concept of an anomaly is related but different in nature from
another common phenomenon in data analysis, i.e., noise. Noisy data are usually
the results of measurement or labeling errors during the data collection process,
or other sources of interference that worsen the quality of the true signal that
is being recorded. As such, noise carries no information and is considered an
undesired effect the data analyst wants to get rid of [Chandola et al., 2009].
Anomalies, instead, may be extremely interesting and informative data points
to be analyzed, as they may also capture the natural variability within a group
of data points sharing some semantically relevant characteristics [Suri et al.,
2019]. For example, in healthcare AD models can be leveraged to spot anomalous
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physiological readings, leading to prompt response to medical emergencies and
deeper knowledge of one’s health status [Ukil et al., 2016,Šabić et al., 2021].

The effectiveness of AD algorithms is of paramount importance in a wide
array of application domains, ranging from wireless sensor networks [Miao et al.,
2018] and industrial cyber-physical systems [Puggini and McLoone, 2018,Yang
et al., 2017] to healthcare [Meneghetti et al., 2018], driving systems [Zhang et al.,
2017], and biology [Zhang et al., 2020]. Their high usability is mainly due to
the fact that most AD algorithms can be trained and deployed in unsupervised
settings. This is particularly useful in environments where the data labeling
process by human experts is prohibitively expensive and time-consuming, calling
for a human-centered design principle that guarantees the minimization of human
efforts.

2.1.1 Types of Anomalies

Based on the categorization proposed in [Chandola et al., 2009], we can
distinguish between three main types of anomalies:

• Point anomalies: an individual data point is different and isolated from
the rest of the data. For example, in a dataset where each data point
represents an adult person, described by age, gender, and height, a person
who is 220 centimeters tall is a point anomaly. This is the simplest and
most common type of anomaly in AD problems.

• Contextual anomalies: a data point is considered as an anomaly in
a specific context, while it is considered a regular data point in other
contexts. For example, a high number of sold turkeys can be considered
normal on the day before Thanksgiving, while it may be an anomaly on
a random day in August. The notion of context can be specified only
if so-called contextual attributes are available. In the example above,
time is the contextual attribute. The number of sold turkeys, instead,
is called a behavorial attribute. More generally, behavioral attributes are
non-contextual characteristics of data points.

• Group anomalies: there is no single anomalous data point, but anomalous
aggregated behaviors of groups of data points that are related to each
other. This type of anomaly is common in sequential data, e.g., time series,
where subsequent data points within a time interval may not be anomalies
by themselves, but taken together they represent an anomalous behavior.
For example, in a human electrocardiogram (ECG) signal, a prolonged
sequence of constant low values may represent a group anomaly - in light
of the quasi-periodic nature of ECG - while a single data point with a low
value does not necessarily represent an anomaly by itself.
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2.1.2 Challenges in Anomaly Detection

Although it may seem trivial to tell apart anomalies from regular points, the
AD task is challenging and far from being fully solved. This makes it exciting
from the perspective of both practitioners and researchers. Indeed, many aspects
of AD problems - that stem mostly from the limitations of the data collection
process - translate into interesting methodological challenges, including the
following [Chandola et al., 2009]:

• In the vast majority of practical applications, AD datasets are not labeled.
This means that we do not know which are the anomalous points and
unsupervised ML models are the only option to solve the task. Moreover,
the lack of labeled data points poses a significant problem in assessing the
performance and generalization capabilities of AD models.

• If labeled datasets are available, supervised or semi-supervised ML models
(if labels are available only for regular points) can be leveraged. However,
the AD task cannot be cast as a binary classification problem due to the
substantial class imbalance (anomalies are usually far fewer than regular
points). Moreover, the anomalous class would be more heterogeneous
than the regular class, and it might not represent all the possible types of
anomalies.

• In some applications, it may be hard to collect anomalous data points
because they correspond to the occurrence of undesirable events that should
be avoided. For example, in the healthcare domain, an anomaly could
represent a patient diagnosed with cancer, or, in the manufacturing domain,
it may correspond to a mechanical fault causing a stop in the production
line. As a result, it may be difficult to increase the number of anomalous
data points by collecting more data in the wild.

• As mentioned above, the exact definition of anomaly depends on the specific
application. Therefore, a precise formulation of the AD problem usually
requires domain knowledge that may be costly or hard to get.

• If anomalies are produced by an adversarial agent with malicious intent,
they may be subtle and hard to spot because their characteristics are
intentionally made similar to those of regular data instances.

The development of a general and comprehensive framework to solve the AD task
is even more challenging, given the fact that the problem could be formalized in
extremely different ways depending on the nature of data, availability of labels,
and so on. For this reason, it is usually difficult to adapt techniques developed
for a specific problem setup to a more general scenario.
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2.2 Anomaly Detection Algorithms

The format of the input in AD algorithms depends on the application domain
and can be either a vector in the case of tabular data, an image, a sequence
of images, or even a graph. Independently of the nature of the raw data, the
format of the output is one of the following [Chandola et al., 2009]:

• An anomaly score: each data point is associated with a real value that
reflects its ‘degree of outlierness’. Based on the anomaly scores, one can
set a threshold value to discriminate between anomalies and regular points.
The threshold is usually tuned by taking into account priors from domain
knowledge or time constraints if the output of the AD model should be
revised by humans.

• A binary label: the model directly outputs a hard label, but it is usually
possible to indirectly control the implicit threshold value by adjusting the
hyperparameters of the model.

Anomaly scores provide a richer description of a given dataset as they can be
used to define a ranking over anomalies. This could be useful in practice, e.g.,
to focus the attention of end users on ambiguous predictions so as to optimize
the workforce when the AD model is part of a system where interaction with
humans plays a key role.

Deep Learning vs traditional methods In recent years, a growing volume
of research has been focusing on approaches based on DNNs to tackle the
AD task [Pang et al., 2021], especially for applications involving graphs [Ma
et al., 2021, Chen et al., 2021, Yuan et al., 2015], and videos [Nayak et al.,
2021,Georgescu et al., 2021,Sabokrou et al., 2017]. Despite the high performance,
DNNs cannot be considered the ultimate solution to every AD problem as they
exhibit a number of drawbacks in several real-world scenarios: i) depending
on the complexity of the task and the dimensionality of the data, the training
process of a DNN might last many hours or even days; ii) state-of-the-art DNN
models are implemented (and trained) on expensive Graphics Processing Units,
that might not be affordable in environments/applications characterized by
limited budget or resource-constrained devices; iii) typically, a huge number of
data points are required for the DNN to get satisfying generalization capabilities.
For these reasons, there still persists a countless number of applications where
traditional AD techniques are preferred over solutions based on DNNs.

These traditional methods can be categorized into the following main sub-
groups [Wang et al., 2019,Chandola et al., 2009]:

• Statistical-based methods: these methods are based on the assumption
that regular data points occur in high-probability regions of an underlying
stochastic model, while anomalies occur in low-probability regions. The
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statistical model is learned from the training data, and predictions for
unseen data are obtained by means of statistical inference tests to check
whether or not they belong to the learned model. Parametric methods
assume knowledge about the true underlying distribution that generated
the data and the task is to estimate the parameters of the distribution.
Non-parametric methods, instead, are distribution-free.

• Distance-based methods: these methods are based on the assumption
that anomalies are far away from their neighbor(s). Examples include
Index-based algorithms and Nested-loop algorithms[Knorr and Ng, 1998],
and methods based on K-nearest neighbors [Ramaswamy et al., 2000].

• Density-based: these methods are based on the assumption that anomalies
lie in low-density regions of the feature space. Examples of density-based
AD methods are the Local Outlier Factor [Breunig et al., 2000] and the
Connectivity-based Outlier Factor [Tang et al., 2002] algorithms.

• Clustering-based: these methods rely on a preliminary clustering of data
points. Depending on the algorithm, anomalies could be data points that
do not belong to any of the learned clusters, data points that lie far away
from the closest cluster centroid, or data points that belong to sparse
and small clusters. The Cluster-Based Local Outlier Factor algorithm [He
et al., 2003] and the FindOut algorithm [Yu et al., 2002] are examples of
cluster-based methods.

• Ensemble-based: these methods are based on the concept of ensemble,
i.e., to combine the predictions of multiple weak learners to improve the
detection capabilities of the resulting model. The eXtreme Gradient Boost-
ing Outlier Detection algorithm (semi-supervised) [Zhao and Hryniewicki,
2018], and the Isolation Forest [Liu et al., 2008,Liu et al., 2012] are examples
of ensemble-based methods.

Many other alternative categorizations of AD models can be found in literature,
and there may exist overlap among some of the abovementioned families of algo-
rithms. For example, many cluster-based techniques rely on distance measures.
Another promising research direction for AD is represented by recent works
based on granular computing [Kiersztyn et al., 2021,Zhou et al., 2022]. In the
next Section, we will focus on the Isolation Forest, a seminal algorithm that
inspired most of the recent tree-based AD models [Barbariol et al., 2022], and
quickly overview the principles behind its functioning.

2.3 Isolation Forest

The Isolation Forest (IF) [Liu et al., 2008,Liu et al., 2012] is an unsupervised
AD algorithm leveraging an isolation procedure to infer a measure of outlierness
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- the anomaly score - for each data point. The isolation procedure is based
on recursive partitioning and aims at defining a region in the data domain
where only the data point under examination lies. The underlying mechanism
of IF is based on the reasonable hypothesis that the isolation procedure for
outliers requires a limited number of iterations, while the isolation of inliers
generally needs a larger number of recursive partitions. We will provide a formal
description of the IF algorithm in the following.

2.3.1 The Isolation Forest Algorithm

The IF is an ensemble of Isolation Trees (ITs) {t1, . . . , tT }, i.e., base anomaly
detectors characterized by a tree-like structure. ITs are data-induced random
trees in which each internal node v is associated with a randomly chosen splitting
feature (denoted fsp(v)) and a randomly chosen splitting threshold (denoted
τsp(v)). Data points associated with node v undergo a split test: points for
which the value of fsp(v) is less than τsp(v) are sent to the left child of v, the
others to the right child.

Given a dataset D = {x1, . . . ,xn} of p-dimensional data points, each IT t
is assigned a subset Dt ⊂ D (usually called bootstrap sample) sampled from
the original set and carries out an isolation procedure based on the split tests
associated to the internal nodes. Bootstrap samples have the same predetermined
size, i.e.

|Dt| = ψ for t = 1, . . . , T.

Data points in Dt (called in-bag samples, from the perspective of tree t) are
recursively partitioned until either all points are isolated or the IT reaches a
predetermined depth limit hmax = ⌈log2(ψ)⌉, function of the bootstrap samples
size ψ. As a result, each data point xi ends up in a leaf node, denoted lt(xi).
We will denote with ht(xi) the number of edges that xi passes through in its
path from the root node to the corresponding leaf node, which is equivalent to
the depth of the leaf node lt(xi).

The procedure described above is iterated over all ITs, each of which is
assigned a different bootstrap sample. The anomaly score for a generic data
point xi is then computed as

z(xi) = 2
−
h̄(xi)

c(ψ) (2.1)

where c(ψ) is a normalization factor given by

c(ψ) =





2H(ψ − 1)− 2(ψ−1)
ψ if ψ > 2,

1 if ψ = 2,

0, otherwise
(2.2)
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and H(k) is the harmonic number which can be estimated as H(k) ≈ ln(k) +
0.5772156649. h̄(xi) is the average path length associated with xi and it is
computed as

h̄(xi) =
1

T

T∑

t=1

ht(xi). (2.3)

In the last step of the IF algorithm, anomalous data points are flagged
through a thresholding operation on the anomaly scores. In this way, it is
possible to partition the original set D as follows:

• the subset of predicted inliers PI = {xi ∈ D | ŷi = 0},

• the subset of predicted outliers PO = {xi ∈ D | ŷi = 1},

where ŷi ∈ {0, 1} is the binary label produced by the thresholding operation,
indicating whether the corresponding data point xi is anomalous (ŷi = 1) or not
(ŷi = 0).

For further details on the IF algorithm and its properties, we refer the reader
to the original paper [Liu et al., 2008] and to the extended work [Liu et al.,
2012]. To conclude, it is worth highlighting that the IF, as a tree-based ensemble
model, shares an inherent structure similar to that of the Random Forest (RF)
[Breiman, 2001]. Nonetheless, random choices in IF have a far greater impact
since, differently from RF, attributes associated with internal nodes are not
selected according to specific splitting criteria but, indeed, randomly. This may
be daunting to researchers interested in making the IF interpretable, but, as we
shall show in Chapter 3, finding a solution to such a challenge is feasible.

2.3.2 Partitioning in Isolation Trees: A Toy Example

In Figures 2.1 and 2.2 is illustrated a toy example of recursive partitioning
performed in a single IT. In this case, the dataset comprises 7 regular data points
(blue) and 1 anomaly (red), described by two features f1, f2. In Figure 2.1, the
isolation procedure for an anomaly xO (left panel) is compared to the isolation
procedure for a regular data point xI (right panel). While the anomaly can be
easily isolated with a single partitioning of the f1-f2 plane, the regular data
point requires 5 partitioning steps. The same scenario is depicted in Figure 2.2
from the perspective of the IT associated with the partitioning performed in
Figure 2.1. Notice that each internal node of the IT is associated with a split test,
characterized by a splitting feature fsp and a splitting threshold τsp. Moreover,
each node (either internal or leaf) is associated with a subset of the data points,
which is determined by the result of the split test performed by its parent node.
The number of partitioning steps required to isolate a specific data point is
equivalent to the depth of the leaf node where the data point ends up (the root
node is at depth 0). The anomaly xO is isolated with just one partitioning step,
and the associated leaf node is indeed at depth 1. The regular data point xI ,
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Figure 2.1: Split tests in the f1−f2 plane. Isolation of an anomaly (left) and isolation
of a regular point (right).

instead, is isolated in 5 partitioning steps, and the depth of the associated leaf
node is indeed equal to 5.

In the IF algorithm, this procedure is performed for each IT, and the anomaly
scores are obtained by averaging the depths according to Equation (2.1).

2.3.3 Variants of the Isolation Forest model

The widespread use and effectiveness of the IF algorithm have been driving
factors for the design of many variants of the original implementation, adapting
it to challenging application scenarios and integrating novel methodological
principles. The Extended Isolation Forest [Hariri et al., 2019] exploits non-axis-
parallel hyperplanes with random slopes for splitting the data. The Functional
Isolation Forest [Staerman et al., 2019] extends the use of the original model from
finite-dimensional observations to functional data. In k-means-based Isolation
Forest [Karczmarek et al., 2020], k-means clustering is used to predict the number
of divisions on each decision tree node. Other methods, such as iForestASD
[Ding and Fei, 2013], RS-Forest [Wu et al., 2014], AHIForest [Ding et al., 2015],
Isolation Mondrian Forest [Ma et al., 2020], adapt the IF for use with streaming
data. For analyses and comparisons of other variants of the IF model, we refer
the interested reader to [Barbariol et al., 2022].
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Figure 2.2: Split tests in an Isolation Tree.





Chapter 3

Depth-based Isolation Forest
Feature Importance

3.1 Introduction

Although AD algorithms have proved to be extremely useful and effective,
their widespread adoption is far from being a reality even in industries and
organizations with adequate infrastructures. This is actually a more general
problem affecting any technology based on ML, and it is mainly due to two
‘soft’ factors: (i) lack of confidence/trust from the users in the outcomes of
AD algorithms and (ii) no immediate association between outcomes and root
causes. The first issue arises from the lack of labeled data points (that, on
the other hand, is one of the main reasons why AD algorithms are appealing
in the first place), which makes it impossible to set up an adequate testing
procedure. This leads either to blindly trusting the algorithm or not using it
at all, both cases being undesirable. The second question, instead, investigates
the possibility of gaining additional knowledge about the task at hand, which
may translate into actionable insights for troubleshooting or root cause analysis.
The aforementioned issues can be addressed following the principles of XAI
[Gunning and Aha, 2019], whose objective is to make black-box ML models
easily understandable by human beings.

In this Chapter, we focus on the interpretation of the Isolation Forest [Liu
et al., 2008,Liu et al., 2012], one of the most popular and effective approaches for
AD. As discussed in Section 2.3, the IF is inherently governed by randomness,
which represents a major challenge for the design of interpretability techniques
based on its inner structure. The methods proposed in Section 3.5 provide an
effective and computationally inexpensive solution to this problem.

In the remainder of this Chapter, we review the relevant literature in the
field of interpretable AD in Section 3.2, we give an overview of the motivations
at the core of the proposed methods in Section 3.3 and the main contributions in
Section 3.4. Section 3.5 is devoted to the description and analysis of the global
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and local DIFFI methods for the interpretation of the IF, along with a novel
technique for unsupervised feature selection. In Section 3.6 the experimental
results and a discussion thereof are provided, while in Section 3.7 we present the
results of a case study in the field of semiconductor manufacturing. Finally, in
Section 3.8 we draw conclusions and identify some interesting research directions
for future works.

3.2 Related Work

Regression and classification problems (and, consequently, the models com-
monly used to tackle them) attract the vast majority of research interest in the
XAI community. The same cannot be said for AD unless standard ML or DL
models are employed: this is typically the case where AD tasks are performed on
time-series data through forecasting and monitoring the mismatch between fore-
cast and real data, a formalization typically adopted for univariate AD tasks with
highly non-stationary data. In the context of multivariate AD, interpretability
is still a challenging topic: in the remainder of this Section, we briefly describe
some of the most relevant works facing the problem of interpretability in AD.

In [Macha and Akoglu, 2018], authors aim to explain anomalies in group. The
authors introduce a new algorithm called x-PACS (which stands for eXplaining
Patterns of Anomalies with Characterizing Subspaces), producing interpretable
rules which are also discriminative (i.e., they can separate anomalies from the
normal points) and can, thus, be used also to perform AD.

The problems of outlier detection and outlier interpretation are addressed
simultaneously also in [Dang et al., 2014]. The proposed algorithm is based on
spectral graph embedding theory and can learn an optimal subspace in which
an outlier is well discriminated from normal data points while maintaining the
intrinsic geometrical structure of the data for high-quality outlier explanations.

In [Tang et al., 2015], a new algorithm for contextual outlier detection on
categorical data is proposed. A contextual outlier is here defined as a small group
of data points that share strong similarities with a larger reference group of data
points on some attributes but deviate considerably on some other attributes. In
contextual outlier detection, the goal is to identify the outliers, along with the
associated contextual information, which is represented by: i) the corresponding
reference group, ii) the attributes defining the abnormal behavior w.r.t the
reference group, iii) the population of similar outliers sharing the same context
and iv) the outlier degree (the ratio between the cardinality of the reference
group and the cardinality of the outlier group).

Differently from the approaches described above, which rely on the design of
new AD algorithms, in [Gupta et al., 2018], the authors propose a model-agnostic
method to explain outliers either detected by an AD algorithm or dictated, i.e.,
reported to the analyst externally. They provide compact visual explanations
(respecting the limited attention of human analysts) consisting of a set of pairwise
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feature plots (which they call focus-plots). Among all possible focus-plots, given
a fixed budget for explanations, they select the subset of focus-plots that “explain
away" the outliers to the largest possible extent. Following a similar logic, also
[Liu et al., 2017] leverages traditional AD algorithms for the detection stage.
Then, a model-agnostic Contextual Outlier INterpretation (COIN) framework is
set up to provide explanations. By exploiting the isolation property of outliers,
the overall problem of detector interpretation is decomposed into multiple local
classification tasks aimed at explaining individual outliers. In this way, the
original task turns into the problem of explaining each outlier w.r.t. its local
context.

The approach proposed in Section 3.5, as it will be clear later on, share the
same “analyst-centered" approach of [Gupta et al., 2018] and, like in [Gupta
et al., 2018,Liu et al., 2017], the focus is not on the design of a new detector.
The only difference is in the scope of the proposed interpretability solutions:
while the methods described in [Gupta et al., 2018,Liu et al., 2017] cover a wider
range of models, the methods proposed in Section 3.5 are specifically tailored to
the IF detector.

3.3 Motivations

If we consider the design of the evaluation procedure as part of the problem
formalization process, the need for interpretable algorithms in the context of
AD is consistent with the connection between the notions of interpretability
and incompleteness evidenced in [Doshi-Velez and Kim, 2017] and mentioned
in Section 1.2.2. Indeed, due to the lack of labeled datasets in AD problems,
AD algorithms are practically rarely testable in unsupervised settings. To fill
this gap that may prevent the adoption of such automated systems, we need to
provide proxies to assess their trustworthiness, i.e., tools to interpret the model’s
inner workings and to assess whether it is aligned with the expected behavior.

DIFFI is, to the best of our knowledge, the first model-specific method
addressing the need for interpretability for the IF detector. The global DIFFI
method is inspired by the preliminary work [Carletti et al., 2019] but differs
entirely in the information is supposed to convey. While in [Carletti et al., 2019]
the goal is to get additional knowledge on the specific AD problem at hand
(which is extremely useful, especially in contexts where no domain expertise is
available), in this work, we focus on providing additional information about a
trained instance of the IF model, with the main goal of increasing users’ trust.
Indeed, if the estimated feature importance scores aligned well with human
prior knowledge, users would be more prone to lessen the supervision and safely
give more autonomy to the machine (at least in non-critical scenarios). In this
way, we could promote the adoption of the IF in fields where the professionals’
skepticism towards intelligent algorithms is still a major obstacle to massive use.

The model-specific nature of DIFFI is motivated by the will to reflect the
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actual logic governing the IF behavior and this may not be feasible with some
model-agnostic techniques. For example, when exploiting interpretable surrogate
models [Molnar, 2022] trained to approximate the predictions of a black box
model, we need to make sure that the surrogate model fits the predictions of
the original model with a satisfactory level of accuracy. Such a requirement
represents an undesirable source of suspicion. Moreover, as argued in [Molnar,
2022,Lipton, 2018], models commonly considered as universally interpretable,
such as decision trees or linear regression, may lose their transparency advantage
as they are asked to fit complex relations: very deep decision trees do not offer
simple and intuitive visualizations, while linear regression is not suitable to
model highly non-linear mappings.

DIFFI is a post-hoc method : we decided to preserve the performance of
an established and effective AD algorithm and focus on providing global and
local feature importance measures computed a posteriori. The design of an
intrinsically interpretable model would have required sacrificing some predictive
power in light of the trade-off between accuracy and interpretability [Molnar,
2022].

The introduction of a local variant of the original algorithm for the inter-
pretation of individual predictions serves a two-fold objective: i) it enables the
interpretation of single data points in online settings when the model has already
been deployed, and ii) it helps in enhancing trust as the user can check not
only whether the model tends to make mistakes on those kinds of inputs where
humans also make mistakes [Lipton, 2018], but also whether the misclassified
inputs are being misinterpreted in the same way a human would.

It should be noted that by providing both a global and a local interpretability
method, we can guarantee maximum flexibility: based on the required granularity
or the amount of time that can be invested in the analysis of the results, the
users have the possibility to choose the solution better suited to the specific
scenario in which they operate.

The choice to focus on the seminal IF algorithm rather than on any newer
variant is motivated by the fact that IF is still the most representative and most
used method in the family of tree-based approaches for AD [Barbariol et al.,
2022].

3.4 Contributions

Motivated by its ability to attract the attention of a growing and heteroge-
neous community of researchers and practitioners, we directed our efforts to the
interpretation of the IF [Liu et al., 2008,Liu et al., 2012]. The IF model is par-
ticularly appreciated and widely used thanks to its high detection performance
(often even with default hyperparameters values, with no tuning required) and its
computational efficiency. Despite that, just like all ensemble learning methods,
it might trigger perplexities and doubts as far as interpretability is concerned:
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indeed, no information about the logic behind the mechanism producing the
predictions is available, and neither an indication about which are the most
relevant features to solve the AD task. In this Chapter, we propose for the first
time model-specific methods (i.e., methods based on the particular structure of
the IF model) to address the mentioned issues. Specifically, we introduce:

• A global interpretability method, called Depth-based Isolation Forest Fea-
ture Importance (DIFFI), to provide Global Feature Importances (GFIs),
which represent a condensed measure describing the macro-behavior of the
IF model on training data.

• A local version of the DIFFI method, called Local-DIFFI, to provide Local
Feature Importances (LFIs) aimed at interpreting individual predictions
made by the IF model at test time.

• A simple and effective procedure to perform unsupervised feature selection
for AD problems based on the DIFFI method.

• A suitable proxy task, i.e., unsupervised feature selection, for functionally-
grounded evaluation of interpretability methods [Doshi-Velez and Kim,
2017] for AD problems with no prior knowledge about the feature impor-
tance.

Each contribution mentioned above complies with the human-centered prin-
ciple aimed at matching the user’s needs to the best extent possible. This
translates into some characteristics we sought to prioritize, e.g., limited compu-
tational times and light and straightforward hyperparameters tuning procedures.
Additionally, our approach does not require additional knowledge (e.g., game
theory concepts necessary to grasp the rationale behind the functioning of SHAP
fully) since it is based on basic computations on quantities that naturally emerge
from the principles governing the IF model. Along these lines, the proposed
methods are consistent with the simplicity that characterizes the IF model,
thus avoiding the risk of developing an interpretability framework that is more
complex than the model itself. As we shall discuss in the next Sections, our
method does not imply artificial manipulations of the data points and requires
no fitting of interpretable local surrogate models. Put differently, the DIFFI
method directly handles the original model and the original data points, with
no local approximations and data perturbations. This results in an accurate and
fully-transparent description of the IF inner structure, which cannot be achieved
with model-agnostic interpretability methods.

3.5 Methods

In this Section, we extensively discuss the rationale behind the DIFFI method
and thoroughly analyze each building block. We then propose a local variant of
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the DIFFI approach, Local-DIFFI, for the interpretation of individual predictions.
We conclude with the introduction of a novel method that is based on global
DIFFI for unsupervised feature selection, which also serves as a ‘proxy task’
for evaluating the quality of attributed feature importance scores when prior
knowledge about the problem is not available. This framework for evaluating
feature importance scores can be leveraged as a functionally-grounded evaluation
method [Doshi-Velez and Kim, 2017] in the context of unsupervised AD.

3.5.1 DIFFI

The DIFFI method relies on two simple hypotheses exploited to define feature
importance for the AD task at hand. A split test associated with a feature
deemed as important should:

I1) Induce the isolation of anomalous data points at small depths (i.e., close
to the root) while relegating regular data points to the bottom end of the
trees;

I2) Produce a higher imbalance on anomalous data points, while ideally being
useless on regular points.

Notice that if contrary to the hypotheses above, the most relevant features
induced isolation of regular data points at small depths and produced a higher
imbalance on regular data points, the resulting IF model would try to isolate
regular (rather than anomalous) data points. Therefore, we would obtain a
model whose objective is not consistent with that of AD.

Let us consider a trained instance of the IF detector and the corresponding
training set D = {x1, . . . ,xn}. For each tree t we partition, based solely on the
predictions produced by tree t, the assigned bootstrap sample Dt into the subset
of predicted inliers PI,t and the subset of predicted outliers PO,t, where

PI,t = {xi ∈ Dt | ŷi,t = 0},
PO,t = {xi ∈ Dt | ŷi,t = 1},

and ŷi,t denotes the prediction produced by tree t associated to xi. Predictions are
obtained, as usual, through a thresholding operation on the anomaly scores, which
are now computed by replacing h̄(xi) with ht(xi) in (2.1). The choice to consider
only bootstrap samples for each tree, rather than the entire training set, is
motivated by the need to reduce the computational cost and the desire to decouple
the evaluation of feature importance scores from the generalization capability
of the trained model. Indeed, each tree is trained only on the corresponding
bootstrap sample, and by considering the whole training set, the performance
of the tree on unseen data (other than the bootstrap sample) might affect the
resulting feature importance scores. In general, this is not a problem since
training data are supposed to be drawn from the same distribution and, thus, the
performance on in-bag and out-of-bag samples should be similar. Nonetheless,
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considering only in-bag samples for each tree, the computational cost can be
made independent of the training set size.

We will define Cumulative Feature Importances (CFIs) for inliers and outliers,
real-valued quantities that will be then properly normalized and combined
together to produce the final feature importance measures. CFIs are updated
in an additive fashion by exploiting data points in PI,t and PO,t, for t =
1, . . . , T . The update rule depends on two quantities that reflect the two intuitions
explained above: the depth of the leaf node where a specific data point ends
up (intuition I1) and the Induced Imbalance Coefficient (IIC) associated with a
specific internal node (intuition I2). In the remainder of this Section, we first
explain how to compute IICs, then we describe the procedure for the update of
CFIs for inliers and outliers and combine them to produce the final GFIs. An
overview of the method and its building blocks is given in Figure 3.1.
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Figure 3.1: Overview of the DIFFI method for global feature importance scores. The
notation vti denotes the i-th node in the t-th tree. The quantities and
the information flow related to predicted inliers/outliers are in blue/red,
respectively. Boxes denote computation blocks: more details on IICs and
CFIs/GFIs computation will be provided in Alg. 1 and Alg. 2 respectively.

3.5.1.1 IICs computation

Let us consider the generic internal node v in tree t. Let n(v) represent the
number of data points associated with node v, nl(v) the number of data points
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associated with its left child and nr(v) the number of data points associated
with its right child. The IIC of node v, denoted λ(v), is obtained as follows

λ(v) =





0, if nl(v) = 0 or nr(v) = 0

λ̃(v), otherwise
(3.1)

where
λ̃(v) = Γ

(
max(nl(v), nr(v))

n(v)

)
(3.2)

and Γ(·) is a scaling function mapping its input into the interval [0.5, 1], whose
rationale is detailed below. In (3.1), the first case represents a useless split, in
which all data points are sent either to the left or right child. The best possible
split, instead, is what we call an isolating split : this happens when either the left
or the right child receives exactly one data point. An isolating split is assigned
the highest possible IIC, i.e., 1.

For the experiments, we use the following scaling function

Γ(a) =
a− λmin(n)

λmax(n)− λmin(n)
· 0.5 + 0.5, (3.3)

where λmin(n) and λmax(n) denote the minimum and maximum scores, respec-
tively, that can be obtained a priori1 given the number n(v) of data points
associated to the specific node location v. We notice that by scaling the values,
we can mitigate undesired effects due to the specific value of n(v), which should
not affect the computation of the induced imbalance. For instance, if n = 10 data
points are associated with a specific node, the worst non-useless split (5 points
to each child) leads to λmin = 0.5. Instead, if n = 11, the worst non-useless
split (5 samples to one child and 6 to the other one) leads to λmin = 6

11 = 0.54.
With the introduction of the scaling function Γ(·), the two scenarios depicted
above are equivalent at least for the extreme cases of isolating split and worst
non-useless split.

As it will be clear later on, we need to distinguish between IICs for inliers,
denoted λI(v) and computed by exploiting the predicted inliers PI,t, and the
counterpart for outliers, denoted λO(v) and computed by exploiting the predicted
outliers PO,t.

The computation of IICs is performed for each internal node v of each tree
t = 1, . . . , T in the forest. The pseudocode is reported in Algorithm 1.

3.5.1.2 CFIs update

We distinguish between CFI for inliers, denoted II , and the counterpart for
outliers, denoted IO. Both II and IO are p-dimensional vectors, where the j-th
component represents the CFI (for inliers or outliers) for the j-th feature.

1Here “a priori” means before applying the scaling function Γ(·).
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Algorithm 1 DIFFI - IICs computation.
Input: Isolation Tree t, set of data points S
Output: IICs vector Λ ∈ R|t| (|t| number of internal nodes in tree t)

1: function IIC(t,S)
2: for internal node v in t do
3: Compute λ(v) as in (3.1), using samples in S
4: Λ[v]← λ(v)
5: end for
6: return Λ
7: end function

Let Path(x, t) be the path from the root node to the corresponding leaf node
associated with data point x in tree t. For simplicity we restrict the attention
to the CFI update rule for inliers (i.e., II), as the extension to IO is immediate.
First we initialize II = 0p, where 0p denotes the p-dimensional vector of zeros.
Then we update II in an additive fashion. Specifically, we iterate over all trees
in the forest and then, for each tree t, over the subset of predicted inliers PI,t.
Finally, for the generic predicted inlier xI ∈ PI,t, we iterate over the internal
nodes in its path Path(xI , t). If the splitting feature associated with the generic
internal node v is fj , then we update the j-th component of II by adding the
quantity

∆ =
1

ht(xI)
· λI(v), (3.4)

where we recall that ht(xI) denotes the depth of the leaf node (in tree t) associated
with data point xI . In (3.4), we can notice the contributions of two factors.
The right-hand side factor characterizes the “local" effect of the split through
the induced imbalance at that specific node location. The left-hand side factor,
instead, characterizes the “global" effect of the split taking into account potential
situations in which an apparently bad (from the “local" perspective) split actually
re-organizes the data points in a way that makes it easier for subsequent split
tests to isolate them.

As regards the update rule for IO, the only differences with respect to the
procedure detailed above are that we iterate over PO,t rather than PI,t and that
we replace λI(v) with λO(v) in (3.4).

3.5.1.3 GFIs computation

Recalling that in the IF, differently to what happens in the RF algorithm,
the splitting features are selected randomly, the careful reader should perceive a
potential issue: if the generic feature f was sampled more frequently than others,
it would unfairly receive a higher CFI. We define the features counter for inliers,
denoted CI , and the counterpart for outliers, denoted CO, as p-dimensional
vectors where the j-th component represents how many times the j-th feature
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appeared while updating the CFIs. CI is updated iterating over PI,t, while CO
is updated iterating over PO,t, for t = 1, . . . , T . In order to filter out the effect
of random splitting feature selection, we simply normalize the CFIs by their
corresponding feature counters, CI and CO respectively. The GFIs are then
obtained as

GFI =
IO/CO
II/CI

, (3.5)

where divisions are performed element-wise. Notice that higher feature impor-
tance for inliers (i.e., a high value of the denominator in (3.5)) implies lower
overall feature importance. This is consistent with intuition I1: important fea-
tures isolate outliers closer to the root and simultaneously do not contribute to
the isolation of inliers. Algorithm 2 summarizes the whole procedure at the core
of the DIFFI method. IICs are computed according to the function described
in Algorithm 1. The function Feat(·) returns the feature associated with the
internal node passed as argument.

3.5.2 Local-DIFFI

For the interpretation of individual predictions produced by the IF, we exploit
a procedure similar to the one described in Section 3.5.1 with differences due
to the impossibility of computing some quantities in the local case (i.e., when
considering one sample at a time). Specifically:

• the Induced Imbalance Coefficients cannot be computed since we consider
only one sample;

• all quantities referred to predicted inliers cannot be computed since the
focus is on the interpretation of predicted outliers.

Given a predicted outlier xO, the corresponding Local Feature Importance (LFI)
is computed as

LFI(xO) =
I locO
C locO

, (3.6)

where, similarly to the global case, C locO is the features counter and I locO is the
CFI associated with xO. Both C locO and I locO are updated in an additive fashion
by iterating over the ITs in the forest and over the internal nodes in the path
Path(xO, t) in each IT. Differently from the global case, if the splitting feature
associated with the generic internal node v (in tree t) is fj , then we update the
j-th component of I locO by adding the quantity

∆loc =
1

ht(xO)
− 1

hmax
. (3.7)

The correction term − 1

hmax
in (3.7) makes sure that CFI is not updated when the

leaf node associated with the predicted outlier xO is at the maximum depth of the
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Algorithm 2 DIFFI - CFIs update and GFIs computation.
Input: Isolation Forest F, bootstrap samples {D1, . . . ,DT }
Output: global feature importance scores GFI ∈ Rp

1: Initialize counter and cumulative importance variables:
2: for j = 1, . . . , p do
3: CI(fj), II(fj), CO(fj), IO(fj)← 0
4: end for
5: for Isolation Tree t in Isolation Forest F do
6: Get predicted inliers and outliers according to tree t:
7: PI,t,PO,t ← Predict(Dt, t)
8: Get IICs associated with inliers and outliers:
9: ΛI ← IIC(t,PI,t)

10: ΛO ← IIC(t,PO,t)
11: Update CFIs:
12: for x ∈ PI,t do
13: for internal node v in Path(x, t) do
14: f = Feat(v)
15: CI(f)← CI(f) + 1

16: II(f)← II(f) +
1

ht(x)
· ΛI [v]

17: end for
18: end for
19: for x ∈ PO,t do
20: for internal node v in Path(x, t) do
21: f = Feat(v)
22: CO(f)← CO(f) + 1

23: IO(f)← IO(f) +
1

ht(x)
· ΛO[v]

24: end for
25: end for
26: end for
27: Compute FI for each feature:
28: for j = 1, . . . , p do

29: GFI(fj) =
IO(fj)

CO(fj)
/
II(fj)

CI(fj)
30: end for

tree. If the correction term were not used, the CFI of each feature in Path(xO, t)
would also be updated in cases where the data point under examination is not
isolated (i.e., when it ends up in leaf nodes at the maximum depth) as ∆loc

would always be greater than zero. The pseudocode of the Local-DIFFI method
is reported in Algorithm 3. The function Feat(·) returns the feature associated
with the internal node passed as argument.
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Algorithm 3 Local-DIFFI.
Input: Isolation Forest F, predicted outlier xO
Output: local feature importance scores LFI ∈ Rp

1: Initialize counter and cumulative importance variables:
2: for j = 1, . . . , p do
3: C locO (fj), I

loc
O (fj)← 0

4: end for
5: for Isolation Tree t in Isolation Forest F do
6: Update CFIs:
7: for internal node v in Path(xO, t) do
8: f = Feat(v)
9: C locO (f)← C locO (f) + 1

10: I locO (f)← I locO (f) +
1

ht(xO)
− 1

hmax
11: end for
12: end for
13: Compute FI for each feature:
14: for j = 1, . . . , p do

15: LFI(fj) =
I locO (fj)

C locO (fj)
16: end for

3.5.3 Unsupervised feature selection with global DIFFI

The DIFFI method outlined in Section 3.5.1 can be effectively exploited to
perform feature selection in the context of AD problems when labels associated
with training data points are not available. The procedure consists in training
Nfs different instances of IF obtained with the same training data but different
random seeds in order to filter out effects due to the stochasticity inherently
present in the model. The global DIFFI scores associated with each instance of
IF are then aggregated to define a ranking on the features as follows:

1. We define the p-dimensional vector of aggregated scores Sagg ∈ Rp initial-
ized as a p-dimensional vector of zeros, where p is the number of features.

2. For each of the Nfs IF instances:

• we rearrange the global DIFFI scores in decreasing order, thus ob-
taining a ranking of the features (for the specific IF instance) from
the most important one to the least important one;

• we update Sagg by adding, for each feature, a quantity that is a
function of the estimated rank r̂, namely

∆fs = 1− log(r̂)

log(p)
. (3.8)
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Figure 3.2: Update function for aggregated scores: an example with p = 100.

Notice that in (3.8), we differentiate more the scores among the most
important features, while for the least important ones the scores are
similar and very small (see Figure 3.2).

3. The resulting vector of aggregated scores Sagg is then used to define a
ranking over the features: the higher the aggregated score, the more
important the feature.

The motivations behind this strategy stem from the human-centered design
principle adopted in this work and can be summarized as follows:

• Users can spend only a limited amount of time on preprocessing oper-
ations since, especially in production environments, the deployment of
novel algorithmic solutions is usually meant to react to emerging issues
promptly. The light computational cost of the DIFFI method, thanks to
the in-bag samples trick, is particularly appealing in such time-constrained
applications.

• In order to minimize the effort of users, the choice of the IF (combined with
DIFFI) as a proxy model to produce a ranking on the features is attractive
as it introduces just a few hyperparameters to be tuned; in addition, it is
worth mentioning that the IF is often preferred over other AD algorithms
due to its good performance with the default hyperparameters values
suggested in the original paper.

• The proposed strategy for unsupervised feature selection takes into account
the nature of the task, while most other methods do not. This is particularly
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important for AD tasks as relevant features for classification might not
be relevant for AD. The user interested in solving an AD problem may
trust more a method specifically suited for such a purpose than other
task-agnostic methods.

As anticipated in Section 3.4, in addition to the unquestionable usefulness
of the unsupervised feature selection task, the procedure outlined above also
represents an excellent proxy to indirectly assess the quality of the feature
importance scores provided by the global DIFFI method described in Section
3.5.1. Indeed, good feature importance scores would lead to a good ranking of the
features, which in turn can be considered as a good solution to the unsupervised
feature selection problem. Therefore, given a pre-specified number of features k
that an AD model could exploit, we would expect an effective interpretability
method to provide the most informative subset of k features to solve the AD
task (i.e., the subset of k features delivering the best possible performance).

3.6 Experimental Results

We report in this Section experimental results on synthetic and real-world
datasets to assess the effectiveness of both the global DIFFI method (to provide
global feature importance scores and to perform unsupervised feature selection)
and its local variant to provide feature importance scores associated with individ-
ual predictions. We also provide analyses of the global and local DIFFI methods
on synthetic data to assess the relevance of each component. All experiments
were run on a standard consumer laptop equipped with an Intel Core i7-8750H
2.20GHz CPU and 16 GB RAM.

We make the code publicly available2 to enhance the reproducibility of our
experimental results and to foster research in the field.

3.6.1 Global interpretation of the Isolation Forest model

We first evaluate the global DIFFI method on controlled experiments on
synthetic data. The synthetic dataset was created by initially considering 2-
dimensional data points whose dimension is then augmented by adding noise
features, similar to what was done in [Carletti et al., 2019]. Specifically, the
generic data point x is represented by the p-dimensional vector

x = [ϱ cos(ϑ), ϱ sin(ϑ), e1, . . . , ep−2]
⊺ , (3.9)

where ej ∼ N (0, 1) for j = 1, . . . , p− 2 are white noise samples. Parameters ϱ
and ϑ are random variables drawn from continuous uniform distributions. For
regular data points, we have

ϑ ∼ U(0, 2π), ϱ ∼ U(0, 3), (3.10)
2https://github.com/mattiacarletti/DIFFI

https://github.com/mattiacarletti/DIFFI
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while for anomalous data points, we have

ϑ ∼ U(0, 2π), ϱ ∼ U(4, 30). (3.11)

For our experiments, we consider a training set composed of 1000 6-dimensional
data points (thus 4 noise features), with 10 % anomalies. We trained 10 instances
of IF with 100 trees and ψ = 256 (typical choices for the IF hyperparameters
[Liu et al., 2008]), obtaining an average F1-score on training data equal to
0.71 (standard deviation 0.03). Since the models we obtain achieve satisfactory
detection performance, it is reasonable to assume that the informative features
(i.e., ϱ cos(ϑ) and ϱ sin(ϑ) in (3.9)) are effectively exploited to solve the task.
Based on this observation, for each trained instance of the IF model, we consider
the feature importance scores provided by the global DIFFI method and rank the
features accordingly. As expected, the coordinates of the points are always ranked
as the two most important features. If we do not consider the IIC contribution
(i.e., if we set λI(v) = 1 in (3.1)), the gap between the normalized importance
scores of the informative features and the noise features is significantly reduced,
making it harder to tell them apart. Similar issues arise when we only consider
the contribution of predicted outliers (i.e., when setting II/CI = 1 in (3.5)). In
this latter case, ϱ cos(ϑ) does not appear amongst the top-2 most important
features for 3 (out of 10) models, and the same happens with ϱ sin(ϑ) for 2 (out
of 10) models.

3.6.2 Interpretation of individual predictions

For the interpretation of individual predictions provided by the IF model,
we exploit the local variant of the DIFFI method described in Section 3.5.2. We
assess the effectiveness of the Local-DIFFI method on a synthetic dataset and a
real-world dataset. On both datasets, we have prior knowledge about the most
relevant features for the AD task to be solved, which would be fundamental
for evaluating the performance of DIFFI. We remark how finding real-world
data for AD problems with a priori knowledge of the relevant features is not a
trivial task. The experimental setup adopted here simulates a real scenario of
remarkable interest in several application domains: given a trained instance of
the IF, the user is interested in deploying the model in online settings to get
the prediction and the corresponding local feature importance scores associated
with the individual data point being processed. Typical applications include
(but are not limited to) the monitoring of smart manufacturing systems and
the detection of abnormal patterns in healthcare data: in both examples, the
promptness of responses may be crucial to ensure quick and effective corrective
actions for the industrial processes/machines or the well-being of patients.

3.6.2.1 Synthetic dataset

As done in Section 3.6.1 for the global DIFFI method, we first analyze the
performance of the Local-DIFFI method in controlled experiments on synthetic
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Figure 3.3: Synthetic outliers projected on the f1 − f2 plane.

data. The training set is the same considered in Section 3.6.1 and is exploited
to train an instance of IF with 100 trees and ψ = 256 (that are typical choices
for the IF hyperparameters [Liu et al., 2008]), obtaining an F1-score on training
data equal to 0.76. For the testing phase, we generated 300 additional ad-
hoc anomalies, displayed in Figure 3.3 (projected on the subspace of relevant
features): 100 lying on the x-axis (blue points), 100 on the y-axis (orange points)
and 100 on the bisector (green points). The prior knowledge for this AD task
is represented by the fact that only feature f1 is relevant for outliers on the
x-axis, only feature f2 is relevant for outliers on the y-axis and both f1 and f2
are relevant for outliers on the bisector (all the other features, being white noise
samples, are irrelevant in all cases). Once the predictions associated with the
generated test outliers are obtained, we run the Local-DIFFI algorithm to get
the local feature importance scores and the corresponding feature rankings. We
compared the performance of the Local-DIFFI method with SHAP and LIME.
In Figure 3.4, features are color-coded, the columns represent the ranks, and
the height of the bar associated with each feature represents the fraction of
predicted anomalies for which the feature has a specific rank. For example, in
the top left plot in Figure 3.4, feature f1 has rank 1 for all predicted anomalies.
Instead, feature f2 has rank 2 for ∼ 40% of predicted anomalies, rank 3 for
∼ 30% of predicted anomalies, rank 4 for ∼ 10% of predicted anomalies, and so
on. As can be seen, both Local-DIFFI and SHAP perfectly identify the actual
important feature(s): in the first two rows, for all correctly predicted outliers,
the first column (representing the most important feature as estimated by the
interpretability method) is always associated with the correct feature, namely
f1 and f2 for outliers on the x-axis and on the y-axis, respectively; in the third
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Figure 3.4: Feature rankings for the synthetic dataset based on Local-DIFFI scores
(left column), SHAP scores (central column) and LIME scores (right
column): outliers on the x-axis (first row), on the y-axis (second row) and
on the bisector (third row).

row (referred to the points on the bisector), instead, both f1 and f2 are deemed
important by Local-DIFFI and SHAP, thus aligning with prior knowledge. In
this latter case, we also observed that feature importance scores provided by
Local-DIFFI for feature f1 and f2 are comparable, while the same rightly does
not happen for outliers on the axes. Feature rankings provided by LIME do not
align well with prior knowledge. This is probably due to issues related to the
sampling strategy used to produce perturbed data points, which might not belong
to the data manifold, and/or to the well-known instability of the explanations
[Alvarez-Melis and Jaakkola, 2018]. A major advantage of Local-DIFFI over
SHAP and LIME is the computational time: while SHAP and LIME have an
average execution time of 0.221 and 0.291 seconds per sample, respectively,
Local-DIFFI runs in 0.023 seconds per sample on average. Along the lines of
the experiments described in Section 3.6.1, we performed an ablation study to
assess the role of the correction term in (3.7). Similarly to what happens with
the global DIFFI method, when we ignore the effect of the correction term (i.e.,
when setting − 1

hmax
= 0 in (3.7)), the gap between the normalized importance

scores of the informative features and the noise features is significantly reduced.
This is due to the fact that, without the modulation of the correction term,
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Figure 3.5: Feature rankings for the glass dataset based on Local-DIFFI scores (left
column), SHAP scores (central column), and LIME scores (right column):
class 7 outliers (headlamps glass).

the CFI is also being updated for useless splits, i.e., splits that do not induce
isolation of the data point before the maximum depth of the tree is reached.

3.6.2.2 Real-world dataset

We consider a modified version of the Glass Identification UCI dataset3

originally intended for multiclass classification tasks. The dataset consists of
213 glass samples represented by a 9-dimensional feature vector: one feature is
the refractive index (RI), while the remaining features indicate the concentra-
tion of Magnesium (Mg), Silicon (Si), Calcium (Ca), Iron (Fe), Sodium (Na),
Aluminum (Al), Potassium (K) and Barium (Ba). Originally the glass samples
were representative of seven categories of glass type, but for our experiments, we
grouped classes 1, 2, 3, and 4 (i.e., window glass) to form the class of regular
points, while the other three classes contribute to the set of anomalous data
points (i.e., non-window glass): containers glass (class 5), tableware glass (class
6) and headlamps glass (class 7). We assess the performance of Local-DIFFI on
predicted outliers belonging to class 7, considered as test data points. Similarly
to [Gupta et al., 2018], we exploit prior knowledge on headlamps glass: the
concentration of Aluminum, used as a reflective coating, and the concentration
of Barium, which induces heat-resistant properties, should be important features
when distinguishing between headlamps glass and window glass. We trained an
instance of IF with 100 trees and ψ = 64 and obtained an F1-score on training
data equal to 0.55. On the test data (class 7), the IF identified 28 out of 29
anomalies. As for the synthetic dataset, we ran the Local-DIFFI algorithm to
get the local feature importance scores and compared the performance with
those obtained with SHAP and LIME. As shown in Figure 3.5, Local-DIFFI
identifies the concentration of Barium and Aluminum as the most important
features in the vast majority of predicted anomalies, well aligned with a priori
information about the task. The same cannot be said for SHAP and LIME: while
the most important feature is still the concentration of Barium, the second most
important feature for almost all predictions is the concentration of Magnesium.

3https://archive.ics.uci.edu/ml/datasets/Glass+Identification

https://archive.ics.uci.edu/ml/datasets/Glass+Identification
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Table 3.1: AD datasets used for unsupervised feature selection experiments.

Dataset Num samples Num features Contamination

satellite 6435 36 32%
cardio 1831 21 9.6%
ionosphere 351 33 36%
lympho 148 18 4.1%
musk 3062 166 3.2%
letter 1600 32 6.25%
mnist 7603 100 9.2%
optdigits 5216 64 3%
vowels 1456 12 3.4%
annthyroid 7200 6 7.42%

Additionally, also in this case, the Local-DIFFI exhibits way smaller execution
time (0.019 seconds per sample on average) than SHAP (0.109 seconds per
sample on average) and LIME (0.301 seconds per sample on average).

3.6.3 Unsupervised feature selection

According to the procedure outlined in Section 3.5.3, we exploit the global
DIFFI scores to define a ranking over the features representing the data points
in the problem at hand. In all experiments described below, we run Nfs = 5
instances of IF. To verify the quality of the selected features, we perform
experiments on popular AD datasets from the Outlier Detection DataSets
(ODDS) database4, whose characteristics are summarized in Table 3.1. Once the
ranking is obtained, we train an instance of IF by exploiting only the top k most
important features (according to the ranking), with k = 1, . . . , p− 1. We repeat
the procedure 30 times (with different random seeds) and compute the median
F1-score. We provide comparisons with two other commonly used unsupervised
feature selection techniques, i.e., Laplacian Score [He et al., 2006], and SPEC
[Zhao and Liu, 2007]. We did not consider other techniques such as Nonnegative
Discriminative Feature Selection [Li et al., 2012], and l2,1-Norm Regularized
Discriminative Feature Selection [Yang et al., 2011] due to their prohibitive
computational cost, which makes extensive usage practically cumbersome. The
hyperparameters values for the final IF model are tuned separately for each
dataset through grid search, exploiting all the available features, and then kept
fixed for all the experiments involving the same dataset. For the unsupervised
feature selection methods, instead, we set the hyperparameters to the default
values to be consistent with the goal of minimizing user efforts in time-consuming
operations. Furthermore, this approach perfectly fits real-world applications

4http://odds.cs.stonybrook.edu/

http://odds.cs.stonybrook.edu/
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Figure 3.6: Evaluation of the global DIFFI method (diffi_5) for unsupervised fea-
ture selection, compared with Laplacian Score (lapl) and SPEC (spec)
methods.
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in which the lack of ground truth labels prevents the design of any principled
hyperparameters tuning procedure, leading users to rely on existing heuristic
rules.

As can be seen in Figure 3.6, the performance of DIFFI is comparable with
those of the Laplacian Score and SPEC methods and consistently outperform
them for a wide range of k values (i.e., number of exploited features) for the
cardio, ionosphere, and musk datasets. Also, in most cases, DIFFI can identify
the optimal combination of features, i.e., the subset of features leading to the
highest (median) F1-score value.

We believe that task-specific methods such as DIFFI are preferable over
task-agnostic methods (like Laplacian Score and SPEC) as the features that are
actually relevant to solve a classification problem might not be relevant to solve
an AD problem [Puggini and McLoone, 2018]. This comes as no surprise in light
of the different nature of the two tasks, and it may unconsciously affect the user
preference when reasoning about the most appropriate approach. Additionally,
as mentioned in Section 3.5.3, the procedure based on DIFFI requires minimal -
if any - hyperparameters tuning: the only hyperparameters are inherited from
the underlying proxy model, i.e., an instance of IF, which has proved to provide
satisfactory performance with the default hyperparameters values on a broad
spectrum of applications.

3.7 Case Study: Semiconductor Manufacturing

In this Section, we assess the effectiveness of the global DIFFI method in
the context of semiconductor manufacturing for a Chemical Vapor Deposition
(CVD) [Susto et al., 2011] monitoring problem. Specifically, we consider 4
datasets representing 4 different recipes, with different characteristics in terms
of cardinality (see Table 3.2). Data points are represented as 25-dimensional
feature vectors, where each feature is derived from sensor measurements installed
on the equipment. It is worth highlighting that none of the considered datasets
is equipped with ground truth labels indicating whether a specific data point
is anomalous or not, therefore the detection performance of AD algorithms
cannot be assessed. Nevertheless, the formulation of an AD problem with this
experimental setup is reasonable and could be useful in many respects:

• AD algorithms (such as the IF) which associate an anomaly score to
each data point are particularly useful in flagging potentially problematic
situations, even in cases where the data point under examination does not
clearly represent an anomaly.

• Unsupervised AD algorithms offer a multivariate alternative to simpler
univariate control charts for monitoring purposes.

In addition to the above considerations, for the specific case study considered in
this Section, we can also rely on prior knowledge due to the collaboration with
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Figure 3.7: Overview of the approach adopted for the experiments on CVD datasets.
Circles represent data points, where green indicates predicted inliers and
red predicted outliers. The darker the shade, the more confident the
prediction.

domain experts. More in detail, thanks to the physical interpretation that can
be associated with most of the features, we have additional information about
which are the most relevant features for the CVD process at hand. This can
be considered as a (noisy) ground truth for the feature importance ranking and
can be exploited to assess how well the feature importance ranking based on the
global DIFFI scores is aligned with domain knowledge. The prior knowledge
is represented by the claim that the indices of the most important features are
{15, 16, 17, 18, 19, 20, 21, 22, 23}.

For our experiments, we train an instance of the IF with the default hy-
perparameters setting suggested in the original paper, i.e., T = 100 trees and
sub-sampling size ψ = 256. For the DIFFI method, we do not exploit bootstrap
samples as described in Section 3.5, but we consider a fixed number (50) of
predicted inliers and predicted outliers with the lowest and highest anomaly
scores, respectively. In this way, the global DIFFI scores are computed based
on the data points whose associated predictions are the most confident. This
reveals to a greater extent the inner logic of the IF in real-world scenarios, where
less confident predictions may inject noise into the computation of the feature
importance scores if the whole dataset was used. An overview of the adopted
approach is given in Figure 3.7. For the sake of simple visualizations, we report
experimental results referred to a single experiment, which is representative of a
set of experiments performed with different random seeds, all leading to similar
results.

We compare the DIFFI scores with the feature importance scores obtained
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Table 3.2: Cardinality of CVD datasets.

Dataset Num samples

Recipe 1 956
Recipe 2 34716
Recipe 3 3580
Recipe 4 13459

with the Permutation-based Importance (PIMP) method [Fisher et al., 2018]
(based on the measure of variable importance introduced in [Breiman, 2001] for
RFs). We adapted the PIMP method to unsupervised settings by evaluating the
deviation from original predictions rather than the drop in detection performance
under permutations of feature values. Results are reported in Figure 3.8. It is
evident that both DIFFI and PIMP successfully identify the correct important
features, i.e., those expected by domain experts. However, the relative difference
between the most important features and the least important features obtained
with PIMP is not as pronounced as that obtained with DIFFI.

3.8 Conclusions

This Chapter introduces Depth-based Isolation Forest Feature Importance
(DIFFI), a method to provide interpretability traits to the IF model, one of
the most popular and effective AD algorithms. By providing a quantitative
measure of feature importance in the context of the AD task, DIFFI allows
describing the behavior of IF at the global and local scales, providing insightful
information that can be exploited by final users to get a better understanding of
the underlying process and to enable root cause analysis.

DIFFI is as effective as the current state-of-the-art methods SHAP and LIME,
with significantly smaller computational costs, making it really appealing for
real-world production applications and even amenable to real-time scenarios.
Moreover, we show that DIFFI can be employed to perform unsupervised fea-
ture selection, allowing the development of computationally parsimonious (and
potentially more accurate) AD solutions. In a semiconductor manufacturing
case study, the feature importance scores provided by the global DIFFI method
aligned well with prior domain knowledge about the problem at hand (Chemical
Vapor Deposition).

We believe that, given the exponentially growing interest in IF, DIFFI
will be of paramount importance to enhance its usability and diffusion in real-
world applications. We also believe that DIFFI would lead to an increase in
the adoption of IF, as models naturally equipped with interpretability traits
are usually preferred over black-box models [Rudin, 2019]. Concerning the
latter aspect, future interdisciplinary studies could fruitfully explore the user



50 Chapter 3. Depth-based Isolation Forest Feature Importance

perspective through dedicated experiments.
With the formulation proposed in this work, the DIFFI method can only

be leveraged to interpret the original IF model. To overcome this limitation,
we envision DIFFI to be possibly extended to other tree-based models for AD,
such as the Extended Isolation Forest [Hariri et al., 2019], the SCiForest [Liu
et al., 2010], or the Streaming HSTrees [Tan et al., 2011]). In particular, the low
computational costs open up the opportunity to exploit DIFFI in the flourishing
field of online AD applications with streaming data, where time efficiency is
crucial [Miao et al., 2018,Zhang et al., 2019b].
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Figure 3.8: Feature importance scores for DIFFI (left) and PIMP (right) for the recipe
1 dataset (first row); recipe 2 dataset (second row); recipe 3 dataset (third
row); and recipe 4 dataset (fourth row).
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Chapter 4

Background on Computer Vision
Models

4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are the models at the heart of the ex-
traordinary results of DL technologies in the past decade [Goodfellow et al.,
2016]. They are loosely inspired by the structure and functioning of biological
neural networks and consist of a collection of nodes (or artificial neurons) con-
nected to each other. In Feedforward Neural Networks (FNNs), these nodes
are organized in layers, and the information flows from the input to the output
with no feedback loops, as shown in Figure 4.1. The first layer of the network is
represented by the input variables and is dubbed input layer, while the last layer
computes the final output of the model and is called output layer. Intermediate
layers are called hidden layers since training samples do not provide information
about the output for each hidden neuron of the network, but just the model
input-output pair of values. In Figure 4.1, the network has only one hidden
layer, but state-of-the-art models used in practice have several hidden layers to
encode more complex functions. Models with more than one hidden layer are
called Deep Neural Networks.

Each neuron of the network computes an affine transformation of its inputs
and applies a non-linearity usually called activation function. In other words, if
we denote with xk−1 the output of the (k − 1)-th layer, the k-th layer computes
the following function

xk = σ(Wkxk−1 + bk), (4.1)

where Wk and bk are the matrix of weights and the vector of biases of the
k-th layer, respectively. The function σ(·) represents the activation function.
Throughout this thesis, we will consider models with ReLU activation functions
ReLU(x) = max{0, x} (see Figure 4.2). Multilayer FNNs are universal approxi-
mators, in the sense that in principle they have the capability of approximating
any measurable function to any desired degree of accuracy [Hornik et al., 1989].

55
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Figure 4.1: Feedforward Neural Network with one hidden layer.

The goal of the training process is, indeed, to optimize the weights and biases of
the model - collectively denoted by ϑ - so that the resulting function

y = fϑ(x) (4.2)

is a good approximation of the true underlying data-generating function

y = f∗(x), (4.3)

where in Equations (4.2) and (4.3) (x, y) represents a generic input-output pair.
This is done by minimizing a suitable cost function J(ϑ). Typically, J(ϑ) can
be written as

J(ϑ) = E(x,y)∼p̂data
[
L(fϑ(x), y)

]
, (4.4)

where L is the per-sample loss function and p̂data is the empirical distribution.
Actually, the ultimate goal would be to reduce the expectation of the loss function
L over the true data-generating distribution pdata, i.e., to minimize the so-called
risk

R(f) = E(x,y)∼pdata
[
L(fϑ(x), y)

]
. (4.5)

Since the true data-generating distribution pdata is unknown and we only have a
finite training set, we minimize the empirical risk

R̂(f) =
1

N

N∑

i=1

L(fϑ(x(i)), y(i)), (4.6)

where N is the number of training samples. In Chapters 5 and 6, we consider
models trained by optimizing the cross-entropy loss via Stochastic Gradient
Descent (SGD) [Bottou et al., 2018].
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Figure 4.2: ReLU activation function.

4.2 Convolutional Neural Networks

Convolutional Neural Networks are sophisticated neural architectures to
handle data with a grid-like topology [Goodfellow et al., 2016] that have earned
tremendous success, especially for Computer Vision tasks [Krizhevsky et al.,
2017,He et al., 2016a,Simonyan and Zisserman, 2014]. They are characterized
by the fact that, in at least one of the hidden layers, convolution, a special kind
of linear operation, is used in place of the usual matrix multiplication operation
Equation (4.1). As can be seen in the example in Figure 4.3, the convolution
operation has two arguments: the input, which is a multidimensional array of
data, and a convolutional kernel, which is a multidimensional array of parameters.
For the image classification tasks that we will consider in the next Chapters,
both the input and the convolutional kernel have dimension 2. The output
of the convolution operation is usually called feature map and is produced as
follows. The kernel slides over the input array and performs an element-wise
multiplication between its parameters and the values of the input data at the
spatial locations selected by the area of the kernel. Finally, the results of this
element-wise multiplication operation are summed together to produce a scalar
value to be assigned to the corresponding spatial location in the feature map
at the output. This procedure is repeated until the area of the whole input
array is covered, and the feature map at the output is filled up. In Figure 4.3,
the colored areas highlight how the value for a single location of the feature
map is produced. Notice that the feature map produced by the 2D convolution
operation has a reduced dimension compared to the input. In some practical
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Figure 4.3: 2D convolution operator.

applications, we may want to preserve the original dimensions of feature maps,
and this is done by adding extra fake pixels at the borders of the input array.
This technique is called padding. The value of the added pixels could be 0 (zero
padding) or replicate the value of pixels at the borders of the original input array.
In modern CNNs, convolutional layers consist of a collection of convolutional
kernels dubbed filters, so that both the input and the output of convolutional
layers have an additional dimension, usually called the channel dimension. The
function implemented by the k-th convolutional layer (with a single channel in
input and output, for simplicity) can be written as

xk = σ(Wk ∗ xk−1 + bk), (4.7)

where the symbol ∗ denotes the convolution operator. The huge success of CNNs
stems from three main properties of convolution, namely sparse connectivity,
parameter sharing, and equivariance to translation. In particular, equivariance
to translation means that if the input is shifted, the output of the convolutional
layer will be shifted in the same way. See [Goodfellow et al., 2016] for more
details.

Another useful property of CNNs is the invariance to small translations of
the input, which is enforced by pooling layers. Pooling functions downsample
feature maps by replacing groups of nearby activations with a scalar value that
represents a summary statistics of the neighborhood. Popular choices for pooling
functions are max pooling and average pooling.

Finally, CNNs usually employ batch normalization layers [Ioffe and Szegedy,
2015] to cope with the problem of internal covariate shift, namely the change
in the distribution of a layer’s inputs as a result of the update of parameters in
the previous layer during training. If we denote with yk the output of the batch
normalization layer, we have that

yk = γkx̂k + βk, (4.8)
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where γk and βk are learnable parameters, and x̂k is the whitened input to the
layer

x̂k =
xk − E[xk]√

Var[xk]
. (4.9)

In practice, the expectation and variance in Equation (4.9) are estimated over
mini-batches of the training set and updated in an online fashion.

Throughout the thesis we consider image classifiers encoded by CNNs of the
form f ◦ g, where f is a feature extractor with learnable parameters ϑf and g
is a fully-connected linear layer with learnable parameters ϑg. We refer to the
outputs of f as latent features. CNNs considered in this thesis are composed
of stacked sequences of convolutional layers, batch normalization layers, ReLU
activation functions, and pooling layers.

4.3 Adversarial Examples

The discovery of adversarial examples [Szegedy et al., 2013] has been arguably
the most severe setback regarding the trustworthiness of DL models. Adversarial
examples are artificially modified images that are perceptually almost identical
to their original counterpart but can cause DL models to misclassify them with
high confidence. For instance, the adversarial example in Figure 4.4 (central
panel) is very similar to the original image (left panel), but while the latter is
correctly classified (‘tree frog’) by a ResNet50 model, the predicted class for
the former is ‘pizza’ with confidence 99.9%. It is evident that the existence
of adversarial examples poses huge problems to the reliability of models and
represents a substantial difference between the performance of human beings
and machines regarding the robustness to imperceptible perturbations. Indeed,
a human observer would never be fooled by slight changes in the input image
that do not alter the semantics of its content.

Over the last decade, several methods to craft adversarial examples have
been proposed. In [Goodfellow et al., 2014], the authors introduce the Fast
Gradient Sign Method (FGSM), which leverages the gradient sign of the loss
function with respect to the input as follows

x′ = x+ ε · sign(∇xL(fϑ(x, y)), (4.10)

where the norm of the perturbation δ = ε · sign(∇xL(fϑ(x, y)) is bounded to
guarantee that the adversarial is similar to the original image. Other popular
adversarial attacks are: DeepFool [Moosavi-Dezfooli et al., 2016], a simple
and effective algorithm based on an iterative linearization of the classifier to
generate minimal perturbations that are sufficient to change the prediction of a
classifier; the one-pixel attack [Su et al., 2019], a black-box attack that perturbs
a single pixel in the input image using differential evolution; universal adversarial
perturbations [Moosavi-Dezfooli et al., 2017], i.e., small universal perturbations
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Figure 4.4: Adversarial example for an ImageNet test image (index 1551). Original
image (left); targeted ℓ2-bounded adversarial example crafted with PGD,
εte = 3, 20 steps predicted as ‘pizza’ with confidence 99.9% (center);
magnified distance between the original image and the corresponding
adversarial example background (right).

vectors that can impair the classification of a great portion of images in a given
set; adversarial patch [Brown et al., 2017], that constructs image-independent
adversarial patches to make classifiers output a target class. For a complete
survey on the topic, please refer to [Chakraborty et al., 2018,Akhtar and Mian,
2018].

4.4 Adversarial Training

Adversarial Training (AT) is arguably the most prominent method to make
models robust to adversarial examples. In their seminal paper [Madry et al.,
2017], the authors study the problem of adversarial robustness through the
lens of robust optimization and propose a comprehensive theoretical framework
that encompasses both attacks and defenses. The first step is to define a set
of allowed perturbations M, which is usually an ℓ2-ball or ℓ∞-ball of radius
ε around the input image x for the problems of interest in this thesis. Then,
instead of computing the loss directly on original training samples, we let the
adversary perturb them first, leading to the following saddle problem:

min
ϑ

E(x,y)∼D
[
max
δ∈M

L(fϑ(x, y)
]
. (4.11)

The saddle problem in Equation (4.11) can be viewed as the composition of
an inner maximization problem, aimed at finding an adversarial version of
the original input so that the loss is maximized, and an outer minimization
problem, aimed at finding a configuration of the model’s parameters that correctly
classifies the adversarial example. As a result, solving the saddle problem in
Equation (4.11) leads to a model that is robust against adversarial perturbations
within the setM.

Notice that the FGSM attack given in Equation (4.10) can be interpreted as a
single-step procedure to solve the inner maximization problem in Equation (4.11).
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According to [Madry et al., 2017], a more powerful adversary is represented by a
multi-step variant which is Projected Gradient Descent (PGD) on the negative
loss function. Given a norm ∥ · ∥p and a perturbation budget ε > 0, let Bε be
the ℓp-ball of radius ε centered at x. A PGD-based adversarial example for the
original input x is initialized at a random point in Bε and iteratively updated
(for a given number of steps) according to the following rule:

x′
t+1 = ΠBε

[
x′
t + α · sign(∇xL(fϑ(x′, y)))

]
, (4.12)

where α is the attack step-size, and ΠBε(·) projects an input onto Bε.
The robust models considered in Chapters 5 and 6 are trained/evaluated on

attacks bounded in either ℓ2- or ℓ∞-norm. We denote with εtr the perturbation
budget used during the training and with εte the perturbation budget to craft
adversarial examples for robustness evaluation.





Chapter 5

Properties and Limitations of
Adversarial Training

5.1 Introduction

DNN architectures have enjoyed massive success in image classification
tasks [LeCun et al., 2015, Krizhevsky et al., 2009a, Krizhevsky et al., 2012].
However, since the discovery of adversarial examples [Szegedy et al., 2013,
Goodfellow et al., 2014], the trustworthiness of their predictions has begun to
be questioned. To date, many defenses have been proposed to ameliorate the
robustness against adversarial attacks, but only a few proved to be still effective
after improvement of existing attacks [Athalye et al., 2018,Tramer et al., 2020]. As
mentioned in Section 4.4, AT [Madry et al., 2017] is arguably the most prominent
amongst such successful defenses, and has become a cornerstone and the primary
benchmark for robustness in DNNs. As such, countless efforts have been made
toward understanding the principles underlying the tremendous success of AT.
Nonetheless, this long-standing problem is far from being solved. In this Chapter,
we build on well-known facts about adversarially-trained models1 - such as the
accuracy-robustness trade-off [Tsipras et al., 2018,Yang et al., 2020] or the shape
bias [Zhang and Zhu, 2019] - and unveil previously unnoticed behaviors that
improve our understanding of AT. The aim of the work outlined in this Chapter
is twofold. Firstly, to challenge some common beliefs on robust models as a
first step toward establishing more sound empirical evidence of their limitations.
Secondly, to reveal properties of adversarially-trained models that could serve as
a base for future research to achieve robustness without AT. Our analysis focuses
on CNN architectures commonly adopted in image classification tasks. Based on
our findings, we conclude that current CNNs trained with AT are not the best
choice for robust classification in Computer Vision. Indeed, the experiments
described in this Chapter empirically demonstrate that adversarially-trained

1The expressions robust models and adversarially-trained models will be used interchangeably
hereinafter.
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CNNs do not exploit efficiently the model capacity and that the simplicity biases
induced by AT may lead to undesired behaviors. We first overview prior works
on AT and biases of CNNs in Section 5.2, then describe the motivations behind
our analyses in Section 5.3. In Section 5.4 we summarize our contributions, while
in Section 5.5 we introduce the methodological tools needed for our experiments.
Experimental results are discussed in Section 5.6. In Section 5.7, we recap our
findings and point to some interesting directions for future works.

5.2 Related Work

Adversarial Training It is widely accepted that AT represents the current
state-of-the-art in defending against adversarial attacks. Indeed, while many
other defenses have been proposed [Guo et al., 2017,Dhillon et al., 2018,Xie
et al., 2017,Song et al., 2017], they have been systematically evaded by refined
attacks [Athalye et al., 2018,Tramer et al., 2020]. Being the de-facto standard
for enforcing robustness, AT has attracted a great deal of research interest.
Many studies analyzed structural properties [Ilyas et al., 2019,Engstrom et al.,
2019,Shaham et al., 2018] and peculiar behaviors [Salman et al., 2020a,Terzi
et al., 2020,Utrera et al., 2020,Yang et al., 2020] of adversarially-trained models.
In particular, a well-known problem affecting robust models is the so-called
accuracy-robustness trade-off [Tsipras et al., 2018,Yang et al., 2020]. Initially,
this tension was thought to be inherent when training robust models [Tsipras
et al., 2018], but subsequent analysis [Yang et al., 2020] proved that commonly
used image datasets are separable, conjecturing that a perfectly robust and
accurate classifier can, in principle, exist. Other studies focused on improving
the performance of AT. In [Xie et al., 2020], the authors propose to use distinct
batch norm layers for clean and adversarial examples during training to improve
natural accuracy. In [Zhang et al., 2019a], a novel formulation of adversarial
defense, dubbed TRADES, is proposed. The method is based on the optimization
of a loss taking into account both natural accuracy and adversarial robustness.
Finally, another line of research is devoted to analyzing and estimating the
Lipschitz constant of DNNs, as a guarantee of stability and robustness to be
enforced during training [Scaman and Virmaux, 2018,Huang et al., 2021,Liang
and Huang, 2020]. The present work complements prior studies on the properties
of robust models and provides arguments to resolve contrasting results found in
the literature.

Biases of CNNs In [Ding et al., 2019], the authors analyze the impact of
semantics-preserving transformations of the input data distributions on clean
accuracy and adversarial robustness. The experiments show that robust accuracy
under PGD training is much more sensitive than clean accuracy under standard
training to the differences in input data distribution. In [De and Pedersen, 2021],
the impact on natural accuracy of color distortions is assessed. Specifically,
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the authors propose a variant of the ImageNet dataset where a set of color
distortions is applied to the original images. The aim of [Hermann et al., 2020]
is to investigate the source of the texture bias in models trained on ImageNet.
It shows that random-crop augmentation biases the models toward texture and
proposes more naturalistic forms of data augmentation as a simple way to mitigate
texture bias. Surprisingly, they could extract and decode shape information
from hidden layers with high accuracy. This suggests that classification layers
might play an essential role in removing shape information. In [Zhang and
Zhu, 2019], the authors exploit saliency maps to interpret the inner workings of
adversarially-trained models and compare them to standard models. They also
evaluate these models on distorted test sets preserving either shape or textures
and verify that adversarially-trained models rely more on global features such
as shape and edges. They finally show that standard models are biased toward
textures, as previously observed by [Geirhos et al., 2018]. Along these lines, our
experiments focus on the simplicity biases of robust models. Unlike previous
studies, which primarily focused on the bias toward shape and textures, our
analysis addresses the bias toward color - decoupled from shape and textures.

5.3 Motivations

The experiments described in Section 5.6 are aimed at highlighting interesting
properties and potentially harmful limitations of robust models. This is done by
characterizing their behavior along four dimensions: i) analysis of the sparsity
and frequency of activations of their feature maps; ii) analysis of the redundancy
of their feature maps; iii) analysis of the inherent robustness of their latent
representations; iv) assessment of the bias toward color and consequences on
their predictive performance. In the following, we summarize the motivations
behind each of the abovementioned directions of scrutiny.

Densely Active Feature Maps Many works discussed the interplay between
model sparsity and robustness to adversarial attacks [Xiao et al., 2018,Wong
and Kolter, 2018,Guo et al., 2018,Ye et al., 2019,Özdenizci and Legenstein,
2021,Wang et al., 2018a], often leading to opposite conclusions [Guo et al., 2018].
Since the parameters of a model provide a convenient static representation of the
task, these studies primarily focus on weight sparsity. Conversely, we address the
sparsity of activations. Indeed, the interaction between the input and the model
- rather than a structural representation of the latter - is the critical factor to be
investigated to characterize the model’s behavior.

Feature Maps Redundancy We focus on an underexplored direction to
understand how adversarially-trained CNNs work internally, namely the redun-
dancy of feature maps. We draw inspiration from three facts: i) redundant signals
are widely exploited in contexts where robustness to noise is a primary concern,
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e.g., in the theory of frames [Kovacevic and Chebira, 2008] or in error-correcting
codes [Guruswami and Rudra, 2008]; ii) the trade-off between accuracy and
robustness in DNNs is conjectured to be due to limitations of existing architec-
tures and training methods [Yang et al., 2020], rather than class separability
under adversarial attacks [Tsipras et al., 2018]; iii) AT benefits more from larger
capacity than standard training [Madry et al., 2017,Xie and Yuille, 2019]. Higher
internal redundancy (inspired by point i)) in adversarially-trained models would
provide a valid argument to justify empirical observations ii) and iii). Indeed, if
AT used feature maps redundancy to average out adversarial noise, that would
be a limitation leading to reduced model capacity and potentially contributing
to the drop in natural accuracy (point ii)). This could also be one of the reasons
why robust models benefit more from larger capacity than natural models (point
iii)): increasing the width or depth of CNNs consists in increasing the number
of layers and the number of feature maps in convolutional layers, respectively,
compensating for the reduced capacity in robust models with redundant feature
maps.

Latent Space A recent work [Shafahi et al., 2019] demonstrated that robust-
ness can be preserved in transfer learning settings, where the feature extractor -
trained on the source domain - is kept frozen and the linear classifier is retrained
on natural examples from the target domain. The authors also showed that
retraining the linear classifier on natural examples from the source domain does
not affect robust accuracy. However, this behavior has been assessed for a
single model, and whether this claim can be generalized should be investigated.
This is the goal of our experiments, where we analyze the predictive power and
robustness of latent representations in adversarially-trained models. We draw
inspiration from the surprising fact that representations in robust models can be
inverted [Engstrom et al., 2019]. This property might appear incompatible with
the accuracy-robustness trade-off observed in practice: if the representation is
invertible, then information about the data should be preserved in the latent
space, and the natural accuracy of robust models should not drop. In [Terzi
et al., 2020], the authors resolve such discrepancy by proving that AT preserves
information about the data, but the information that is accessible to the classifier
does not contain all the details about the input. Our results corroborate this
finding and show that latent representations of adversarially-trained models
offer varying levels of robust and natural accuracy, dependent on the feature
combinations selected by the classifier.

Color Bias It is a known fact that adversarially-trained models are more
biased toward simple features - such as shape - rather than textures [Utrera
et al., 2020, Chen et al., 2020a]. While these so-called simplicity biases are
typically welcomed since they help improve robustness, they could be harmful
in other contexts (as we shall show in Section 5.6). In our experiments, we
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study the color bias of adversarially-trained models independently from the
shape and texture information, a property that has been hitherto overlooked
and not adequately analyzed. Indeed, most of the studies in the literature have
been focusing on the texture-shape dichotomy [Geirhos et al., 2018,Utrera et al.,
2020,Chen et al., 2020a].

5.4 Contributions

The contributions of the work outlined in this Chapter can be summarized
as follows:

• We show that adversarially-trained models have a greater number of
spatially dense feature maps that activate for all data points in the dataset
compared to natural models. This always-active subnetwork decreases the
model expressivity.

• We show that feature maps in adversarially-trained models are more
redundant than in natural models, thus reducing the effective number of
active channels in hidden layers.

• We show that the latent space of adversarially-trained models offers repre-
sentations with varying levels of robust and natural accuracy. Specifically,
by retraining the classifier on natural images, the natural accuracy can
be significantly improved at the price of a decrease in robustness. This
demonstrates that AT spends capacity to preserve extra information about
the input that is then ignored by the robust classifier.

• We assess the color bias of adversarially-trained models by decoupling the
color information from the texture and shape information. We also point
out subtle failure modes that may undermine the deployment of robust
models in practice.

5.5 Methods

Before describing the analytical tools employed in our experiments, we
introduce the necessary notation. Let us partition the feature extractor f of
a generic CNN in blocks along the depth dimension and denote with xk the
activations (corresponding to input image x) at the output of the k-th block. The
definition of block depends on the architecture. By way of example, for models
in the ResNet family [He et al., 2016a, Zagoruyko and Komodakis, 2016] we
collect activations at the output of each ResNet block, any of whom is composed
of multiple sequences of the form convolutional layer - batch normalization
layer - ReLU activation function. In general, xk is a 3-D tensor with dimension
Ck ×Hk ×Wk, where Ck, Hk and Wk are the number of channels, feature maps
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height and width at the output of the k-th block. For our purposes, we consider
its 2-D version x̃k ∈ RCk×(Hk×Wk) with vectorized feature maps. Let x̃k[i] (or
equivalently, xk[i]) represent the i-th feature map at the output of the k-th block,
with i ∈ {1, . . . , Ck}.

Definition 5.5.1. We say that a feature map is active if at least one of its
activations is greater than 0.

Definition 5.5.2. We say that a feature map is densely active at level τdens if
at least τdens of its activations are greater than 0, for a given density threshold
τdens ∈ [0, 1].

Definition 5.5.3. Let Ik+ be the subset of active feature maps indices at the
output of the k-th block. We define the tensor of the active feature maps at the
output of the k-th block as x̃k+

def
= x̃k[Ik+].

Notice that x̃k+ has dimension |Ik+| ×Hk ×Wk, where |Ik+| is the cardinality
of Ik+ and |Ik+| ≤ Ck.

Measuring Densely Active Feature Maps Sparsity of activations can be
assessed by counting the number of densely active feature maps for each data
point in the dataset and each block in the model. We combine this information
with the frequency of activation of densely active feature maps across the dataset
to measure the model’s expressivity.

Measuring Feature Maps Redundancy Given a block index k, the starting
point is the computation of the cosine similarity matrix Sk+ between active
feature maps

Sk+(i, j) =
< x̃k+[i], x̃

k
+[j] >

∥x̃k+[i]∥ · ∥x̃k+[j]∥
(5.1)

where < ·, · > represents the inner product. The next step consists in clustering
together active feature maps whose cosine similarity is above a given threshold
τsim. As a result, we obtain a set of clusters Ck1 , . . . , Cknk

, with nk ≤ Ck. Com-
pletely uncorrelated feature maps would produce nk = Ck clusters with one
element each, while high correlation (> τsim) amongst some of the feature maps
would result in a more limited number of clusters, some of whom would have
cardinality > 1. The number of clusters at the output of a given block can be
thought of as the effective number of active channels at the output of the block.

Definition 5.5.4. We say that an active feature map is redundant if it belongs
to a cluster with cardinality > 1.

According to the definitions given above, for the k-th block, we analyze
feature maps redundancy by counting the number of redundant feature maps
CRk .
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Figure 5.1: Original images (top) and their pixel-averaged counterparts (bottom) from
the ImageNet test set.

Measuring Inherent Robustness of Latent Features The setup for this
batch of experiments is as follows. We consider a model f ◦ g pretrained in
adversarial settings. We keep the feature extractor f fixed and retrain from
scratch the linear classifier g on natural examples. In other words, we re-initialize
and then optimize ϑg, while ϑf is kept unchanged. We find that this simple
procedure can lead to non-trivial improvements in natural accuracy for robust
models, but this occurs at the price of a significant decrease in robustness.

Measuring Color Bias We assess the color bias of adversarially-trained and
natural models with three experiments.

Experiment #1. We measure the natural accuracy on pixel-averaged images.
In other words, for each image in the test set, we consider its texture-less and
shape-less monochromatic counterpart, where each pixel assumes the average
value of all pixels (examples in Figure 5.1).

Experiment #2. We consider transformed images where a colored contour of
varying thickness is applied. We measure the natural accuracy drop with respect
to the evaluation on clean images. The colored contours can be red, green, blue,
or white. For the CIFAR-10 dataset, we consider contours of thickness 1, 2, 3,
or 4 pixels. For the ImageNet dataset, we consider contours of thickness 1, 5,
10, 15, and 20 pixels (examples in Figure 5.2). Notice that the semantic content
of images is minimally affected by the added contour, and humans would not
be induced to make wrong predictions because of the frame element. Unlike
humans, the performance of adversarially-trained CNNs can be significantly
impaired in this scenario. We tested the effect of colored contours just as a prime
example of how a content-preserving alteration of the original image - leveraging
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Figure 5.2: ImageNet images with colored contours.

the simplicity bias induced by AT - can lead to dramatic changes in the behavior
of these models. Hence, the existence of even more subtle case studies is not
excluded.

Experiment #3. Along the lines of experiment #1, we investigate the relevance
of the foreground and background average colors. To do so, we leverage the
ImageNet-9 dataset introduced in [Xiao et al., 2020], for which fine-grained
foreground masks are available. The test set used for our analysis consists of 450
images per class. To evaluate the accuracy on ImageNet-9 of models pretrained
on ImageNet, we map the predictions from the 1000 ImageNet classes into the 9
coarse-grained ImageNet-9 classes. We exploit the foreground mask to extract
the average color of the foreground and background for each test image. Then,
we apply transformations that result in monochromatic variants of each image
where the color is given by either i) the average value of all pixels (‘AVG’),
which is equivalent to what is done in experiment #1; ii) the average value of
pixels in the background (‘AVG BG’); iii) the average value of pixels in the
foreground (‘AVG FG’). Differently from [Xiao et al., 2020], we focus on the
average color information in the background and foreground and decouple it from
other informative signals (e.g., shape and texture). Additionally, we consider a
transformation that couples the shape and color signals (‘SHAPE+COLOR’),
where pixels in the foreground (background) share their corresponding average
color. This allows the emergence of the shape of the main object. Examples of
transformed ImageNet-9 images are shown in Figure 5.3.
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Figure 5.3: Transformations on ImageNet-9 images. Top row: original image (left),
original foreground (center), original background (right). Bottom row:
SHAPE+COLOR (left), AVG FG (center), AVG BG (right).

5.6 Experimental Results

Models and datasets We conduct our analyses on three public datasets
for which models are easy to train (from a computational point of view), or
pretrained models are available.: CIFAR-10 [Krizhevsky et al., 2009b], CIFAR-
100 [Krizhevsky et al., 2009b], and ImageNet [Deng et al., 2009].

For CIFAR-10 and CIFAR-100, we consider ResNet18 models trained with
εtr ∈ {0, 0.5, 1, 2, 3, 4} and ℓ2-norm. The case εtr = 0 represents standard
training. All CIFAR-10 and CIFAR-100 models are trained for 150 epochs, batch
size 128, weight decay 5 · 10−4, initial learning rate η = 0.1 and a drop of η by
a factor 10 every 50 epochs. For robust models trained with AT, adversarial
examples are crafted with 7 PGD steps and attack step size α = 1.

For ImageNet, we consider ResNet18, ResNet50 [He et al., 2016a], Wide
ResNet50 ×2, Wide ResNet50 ×4 [Zagoruyko and Komodakis, 2016] models
trained with εtr ∈ {0, 0.5, 3, 5} for ℓ2-norm and with εtr ∈ {0, 0.5, 1, 2, 4, 8} for
ℓ∞-norm. Moreover, we consider VGG16 [Simonyan and Zisserman, 2014] models
trained with εtr ∈ {0, 3} and ℓ2-norm. All ImageNet models are pretrained
models retrieved from [Salman et al., 2020a]. Please refer to [Salman et al.,
2020a] for further details.

Some experiments are based on a subset of the available models for ease of
visualization and/or computational efficiency. Results on robust models trained
with ℓ∞-norm, along with results with different values of τdens and τsim are
presented in Appendix A.
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5.6.1 Densely Active Feature Maps

We analyze densely active feature maps on natural images from the test set.
The reasons why we focus on the original images rather than on adversarial
examples are: i) the higher computational cost required to craft adversarial
examples; ii) the fact that AT produces feature maps that are stable under
adversarial attacks so that the differences in the activations between natural and
adversarial images are negligible. To provide experimental evidence on point ii),
we check the number of densely active feature maps for adversarial examples
(crafted with the same specifications that were used during training) instead
of natural images in Figure 5.6. The results are almost identical in the two
cases. In Figures 5.4 and 5.5 is shown the number of densely active feature maps
at level τdens = 0.95 for ImageNet models and CIFAR-10/CIFAR-100 models,
respectively, where Nk is the number of always densely active feature maps for
the k-th block. Similar results hold for other large enough values of τdens (see
Appendix A.1). By examining how the number of densely active feature maps
varies under different training conditions, a remarkable result emerges: compared
to natural models, robust models have a higher number of feature maps that
are spatially dense and active for all samples in the dataset. This holds true
across all architectures and datasets analyzed in this work. Notice that in most
cases, the larger εtr, the higher the value of Nk. This means that, as the robust
accuracy of the model increases, spatially dense feature maps in intermediate
blocks make less use of ReLUs. The fact that these feature maps are spatially
dense and active for all data points in the dataset suggests that they convey
information that is always important/necessary. The model is partitioned into
an always active subnetwork - that gets larger as the robustness of the model
increases - and another subnetwork whose feature maps activate only for a subset
of the dataset. This partition recalls the structure of gating mechanisms where
one branch controls the flow of information in another branch, like the Gating
Units proposed in [Liu et al., 2021]. These results suggest that AT induces, as
εtr increases, a larger portion of feature maps to have a qualitatively different
behavior compared to the rest of the model, reducing its expressivity.

5.6.2 Feature Maps Redundancy

Similarly to the experiments on densely active feature maps, we compute
the number of redundant feature maps on natural images from the test set.
Almost identical results can be obtained when considering adversarial examples
instead of natural images (see Figure 5.9). In Figures 5.7 and 5.8 is shown the
number of redundant feature maps CRk across layers for different architectures
and training conditions. We set τsim = 0.95 to get clusters whose elements are
highly correlated to each other, but similar results hold for other values of τsim
(see Appendix A.2). Notice that there exists a strong correlation between the
robust accuracy of adversarially-trained CNNs and the redundancy of their active
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Figure 5.4: Number of always densely active feature maps (at level τdens = 0.95) for
ImageNet models. Robust models are trained with ℓ2-norm.



74 Chapter 5. Properties and Limitations of Adversarial Training

Figure 5.5: Number of always densely active feature maps (at level τdens = 0.95)
for CIFAR-10 and CIFAR-100 models. Robust models are trained with
ℓ2-norm.

Figure 5.6: Number of always densely active feature maps (at level τdens = 0.95) for
ResNet50 on ImageNet: natural images (left) and adversarial examples
(right). Robust models are trained with ℓ2-norm.
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Figure 5.7: Number of redundant feature maps (with τsim = 0.95) for ImageNet
models. Robust models are trained with ℓ2-norm. Values are averaged
over 5000 images randomly sampled from the test set.
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Figure 5.8: Number of redundant feature maps (with τsim = 0.95) for CIFAR-10 and
CIFAR-100 models. Robust models are trained with ℓ2-norm.

Figure 5.9: Number of redundant feature maps (τsim = 0.95) for ResNet50 on Im-
ageNet: natural images (left) and adversarial examples (right). Robust
models are trained with ℓ2-norm. Values are averaged over 5000 images
randomly sampled from the test set.
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feature maps. This effect is most prominent for models with higher capacity. For
example, for ImageNet, Wide ResNet50 ×4 has more redundant feature maps
than Wide ResNet50 ×2, which in turn has more than ResNet502. The only
exception is represented by the deeper layers, whose behavior is substantially
different if compared to others. This is not surprising, as these layers are
deputed to combine features to fit and/or memorize classes, as demonstrated
by [Stephenson et al., 2021]. It is worth mentioning that wide natural models
exhibit a larger number of redundant feature maps compared to their thinner
counterparts. This is consistent with the results in [Casper et al., 2019], where
the existence of so-called redundant units is proved and leveraged to explain
implicit regularization in wide (natural) models.

Our findings suggest a novel direction for the investigation of the mechanism
through which local robustness may be implemented by adversarially-trained
CNNs, namely a coupling between feature maps. Notice that in [Liang and
Huang, 2020], the authors propose - although for a very simple DNN - a coupling
between subsequent layers as a viable solution for achieving small Lipschitz
constants, regardless of their norm. The results presented above suggest that
AT might exploit similar schemes. Since in robust models the activation of a
specific feature map implies the activation of slightly different copies of it more
frequently than in natural models, the model capacity is exploited less efficiently.

5.6.3 Latent Features

We retrain linear classifiers g̃ for 15 epochs on natural examples from the
source domain on which the pretrained model f ◦ g was trained. Results
for ImageNet, and CIFAR-10/CIFAR-100 are reported in Tables 5.1 and 5.2,
respectively. This procedure leads to a clear improvement in natural accuracy
with respect to the original classifier g, unveiling the availability of predictive
latent representations that were not fully exploited. On the other hand, such
enhanced predictive power implies a drastic drop in robustness. We acknowledge
a correlation between the value of εtr and the entity of this behavior - the
larger εtr, the larger the increase (decrease) in natural (robust) accuracy. As
anticipated in Section 5.5, our results are in line with [Terzi et al., 2020]: the
information about the input is preserved in the latent space, but it is not fully
accessible for the robust classifier. This behavior would be expected if the latent
features were given and a robust classifier was trained on top of them at a later
stage. Indeed, a robust classifier would rightly discard features that are less
robust - although potentially more predictive - since robustness is the objective
being explicitly maximized. The surprising fact is that latent features are not
given but learned during training, and robust models spend a fraction of their
capacity to learn features that are then ignored by the classifier. A natural
question arises: why are these features present if they are not exploited by the

2Notice that wide models have the same number of output channels as their thinner
counterparts at the output of elementary blocks, but they have more channels within the block.
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Table 5.1: Natural and robust accuracy of retrained classifiers on ImageNet. Feature
extractors are pretrained robust models trained with ℓ2-norm. Robust
accuracy is evaluated against adversarial attacks crafted with 20 PGD
steps, attack step size 1, and εte = εtr.

Model Metric Clf εtr = 0.5 εtr = 3 εtr = 5

ResNet18 nat acc orig 65.48 53.12 45.59
retr 65.85 55.07 49.18

(+0.37) (+1.95) (+3.59)
ResNet18 rob acc orig 55.15 31.05 21.85

retr 54.20 27.17 16.93
(-0.95) (-3.88) (-4.92)

ResNet50 nat acc orig 73.16 62.83 56.13
retr 73.19 64.06 58.70

(+0.03) (+1.23) (+2.57)
ResNet50 rob acc orig 63.41 38.94 27.78

retr 62.31 34.53 22.10
(-1.10) (-4.41) (-5.68)

Wide ResNet50 ×2 nat acc orig 75.11 66.90 60.94
retr 74.87 67.48 62.73

(-0.24) (+0.58) (+1.79)
Wide ResNet50 ×2 rob acc orig 65.85 41.70 30.61

retr 64.85 37.69 25.28
(-1.00) (-4.01) (-5.33)
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Table 5.2: Natural and robust accuracy of retrained classifiers on CIFAR-10 and
CIFAR-100. Feature extractors are pretrained robust models trained with
ℓ2-norm. Robust accuracy is evaluated against adversarial attacks crafted
with 20 PGD steps, attack step size 1, and εte = εtr.

Model Metric Clf εtr = 0.5 εtr = 1 εtr = 2 εtr = 3 εtr = 4

CIFAR-10
ResNet18 nat acc orig 88.34 80.14 64.43 59.25 46.54

retr 88.78 82.53 72.23 67.69 56.48
(+0.44) (+2.39) (+7.8) (+8.44) (+9.94)

rob acc orig 68.30 51.44 33.38 22.85 16.26
retr 67.16 46.77 20.36 8.71 4.87

(-1.14) (-4.67) (-13.02) (-14.14) (-11.39)

CIFAR-100
ResNet18 nat acc orig 63.68 57.97 49.73 37.41 27.42

retr 64.16 57.60 52.34 46.03 39.56
(+0.48) (-0.37) (+2.61) (+8.62) (+12.14)

rob acc orig 36.07 22.50 13.07 9.54 6.35
retr 36.67 21.44 8.16 4.05 1.67

(+0.6) (-1.06) (-4.91) (-5.49) (-4.68)

classifier? One hypothesis is that they are an artifact of the training process. At
the initial stage of the training, a weak attacker might not be able to provide
informative adversarial examples, and the learning process may be irreversibly
biased toward solutions that are not optimal for robust classification.

5.6.4 Color Bias

We start this batch of experiments by evaluating natural accuracy on the
extreme case of pixel-averaged images, as discussed in Section 5.5. In Tables 5.3
and 5.4, we observe that robust models can achieve better performance than
natural models - and better than random guessing - on images that contain
no information other than the average color. To the best of our knowledge,
this is the first experiment demonstrating the color bias of adversarially-trained
models in conditions where the shape and texture signals are zeroed-out. It is
not surprising that adversarially-trained models rely more than natural ones on
global color information as it is a robust feature. Problems arise when models
trivially depend on color, i.e., when performance can be impaired by color-based
perturbations that do not compromise other robust features such as the shape.
We demonstrate that this is the case for robust models with the experiment
on colored contours. Notice that our choice to place the frame element at the
image’s border is dictated by the need to preserve the shape of the main object,
leveraging the center bias over the location of objects. In Figures 5.10 and 5.11
is shown the average (computed over different colors) drop in natural accuracy
with respect to clean images when a colored contour is added. The performance
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Table 5.3: Natural accuracy on pixel-averaged images for ImageNet. Robust models
are trained with ℓ2-norm.

Model εtr = 0 εtr = 0.5 εtr = 3 εtr = 5

ResNet18 0.292 0.302 0.346 0.456
ResNet50 0.264 0.340 0.370 0.428
Wide ResNet50 ×2 0.204 0.318 0.398 0.420
Wide ResNet50 ×4 0.184 0.312 0.446 0.404
VGG16 0.298 - 0.390 -

Table 5.4: Natural accuracy on pixel-averaged images for CIFAR-10 and CIFAR-100.
Robust models are trained with ℓ2-norm.

Model εtr = 0 εtr = 0.5 εtr = 1 εtr = 2

CIFAR-10
ResNet18 8.00 16.66 15.57 17.57
CIFAR-100
ResNet18 1.08 1.18 1.40 2.76

of robust models is remarkably impaired, even with relatively thin contours. For
example, a 5-pixel contour for ImageNet images amounts to less than 9% of the
entire image yet causes a drop in accuracy that is more than doubled compared
to natural models. Besides the larger average drop, adversarially-trained models
also present higher variance across different colors, indicating instability under
color-based transformations. These results prove that robust models, while
more ‘stable’ than natural models from the perspective of adversarial noise,
rely on a delicate balance based on summary statistics of the dataset, such as
global color. Once a perturbation in this sense is introduced, their stability
is compromised, and performance decrease catastrophically. We expand
our analysis on the color bias with experiments on the ImageNet9 dataset, as
described in Section 5.5. Results for robust models trained with ℓ2-norm are listed
in Table 5.5. It is evident that robust models rely more on the background color
than the foreground color. This behavior is more pronounced for more robust
models (i.e., models trained with larger values of εtr), providing more evidence
of the trivial reliance on color information. The SHAPE+COLOR experiment
complements the above analysis on the color bias and brings a new perspective
on the known simplicity biases that characterize adversarially-trained models
(i.e., shape and color). When only the color and shape signals are available,
just a small fraction of the accuracy on the original images is covered. This
proves that known simplicity biases alone might not play a major role in the
predictive power of robust models. Further investigations in this direction may
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Figure 5.10: Colored contours for ImageNet models: natural accuracy drop with
respect to the original test set. Circles represent the average accuracy
drop over different colors (white, red, green, blue), and error bars indicate
the corresponding standard deviation. Robust models are trained with
ℓ2-norm.
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Table 5.5: Natural accuracy with different pixel-averaging methods for ImageNet-9.
Accuracy is computed based on the 9 classes of the ImageNet-9 dataset.
Robust models are trained with ℓ2-norm. The first line of each block gives
the accuracy on the original images.

Model Transform εtr = 0 εtr = 0.5 εtr = 3 εtr = 5

ResNet18 - 93.68 92.74 86.37 80.81
avg 2.42 4.64 4.47 9.28
avg bg 2.57 5.48 5.78 8.74
avg fg 1.11 1.75 1.85 5.48
shape+color 8.69 11.75 15.78 17.58

ResNet50 - 95.83 95.56 91.58 87.41
avg 0.77 5.26 5.46 9.56
avg bg 1.09 6.25 6.52 8.96
avg fg 0.05 1.93 4.15 5.43
shape+color 12.30 14.10 16.27 18.59

Wide ResNet50 ×2 - 95.83 96.37 92.86 89.85
avg 2.27 4.57 8.52 10.22
avg bg 2.52 5.46 8.64 9.70
avg fg 1.93 1.53 5.26 7.11
shape+color 17.58 10.86 17.83 18.49

Wide ResNet50 ×4 - 96.59 96.67 93.98 92.35
avg 1.21 5.41 9.06 7.46
avg bg 1.43 5.90 9.33 7.85
avg fg 0.27 1.78 4.77 4.10
shape+color 15.65 11.93 17.63 17.41

VGG16 - 94.20 - 88.12 -
avg 1.65 - 6.44 -
avg bg 2.22 - 7.11 -
avg fg 0.42 - 3.16 -
shape+color 8.52 - 15.80 -
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Figure 5.11: Colored contours for CIFAR-10 and CIFAR-100 models: natural accuracy
drop with respect to the original test set. Circles represent the average
accuracy drop over different colors (white, red, green, blue), and error
bars indicate the corresponding standard deviation. Robust models are
trained with ℓ2-norm.

help improve our understanding of AT.

5.7 Conclusions

In this Chapter, we highlight previously unnoticed properties of the repre-
sentations learned by adversarially-trained CNNs, improving our understanding
of AT and highlighting the limitations it induces on modern CNN architectures.
Specifically, we show that i) a larger portion of spatially dense feature maps
in robust models activate for all data points in the dataset, thus reducing the
model expressivity; ii) the information conveyed through the network is more
redundant in robust models than in natural ones, limiting the effective number
of active channels in hidden layers; iii) robust models spend capacity to learn
predictive features that are not properly leveraged by the robust classifier. Taken
together, these results suggest that model capacity is not exploited efficiently
when CNNs are trained with AT. In addition, we demonstrate that robust models
overly rely on global color information that could result in undesired behaviors
under simple content-preserving perturbations that do not compromise other
robust features such as the shape. Our findings are consistent with the analysis
in [Yang et al., 2020], where the authors conjecture that the accuracy drop in
adversarially-trained CNNs is likely due to limitations in current architectures
and training routines. Our experiments investigate the root causes of such
limitations and provide insights that may be useful for achieving robustness
without resorting to AT.
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Limitations and Future Works Our work is focused on CNN architectures.
We believe it would be interesting to extend the use of our tools to unveil the
properties of other architectures - such as Visual Transformers [Dosovitskiy
et al., 2020] - or the impact of other training paradigms - such as multitask
learning [Ruder, 2017,Mao et al., 2020] and self-supervised learning [Chen et al.,
2020b,He et al., 2020,Kolesnikov et al., 2019] - in future works.

Moreover, our experiments on latent features show, contrary to common
belief, that the latent space of adversarially-trained models is not inherently
robust, but offers varying levels of robust and natural accuracy. On one side,
this implies an additional source of robustness degradation in transfer learning
settings, which adds to the decrease due to the domain shift. On the other side,
this property can be leveraged to extract - from the same model - representations
with different characteristics in terms of robustness and predictive power, enabling
one to switch seamlessly between tasks that require different levels of robustness.
Investigations along these lines could be a good avenue for future work.



Chapter 6

Improving Robustness with
Image Filtering

6.1 Introduction

The methods described in this Chapter to improve the robustness of DNNs
are inspired by the visual inspection of many adversarial examples. As can
be appreciated in Figure 6.1, adversarial attacks seek to create spurious micro-
patterns that, although perceptually negligible to the human observer, could
dramatically impact the behavior of DNNs [Szegedy et al., 2013], as discussed in
Section 4.3. These artifacts give rise to many tailored ‘virtual edges’ and micro-
textures, which could leverage structural properties of the CNN architecture
(specifically, the sum-aggregation operation in convolutional layers and the
increasing receptive field size in deeper layers) to easily subvert the model’s
predictions.

In recent years, many defenses against adversarial examples have been pro-
posed. However, the vast majority of the proposed approaches failed under
stronger attacks or adaptive ones, as their false sense of robustness turned out to
be related to different forms of obfuscated gradients [Athalye et al., 2018,Tramer
et al., 2020]. In particular, all defenses based on transformations of the input
image (such as Total Variation, JPEG compression, etc. [Guo et al., 2017])
proved to be ineffective [Athalye et al., 2018]. The most reliable method to
truly enforce robustness in DNNs is AT [Madry et al., 2017], which consists of
training DNNs on adversarial samples rather than natural ones, as discussed in
Section 4.4. In these settings, the training process is induced to find a set of
parameters so that the model is robust to adversarial examples. The exposure of
the spurious textures characterizing adversarial examples during training lets the
model infer that a particular configuration of a few distant pixels is, in principle,
not correlated with the task or that a particular local texture is not predictive.
As this process takes place during training, the model can adapt its parameters
accordingly.

85
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Figure 6.1: Micro-patterns created by ℓ2-bounded adversarial attacks on CIFAR-10
images.

As anticipated above, many issues related to the correlation of spatially dis-
tant pixels and the accumulation of the malign effects of adversarial perturbations
are due to the model architecture itself rather than the training procedure or the
training data. Therefore, major enhancements in adversarial robustness should
come from novel architectures taking into account the structural weaknesses
of current CNNs. However, as we shall show in our experiments, significant
improvements can still be achieved by acting on the input space. Indeed, based
on the above intuitions, this Chapter presents a novel image filtering framework
that improves robustness against adversarial attacks without resorting to AT.

In the remainder of this Chapter, we review existing research works on
adversarial robustness in Section 6.2. In Section 6.3 we lay out the motivations
that inspired the proposed method, while in Section 6.4 we summarize the contri-
butions of this Chapter. In Section 6.5 the image filtering framework designed to
improve the robustness of DNNs is introduced, along with a defense scheme based
on it. In Section 6.6 we present the results of our experiments. In Section 6.7
we sum up our findings, discuss limitations and potential improvements of the
proposed method and point to some possible research directions for future work.

6.2 Related Work

Since the discovery of the existence of adversarial examples [Szegedy et al.,
2013], countless attempts to make image classifiers robust to adversarial pertur-
bations have appeared in the literature. As anticipated in Section 6.1, current
state-of-the-art methods to enforce robustness directly leverage adversarial ex-
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amples during training [Goodfellow et al., 2014,Kurakin et al., 2016,Kannan
et al., 2018,Madry et al., 2017]. A major limitation affecting AT is the high
computational cost as adversarial examples are typically crafted through iterative
optimization routines. For this reason, significant efforts have been made to
improve the robustness of models without resorting to AT. Proposed solutions
cover a wide range of techniques based on curvature regularization [Moosavi-
Dezfooli et al., 2018], robust optimization to improve local stability [Shaham
et al., 2015], the use of additional unlabeled data [Carmon et al., 2019], local
linearization [Qin et al., 2019], Parseval networks [Cisse et al., 2017], defensive
distillation [Papernot et al., 2016], model ensembles [Pang et al., 2019], channel-
wise activations suppressing [Bai et al., 2021], feature denoising [Xie et al., 2019],
self-supervised learning for adversarial purification [Shi et al., 2020], and input
manipulations [Guo et al., 2017,Dziugaite et al., 2016,Lu et al., 2017]. All the
listed techniques, except those based on input manipulations, require training
the model or an auxiliary module from scratch. Our method, instead, can be
used in combination with pretrained models.

As regards the techniques based on input manipulations, in [Lu et al.,
2017] the authors analyze the effect of image rescaling on adversarial examples.
[Dziugaite et al., 2016] explores the possibility of improving robustness through
JPG compression based on the intuition that adversarial perturbations are
unlikely to leave an image in the space of JPG images. In [Guo et al., 2017],
the authors assess the effectiveness of input transformations based on image
cropping and rescaling, bit-depth reduction, JPEG compression, total variance
minimization, and image quilting. The main objective is to remove the adversarial
perturbations from images while preserving sufficient information to correctly
classify them. Unlike the mentioned input-based techniques that only implicitly
(or not at all) induce mitigation of the bias toward textures, our method makes
this effect explicit by directly removing textures from the input image. Differently
from prior literature, we properly test our method according to guidelines for
input-based defenses [Athalye et al., 2018] and show promising performance.

6.3 Motivations

By visual inspection of adversarial examples in Figure 6.1, we noticed that
adversarial attacks introduce micro-patterns that, as discussed in Section 6.1,
could fool image classifiers. An artificially created virtual edge could trigger
particular edge detectors amongst the model’s convolutional kernels, whose
activation may be combined thanks to the sum-aggregation operation performed
in convolutional layers. Moreover, the effects of the activation of these edge
detectors at different - and potentially distant - spatial locations may be combined
in deeper layers by leveraging the increasing receptive field size. As a result, the
delicate balance of activations the model relies on could be broken, leading to a
significant drop in generalization power [Tsipras et al., 2018, Ilyas et al., 2019].
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In light of these observations, it is evident that the fundamental strength of the
micro-patterns introduced by adversarial attacks lies in their simultaneous local
and non-local nature. Locality stems from the fact that the perturbation can be
very precise as the adversary could alter any spatial location and cause a direct
effect on neighboring pixels. This phenomenon enables the creation of local
virtual edges, that are defined by neighboring pixels with different intensities.
Non-locality, instead, emerges from the possibility of inducing correlation among
spatially distant pixels thanks to the increasing receptive field size in deeper layers.
In view of this, the attacker is allowed to be very precise in choosing the optimal
spatial locations so that the malign effects of perturbations can conveniently
accumulate across layers, while affecting only minimally the semantics of the
image.

The goal of the method proposed in this Chapter is to limit the action space
of the adversary so as to make the creation of virtual edges and micro-textures
more difficult and less precise. This is done by means of an iterative filtering
procedure that merge together pixels that are perceptually similar at a given
resolution.

6.4 Contributions

While it is not the only technique in the literature based on input manipula-
tion to prevent adversarial attacks [Guo et al., 2017,Lu et al., 2017,Dziugaite
et al., 2016], the method introduced in this Chapter differs significantly from
prior works in the fundamental concepts at the basis of its functioning. The
main difference between our method and others relying on input transformations
is that we explicitly remove textures from input images while preserving the
informative features. This is achieved through an iterative filtering procedure
based on simple rules that do not require additional training routines.

Our image filtering strategy can also be exploited as a data augmentation,
which we show to be beneficial also for robustness against common corruptions
(e.g., shot noise, pixelate, glass blur). Additionally, our framework allows for
high flexibility in the choice of its key components, which makes it basically
independent of the specific implementation as long as its underpinning principles
are not violated.

The contributions of this Chapter can be summarized as follows:

• We introduce a novel image filtering framework, dubbed Image-Graph Ex-
tractor (IGE), whose main objective is to remove textures while preserving
the image’s semantic content. Our framework is based on an implicit graph
representation of images, the Image-Graph (IG).

• We propose an effective defense against ℓp-bounded adversarial attacks,
called Filtering As a Defense (FAD), leveraging the texture suppression
effect of IGE.
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Figure 6.2: Example of IGE-based image filtering for a 1000 × 1000 image. Image-
Graph over the filtered image with r∗ = 0.5 (left), and Image-Graph
(right). The thickness of edges is proportional to the fraction of the
perimeter shared by neighboring nodes.

• We exploit filtered images produced through the IGE filtering framework
as a data augmentation strategy. We show that models trained with our
data augmentation strategy are more robust against common corruptions
such as shot noise, pixelate, and glass blur.

While IGE has been primarily conceived and designed to enforce robustness,
the intermediate graph representation necessary for the iterative filtering proce-
dure might prove useful in many other applications. In fact, the IG associated
with the input image enables the emergence of structure in an unstructured do-
main. The extracted structure, if adequately exploited, might boost performance
in downstream tasks. In Figure 6.2 is shown an example of a filtered image and
the resulting IG.

6.5 Methods

6.5.1 Image Graph Extractor

In this Section, we introduce the IGE framework. For the sake of readability,
we first highlight the guiding principles at its core in Section 6.5.1.1 and describe
thoroughly its key components, i.e., the merging rule (Section 6.5.1.2) and the
iterative filtering procedure (Section 6.5.1.4). All the design choices characterizing
the specific instance of the IGE method used for our experiments are discussed
in Section 6.5.1.3. Implementation details are given in Appendix B.1. In order
to satisfy parallel and efficient image processing, we developed IGE in CUDA/C++
and NVIDIA Thrust.
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6.5.1.1 Guiding Principles

The information contained in an image depends on the effective resolution
r we see at: when ‘zooming out’ the image (i.e., decreasing r), pixels that are
distinct at higher resolutions are no more distinguishable and merge together
forming patches with larger size. Conversely, finer details emerge when ‘zooming
in’ the image (i.e., increasing r) and patches split into multiple sub-patches with
smaller sizes. Note that the merging process does not depend only on color
similarity, but also on the relative size of patches. Based on these observations,
an image x at a given resolution r can be represented as a graph, where nodes
correspond to patches of similar pixels and edges encode information about
connectivity of the different patches. The size of each node amounts to the
number of pixels the corresponding patch is composed of. As a result, each
image can be partitioned into a collection of patches according to an underlying
graph representation.

6.5.1.2 Merging Rule

The objective of IGE is to emulate the perceptual effects described in Sec-
tion 6.5.1.1. While the produced filtered images reveal complex elaborations
that might be hard to model, IGE is driven by a simple merging rule, which we
describe hereinafter.

Let xr be an image at resolution r and let Gr = (Vr, Er) be the corresponding
IG, where Vr is the set of nodes and Er the set of edges at resolution r. For
the sake of simplicity, in the following, we implicitly assume the dependence
on r and omit it from the notation (e.g., we use V in place of Vr). We also
assume edges to be binary-valued, with ei,j = 1 indicating that vi and vj are
neighboring nodes, where ei,j ∈ E and vi, vj ∈ V. In the image domain, this
translates into the fact that patches corresponding to vi and vj are neighbors
(according to some specified criterion). Let si and sj be the size of nodes vi and
vj , respectively. We define the color associated with node vi, denoted with ci,
as the average value of pixels in vi. Given an opportune color distance dc, we
define the adjusted distance da as

da(ci, cj ; si, sj , r) = φ(dc(ci, cj), si, sj , r) (6.1)

for some function φ. Notice that da is function of the color distance dc(ci, cj),
the size of nodes si and sj , and the resolution r. Neighboring nodes vi and vj
are merged if

da(ci, cj ; si, sj , r) < τ(d0, r) (6.2)

where τ(d0, r) is the threshold (function of the resolution r) that determines
if two nodes are in the same patch at a given resolution r. The parameter d0
represents the minimum color distance perceived at maximum resolution r0,
corresponding to the resolution of the original (unfiltered) image x = xr0 . We
assume by convention that r0 = 1. In order to be consistent with the guiding
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principles in Section 6.5.1.1, τ must be a monotonically decreasing function

with respect to r, that is
∂τ(d0, r)

∂r
< 0. Indeed, as we zoom out the image (r

decreases), pixels that are more and more distant from each other in color space
become indistinguishable, resulting in a less strict threshold.

The adjustment of the color distance dc modeled by Equation (6.1) takes
into account the size of nodes. The rationale behind the choice to incorporate
the size of nodes into the computation of the adjusted color distance can be
better explained by an example: a black 1-pixel node surrounded by white
pixels becomes perceptually indistinguishable from its neighbors at a far larger
resolution if compared to a black 10-pixels node.

In summary, the core of the IGE framework is represented by the merging
rule described in this Section. The key ingredients defining the rule are: the
criterion used to determine neighboring patches, the color distance dc, the
adjusted distance da (specifically, the function φ), the minimum color distance
perceived at maximum resolution d0, and the threshold function τ . The choice
of the latters is subject to the following constraints:

C1. If all the variables but r are kept fixed, it is required that ∂τ(r)
∂r < 0 and/or

∂da(r)
∂r > 0.

C2. If all the variables but si are kept fixed, it is required that ∂da(si)
∂si

> 0.

C3. If all the variables but dc are kept fixed,
∂da
∂dc

> 0.

The IGE framework is general in that it allows flexibility in the choice of the
key ingredients as long as the constraints listed above are satisfied.

6.5.1.3 Design Choices

As stated in Section 6.5.1.2, to define an instantiation of the IGE framework,
we need to specify: (i) the criterion used to define neighboring patches; (ii) the
color distance dc; (iii) the adjusted distance da (specifically, we should define
the function φ); (iv) the merging threshold function τ ; (v) the minimum color
distance perceived at maximum resolution d0. In the following are discussed the
design choices adopted for our experiments. These are the result of some trial
and error, and a more comprehensive experimental setup would certainly lead to
better design choices and improved performance. Nevertheless, our main goal
here is to showcase the general effectiveness of the IGE framework to enforce
robustness, with no special focus on the specific implementation.

• As for (i), we consider the most natural definition of neighboring patches,
i.e., patches whose borders touch in at least one pixel. While simple, this
choice could cause merges that are not optimal, and better tuning of the
length of the shared border may lead to significant improvement in the
filtering procedure.
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• As regards the choice of the color distance dc, we tested both the CIEDE2000
distance [Sharma et al., 2005] and the Euclidean distance. While CIEDE2000
is more aligned with human color perception, we did not notice significant
differences compared to the Euclidean distance, and for the experiments
presented in this Chapter, we used the latter. Given two RGB vectors
p = [pR, pG, pB]

⊤ and q = [qR, qG, qB]
⊤ their Euclidean distance is given

by
dc(p, q) =

√
(pR − qR)2 + (pG − qG)2 + (pB − qB)2. (6.3)

• For the adjusted distance da, we adopted the following formulation

da = dc(ci, cj) · φ̃(si, sj , r), (6.4)

φ̃(si, sj , r) =
(
1 + e(−α(min{si,sj}−β

r
))
)−1/r

(6.5)

where the color distance dc and adjustment φ̃ terms are decoupled. We set
α = 0.04 and β = 10. The term φ̃ is aimed at reducing the perceived color
distance when the resolution is low and/or the size of nodes is small. The
adjustment for the size of nodes is represented by the term min{si, sj}.
Notice that the size adjustment depends only on the smallest node. This is
to encode the fact, discussed in Section 6.5.1.2, that smaller patches become
perceptually indistinguishable from their neighbors at larger resolutions.
This rule may be refined by also considering the relative size of nodes si/sj .
The term β

r helps incentivize the early merge of small nodes. It is worth
noting that several functions φ have been tested and the quality of the
filtered images is quite stable under different choices of φ.

• As for the threshold function τ , we use

τ(d0, r) = d0
1− (r − rm)

rm
, (6.6)

where rm = 0.1.

• For the minimum color distance perceived at maximum resolution, we set
d0 = 0.03.

6.5.1.4 Iterative Filtering

The iterative filtering procedure consists in repeatedly performing merging
operations after a preliminary phase for initialization. The functioning of the
whole IGE framework is summarized in Algorithm 4. Let r∗ be the target
resolution and r0 = 1 the initial resolution corresponding to the original image
x, as mentioned in Section 6.5.1.2. In our framework, the target resolution
r∗ ∈ ]0, r0[, together with the filtering step size ∆r, defines the number of
filtering steps Nr =

1−r∗
∆r

to be performed.
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Algorithm 4 IGE pseudocode.
Input: original image x
Output: filtered image xr

∗

Parameters: r∗, dc, da, d0, τ

1: Gr = img2graph(xr0)
2: r = r0 −∆r

3: while r > r∗ do
4: Gr = merge(Gr; dc, da, d0, τ)
5: Gr = avg_color(Gr)
6: r = r −∆r

7: end while
8: xr

∗
= graph2img(Gr)

The initialization phase is aimed at extracting the IG Gr0 associated with the
original image x = xr0 . We represent this operation with the generic function
img2graph.

The filtering routine can be seen as an anti-causal discrete dynamical system
Gr−∆r = m(Gr), where m is the map obtaining Gr−∆r from Gr. Specifically, m
is composed of the following elementary operations:

1. Merge nodes according to Equation (6.2) (we denote this operation with
the function merge).

2. Update the color value of each node by averaging the values of all pixels
in the node (we denote this operation with the function avg_color).

The map m is applied iteratively Nr times until the target resolution r∗ is
reached. The final step consists in reconstructing the filtered image at the target
resolution from the final IG Gr∗ . We represent this operation with the generic
function graph2img.

A potential issue that might arise is the co-existence, for a specific node,
of multiple candidate nodes for the merging operation. Although not optimal
from a computational point of view, one trivial solution would be to choose
the candidate node with the smallest adjusted distance. In this regard, the
filtering step size ∆r controls the goodness of the filtering process. Small values
of ∆r help in mitigating the problem of multiple candidate nodes for merging.
Since Nr ∝ ∆−1

r , this strategy should call for thoughtful considerations about
computational cost. In light of this, we set ∆r, by visual inspection of a few
images, to the biggest value that guarantees the preservation of the image’s
semantic content.

Notice that the IG associated with the filtered image at the target resolution
r∗ can be extracted with no extra computations as it comes as an intermediate
by-product of the filtering procedure. The IG can be enriched by considering
additional node attributes besides node color (e.g., shape information by means
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Figure 6.3: A simplified example of an IG associated with an image from the ImageNet
dataset. For graphical purposes, only the main nodes are displayed.

of shape descriptors) and encoding additional information about connectivity
as edge attributes. A simplified example of IG for an image from the ImageNet
dataset is depicted in Figure 6.3. For ease of visualization, only the main nodes
of the IG are shown.

According to [Stutz et al., 2018], the IGE framework formally is not a
superpixels algorithm as the number of patches is not controllable. In the settings
where the IGE is applied in this work (i.e., as a tool to enforce robustness),
this represents a clear advantage. Indeed, it allows for an adaptive number of
nodes depending on the content of the image, leading to a more natural and
semantically meaningful representation of filtered images. We discuss more in
depth this point in Section 6.5.2.1.

6.5.2 Filtering As a Defense

In this Section, we describe FAD, our proposed defense against adversarial
attacks leveraging the IGE iterative filtering procedure. We first expand the
discussion on the motivations behind the IGE framework as a tool to improve
the robustness of DNNs in Section 6.5.2.1. Finally, we introduce the full defense
protocol used for our experiments in Section 6.5.2.2.

6.5.2.1 Motivation

We want to provide here an intuitive argument to justify the effectiveness
of FAD for improving robustness against adversarial examples. Let x be an
input image of n pixels and let xr

∗ be its filtered counterpart at a given target
resolution r∗. We define n∗ as the effective number of pixels in the filtered image
xr

∗ . Indeed, we can think of the filtered image as a
√
n∗ ×

√
n∗ image, with
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n∗ ≤ n (and potentially n∗ ≪ n). Notice that n∗ corresponds to the number of
patches the filtered image is composed of. In the context of the IGE framework,
n∗ is equivalent to the number of nodes in the IG Gr∗ associated with the filtered
image xr

∗ .
A useful observation is that robustness depends on the structure of the input

image, which means that there exists an intrinsic robustness level associated
with every image. If we consider the image as a graph, we can easily understand
why this is true. The two key elements that define the image structure are nodes
and edges. In the original (i.e., unfiltered) image, the nodes of the associated
graph are essentially the individual pixels, and the edges connect each pixel
to its 8 neighbors (if we assume 8-connectivity). The structure of the original
image is represented by a rigid uniform grid, where a pixel’s neighborhood has a
fixed size equal to 8. In the filtered image, the nodes of the associated graph are
groups of pixels (i.e., patches) that have been merged together, and the edges
connect each patch to a variable number of neighboring patches, depending
on the content of the image. Therefore, the structure of the filtered image is
represented by a non-uniform grid. This difference in the structure between
the original image and its filtered counterpart is at the basis of their difference
pertaining to the inherent level of robustness. Indeed, the perturbation of a node
in the original image directly impacts only the 8 nearby pixels and can thus
lead to the emergence of virtual edges and micro-textures. The perturbation
of a node in the filtered image, instead, could impact very distant pixels due
to the non-uniform topology of the underlying grid and the potentially dense
connectivity of the associated graph. As a consequence, when attacking filtered
images, the adversary may not be as precise as it would be for original images
and this makes it harder to create micro-patterns that could fool the model.
The most effective strategy for the adversary to craft a successful attack is to
modify the connectivity of the graph, that is, merge adjacent nodes, or split
nodes. However, as patches obtained by filtering at low resolutions may be large,
this may significantly alter the semantics of the image and make the attack easy
to spot.

6.5.2.2 Defense Protocol

The IGE filtering procedure outlined in Section 6.5.1 causes a shift in the
statistics of the input image that may result in distribution shifts of batch
normalization layers’ inputs. Thus, especially in complex datasets like ImageNet,
models are less accurate when evaluated on filtered images as population statistics
estimated on training data do not match statistics of test data. To overcome this
mismatch, the first phase of the protocol consists in fine-tuning the pretrained
model to update the batch normalization layers’ statistics so as to adapt to the
characteristics of filtered images. Since the semantic content of input images is
preserved, the fine-tuning process requires only a few epochs to converge.

The second phase is the defense itself, which consists in running the IGE
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Figure 6.4: Block diagram describing the FAD defense.

iterative filtering routine as a pre-processing step any time an input image is
queried. Figure 6.4 reports the described FAD defense. Notice that the FAD
defense module inherits the parameters defining the specific instantiation of the
IGE filtering method.

6.6 Experimental Results

In this Section, we present three sets of results: (i) we assess the quality of
filtered images by visual inspection; (ii) we evaluate the performance of models
equipped with the FAD defense in terms of natural accuracy and robustness
to adversarial attacks; (iii) we analyze the performance on corrupted data for
models trained with filtered images as data augmentation. Regarding point (ii),
we compare FAD with AT, as the latter is widely considered the state-of-the-art
in the robustness community and any comparison with other methods would
add little to the discussion of the results.

6.6.1 Filtering

In Figure 6.5 we show the filtered images as the target resolution varies,
representing the progression of the iterative filtering process. When reducing the
target resolution, the number of nodes progressively decreases while their size
generally increases. Notice that, once fixed the target resolution of the filtered
image, nodes with significantly different sizes coexist. This inherent flexibility
allows the preservation of important details by maintaining a higher number of
small nodes in areas of the image that are not perceptually homogeneous. As a
result, the semantic content of the image is not altered even for low values of
the target resolution. Additional examples are given in Figures 6.6 and 6.7

In Figure 6.8 are displayed some examples of filtered images from the Ima-
geNet dataset with fixed target resolution r∗ = 0.6. Notice that the number of
nodes is not the same for different images, as it depends on the specific content
and, thus, the complexity of the original image. On average, at target resolution
r∗ = 0.6, the number of nodes in filtered ImageNet images in Figure 6.8 is within
the range [150, 1000].
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Figure 6.5: Example of the effect of the IGE filtering when decreasing the target
resolution. Top left panel: r∗ = 1 (original image). Top right panel:
r∗ = 0.7. Bottom left panel: r∗ = 0.45. Bottom right panel: r∗ = 0.35.
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Figure 6.6: Examples of the effect of the IGE filtering when decreasing the target
resolution. Top left panel: r∗ = 1 (original image). Top right panel:
r∗ = 0.7. Bottom left panel: r∗ = 0.45. Bottom right panel: r∗ = 0.35.
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Figure 6.7: Examples of the effect of the IGE filtering when decreasing the target
resolution. TTop left panel: r∗ = 1 (original image). Top right panel:
r∗ = 0.7. Bottom left panel: r∗ = 0.45. Bottom right panel: r∗ = 0.35.
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Figure 6.8: Examples of filtered ImageNet images with r∗ = 0.6 and ∆r = 0.1.



6.6. Experimental Results 101

6.6.2 Robustness Evaluation

As discussed in [Tramer et al., 2020], one should develop adaptive attacks to
test the robustness of a defense. In this context, the Backward Pass Differentiable
Approximation (BPDA) is a gradient approximation technique [Athalye et al.,
2018] to deal with non-differentiable components in DL models. Let f̃ be the
composition f̃(x) = f◦h(x) where h is non-differentiable (or hard to differentiate).
In our case, h is the FAD module, and f represents the fine-tuned model. To
approximate the total gradient ∇xf̃(x), BPDA needs to find a differentiable
function g(x) such that g(x) ≈ h(x). Then, when computing the gradient
∇xf̃(x), the forward pass is a standard forward pass through f̃ (including the
forward pass through h), while in the backward pass h is replaced by g. In our
case, a reasonable choice for g is the identity function g(x) = x, in line with
experiments performed in [Athalye et al., 2018] to break down defenses based on
input transformations. Differently from the mentioned methods, whose apparent
improvements in robustness were due to improper testing, our FAD defense
achieves promising results under BPDA attacks.

For the sake of even more fair testing, we note that a vanilla application of
BPDA may not be effective as one step of gradient might not allow the attacker
to craft adversarial patches. Hence, we apply BPDA (as an outer loop) with
the addition of an inner attack (addressed to f) where multiple PGD steps are
performed. Notice that the additional internal cycles slow down significantly the
adversarial attack construction. This technical aspect is usually overlooked in
academic research. However, in real-world settings where time efficiency might
be required for the attack to be successful, it could play a decisive role.

6.6.3 Experimental Settings

We validate FAD on CIFAR-10 [Krizhevsky et al., 2009c], CIFAR-100
[Krizhevsky et al., 2009c], and ImageNet [Deng et al., 2009] datasets. As
discussed in Section 6.5.2.2, filtered images exhibit different statistics if com-
pared to their original counterparts. For this reason, the first phase of the FAD
protocol is a fine-tuning of the model. While the optimal solution would be
to fine-tune the model with the same resolution used in the FAD module, we
decided to fine-tune the model for only one resolution r∗ = 0.6. Then, the same
fine-tuned model is re-used for all the experiments. While not optimal, we do
so for practical reasons and yet get very good results. Performance could be
further boosted by matching the resolution of the fine-tuning process with that
of the FAD module. For all the datasets, we employ ResNet18 [He et al., 2016b]
architectures trained for 150 epochs, initial learning rate η = 0.1 and a drop of
η by a factor 10 every 50 epochs. As for BPDA, we evaluate FAD with 50 outer
steps and 20 inner steps. Attacks are bounded in ℓ2-norm. Due to computational
constraints, we tested on 30% of the test sets with shuffling.

For CIFAR-10 and CIFAR-100, we trained robust models with 7 PGD steps,



102 Chapter 6. Improving Robustness with Image Filtering

α = 1 and εtr ∈ {0.5, 1, 2, 3} (attacks bounded in ℓ2-norm). For ImageNet,
we leveraged pretrained robust models from [Salman et al., 2020a] with εtr ∈
{0.5, 1, 3, 5}.

Models are fine-tuned for 10 epochs with learning rate η = 0.001. For
computational reasons, for ImageNet we only use 300 filtered images per class
from the training set for the fine-tuning.

6.6.4 FAD

Tables 6.1 and 6.3 report the results for CIFAR-10/CIFAR-100 and ImageNet,
respectively, when attacking models equipped with the FAD defense with BPDA
ℓ2-bounded attacks. As the resolution increases, the attacker prevails over the
defense (i.e., the robust accuracy decreases). Robustness is lower for larger values
of the perturbation budget εte, and for values of εte larger than the reported ones,
robustness quickly approaches zero. These behaviors are a clear sign that the FAD
defense does not rely on obfuscated gradients. By reducing r∗, the filtered images
have fewer textures, and the adversary is less effective, in line with arguments
given in Section 6.5.2.1. In Tables 6.2 and 6.4 are reported the performance of
AT (against PGD attacks, 50 steps). Notice that at comparable levels of natural
accuracy, our FAD defense exhibits better robustness. For example, for ImageNet
our defense with r∗ = 0.8 achieves 56.61% natural accuracy, which is comparable
to a model adversarially-trained with εtr = 3, whose natural accuracy is 53.12%.
As for robust accuracy, our defense achieves 41.86%, 28.84% and 5.92% with
εte = 3, 5, 10, respectively, while the adversarially-trained model achieves 31.00%,
17.73% and 2.51%. A natural question arising from the analysis of these results
is to explain why FAD achieves a better accuracy-robustness trade-off compared
to AT. We hypothesize that this is mainly due to the convolutional architecture.
Indeed, IGE applies highly non-linear transformations to the input that cannot
be encoded by a CNN with a limited number of layers, and it is well-known
in the literature that AT can achieve better performance when the number of
layers increases.

Notice that, in order to enforce robustness, filtered images should exhibit the
minimum number of nodes (see the discussion in Section 6.5.2.1) while keeping
unaltered the semantics of the original image. Traditional superpixel algorithms,
like SLIC [Achanta et al., 2012], fail to achieve a satisfactory trade-off, while
IGE can successfully preserve important details of the original image at low
resolutions (as mentioned in Section 6.6.1). To confirm this fact, we applied FAD
with SLIC and obtained results that are not comparable with IGE. In order to
be fair, we set the number of nodes for SLIC similar to that provided by IGE at
a given resolution. To give an example, we found that for CIFAR-10 the optimal
number of nodes for FAD with SLIC is around 20, which is comparable with
IGE at resolution 0.5. The best robust accuracy we obtained against attacks
with εte = 1 is less than 25%, 3× less than the one obtained with IGE.

In Section 6.5.2.1, we conjectured that a successful attack against FAD
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Table 6.1: Natural and robust accuracy (in %) for CIFAR-10 and CIFAR-100 against
BPDA ℓ2-bounded attacks at different resolutions. FAD models are fine-
tuned with r∗ = 0.6

Defense Clean εte = 1 εte = 2 εte = 3 εte = 4

CIFAR-10
FAD r∗=0.8 89.55 74.48 33.40 1.82 0.00
FAD r∗=0.7 86.07 73.63 44.50 8.66 0.68
FAD r∗=0.6 85.06 73.18 49.80 18.26 4.39
FAD r∗=0.5 82.32 74.38 52.67 27.31 11.36
FAD r∗=0.4 78.45 70.15 55.37 35.09 21.16

CIFAR-100
FAD r∗=0.8 63.74 45.31 19.17 3.32 0.23
FAD r∗=0.7 59.54 43.23 23.40 8.72 2.99
FAD r∗=0.6 52.60 41.24 25.52 13.93 7.49
FAD r∗=0.5 47.88 38.74 27.25 16.50 12.79
FAD r∗=0.4 41.08 34.99 25.91 19.04 15.01

Table 6.2: Natural and robust accuracy (in %) for CIFAR-10 and CIFAR-100 against
PGD ℓ2-bounded attacks (50 steps) for different values of εtr.

Defense Clean εte = 1 εte = 2 εte = 3 εte = 4

CIFAR-10
None 95.01 0.03 0.00 0.00 0.00
AT εtr=0.5 88.34 37.88 3.39 0.03 0.00
AT εtr=1 80.14 51.40 15.69 1.85 0.12
AT εtr=2 64.43 50.83 33.11 14.32 3.33
AT εtr=3 59.25 48.78 36.52 21.88 9.26

CIFAR-100
None 76.87 0.01 0.01 0.01 0.01
AT εtr=0.5 63.68 15.58 1.42 0.12 0.02
AT εtr=1 57.97 22.33 4.94 0.82 0.08
AT εtr=2 49.73 29.04 12.76 4.40 1.11
AT εtr=3 37.41 27.11 17.63 8.97 3.63
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Table 6.3: Natural and robust accuracy (in %) for ImageNet against BPDA ℓ2-bounded
attacks at different resolution scales. FAD models are fine-tuned with
r∗ = 0.6

Defense Clean εte = 3 εte = 5 εte = 10

ImageNet
FAD r∗=0.8 56.61 41.86 28.84 5.92
FAD r∗=0.7 49.54 36.92 28.62 9.14
FAD r∗=0.6 43.58 31.86 26.77 12.16
FAD r∗=0.5 37.94 31.90 23.61 12.81
FAD r∗=0.4 31.51 26.44 22.79 14.10

Table 6.4: Natural and robust accuracy (in %) for ImageNet against PGD ℓ2-bounded
attacks (50 steps) for different values of εtr.

Defense Clean εte = 3 εte = 5 εte = 10

ImageNet
None 69.79 0.00 0.00 0.00
AT εtr=0.5 65.48 8.00 0.82 0.01
AT εtr=1 62.32 18.76 4.60 0.07
AT εtr=3 53.12 31.00 17.73 2.51
AT εtr=5 45.59 31.01 21.69 5.88
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should merge adjacent nodes or split nodes so as to modify the structure of
the Image Graph. As can be seen in Figure 6.9, the adversary tends to create
new relatively small yet strong (i.e., with notable color contrast) patches in
crafted adversarial examples. This demonstrates that BPDA with additional
inner cycles to accumulate gradients represents an appropriate testing framework
for our settings. However, it is evident by comparing filtered images (top panel
in Figure 6.9) with their adversarial counterparts (bottom panel in Figure 6.9)
that the semantics of the image is not preserved in adversarial examples.

Figure 6.9: Filtered images (top) and adversarial examples resulting from BPDA
ℓ2-bounded attacks (bottom).

6.6.5 Data Augmentation with Filtered Images

As IGE removes textures, we would expect to improve robustness to common
corruptions if filtered images were incorporated into the training set. To test
this hypothesis, we trained a ResNet18 model faug on CIFAR-10 by augmenting
the training set of natural images x with their corresponding filtered versions
xr

∗ (we set r∗ = 0.6). The test set used for the evaluation is the original one
(i.e., formed only by natural images). We denote with fnat the natural model
trained on the original training set. The results for fnat and faug are reported in
Tables 6.5 and 6.6, respectively. As we may expect, the accuracy of faug drops
compared to that of fnat (from roughly 95% to 93.3%). However, if we consider
the performance of the two models under data corruption, faug is almost always
more accurate than fnat. In some cases, e.g., glass blur, the gap is remarkable.
The code for applying data corruptions has been adapted from [Salman et al.,
2020b].
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Table 6.5: CIFAR-10. Accuracy (in %) under data corruptions with different levels of
severity for fnat.

fnat

Corruption Level 1 Level 2 Level 3 Level 4 Level 5

gaussian_noise 78.8 59.45 40.54 33.52 28.78
shot_noise 86.81 77.78 55.88 47.29 35.05

impulse_noise 85.39 74.64 64.77 42.31 26.59
glass_blur 53.34 53.26 59.27 41.63 47.08

defocus_blur 94.91 93.91 90.22 83.19 62.77
motion_blur 92.02 88.82 83.09 84.12 77.5

zoom_blur 94.25 92.71 90.53 85.05 77.86
fog 94.77 93.98 93.16 91.07 79.07

frost 93.41 91.46 88.59 87.35 83.55
snow 90.82 82.02 77.04 74.55 67.71

contrast 94.73 93.19 91.73 87.8 56.06
brightness 94.9 94.72 94.33 93.95 92.55

jpeg_compression 87.27 82.08 79.91 77.25 73.96
pixelate 92.24 87.91 82.65 64.62 44.4

elastic_transform 91.07 90.7 87.57 81.37 76.54

6.7 Conclusions

In this Chapter, we introduced an image filtering framework, dubbed Image-
Graph Extractor, that explicitly removes textures without altering the semantics
of the image. We showed that IGE can be integrated into pre-trained image
classifiers as a defense against ℓp-bounded adversarial attacks. Moreover, when
filtered images are exploited during training as data augmentation, robustness
against common data corruptions can be also improved. Although the main
focus is on the use of IGE for adversarial robustness, its flexible Image-Graph
representation opens several directions for future research. For example, the
Image-Graph representation can be leveraged to cast image classification as a
graph classification problem. Additionally, novel data augmentation strategies
based on perturbations of nodes can be defined so as to remove common shortcuts
such as the background color.
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Table 6.6: CIFAR-10. Accuracy (in %) under data corruptions with different levels of
severity for faug.

faug

Corruption Level 1 Level 2 Level 3 Level 4 Level 5

gaussian_noise 86.05 76.05 61.71 54.64 47.79
shot_noise 89.17 84.03 69.15 63.04 52.39

impulse_noise 84.34 73.92 63.44 43.09 28.72
glass_blur 85.27 85.56 86.34 76.37 78.08

defocus_blur 92.95 92.92 92.59 91.29 88.35
motion_blur 91.14 90.37 88.51 88.71 85.29

zoom_blur 92.87 93.09 92.87 92.23 91.28
fog 92.68 91.51 89.19 84.52 69.08

frost 92.0 91.0 89.03 88.44 85.49
snow 91.7 88.82 83.03 78.65 77.42

contrast 92.85 90.99 88.68 83.82 53.87
brightness 92.99 92.81 92.49 91.91 90.4

jpeg_compression 88.89 86.19 85.18 83.83 82.0
pixelate 91.86 91.49 90.82 89.94 86.69

elastic_transform 90.24 90.84 90.9 88.64 85.07
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Conclusions

Artificial Intelligence (AI) is nowadays ubiquitous in our everyday life and
has revolutionalized how we interact with technology. For example, we can
talk to virtual assistants embedded in our smartphones and vacuum cleaners,
enjoy a ride on a self-driving taxi, and get better healthcare services thanks
to AI-enabled personalized medicine. AI is also being increasingly adopted in
sensitive domains to support high-stakes decisions, including justice, finance,
and healthcare. Therefore, ensuring that these systems perform reliably and
consistently with their expected behavior is a matter of the utmost importance.
Unfortunately, this is still far from being a reality. Indeed, there have been
countless reported cases in which AI has unintentionally caused harm to people
in the form of discrimination against underrepresented groups, privacy breaches,
or, in the worst scenario, even death. In light of these unfortunate events, the
need to improve the reliability of AI technologies has become compelling. This
gave rise to a new subfield in the AI ecosystem, usually referred to as Trustworthy
AI, that has attracted a great deal of research interest in the past few years.

In this thesis, we focused on two important dimensions in the context of
Trustworthy AI, i.e., interpretability and robustness, and on two application
domains, i.e., Anomaly Detection and Computer Vision.

The first part of the thesis tackled the problem of interpretability in Anomaly
Detection. In Chapter 3, we introduced interpretability methods for the in-
terpretation of the Isolation Forest based on its peculiar inner structure. The
global Depth-based Isolation Forest Feature Importance (DIFFI) method was
designed to provide an explanation of the model as a whole, while its local
counterpart Local-DIFFI was designed to provide explanations associated with
individual predictions. Based on the global DIFFI method, a novel procedure for
unsupervised feature selection was defined. Due to the lack of labeled datasets
in many applications of Anomaly Detection, the unsupervised nature of the
proposed feature selection technique is particularly useful from a practical point
of view.

In the second part of the thesis, we addressed the task of robust image
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classification with Convolutional Neural Networks (CNNs). In Chapter 5, we
demonstrated that Adversarial Training does not efficiently exploit the model’s
capacity and induces a trivial dependence on color that may be harmful if simple
color-based perturbations are introduced. We unveiled previously unknown
properties of the feature maps of adversarially-trained CNNs, i.e., the presence
of feature maps that are densely active for all samples in the dataset and the
presence of redundancy. Moreover, we proved that, contrary to common belief,
the latent representations of adversarially-trained CNNs are not inherently robust.
The goal of Chapter 6 was to improve the robustness of pre-trained CNNs by
acting on the input space. This was done by designing a novel defense based on
an iterative image filtering procedure that successfully removes textures from
images without sacrificing their semantic content. Besides improving robustness
against adversarial attacks, the filtering procedure can also be employed to
increase the accuracy under data corruptions.

The research work described in this thesis was conceived to enhance the
reliability of Machine Learning models. By focusing on two application domains
of great practical interest, we narrowed the gap that usually separates academia
from the real world and provided tools that could benefit both researchers and
practitioners. The road toward Trustworthy AI is complicated and will lead to
success only with joint efforts from both worlds.



Appendix A

Additional Results on
Adversarial Training

In this Appendix, we provide results on robust models trained with ℓ∞-norm
and results on always active feature maps and feature maps redundancy with
different values of the hyperparameters τdens and τsim.

A.1 Densely Active Feature Maps

We assess the validity of the experiments described in Section 5.6.1 for
different values of τdens. Specifically, we selected large values of τdens (i.e.,
0.85, 0.9, 0.95, and 0.99) since we are interested in the analysis of spatially
dense feature maps. Results are reported in Figures A.1 to A.6. Results on
robust models trained with ℓ∞-norm are shown in Figures A.7 to A.10. Similar
observations to those discussed in Section 5.6.1 - for ℓ2 models and τdens = 0.95
- hold for the experiments provided here.

A.2 Feature Maps Redundancy

We assess the validity of the experiments described in Section 5.6.2 for
different values of τsim. Specifically, we selected large values of τsim (i.e., 0.85,
0.9, 0.95, and 0.99) since we are interested in the analysis of highly correlated
feature maps. Results are reported in Figures A.11 to A.16. Results on robust
models trained with ℓ∞-norm are shown in Figures A.17 to A.20. Similar
observations to those discussed in Section 5.6.2 - for ℓ2 models and τsim = 0.95 -
hold for the experiments provided here.
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Figure A.1: Number of always densely active feature maps (at level τdens = 0.85) for
ImageNet models. Robust models are trained with ℓ2-norm.

Figure A.2: Number of always densely active feature maps (at level τdens = 0.85)
for CIFAR-10 and CIFAR-100 models. Robust models are trained with
ℓ2-norm.

Figure A.3: Number of always densely active feature maps (at level τdens = 0.9) for
ImageNet models. Robust models are trained with ℓ2-norm.



A.2. Feature Maps Redundancy 113

Figure A.4: Number of always densely active feature maps (at level τdens = 0.9)
for CIFAR-10 and CIFAR-100 models. Robust models are trained with
ℓ2-norm.

Figure A.5: Number of always densely active feature maps (at level τdens = 0.99) for
ImageNet models. Robust models are trained with ℓ2-norm.

Figure A.6: Number of always densely active feature maps (at level τdens = 0.99)
for CIFAR-10 and CIFAR-100 models. Robust models are trained with
ℓ2-norm.
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Figure A.7: Number of always densely active feature maps (at level τdens = 0.85) for
ImageNet models. Robust models are trained with ℓ∞-norm.

Figure A.8: Number of always densely active feature maps (at level τdens = 0.9) for
ImageNet models. Robust models are trained with ℓ∞-norm.

Figure A.9: Number of always densely active feature maps (at level τdens = 0.95) for
ImageNet models. Robust models are trained with ℓ∞-norm.

Figure A.10: Number of always densely active feature maps (at level τdens = 0.99)
for ImageNet models. Robust models are trained with ℓ∞-norm.
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Figure A.11: Number of redundant feature maps (with τsim = 0.85) for ImageNet
models. Robust models are trained with ℓ2-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Figure A.12: Number of redundant feature maps (with τsim = 0.85) for CIFAR-10
and CIFAR-100 models. Robust models are trained with ℓ2-norm.
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Figure A.13: Number of redundant feature maps (with τsim = 0.9) for ImageNet
models. Robust models are trained with ℓ2-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Figure A.14: Number of redundant feature maps (with τsim = 0.9) for CIFAR-10 and
CIFAR-100 models. Robust models are trained with ℓ2-norm.
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Figure A.15: Number of redundant feature maps (with τsim = 0.99) for ImageNet
models. Robust models are trained with ℓ2-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Figure A.16: Number of redundant feature maps (with τsim = 0.99) for CIFAR-10
and CIFAR-100 models. Robust models are trained with ℓ2-norm.
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Figure A.17: Number of redundant feature maps (with τsim = 0.85) for ImageNet
models. Robust models are trained with ℓ∞-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Figure A.18: Number of redundant feature maps (with τsim = 0.9) for ImageNet
models. Robust models are trained with ℓ∞-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Figure A.19: Number of redundant feature maps (with τsim = 0.95) for ImageNet
models. Robust models are trained with ℓ∞-norm. Values are averaged
over 5000 images randomly sampled from the test set.
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Figure A.20: Number of redundant feature maps (with τsim = 0.99) for ImageNet
models. Robust models are trained with ℓ∞-norm. Values are averaged
over 5000 images randomly sampled from the test set.

Table A.1: Natural accuracy on pixel-averaged images for ImageNet. Robust models
are trained with ℓ∞-norm.

Model εtr = 0 εtr = 0.5 εtr = 1.0 εtr = 2.0 εtr = 4.0 εtr = 8.0

ResNet18 0.292 0.358 0.362 0.406 0.410 0.436
ResNet50 0.264 0.352 0.322 0.314 0.364 0.340
Wide ResNet50 ×2 0.204 0.342 0.326 0.332 0.390 0.300

A.3 Color Bias

In Table A.1 and Figure A.21, the results on pixel-averaged images and images
with contours for robust models trained with ℓ∞-norm are given. In Table A.2
are listed the accuracies on the ImageNet9 dataset for robust models trained with
ℓ∞-norm. Note that robust models consistently rely on global color information
more than natural models. Moreover, they suffer from a larger average accuracy
drop - and exhibit larger variance over different colors - when colored contours
are added. These experiments confirm findings discussed in Section 5.6.4 and
prove that the color bias is an inherent property of adversarially-trained models,
independently of the metric used during training to craft adversarial examples.
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Figure A.21: Colored contours: natural accuracy drop with respect to the original
test set on ImageNet. Circles represent the average accuracy drop over
different colors (white, red, green, blue) and error bars indicate the
corresponding standard deviation. Robust models are trained with
ℓ∞-norm.

Table A.2: Natural accuracy with different pixel-averaging methods for ImageNet-9.
Accuracy is computed based on the 9 classes of the ImageNet-9 dataset.
Robust models are trained with ℓ∞-norm. The first line of each block
gives the accuracy on the original images.

Model Transform εtr = 0 εtr = 0.5 εtr = 1 εtr = 2 εtr = 4 εtr = 8

ResNet18 - 93.68 92.62 91.83 89.73 85.36 77.33
avg 2.42 5.73 6.84 9.38 8.40 8.05
avg bg 2.57 6.89 8.22 10.12 8.15 8.52
avg fg 1.11 2.17 2.47 5.38 5.31 3.68
shape+color 8.69 13.46 15.85 16.00 17.80 17.33

ResNet50 - 95.83 95.80 95.38 94.10 91.90 86.67
avg 0.77 6.54 8.30 8.47 7.04 6.22
avg bg 1.09 7.56 9.01 9.48 8.00 7.19
avg fg 0.05 2.44 4.02 4.02 3.14 2.67
shape+color 12.30 13.06 15.41 15.88 19.43 17.58

Wide ResNet50 ×2 - 95.83 96.54 96.17 95.58 93.58 90.05
avg 2.27 8.05 10.10 6.07 8.15 5.73
avg bg 2.52 8.99 10.86 7.38 9.90 6.99
avg fg 1.93 3.90 5.53 2.10 3.48 2.44
shape+color 17.58 12.02 14.30 17.04 19.78 16.35



Appendix B

Details on the IGE Framework

In this Appendix, we provide further details on the IGE framework introduced
in Chapter 6.

B.1 Implementation Details

In order to satisfy parallel and efficient image processing, we developed IGE
in CUDA/C++ and NVIDIA Thrust. The first stage of filtering is the extraction
of connected components. We use the GPU-based CCL (Connected Component
Labeling) algorithm adapted from [Playne and Hawick, 2018]. The output
of CCL is a label matrix, where each location contains the identifier of the
node/patch. After running CCL, we run a CUDA-kernel called edge which
takes in input the label matrix edge «< grid, block, block.x*block.y»>
and outputs the graph in a dataframe-like format. After this initialization
process, the actual filtering procedure starts. At each step, the merge function
is implemented in two phases: the first function has the objective of defining
the candidates for merging, while the second function actually merges nodes.
After the merge, the filtered image is reconstructed with the function avg_color

that takes in input the label matrix and the original images and returns the
filtered images by averaging color for each node. The graphs can be optionally
saved on CSV files and elaborated with the NVIDIA library libcudf (https:
//github.com/rapidsai/cudf/). The python wrapper has been developed
using pybind11.

B.2 Pre-processing

With high-dimensional images, we have found it beneficial to apply a de-
noising pre-processing that consists of partial removal of textures by the mini-
mization of the following objective function

argmin
ϑ

LTV (ϑ) + Lsurf (ϑ) + λ∥x− ϑ∥22
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where x is the raw image, LTV is the total variation loss and Lsurf is the surface
loss. The objective of Lsurf loss is to minimize the number of changes in pixels’
values. Indeed, total variation can be low even when the number of pixels’
changes is very high. The change of pixels’ color is defined with the step function
1(·), which is not differentiable. We approximate the step function with the
differentiable surrogate:

1

1 + e−αx

where α≫ 1.
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