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Abstract  Several approaches have been developed 
over the years for the modelling of the tyre behav-
iour in vehicle-dynamic applications. The so-called 
‘rigid-ring’ models are among the classics for the 
modelling of the belt dynamics. Although there are 
several works dealing with the vibrating proper-
ties of tyres, the problem of the identification of the 
related rigid-ring model parameters has not been 
described other than qualitatively or partially. The 
aim of this work is thus to fill this gap and to devise 
a procedure for the experimental characterisation of 
such parameters, namely the frequency and damp-
ing of the in-plane and out-of-plane belt vibration 
modes as well as the associated masses and inertias. 
An experimental modal analysis (EMA) approach is 
employed, which involves an instrumented hammer 
combined with three-axial accelerometers roving on 
16 stations equally spaced along the tyre circumfer-
ence. The method is numerically demonstrated on 
the finite-element models of a motorcycle tyre and 
a car tyre. The approach is also experimentally vali-
dated on a real tyre. The rigid-ring vibration modes 

of the motorcycle tyre are in the range 70–220  Hz, 
while those of the car tyre are in the range 51–85 Hz. 
The ratios of the mass/inertia of the rigid ring to the 
mass/inertia of the tyre are in the range 40–87% and 
68–74% for the motorcycle and car respectively.

Keywords  Tyre · EMA · Rigid-ring · MF-swift · 
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1  Introduction

Tyre models which provides forces and torques as 
a function of slips and loads are commonly used in 
vehicle dynamics applications [1–8]. Tyre models 
may be classified in three main levels of complexity: 
basic, neglecting the belt inertia [9–12], suitable for 
simulations with frequencies up to approximatively 
15  Hz and wavelength greater than approximatively 
1.5  m, intermediate, considering the belt as a rigid 
ring elastically mounted on the rim [13–15], suit-
able for simulations up to 60–100 Hz and wavelength 
greater than 0.1-0.2  m, and advanced, allowing belt 
deflection [16–19], suitable for higher frequencies 
and shorter wavelengths. Finally, there are also mod-
els dedicated to the investigation of specific issues, 
such as tyre-temperature distribution [20], tyre wear 
[21], contact pressure [22, 23], impulsive loading 
[24], hydroplaning [25, 26].

This works focuses on intermediate models, and 
in particular on the belt vibration modes that need 
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be identified to populate such rigid-ring models. 
The belt, assumed rigid, has six degrees of freedom 
(DOF) with respect to the rim. The corresponding 
vibration modes are named longitudinal, vertical, tor-
sional (or wind-up), lateral, camber and yaw. Under 
the assumptions that the tyre is axial-symmetric and 
lifted from the ground, the former three modes are 
in-plane and the latter three modes are out-of-plane. 
In addition, the longitudinal and vertical modes have 
the same frequency, as well as the camber and yaw 
modes. Therefore, there are four main modes that 
need be identified, two of which with multiplic-
ity two. Of course the characteristics of such modes 
may change with temperature, inflation pressure, etc. 
However, most of the procedures proposed for their 
analysis can potentially be applied with the tyre in 
different conditions.

A number of works dealing with the vibration 
modes of tyres are documented in the literature. The 
most relevant to this work are those dealing with 
vehicle-dynamic applications [1–19], rather than 
those focusing on stress and fatigue estimations.

An example of the typical in-plane modes of car 
tyres is reported in [5], the first of which consists of 
a vertical oscillation of the belt (without distortion)—
no details are given regarding the boundary condi-
tions considered. The experimental modal analysis 
of a suspended passenger-car tyres under radial and 
tangential excitations is discussed in [27]. It is found 
that the natural frequencies increases with the infla-
tion pressure, while the damping decreases. In [28] a 
flexible-ring model is presented, which is then sim-
plified into a rigid-ring model. The focus is on the 
in-plane dynamics. The modal testing of a fixed tyre 
and a free tyre, both suspended from the ground, 
is also included, finding a torsional and a vertical 
modes with minor belt distortion—the frequencies 
are higher in the free condition. The application of 
ring models for the simulation of the tyre dynamics 
on uneven roads is considered in [15]. Modal tests are 
performed on the tyre loaded on the ground and with 
a pinned axle. The free tyre vs. tyre standing on the 
road conditions are further compared in [29], with a 
review of the past relevant literature. Impulsive test-
ing on the non-rotating tyre are applied, with sensors 
being mounted on the belt and rim to monitor the tan-
gential and radial directions. The rigid-ring model is 
extended to include also the out-of-plane dynamics 
in [30]. The experimental validation includes modal 

tests of a car tyre loaded against the ground with the 
axle pinned. The tyre modes are further discussed in 
[2], by means of a numerical tyre model. In unloaded 
condition, with pinned axle, the in-plane modes 
are the vertical/longitudinal (which are coincident) 
modes and the torsional mode, while the out-of-plane 
modes are the lateral and yaw/camber (which are 
coincident). In loaded conditions (assuming contact 
with a drum), and pinned axle, neither the vertical/
longitudinal nor the yaw/camber modes are coinci-
dent anymore.

A time domain approach to identify the modal 
parameters of the in-plane ring-model of car tyres 
is presented in [31]: the inertia are identified using 
a torsional pendulum, while the natural frequencies 
and damping are obtained from the time histories 
of the longitudinal and vertical hub forces during a 
passing-over-cleat test, with the hub held fixed. The 
time-domain procedure can also be employed for 
out-of-plane tests, while passing-over-cleat under an 
angle [32]. Excitation of a loaded car tyre with shaker 
is carried out in [33], the focus being again on in-
plane modes for NVH investigations. Both impulsive 
and shaker excitations are considered in [34], with a 
discussion on the common issues faced when testing 
tyres. In [35] the in-plane modes of a truck tyre are 
investigated using a shaker on a seismic table, with a 
focus on the damping identification. It is shown that 
the proportional damping is not a good assumption at 
high frequencies.

In [36] an experimental modal analysis on two 
scooter and two motorcycle tyres is carried out at dif-
ferent inflation pressures, finding that the first out-of-
plane mode is the camber mode, followed by the lat-
eral mode – of course the frequencies are rising with 
the inflation pressure. An impulsive modal approach 
was employed. The rim of the tyre was fixed to a stiff 
column, and a roving-hammer technique applied, 
the excitation being given to the belt in the lateral 
direction. The tyre is unloaded. The investigation 
is extended in [37] to include two more motorcycle 
tyres: the results and frequency ranges are confirmed. 
The effect of rolling speed on the in-plane modes of 
car tyres is considered in [38], where also the effect 
of inflation pressure and vertical load is discussed.

Finally, in [39] guidelines are given for the extrac-
tion of the frequencies of the lower-order vibra-
tion modes of tyres with a minimal set-up, con-
sisting of one or two locations for the impacts and 



983Meccanica (2023) 58:981–1001	

1 3
Vol.: (0123456789)

accelerometers. The tyre is assumed rigidly supported 
at the spindle. Two loading conditions are consid-
ered: free tyre, i.e. with the tread not in contact with 
the ground, and loaded tyre, i.e. with the tread com-
pressed against a surface to give the desired load. 
The mode type (e.g. lateral vs. yaw/camber) is iden-
tified from the inspection of the frequency response 
functions (FRF), e.g. position of the main peaks and 
related phases. The lateral modes provided for illus-
tration purposes are at 35 and 52 Hz, the yaw/camber 
mode at 53 and 65 Hz, the torsion modes at 42 and 
83 Hz, while the radial modes are at 66 and 90 Hz.

The perusal of the literature shows that most of 
the works published are focused on the in-plane 
vibration modes of car tyres, while the works 
related to out-of-plane modes are limited. The focus 
is most of the time on the frequencies and (some-
times) damping of the modes, while the masses and 
inertias associated to the modes are often not dis-
cussed. A number of different constraint conditions 
have been employed, e.g. free vs. fixed and loaded 
vs. unloaded, as well as different excitation meth-
ods, e.g. impulse vs. shaker. However, in the case of 
application of a rigid-ring model (see Fig.  1), e.g. 
the MF-Swift [14], the user is requested to specify 
the frequencies, damping and inertia of the belt for 
a tyre not in contact with the ground and with fixed 
rim [2, 13]. This is precisely the focus of this work. 
In general, it is expected that the mass and inertia 

associated to the belt are smaller than the actual 
mass and inertia of the belt, since the portion of belt 
in contact with the rim cannot move with respect to 
the rim and thus is not involved in the vibration.

This work has several objectives. The first is 
to devise a procedure for the identification of the 
dynamic parameters of rigid-ring tyre models (to be 
used in vehicle-dynamic applications), that can be 
experimentally carried out using general-purpose 
equipment for vibration analysis (Sect.  2). Such 
procedure can be applied both for the identifica-
tion of the in-plane and out-of-plane dynamics, thus 
departing from most of the literature that focuses on 
in-plane dynamics only. The second is to demon-
strate the proposed procedure on a ideal (numerical) 
environment, in order to clarify the application of 
the method and support the subsequent experimen-
tal findings on the real tyre (Sect. 3). Both a motor-
cycle tyre and a car tyre are considered, to demon-
strate the generality of the approach. The third is 
to demonstrate the proposed procedure experimen-
tally, in order to show that the method works in a 
real environment (Sect.  4). The fourth objective is 
to show the typical pattern of the tyre in-plane and 
out-of-plane FRF and to draw remarks related to the 
dynamic response of the finite-element tyre model, 
the real tyre and the rigid-ring tyre model, and to 
the assumptions enforced when employing rigid-
ring tyre models (Sect. 5).

Fig. 1   Degrees of freedom 
of the rigid-ring (dark grey) 
with respect to the rim 
(light grey): longitudinal 
(top left), vertical (top 
centre), torsion (top right), 
lateral (bottom left), camber 
(bottom centre) and yaw 
(bottom right)
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2 � Method

The objective is the computation of the FRF of a tyre, 
which are then decomposed into modal components, 
with the aim of extracting the associated frequencies, 
damping ratios and inertias. The output of the FRF 
are the three-dimensional accelerations of a number 
of stations N along the external (rolling) circumfer-
ence of the tyre belt. The inputs of the FRF are the 
impact forces in the tangential, radial and lateral 
directions. The underlining assumption, which is also 
the assumption of the rigid-ring models, is that the 
lower-order modes do not involve significantly the 
belt deflection, and that each mode involves signifi-
cantly only one DOF of the rigid ring model, e.g. the 
lateral mode can be considered a pure lateral transla-
tion, with negligible contributions from the other five 
DOF of the ring.

The FRF of a M degree-of-freedom (MDOF) sys-
tem can be written as the summation of the FRF of 
the single degree-of-freedom (SDOF) systems. The 
receptance (displacement over force) FRF �jk repre-
senting the displacement at the DOF j when exciting 
the DOF k is given by [40, 41]

where i =
√
−1 , � is the frequency, sr is the rth 

eigenvalue, � jr and �kr are the components of the rth 
mode-shape eigenvector � r at DOF j and k respec-
tively, while ar is the modal constant and ∗ represents 
the complex conjugate. The complex formulation for 
generic non-classical damping with conjugate pairs of 
eigenvectors and eigenvalues is adopted.

The modal model is obtained from the fit ting of 
the 3 × N experimental FRF (x, y and z directions for 
each of the N stations where the sensors are placed), 
to obtain sr , � r and ar of (1). Different fitting tech-
niques can be applied to extract the modal model. In 
this work the ‘PolyMax’ function within the Simcenter 
Testlab [42] is used, which is based on polyreference 
least-squares complex frequency-domain modal iden-
tification method. At this stage, the infinite dimension 
real system is fitted with a M-dimension model (in 
this work M is the number of relevant modes in the 
range 0–300 Hz). The choice of M is such that the dif-
ference between the experimentally measured FRF 
and the FRF obtained through (1) is minimum in the 

(1)�jk(�) =

M∑

r=1

[
� jr�kr

ar(i� − sr)
+
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∗
jr
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∗
kr
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frequency range of interest. It goes without saying that 
it is straightforward to transform the measured iner-
tance (acceleration over force) into the receptance used 
for the calculations, −�2 being the conversion factor.

The following procedure is carried out in order to 
extract the inertias associated to each of the six rigid-
ring vibration modes: (i) projection of synthesized �r

jk
 

to the DOF of the rigid ring (lateral, longitudinal, verti-
cal, camber, yaw, spin); (ii) computation of the average 
receptance �̄r

jk
 , after exclusion of the outliers (if any); 

(iii) fitting of �̄r
jk

 with a SDOF model to find the related 
mass, the frequency and damping ratios being already 
known from the modal model.

The projection on the translational DOF—which is 
necessary to extract the lateral, longitudinal and vertical 
modes—is immediate, and consists in taking the sig-
nals in the proper direction (lateral, longitudinal, ver-
tical). The projection of the rotational DOF—which is 
necessary to extract the camber, yaw and spin modes—
is obtained by transformation of the displacement/force 
receptance in a rotation/torque receptance as follows:

where dj and dk are the distances of the jth and kth 
node from the rotation axis of the rigid-ring. Such 
axis is obtained linking the structural nodes of yaw 
and camber modes, while it is assumed to coin-
cide the hub axis for the torsional mode. A SDOF 
receptance is then obtained for each DOF of the rigid 
ring by computing the complex mean of the projected 
receptances. Finally, the magnitude of the obtained 
receptance may be rewritten with the classic

where mr is a mass or a moment of inertia, depend-
ing on the DOF involved, while �r = |sr| and 
�r = −Re(sr)∕�r are the natural frequency and damp-
ing ratio of the rth mode. The only unknown is thus 
mr , which is can be easily obtained.
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3 � Numerical test

The procedure described in Sect.  2 is preliminary 
tested on numerical tyre models, in order to have a 
perfectly axial-symmetric and noise-free system. 
The rationale is to verify that the procedure works on 
an ideal model and environment, before moving to 
experiments. Both a motorcycle tyre model and car 
tyre model are considered, in order to test the proce-
dure on two quite different datasets. Both models are 
developed within Lupos [43, 44].

The finite-element model can be written in the 
standard form

where M,C,K are the mass, damping and stiffness 
matrix, while x is the vector of coordinates DOFs). 
Proportional damping, which is a special case of clas-
sical damping [45–47], is assumed and tuned to pro-
vide damping ratios consistent with those typical of 
tyres. The damping matrix is given by

where, in this case, c1 = 30  rad/s and c2 = 0  s/rad. 
The eigenproblem related to (4) provides the vibra-
tion modes, that are real as a consequence of the clas-
sical damping assumption.

The application of the identification procedure of 
Sect. 2 is carried out by the FRF obtained at the 16 
equally spaced points along the circumference of the 
tyre; see Fig.  2. In general, the selected location of 
sensors should allow to properly monitor the shape of 
the vibration modes of interest. When it comes to the 
rigid-ring modes of the tyre, the selection is straight-
forward (e.g. the set employed in this work). In more 
complex scenarios, automatic selection methods such 
like MoGeSec [48] can be employed.

The FRFs are numerically obtained from the 
numerical mode-shapes through (1). The FRFs from 
the lateral force excitation (direction y) on the node 1 
of Fig. 2 and the lateral motion of the 16 stations are 
used to extract the lateral modes and the yaw/camber 
modes. The FRFs from the vertical force excitation 
(direction z) on the node 1 of Fig. 2 and the vertical 
motion of the 16 stations are used to extract the verti-
cal mode. The FRF from the tangential force excita-
tion (direction x) on the node 1 of Fig. 2 and the tan-
gential motion of the 16 stations are used to extract 

(4)Mẍ + Cẋ + Kx = 0,

(5)C = c1M + c2K,

the spin mode. Each set of FRF is used as an experi-
mentally measured FRF. Therefore, they are initially 
fitted to obtain the modal model, i.e. sr,� r, ar.

The quality of the fitting is monitored using the 
correlation � and error � between each pair of experi-
mental FRF and modal model FRF. The correlation is 
defined as the normalized complex product of the fit-
ted modal model FRF ( �jk(�) ) and the experimental 
FRF ( �e

jk
(�))

in the frequency range [�1,�2] , while the error is 
defined as the least-square difference normalized to 
the experimental value

In this work f1 = �1∕2� = 15  Hz and 
f2 = �2∕2� = 300 Hz, while ∗ represents the conju-
gate. Next, the FRF are projected on the rigid-ring 
DOF and averaged. Finally, the mass mr associated 
to each SDOF model is computed. The intermedi-
ate steps of the procedure will be detailed for the 
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Fig. 2   Finite element model of the tyre with the 16 excitation/
responses stations
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experimental tests, to avoid repetition and to keep the 
presentation concise.

3.1 � Motorcycle tyre

The model consists of 170 one-dimensional beam and 
rod elements representing the wheel spokes and bead 
wires with additional 3360 one-dimensional lumped 
elastic and rigid connectors, 3040 two-dimensional 
four node shell element with different thickness and 
material for the wheel rim, hub, tyre sidewall and tyre 
tread, and 2800 three-dimensional hexahedral ele-
ments to model the inflated air; Fig. 2. Such numeri-
cal model is considered sufficiently representative for 
modelling the lower-order modes of a 16 inch 180/65 
motorcycle tyre. The fixed constraint is reproduced by 
fixing the rim nodes to the ground. The total number 
of DOFs is 15,855. The mass of the tyre is 10.96 kg, 
the yaw/camber moment of inertia is 0.52 kg m2 , the 
spin moment of inertia is 0.95 kg m2.

The shapes of the most relevant modes for this 
work are shown in Fig. 3, with the magnitude of the 
displacements increasing with colors from blue to red. 
The lateral mode has a frequency of 71  Hz (damp-
ing 3.4%) and is shown in Fig.  3a: the portion of 
belt close to the rim does not move (blue), while the 
portion of the belt along the external circumference 
moves almost like a rigid-ring in the lateral direc-
tion (red). The camber/yaw mode has a frequency of 
99.4 Hz (damping 2.4%) and is shown in Fig. 3b. The 
rotation axis passes through the blue points (i.e. has 
direction lower-left to upper-right): the points of the 
belt around that axis do not move (blue), while those 
far from the axis have the maximum displacement 
(red). There is another mode at the same frequency 
(the tyre is perfectly axial-symmetric) with the rota-
tion axis perpendicular to the one depicted in Fig. 3b. 
Obviously, all rotation axes can be obtained by the 
combination of these two modes. The torsion/spin 
mode has a frequency of 234.3  Hz (damping 1.0%) 
and is shown in Fig. 3c. The portion of the belt close 
to the rim does not move (blue), while portion around 
the rolling circumference has maximum displacement 
(red). Even in this case, belt distortions on the rolling 
portion of the belt are minimum, which moved like a 
rigid-ring Finally, a vertical mode at 217.2 Hz (damp-
ing 1.1%) is shown in Fig. 3d. The portion of the belt 
on top (and bottom—not visible in the figure) have 
the maximum displacement (red), while the portions 

on the sides have smaller displacement (green). 
There is another mode at the same frequency (the 
tyre is perfectly axial-symmetric): it is the longitudi-
nal mode. Vibration along each radial direction can 
be obtained by combination of these two modes. The 
finite-element model has many other (higher order) 
modes, which are not relevant in this work because 
they involve significant carcass distortion, and are 
thus not suitable to fit a rigid-ring model.

When obtaining the modal model, the minimum 
fitting correlations for lateral and tangential excita-
tions is 99.9%, while the maximum error is 0.1%. The 
fitting of the radial excitation dataset provides cor-
relations greater than 99.6% and errors smaller than 
0.4% for both radial and tangential directions, with 
the exception of the tangential directions of node 1 
and 9 (i.e. normal to the excitation), which have cor-
relations of 64% and 56% and errors of 36% and 44%, 
respectively. The identified masses and inertias are 
reported in Tab. 1, where mr is the mass/inertia that is 
associated to the rigid ring, m is the total mass/inertia 
of the belt, while the last column represents the ratio 
between the two inertia.

It is worth stressing that, even in the ideal numeri-
cal model, the mass related to the lateral direction is 
not equal to the mass associated to the vertical/longi-
tudinal direction. On the contrary, the masses associ-
ated to the vertical and longitudinal directions are the 
same because of tyre symmetry. The same reasoning 
applies to the inertias associated to the camber and 
yaw modes. When it comes to the practical imple-
mentation of the rigid-ring model, the user needs to 
decide for a single mass value, that will be assigned 
to the ring body. In addition, the difference between 
m and mr is added to the rim, so that the total mass of 
the wheel remains the same.

3.2 � Car tyre

The model consists of 128 one-dimensional rod ele-
ments representing rim welding points and bead wires 
with additional 1280 one-dimensional lumped elas-
tic and rigid connectors, 1152 two-dimensional four 
node shell element with different thickness and mate-
rial for the wheel rim, disk, tyre sidewall and tyre 
tread, and 1024 three-dimensional hexahedral ele-
ments to model the inflated air. Such numerical model 
is representative for modelling the lower-order modes 
of a 16 inch 205/55 car tyre. The fixed constraint is 
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Fig. 3   Lateral (a), yaw/camber (b), torsion/spin (c) and vertical/longitudinal (d) modes of the motorcycle tyre finite-element model

Table 1   Parameters of the 
motorcycle tyre rigid-ring 
model, extracted from the 
finite-element model

Mode f
r

�
r

m
r

m m
r
∕m

Lateral 71.0 Hz 3.36% 8.90 kg 10.96 kg 0.81
Camber/yaw 99.4 Hz 2.40% 0.45 kg m2 0.52 kg m2 0.87
Torsional/spin 234.3 Hz 1.01% 0.76 kg m2 0.95 kg m2 0.80
Vertical/longitudinal 217.2 Hz 1.09% 4.38 kg 10.96 kg 0.40
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reproduced by fixing the rim nodes to the ground. 
The total number of DOFs is 6324. The mass of the 
tyre is 8.05 kg, the yaw/camber moment of inertia is 
0.35 kg m2 , the spin moment of inertia is 0.61 kg m2.

The shapes of the most relevant modes for this 
work are shown in Fig.  4, with the magnitude of 
the displacements increasing with colors from blue 
to red. The lateral mode has a frequency of 51.4 Hz 

(damping 4.7%) and is shown in Fig.  4a: the por-
tion of the belt close to the rim does not move (blue), 
while the portion of the belt along the external cir-
cumference moves almost like a rigid-ring in the 
lateral direction (red). The camber/yaw mode has a 
frequency of 54.3 Hz (damping 4.4%) and is shown 
in Fig. 4b. The rotation axis passes through the blue 
points (i.e. has direction left to right): the points of 

Fig. 4   Lateral (a), yaw/camber (b), torsion/spin (c) and vertical/longitudinal (d) modes of the car tyre finite-element model
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the belt around that axis do not move (blue), while 
those far from the axis have the maximum displace-
ment (red). As in the motorcycle tyre, there is another 
mode at the same frequency (the tyre is perfectly 
axial-symmetric) with the rotation axis perpendicu-
lar to the one depicted in Fig. 4b. Obviously, all rota-
tion axes can be obtained by the combination of these 
two modes. The torsion/spin mode has a frequency 
of 72.8 Hz (damping 3.4%) and is shown in Fig. 4c. 
The portion of the belt close to the rim does not move 
(blue), while the portion around the rolling circumfer-
ence has maximum displacement (red). Even in this 
case, belt distortions on the rolling portion of the belt 
are minimum, which moved like a rigid-ring. Finally, 
a vertical mode at 84.8 Hz (damping 2.8%) is shown 
in Fig.  4d. The portion of the belt on top (and bot-
tom—not visible in the figure) have the maximum 
displacement (red), while the portions on the sides 
have smaller displacement (green). There is another 
mode at the same frequency (the tyre is perfectly 
axial-symmetric): it is the longitudinal mode. Vibra-
tion along each radial direction can be obtained by 
combination of these two modes. The finite-element 
model has many other (higher order) modes, which 
are not relevant in this work because they involve sig-
nificant carcass distortion, and are thus not suitable to 
fit a rigid-ring model.

When obtaining the modal model, the minimum 
fitting correlations for lateral and tangential excita-
tions is 99.9%, while the maximum error is 0.1%. 
The fitting of the radial excitation dataset provides 
correlations greater than 95% and errors smaller than 
5% for both radial and tangential directions, with the 
exception of the tangential directions of node 1 and 
9 (i.e. normal to the excitation), which have correla-
tions of 71% and 70% and errors of 29% and 28%, 
respectively. The identified masses and inertias are 
reported in Tab. 2, where mr is the mass/inertia that is 
associated to the rigid ring, m is the total mass/inertia 
of the belt, while the last column represents the ratio 
between the two inertias.

4 � Experimental test

The experimental tests are carried out on a commer-
cial motorcycle tyre, which has a mass of 10.7  kg, 
a camber/yaw moment of inertia of 0.45  kg  m2 and 
a spin moment of inertia of 0.86  kg  m2 ; see Fig.  5. 
The inertias have been obtained using a trifilar pen-
dulum [49, 50] and the mass with a standard scale. 
The impact tests are carried out with the instru-
mented hammer PCB 086C03 and tri-axial accel-
erometers PCB 356A17 (which are attached to the 
tyre with standard wax, that makes it easy mounting 
and dismounting). A small (cube with length 15 mm 
and mass 5  g) impact block [39] has been glued to 
the tyre, in order to excite the node 1 along all three 
directions (otherwise only the vertical direction can 
be excited); see Fig. 5. The rim is fixed to a concrete 
pillion, that resembles an ideal fixed constraint. A 
roving-accelerometers approach is employed, since 
the mass of the accelerometers is much smaller than 
the mass of the belt (factor 1,000 between the two) 
and that moving the impact block is not practical. 
Each impact test is repeated five times, for averag-
ing purposes. The acquisition length is 1  s (indeed 
the vibrations almost completely disappear after 
such length in the current application, and thus fur-
ther extending the interval gives no additional infor-
mation to the analysis) and the signals are sampled 
at 2048  Hz(thus assuring to potentially identify fre-
quency up to 1 kHz). A rectangular windowing with 
length 5 ms is employed on the impact force signal, 
being the length of the typical impulse applied dur-
ing the tests below such interval. No windowing was 
necessary on the acceleration signals, since the natu-
ral damping of the system is sufficient to damp the 
vibration within the acquisition period, without meas-
uring only the sensor noise at the end of the measur-
ing windows. The acquisition system consists of three 
NI-9234 modules mounted on a NI-9174 chassis.

Three excitation directions are considered, to give 
three sets of FRF. Each set is analysed separately. A 

Table 2   Parameters of the 
car tyre rigid-ring model, 
extracted from the finite-
element model

Mode f
r

�
r

m
r

m m
r
∕m

Lateral 51.4 Hz 4.7% 5.51 kg 8.05 kg 0.68
Camber/yaw 54.3 Hz 4.4% 0.26 kg m2 0.35 kg m2 0.74
Torsional/spin 72.8 Hz 3.4% 0.43 kg m2 0.61 kg m2 0.70
Vertical/longitudinal 84.8 Hz 2.8% 4.61 kg 8.05 kg 0.70
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lateral impulse (Fig. 5b top) is applied to excite pre-
dominantly the out-of-plane vibration modes of the 
tyre, such as lateral, yaw and camber modes. Verti-
cal (Fig. 5b middle) and tangential (Fig. 5b bottom) 
impulses are applied to excite predominantly the in-
plane modes. The vertical impulse mainly excites the 
vertical mode, while the tangential impulse mainly 
excites the torsional/spin mode. When inspecting the 
experimental FRF in the range 15–300 Hz, it is found 
that the modal model can be successfully obtained 
using M = 7 modes: the FRF generated by the lat-
eral excitation are fit ted using three modes, namely 
lateral, camber/yaw and c-shape (which is a mode 
involving carcass distortion [36, 37]—not relevant in 
this work); the FRF generated by vertical excitation 
are fit ted using three modes, namely the radial mode 
and two more in-plane modes involving the carcass 
deflection (not relevant in this work); the FRF gen-
erated by tangential excitation are fit ted using one 
mode, namely the torsional/spin mode.

An example of FRF related to the lateral displace-
ment of node 6 from the lateral excitation of node 1 
is shown in Fig.  6a. The coherence is close to one 
across the whole frequency range. Three peaks are 
clearly visible in the experimental signal (solid line) 
at frequencies of 71.3  Hz (lateral mode), 103.5  Hz 
(camber mode) and 211 Hz (c-shape mode). The ver-
tical dashed lines mark the resonances of the modes 
relevant to the rigid-ring model, i.e. lateral and 

camber modes only. The modal model fit ting of the 
experimental data is shown with a dashed line. The 
characteristics of the other FRF are similar. The fit-
ting correlation is above 98% and the error is smaller 
than 2% when fitting the 48 FRF related to the lateral 
excitation, with the exception of the first node (excita-
tion node) that has a correlation of 72% and an error 
of 29%.

An example of FRF related to the tangential dis-
placement of node 3 from the tangential excitation of 
node 1 is shown in Fig. 6b. The coherence is close to 
one for frequencies between 50  Hz and 250  Hz. One 
peaks is clearly visible in the experimental signal (solid 
line) at a frequencies of 175  Hz (torsion/spin mode). 
The modal model fit ting of the experimental data is 
shown with a dashed line. A vertical dashed line marks 
the torsion resonance, since this mode is relevant for the 
rigid-ring model. The characteristics of the other FRF 
are similar. The fitting correlation is above 96% and 
error is less than 4% when fitting the 48 FRF related to 
the tangential excitation, with the exception of the first 
node that has a correlation of 84  and an error of 22%. 
It should be observed that the modal model focuses by 
design on the main torsional resonance of Fig. 6b. The 
higher-frequency dynamics can be neglected in this 
case, since their effect on the main resonance is negli-
gible. On the contrary, in the case of Fig. 6a, also the 
higher frequency c-shape resonance has been included 

Fig. 5   Experimental set-up 
for modal testing
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in the modal model, because of its large magnitude and 
effect on the whole FRF.

An example of FRF related to the vertical motion of 
node 2 from the vertical excitation of node 1 is shown 
in Fig. 7. The acceleration in the vertical direction av is 
obtained by combining the radial ar and tangential ar 
accelerations as follows

where � is the angular position of the node, the angle 
is measured from the vertical direction (e.g. � = 0 for 

(8)av = −ar cos � + at sin �,

node 1 and � = �∕2 for node 5); node 2 has � = 22.5o . 
The coherence in the normal (radial) direction is 
close to one for frequencies above 50 Hz (dash-dot in 
Fig. 7 bottom). The coherence in the tangential direc-
tion is also close to one for frequencies above 50 Hz, 
with the exception of the visible dip in the range 
175–200 Hz (solid line in Fig. 7 bottom). Three peaks 
are fitted from the experimental signal (solid line) at 
frequencies of 212  Hz (vertical mode), 229  Hz and 
263 Hz. The latter two modes involve significant belt 
deflections—not relevant in this work. Therefore, 
only the radial mode has been marked with a dashed 
vertical line, since it is the only mode relevant for the 
rigid-ring model in this FRF. A small peak at 175 Hz 
is also visible (torsion mode, which is better excited 
with tangential excitation, see Fig. 6b), together with 
a small peak at 71 Hz (lateral mode, which is better 
excited with lateral excitation, see Fig.  6a). Finally, 
a small perturbation in the FRF at 102 Hz is visible, 
likely due to the yaw/camber mode (better excited 
with lateral excitation, see Fig. 6a). The modal model 
fit ting of the experimental data is shown with a 
dashed line. In the radial direction the fitting correla-
tion is above 55% and the error is smaller than 53%, 
while in the tangential direction the fitting correlation 
is above 49% and the error is smaller than 53%, with 
the exception of the first node which has a correla-
tion of 16% and an error of 93%. In general, the fit-
ting correlation of the vertical mode are much more 

Fig. 6   Experimental FRF (solid) and fitted FRF (dashed): a lateral response of node 6 from lateral excitation in node 1 and b tan-
gential response of node 3 from tangential excitation in node 1

Fig. 7   Experimental FRF (solid) and fitted FRF (dashed): ver-
tical response of node 2 from vertical excitation in node 1
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variable than those related to the lateral and tangen-
tial excitations, and the errors larger.

It is worth stressing that the tyre under investiga-
tion has a c-shape mode at 211 Hz (Fig. 6), which is 
very close to the 212 Hz (Fig. 7) of the vertical mode. 
The c-shape mode is predominantly out-of-plane, 
with minimum in-plane components. On the contrary, 
the vertical mode is predominantly in-plane, with 
minimum out-of-plane components. This is a quite 
challenging condition, since the inspection of a lim-
ited number of FRF, i.e. without the inspection of the 
three-dimensional mode shape obtained by the fit ting 
of the modal model, may lead to the assumption that 
the peaks at 211 Hz and 212 Hz belong to the same 
mode.

The shapes of the modes identified are shown in 
Figs. 8, 9, 11, both in terms of compass diagrams and 
a three-dimensional representations, while the natu-
ral frequencies and damping ratios are summarized 
in Tab. 3. In the compass diagram there is one arrow 
per node: the magnitude is related to the length of 
the arrow, while the phase is related to the angle of 
the arrow. As usual in modal analysis, only the ratio 
between magnitudes and the relative angles matter. In 

the three-dimensional representation the magnitude 
of the complex eigenvector components are shown. In 
most cases, all components are almost in-phase or in 
phase-opposition.

Figure  8a shows the compass plot of the lateral 
displacements of the lateral mode. All nodes move 
laterally almost exactly in-phase, with nearly identi-
cal magnitude, thus supporting the rigid-ring model 
approach. The dashed arrow represents the rigid-ring 
fit ting. Figure 8b shows the three-dimensional mode 
shape of the lateral mode, which highlights that the 
in-plane components are negligible, and the experi-
mental deflection (stars) is very close to a pure lateral 
translation.

Figure 9a shows the compass plot of the rotational 
displacement of the camber mode, which are com-
puted from the ratio of the lateral displacement of 
each node and its distance from the camber axis. Even 
in this case all the rotational components are almost 
exactly in phase, the dashed line being the rigid-
ring fit ting. The three-dimensional representation 
in Fig. 9b shows that in the camber mode half of the 
nodes move laterally almost exactly in-phase (those 
above the x axis), while the others (those below the 

Fig. 8   Lateral mode: modal model from experiments versus rigid-ring fit. Vertical displacements (a) and three-dimensional repre-
sentation (b)
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x axis) move in phase-opposition. The result supports 
the rigid-ring modelling approach. Obviously, if the 
lateral excitation is moved from node 1 to node 5 or 
13, the yaw mode is revealed (instead of the camber), 
with a rotation axis almost coincident with the z axis. 
Therefore, we will refer to this mode with the name 
camber/yaw mode.

Figure  10a displays the compass plot of the tor-
sion/spin mode in terms of the tangential displace-
ment of the nodes. All the nodes move tangentially 
almost exactly in-phase with almost identical magni-
tude. Again, the dashed line shows the rigid-ring fit 
ting. Figure  10b shows the three-dimensional repre-
sentation of the mode, which highlights negligible 
components out-of-plane. This again supports the 
rigid-ring modelling approach.

Figure  11a shows the compass plot of the verti-
cal mode. The larger magnitudes are those associ-
ated to the nodes farther from the x axis, i.e. top and 
bottom. The nodes on top of the tyres appear to have 
larger displacements with respect to those on the 
bottom. The displacements are still quite in phase, 
although less than what has been observed for the lat-
eral, yaw/camber and torsion/spin modes. Figure 11b 

shows that there are also significant components in 
the longitudinal direction, and some component in 
the lateral direction, in addition to those in the verti-
cal direction. Some belt deflections are visible. This 
is not surprising because the frequency of this mode 
is much higher than those of the lateral, camber/yaw 
and spin. Of course, if the vertical excitation in node 
1 is changed to a longitudinal excitation o nodes 5 or 
13 the longitudinal mode is obtained (instead of the 
vertical). Therefore, we will refer to this mode with 
the name radial mode.

Finally, the masses associated to each mode are 
identified, with the procedure explained in Sect.  2, 
and the results are summarized in Tab.  3, while the 
mean FRF are shown in Fig. 12.

Figure  12a shows the FRF associated to the lat-
eral vibration mode extracted from the modal model 
(solid lines) and the ring-model FRF (dashed line) 
obtained by fit ting. The curves are almost indistin-
guishable from one another. This is expected since 
the mode shape analysis above confirmed that the 
lateral mode is indeed a rigid-ring mode. The mass 
associated to the lateral mode of the ring is 67% of 
the mass of the whole belt. It was 81% in the case of 

Fig. 9   Camber/yaw mode: modal model from experiments versus rigid-ring fit. Vertical displacements (a) and three-dimensional 
representation (b)
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Fig. 10   Torsion/spin mode: modal model from experiments versus rigid-ring fit. Vertical displacements (a) and three-dimensional 
representation (b)

Fig. 11   Vertical/radial mode shape: modal model from experiments versus rigid-ring fit. Vertical displacements (a) and three-
dimensional representation (b)



995Meccanica (2023) 58:981–1001	

1 3
Vol.: (0123456789)

the finite-element model in Sect. 3, while 75% is the 
value suggested in [2].

Figure 12b shows the FRF associated to the cam-
ber/yaw mode extracted from the modal model (solid 
lines) and the ring-model FRF (dashed line) obtained 

by fit ting. Even in this case the curves are almost 
indistinguishable from one another, as the mode 
shape analysis above suggested. The inertia associ-
ated to the camber mode of the ring is 78% of the 
inertia of the whole belt. It was 87% in the case of 

Table 3   Experimental 
analysis

Mode f
r

�
r

m
r

m m
r
∕m

Lateral 71.3 Hz 2.77% 7.21 kg 10.7 kg 0.67
Camber/yaw 103.5 Hz 1.79% 0.35 kg m2 0.45 kg m2 0.78
Torsional/spin 175.0 Hz 1.12% 0.66 kg m2 0.86 kg m2 0.77
Vertical/longitudinal 212.2 Hz 3.15% 4.30 kg 10.7 kg 0.40

Fig. 12   Lateral (a), camber (b), spin (c) and radial (d) mean FRF
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the finite-element model in Sect. 3, while 85% is the 
value suggested in [2].

Figure  12c shows the FRF associated to the tor-
sional/spin mode extracted from the modal model 
(solid lines) and the ring-model FRF (dashed line) 
obtained by fit ting. Once again the curves are almost 
indistinguishable from one another: the mode is 
indeed well represented by a rigid-ring motion. The 
inertia associated to the spin mode of the ring is 77% 
of the inertia of the whole belt. It was 80% in the case 
of the finite-element model in Sect.  3, while 85% is 
the value suggested in [2].

Figure  12d shows the FRF associated to the ver-
tical mode extracted from the modal model (solid 
lines) and the ring-model FRF (dashed line) obtained 
by fit ting. In this case different FRF are visible, since 
the different locations have different displacements 
and (slightly) different phases. The mass associated to 
the vertical mode of the ring is 40% of the mass of the 
whole belt. It was again 40% in the case of the finite-
element model in Sect. 3, while 75% is the value sug-
gested in [2].

The inspection of the mode shapes in Fig.  8-11 
suggest that a classical damping assumption could be 
enforced during the modal model fit ting, since the 
actual shapes are almost real (i.e. their components 
are either in phase or in phase opposition). In prac-
tice, this is a good assumption for the lateral, camber/
yaw and torsional mode only, while it is not for the 
vertical mode, which exhibits significant phase lags 
between the different components. As a result, when 
repeating the mass identification procedure starting 
from the real mode shapes, instead of the complex 
mode shapes, the changes in the values of the masses 
and inertias identified are negligible for the lateral, 
camber/yaw and torsional modes, while it is more sig-
nificant for the vertical mode (in this case the identi-
fied mass increases to the 44% of the belt mass).

5 � Remarks

5.1 � Numerical versus experimental tests on the 
motorcycle tyre

The proposed identification procedure (Sect.  2) 
has been successfully applied both to a numeri-
cal motorcycle tyre model (Sect.  3) and to a real 
180/65–16 motorcycle tyre (Sect. 4). The reason for 

the application to the numerical tyre model, resem-
bling the characteristic of the real tyre, is to confirm 
on a ideal environment the trends observed with the 
experimental campaign and support the interpreta-
tion of the results and the extraction of the ring-model 
parameters.

In particular, both the motorcycle tyre numerical 
and the experimental analyses are in agreement in 
terms of modal shape and vibrating mass ratio and 
confirm that the mass of the ring associated to the 
lateral motion is considerably different from the mass 
associated to the longitudinal/vertical directions. 
Indeed, in the latter mode (in-plane mode), there 
is a portion of belt that is not moving significantly, 
while in the case of the lateral mode (out-of-plane 
mode) most of the belt moves. The quantification of 
the vibrating mass follows from the fit of the FRFs 
with the SDOF rigid-ring model. The consequence is 
that, when it comes to the practical implementation 
of the rigid-ring model, a choice needs to be made 
between the two masses, since a single mass value 
can be assigned to the ring body, e.g. in a multibody 
environment. As expected, all the ratios of the vibrat-
ing mass to the whole belt mass are smaller than one, 
since the portion of the belt in contact with the rim 
does not participate in the vibration, as also intuition 
suggests.

There is not the same problem with the inertias. 
The inertia associated to spin motion (in-plane) can 
be different from that of the yaw/camber (out-of-
plane) motion. Indeed, when it comes to the practi-
cal implementation of the rigid-ring model, one can 
assign different inertias associated to the spin and 
yaw/camber directions. As expected, similarly to 
the masses, also all the ratios of the vibrating iner-
tia to the whole belt inertia are smaller than one (the 
result follows from the fit of the FRFs with the SDOF 
ring-model).

5.2 � Rigid‑ring assumption

The rigid-ring model basically aims to fit (at mid-
low frequencies) the behaviour of the tyre using six 
DOFs, namely the three translations and three rota-
tions of the belt with respect to the rim. The frequen-
cies of the six vibration modes of the rigid ring match 
the frequencies of the six corresponding vibration 
modes of the tyre, by design. The mode shapes of the 
rigid-ring mode closely resemble those of the tyre, 
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as shown in the compass plots in Sect.  4. Another 
comparison can be carried out using the modal assur-
ance criterion (MAC) [51–53], which is an approach 
often used to quantitatively compare the experimen-
tally identified mode shape against the corresponding 
numerical mode shape (in this case those of the rigid-
ring model).

The complex eigenvector MAC formulation is 
used in this work. Given two sets of complex eigen-
vectors �A and �B , the MAC value between the rth 
eigenvector of the first set and the qth eigenvector of 
the second set is calculated as follows

where the superscript ∗ identifies the complex 
conjugate.

The comparison between the rigid-ring and experi-
mental eigenvectors is reported in Fig. 13a. The MAC 
is greater than 0.98 for the lateral, yaw/camber and 
torsion modes, while it is 0.51 for the radial mode. 
The off-diagonal terms of the MAC are below all 
below 0.01. The analysis confirm that the lateral, yaw 
and torsional mode are well represented by a rigid-
ring model, while the result of the radial mode needs 
some comment.

(9)MAC(r, q) =
|�T

A,r
�
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B,q

|2
(
�

T
A,r
�

∗
A,r

)(
�

T
B,q

�
∗
B,q

) ,

The rigid-ring radial mode is purely in-plane, 
while the experimentally measured radial mode has 
some out-of-plane component. Once the out-of-plane 
components are neglected, the MAC increases from 
0.51 to 0.54. It is concluded that this is not the main 
source of difference in the mode shape. The rigid-ring 
radial mode is purely vertical, while the experimen-
tally measured radial mode also has some longitudi-
nal component. Once the experimental mode shape 
are restricted to the vertical components only, the 
MAC rises from 0.54 to 0.65. Finally, one can think 
of removing from the MAC calculation the top node 
(number 1 in Fig. 2), which coincides with the impact 
point and shows a magnitude a bit larger than the oth-
ers: in this case the MAC rises to 0.71. There still is 
a difference between the experimental and rigid-ring 
mode shape.

This issue is further clarified in Fig.  14, which 
compares the magnitude of the vertical (top plot) 
and horizontal (bottom plot) displacements of the 
nodes along the tyre belt in the case of the exper-
imental radial mode (modal model), rigid-ring 
radial mode and finite-element (FE) radial mode. 
The finite-element model is introduced to confirm 
that the observed shape is not related to a measure-
ment problem, but is indeed a typical behaviour 
of the tyre. From the modes comparison it is clear 
that also the FE mode shares the same pattern of 

Fig. 13   MAC of the rigid-ring modes versus motorcycle tyre experimental modes (a) and motorcycle tyre numerical modes versus 
car tyre modes (b)
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the experimental model for the vertical displace-
ment of the nodes, with the top ( � = 0o ) and bot-
tom ( � = 180o ) nodes moving more than the nodes 
around the height of the wheel hub ( � = 90o and 
� = 270o ). However, in the case of the modal model, 
the bottom points (around � = 180o ) are moving 
less than the top points (around � = 0o ). As regards 
the longitudinal displacements, the shape of the 
modal model is similar to the one of FE model, 
but the magnitude is larger. It is concluded that the 
main difference in the MAC is related to the asym-
metric shape in the vertical direction and excessive 
magnitude in the longitudinal shape. The relative 
importance can be deduced when comparing the 
shape of the shape of the mode in the FE model and 
the ring model. The MAC between the two models 
is 0.88, and rises to 0.95 when the computation is 
performed on the vertical motion only.

The discussion shows that the representation of 
the dynamics of a real tyre by a rigid-ring model 
could led to some approximation of the lower-order 
dynamics. However, this need not be always the 
case. Indeed, with the car tyre considered in this 
work, the radial modes do not have the asymme-
try that observed in the motorcycle radial modes. 
Indeed, when applying MAC to compare the car 
radial mode against the rigid-ring radial mode, a 
value of 0.98 is obtained, confirming the very good 
fit of the rigid-ring assumption on this tyre.

5.3 � Motorcycle tyre versus car tyre

The proposed identification procedure (Sect.  2) has 
been successfully applied to numerical tyre models 
(Sect. 3) which differ significantly in terms of cross-
section and aspect ratio. The two models show differ-
ent natural frequency and damping ratios. However, 
both their low-frequency modes show the typical 
modal shapes of the rigid-ring model. Their eigenvec-
tors thus fit equally well against a rigid translation of 
the outer belt, with the exception of the radial mode, 
which need some additional considerations. The car 
tyre shows an almost rigid radial mode, which thus 
provide a MAC of 0.98 when compared against the 
rigid-ring shape. On the contrary, the motorcycle 
tyre, whose behaviour has also been confirmed by the 
experimental analysis, exhibits moderate deflection of 
the belt, which departs from the ideal rigid-ring shape 
and lead to MAC value of 0.88.

As regards the mass ratios, there is a quite a good 
agreement between the results obtained with the car 
and motorcycle tyres, especially when it comes to 
the lateral, camber and torsional modes, which show 
ratios in between 68% and 87%. On the contrary, a 
noticeable difference is observed in the belt masses 
associated to the radial mode, which is way higher in 
the car tyre (70%) than in the motorcycle tyre (40%). 
The reason of this difference is related to the different 
mode shapes, which are compared in Fig. 15. Indeed, 
the higher belt mass involved in the radial vibration 
obtained with the car tyre is related to a mode shape 
that engages in-phase motion of the the whole belt. 
On the other hand, the motorcycle tyre shows a radial 
mode with a reduced engagement of the outer belt, 
showing, as confirmed by the experimental analysis 
in Fig.  11, a peak of the belt motion in the top and 
bottom sides, and a minimum in the lateral sides.

The MAC between the motorcycle and car numeri-
cal mode shapes is shown in Fig. 13b. It is confirmed 
that the all the low-frequency modes are nearly iden-
tical, with the exception of the radial mode, whose 
MAC reduces to 0.81 because of the differences 
described above and also highlighted in Fig. 15.

5.4 � Multiplicity and axial‑symmetry

Due to tyre axial-symmetry, the eigenproblem solu-
tion produces yaw and camber modes with the 
same frequency (multiplicity two) and vertical and 

Fig. 14   Motorcycle vertical mode shape: vertical (top) and 
horizontal (bottom) components at the different angular ( � ) 
locations
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longitudinal modes with the same frequency (multi-
plicity two) [54]. Examples of coincident modes in 
the case of car and bicycle wheels are analysed e.g. in 
[55, 56]. Although there is orthogonality between the 
rotation axes of the yaw/camber modes and between 
the displacement direction of the vertical/longitu-
dinal modes, they are not necessarily aligned to the 
global reference frame. A specific camber/yaw mode 
is obtained by a linear combination of the two modes 
extracted from the eigenproblem [55]. The same 
applies to any radial mode, which is obtained by a lin-
ear combination of the two modes extracted. For the 
comparison between the experimental and FE radial 
modes, the two numerical eigenvectors are linearly 
composed in order to create a mode shape aligned to 
the direction of the mode obtained experimentally.

6 � Conclusion

A procedure for the identification of the dynamic 
parameters of the rigid-ring tyre model has been 
devised. The approach is based on experimental 
modal analysis and focuses on the vibration modes 
of an unloaded tyre fixed to the ground through its 
rim. When comparing against other methods reported 

in the literature, the proposed method allows for the 
full characterization of both in-plane and out-of-
plane dynamics, thus leading also to the quantifica-
tion of the masses and inertia associated to the rigid-
ring body (which are generally lower than the mass 
and inertia of the tyre), while requiring only stand-
ard vibrational analysis equipment ( which is not the 
case of many approaches reported in the literature). 
Both the numerical and experimental analyses carried 
out confirm that most of the low-frequency modes 
are characterised by minimum distortion of the tyre 
belt, that can thus be considered a rigid ring body. 
The modes identified on the motorcycle tyre are in 
the range 70–220 Hz, while on the car tyre are in the 
range 51–85  Hz. At lower frequencies there are the 
lateral and yaw/camber modes, while at higher fre-
quencies there are the vertical/longitudinal and spin/
torsion modes. It is found that the mass associated to 
the vertical mode is not necessarily close to the mass 
associated to the lateral mode. Indeed, while the car 
tyre shows a vertical-mode mass (70%) close to the 
lateral-mode mass (68%), the motorcycle tyre shows 
a much lower vertical mass (40%) than lateral mass 
(81%). The significant difference is related to the 
motorcycle vertical mode shape, which departs from 
the ideal rigid-ring shape. On the contrary, both the 

Fig. 15   Comparison of motorcycle tyre (a) and car tyre (b) vertical/radial mode shape
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motorcycle and car tyres show an inertia associated 
to the camber/yaw modes (74–87% of the tyre iner-
tia) that is similar to the one associated to the torsion 
mode (70–80% of the tyre inertia).
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