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Abstract: The burden of infectious diseases is crucial for both epidemiological surveillance and
prompt public health response. A variety of data, including textual sources, can be fruitfully exploited.
Dealing with unstructured data necessitates the use of methods for automatic data-driven variable
construction and machine learning techniques (MLT) show promising results. In this framework,
varicella-zoster virus (VZV) infection was chosen to perform an automatic case identification with
MLT. Pedianet, an Italian pediatric primary care database, was used to train a series of models to
identify whether a child was diagnosed with VZV infection between 2004 and 2014 in the Veneto
region, starting from free text fields. Given the nature of the task, a recurrent neural network (RNN)
with bidirectional gated recurrent units (GRUs) was chosen; the same models were then used to
predict the children’s status for the following years. A gold standard produced by manual extraction
for the same interval was available for comparison. RNN-GRU improved its performance over time,
reaching the maximum value of area under the ROC curve (AUC-ROC) of 95.30% at the end of the
period. The absolute bias in estimates of VZV infection was below 1.5% in the last five years analyzed.
The findings in this study could assist the large-scale use of EHRs for clinical outcome predictive
modeling and help establish high-performance systems in other medical domains.

Keywords: electronic health records; infectious disease; varicella-zoster; deep learning; natural
language processing

1. Introduction

Disease burden estimates for infectious diseases are crucial for public health re-
source allocation [1].

Active and passive surveillance systems are essential to evaluate the epidemiological
impact of infectious diseases: they can provide background data to implement effective
control strategies, such as vaccination campaigns, and monitor the trend [2].

In this framework, the detection of varicella-zoster virus (VZV) has recently raised
interest due to the extensive debate about the need and cost–benefit profile of introducing a
mass vaccination program for young people [3,4]. The national routine notification system
adopted in Italy—which is mandatory—helps describe the epidemiology of VZV and allows
one to evaluate historical temporal trends but is undoubtedly affected by under-notification
and under-diagnosis [5].
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The broad implementation of the Electronic Health Record (EHR) in primary care
offers new opportunities for population-based studies through data generated by accesses
in any care setting, making it accessible promptly [6,7]. In addition, automatic methods
for data extraction from free-text reports are increasingly replacing manual extraction [8,9].
In particular, machine learning (ML) is gaining popularity in healthcare because of its power
to extract and filter available information from big data and accurately solve demanding
learning tasks such as classification, clustering, and numerical prediction [10,11].

In recent years, enhanced generalized linear model (GLM) techniques have been used
for text mining from EHRs for the case detection of VZV [12]. However, these techniques
can produce highly variable resulting models depending on the analyst’s choices, especially
in a class imbalance [13].

Standard shallow ML algorithms cannot directly model data sequences from text
streams: they rely on the independence assumptions between tokens, i.e., a single unit of
textual information, which generally corresponds to “words,” covariates. Deep-recurrent
neural network architectures can overcome these limitations: the reduction of input prepro-
cessing and manipulation, the possibility to process the text as a data sequence, and the
automatical learning of the correlations between features without superimposed structures
meet the mentioned needs [14,15].

Applying the mentioned approach could, in turn, be used to achieve two critical goals:
to estimate the incidence of VZV infection by automatic case identification and to make
timely and consistent predictions over time.

Highlights

• Estimates of infectious disease incidence can be time-consuming and tedious;
• Deep learning, in particular RNN-GRU, for automatic data extraction from the free

text could be a feasible and timely option;
• Results obtained with MLT were promising, yet, in future development, this text-

mining tool should be readily usable by non-technical users as well.

2. Materials and Methods
2.1. Electronic Medical Record Database

The Pedianet database (http://www.pedianet.it/en/, accessed on 9 May 2022) is
a pediatric primary care database that contains clinical, demographic, prescription, and
outcome data of children aged 0–14 years. Data are generated during daily clinical practice
by about 150 family pediatricians who use the same software JuniorBit® (various versions);
in the recent past, it has been exploited for infectious disease research studies [12,16,17].
In addition, Pedianet gathers details about specialist referrals, procedures, hospitalizations,
medical examinations, and health status (according to the Guidelines of Health Supervision
of the American Academy of Pediatrics).

Pedianet was the starting point for producing the gold-standard diagnosis of VZV
infection for each record, according to the literature [18].

The study population includes all the children in the Veneto region (Northeast Italy)
who were visited at least once between 2004 and 2014: data about 1,227,578 visits and
7631 children were collected. The baseline characteristics are shown in Table 1. stratified
for outcome class, i.e., negative or positive case of VZV in the corresponding year. Sex, a
categorical measure, is reported as a percentage and absolute frequency. Age, a continuous
measure, is reported with I/II (median)/III quartiles.

2.2. Main Strategy

VZV infection exhibits unique characteristics. First, it can be contracted once in a
lifetime (with notable exceptions). Furthermore, using a specific diagnostic code to identify
VZV infection is not mandatory for a pediatrician. Consequently, it can be critical to
ascertain cases and estimate the yearly incidence rate of VZV infection.

http://www.pedianet.it/en/
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Three Pedianet researchers spent two years manually reviewing the medical records
to obtain a gold standard for VZV infection; due to this mentioned period, a delay of
two years was set as the starting point to develop our model. The main idea was to train
the model to detect—through natural language processing (NLP)—the status of a child,
i.e., infected or not by VZV, based on text fields of the Pedianet, to compare the predicted
incidence with the gold standard and to use the newly acquired data to improve predictive
performances and continuously update the existing models.

Table 1. Characteristics of units analyzed. Descriptive statistics are reported and stratified for
outcome class, i.e., negative or positive case of VZV in the corresponding year.

N VZV Negative
(N = 58,334)

VZV Positive
(N = 2325)

Sex 60,659
Female 47% (27,340) 46% (1068)
Male 53% (30,994) 54% (1257)

Age [days] 60,342 0.7/2.2/4.28 * 0.6/1.4/3.1
* I/II (median)/III quartile.

For illustrative purposes, let us assume that data for a given year are available, e.g.,
2006. Under a “two-year delay,” the gold standard is established for data up to 2004. A
first version of the model is trained on data up to 2004 and applied to classify data from
2005 to 2006. The following year, i.e., 2007, the model can be updated with the data from
2005 (only in 2007, the gold standard for data from 2005 is supposed to be available) and
used to classify all the cases collected in the last two years, i.e., 2006 and 2007. This process
went on year by year up to the last model trained on data from 2004 to 2013 and used
to classify 2014 data (i.e., the last year for which we have the gold standard). Overall,
10 models were trained, i.e., with training data from 2004 alone, 2004–2005, 2004–2006,
2004–2007, 2004–2008, 2004–2009, 2004–2010, 2004–2011, 2004–2012, 2004–2013, each of
them used to classify and to be tested on the next two years, i.e., 2005–2006, 2006–2007,
2007–2008, 2008–2009, 2009–2010, 2010–2011, 2011–2012, 2012–2013, 2013–2014, and 2014
alone, respectively. The general strategy is described in Figure 1.

The entire dataset was initially divided into ten groups, indexed by the last year of
training data, from 2004 to 2013. Each group has two components. The first component
contains the training data, divided into 80% and 20% for training and validation/fine-
tuning, respectively. The second component includes the training data (from 2004 to the
reference year) and the next two years of data for testing purposes. Models were tuned
on the first component of each group, and hyperparameters were selected for optimizing
each validation set. Once the tuning parameters were selected, the new models were (re-)
trained on the whole training set using that selection of parameters, and tested on the
testing one, i.e., the next two years respect the last one used in the corresponding training
set. See Table 2 for the sets’ sizes.

2.3. Model Choice

Given the sequential nature of the input for the task, a deep learning architecture
involving a recurrent component to process the text was set up. Compared to a traditional
neural network, a recurrent neural network (RNN) is specifically designed to grasp the
complex relations between sequential data, such as text reported in natural language.

Within the RNN base components, the gated recurrent unit (GRU) was chosen to
meet the needs. A GRU can be viewed as an optimized Long Short-Term Memory (LSTM)
module, i.e., the principal reference for advanced RNN networks [19]. LSTM, as well as
its recent customized versions, would have also represented a valid option to explore [20].
On the other hand, we preferred GRU to LSTM and its variations because GRU has lower
complexity and required resources [21]. In particular, GRU meets the needs of a fast-
converging learner who can make an accurate prediction within a reasonable amount of
computational resources and time.
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Figure 1. Chart for the general strategy for model development and test. Top-line on the chart: each
new year X (right-most position on the x-axis), an updated model can be trained on the already
ready gold-standard data, i.e., up to the previous two years (blue), and used to predict the following
two years X − 1 and X (white). Middle-line on the chart: the following year X + 1, a second, updated
prediction (yellow) can be made on one of the years of tested data (X − 1) with the previous model.
Bottom-line on the chart: in the second next year X + 2 the gold standard is supposed to be ready for
that year X − 1, becoming a new training data (blue). The model can provide an updated prediction
for the year X and a new prediction for the years X + 1 and X + 2 (i.e., the current one “just ended”).

Table 2. Cases in each set of the models trained. All child records for a given year represent a case,
i.e., the same child in distinct years represents distinct and independent cases. Each row reports
datasets for the training, validation, and test of a model.

Years Training Phase Testing Phase

Train Test Train (#) Validation (#) Train (#) Test (#)

2004 2005–2006 1588 396 1984 7854
2004–2005 2006–2007 4405 1099 5504 9454
2004–2006 2007–2008 7873 1965 9838 10,852
2004–2007 2008–2009 11,969 2389 14,958 12,020
2004–2008 2009–2010 16,555 4135 20,690 13,062
2004–2009 2010–2011 21,586 5392 26,987 13,848
2004–2010 2011–2012 27,006 6746 33,752 14,139
2004–2011 2012–2013 32,666 8160 40,826 14,017
2004–2012 2013–2014 38,319 9572 47,891 12,768
2004–2013 2014 43,882 10,961 54,843 5816

2.4. Language Model

The text must be converted into numbers to serve as input in an ML model. One of
the most effective strategies to represent the text as a vector of numbers is to resort to
embeddings. Vectors are “trained” to convert syntactically and semantically similar words
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into geometrically close points of a vector space. Due to the highly specialized field and the
high amount of data disposal, a self-trained embedding representation was chosen. The
embeddings were created using the FastText algorithm with the SkipGram strategy and
300-dimension output vectors [22]. The entire Pedianet database was used, with an overall
of 6,903,035 visits of 216,976 children collected by 144 family pediatricians starting from
1 January 2004 to 23 August 2017.

2.5. Implementation

First, the records were collapsed and arranged in chronological order to allow the GRU
to work correctly. In the Pedianet, each row represented all available data for a specific visit
of a child. Next, all the records for a given year were put in a single text cell. Each row was
finally composed of a single cell reporting all the sequentially ordered history of textual
notes for a child in a specific year.

Furthermore, it was necessary to have a fixed dimension for the input sequence to
allow bidirectional RNN: a hard limit of 10,000 words was chosen. Records with more than
10,000 words were truncated (loss of information), while those with less than 10,000 words
were filled with a fictitious word (__PAD__).

After these operations, each input was a three-dimensional matrix with rows corre-
sponding to the corresponding amount of record (see Table 2), 10,000 columns (words in
each record), and 300 deep-wise elements (embedding representation for each word).

A bidirectional RNN-GRU was added to the network considering 256 nodes in each
direction (512 in total).

All the processed information was analyzed by two fully connected layers of 128 nodes
each (256). The last 128 nodes are next connected to a single node with a logistic activation
to output the probability of the possible status: VZV positive versus VZV negative for
every child.

To summarize, the overall network was composed of the following main layers
(see Figure 2):

1. Embeddings: representation of words converted into a syntactic and semantically
coherent 300-dimensional structure—input N × 10.000/output N × 10.000 × 300,
where N is the number of cases (i.e., one case is the collection of all the HERs of a
single child for a given year) in the dataset/minibatch considered.

2. Two synchronized layers of bidirectional RNN-GRU modules are composed of 256 nodes
each (512 nodes of each layer process the information as a pure sequence summarizing its
“meaning”—input N × 10.000 × 300/output N × 512 (output for the first synchronized
layer is equal to the input of the second: N × 10.000 × 512))

3. Two fully connected layers of 128 nodes each to process the “meaning” vector of
information from each record—input N × 512/output N × 128 (output for the first
synchronized layer is equal to the input of the second: N × 128).

4. Logistic output node: to produce a probability measure for the children being affected
by VZV in the corresponding year—input N × 128/output N × 1.

2.6. Training

The training of the network was based on the optimization/minimization of the
weighted binary cross-entropy log-loss (wbcell) measure, i.e., (minus) the mean of the
logarithm of the probability of being classified in the correct class (i.e., pi for positive cases,
(1 − pi) for the negative ones). For taking into account the issue of class imbalance, the
contributions to the loss estimation were weighted by the inverse of the class relative
frequency (considering fP the absolute frequency of positive cases, and fN the absolute
frequency of the negative ones). With the notation adopted the optimization measure takes
the following expression:

wbcell =
1
N

N

∑
i=1

−(
N
fP

∗ yi ∗ log(pi) +
N
fN

∗ (1 − yi) ∗ log(1 − pi))
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Figure 2. Flowchart of the trained network. The boxes report shapes and shape interpretation of
the data between each computation step, i.e., between layers of the network. Layers are reported as
linking connections between the boxes. N represents the size of the record passed in input; for our
minibatch training, N is 16; for overall records, N depends on the set reported in Table 2.

For network optimization, the Adam strategy was adopted [23]. The network was fed
with a mini-batch of size 16, i.e., 16 records at a time [24]. An “epoch” was passed once the
network was trained by all the records (batch by batch). The number of training loops was
capped at 15 epochs, imposing an early stop if no improvement was seen within 5 epochs
and choosing the best epoch [25].

A small nodal dropout was performed across the whole network to minimize the
over-fitting [26].

The output model is a probabilistic one, i.e., for any given case, the output is its
estimated probability of being a positive one. Deciding if a case is positive or not, i.e.,
defining a classifier, is a matter of selecting a cut-off for those probabilities. Selecting the cut-
off is mainly a matter of utility/preference in preferring false negative or false positive as a
potential error [27]. To evaluate a model independently from the cut-off, we can draw the
receiver operating characteristic curve, i.e., the curve made up of all the points of coordinate
(sensitivityc, 1− speci f icityc), at any possible cut-off c, from 0 to 1. The more area under the
ROC curve, the better the model is. The area under the ROC curve (AUC-ROC) is used as
the evaluation metric for the model trained. AUC-ROC ranges from 0 to 1, with a 0.5 value
representing uninformative models, i.e., equivalent to random guesses.

3. Results

In total, 1,227,578 records recorded on Pedianet databases from 7631 children between
2004 and 2014 were merged by patient and year. They were divided into ten cumulative
training sets, starting from data from 2004 and adding a year each time. Correspondingly,
10 test sets containing the two years’ data following the last one in the training set were
built up. A dictionary of 122,607 words was trained as 300-dimension embedding vectors
from Pedianet textual entries.

Across the ten model years, a median AUC-ROC of 97.97% (IQR 97.25%–98.07%)
within the training sets and 71.36% (IQR 60.35%–82.47%) for the test sets were reached.
A maximum test AUC-ROC of 95.30% was reached for the 2013 model, i.e., the last and the
one with the most data in the training set. The minimum test AUC-ROC of 38.46% was
reached for the model with data up to 2005. Progression of AUC-ROC performances in the
training and test set are reported in Figure 3.

The performance of the training sets increases quickly in the initial models and then
stabilizes. On the contrary, the performance of the test sets continuously improves over
time, suggesting that the underlying model is suitable for the specific task (optimal training
performances) and benefits from the update with new data to generalize its usability
(increasing testing performances).
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Figure 3. AUC-ROC (y-axis) performance progression across epochs of training (x-axes) and model
years(panels from 2004 to 2004–2013, from left to right) for both the train (green) and test (red). In
total, 95% CI are reported as shadows.

The outcomes of the trained models convey a probability for each case to be a positive
one in the corresponding year; before obtaining a classifier, a threshold cut-off for the
probabilities had to be selected to distinguish between positivity and negativity. Thus, an
optimal cut-off was chosen for maximizing the product of precision (i.e., the portion of
records correctly classified as positives) and recall (i.e., the portion of positive records that
are correctly classified) [28]. The performances corresponding to each test set for all the
models are reported in Table 3.

Table 3. Number of positives, negatives, area under the receiver operating characteristic curve (AUC-
ROC), predicted true-positives (tp) and true-negatives (tn), false-positives (fp), and false-negatives
(fn). Precision or positive predictive value (prec) and recall or sensitivity (rec) for each model year
(by row, indexed by the column year) related to their corresponding test sets. Bold face is used to
highlight the best performance column wise.

Model Year Positives Negatives AUC
ROC tp tn fp fn prec rec

2004–2004 637 1.954 0.804 540 5.180 2.037 97 0.210 0.848
2004–2005 172 3.348 0.385 188 8.474 35 757 0.843 0.199
2004–2006 465 3.869 0.588 194 10.024 41 593 0.826 0.247
2004–2007 480 4.640 0.649 130 11.403 33 454 0.798 0.223
2004–2008 307 5.425 0.582 102 12.470 51 439 0.667 0.189
2004–2009 277 6.011 0.652 98 13.386 46 318 0.681 0.236
2004–2010 264 6.510 0.775 37 13.870 40 192 0.481 0.162
2004–2011 152 6.922 0.835 43 13.848 19 107 0.694 0.287
2004–2012 77 6.988 0.832 45 12.645 22 56 0.672 0.446
2004–2013 73 6.879 0.953 17 5.698 90 11 0.159 0.607

Each model, equipped with the corresponding cut-off, is then used to estimate the
incidence of VZV infections in the two following years of the test. Results are reported
in Table 4.
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Table 4. Incidences of VZV infections observed in Pedianet and estimated by the model trained.

Model
Year

Years
Estimated Positives Negatives

Observed
Incidence

(%)

Estimated
Incidence

(%)

Estimated
Incidence
Error (%)

2004 2005–2006 637 1.954 8.11 32.8 24.7
2004–2005 2006–2007 172 3.348 10 2.36 −7.64
2004–2006 2007–2008 465 3.869 7.25 2.17 −5.09
2004–2007 2008–2009 480 4.640 4.86 1.36 −3.5
2004–2008 2009–2010 307 5.425 4.14 1.17 −2.97
2004–2009 2010–2011 277 6.011 3 1.04 −1.96
2004–2010 2011–2012 264 6.510 1.62 0.54 −1.08
2004–2011 2012–2013 152 6.922 1.07 0.44 −0.63
2004–2012 2013–2014 77 6.988 0.79 0.52 −0.27
2004–2013 2014 73 6.879 0.48 1.84 1.36

ROCs curves, highlighting the cut-off point and the corresponding difference in the
estimation of VZV infections, are reported in Figure 4. The years of the training models
are reported on the facets’ headers. Testing years are the following two up to 2014. Color
variations in the curves represent the variation of the error in the incidence estimation. The
optimal cut-off maximizing the product of precision and recall is reported (red dot) on the
side of the corresponding error produced by classifying records using it.

Figure 4. Receiver operator curves (ROCs) of the model trained to classify VZV infections. The years
of the training models are reported on the facets’ headers. Testing years are the following two up to
2014. Color variations in the curves represent the variation of the error in the incidence estimation.
The optimal cut-off maximizing the product of precision and recall is reported (red dot) on the side of
the corresponding error produced by classifying records using it.

Computational Environment

All the computations were performed using the R v4.1.2 [29] programming language,
powered by TensorFlow and compiled for GPU usage, and its Keras interface for the deep
learning modeling and training, the {targets} R-package for the global pipeline control, and
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the {tidyverse} R suite of packages for data management and plots. All the computations
run on a Linux Ubuntu 20.04 operating system installed on a machine with a 16-Core Xenon
processor equipped with 128 GB RAM and a CUDA NVIDIA Quadro RTX5000 graphic
card with 16 GB of dedicated memory.

4. Discussion

Many medical organizations and networks still use manual processes to extract data
from unstructured EHRs. Especially for infectious diseases, delays in producing and
disseminating the results may hinder a prompt public health response. Thus, it is necessary
to create and continuously update a data-based infectious disease prediction model to
handle situations in real time [21].

While automatization, in general, represents a hot topic nowadays, the potential of
these approaches still has to be fully explored, and the state of the art is hard to identi-
fied [30]. On the other hand, some recent works have already explored the field, finding
potential best practices to address the issues concerning the classification of natural free-text
fields from EHRs. Accordingly to our first step, one of the strategies appearing promising
is the adoption of pre-trained language models as a starting macrolayer of the network [31].

This work proposes an alternative strategy to set up, maintain, and update a data-
based VZV surveillance model to supplement existing systems. It could be thought of as
the starting point to solving the issues within the medical database. It would be interesting
to know whether NLP—a very well-known topic for other application fields—could be
successfully used in this context [32]. It opens new options and perspectives to analyze
medical data in an integrated environment.

Real-incidence rates would be at disposal when manual extraction is performed.
Conversely, the automated extraction represented by the model purposed could provide
instant estimates for the previous years: e.g., on the 1st of January of a specific year, when
all the data about the previous year were collected, it could be possible to estimate the
yearly incidence for a specific pathology. Moreover, it could also be possible to have an
updated estimation of the number of cases detected up to now live. Finally, thanks to the
NLP models, it is possible to calculate incidence for the upcoming years as well—i.e., by
making predictions—with better precision than simply relying on recent incidence trends.

Several studies have used techniques from deep learning to predict infectious diseases.
Our findings align with those of studies reporting that deep learning yields satisfactory
results when used to perform tasks that are difficult for conventional analysis methods [33].
For example, through an indirect comparison of the same Pedianet data [12], RNN-GRU
yielded better VZV prediction performance than enhanced GLM-based ML models. As
such, methods for predicting infectious diseases, such as VZV that uses deep learning, help
design effective models.

In future scenarios, the framework mentioned above could be expanded and used
in similar tasks of predicting other infections than VZV ones. None of the methodologies
are specific for VZV, and the whole procedure can be specialized and fine-tuned for other
targets. One of the main advantages of (recurrent) neural networks is their ability to
keep themselves up to date with low effort, thanks to the pre-trained scenario for transfer
learning. Much of the ability learned by the network is retained, and only the terminal
nodes used for the final classification are fine-tuned for the specific target of interest [34].
Due to this reason, the strategy is getting popular even for the general-purpose classification
of biomedical text [35].

Furthermore, in the present work, the models learn from free-text fields only, without
any additional input. Any evidence or suggestions from the literature were not given to
our model; it is well known that some factors influence the VZV incidence. For example,
the peak of infections is in the preschooler age and decreases afterwards. Given these
considerations, our work could be thought of as part of a more complex data integration
system, where essential variables of different nature and importance are put together to help
maximize the desired result [36]. Deep learning is especially suitable and able to manage
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by design this mixed-type of information, from structured (e.g., tabular information) to
unstructured types (e.g., free-text). Both the scenarios are promising: the former, where
structured clinical data were used as additional metadata to improve NLP tasks, and the
latter when NLP produces small, structured summary information to integrate classical
statistical models.

Limitations
Some Limitations Must Be Acknowledged

The amount of textual-based information stored electronically is rapidly increasing.
Accumulating information is easy; however, finding relevant information on demand can
be difficult as the size of the collection continues to escalate. This article presents a general
framework for text mining consisting of a large body of EHRs with text data that are
inherently unstructured and fuzzy and cutting-edge advances in deep learning. However,
barriers to adoption are one of the main challenges. Trusting that the current system extracts
high-quality information (i.e., all actual VZV cases) is also likely to cause concern that an
approach that deviates from the current standard (i.e., manual review) might not be of
equal quality. In addition, this system is designed for trained knowledge specialists. In
future developments, this text-mining tool should be readily usable by non-technical users.

It was recently shown that the Bidirectional Encoder Representations from Transform-
ers (BERT)-based model outperforms other deep learning alternatives in classification tasks
from EHRs [37]. BERT is based on a bi-directional representation of tokens incorporating
attention layers. Pre-train BERT language models require a massive amount of computa-
tional resources (in contrast with FastText, i.e., our choice). In contrast, using a pre-trained
one is significantly lighter. On the other hand, in the present work, we preferred to start
exploring potential solutions based on a personalized pre-trained language model. For that
reason, we did not adopt a BERT-first approach, leaving that for future exploration.

While the architecture does not theoretically require GPUs to be trained or evaluated, it
is complex and inefficient for a general-purpose production environment. Exploration of op-
timization strategies for lowering the computational complexity of the network evaluation
can be considered for real-world usage.

While the AUC-ROC on the training set goes up quite quickly (basically after the first
year of data), AUC-ROC on the test set needs more time. It obtains satisfying results only
when data were available for nine years and passing the 0.9 area only when ten years were
considered. Of course, this variability reflects the dimension of the starting dataset.

It is also worth considering the actual nature of the task in supporting human efforts
and decisions. In the present work, we have “mathematically” optimized the classifiers
derived from the probabilistic models selecting a cut-off and optimizing the product of
precision and recall. Given the high level of AUC-ROC reached by the final optimized
models, the cut-off can be selected to improve the recall up to a trade-off that allows a
human reviewer to only inspect a (small amount of) positive predicted record to exclude
false-positive detection. That way, a dual benefit can be obtained: a more precise estimation
of the incidence with a low additional human effort and a selection of highly relevant
wrongly classified records that can be specifically used to further refine the model in the
next update.

It is essential to understand that our model is not temporal; thus, it aims to obtain
the case identification and benefit from additional data, year after year, rather than find a
correlation in a specified temporal space. Its results are likely to help integrate temporal
models on the side of other structured data.

There is also a lack of external validation. Other pediatricians in different regions
with different habits can challenge the model. That is reflected in the high performance
obtained and maintained on the training set since the early phases, while more time and
data are needed to reach a similar level of performance on the testing sets. For training a
deep learning NLP classifier, a large amount of different data are needed to explore the
variability of language used in the field. On the other hand, as our study shows, with a
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sufficient amount of data, the model can learn enough to be used on entirely new data with
similar performances shown during its training phase.

5. Conclusions

The proposed method achieves promising results which outperform other state-of-
the-art algorithms, showing that the NPL approach can effectively predict the status of
a child with reasonable accuracy. The deep-learning-based system built in this study
could be applied to facilitate the large-scale use of family pediatrician notes for clinical
outcome predictive modeling. The findings in this study could also assist in establishing
high-performance systems in other medical domains integrating structured and unstruc-
tured data.
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