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1 Further simulations

In the following, additional simulation results are presented for other parameter settings
suggested by Aly et al. (2021), namely (θ, λ) = (4, 0.023) and (7, 0.019).
For both settings, Figure 1 and Figure 2 display the in-control CARLs and the distribution
of the control limits of the one-sided EWMA control statistic satisfying the GICP condition
(Equation (25) in the paper). Figure 3 and Figure 4 show the distribution of the out-of-control
CARLs, whereas Figure 5 and Figure 6 show the profiles of the median of the out-of-control
CARLs. Analogously to the corresponding figures in the paper, for these profiles the ARLs
for δ = 0 are not displayed as they are not directly comparable across different parameter
update rules.

(a) θ = 4, λ = 0.023 (b) θ = 7, λ = 0.019

Figure 1: IC performance of the one-sided EWMA control chart under the fixed (FE), adaptive
(AE), and two cautious learning parameter schemes. For all the estimation approaches, the
corresponding control schemes satisfy the GICP condition (β = 0.1)
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(a) θ = 4, λ = 0.023 (b) θ = 7, λ = 0.019

Figure 2: Distribution of the control limits of the EWMA control chart that satisfy the GICP
condition (β = 0.1) using the fixed (FE), adaptive (AE) procedures and two cautious learning
parameter schemes. Densities are based on the 200 simulated initial samples.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 3: OC performance of the one-sided EWMA control chart based on the fixed (FE),
adaptive (AE) procedures and two cautious learning parameter schemes, when θ = 4 and
λ = 0.023.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 4: OC performance of the one-sided EWMA control chart based on the fixed (FE),
adaptive (AE) procedures and two cautious learning parameter schemes, when θ = 7 and
λ = 0.019.

4



Figure 5: Median of the OC conditional ARL of the one-sided EWMA-type control based
on the fixed (FE), adaptive (AE) procedures and two cautious learning parameter schemes,
when θ = 4 and λ = 0.023.
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Figure 6: Median of the OC conditional ARL of the one-sided EWMA control based on the
fixed (FE), adaptive (AE) procedures and two cautious learning parameter schemes, when
θ = 7 and λ = 0.019.
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2 In-depth analysis

In this section a sensitivity analysis of the performance of the MCL and C&M cautious
parameter learning schemes is implemented for different values of the smoothing constant λ.

2.1 Simulation settings and results

In the following, the simulation settings are the same as those illustrated in Section 4 of the
main paper (same initial sample size, cautious learning parameters, shift magnitudes, change-
point locations, and GICP condition for commutating the control limit). The IC process
parameter is here set equal to to θ = 4, representing an intermediate value between an heavily
skewed and a more symmetric value of θ = 1 and 7, respectively. The performances of the
proposed cautious parameter learning schemes rules are compared with those obtained with
the FE and AE procedures for the following values of λ = 0.05, 0.075, 0.1, 0.125, 0.15, 0.175,
and 0.2.
From results in Figures 7 to 13, it is possible to see that the time-delayed update rules
provide consistently better results with respect those obtained with both adaptive and fixed
procedures. This result is stable across different shift sizes and λ values, with some differences
between the MCL and the C&M approaches.
Overall, the recommended settings of A = 1.5 and B = 50 for the C&M parameter learning
scheme results in a more conservative rule than that used in the MCL scheme. Indeed, when
the control chart displays a high sensitivity to small shifts such as in Figure 7, the MCL
approach provides a protection against early shifts comparable to that reachable with the
C&M update rule. However, in these cases the MCL approach provides a better protection
against shifts occurring later in the monitoring phase due to the higher precision of the
estimates.
When the control chart is less sensitive to small parameter shifts, such as for λ = 0.2 in
Figure 13, the MCL approach is not able enough to prevent that small shifts add some bias
in parameter estimates. In these cases the C&M approach is more conservative and avoids
contamination of the parameter estimates.
Overall, among the proposed time-delayed estimators, it is not possible to find an uniformly
outperforming parameter learning scheme. The sensitivity of the control chart based either
on the MCL or C&M proposal seems to be affected differently by the size of the mean shifts.
However, both the time-delayed estimators lead to a better overall performance than that
obtained with FE and AE procedures.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 7: OC performance of the EWMA (λ = 0.05) control chart based on the fixed (FE),
adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4. Control
charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200 simulated
conditional ARLs.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 8: OC performance of the EWMA (λ = 0.075) control chart based on the fixed
(FE), adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4.
Control charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200
simulated conditional ARLs.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 9: OC performance of the EWMA (λ = 0.1) control chart based on the fixed (FE),
adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4. Control
charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200 simulated
conditional ARLs.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 10: OC performance of the EWMA (λ = 0.125) control chart based on the fixed
(FE), adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4.
Control charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200
simulated conditional ARLs.

11



(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 11: OC performance of the EWMA (λ = 0.15) control chart based on the fixed
(FE), adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4.
Control charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200
simulated conditional ARLs.
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(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 12: OC performance of the EWMA (λ = 0.175) control chartbased on the fixed
(FE), adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4.
Control charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200
simulated conditional ARLs.

13



(a) δ = 0.25 (b) δ = 0.35

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 1.0 (f) δ = 1.25

Figure 13: OC performance of the EWMA (λ = 0.2) control chart based on the fixed (FE),
adaptive (AE) procedures, and two cautious learning parameter schemes, when θ = 4. Control
charts satisfy the GICP condition with β = 0.1. Boxplots are based on the 200 simulated
conditional ARLs.
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Figure 14: Median of the OC conditional ARL of the EWMA-type control chart under fixed
(FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.05.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 15: Median of the OC conditional ARL of the EWMA-type control chart under fixed
(FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.075.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 16: Median of the OC conditional ARL of the EWMA-type control chart under
fixed (FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.1.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 17: Median of the OC conditional ARL of the EWMA-type control chart under fixed
(FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.125.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 18: Median of the OC conditional ARL of the EWMA-type control chart under fixed
(FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.15.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 19: Median of the OC conditional ARL of the EWMA-type control chart under fixed
(FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.175.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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Figure 20: Median of the OC conditional ARL of the EWMA-type control chart under
fixed (FE), adaptive (AE), cautious learning (CL) parameter updates for θ = 4 and λ = 0.2.
Control charts satisfy the GICP condition with β = 0.1. Plots are based on the 200 simulated
conditional ARLs.
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3 Application to the ICU admissions data

In the following, the code reproducing the analysis of the ICU dataset (in Section 5 of the
main paper) is illustrated. The code is developed in the Julia programming language version
1.7, with some R code to produce the output tables. The simulations were carried out on
a Linux Ubuntu 20.04 machine with a 11th Gen Intel Core i7-11800H 2.30GHz CPU and
32GB of RAM. The total computational time for this example is in the order of a minute
(excluding code compilation).
First, load the necessary packages and the environment variables provided in the source code.
using DrWatson
#@quickactivate "CautiousLearning"
quickactivate("$(homedir())/Documents/git/SPC/CautiousLearning")

using Distributions, Random
using Parameters
using SharedArrays
using DataFrames, CSV, Dates
using Plots, StatsBase, StatsPlots, LaTeXStrings, RCall
using StatisticalProcessControl

include(srcdir("generate data.jl"))
include(srcdir("update parameter.jl"))
include(srcdir("simulate runs.jl"))
include(srcdir("cfg.jl"))

Then, load the dataset located in the data/ICUadmissions folder. Here, data concerning
the New York City area in 2020 are considered.
fold = "ICUadmissions"
dat = DataFrame(CSV.File(datadir(fold,
"New York Forward COVID-19 Daily Hospitalization Summary by Region.csv")))
nydat = filter(row -> row.Region == "NEW YORK CITY", dat)
nydat.date .= Date.(nydat[:, 1], dateformat"mm/dd/yyyy")
nydat = filter(row -> year(row.date) == 2020, nydat);

Obtain the daily ICU counts along with the corresponding dates, starting from March 2020.
using Plots.PlotMeasures
y2020 = nydat[:, 4]
days2020 = nydat[:, 5]
first(y2020, 10)
first(days2020, 10)

10-element Vector{Dates.Date}:
2020-03-26
2020-03-27
2020-03-28
2020-03-29
2020-03-30
2020-03-31
2020-04-01
2020-04-02
2020-04-03
2020-04-04

Then, select the indices of the IC/OC datasets along with the initial sample size and the
prospective monitoring size.
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The following code reproduces Figure 6 of the main paper, which isolates the IC and OC
data.
# ic 2020 = 115:175
ic 2020 = 115:155
oc 2020 = (ic 2020[end]+1):length(y2020)
n ic = length(ic 2020)
n oc = length(oc 2020)
pl = plot(days2020, y2020, label="", dpi=400, xrotation=45, bottom margin=3mm)
plot!(pl, days2020[ic 2020], fill(0, n ic), fillrange=fill(maximum(y2020), n ic),
color=:gray, fillcolor = "gray", fillalpha=0.25, alpha=0.0, label="IC")

The following code reproduces Figure 7 of the main paper.
y = y2020[[ic 2020; oc 2020]]
days = days2020[[ic 2020; oc 2020]]

ic idx = 1:n ic
oc idx = (n ic+1):(n ic+n oc)
yIC = y[ic idx]
daysIC = days[ic idx]
yOC = y[oc idx]
daysOC = days[oc idx]

println("In-control data: ", daysIC[[1, end]])
pl = plot(days, y, label="", dpi=400, xrotation=45, bottom margin=3mm)
plot!(pl, days[1:n ic], fill(0, n ic), fillrange=fill(maximum(y), n ic), color=:gray,
fillcolor = "gray", fillalpha=0.25, alpha=0.0, label="IC", legend=:bottomright)
τ = n ic + 29
vline!([days[τ]], color=:gray, linestyle=:dot, linewidth=2, label="", markersize=2.5)
display(pl)

println("Possible change-point location: ", days[τ])
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In-control data: [Dates.Date("2020-07-18"), Dates.Date("2020-08-27")]
Possible change-point location: 2020-09-25

Set the desired nominal in-control ARL to 500 and β = 0.05 for the GICP condition and
calculate the desired nominal in-control ARL.
Arl0 = 500
beta = 0.05
thetaHat = mean(yIC)
println(thetaHat)

66.41463414634147

Define a function implementing the one-sided EWMA control chart using the various update
mechanisms (AE, FE, MCL) defined in the source code.
function applyChart(ch, um, thetaHat, m, yprosp; seed = 123)

# Random.seed!(seed)
maxrl i = length(yprosp)
thetaHatVec = zeros(maxrl i)
thetaHatVec[1] = thetaHat
di = 1
diVec = Array{Int}(undef, maxrl i)
diVec[1] = di
thetaHatCaut = thetaHat
thetaHatCautVec = zeros(maxrl i)
thetaHatCautVec[1] = thetaHatCaut

t alarm = zeros(0)

valueVec = zeros(maxrl i)
valueVec[1] = get value(ch)
i = 1
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while i < maxrl i
thetaHatCaut = thetaHatVec[i - di + 1]
y = yprosp[i]
ch = update series(ch, chart statistic(y, thetaHatCaut))
thetaHat = update parameter(thetaHat, y, i + m)
i += 1
valueVec[i] = get value(ch)
thetaHatVec[i] = thetaHat
if check update(ch, um)

di = 1
else

di += 1
end
diVec[i] = di
thetaHatCautVec[i] = thetaHatCaut
if check OC(ch)

push!(t alarm, i)
end

end

return (t alarm = t alarm, dat = yprosp, chart values = valueVec, limit alarm =
get limits(ch), limit cautious = get warning limit(um), parameter updates =
thetaHatCautVec, di = diVec)
end

applyChart (generic function with 1 method)

The function arguments are:

• ch: an AbstractSeries object, as defined in the StatisticalProcessControl package
shipped with the source code.

• um: an AbstractUpdate object, as defined in the StatisticalProcessControl package
shipped with the source code.

• thetaHat: estimate of the IC mean.

• m: initial sample size.

• yprosp: data onto which the control chart is applied.

• seed: eventual seed passed to the GICP optimization for reproducibility.

The function returns the following values:

• t alarm: time of the first alarm.

• dat: data onto which the control chart has been applied.

• chart values: vector of the EWMA control statistic values.

• limit alarm: control chart limit.

• limit cautious: the upper limit of the cautious region.

• parameter updates: sequence of updated parameter estimates.
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• di: sequence of dt’s.

Furthermore, a function applying the control chart is defined for monitoring data after
computing the control limit which satisfies the GICP condition.
function applyChartGICP(ch, um, yinit, yprosp, thetaHat, Arl0; beta::Union{Bool,
Float64} = 0.2, maxrl=1e04, verbose=true , seed=Int(rand(1:1e06)))

m = length(yinit)
if isa(um, CautiousLearning)

Ats0 = get ATS(um)
if Ats0 != 0

# Calculate limit if Ats0 != 0, otherwise use zero-restarting chart
if verbose println("Calculating limits for target ATS...") end
sa ats = saControlLimits(ch, AdaptiveEstimator(), runSimulation, Ats0,

thetaHat, Poisson(thetaHat),
m, verbose=false , Amin=0.1, maxiter=1e05,
gamma=0.015, adjusted=true , seed=seed)

um = CautiousLearning(L = sa ats[:h], ATS = Ats0)
else

if verbose println("ATS = 0, skipping limit calculation.") end
end
# Estimate cautious learning limit

end

if beta == false
chart = deepcopy(ch)

else
chart = adjust chart gicp(ch, um, yinit, thetaHat, runSimulation, m, Arl0,

beta=beta, verbose=verbose)
end

return applyChart(chart, um, thetaHat, m, yprosp)
end

applyChartGICP (generic function with 1 method)

The GICP control limit correction uses the adjust chart gicp function, defined in the
source code, implementing the computation of the control limit described in Subsection 4.1.1.
Finally, the EWMA control chart is applied using the FE, AE, and the MCL update rules.
The following code reproduces Figure 8 in the main paper.
Random.seed!(2022-08-18)
D = Poisson
fname = plotsdir(fold, "alarms.jld2")

umVec = [CautiousLearning(ATS=0), FixedParameter(), AdaptiveEstimator()]
nms = ["MCL", "FE", "AE"]
perf = []
L = []
plts = []
for i in eachindex(umVec)

ch = signedEWMA(l=0.2, L = 1.0)
um = umVec[i]
res = applyChartGICP(ch, um, yIC, yOC, thetaHat, Arl0, beta=beta)
append!(L, res[:limit alarm])
plotsave = plotsdir(fold, nms[i]*".png")
pl = plot(res.chart values[1:55], label=L"C t", legend=:outerright, dpi=400)
hline!([res.limit alarm], style=:dash, colour="red", xlab=L"t", ylab=L"C t",

label="")
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tau = Int(first(res.t alarm))
scatter!([tau], [res.chart values[tau]], colour="red", label="")
append!(perf, tau)
append!(plts, pl)
println(tau,"\t", daysOC[tau])

end
display(plts[1])

@rput nms
@rput perf
@rput L

tab = R"""
library(knitr)
library(kableExtra)
df = cbind(nms, perf, L)
tex OC <- kable(df, format="latex", digits = 2, row.names=FALSE,
col.names=c("Estimator", "Alarm", "Limit"), escape=FALSE, align='c', linesep = "",

caption = "Time to alarm of the one-sided EWMA control chart using the fixed (FE),
adaptive (AE) and the proposed cautious learning (MCL) update rules.", label="ICU OC
alarm")
""" |> rcopy

println(tab)

ATS = 0, skipping limit calculation.
Calculating GICP for extremum 1/1...
GICP done.
30 2020-09-26
Calculating GICP for extremum 1/1...
GICP done.
41 2020-10-07
Calculating GICP for extremum 1/1...
GICP done.
31 2020-09-27

Furthermore, Table 1 below reproduces Table 3 of the main paper (before rounding the
control limits).

Table 1: Time up to alarm of the one-sided EWMA control chart using the fixed (FE),
adaptive (AE) and the proposed cautious learning (MCL) update rules.

Estimator Alarm Limit
MCL 30 1.05469060798468
FE 41 1.2147825075143
AE 31 1.02214273823991
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