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Abstract – Humans estimate sound-source directions by combining prior beliefs with sensory evidence. Prior
beliefs represent statistical knowledge about the environment, and the sensory evidence consists of auditory
features such as interaural disparities and monaural spectral shapes. Models of directional sound localization
often impose constraints on the contribution of these features to either the horizontal or vertical dimension.
Instead, we propose a Bayesian model that flexibly incorporates each feature according to its spatial precision
and integrates prior beliefs in the inference process. The model estimates the direction of a single, broadband,
stationary sound source presented to a static human listener in an anechoic environment. We simplified inter-
aural features to be broadband and compared two model variants, each considering a different type of monaural
spectral features: magnitude profiles and gradient profiles. Both model variants were fitted to the baseline
performance of five listeners and evaluated on the effects of localizing with non-individual head-related transfer
functions (HRTFs) and sounds with rippled spectrum. We found that the variant equipped with spectral
gradient profiles outperformed other localization models. The proposed model appears particularly useful for
the evaluation of HRTFs and may serve as a basis for future extensions towards modeling dynamic listening
conditions.
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1 Introduction

When localizing a sound source, human listeners have to
deal with numerous sources of uncertainty [1]. Uncertainties
originate from ambiguities in the acoustic signal encoding
the source position [2] as well as the limited precision of
the auditory system in decoding the received acoustic infor-
mation [3, 4]. Bayesian inference describes a statistically
optimal solution to deal with such uncertainties [5] and
has been applied to model sound localization in various
ways [6–9].

Typical approaches of sound localization models rely on
the evaluation of several spatial auditory features. Head-
related transfer functions (HRTFs) describe the spatially
dependent acoustic filtering produced by the listener’s ears,
head, and body [10] and have been used to derive spatial
auditory features. The way to extract those features is a
matter of debate. In particular, a large variety of monaural
spectral-shape features have been studied [11–17], with

spectral magnitude profiles [14, 17] and spectral gradient
profiles [12, 15] being the most established ones. Despite
such details, there is consensus that the interaural
time and level differences (ITDs and ILDs) [1] as well as
some form of monaural spectral shapes are important
features for the directional localization of broadband sound
sources [18].

In order to decode the spatial direction from the audi-
tory features, models rely on the assumption that listeners
have learned to associate acoustic features with spatial
directions [13, 19]. Interaural features are particularly infor-
mative about the lateral directions (left/right) and ambigu-
ous with respect to perpendicular directions along sagittal
planes (top/down and front/back) for which the monaural
spectral features are more informative [18]. This phe-
nomenon led to propose a variant of the spherical coordi-
nate system, the so-called interaural-polar coordinate
system where the two poles are placed on the interaural axis
[20]. In this article, we use the so-called modified interaural-
polar coordinate system, with the lateral angle describing a
source along the lateral directions ranging from �90� (left)
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to 90� (right) and the polar angle describing a source along
a sagittal plane in the interval ranging from �90� (bottom),
via 0� (eye level, front), 90� (top), and 180� (back) to 270�
[21]. Directional sound-localization studies typically use the
interaural-polar coordinate system to separate the effects of
the interaural and monaural features [22, 23]. However, this
separation is a simplification. For example, monaural spec-
tral features can also contribute to the direction estimation
along the lateral dimension [24–26]. Hence, directional
sound-localization models may provide better predictions
when jointly exploiting the information encoded by all
auditory features.

Such joint information has already been considered in a
model of directional sound localization based on Bayesian
inference [6]. This model computes a spatial likelihood func-
tion from a precision-weighted integration of noisy acoustic
features. Then, the perceived source direction is assumed to
be at the maximum of that likelihood function. While this
model was built to assess which spatial information can
be accessible to the auditory system, its predictions overes-
timate the actual human performance yielding unrealisti-
cally low front-back confusion rates and localization errors
[27]. Still, to model human performance, this model can
serve as a solid basis for improvements such as the consid-
eration of monaural spectral features, the integration of
response noise involved in typical localization tasks, and
the incorporation of prior beliefs.

Prior beliefs are essential in the process of Bayesian
inference because they reflect the listener’s statistical knowl-
edge about the environment, helping to compensate for
uncertainties in the sensory evidence [28]. For example,
listeners seem to effectively increase precision in a frontal
localization task by assuming source directions to be more
likely located at the eye-level rather than at extreme verti-
cal positions [8]. However, such an increase in precision may
come at the cost of decreasing accuracy. As it seems, the
optimal accuracy-precision trade-off in directional localiza-
tion depends on the statistical distribution of sound sources
[29]. While listeners seem to adjust their prior beliefs to
changes in the sound-source distribution [29, 30], they
may also establish long-term priors reflecting the distribu-
tion of sound sources in their everyday environment.

Here, we introduce a Bayesian inference model to pre-
dict the performance of a listener estimating the direction
of static broadband sounds. The model implements a noisy
feature extraction and probabilistically combines interaural
and monaural spatial features [6]. We limit our model to an
anechoic auditory scene with a single broadband and
stationary sound source, without listener and source move-
ments. In this scenario, the representation of monaural fea-
tures requires to account for spectral information [8, 15]
while interaural features computation can rely on broad-
band estimators [18, 31]. Despite such simplifications, the
model structure can easily include more complex processing
of interaural features as required for narrow-band stimuli or
reverberant and multisource environments (e.g. [32]). Our
model computes the likelihood function by comparing the
features with templates (i.e. spatial features obtained from
listener-specific HRTFs). Subsequently, the probabilistic

representation of the sound direction results from combin-
ing the sensory evidence with prior beliefs. For simplicity,
we consider static prior emphasizing directions at the eye
level [8], while the model structure can easily integrate
future extensions towards more flexible, task-dependent
priors. A Bayesian decision function estimates the source
position from the resulting spatial representation. As a last
step, the model incorporates response scattering to account
for the uncertainty introduced by pointing response in local-
ization experiments [15].

For evaluation, we considered a model variant based on
spectral amplitudes and a model variant based on spectral
gradients [6]. The model’s parameters were fitted to the
sound-localization performance of individual listeners [23].
We then tested the simulated responses of both model vari-
ants against human responses from sound-localization
experiments investigating the effects of non-individual
HRTFs [22] and ripples in the source spectrum [33].

The paper is organized as follows: Section 2 describes
the auditory model (Sect. 2.1) and explains the parameter
estimation (Sect. 2.2). Then, Section 3 evaluates the mod-
el’s performance by comparing its estimations to the actual
performance of human listeners. Finally, Section 4 discusses
the model’s relevance as well as its limitations, and outlines
its potential for future extensions.

2 Methods
2.1 Model description

The proposed auditory model consists of three main
stages, as shown in Figure 1: 1) The feature extraction stage
determines the encoded acoustic spatial information repre-
sented as a set of spatial features altered by noise; 2) The
Bayesian inference integrates the sensory evidence resulting
from the decoding procedure based on feature templates

Figure 1. Model structure. Gray blocks: Model’s processing
pipeline consisting of 1) the feature extraction stage to compute
spatial features from the binaural sound; 2) the Bayesian
inference stage integrating the sensory evidence obtained by
comparison with feature templates and prior beliefs to estimate
the most probable direction; and 3) the response stage trans-
forming the internal estimate to the final localization response.
White blocks: Elements required to fit the model to an individual
subject consisting of listener performances in estimating sound
direction and individual HRTF dataset.
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with the prior belief and forms a perceptual decision; and 3)
The response stage transforms the perceptual decision in a
directional response by corrupting the estimation with
uncertainty in the pointing action.

2.1.1 Feature extraction

The directional transfer function transformed in the
time domain (i.e. the HRTF processed to remove the direc-
tion-independent component [34]) convolved with the
sound source provides the sensory evidence, which is repre-
sented by the spatial auditory features. We follow [6] in that
we decode the spatial information provided by a single
sound source via the binaural stimulus from a vector of
spatial features:

t ¼ xitd; xild; xL;mon; xR;mon½ �; ð1Þ
where xitd denotes a scalar ITD feature, xild a scalar ILD
feature, and a vector that concatenates monaural spectral
features for left ear, xL,mon, and right ear, xR,mon. Each
feature is assumed to be extracted by different neural
pathways responsible to deliver encoded spatial informa-
tion to higher levels of the auditory system [1, 4].

Simple broad-band estimators approximated the inter-
aural features [18, 31] because we limited our evaluation
to the task of localizing a broadband and spatially static
sound source in an acoustic free field. More complex repre-
sentations of interaural features are required when consider-
ing more natural listening conditions, e.g., reverberant
spaces, multi-talker environments, sounds embedded in
noise, or sounds with spectro-temporal fluctuations such
as speech or music. In our simple listening scenario, the
ILD was approximated as the time-averaged broadband
level difference between the left and right channels [18].
The ITD was estimated by first processing each channel
of the binaural signal with a low-pass Butterworth filter
(10th order and cutoff 3000 Hz) and an envelope extraction
step based on the Hilbert transform. Then, the ITD was
computed with the interaural cross-correlation method
which is a good estimator of perceived lateralization in
static scenarios with noise bursts [31]. In addition, we
applied the transformation proposed by Reijniers et al. [6]
to compensate the increasing uncertainty levels for increas-
ing ITDs [35] resulting in a dimensionless quantity with a
more isotropic variance:

xitd ¼ sgnðitdÞ
bitd

log 1þ bitd
aitd

� jitdj
� �

; ð2Þ

with “itd” denoting ITDs in ls and the parameters
aitd = 32.5 ls and bitd = 0.095 and “sgn” indicating the
sign function (for details on the derivation based on signal
detection theory, see Supplementary Information from
[6]). An example of the interaural features as functions
of the lateral angle is shown in Figure 2.

Monaural spectral features, x{L,R},mon, were derived
from approximate neural excitation patterns. To approxi-
mate the spectral resolution of the human cochlea, we

processed the binaural signal by the gammatone filterbank
with non-overlapping equivalent rectangular bandwidths
[36, 37], resulting in NB = 27 bands within the interval
[0.7, 18] kHz [38, 39]. Followed by half-wave rectifica-
tion and square-root compression to model hair-cell
transduction (e.g., [32, 40]), it resulted in the unit-less
excitation:

cuf;b½n� ¼ ðhuf �gbÞ½n�;

cuf;b½n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
cuf;b½n�

q
if cuf;b½n� � 0

0 otherwise;

( ð3Þ

where subscripts f 2 {L, R} indicate the left and right
ears, n = 1, . . ., N is the time index, b = 1, . . ., NB is
the band index, gb[n] is the corresponding gammatone
filter and hu

f ½n� is the binaural signal in a normalized scale
with sound direction u (i.e. a pair of head-related impulse
responses or their convolution with a source signal).

We thus defined the spectral feature for the magnitude
profiles (MPs) with the vector xf,MP. This vector is the
collection of root mean square amplitudes across time in
decibels for each of the spectral bands for each ear:

mpu

f;b ¼ 10 log10
1
N

PN
n¼1

cuf;b½n�2
� �

;

xf;mp ¼ mpu
f;1; . . . ;mpu

f;NB

h i
;

ð4Þ

where the function cuf;b½n� is defined in equation (3).
Positive gradient extraction over the frequency dimen-

sion can be computed as an alternative spectral feature
since its integration increases the agreement between
human localization performance and the model’s predic-
tions [15]. Therefore, we defined a second possible spectral
feature based on gradient profiles (GPs) with the vector
xf,GP. It includes the gradient extraction as an additional
processing step:

Figure 2. Interaural features as functions of lateral angle in the
horizontal frontal plane. Left axis (blue solid line): Transformed
ITD xitd (dimensionless), see equation (2). Right axis (green
dashed line): ILD (in dB) obtained from the magnitude profiles.
Example for subject NH12 [23].
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gpu

f;b ¼ mpu

f;bþ1 �mpu

f;b;

gpu

f;b ¼
gpu

f;b if gpu

f;b � 0

0 otherwise;

�

xf;GP ¼ gpu

f;1; � � � ; gpu

f;NB�1

h i
:

ð5Þ

A visualization of these monaural features is shown in
Figure 3.

To demonstrate the impact of monaural spectral feature
type, we analyzed the results of both variants with the
corresponding feature spaces defined as follows:

tMP ¼ ½xitd; xild; xL;MP; xR;MP�;

tGP ¼ ½xitd; xild; xL;GP; xR;GP�:
ð6Þ

Limited precision in the feature extraction process leads to
corruption of the features and can be modelled as additive
internal noise [6]. Hence, we defined the noisy internal
representation of the target features as:

t ¼ t þ d;

d � N ð0;RÞ; ð7Þ

where R is the covariance matrix of the multivariate
Gaussian noise. Furthermore, we assumed each spatial

feature to be processed independently and thus to be also
corrupted by independent noise [1]. Hence, the covariance
matrix R definition is:

R ¼
r2
itd 0 0

0 r2
ild 0

0 0 r2
monI

2
64

3
75; ð8Þ

with r2
itd and r2

ild being the variances associated with the
ITDs and ILDs and r2

monI being the covariance matrix
for the monaural features where I is the identity matrix
and the scalar rmon represents a constant and identical
uncertainty for all frequency bands.

2.1.2 Bayesian inference

The observer infers the sound direction u from the
spatial features in t while taking into account potential
prior beliefs about the sound direction. Within the Bayesian
inference framework [5], this requires to weight the likeli-
hood p(t|u) with the prior p(u) to obtain the posterior
distribution by means of Bayes’ law as:

pðujtÞ / pðtjuÞpðuÞ: ð9Þ
The likelihood function was implemented by comparing t
with the feature templates. The template T(u) contains
noiseless features of equation (1) for every sound direction
u [6]. While the sound direction was defined on a continu-
ous support, our implementation sampled it over a
quasi-uniform spherical grid with a spacing of 4.5� between
points (Nu = 1500 over the full sphere). Template fea-
tures were computed from the listener-specific HRTFs.
To accommodate non-uniform HRTF acquisition grids,
we performed spatial interpolation based on spherical
harmonics with order NSH = 15, followed by Tikhonov reg-
ularization [41].

Since the templates were constructed without noise,
there exists a one-to-one mapping between direction and
template features. This allowed us to write the likelihood
function for each point of the direction grid as:

pðtjuÞ ¼ pðtjTðuÞÞ ¼ N ðtjTðuÞ;RÞ; ð10Þ
where R represents the learned precision of the auditory
system (i.e. the sensory uncertainty d reported in
Eq. (7)). Finally, we interpreted the a-priori probability
p(u) to reflect long-term expectations of listeners where
prior probabilities were modelled as uniformly distributed
along the horizontal dimension but centered towards the
horizon as [8]. In particular, we extended the results from
Ege et al. for sources positioned in the front and as well as
back positions with:

pðuÞ / exp � �2

2r2
P ;�

 !
; ð11Þ

with � denoting the elevation angle of u and r2
P;� the vari-

ance of the prior distribution [8]. For simplicity, the prior
definition was based on the spherical coordinate system.

Figure 3. Monaural spectral features as a function of polar
angle in the median plane. Top: Features obtained from the
magnitude profiles. Bottom: Features obtained from the gradi-
ent profiles. Example for the left ear of subject NH12 [23].
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Importantly, the origin of that prior is currently unknown
and its implications are discussed in Section 4.

According to equation (9), a posterior spatial probabil-
ity distribution was computed for every sound by optimally
combining sensory evidence with prior knowledge [28]. As
shown in Figure 4, the most probable direction of the source
u was then selected as the maximum a-posteriori (MAP)
estimate:

û ¼ arg max
u

pðtjTðuÞÞpðuÞ: ð12Þ

2.1.3 Response stage

After the inference of the sound direction, experiments
usually require the listener to provide a motor response
(e.g. manual pointing). To account for the uncertainty
introduced by such responses, we incorporated post-
decision noise in the model’s response stage. Following
the approach from previous work [15], we blurred the
location estimate by an additive, direction-independent
(i.e., isotropic) Gaussian noise:

ûr ¼ ûþm; ð13Þ
where m ~ vMF(0, jm) is a von-Mises–Fisher distribution
with zero mean and concentration parameter jm. The
concentration parameter jm can be interpreted as a stan-
dard deviation rm ¼ j�2

m � 180p�1 [deg]. The contribution
of the response noise is visible in Figure 4, where the final
estimate was scattered independently of the spatial infor-
mation provided by the a-posteriori distribution. With
equation (13), the model outputs the response of the esti-
mated sound source direction.

2.2 Parameter estimation

The model includes the following free parameters: rild,
rmon (amount of noise per feature; ritd was fixed to 0.569
as in [6]), rP,� (directional prior), and rm (amount of
response noise). Because of the model’s structure, these
parameters jointly contribute to the prediction of perfor-
mance in both lateral and polar dimensions. To roughly
account for listener-specific differences in localization
performance [2], the parameters were fitted to match indi-
vidual listener performance.

As for the objective fitting function, we selected a set of
performance metrics widely used in the analysis of behav-
ioral localization experiments [22, 23, 42], for a summary
see [43]. A commonly used set of metrics contains the quad-
rant error rate (QE, i.e., frequency of polar errors larger than
90�), local polar errors (PE, i.e., root mean square error in
the polar dimension that are smaller than 90�, limited to
lateral angles in the range of ±30�), and lateral errors (LE,
i.e., root mean square error in the lateral dimension) [22].
We accounted for the inherent stochasticity of the model
estimations by averaging the simulated performance metrics
over 300 repetitions of the Nu = 1550 directions in the
HRTF dataset (i.e., Monte–Carlo approximation with
465,000 model simulations). Model parameters were jointly
adjusted in an iterative procedure (see below) until the rel-
ative residual between the actual performance metric Ea
and the predicted performance metric Ep was minimized
below a metric-specific threshold sE, i.e.,

jEa � Epj 1Ea
< sE: ð14Þ

We set the thresholds to sLE = 0.1, sPE = 0.15, and
sQE = 0.2 because these values were feasible for all subjects.
In addition, the QE was transformed with the rationalized
arcsine function to handle small and large values adequately
[44].

We ran the estimation procedure separately for each
feature space in equation (6) and each listener. First, initial
values of the parameters were derived from previous litera-
ture: the variance of the prior distribution was set to
rP,� = 11.5� as in [8]. The interaural feature noise was set
to rild = 1 dB, reflecting the range of ILD thresholds for
pure tones [45]. The starting value for the monaural feature
noise was set to rmon = 3.5 dB as in [6]. The response noise
standard deviation was set to rm = 17� as the sensorimotor
scatter found in [15]. Second, in an iterative procedure,
rm was optimized to minimize the residual error relative
to the PEmetric and, similarly, rmon was adjusted to match
the QE metric. Then, rild was decreased to reach the LE
metric. These steps were reiterated until the residual errors
between actual and simulated metrics was less than the
respective threshold. This procedure limited the rm to the
interval [5�, 20�] and used a step-size of 0.1�, rmon was de-
fined in the interval [0.5, 10] dB with a step-size of
0.05 dB; rild was defined in the interval of [0.5, 2] dB with
a step-size of 0.5 dB. If the procedure did not converge, we
decreased rP,� by 0.5� and reattempted the parameter opti-
mization procedure.

Figure 4. Example of the model estimating the direction of a
broadband sound source. Red: Actual direction of the sound
source. The grayscale represents the posterior probability
distribution p(u|t), shown, in order to increase the readability,
on a logarithmic scale. Green: Direction inferred by the
Bayesian-inference stage (without the response stage). Orange:
Direction inferred by the model (with the response stage). Blue:
Actual response of the subject.
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3 Results

We first report the quality of model fits to the calibra-
tion data itself [23] in Section 3.1. Then, Section 3.2
quantitatively evaluates the simulated performances of
our two model variants and of two previously proposed
models against data from two additional sound localization
experiments.

3.1 Parameter fits

We run the parameter estimation procedure for both
model variants, based on either tMP or tGP, and for five indi-
viduals tested in a previous study [23]. In that experiment,
naive listeners were asked to localize broadband noise
bursts of 500 ms duration presented from various directions
on the sphere via binaural rendering through headphones
based on listener-specific directional transfer functions.
The subjects were wearing a head-mounted display and
were asked to orient the pointer in their right hand to the
perceived sound-source direction. The fitting procedure
converged for both models and all subjects. Notably, sub-
ject NH15 required to reduce the step size of rm to 0.1� to
meet the convergence criteria. Table 1 reports the estimated
parameters rm, rP,�, rmon and rild for every listener. The
amount of response noise was similar for both model types.
Table 2 contrasts the predicted performance metrics with
the actual ones, averaged across listeners.

More in detail, Figure 5 compares predicted localization
performance to the actual performance of subjects estimat-
ing the direction of a noise burst for different spherical
segments [23]. The predicted LEs and PEs, both as func-
tions of the actual lateral and polar angles, respectively,
were in good agreement with those from the actual experi-
ment. Instead, the simulated QE metric failed to mimic the
front back asymmetries present in four subjects. Finally,
only small differences were observed between the two fea-
ture spaces tMP and tGP.

Contribution of model stages

Figure 6 illustrates the effects of different model stages
on target-specific predictions. The example shows direction
estimations from subject NH16 localizing broadband noise
bursts [23] and the corresponding predictions of the model
based on tGP with different configurations of priors and
response noise: without both (a), with priors only (b), and
with both (c). While adding response noise scattered the
estimated directions equally across spatial dimensions
(compare c to b), including the spatial prior only affected
the polar dimension (compare b to a). As observed in the
actual responses, the prior caused more of the simulated
estimations to be biased towards the horizon (0� and 180�).

In order to quantify the effect of introducing the spatial
prior in the polar dimension, we computed the polar gain as
a measure of accuracy [13] for both simulated and the
actual responses. This metric relies on two regressions
performed on the baseline condition, separating between
targets in the front and back. The linear fits for the baseline
condition were defined as:

/e ¼ g/ � /a þ b/ ð15Þ

with /e being the estimated polar angles and /a being the
actual polar angles. The parameters were the localization
bias b/ in degrees, which is typically very small, and the
dimensionless localization gain g/, which can be seen as
a measure of accuracy [8, 13]. The regression fits only
incorporated /e that deviate from the regression line by
less than 40�. Since that definition of outliers depended
on the regression parameters, this procedure was initial-
ized with b/ = 0� and g/ = 1 and re-iterated until conver-
gence. In our analysis, only the frontal positions were
considered. The polar gain of the actual responses, aver-
aged over subjects, was 0.50, indicating that our subjects
showed a localization error increasing with the angular
distance to the horizontal plane. For the models without
the prior, the predicted polar gain was 1.00 (Fig. 6a).
The polar gain obtained by the model including the prior
was 0.62 (Figs. 6b and 6c) showing a better correspon-
dence to the actual polar gain. Hence, the introduction
of the prior belief improved the agreement with the actual
localization responses by biasing them towards the
horizon.

3.2 Model evaluation

The performance evaluation was done at the group-
level. For our model, we used the five calibrated parameter
sets with templates T(u) based on the individuals’ HRTFs
as “digital observers”. Group-level results of these digital
observers were then evaluated for two psychoacoustic
experiments with acoustic stimuli as input that differed

Table 1. Fitted parameters for both model variants where the
monaural spectral features were either magnitude profiles (MPs)
or gradient profiles (GPs). Subjects’ performance from [23].

Variant Subject rP,� [deg] rild [dB] rmon [deg] rm [deg]

MP NH12 11.50 0.50 3.40 8.50
NH15 10.00 0.50 3.20 14.27
NH16 11.50 1.00 3.60 11.00
NH17 11.50 0.50 4.10 14.30
NH18 11.50 1.00 6.50 14.00

GP NH12 11.50 0.50 1.10 8.50
NH15 11.00 0.50 1.25 14.30
NH16 11.50 1.00 1.25 11.50
NH17 11.50 1.00 1.60 14.00
NH18 11.50 1.00 2.10 15.00

Table 2. Predicted performance metrics averaged across all
subjects and directions (±1 standard deviation across subjects)
for both model variants. Actual data from [33].

Metric Actual
Predicted

MP GP

LE [deg] 12.25 ± 2.43 12.97 ± 2.50 13.18 ± 2.66
PE [deg] 32.73 ± 3.44 31.20 ± 4.04 29.78 ± 4.01
QE [%] 7.83 ± 7.11 8.32 ± 5.75 9.80 ± 5.23

R. Barumerli et al.: Acta Acustica 2023, 7, 126



from the baseline condition with a flat source spectrum and
individual HRTFs.

In addition, we compared our results with the ones of
two previously published models. The first one, described
by Reijniers et al. [6], is probabilistic and able to jointly esti-
mate the lateral and polar dimensions similar to the model
described in this work. Reijniers’ model deviates from ours
because it relies on a different feature extraction stage, uses
a uniform spatial prior distribution, does not include
response noise (Eq. (13)), and does not fit individualized
parameters. The second model, described by Baumgartner
et al. [15], estimates sound positions only in the polar
dimension. Nevertheless, it shares a similar processing
pipeline with our model since both consider a perceptually
relevant feature extraction stage, response noise, and
individualized parameters. The main differences with our
model are the incorporation of a directional prior, the
integration of the lateral dimension, and a different method
to compute the sensory evidence. Notably, this previous
work implemented the template comparison procedure
with the l1-norm, which is substantially different from our
likelihood function in equation (10). At the moment, the
Baumgartner et al. model is commonly used by the scien-
tific community interested in predictions of the elevation
perception based on monaural spectral features (e.g.,
[46, 47]). We refer to these two models as reijniers2014
and baumgartner2014, respectively.

3.2.1 Effects of non-individual HRTFs

In first evaluation, sounds were spatialized using non-
individualized HRTFs [22]. Originally, eleven listeners
localized Gaussian white noise bursts with a duration of
250 ms and sound directions were randomly sampled from
the full sphere. Subjects were asked to estimate the direc-
tion of sounds that were spatialized using their own HRTFs
in addition to sounds that were spatialized using up to four
HRTFs from other subjects (21 cases in total). With the
aim to reproduce these results, we had our pool of five dig-
ital listeners localize sounds from all available directions
that were spatialized with their own individual HRTFs
(Own) as well as sounds that were spatialized with HRTFs
from the other four individuals (Other). We thus considered
all inter-listener HRTF combinations for the non-individual
condition.

Figure 7 summarizes the results obtained for localization
experiments with own and other HRTFs. In the Own condi-
tion, there was a small deviation between the actual results
from [22] and our model predictions. This mismatch reflects
the fact that the digital observers represented a different
pool of subjects (taken from [23]) tested on a slightly differ-
ent experimental protocol and setup. Differences in perfor-
mance metrics were small between the two feature spaces,
as already reported during parameter fitting. Predictions
from the baumgartner2014 model are only possible for

Figure 5. Sound-localization performance as function of the direction of a broadband sound source. Open symbols: Predictions
obtained by the two model’s variants based on either spectral magnitude profiles (MPs) or gradient profiles (GPs). Filled grey symbol:
Actual data from [23]. Top row: Lateral error, calculated for all targets with lateral angles of �65� ± 25�, �20� ± 20�, 20� ± 20�, and
65� ± 25�. Center and bottom rows: Polar error and quadrant error rates, respectively, calculated for all median-plane (±30�) targets
with polar angles of 0� ± 30�, 90� ± 60�, and 180� ± 30�.
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the polar dimension. Instead, the model reijniers2014
predicted too small errors, as also observed in previous sim-
ulations employing this model [27, 48].

In the Other condition, both of our model variants pre-
dicted a smaller degradation for the lateral dimension as
compared to the actual data. The lateral errors predicted
by reijniers2014 increased moderately but remained
too small in comparison to the actual data. In the polar
dimension, both model variants resulted in increased PEs
and QEs, but the amount of increase was larger and more
similar to the actual data for the variant equipped with gra-
dients profiles, especially with respect to QE. As expected,
the predictions from baumgartner2014 were similar to

the model based on spectral gradients, given the similar
method of extracting the monaural spectral features. The
simulation results for reijniers2014 agreed with the
super-human performance described in [27].

3.2.2 Effects of rippled-spectrum sources

The second evaluation tested the effect of spectral
modulation of sound sources on directional localization in
the polar dimension [33]. In that study, localization perfor-
mance was probed by using noises in the frequency band
[1, 16] kHz, which spectral shape were distorted with a
sinusoidal modulation in the log-magnitude domain. The
conditions considered different ripple depths, defined as
the peak-to-peak difference of the log-spectral magnitude,
and ripple densities, defined as the sinusoidal period along
the logarithmic frequency scale. The actual experiment
tested six trained subjects in a dark, anechoic chamber lis-
tening to the stimuli via loudspeakers. The sounds lasted
250 ms and were positioned between lateral angles of
±30� and polar angles of either 0 ± 60� for the front or
180 ± 60� for the back. A “baseline” condition included a
broadband noise without any spectral modulation (ripple
depth of 0 dB). To quantify the localization performance,
we used the polar error rate (PER) as they defined [33].
For every condition, two baseline regressions were com-
puted as in Section 3.1 allowing us to quantify the PER
as the ratio of actual responses deviating by more than
45� from the predicted values of the baseline regression.

Figure 8 shows the results of testing the fitted models
with rippled spectra. In the baseline condition, our model
exhibited similar performances to those obtained in the
actual experiment, whereas baumgartner2014 underes-
timated the baseline performance for this particular error
metric. In the ripple conditions, actual listeners showed
the poorest performance for densities around one ripple
per octave and a systematic increase in error rate with
increasing ripple depth. The model variant based on gradi-
ent profiles predicted these effects well, similar to the pre-
dictions from baumgartner2014. In contrast, both
reijniers2014 and the variant based on magnitude
profiles were not able to reflect the effects of ripple density
and depth as present in the actual data. Hence, the positive
gradient extraction appears to be a crucial processing step
for predicting sagittal-plane localization of sources with a
non-flat spectrum.

4 Discussion

The proposed functional model aims at reproducing
listeners’ performances when inferring the direction of a
broadband sound source. The model formulation relies on
Bayesian inference [28] as it integrates the sensory evidence
for spatial directions obtained by combining binaural and
monaural features [13] with a spatial prior [8]. Our
approach considers uncertainties about the various sensory
features, as in [6], in addition to the noise introduced by
pointing responses [15]. These components enabled us to

Figure 6. Effects of likelihood, prior, and response noise on
predicted response patterns as a result of modeling the
directional localization of broadband noise bursts. (a) Likelihood
obtained by sensory evidence (i.e., no spatial prior and no
response noise). (b) Bayesian inference (with the spatial prior
but no response noise). (c) Full model (with prior and response
noise). Gray: actual data of NH16 from [23]. Black: estimation
obtained by the model considering spectral gradient profiles
(GPs). Red cross: frontal position. Blue dashed lines separate
regions of front-back confusions.
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Figure 7. Localization performance with individual (Own) and non-individual (Other) HRTFs. Actual data from [22]
(data_middlebrooks1999). Model predictions for two model variants: spectral magnitude profiles (MPs) and spectral gradient
profiles (GPs). As references, predictions by the models reijniers2014 [6] and baumgartner2014 [15] are shown. Note that
baumgartner2014 does not predict the lateral error.

Figure 8. Effect of spectral ripples in the source spectrum on sound localization performance in the median plane. Right-most
bottom panel: localization error rates obtained without spectral ripples serving as reference. Top and bottom left panels: Differences to
the reference condition shown in the right-most bottom panel. In addition to predictions from the two model variants (MP and GP),
predictions from reijniers2014 [6] and baumgartner2014 [15] as well as actual data from [33] (data_macpherson2003) as
shown. Note that ripple densities were varied at a fixed ripple depth of 40 dB and ripple depths were varied at a fixed ripple density of
one ripple per octave.
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successfully match model predictions with the actual sub-
ject’s performance by means of overall performance metrics
(LE, PE, and QE) for five subjects (see Tab. 2) within
spatially restricted areas (Fig. 5). With the inclusion of a
spatial prior, the model was able to adequately explain
listeners’ response biases towards the horizontal plane.
Compared to previous models [6, 15], our model better pre-
dicted the group-level effects of non-individualized HRTFs
and rippled source spectra, yet only when selecting positive
spectral gradient profiles as monaural spectral features.

We evaluated the model in scenarios where the subject
was spatially static and listening to a broadband and
spatially static sound source in an acoustic-free field. In this
scenario, we simplified the representation of interaural
features to broadband ITDs and ILDs [18, 31]. Extensions
to the features are required when applying our model to
more complex sounds, such as music or speech (e.g., [49]).
Also, modeling sound localization in a multi-talker environ-
ment requires a frequency-dependent extraction of the
interaural cues by considering temporal fine-structure
within a restricted frequency range or temporal envelope
disparities [32]. Similarly, modeling the localisation of sound
sources placed in reverberant spaces necessitates more
complex feature-specific cochlear processing to account for
phenomena like the precedence effect [50, 51]. Still, our
model structure is open to integrating such extensions in
the future. In its present form, the model is ready to assess
the degree of HRTF personalization by comparing the
predicted sound-localization performance obtained with
one HRTF set against a set of listener-specific HRTFs [52].

In our model, the MAP decision rule selects the most
probable source position posterior distribution. We pre-
ferred this estimator over the mean estimator to adequately
deal with multiple modes of the posterior distribution gen-
erated by front-back confusions along sagittal planes. On
the other hand, the MAP estimator disproportionately
biases direction estimates towards the prior’s mode, at least
under conditions of high sensory uncertainty. One of many
possible alternative estimators that may better describe the
stochastic human localization responses is the posterior
sampling [8]: the model samples the perceptual estimate
from the full posterior distribution. Although often consid-
ered suboptimal, this estimator would allow the observer to
adapt to novel environmental statistics [53]. However, a
different estimator might affect the fitted sensory and
motor noise parameters. Therefore, comparative evalua-
tions of different estimators would require a more robust
fitting procedure, which is outside the current study’s scope.

The model incorporates several non-acoustic compo-
nents because they are crucial in explaining human perfor-
mances [2, 54]. Extending the reijniers2014 model [6]
by incorporating a spatial prior and response scatter
appeared vital to explain listeners’ response patterns. With-
out these components, fitting the model to the polar perfor-
mance metrics was unfeasible [27]. First, response noise
allowed us to control the response precision locally (LE
and PE) while leaving the global errors (QE) unaffected.
The global errors depend predominantly on the variance
of noise added to the monaural features. Second, the spatial

prior shapes the response patterns by introducing a bias
towards the horizon [42]. As shown in Figure 6, the prior
contributed to the polar component of the simulated
responses, which clustered around the eye-level direction.
The polar gain measure generated additional evidence, as
reported in Section 3.1, where integrating the prior beliefs
led to better matching the performances in the vertical
dimension. We extrapolated the spatial prior’s formulation
from [8] by assuming a symmetric prior distribution
between front and back positions. Discrepancies observed
between actual and predicted global errors (Fig. 5) indicate
that this assumption was likely incorrect and points
towards a front-back asymmetric prior instead. Nonethe-
less, we can only speculate about the reasons behind such
a long-term prior in spatial hearing. It might reflect the
spatial distribution of sound sources during everyday expo-
sure [55], it may stem from an evolutionary emphasis on
high relevance auditory signals [4], or it could be related
to the centre of gaze as observed in barn owls [56], although
the processing underlying the spatial inference mechanism
might be different in mammals [3].

While the model only considers spatially static listening
scenarios, it sets a foundation for future work on predicting
sound-localization behavior in realistic environments. For
example, modeling the environment’s dynamics as a chain
of consecutive stationary events is promising (e.g., [7]).
Sequential update of listener’s beliefs by considering the
posterior as the next prior appears to be a natural mecha-
nism under the Bayesian inference scheme [28]. Our model
is a well-suited basis for such investigations. A rich set of
modulators might influence the mechanism of spatial hear-
ing, and the model’s prior belief is the entry point to
account for many of those like accumulation to track source
statistics [20, 57], visual influences on auditory spatial per-
ception [58], or auditory attention to segregate sources [59].
Selective temporal integration appears critical when dealing
with the spatial information of many natural sources in
realistic scenarios. Integrating recent findings on interaural
feature extraction might solve this aspect [60]. To this end,
the model must account for the dynamic interaction
between the listener and the acoustic field. These extensions
will potentially enable the model to account for subject
movements [9] and simultaneous tracking of source move-
ments [61] while extracting spatial information from echoic
scenarios [62].

5 Conclusions

We proposed a computational auditory model for
the perceptual estimation of the direction of a broadband
sound source based on Bayesian inference. From a binaural
input, the model estimates the sound direction by combin-
ing spatial prior beliefs with sensory evidence composed of
auditory features. The model parameters are interpretable
and related to sensory noise, prior uncertainty, and
response noise. Having fitted the parameters to match
subject-specific performance in a baseline condition, we
accurately predicted the localization performance observed
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for test conditions with non-individualized HRTFs and
spectrally-modulated source spectra. Regarding spectral
monaural feature extraction, the model variant based on
the spectral gradient profiles performed best.

The proposed model is useful in assessing the perceptual
validity of HRTFs. However, the model’s domain is
currently limited to spatially static conditions, but it pro-
vides a good basis for future extensions to spatially dynamic
situations, spectrally dynamic signals like speech and music,
and reverberant environments.
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