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A B S T R A C T   

Grassland fractional vegetation cover (FVC) accurate mapping on a large scale is crucial, since degraded 
grasslands contribute less to provisioning services, carbon storage, water purification, erosion control and 
biodiversity conservation. The spatial and temporal resolution of Sentinel-2 (S2) and PlanetScope (PS) data has 
never been explored for grassland FVC estimation so far and will enable researchers and agencies to quantify and 
map timelier and more precisely grassland processes. In this paper we compare FVC estimation models developed 
from Landsat-8 (L8), S2 and PS imagery. The reference grassland FVC dataset was obtained on the Paganella ski 
runs (46.15◦N, 11.01◦E, Italy) applying unsupervised classification to nadir grassland RGB photographs taken 
from 1.35 m above the soil. Fractional Response Models between reference FVC and 18 vegetation indices (VIs) 
extracted from satellite imagery were fitted and analysed. Then, leave-one-out cross validation and spatiotem-
poral change analysis were also performed. Our study confirms the robustness of the commonly used VIs based 
on the difference between NIR and the red wavelength region (R2 

= 0.91 for EVI using S2 imagery) and indicate 
that VIs based on the red-edge spectral region are the best performing for PS imagery (R2 = 0.89 for RECI). Only 
medium to high spatial resolution imagery (S2 and PS) precisely mapped spatial patterns at the study site, since 
grasslands FVC varies at a fine scale. Previously available imagery at medium to low spatial and temporal res-
olution (e.g., L8) may still be interesting for analysis requiring long time-series of data.   

1. Introduction 

Grassland degradation is a crucial issue, as degraded grasslands not 
only contribute less to provisioning services, but also to carbon storage, 
water purification, erosion control, biodiversity conservation, and rec-
reation (Li et al., 2022). Grasslands cover one-third of the earth’s 
terrestrial surface, which represent 70% of the global agricultural area 
(Reynolds and Frame, 2005), and over 49% of grassland area is expe-
riencing these processes (Gang et al., 2014). 

Grassland Fractional Vegetation Cover (FVC), defined as the ratio of 
the vertical projection area of above-ground vegetation organs on the 
ground to the total vegetation area, is a very informative trait in grass-
land monitoring (Liang and Wang, 2020). Spatiotemporal changes in 
FVC reflect changes in grasslands functioning caused by environmental 

drivers such as erosion, revegetation, alteration of disturbance regimes, 
precipitation and temperature patterns. 

FVC estimation is mainly performed using two approaches: field 
measurements and remote sensing retrieval. In the field, FVC measure-
ment has been traditionally carried out using subjective methods like 
visual estimation, or more standardized sampling methods like the grid 
method and the point count sampling method (Liang and Wang, 2020). 
Thanks to the improvements in image quality, digital photography 
classification became a much more efficient way of FVC estimation in 
the field, because it is fast, replicable and objective (Booth et al., 2005; Li 
et al., 2005). Supervised methods (also known as manual pixel classifi-
cation) and unsupervised methods (also known as automatic colour 
threshold) have been developed to classify each pixel (Booth et al., 2006; 
McCallum, 2000; Patrignani and Ochsner, 2015; Zhou et al., 1998). 

* Corresponding author at: Via dei Giardini, 27/1, 38122 Trento, Italy. 
E-mail address: davide.andreatta@phd.unipd.it (D. Andreatta).   

1 ORCID: 0000-0001-6821-1152.  
2 ORCID: 0000-0001-7697-5793.  
3 ORCID: 0000-0002-0221-0875.  
4 ORCID: 0000-0001-9850-8985. 

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2022.109102 
Received 2 May 2022; Received in revised form 20 June 2022; Accepted 22 June 2022   

mailto:davide.andreatta@phd.unipd.it
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2022.109102
https://doi.org/10.1016/j.ecolind.2022.109102
https://doi.org/10.1016/j.ecolind.2022.109102
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 141 (2022) 109102

2

Field methods are still fundamental as they provide accurate ground 
reference measurement for remote sensing algorithm development, 
which has become the most used approach in FVC estimation for large 
scale applications (Liang and Wang, 2020; White et al., 2000). 

The most common methods proposed for FVC estimation using RS 
data are i) empirical model methods (also called regression models), ii) 
pixel decomposition model methods (also called linear unmixing model), 
iii) physical based methods, and iv) machine learning methods. Empir-
ical models are constructed through the regression of remote sensing 
data, which can be waveband values or derived VIs, to reference FVC 
values. Empirical models have been successfully explored since the 
experience of Graetz et al. (1988) who predicted FVC using the fifth 
channel of Landsat MSS at a spatial resolution of 183 m reaching an 
accuracy of R2 = 0.68. The major drawback of regression models is they 
are locally calibrated, and they do not necessarily generalize well. The 
theoretical basis of the second approach, pixel decomposition models, is 
that each pixel in an image is composed of several components and pixel 
reflectance to the sensors is assumed to result from the linear synthesis of 
the information of each component. The pixel decomposition methods 
having just two endmembers, i.e. soil and vegetation, are also called 
pixel dichotomy models, dimidiate pixel models, or two-endmember 
models and compute the FVC considering the contribution of the vege-
tation component (maximum VI value) and of the bare soil (minimum VI 
value) (Gao et al., 2020; van der Meer, 1999). The physical-based 
methods simulate the physical relationships between vegetation can-
opy spectral reflectance and FVC, and the estimation is applied by 
inverting a canopy radiative transfer model (CRTM). One frequent issue 
using these algorithms is that the input parameters are often more than 
the observations, thus the equation is underdetermined (Atzberger, 
2004; Darvishzadeh et al., 2008). For this reason, Machine Learning 
algorithms are often employed to constrain and simplify the inversion 
process (Baret et al., 2007; Roujean and Lacaze, 2002). 

The spatial resolution of images used in FVC estimation are mainly 
from medium to coarse, with dominant values of 30 m, 250 m, 1 km 
(Gao et al., 2020). The most frequently used satellite imageries are, 
respectively, Landsat, MODIS, and AVHRR. Most of VIs used for FVC 
estimation are computed based on reflectances in the red and near- 
infrared (NIR) wavelength region, like the SAVI used by McGwire 
et al. (2000), MSAVI used by Chen et al. (2016), the EVI used by Jia et al. 
(2017), the WDRVI used by Gitelson (2013). Also the short-wave- 
infrared (SWIR) wavelength region showed correlation with FVC ac-
cording to Guerschman et al. (2009) and to Baret et al. (2007). High 
correlations were found also with the red-edge, as reported by Gitelson 
(2013) and Liu et al. (2007) and with the green band (Zarei et al., 2020). 
Only a few studies explored the use of Sentinel-2 (S2) imagery for crop 
FVC estimation and to our knowledge grassland FVC estimation using S2 
imagery has never been tested. Verrelst et al. (2012) simulated Sentinel- 
2 Multi spectral Instrument band settings on the basis of Compact High 
Resolution Imaging Spectrometry data to estimate the FVC of 8 crops, 
whereas Wang et al. (2018) applied a machine learning approach to 
estimate FVC of maize and wheat fields using S2 imagery. S2 imagery 
compared to previous imagery like Landsat-8 (L8) series benefits from 
improved spatial and spectral resolution, with RGB and NIR bands at 10 
m, 4 red-edge bands (which were not available in the L8 series) and 2 
shortwave infrared bands at 20 m. One last constellation that to our 
knowledge has never been tested for FVC estimation is PlanetScope (PS) 
constellation. The last instrument generation, PSB.SD, is capable of 
measuring reflectances in 8 bands at the high spatial resolution of about 
3 m and with a nearly daily revisiting time. 

Although the possibility to use spaceborne optical imagery at coarse 
resolution to estimate grassland FVC have already been explored in 
previous works, newly available imagery with finer spatial and spectral 
resolution could give much more detailed information, necessary to 
monitor patchy processes like grassland degradation and restoration 
that the global change is causing (Jia et al., 2017). Especially, S2 and PS 
imagery has never been applied to grassland FVC estimation, even 

though the higher spectral, spatial and temporal resolution may lead to 
breakthrough innovation in FVC estimation algorithms, especially in 
environments where vegetation mosaic changes at a fine scale (Gao 
et al., 2020). The output models could be used to monitor grassland 
degradation and recovery and to estimate grassland density changes in 
response to climate change. 

In this work we aim to i) shed light on the sensitivity of spectral 
regions to changes in FVC and ii) to compare the FVC prediction capa-
bility of models developed using different optical imagery. 

2. Materials and methods 

2.1. Study area 

The study was conducted at the southern border of the Italian Alps, in 
the Province of Trento, on the Paganella ski runs (46.15◦N, 11.01◦E, 
Fig. 1A). The climate of the study site is classified as temperate oceanic 
supratemperate humid according to the Worldwide Bioclimatic Classi-
fication System (Sboarina and Cescatti, 2004). The rains are concen-
trated in summer and autumn and annual precipitation is 1508 mm. The 
study area altitude ranges from 1055 m a.s.l. to 1615 m a.s.l. and the 
temperatures registered at the nearest (Fig. 1C) weather station (1790 m 
a.s.l.) reach their maximum in August (average of daily maximum =
18.1 ◦C) and their minimum in January (average of daily minimum =
-7.3 ◦C) (Fig. 1B). The dominant plant communities in the study area are 
montane and subalpine spruce forests, interrupted by ski runs revege-
tated from more than 70 year to one year before our field survey. 
Commercial seed mixtures used for revegetation were mainly composed 
of Festuca rubra, Dactylis glomerata, Lolium perenne, Trifolium repens, 
Trifolium pratense. Based on the age of the revegetation and on soil 
conditions the FVC ranges from very low to complete in the surveyed 
grasslands. 

2.2. Ground measurements of reference FVC 

To construct our FVC ground measurement reference dataset, the 
digital photography approach was chosen (Liang and Wang, 2020). 
First, we identified 46 vegetationally homogeneous areas inside the 
grassland areas and we defined 10 m × 10 m plots with north orienta-
tion. The plots were georeferenced with a total station. Then, in each 
plot we took one Nadir photograph at the plot centre and one at each 
corner. The photographs were taken using a RGB digital camera 
mounted on a tripod 1.35 m above ground level. The camera was ori-
ented vertically downwards resulting in a field view of approximately 
120 cm × 100 cm, varying based on the slope. All images were obtained 
in a 4608 × 3456 pixels spatial resolution with flash always off and 
without optical or digital zoom. The field work was conducted between 
June 23 and 24, 2021 and resulted in 230 photographs. 

To limit image edge distortion, image edges were removed (20% of 
height and 20% of width) before classification. We chose the unsuper-
vised image classification method proposed by Patrignani and Ochsner 
(2015). This method detects the green pixels based on colour ratios of 
red to green (R/G) and blue to green (B/G) and on the excess green index 
(2G-R-B). The green pixels can be detected by the following criteria: 

R
G

< P1and
B
G

< P2and2G − R − B < P3 (1)  

where R is the red band, G is the green band, B is the blue band and P1, 
P2, and P3 are three parameters set to 0.95, 0.95, 20 by default. The 
method was chosen because it has been already successfully used to 
estimate grassland FVC (Jáuregui et al., 2019; Lollato et al., 2019). The 
parameters were set to the default values and the classification was 
performed using R (RStudio Team, 2020) (Fig. S1). Plot FVC was 
computed as the average FVC of the 5 photographs. Digital images 
classification provided a reference dataset composed of 15 plots in the 
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FVC range between 1% and 20%, 5 plots between 20% and 40%, 8 plots 
between 40% and 60%, 9 plots between 60% and 80% and 9 plots be-
tween 80% and 100%. The average standard deviations of reference FVC 
among subplots of each plot is 8.8 % (min = 1%, max 25%). Seven bare 
soil plots were also added to the dataset. In those plots the vegetation, 
most of the organic soil and rocks had been removed, and soil levelled 
for new ski runs preparation. Bare soil plots were included in the dataset 
to represent eroded grasslands rich in mineral soil, and to represent 
restored grasslands in their first stages after soil preparation. 

2.3. Remote sensing imagery 

For each imagery we identified the uncloudy image closest to the 
field survey dates (23rd and 24th June 2021), and product specification 
can be found in Table S1. Imagery from L8 constellation (13th of June 
2021, Level 2) and S2 constellation (27th of June 2021, Level-2A) were 
accessed through the Earth Engine Data Catalog (https://developers. 
google.com/earth-engine/datasets) (Gorelick et al., 2017), whereas 
the PS image (23rd of June 2021, Level 3A, PSB.SD instrument) was 
download from the Planet API and then uploaded to the Earth Engine 
Code Editor for the sampling. Values of all the pixels that intersect the 
plots, weighted on the plot fraction intersected, were extracted for each 
band for the 53 plots (10 m × 10 m squares) using the ee.Image.reduc-
eRegions function in Google Earth Engine. To produce the estimated FVC 
maps used for spatiotemporal change analysis (Fig. 5 and Fig. 6), the PS 
images at full resolution (3 m × 3 m) were spatially smoothed using 3 ×
3 pixels moving window and assigning the mean values of the neigh-
bourhood to the focal cell to match the calibration resolution (10 m ×
10 m) without losing the fine scale detail. The focal function of the raster 
package in R was used to apply the spatial smoothing (Hijmans, 2021). 

For the temporal change analysis described in subsection 2.7 and 3.3, 

four clear-sky images taken from summer to autumn 2021, were ac-
quired for each imagery (dates reported in Fig. 6). 

2.4. Vegetation index computing 

The VIs included in this study were chosen based on previous liter-
ature. We included indices which analyse the NIR wavelength region 
(Chen et al., 2016; Jia et al., 2017; Jiménez-Muñoz et al., 2009), the 
SWIR (Baret et al., 2007; Guerschman et al., 2009) and the red-edge 
(Gao et al., 2020). Two indices exploring the green wavelength were 
also included, as they were successfully used for approximating gross 
primary productivity of grasslands (Zhou et al., 2014). The VIs were 
computed for each imagery in R using the formulas described in Table 1. 
It was not possible to compute all the VIs for all the imageries, since red- 
edge bands are not available in L8 imagery and SWIR wavelength region 
is not available for PS imagery. 

2.5. Grasslands FVC spectral signature analysis 

To have a first understanding of the spectral signature of grasslands 
with various FVC, plots were grouped based on their reference FVC in six 
categories. The first category contains bare soils with no vegetational 
cover, the other five categories gather the plots based on their FVC from 
1 to 100% FVC with a step of 20%. Then, for each imagery and for each 
band we built a boxplot graphical representation of the reflectances, 
grouped according to their FVC category. FVC categories were used only 
to display FVC levels in Figs. 2 and 3 and not to define the classes for a 
classification predictive model. Instead, FVC prediction was performed 
through Fractional Response Models, as described in the following 
paragraph. 

Fig. 1. A) Location of the experimental site. B) Walter & Lieth climatic diagram of the Malga Terlago weather station. Data downloaded from the weather service of 
the Province of Trento (www.meteotrentino.it). C) Plot Location inside the study site coloured based on their reference Fractional Vegetation Cover. Sentinel-2 Level 
2A image of June 27th 2021 used as a background. 
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2.6. Relationship between fractional vegetation cover and vegetation 
indices 

First, for each imagery and for each VI we explored the indices 
variability inside and among FVC categories. Since the dependent var-
iable (FVC) has a fractional nature, being bounded in the unit interval, 
the relationships between VIs and FVC were examined through Frac-
tional Response Models using the frm function of the frm R package 
(Ramalho, 2019) (see Fig. S2 for the workflow diagram). We used logit as 
a link function and quasi-likelihood method to determine parameters 
(eq.2). The standard fractional regression model used is defined by the 
following conditional expectation: 

E(yi|xi) =
exiθ

1 − exiθ
(2)  

where yi denote the fractional response variable, defined on the interval 
[0,1], to be explained for individual i, i = 1, …, N. xi denote the 
explanatory variable and θ the vector of parameters of interest. R- 
squared (R2), calculated as the square of the correlation coefficient be-
tween the actual and fitted values of the dependent variable, was used 
for model comparison. Selected models’ residuals were checked for 
normality and homoscedasticity by visual inspection of the residuals 
plot. 

The residuals of the selected models were regressed against all the 
other indices to find eventual promising predictors for multiple VIs 
models. To identify possible causes of error, we tested if there were 
correlations between selected models’ residuals and some terrain indices 
that may affect plot spectral signature. Altitude, aspect, slope, 

topographic position index (TPI), terrain ruggedness index (TRI) and 
roughness were computed using the terrain function of the raster package 
in R. The terrain indices were computed according to Wilson et al. 
(2007). TRI is the mean of the absolute differences between the altitude 
value of a cell and the value of its eight surrounding cells. TPI is the 
difference between the altitude value of a cell and the mean value of its 
eight surrounding cells. Roughness is the difference between the 
maximum and the minimum value of a cell and its eight surrounding 
cells. To derive the terrain indices, we used a digital terrain model 
distributed by the Provincia Autonoma di Trento (PAT, 2016) with 10 m 
spatial resolution. Correlations were tested using the cor.test function in 
R, which tests for association between paired samples, using Pearson’s 
product moment correlation coefficient (level of significance p-value <
0.05). We also tested if within plot FVC heterogeneity (standard devia-
tion of FVC across subplots) was correlated to the residuals. 

2.7. Model validation 

Cross validated statistics (R2
CV) with leave-one-out procedure were 

computed to estimate the generalization capability of the selected 
models. The selected models for the L8, S2 and PS imagery were applied 
to estimate the FVC of all the grasslands of the study site and maps were 
analysed. The models were also applied on consecutive clear-sky images 
from summer 2021 to autumn 2021 on an area of recent grassland 
revegetation. The estimated FVC maps were plotted and compared to 
RGB visualization to assess if they show coherent spatial and temporal 
patterns. 

Table 1 
Description of vegetation indices evaluated in this study1.  

Index name Formula L8 
bands 

S2 
bands 

PS 
bands 

Reference 

EVI2 (Enhanced Vegetation Index) G*
NIR − RED

(NIR + C1RED − C2BLUE) + L 
2,4,5 2,4,8 2,6,8 (Huete et al., 2002) 

GNDVI (Green Normalized Difference Vegetation Index) NIR − GREEN
NIR + GREEN 

3,5 3, 8A 4,8 (Gitelson et al., 1996) 

GVMI (Global Vegetation Moisture Index) (NIR + 0.1) − (SWIR + 0.02)
(NIR + 0.1) + (SWIR + 0.02)

5,7 8,12 – (Ceccato et al., 2002) 

MSAVI (Modified Soil Adjusted Vegetation Index) 0.5*(2NIR +

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*NIR + 1)2 − 8(NIR − RED))
√

4,5 4,8 6,8 (Qi et al., 1994) 

NBR (Normalized Burn Ratio) NIR − SWIR
NIR + SWIR 

5,7 8A,12 – (García & Caselles, 1991) 

NDGI (Normalized Difference Greenness Index) GREEN − RED
GREEN + RED 

3,4 3,4 4,6 (Courel et al., 1991) 

NDMI (Normalized Difference Moisture Index) NIR − SWIR
NIR + SWIR 

5,6 – – (Hardisky et al., 1983) 

NDII (Normalized Difference Infrared Index) NIR − SWIR
NIR + SWIR 

– 8,11 – (Hardisky et al., 1983) 

NDRE1 (Normalized Difference RE1) REDEDGE740 − REDEDGE705

REDEDGE740 + REDEDGE705 

– 5,6 – (Gitelson & Merzlyak, 
1994) 

NDVI (Normalized Difference Vegetation Index) NIR − RED
NIR + RED 

4,5 4,8 6,8 (Rouse et al., 1974) 

PSRI (Plant Senescence Reflectance Index) RED − BLUE
REDEDGE705 

– 2,4,5 2,6,7 (Merzlyak et al., 1999) 

RECI (Red- Edge Chlorophyll Index) 
(

NIR
REDEDGE705

)

− 1 
– 5,8A 7,8 (Gitelson et al., 2003) 

RENDVI (Red-Edge Normalized Difference Vegetation 
Index) 

NIR − REDEDGE705

NIR + REDEDGE705 

– 5,8A 7,8 (Gitelson & Merzlyak, 
1994) 

RESI (Red-Edge Spectral indices) REDEDGE780 + REDEDGE740 − REDEDGE705

REDEDGE780 + REDEDGE740 + REDEDGE705  

5,6,7  (Xiao et al., 2020) 

RVI (Ratio Vegetation Index) NIR/RED 4,5 4,8 6,8 (Jordan, 1969) 
SAVI3 (Soil adjusted Vegetation Index) NIR − RED

NIR + RED + L
*(1+ L) 4,5 4,8 6,8 (Huete, 1988) 

VARI (Visible Atmospherically Resistant Index) GREEN − RED
GREEN + RED − BLUE 

2,3,4 2,3,4 2,4,6 (Gitelson, 2001) 

WDRVI (Wide Dynamic Range Vegetation Index 0.1*NIR − RED
0.1*NIR + RED 

4,5 4,8A 6,8 (Gitelson, 2004)  

1 NIR indicates near infrared; RED, red band; BLUE, blue band; GREEN, green band; SWIR, shortwave infrared band; REDEDGE, red-edge band. 
2 G indicates Gain factor, was set to 2.5; C1 and C2 are coefficients of the aerosol resistance term, were set to 6 and 7.5, respectively; L indicates canopy background 

adjustment, was set to 1. 
3 L indicates soil brightness correction factor, was set to 0.5. 
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Fig. 2. Boxplot of the spectral values of the plots divided according to FVC% using L8, S2 and PS imagery. See Table S1 for band names abbreviations.  

Fig. 3. Vegetation indices values of plots with various FVC. From left to right VIs based on NIR and red wavelength regions (EVI, NDVI, MSAVI, RVI, SAVI, WDRVI), 
including the green wavelength region (GNDVI, NDGI, VARI), based on SWIR and NIR wavelength regions (GVMI, NBR, NDII, NDMI) and indices based on Red Edge 
wavelengths (NDRE1, PSRI, RENDVI, RECI, RESI) were presented. RECI values were divided by 10, RENDVI by 3 and 1 was added to WDRVI to fit the figure y axis. 
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3. Results 

3.1. Grasslands FVC spectral signature 

Grasslands spectral signature is clearly affected by FVC level and 
there is great consistency between different satellites (Fig. 2). There is a 
linear relationship between FVC and reflectance values in the visible and 
SWIR domain. On the contrary, the NIR wavelength region (~865 nm: 
SR_B5, B8, b8) and the S2 Red-Edge2 and Red-Edge3 bands (B6 and B7) 
do not show a linear relationship with FVC along all the FVC gradient: 
reflectances show a positive correlation with FVC in vegetated plots, but 
bare soil plots have higher reflectance values and show a much higher 
variability. The SWIR bands are available only on L8 and S2 imagery 
(~1610 nm: SR_B6, B11) and are quite informative for low FVC, but tend 
to saturate at high FVC levels, similarly to red bands imagery (~665 nm: 
B4, b6). 

3.2. Relationship between fractional vegetation cover and vegetation 
indices 

VIs provided a higher separability of FVC categories than bands’ 
reflectances. In addition, VIs relationship with FVC was coherent on the 
whole FVC gradient, whereas bare soils showed a different pattern from 
vegetated areas looking at bands’ reflectances. The spectral separability 
of the FVC categories varies among different VIs and imageries, as 
presented in Fig. 3. Indices based on NIR and red wavelength regions 
(EVI, NDVI, MSAVI, RVI, SAVI, WDRVI) and on the visible wavelength 
region (GNDVI, NDGI, VARI) showed a clear relationship to FVC values. 
Indices based on SWIR and NIR wavelength regions (GVMI, NBR, NDII, 
NDMI) showed overlapping index values for low FVC levels, whereas 
indices based on red-edge wavelengths showed a promising identifica-
tion of bare soils and low-density grassland but tends to saturate at 
higher FVC (NDRE1, PSRI, RENDVI, RECI, RESI). 

In Table 2 the accuracy of FVC prediction models based on VI are 
presented. VIs derived from S2 and PS imagery showed a higher pre-
diction ability than those based on L8 imagery. The best performing 
index for S2 imagery was EVI, which showed a strong relationship with 
FVC (R2 = 0.91). The best performing index using PS imagery was RECI 
(R2 = 0.89), whereas NDMI gave the highest correlation using L8 im-
agery (R2 = 0.66) (Fig. 4). L8 model residuals showed a high degree of 
heteroscedasticity, whereas S2 and PS models residuals were almost 
homoscedastic (Fig. 4). The residuals of the selected models were 
regressed against all the other indices and some significant linear or 
quadratic relationships were found. The addition of a second VI to the 
selected model, however, led to a very low (<0.01) increase in R2. No 

multiple VI models were therefore selected. 
Terrain indices and diversity of FVC across subplots of each plot do 

not significantly explain the variability of the residuals, as resulting from 
Pearson’s product moment correlation coefficient analysis (level of 
significance p-value < 0.05). 

3.3. Model validation 

The relationship between EVI derived from S2 imagery and FVC 
resulted in an R2 of 0.911 and in a 0.903 cross validation R2, whereas the 
R2 and cross-validation R2 for L8 were 0.659 and 0.636 respectively, and 
0.895 and 0.886 for PS. 

RGB visualization and FVC maps derived from selected S2 and PS 
models showed coherent spatial patterns, whereas some anomalous 
values were found in the map derived from the selected L8 model 
(Fig. 5). In the western and northern areas, the map derived from L8 
imagery showed estimated values around 20% FVC, even though the 
RGB visualization and the estimated map derived from S2 and PS im-
agery showed bare soils or very low FVC. In addition to this, the great 
spatial heterogeneity of FVC in the study site is adequately described by 
S2 and PS spatial resolution, whereas the spatial resolution of L8 im-
agery (30 m) is not sufficient: in many L8 pixels low- and high-density 
grasslands are mixed, and forest mixed pixels may occur. 

In the temporal change analysis FVC maps derived from S2 and PS 
imagery showed coherent patterns to RGB visualization and accurately 
described grassland recovery after soil levelling and sowing for ski runs 
preparation (Fig. 6). The FVC maps derived from L8 overestimated the 
grassland cover at the beginning of the season compared to RGB visu-
alization and to maps derived from S2 and PS imageries. 

4. Discussion 

4.1. Spectral signatures, VIs and their relationship with FVC 

Soil and plant spectral signature identification and discrimination 
may not be straightforward using raw spectral band reflectances, but VIs 
may accentuate the spectral distinctness. The understanding of soil and 
plant spectral features is fundamental for FVC prediction, but there is 
not always a clear linear relationship between reflectances and FVC on 
the whole FVC gradient. While in vegetated plots FVC seems to play a 
major role, the spectral signature of bare plots is much more variable 
and has been attributed to the combined effect of their origin, parental 
material, structure, mineralogy, water content and organic matter con-
tent (Fabre et al., 2015; Lausch et al., 2019; Mulder et al., 2011; Wilson 
et al., 2017; Xu et al., 2020). In our case study, we observed that the 
spectral signature changes along the FVC gradient following specific 
patterns. In the first stages of the revegetation process the high reflec-
tance value of bare soils in the visible and NIR wavelength regions 
decrease, probably due to plant shadowing effect and plant spectral 
signature, and partly due to the increase of soil organic matter content 
and soil water-holding capacity (Bartholomeus et al., 2008; Fabre et al., 
2015). In the later stages of the revegetation plants spectral signature 
plays a major role and soils diversity is almost hidden. At high FVC 
levels, reflectances in the blue (450 nm) and red (670 nm) regions 
further strongly decrease due to high plant chlorophyll absorption 
resulting in higher reflectances than in low covered areas (Govender 
et al., 2009). 

Since raw bands values do not always allow spectral distinctness, 
researchers identified several band differences and ratios that were 
found to accentuate spectral distinctness and developed VIs based on 
these findings (Xue and Su, 2017). One common observation is that the 
difference between NIR and red reflectance for soil is much less than for 
live vegetation (Huete, 1988; Rouse et al., 1974). In our case study VIs 
based on the difference between NIR and red wavelength regions (EVI, 
NDVI, MSAVI, RVI, SAVI, WDRVI) confirmed their high correlation to 
FVC and their robustness in the correct identification of bare soils, as 

Table 2 
Accuracy (R2) of Fractional Response Models. The best model for each imagery is 
highlighted in green.  

Index Spectral region of interest Landsat-8 Sentinel-2 PlanetScope 

EVI NIR and Red included  0.585  0.911  0.881 
NDVI  0.556  0.878  0.844 
MSAVI  0.558  0.893  0.875 
RVI  0.506  0.839  0.822 
SAVI  0.589  0.896  0.881 
WDRVI  0.536  0.840  0.839 
GNDVI Green included  0.564  0.794  0.823 
NDGI  0.516  0.864  0.813 
VARI  0.517  0.870  0.821 
GVMI SWIR, NIR  0.606  0.869  – 
NBR  0.605  0.819  – 
NDII  –  0.902  – 
NDMI  0.659  –  – 
NDRE1 Red-Edge included  –  0.851  – 
PSRI  –  0.895  0.805 
RENDVI  –  0.823  0.893 
RECI  –  0.821  0.895 
RESI  –  0.852  –  
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reported in previous literature (Chen et al., 2016; Jia et al., 2017; Kim 
et al., 2020; Mao et al., 2022). EVI was selected as the best performing 
index for S2 imagery. VARI and NDGI, that are based on the visible 
spectral domain, were used just twice for FVC estimation (Jiménez- 
Muñoz et al., 2009; Zhou et al., 2014) and in our case study showed a 
strong relationship with FVC (R2 = 0.864 for NDGI, and 0.870 for VARI 
using S2 imagery). The good performance of these indices is promising 
since the visible domain is the most common wavelength region and 
may benefit from future further improvements of spatial and temporal 
resolution (Dubovik et al., 2021; Garzaniti et al., 2021). The red-edge 
spectral bands are available only for S2 and PS imagery and the 
derived indices tested (NDRE1, PSRI, RENDVI, RECI and RESI) have 
been indicated as promising by previous literature (Gao et al., 2020; 
Gitelson, 2013; Liu et al., 2007). In our case study these indices showed 
very good performances. Even though they tend to saturate in very 

dense grasslands, we obtained high accuracies and RECI was selected as 
the best performing index for PS imagery. Indices based on SWIR and 
NIR wavelength regions (GVMI, NBR, NDII, NDMI) are typically used for 
the analysis of vegetation moisture content, but NDII was found to be 
strictly correlated to FVC as it outperformed other indices in a mowing 
detection algorithm (Andreatta et al., 2022). In our case study, however, 
only using L8 imagery the relationship between NDMI and FVC resulted 
in the highest R2, but the model showed heteroscedasticity in the re-
siduals (Fig. 4) and performed badly at the spatial change analysis 
(Fig. 5, see subsection 4.2 for discussion). 

The observed heteroscedasticity of L8 model residuals is caused by 
high residual standard deviation for FVC predicted values in the mid- 
range. Three plots which showed very high positive residuals (plot 18, 
32 and 4) have high reference FVC, but they are contiguous to areas with 
very low vegetation cover. The mixed spectral signature of the pixel in 

Fig. 4. Reference FVC values plotted against values estimated using selected prediction models derived from Landsat-8, Sentinel-2 and PlanetScope imagery and 
against models’ residuals. 
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which these plots are located results in an estimated FVC in the mid- 
range. The opposite happens for plots 36, 37, 39, 40 and 41 which 
show large negative residuals, as the plots are scarcely vegetated, but 
inside their pixels there are areas covered by bushes and small trees. The 
mixed spectral signature also in this case results in an estimated FVC in 
the mid-range, but in large negative residuals. The absence of large re-
siduals for low and high estimated FVC may be explained: their NDMI 
values are coherent with values attributed to plots located in pure pixels. 
On the contrary, NDMI values in the mid-range in some cases result as an 
average of high and low FVC areas inside the pixels. The absence of any 
significant relationship between residuals of L8 model and variability of 
FVC across subplots of each plot can be related to L8 imagery resolution: 
even though some L8 pixels (30 m × 30 m) included heterogeneous 
vegetations (high model residuals), the plots used to describe them in 
the field (10 m × 10 m) were vegetationally homogeneous (low standard 
deviation of FVC across subplot). 

In our case study the addition of a second VI to the FVC prediction 

model did not increase the accuracy (increase in R2 < 0.01) and was 
therefore not applied. The addition of several indices to FVC prediction 
models is not common, but has been explored, for example by 
Guerschman et al. (2009). 

4.2. Model validation 

Cross validated statistics and spatiotemporal change analysis of FVC 
assessed the good generalization capability of the selected S2 and PS 
models but raised some concerns regarding the L8 model. Cross vali-
dated statistics were just slightly lower than accuracy metrics obtained 
on the whole calibration dataset (Table S2), and the estimated FVC 
derived from S2 and PS imagery maps and RGB visualization showed 
coherent spatial patterns. Two factors related to the spatial resolution of 
the L8 imagery probably affected the L8 model reliability. Firstly, the 
calibration plot size (10 m × 10 m) was not sufficient to describe the 
vegetation of the whole L8 pixel, so a not representative reference FVC is 

Fig. 5. FVC spatial change analysis. RGB imagery, estimated FVC map and estimated FVC map detail obtained using the best prediction model based on L8, S2, and 
PS imagery. 
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assigned to mixed pixels. The L8 model is therefore trained with 
misleading data, resulting in a heteroscedastic distribution of the re-
siduals, in erroneous prediction of the bare soil areas in the west and 
north areas of the study site (Fig. 5) and in an overestimation of the 
frequency of FVC values in the mid-range (Fig. 4). Secondly, in our study 

site FVC changes at a very fine spatial scale, so that the coarser spatial 
resolution of L8 imagery (30 m) is not sufficient at describing it, and 
even if 30 m × 30 m reference FVC was available, locally extreme FVC 
would be averaged at pixel scale. While L8 model performance was not 
satisfying, as already discussed, S2 and PS imagery provided coherent 

Fig. 6. FVC temporal change analysis. RGB visualization (PS imagery) and estimated FVC map computed using best PS, S2 and L8 prediction models for 4 consequent 
clear-sky images of grasslands recovering after soil levelling and sowing for ski runs preparation. 
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results and especially PS imagery derived FVC maps provided a much 
finer description of FVC distribution in space. 

The temporal change analysis was used to assess the reliability of the 
selected models when applied on different images and confirmed their 
robustness. 

5. Conclusions 

In this study we assessed that S2 and PS imagery can successfully be 
used to estimate grassland FVC in areas where it changes at a very fine 
scale, thanks to their high spatial resolution and to the availability of the 
red-edge wavelength region. Previously available imagery at medium to 
low spatial and temporal resolution (e.g. L8) may still be interesting for 
analysis requiring long time-series, since long-term FVC data is a useful 
indicator of land degradation and recovery processes, especially for vast 
agricultural and natural grasslands. However, for local hotspots of 
degradation and recovery, high-resolution FVC estimated from S2 and 
PS imagery would be useful to examine the spatial and temporal patterns 
patches better than the mid- or coarse-resolution satellite data. The 
selected models should be carefully applied to areas different from the 
study site since soil reflectance depends on multiple factors and signif-
icantly affects the pixel spectral signature in areas with low FVC. 

CRediT authorship contribution statement 

Davide Andreatta: Conceptualization, Formal analysis, Investiga-
tion, Software, Writing – original draft, Writing – review & editing. 
Damiano Gianelle: Conceptualization, Resources, Funding acquisition, 
Writing – review & editing, Supervision. Michele Scotton: Conceptu-
alization, Resources, Funding acquisition, Writing – review & editing, 
Supervision. Michele Dalponte: Conceptualization, Software, Writing – 
review & editing, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Field fractional vegetation cover data and location are provided in 
KML format as supplementary materials, imageries can be accessed 
through the Planet website (https://www.planet.com) and through the 
Earth Engine Data Catalog (https://developers.google. 
com/earth-engine/datasets). 

Acknowledgements 

The authors would like to thank Planet Labs, Inc. for providing access 
to their daily imagery through the education and research program. This 
work was funded by the Highlander project co-financed by the Con-
necting European Facility Programme of the European Union Grant 
agreement n◦ INEA/CEF/ICT/A2018/1815462. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2022.109102. These data include Google maps 
of the most important areas described in this article. 

References 

Andreatta, D., Gianelle, D., Scotton, M., Vescovo, L., Dalponte, M., 2022. Detection of 
grassland mowing frequency using time series of vegetation indices from Sentinel-2 
imagery. GIScience Remote Sens. 59 (1), 481–500. https://doi.org/10.1080/ 
15481603.2022.2036055. 

Atzberger, C., 2004. Object-based retrieval of biophysical canopy variables using 
artificial neural nets and radiative transfer models. Remote Sens. Environ. 93 (1–2), 
53–67. https://doi.org/10.1016/J.RSE.2004.06.016. 

Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., 
Weiss, M., Samain, O., Roujean, J.L., Leroy, M., 2007. LAI, fAPAR and fCover 
CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 110 
(3), 275–286. https://doi.org/10.1016/j.rse.2007.02.018. 

Bartholomeus, H.M., Schaepman, M.E., Kooistra, L., Stevens, A., Hoogmoed, W.B., 
Spaargaren, O.S.P., 2008. Spectral reflectance based indices for soil organic carbon 
quantification. Geoderma 145 (1–2), 28–36. https://doi.org/10.1016/j. 
geoderma.2008.01.010. 

Booth, D.T., Cox, S.E., Berryman, R.D., 2006. Point sampling digital imagery with 
‘Samplepoint’. Environ. Monit. Assess. 123 (1–3), 97–108. https://doi.org/10.1007/ 
s10661-005-9164-7. 

Booth, T.D., Cox, S.E., Fifield, C., Phillips, M., Williamson, N., Booth, D.T., Cox, S.E., 
Fifield, C., Phillips, M., Willlamson, N., 2005. Image analysis compared with other 
methods for measuring ground cover. Arid Land Res. Manage. 19 (2), 91–100. 
https://doi.org/10.1080/15324980590916486. 

Ceccato, P., Gobron, N., Flasse, S., Pinty, B., Tarantola, S., 2002. Designing a spectral 
index to estimate vegetation water content from remote sensing data: Part 1: 
Theoretical approach. Remote Sens. Environ. 82 (2-3), 188–197. 

Chen, J., Yi, S., Qin, Y., Wang, X., 2016. Improving estimates of fractional vegetation 
cover based on UAV in alpine grassland on the Qinghai-Tibetan Plateau. Int. J. 
Remote Sens. 37 (8), 1922–1936. https://doi.org/10.1080/ 
01431161.2016.1165884. 

Courel, M.-F., Chamard, P., Guenegou, M., Lerhun, J., Levasseur, J., Togola, M., 1991. 
Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation 
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challenges in satellite remote sensing. Front. Remote Sens. 2, 1. https://doi.org/ 
10.3389/frsen.2021.619818. 

Fabre, S., Briottet, X., Lesaignoux, A., 2015. Estimation of soil moisture content from the 
spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors 15 (2), 
3262–3281. https://doi.org/10.3390/s150203262. 

Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., Odeh, I., 2014. Quantitative 
assessment of the contributions of climate change and human activities on global 
grassland degradation. Environ. Earth Sci. 72 (11), 4273–4282. https://doi.org/ 
10.1007/S12665-014-3322-6/FIGURES/5. 

Gao, L., Wang, X., Johnson, B.A., Tian, Q., Wang, Y., Verrelst, J., Mu, X., Gu, X., 2020. 
Remote sensing algorithms for estimation of fractional vegetation cover using pure 
vegetation index values: a review. ISPRS J. Photogramm. Remote Sens. 159, 
364–377. https://doi.org/10.1016/j.isprsjprs.2019.11.018. 

García, M.J.L., Caselles, V., 1991. Mapping burns and natural reforestation using 
thematic Mapper data. Geocarto International 6 (1), 31–37. https://doi.org/ 
10.1080/10106049109354290. 

Garzaniti, N., Tekic, Z., Kukolj, D., Golkar, A., 2021. Review of technology trends in new 
space missions using a patent analytics approach. Prog. Aerosp. Sci. 125, 100727 
https://doi.org/10.1016/j.paerosci.2021.100727. 

Gitelson, A.A., 2001. Non-destructive and remote sensing techniques for estimation of 
vegetation status. Papers in Natural Resources 273. https://digitalcommons.unl.edu 
/natrespapers. 

Gitelson, A.A., 2004. Wide dynamic range vegetation index for remote quantification of 
biophysical characteristics of vegetation. J. Plant Physiol. 161 (2), 165–173. https:// 
doi.org/10.1078/0176-1617-01176. 

Gitelson, A.A., 2013. Remote estimation of crop fractional vegetation cover: the use of 
noise equivalent as an indicator of performance of vegetation indices. Int. J. Remote 
Sens. 34 (17), 6054–6066. https://doi.org/10.1080/01431161.2013.793868. 

Gitelson, A.A., Gritz †, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll 
content and spectral reflectance and algorithms for non-destructive chlorophyll 
assessment in higher plant leaves. J. Plant Physiol. 160 (3), 271–282. 

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote 
sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58 (3), 
289–298. https://doi.org/10.1016/S0034-4257(96)00072-7. 

Gitelson, A., Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using 
reflectance spectra: experiments with autumn chestnut and maple leaves. 
J. Photochem. Photobiol., B 22 (3), 247–252. https://doi.org/10.1016/1011-1344 
(93)06963-4. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Govender, M., Chetty, K., Bulcock, H., 2009. A review of hyperspectral remote sensing 
and its application in vegetation and water resource studies. Water SA 33 (2), 
145–151. https://doi.org/10.4314/wsa.v33i2.49049. 

Graetz, R.D., Pech, R.P., Davis, A.W., 1988. The assessment and monitoring of sparsely 
vegetated rangelands using calibrated Landsat data. Int. J. Remote Sens. 9 (7), 
1201–1222. https://doi.org/10.1080/01431168808954929. 

Guerschman, J.P., Hill, M.J., Renzullo, L.J., Barrett, D.J., Marks, A.S., Botha, E.J., 2009. 
Estimating fractional cover of photosynthetic vegetation, non-photosynthetic 
vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 
Hyperion and MODIS sensors. Remote Sens. Environ. 113 (5), 928–945. https://doi. 
org/10.1016/J.RSE.2009.01.006. 

D. Andreatta et al.                                                                                                                                                                                                                              

https://www.planet.com
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://doi.org/10.1016/j.ecolind.2022.109102
https://doi.org/10.1016/j.ecolind.2022.109102
https://doi.org/10.1080/15481603.2022.2036055
https://doi.org/10.1080/15481603.2022.2036055
https://doi.org/10.1016/J.RSE.2004.06.016
https://doi.org/10.1016/j.rse.2007.02.018
https://doi.org/10.1016/j.geoderma.2008.01.010
https://doi.org/10.1016/j.geoderma.2008.01.010
https://doi.org/10.1007/s10661-005-9164-7
https://doi.org/10.1007/s10661-005-9164-7
https://doi.org/10.1080/15324980590916486
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0030
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0030
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0030
https://doi.org/10.1080/01431161.2016.1165884
https://doi.org/10.1080/01431161.2016.1165884
https://hal.archives-ouvertes.fr/hal-00327879
https://hal.archives-ouvertes.fr/hal-00327879
https://doi.org/10.1016/j.rse.2007.12.003
https://doi.org/10.1016/j.rse.2007.12.003
https://doi.org/10.3389/frsen.2021.619818
https://doi.org/10.3389/frsen.2021.619818
https://doi.org/10.3390/s150203262
https://doi.org/10.1007/S12665-014-3322-6/FIGURES/5
https://doi.org/10.1007/S12665-014-3322-6/FIGURES/5
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://doi.org/10.1080/10106049109354290
https://doi.org/10.1080/10106049109354290
https://doi.org/10.1016/j.paerosci.2021.100727
https://digitalcommons.unl.edu/natrespapers
https://digitalcommons.unl.edu/natrespapers
https://doi.org/10.1078/0176-1617-01176
https://doi.org/10.1078/0176-1617-01176
https://doi.org/10.1080/01431161.2013.793868
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0095
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0095
http://refhub.elsevier.com/S1470-160X(22)00574-X/h0095
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.4314/wsa.v33i2.49049
https://doi.org/10.1080/01431168808954929
https://doi.org/10.1016/J.RSE.2009.01.006
https://doi.org/10.1016/J.RSE.2009.01.006


Ecological Indicators 141 (2022) 109102

11

Hardisky, M., Klemas, V., Smart, M., 1983. The influence of soil salinity, growth form, 
and leaf moisture on the spectral radiance of Spartina alterniflora canopies. 
Photogramm. Eng. Remote Sens. 49, 77–83. 

Hijmans, R.J., 2021. raster: Geographic Data Analysis and Modeling. https://cran.r- 
project.org/package=raster. 

Huete, A., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (3), 
295–309. https://doi.org/10.1016/0034-4257(88)90106-X. 

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., 2002. Overview of the 
radiometric and biophysical performance of the MODIS vegetation indices. Remote 
Sens. Environ. 83 (1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096- 
2. 
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SUPPLEMENTARY MATERIALS 1 

Of the article ECOLIND-23053 “Estimating grassland vegetation cover with remote sensing: a comparison 2 

between Landsat-8, Sentinel-2 and PlanetScope imagery” 3 

  4 



 5 

Figure S1. Grassland subplot in RGB visualization and classified subplot (vegetation in green, other in white).  6 



 7 

Figure S2. Model development workflow. 8 

  9 



Table S1. Product specification of the analysed images 10 

Imagery 
Product 

Level 
Product 

available from 
Acquisition 

date 

Band specifications 
Code (name) ~ central wavelength (spat. res.) 

Landsat-8 2 April 2013 
13/06/2021 

 

SR_B1 (coastal aerosol) ~ 443 nm (30 m) 
SR_B2 (blue) ~ 482 nm (30 m) 

SR_B3 (green) ~ 561.5 nm (30 m) 
SR_B4 (red) ~ 654.5 nm (30 m) 

SR_B5 (near infrared) ~ 865 nm (30 m) 
SR_B6 (shortwave infrared 1) ~ 1608.5 nm (30 m) 
SR_B7 (shortwave infrared 2) ~ 2200.5 nm (30 m) 

Sentinel-2 2A March 2018 27/06/2021 

B1 (aerosols) ~ 443.1 nm (60 m) 
B2 (blue) ~ 494.4 nm (10 m) 

B3 (green) ~ 559.5 nm (10 m) 
B4 (red) ~ 664.8 nm (10 m) 

B5 (red Edge 1) ~ 703.9 nm (20 m) 
B6 (red Edge 2) ~ 739.7 nm (20 m) 
B7 (red Edge 3) ~ 781.1 nm (20 m) 

B8 (near infrared) ~ 834.1 nm (10 m) 
B8A (Red Edge 4) ~ 864.4 nm (20 m) 
B9 (water vapor) ~ 944.1 nm (60 m) 

B11 (shortwave infrared 1) ~ 1612.1 nm (20 m) 
B12 (shortwave infrared 2) ~ 2194.1 nm.  (20 m) 

PlanetScope 

3A 
(PSB.SD 

instrume
nt) 

March 2020 23/06/2021 

b1 (Coastal Blue) ~ 441.5 nm (3.125) 
b2 (Blue) ~ 490 nm (3.125) 

b3 (Green I) ~ 531 nm (3.125) 
b4 (Green II) ~ 565 nm (3.125) 
b5 (Yellow) ~ 610 nm (3.125) 

b6 (Red) ~ 665 nm (3.125) 
b7 (Red-Edge) ~ 705 nm (3.125) 

b8 (NIR) ~ 865 nm (3.125) 

  11 
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