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Abstract: Metal bioaccumulation and metallothionein (MT) expression were investigated in the
gills and liver of the red-blooded Antarctic teleost Trematomus hansoni to evaluate the possibility
for this species to face, with adequate physiological responses, an increase of copper and cadmium
concentrations in its tissues. Specimens of this Antarctic fish were collected from Terra Nova Bay
(Ross Sea) and used for a metal exposure experiment in controlled laboratory conditions. The two
treatments led to a significant accumulation of both metals and increased gene transcription only
for the MT-1. The biosynthesis of MTs was verified especially in specimens exposed to Cd, but
most of these proteins were soon oxidized, probably because they were involved in cell protection
against oxidative stress risk by scavenging reactive oxygen species. The obtained data highlighted
the phenotypic plasticity of T. hansoni, a species that evolved in an environment characterized by
naturally high concentrations of Cu and Cd, and maybe the possibility for the Antarctic fish to face
the challenges of a world that is becoming more toxic every day.

Keywords: Antarctica; antioxidants; cadmium; copper; fish; metallothioneins

1. Introduction

The Antarctic environment has unique characteristics related to its distance and isolation
from other continents of our planet. Anthropogenic contamination is considered negligible
even if contaminants can reach Antarctica by long-range atmospheric transport [1].

Antarctic marine organisms evolved in this environment, isolated for 10–12 million
years and exposed to peculiar physical and chemical conditions, such as a very low and
constant temperature and high oxygen concentration [2]. Such conditions probably affected
the adaptive metabolic strategies during the evolution of these organisms [3] and, in
particular, the physiological defence systems against the risk of oxidative stress [4,5].

One of the main characteristics of Antarctic seawater is a natural occurrence of high
cadmium (Cd) concentrations, about 70 ng L−1 in the soluble fraction and 0.05–0.49 µg/g
dry mass in surface sediments along the coast of Terra Nova Bay, Ross Sea [6,7].

Antarctic seawaters are also characterized by a natural occurrence of high copper (Cu)
concentrations, about 150 ng L−1 [6].

Due to these elevated environmental metal levels, organisms may accumulate metals,
which penetrate their tissues by various mechanisms, according to the chemical speciation
of the metal. The main pathway for metal uptake in fish seems to be through the gills
and intestines, but the relative extent of these routes varies, partly depending on the
chemical and physical characteristics of water and sediments [8]. Antarctic vertebrates can
accumulate metals also feeding on molluscs and epibenthic crustaceans because these prey
frequently have high tissue metal concentrations [7,9].
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It is well-known that metal ions widely interact with biological molecules. Cd has
a high affinity for the sulphydryl cysteine groups and competes against zinc (Zn) and
Cu for the structural and active sites of various enzymes, thus impairing their catalytic
activities [10]. Cd also exerts several toxic effects at both cellular and systemic levels [11].
On the other hand, essential trace metals, such as Cu, are required in various physiological
and metabolic processes, but they become toxic at excessive concentrations, damaging
plasma membrane and other cell components [12].

Metal ions can cause severe problems in fish by producing reactive oxygen species
(ROS). These substances are a normal by-product of oxidative metabolism, and generally,
a higher rate of ROS generation has been reported in fish and aquatic invertebrates [13].
On the other hand, mitochondria of true endotherms, such as mammals, seem to produce
lower amounts of ROS than fish [14]. However, the rate of ROS formation can vary
from species to species and can also greatly increase in response to various physiological
and pathological conditions, causing oxidative stress and damaging DNA, proteins, and
lipids [15,16]. Regarding metals, Cu is one of the active redox components that promote
the redox response to ROS. Cu can specifically operate as a catalyst in the Fenton reaction,
promoting the transformation of superoxide anion and hydrogen peroxide into hydroxyl
radical, the most damaging ROS and the primary cause of oxidative stress. [17]. On
the other hand, redox-inactive metals such as Cd show their toxic effects via bonding to
sulphydryl groups of proteins and depletion of glutathione [18].

Organisms developed metallothioneins (MTs), a family of widely distributed, low-
molecular-weight metal-binding proteins (6–18 kDa), as the first line of defence against
metal toxicity to reduce the issues associated with metal exposure [19,20]. These proteins
are characterized by an unusually high cysteine content (30%) and a lack of aromatic
amino acids and histidine [21]. Their biosynthesis may be induced in tissue by various
stimuli, especially metal ions or several stress conditions, having many functions, such as
the regulation of essential metal content, the detoxification of essential and non-essential
metals, and the non-enzymatic scavenging of ROS [22]. Tissue expression of MTs in fish
primarily occurs in the liver, kidney, and gills [23].

One of the main scientific questions about the physiological adaptation of Antarctic
organisms is whether they have evolved acclimatization capacities towards a variation
of the environmental metal concentrations given that they evolved under a significant
selective pressure represented by the elevated concentrations of these chemical elements.
In particular, in this paper, we aimed to verify whether and how an increase in the tissue
concentrations of Cu and Cd can be reflected in the implementation of the gene expression
of MTs. Trematomus hansoni, an Antarctic teleost widespread in the coastal marine areas
of the ice continent, was chosen as the experimental organism and used in exposure
experiments under controlled laboratory conditions. The data of metal accumulation in
gills and the liver have been correlated with the MT gene expression and evaluated at both
transcriptional and post-transcriptional levels.

Knowledge of T. hansoni physiology is very scarce and almost exclusively limited
to the anti-freezing properties of its body fluids, a feature shared with other species of
Antarctic fish [24]. This species showed only minor differences in antioxidant defences
compared to other notothenioids, with strong antioxidant capacity but restricted catalase
activity [25], suggesting that additional proteins are crucial for the defence against ROS.

2. Results and Discussion

The exposure to 1.57 µM Cu or 0.89 µM Cd was non-lethal for the experimental spec-
imens, confirming the results of the experimentations performed on fish of the same
genus [26]. Cu treatment led to a statistically significant accumulation of this metal
(p < 0.001) in both gills and the liver, with an increase of 53% and 61%, respectively
(Figure 1a). The accumulation of Cd was much more consistent in percentage (Figure 1b).
In fact, after treatment with this metal, the concentrations measured in the liver almost
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quadrupled, while in the gills, they became about 100 times higher than controls (p < 0.001),
in which the Cd concentration was close to zero.
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Figure 1. (a) Cu and (b) Cd concentrations (ng/mg of total proteins) determined in the gills and liver
of T. hansoni. Data are reported as the mean of five specimens ± SD. Asterisks indicate differences
between controls and treated specimens (p < 0.001).

These results can be correlated to the different degrees of metal absorption in different
tissues [27]. It is also possible that the higher percentage accumulation of Cd is related to the
fact that it is a non-essential metal. In fact, for non-essential metals, cells favour a system of
detoxification based on chelation (and therefore storage in molecular structures that reduce
its solubility and bioavailability) rather than on excretion, having no membrane transport
systems that are certainly present for Cu, which is instead an essential metal [28,29].

Another possibility is that the greater percentage increase in the gills results from
acute exposure to high concentrations of this metal. This effect should be emphasized in
gills because they are directly exposed to the external environment and lined with a simple
epithelium, which is linked to diffusional processes toward body fluids. The results confirm
that the liver is an essential organ in detoxifying xenobiotics, accumulating them in greater
quantities than other organs and tissues, even in Antarctic fish. For example, Dalla Riva
et al. [30] determined higher Cd concentrations in the liver than in the white muscles and
spleen of Trematomus bernacchii. Santovito et al. [31] found a more significant accumulation
of Cu and Cd in the liver compared to other tissues (gills, heart, white muscle) in both
T. bernacchii and Trematomus newnesi. Furthermore, T. bernacchii experimentally treated
with different metals showed a significant increase in the hepatic concentration of these
elements [32].

As a consequence of metal accumulation, there is an increase in the transcription of
genes encoding MTs but only in the liver and exclusively for the MT-1 isoform (Figure 2a),
with mRNA concentrations showing a relatively small increase of 15% after exposure to Cu
and 10% after treatment with Cd (p < 0.05).
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This result is partially confirmed by the literature data, as Cd exposure studies using
the icefish Chionodraco hamatus showed that MT-1 transcript was preferentially accumulated
in the liver [33]. However, it is generally assumed that isoform 1 plays a significant role in
the detoxification of Cd [27].

Recent research in Trematomus eulepidotus suggests that the preference for the produc-
tion of the various MT isoforms may not be tissue-specific and instead may depend on
the inducing metal and the species under consideration [34]. More likely, structural and
functional differences in the promoter regions of the genes encoding these proteins are
responsible for the differential expression of the two MT isoforms [35].

A rather singular result was obtained by measuring the tissue levels of MT with the
silver saturation method [36]. As can be seen in Figure 3a, the specimens exposed to both
Cu and Cd do not show an increased concentration of MT either in the gills or in the liver,
and even the levels are statistically lower in the treated specimens compared to the controls
(p < 0.05). Given the role played by MTs as metal-binding proteins, it was unlikely that
an increase in the accumulation of Cu and Cd would lead to a physiological response
characterized by a reduction in the presence of these proteins at the cellular level. The
existence of these proteins could not be emphasized using the silver saturation method
because they were partially oxidized, which prevented us from confirming the theory that
the biosynthesis of MTs had taken place. In fact, by applying Santovito et al.’s method [37],
which can also measure oxidized MTs, an increase in MT expression is evident (p < 0.05),
in particular in response to Cd (Figure 3b). This result is in line with what was previously
highlighted by the analysis of metal accumulation. The only exception is represented by
the gills of the specimens exposed to Cu, in which the TM levels are comparable to those
measured in the controls. In this particular circumstance, other chelating molecules, such
as glutathione (GSH), may play a more critical role.
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as the mean of five specimens ± SD. Different letters with the same index correspond to significant
statistical differences among the different experimental conditions for p < 0.05. (a) Reduced MTs;
(b) oxidized MTs.

It is well-known that this tripeptide plays an important protective role against the
toxic effects of metals, acting as a primary chelating molecule in an early phase of the
intracellular accumulation of these elements, as indeed occurs during acute exposure [38,39].
Furthermore, it may not be surprising that this occurs precisely in the gills of specimens
exposed to Cu. Cu is a metal with redox properties and may be involved in Haber-Weiss
and Fenton reactions, producing ROS [40,41]. GSH is known to form stable GSH-Cu (I)
complexes, preventing further redox cycling and the generation of free radicals, and this
may explain the complete protection afforded by GSH against the effects of Cu [35]. In
addition, this preventative function in creating an oxidative stress situation is crucial in an
organ such as the gill, where high partial pressures of oxygen are naturally present and
favour the generation of ROS.
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Among the protein alterations affecting MTs, whose characteristics are known, is
the oxidation of these molecules with the formation of disulphide bridges between the
thiol groups of the cysteines [42]. This protein modification is linked to the antioxidant
defence function characteristic of MTs [43,44]. Under our experimental conditions, this is
probably determined by an increase in the rate of ROS formation, the production of which
is notoriously enhanced by the presence of an excess of metals in the cell [17].

Another peculiar result is that the concentrations of MTs in the liver are not correlated
with their mRNA levels. Since the rate of protein biosynthesis is higher than the rate
of messenger transcription, it is possible that in the controls is a relatively high mRNA
concentration, which is not fully translated to proteins yet. This result is widely documented
in the literature, and many authors attribute it to a post-transcriptional control on MT
synthesis, first identified in the rat liver [45]. This regulation appears to depend on the
development of stress granules (SGs), which are cytoplasmic foci, where the messengers
can be stored and translated later. [46]. We have frequently emphasized this characteristic
in species that are exposed to stressogenic environments but that are not experiencing acute
stress [47,48], such as Antarctic fish [49–51], which enables the tissues to react to acute
stress very quickly when it suddenly arises. The occurrence of stress granulates in the liver
of T. hansoni experimentally exposed to metals is a possible explanation for our results.

Nucleation proteins are involved in SG formation, such as the T-cell-restricted in-
tracellular antigen (TIA) proteins, TIA-1, and TIA-1-related protein (TIAR), which both
self-associate to promote the growth of SGs, directly binding target RNAs [52]. Recently,
we characterized these proteins and their expression concerning the expression of anti-
stress proteins in C. hamatus and T. bernacchii. Preliminary data indicated that, in both
species, high levels of expression of the messenger of TIA-1 correspond to low levels of
biosynthesis of antioxidant enzymes, such as peroxiredoxins, supporting the hypothesis of
a post-transcriptional control operated by stress granules [53]. We obtained similar results
studying SG proteins in the solitary ascidians Ciona robusta experimentally exposed to
metals [54].

3. Materials and Methods
3.1. Ethical Procedures

The sample collection and animal research conducted in this study comply with the
Italian Ministry of Education, University, and Research regulations concerning activities and
environmental protection in Antarctica and with the Protocol on Environmental Protection
to the Antarctic Treaty, Annex II, Art. 3. All experiments were performed under the
U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines; EU Directive
2010/63/EU; and Italian DL 2014/26 for animal experiments.

3.2. Experimental Animals

Adult specimens of T. hansoni (21.2–24.6 cm, 130–159 g) were collected in the proximity
of Mario Zucchelli Station in Terra Nova Bay, Antarctica (74◦42′ S, 167◦7′ E), and kept in
glass aquaria of 180 L (100 × 40 × 45 cm3) supplied with aerated seawater at approximately
0 ◦C (pH 8.1, 10.3 mg O2 L−1).

After a distressing period of seven days, 10 specimens were randomly distributed in
two tanks (five for each tank), where they were exposed to Cu (1.57 µM) or Cd (0.89 µM),
sub-lethal doses previously used in similar experimentations on fish of the same genus [29].
This choice was made to be able to make a comparison between different species exposed
to the same concentrations of Cu and Cd. Furthermore, the goal was to produce a tissue
accumulation of metal sufficient to produce a cellular response. Since the exposure time
had to be necessarily reduced due to the limited possibilities granted by the particular
laboratory conditions, it was decided to use non-”environmental” concentrations.

Five untreated specimens were used as a control group. After 5 days, all the fish were
euthanized (tricaine methanesulphonate, MS-222; 0.2 g L−1), and samples of gills and liver
tissues were excised, quickly frozen in liquid nitrogen, and stored at −80 ◦C.
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3.3. Primers Design, Total RNA Extraction, mt-1, and mt-2 cDNA Synthesis

Primers were designed in the coding regions of the mt-1 and mt-2 cDNA sequences
previously characterized in T. hanasoni and published in the NCBI database (GenBank
accession numbers FJ870679.1 and FJ870680.1, respectively). Primer sequences were anal-
ysed with the IDT Oligo Analyzer tool (https://eu.idtdna.com/pages/tools/oligoanalyzer
(accessed on 6 September 2021)). Primer sets are shown in Table S1.

Total RNA was purified from tissues using PRImeZOL™ reagent (Canvax, Córdoba,
Spain) according to the manufacturer’s protocol. Further purification was performed with
8M LiCl [55] to remove glucidic contaminants. The RNA quantification was performed
using the NanoDrop ND-1000 spectrophotometer (ThermoFisher Scientific, Waltham, MA,
USA). RNA integrity was assessed by running an aliquot of RNA (1000 ng µL−1) on a
denaturing gel stain [56]. The cDNA synthesis was performed using a Biotechrabbit™
cDNA Synthesis Kit (Berlin, Germany) at 50 ◦C for 1 h + 99 ◦C for 5 min, from 1 µg of
total RNA in a 20 µL reaction mixture, containing 2 µL of dNTP Mix (10 mM each), 0.5 µL
of RNase Inhibitor, 40 U µL−1, 0.5 µL of Oligo (dT) 12–18 (10 µL), 4 µL of 5x Reverse
Transcriptase Buffer, 1 µL of RNA Template, 1 µL of RevertUPTM II Reverse Transcriptase,
and PCR-grade water up to 20 µL. PCR reactions were performed with 50 ng of cDNA and
GRS Taq DNA polymerase (Grisp, Porto, Portugal). The PCR program was the following:
95 ◦C for 5 min and 40 × (95◦ for 30 s, Ta for 30 s, 72 ◦C for 30 s) and final elongation at
72 ◦C for 5 min.

3.4. qRT-PCR Analysis

Real-time qRT-PCR analysis was performed to evaluate the expression of mt-1 and mt-2
mRNAs. cDNAs for both target genes were amplified with the specific primers reported
in Table S1. The housekeeping gene gapdh was amplified with species-specific primers
(Table S1) to control for variation in the efficiency of cDNA synthesis and PCR amplification
reactions. qRT-PCR amplifications were carried out using the qPCRBIO SyGreen Mix
Separate-ROX kit (PCR Biosystems, Wayne, PA, USA) and the following program: 95 ◦C
for 2 min, 40 × (95 ◦C for 20 s and 60 ◦C for 60 s), and then the dissociation stage 95 ◦C for
15 s, 60 ◦C for 1 min, 95◦ for 15 s, and 60 ◦C for 15 s.

3.5. Estimation of Metal and Metallothionein Concentrations

Polytron homogenized portions of the tissues in 4 vol g−1 of tissue of 0.5 M sucrose,
20 mM Tris–HCl buffer pH 8.6, supplemented with 0.006 mM leupeptin, 0.5 mM PMSF
(phenylmethylsulphonyl fluoride) as an antiproteolytic agent, and 0.01% β-mercaptoethanol
as a reducing agent. The homogenates were centrifuged at 48,000× g for 60 min at 4 ◦C to
obtain the cell-free extracts.

Cu and Cd contents were determined in cell-free extracts by atomic absorption spec-
troscopy using a PerkinElmer (Waltham, MA, USA) 5100 graphite furnace atomic absorp-
tion spectrometer. The instrumental conditions applied were according to the PerkinElmer
manual. Hollow cathode lamps for each analysed metal were used as radiation sources.
For Cu and Cd, the working wavelengths were 324.754 nm and 228.802 nm, respectively.
The instrument was calibrated manually by aspirating the prepared working standards
of the cations of interest (1000 mg L−1 stock solutions of metals in deionized water) one
by one into the flame. The samples were then also aspirated manually into the flame for
atomization. Control blank solution on reagents and equipment revealed insignificant
contamination of samples. Values were expressed as ng of single metal/mg of total proteins
assayed by the Folin phenol reagent method [57] using bovine serum albumin as standard.

MT concentration was determined in the cell-free extracts by the silver saturation
method [36]. Briefly, 0.5 mL of supernatant was mixed with 1.0 mL of 0.5 M glycine buffer,
pH 8.5, and 1.0 mL of 20 ppm AgNO3 in 0.5 M glycine buffer, pH 8.5. After standing
at room temperature for 15 min, to lead Ag+ to saturate the metal binding sites of MT,
100 µL of bovine haemolyzed erythrocytes were added. Then, the mixture was boiled
for 2 min to cause denaturation and precipitation of proteins (but non-thermostable MTs)

https://eu.idtdna.com/pages/tools/oligoanalyzer
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and centrifuged at 4000× g for 5 min to remove Ag+ bound to haemoglobin and other
proteins from the solution. The hemolysate addition, boiling, and centrifugation steps were
repeated twice. The MT concentrations were calculated based on the amount of Ag+ that
remained in the solution because of bonds to MTs. Ag+ content was determined by atomic
absorption spectroscopy as previously described. The working wavelength was 328.068.
To discriminate between reduced and oxidized MTs, Santovito et al.’s method [37] was
applied. Briefly, 3.0 mL of cell-free extract were mixed with 2-mercaptoethanol (a reducing
agent) at a final concentration of 10 mM and incubated at room temperature for 15 min
and then 2 h after adding ZnCl2 at a final concentration of 6 mM. Both these incubations
were performed in anaerobic conditions, gurgling nitrogen through the solution. The MT
concentrations were determined as previously described. As previously described, the
amount of MTs was normalized against total soluble cell proteins.

3.6. Statistical Analyses

Statistical analyses were performed with the PRIMER statistical program (PRIMER-e,
Auckland, New Zealand). One-way ANOVA was followed by the Student–Newman–Keuls
test to assess significant differences (p < 0.05). The data were expressed as the average of
five analysed specimens ± standard deviation (SD).

4. Conclusions

The obtained data highlighted the phenotypic plasticity of T. hansoni, a species that
evolved in an environment characterized by naturally high concentrations of Cu and Cd,
and suggested the possibility for the Antarctic fish to face the challenges of a world that
is becoming more toxic every day. In this physiological characteristic, metallothioneins
play a fundamental role in performing the function of both metal-chelating molecules and
non-enzymatic antioxidants. Indeed, this latter function is integrated with other proteins
that play a role in protection against oxidative stress, such as antioxidant enzymes, whose
expression in Antarctic fish also has peculiar adaptive characteristics.

Furthermore, our results also represent an essential contribution to the achievement of
the objectives for establishing the marine protected area (MPA) of the Ross Sea, providing
functional data useful for biological assessments for the preliminary and initial monitoring
of the ecosystem of the new MPA.

It will be necessary to implement the knowledge of the physiological responses against
environmental stress that other species belonging to all kingdoms can carry out against the
toxicity of xenobiotic substances. This will certainly be the main goal of future research
activities: to have a more detailed big picture not only within the group of Antarctic fish
but also of the entire food web of the Antarctic ecosystem.
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