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Summary 

 

The motor unit (MU) is the basic functional component of the neuromuscular system and 

consists of an alpha motoneuron, its axon, and all the muscle fibres it innervates (Sherrington, 1925). 

The MU acts as a neuromechanical transducer and plays a pivotal role in generating muscle 

contractions by converting descending neural inputs into muscle forces (Heckman & Enoka, 2012). 

The conversion of the electrical current traveling in the motoneuron into a depolarisation stimulus 

in the muscle fibres is performed at the level of the neuromuscular junction that, given its functional 

stability (safety factor), usually results in a one-to-one relationship between the discharges of a 

motoneuron and the transduced signal that propagates into the muscle (Wood & R. Slater, 2001; 

Duchateau & Enoka, 2011). Therefore, a motoneuron and the innervated muscle fibres normally 

function as a single entity, with the motoneuron’s action potentials directly reflected in muscle 

fibres’ action potentials. This fundamental principle made of the motoneuron the only neural cell 

that can be studied in humans with non-invasive techniques (Farina et al., 2004). Currently, High-

Density surface Electromyography (HD-EMG) is considered the preferred non-invasive tool for the 

investigation of how the CNS controls voluntary movements in humans (Farina et al., 2016) and how 

it adapts to different conditions (Gallego et al., 2015a; Martinez-Valdes et al., 2018a; Valli et al., 

2023). 

In the two introductory chapters of this thesis, I will discuss the anatomical and physiological 

fundamentals of the MU and its components, as well as the principles and evolution of the HD-EMG 

technique. This comprehensive understanding will lay the groundwork for the following three 

experimental chapters investigating the physiological adaptation of neural control to disuse and 

disease, and proposing technical advancements to the HD-EMG technique. 
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1. Introductory Chapter 1: Anatomy and Physiology of the Motor Unit 

 

At the beginning of the 20th century, Sir Charles Sherrington introduced the concept of the 

"motor unit" (MU) as a fundamental functional element in muscular action (Sherrington, 1925). 

Sherrington defined the MU as the "motoneuron axon and its adjunct muscle-fibres," emphasizing 

the inseparable link between the alpha motoneuron and the muscle fibres it innervates (Liddell & 

Sherrington, 1925). This notion became a cornerstone in understanding the organization of the 

motor system and the neural control of movement. 

Within the muscle, each alpha motoneuron branches out and forms synapses with multiple 

muscle fibres distributed over the muscle area. This intricate network of connections ensures even 

force distribution throughout the muscle and serves as a protective mechanism to reduce the risk 

of significant muscle impairment in case of damage to a single or few motoneurons (Purves et al., 

2001a). 

Originally, Sherrington assumed that each motor axon spike would result in the activation of 

every muscle fibre within a MU, resulting in uniform mechanical action. He also postulated that a 

given muscle fibre belongs to only one MU, with little or no polyneuronal innervation (Sherrington, 

1925). Subsequent research has supported these assumptions, demonstrating that neuromuscular 

transmission is generally reliable, albeit occasional activation failures have been observed in vitro 

(Burke, 1981). Similarly, adult healthy muscles typically exhibit little or no polyneuronal innervation 

of individual muscle fibres (Feindel et al., 1952; Brown & Matthews, 1960). Thus, the coupling 

between motoneuron and the innervated muscle fibres is functionally reliable and anatomically 

exclusive in healthy adult muscles. However, exceptions to these principles can be observed during 

the innervation/reinnervation processes typically occurring during development (Redfern, 1970; 

Bagust et al., 1973) or during aging and in some neuromuscular diseases (Slack et al., 1979; Gordon 

et al., 2004). 

MUs can be categorized based on size and functional properties. In a simplistic view, small 

alpha motoneurons innervate relatively few muscle fibres, forming slow MUs composed of small 

"red" muscle fibres that contract slowly and are resistant to fatigue (Purves et al., 2001a, 2001b). In 

contrast, larger alpha motoneurons innervate larger, pale muscle fibres, forming fast fatigable MUs. 

These MUs generate greater force but are prone to fatigue (Purves et al., 2001a). A third category, 

fast fatigue-resistant MUs, lies between slow and fast fatigable units, exhibiting intermediate 

properties (Purves et al., 2001a). 
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The different characteristics of various motoneurons and muscle fibres suggest that different 

tasks will involve different MUs. Indeed, slow MUs are more suitable for long-lasting low intensity 

tasks, as these MUs are capable of maintaining their discharge activity over long periods, although 

they cannot produce elevated force. Differently, when faster and more intense contraction tasks 

are required, it is necessary to recruit fast fatigue-resistant and fast fatigable MUs that are capable 

of greater speed of contraction and force generation capacity. 

The physiological rules defining the strategy used by the nervous system to take advantage 

of the specific properties of the different MUs were depicted by Henneman and Mendell in the 

1960s with a series of articles introducing and explaining the so called ‘Size principle’ (Mcphedran 

et al., 1965; Wuerker et al., 1965; Henneman & Olson, 1965; Henneman et al., 1965a, 1965b). 

According to the size principle, small MUs, which consist of smaller alpha motoneurons and 

innervating slow-twitch muscle fibres, are recruited first during low-intensity tasks. That is because 

slow-twitch muscle fibres are resistant to fatigue and are suited for sustained, low-force activities. 

As the force requirements of a task increase, larger MUs, which consist of larger alpha motoneurons 

and innervate fast-twitch muscle fibres, are progressively recruited. Fast-twitch muscle fibres can 

generate more force but fatigue more quickly than slow-twitch fibres (Mendell, 2005a). 

The size principle ensures that MUs are activated in a graded and sequential manner, 

allowing for smooth and coordinated muscle contractions. This recruitment pattern is grossly 

managed by the central nervous system via modulation of the synaptic input (Enoka & Duchateau, 

2017) to match the force requirements of different motor tasks but, as described in the next 

paragraphs, it is fine-tuned by the intrinsic properties of the motoneurons membrane (Heckman & 

Enoka, 2012). 

By adhering to the size principle, the nervous system optimizes muscle performance, 

minimizes unnecessary energy expenditure, and allows for precise control over muscle force 

production during various activities. 
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Figure 1-1: The motor unit, the functional unit of the neuromuscular system, comprises an alpha motoneuron and the muscle fibres it 
innervates. The alpha motoneuron originates from the spinal cord and extends its axon through the peripheral nerves to reach the 
target muscle. At the neuromuscular junction, the axon terminal forms specialized synapses with individual muscle fibres. Each motor 
unit consists of a single alpha motoneuron branching to innervate multiple muscle fibres, forming a precise and coordinated 
neuromuscular interface. 
Figure adapted from https://github.com/iandanforth/pymuscle 
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1.1. Different Populations of Motoneurons 

 

The motoneuron should not be considered as a standard cell or structure. Indeed, different 

types of motoneurons have been identified over the years and have been categorised in at least two 

distinct populations, the alpha and gamma motoneurons (Manuel & Zytnicki, 2011). Although today 

we distinguish these motoneurons based on their function, their discovery was based on the 

observation of different structural and functional aspects. 

The journey to uncovering alpha and gamma motoneurons can be traced back to the 

discovery of muscle spindles in frogs (Kolliker A, 1862) and mammals (Kuhne, 1863) in the 19th 

century. These muscle spindles presented a bundle of thin muscle fibres, distinct from the ordinary 

muscle fibres. Further investigation revealed that the largest motor axons innervate the ordinary 

muscle fibres, while the smallest axons are specifically innervating intrafusal muscle fibres within 

the muscle spindle. Additionally, electrophysiological investigations demonstrated that smaller 

motor axons with high electrical threshold conduct action potentials at slower velocities than large 

motor axons with low electrical threshold (Manuel & Zytnicki, 2011). 

These smaller motoneurons, innervating the muscle spindle were named gamma 

motoneurons (Leksell, 1945). Gamma motoneurons maintain the sensitivity of muscle spindles, 

which are specialized sensory receptors embedded within the muscle. The muscle spindles provide 

essential proprioceptive feedback, informing the nervous system about muscle length and changes 

in muscle length during movement (Santuz & Akay, 2023). 

Differently, the large motoneurons innervating muscle fibres were named alpha 

motoneurons (Erlanger et al., 1926). Alpha motoneurons are responsible for directly controlling the 

contraction of skeletal muscles. When activated, alpha motoneurons send signals to the extrafusal 

muscle fibres, causing them to contract and generate force. These muscle contractions are what 

produce the voluntary movements and actions of the body. 

As a final note, experiments in animals identified also a third population of motoneurons, 

the beta motoneurons, which innervate both the intrafusal and extrafusal muscle fibres. However, 

their presence and relevance in humans is not well known (Manuel & Zytnicki, 2011).  

Given the topic of this thesis, we will only focus on the alpha motoneuron from now on, as 

this is the only population of motoneurons that can be investigated with High-Density surface 

Electromyography (HD-EMG). 
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1.2. The Alpha Motoneuron 

 

The alpha motoneuron is also referred to as the final common pathway in the nervous 

system because it is the ultimate connection point where voluntary motor commands from the brain 

converge to produce muscle contractions (Heckman & Enoka, 2004). As the ultimate convergence 

point for voluntary motor commands from the brain, the alpha motoneuron integrates and 

processes various inputs before transmitting the resulting signals to the muscles it innervates. Far 

from being a simple signal conduit, the alpha motoneuron is a sophisticated structure with multiple 

mechanisms that enable it to finely tune and modulate incoming signals (Manuel & Zytnicki, 2011). 

This intricate integration of inputs allows for precise and coordinated muscle responses, making of 

the alpha motoneuron an essential component of motor control. 

The activity of the alpha motoneuron is governed by the all-or-none principle, which means 

that it either fires at its full potential or not at all (Rosenblueth, 1935). When the motoneuron 

receives a strong enough signal from the brain or other neural circuits, it generates an action 

potential that propagates along its axon to the neuromuscular junction, where it releases 

neurotransmitters, specifically acetylcholine, leading to muscle contraction (Tintignac et al., 2015). 

The all-or-none concept in motoneurons contrasts with the graded response observed in the entire 

muscle. Unlike the motoneuron, which either fires maximally or remains silent, the force produced 

by the entire muscle can vary and be finely adjusted. This graded response is achieved through the 

recruitment of multiple selected motoneurons and by modulation of their discharge frequency 

(Mendell, 2005a). 

The integration of all the inputs received by the motoneuron and the transmission of the 

resulting signal to the muscle depend on the activity of various ion channels that regulate the 

membrane potential of the motoneuron and govern the generation of action potentials. These ion 

channels are critical components distributed throughout the motoneuron's three distinct regions, 

each characterised by unique properties and functions (Heckman & Enoka, 2012). 

1- Dendrites: The dendrites constitute the larger portion of the motoneuron and are 

responsible for receiving numerous synaptic inputs from other neurons. These inputs arrive 

at synapses distributed throughout the dendritic tree, allowing the motoneuron to integrate 

information from multiple sources. Dendritic ion channels play a crucial role in shaping the 

incoming signals, enhancing synaptic currents, and contributing to the overall excitability of 

the cell (Cullheim et al., 1987). 
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2- Soma: The soma, or cell body, and the axon initial segment are involved in the generation of 

action potentials. Here, a dense concentration of voltage-gated ion channels, such as sodium 

(Na+), potassium (K+) and calcium (Ca2+) channels, enables the initiation and propagation of 

action potentials along the axon. The unique arrangement of these ion channels allows for 

the rapid and efficient transmission of electrical signals from the cell body to the axon 

terminals (Rekling et al., 2000). 

3- Axon: The axon serves as the communication channel, transmitting action potentials over 

long distances from the motoneuron's cell body to the neuromuscular junction. Along the 

axon, voltage-gated ion channels, predominantly Na and K channels, play a fundamental role 

in the action potential's propagation. The myelination of the axon facilitates saltatory 

conduction, increasing the speed of signal transmission and conserving energy (Black et al., 

1990). 

 

 

Figure 1-2: This figure illustrates the structure of a motoneuron, the specialized nerve cell responsible for transmitting motor 
commands from the central nervous system to muscle fibres. The motoneuron comprises three main regions: the dendrites that receive 
incoming signals, the cell body (soma) that integrates these signals, and the axon, which transmits the processed signals to the muscle 
fibres. Along the axon, Schwann cells provide myelin sheaths, facilitating saltatory conduction, a process where action potentials 
"jump" from one node of Ranvier to another, allowing for faster and more efficient signal transmission. 
Figure from https://www.biorender.com 

 

The channels present on the motoneurons’ membrane can be classified in four major types 

based on their function and, consequently, on their distribution over the motoneuron membrane 

(Hille, 2001). These major types are i) leak channels, ii) Ionotropic synaptic channels, iii) voltage-

gated channels and iv) metabotropic receptors (Grillner, 2003). 



12 
 

At rest, the membrane potential of motoneurons is primarily regulated by the leak channels 

present on the motoneuron’s dendrites, which allow the passage of K+ ions. This sets the membrane 

resting potential very close to the equilibrium potential of K+ ions to around -70 mV. However, the 

resting potential is not a fixed parameter, as it can be modified by tonic synaptic input. 

Neuromodulators, such as serotonin and norepinephrine, play a crucial role in this process via 

metabotropic receptors by depolarizing the resting potential and increasing the motoneuron's input 

resistance (Heckman & Enoka, 2004). In neurons, the input resistance refers to how easily the cell's 

membrane potential changes in response to incoming electrical signals (current) (Hille, 2001). When 

the input resistance is high, the membrane is less permeable to ions and small amounts of current 

can cause larger changes in the membrane potential. Conversely, when the input resistance is low, 

the membrane is more permeable to ions and larger amounts of current are needed to produce 

significant changes in the membrane potential (Heckman et al., 2009). These neuromodulatory 

actions fine-tune the excitability of motoneurons and adapt them to different physiological contexts 

(Heckman & Enoka, 2012). 

Ionotropic synaptic channels play a crucial role in the alpha motoneuron by mediating 

synaptic transmission from other neurons onto the motoneuron. These channels are also known as 

ligand-gated channels because their activation depends on the binding of specific 

neurotransmitters, such as glutamate (excitatory) and glycine or GABA (inhibitory), to their 

corresponding receptors on the motoneuron's membrane (Grillner, 2003). Obviously, the alpha 

motoneuron receives inputs from various sources, including sensory neurons, interneurons, and 

higher brain centres, that converge onto its dendrites. When a presynaptic neuron releases 

neurotransmitters, they diffuse across the synaptic cleft and bind to the ligand-gated channels on 

the postsynaptic alpha motoneuron. The binding of neurotransmitters causes these ionotropic 

channels to open or close, leading to changes in the motoneuron's membrane potential, which 

might reach a critical threshold. The change in the membrane potential leading to depolarization is 

termed the excitatory post-synaptic potential, and the resulting current flow is known as the 

excitatory post-synaptic current. On the other hand, the change in the membrane potential leading 

to hyperpolarization is termed inhibitory post-synaptic potential, and the resulting current flow is 

known as the inhibitory post-synaptic current. Inhibitory channels are selective for chloride and K+ 

ions, with a reversal potential around -80 mV, which makes them responsible for the motoneuron 

hyperpolarization (Coombs et al., 1955). 
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Voltage-gated channels respond to changes in the membrane potential of the motoneuron 

and play a fundamental role in generating and propagating action potentials. When the alpha 

motoneuron receives excitatory inputs from other neurons through ionotropic synaptic channels, 

the net depolarization of the membrane may reach a critical threshold. This threshold potential is 

the minimum voltage required to activate the voltage-gated channels and trigger an action 

potential. There are several types of voltage-gated channels in the alpha motoneuron, including 

(Grillner, 2003): 

- Voltage-gated Na+ channels: These channels open rapidly in response to a depolarization 

above the threshold. When they open, they allow an influx of Na+ ions into the cell, causing 

a rapid and massive depolarization responsible for the rising phase of the action potential. 

This depolarization propagates along the axon of the motoneuron. 

- Voltage-gated K+ channels: These channels also respond to depolarization, but they open 

more slowly than sodium channels. Once open, they allow an efflux of K+ ions out of the cell, 

leading to repolarization of the membrane potential. This is the falling phase of the action 

potential. The channels involved in the efflux of K+ ions to repolarise the cell are named 

Hodgkin–Huxley K channels (Schwiening, 2012), which differentiate from Ca2+-mediated K+ 

channels that are instead responsible for the long-lasting afterhyperpolarization that occurs 

after each action potential (in this case, the Ca2+ that enters the cell via voltage-sensitive Ca2+ 

channels during the action potential activates the Ca2+-sensitive K+ channels, which 

hyperpolarise the cell) (Barrett et al., 1980). 

- Voltage-gated Ca2+ channels: These channels are primarily found in the axon terminal of the 

alpha motoneuron, where they play a critical role in neurotransmitter release. When the 

action potential reaches the axon terminal, voltage-gated Ca2+ channels open, allowing Ca2+ 

ions to enter the cell. This influx of Ca2+ triggers the fusion of synaptic vesicles containing 

neurotransmitters with the presynaptic membrane, leading to the release of 

neurotransmitters into the synaptic cleft. 

 

The opening and closing of these voltage-gated channels create a rapid change in the alpha 

motoneuron's membrane potential, leading to the generation and propagation of action potentials 

along the axon. Once initiated, the action potential travels down the axon to the neuromuscular 

junction, where it triggers the release of acetylcholine, a neurotransmitter that activates the muscle 

fibres and leads to muscle contraction (Tintignac et al., 2015). 
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Unlike ionotropic synaptic channels that directly regulate ion flow through the cell 

membrane upon neurotransmitter binding, metabotropic receptors exert their effects indirectly 

through intracellular signalling pathways. When neurotransmitters bind to metabotropic receptors 

on the alpha motoneuron's membrane, it initiates a series of intracellular signalling events mediated 

by G proteins. These signalling pathways can modulate the activity of ion channels, including both 

ionotropic synaptic channels and voltage-gated channels, as well as other cellular processes. 

Metabotropic receptors provide a mechanism for neuromodulation, allowing the alpha motoneuron 

to fine-tune its response to synaptic inputs and adapt its excitability based on the overall state of 

the nervous system. This modulation can occur in various ways (Heckman & Enoka, 2012): 

- Potentiation or Inhibition of Synaptic Inputs: Activation of metabotropic receptors can 

enhance or suppress the effects of ionotropic synaptic channels. For example, activation of 

certain metabotropic receptors may lead to increased neurotransmitter release from 

presynaptic terminals, resulting in stronger excitatory or inhibitory synaptic responses in the 

alpha motoneuron. 

- Modulation of Voltage-Gated Channels: Metabotropic receptors can also influence the 

activity of voltage-gated channels, altering the threshold for action potential generation or 

affecting the kinetics of channel opening and closing. This modulation can impact the firing 

properties of the alpha motoneuron and its responsiveness to incoming signals. 

- Long-Term Effects on Synaptic Plasticity: Activation of metabotropic receptors can initiate 

signalling cascades that lead to changes in the strength and efficacy of synaptic connections 

over time. These long-term effects on synaptic plasticity play a crucial role in learning and 

memory processes within the motor system. 

- Regulation of Cellular Excitability: The activation of metabotropic receptors can lead to the 

opening or closing of ion channels that regulate the resting membrane potential of the alpha 

motoneuron. This can affect the overall excitability of the cell and its ability to generate 

action potentials in response to synaptic inputs. 
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1.3. The Discharge Activity of the Alpha Motoneuron 

 

Once the membrane potential of the alpha motoneuron reaches the critical threshold 

(usually around -50/-55 mV), the opening of the voltage-gated Na+ channels causes a rapid 

depolarization that originates the action potential. The stimulus that drives the depolarisation of 

the membrane can be summarised as the current flow from the dendrites to the soma, which is also 

named synaptic input (Farina & Negro, 2015). Increasing the synaptic input (represented by the 

current intensity in Fig. 1-3), the frequency of generation of the action potential increases, more or 

less linearly, with the magnitude of the synaptic input. This relationship between the magnitude of 

the synaptic input and the discharge rate (DR) has been defined as the input-output functions of 

mammalian motoneurons, which describes the basic behaviour of the motoneuron discharge 

activity (Powers & Binder, 2001) (Fig. 1-3).  

This increase in discharge frequency is driven by the mounting synaptic input, which 

heightens the excitability of the motoneuron by bringing its membrane potential closer to the action 

potential firing threshold (Heckman & Enoka, 2004). It is important to note that the 

afterhyperpolarization phase remains a part of this process. However, due to the proximity of the 

membrane potential to the firing threshold, the resulting afterhyperpolarization phase exhibits a 

diminished magnitude and duration (Heckman & Enoka, 2004). Consequently, the 

afterhyperpolarization does not limit the increase in motoneuron DR (at least in healthy people), 

becoming less and less relevant at higher levels of synaptic input, where also random synaptic noise 

might be sufficient to initiate motoneuron action potentials (Matthews, 1996). 
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Figure 1-3: Increasing current in a motoneuron above its threshold (recruitment) generates progressively increasing frequencies of 
firing (rate modulation). The bottom trace shows the current injected into the motor neuron via the microelectrode. The middle 
trace shows the firing response of the cell, with the inset illustrating that the afterhyperpolarization determines the time 
of occurrence of each action potential (spike). The upper panel shows instantaneous firing rate for the spikes in the middle 
panel. Note the overall increase is approximately linear, so that the relation between frequency and current is also linear. 
Figure from (Heckman & Enoka, 2004). 

 

Each motoneuron’s input/output response is characterised by a specific slope (Fig. 1-4), 

which reflects the gain of the motoneuron (in terms of DR) to the synaptic input, and is associated 

to the electrical properties of the motoneuron membrane (Powers & Binder, 2001). 

Similarly, also the recruitment threshold of a motoneuron, defined as the magnitude of net 

synaptic input that is necessary to induce the generation of an action potential, depends on the 

electrical properties of the motoneuron membrane. 

The input-output function of the motoneurons is a bit more complex when compared across 

different types of alpha motoneurons. Indeed, motoneurons with different recruitment thresholds, 

present slightly different input-output functions (Fig. 1-4). 

 



17 
 

 

Figure 1-4: Summary of frequency-current relations in slow (S), fast fatigue-resistant (FR), and fast fatigable (FF) motoneurons 
generated by linearly increasing injected currents. Different motoneurons exhibit a wide 10-fold range in recruitment threshold, 
primarily influenced by their size. Additionally, the input-output function displays a transition from a primary to a secondary range, 
attributable to persistent inward currents that enhance synaptic input and discharge response. Results are based on simulations. 
Figure from (Heckman & Binder, 1991). 

 

As shown in Fig. 1-4, the amount of current required to reach the recruitment threshold for 

different motoneurons has a very wide range of about 10-fold or more (Heckman & Binder, 1991), 

and the response of each motoneuron to the current above the critical depolarisation threshold 

depends on its recruitment threshold.  

The 10-fold difference in recruitment threshold of different motoneurons is mainly 

attributable to the size of the motoneuron, which is a primary determinant of motoneuron input 

conductance and of the current required to reach the critical threshold (Henneman & Mendell, 

1981; Binder et al., 1996). This 10-fold difference in recruitment threshold allows to define the order 

of recruitment of the different motoneurons without the need for explicit computation by higher 

brain centres, thus making of the size principle a very efficient mechanism for coordinating 

motoneuron activation (Heckman & Binder, 1993). Together, the threshold and gain of the input-

output function characterize the intrinsic excitability of the motoneuron (Heckman & Enoka, 2004). 

Additionally, we can also observe that the input-output function of the motoneurons is not 

completely linear, but presents a transition from a primary range slope to a secondary range (Fig. 1-

4). This transition is likely attributable to the activation of persistent inward currents that amplify 

the synaptic input and the discharge response of the motoneuron (Heckman & Enoka, 2012). The 

separation of two distinct range allows for precise control of muscle force, in the primary range, and 
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for the maximisation of muscle force production in the secondary range (Powers & Heckman, 2017; 

Binder et al., 2020). 

Persistent inward currents are a type of voltage-dependent Na+ and Ca2+ currents that 

inactivate slowly (Heckman et al., 2008). In motoneurons, persistent inward currents are mainly 

generated in dendritic areas and, therefore, these can directly influence the synaptic input. 

Persistent inward current are particularly important for the amplification of the synaptic input and 

for saturation/rate limiting, and prolongation/hysteresis of the motoneuron firing (Heckman & 

Enoka, 2012). Persistent inward currents are mainly influenced by serotonin and norepinephrine, 

and can induce up to fivefold amplification of ionotropic inputs, thus having an enormous impact 

on input-output gain of the motoneuron (Hultborn, 2002; Binder, 2003; Heckman et al., 2005). 

Overall, the alpha motoneurons exhibit a wide range of electrical properties that profoundly 

influence their excitability and functional capabilities. To better understand these properties, 

researchers have categorized motoneurons into different types based on their firing characteristics. 

Among different classifications, the prevailing taxonomy categorizes motoneurons into three 

primary types: slow, fast fatigue-resistant, and fast fatigable. These categories closely align with the 

specific muscle unit properties (Kernell, 2006) as discussed in the paragraph ‘The Muscle Unit’. This 

classification provides valuable insights into how motoneurons contribute to motor control and 

muscle performance. 
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1.4. The Muscle Unit 

 

The group of muscle fibres innervated by a given motoneuron are commonly referred to as 

the muscle unit, a term indicating that all the innervated muscle fibres act as a single functional unit 

(Heckman & Enoka, 2004). 

Muscle fibres are far from being a homogenous population. Indeed, they display a 

remarkable variety of biochemical and contractile properties (Bączyk et al., 2022). The early 

observation that some muscles appeared redder than others in rabbits and other animal models, 

with this difference in colour correlating with contraction speed, was a crucial milestone in 

understanding this diversity (Ranvier, 1873; Needham, 1926). Subsequent investigations based on 

myosin ATPase activity and enzymatic analysis further revealed that muscle fibres could be grouped 

into three main categories: slow-twitch oxidative or type I fibres, fast-twitch oxidative glycolytic or 

type IIA fibres, and fast-twitch glycolytic or type IIB fibres (Brooke & Kaiser, 1970). 

Type I fibres are characterized by their slow contraction speed and abundant oxidative 

enzymes, allowing them to sustain long-duration energy demands, resulting in high resistance to 

fatigue. In contrast, type IIA fibres, also possess good resistance to fatigue, although to a lesser 

extent than type I fibres but with greater contraction speed. Lastly, type IIB fibres, are characterized 

by a poor oxidative enzyme content, making them more prone to fatigue, but capable of high 

contraction speed (Schiaffino & Reggiani, 2011). 

Interestingly, all muscles throughout the body consist of a mosaic of muscle fibres types, but 

the proportion of each type varies according to the muscle's function (Ariano et al., 1973). For 

instance, postural muscles tend to contain a higher concentration of slow (Type I) muscle fibres, 

while flexor muscles tend to have more Type II fibres. This diversity is essential to generate a vast 

repertoire of movements and behaviours with a finite number of muscles (Bączyk et al., 2022). 

Importantly, Edström and Burke demonstrated that also MUs are homogenous in terms of 

muscle fibre types they contain and that their contractile properties match the contractile 

properties of the fibres (Edström & Kugelberg, 1968). 

Through elegant in vivo experiments in the rat tibialis anterior, they established correlations 

between the physiological properties of MUs and the histochemical profiles of their muscle fibres. 

By stimulating a single MU and examining the depletion of glycogen in muscle fibres, three types of 

MUs were identified: slow MUs, comprising type I fibres and highly resistant to fatigue; fast fatigue-

resistant MUs, composed of type 2A fibres and developing more force than slow MUs but less 
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fatigue-resistant than type slow; and fast-fatigable MUs, consisting of type 2B fibres, capable of 

developing the greatest amount of force but highly fatigable (Edström & Kugelberg, 1968; Burke et 

al., 1971). 

In the late 90s, a notable shift occurred in muscle fibre typing, with the adoption of 

monoclonal antibodies targeting various isoforms of the myosin heavy-chain protein (Bączyk et al., 

2022). While type I, IIA, and IIB fibres were associated with distinct myosin heavy-chain isoforms 

(myosin heavy-chain I, 2A, and 2B, respectively) also a new isoform, named 2X was identified 

(Schiaffino et al., 1989). This approach has been applied across diverse vertebrates demonstrating 

that the diversity in muscle fibres is highly conserved (Bączyk et al., 2022), with the exception that 

myosin heavy-chain 2B isoform is absent in humans, with expression limited to the isoforms I, IIA 

and 2X (Smerdu et al., 1994). 

As a final remark, the contractile properties of the muscle unit act as a filter on the almost 

linear input-output function of the motoneuron, resulting in a sigmoidal relationship between 

motoneuron DR and muscle force (as shown in Fig 1-5) (Heckman & Enoka, 2004). As the 

motoneuron's DR increases, the contractile force of the muscle unit enters a range of more or less 

linear increase, progressively leading to greater force output. However, this linear relationship 

reaches a threshold when the muscle achieves a tetanic contraction. Beyond this point, further 

increases in DRs do not translate into higher contractile force (Heckman & Enoka, 2004). It's 

important to note that the slope of this relationship varies between slower and faster muscle units, 

but the sigmoidal behaviour remains consistent. This fundamental concept enables us to fully 

understand the mechanical integration between neural signalling and muscle contraction, which 

becomes evident in HD-EMG recordings. 

 

  



21 
 

 

Figure 1-5: Computer simulations of the input–output relations for the pool of motor units that innervate a single muscle. (A) The 
input–output relations (frequency–current) for the motor neurons. (B) The input–output relations (force–frequency) for the muscle 
units. (C) The input–output relations (force–current) for the motor units. (D) The input–output relation (force–current) for the entire 
motor unit pool. S, slow; FR, fast fatigue-resistant; FF, fast fatigable. 
Figure and caption from (Heckman & Enoka, 2004). 
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1.5. Motoneuron Electrophysiological Properties Reflect those of the Muscle Unit 

 

In this introductory chapter 1, we often discussed about the relationship between the 

properties of the motoneuron and those of the muscle unit. In this section, we aim to further expand 

on this idea, explaining why the properties of the motoneuron must precisely match those of the 

muscle unit. This concept has fundamental implications in the use of HD-EMG, as with this technique 

we aim to infer the properties of the motoneuron by recording the electrical signal at the muscle 

level. 

From the theoretical point of view, the specialisation of the muscle fibres in each muscle unit 

requires the innervation from motoneurons with compatible discharge characteristics. In practice, 

this is fundamental to take full advantage of their contraction capabilities (Bączyk et al., 2022). 

As previously discussed, type I fibres (in slow MUs) are most suitable during low-intensity 

contractions and should be recruited before type IIA and IIX fibres (in fast fatigue-resistant and fast 

fatigable MUs), following the Henneman’s size principle (Mendell, 2005a). The motoneurons 

innervating slow MUs are small and have fewer dendrites, while those innervating faster MUs are 

larger and possess many long dendrites. The size of the motoneuron soma and the extension of the 

dendritic branches determines the input conductance, which is lower in smaller motoneurons, 

making them easier to recruit (Burke, 1981). In other words, larger motoneurons have a lower input 

resistance and a higher voltage for spiking. Typically, motoneurons with a larger soma also present 

larger axons, allowing for more branching and reaching a greater number of muscle fibres (faster 

MUs are usually composed of more fibres than slower MUs) (Cullheim & Ulfhake, 1979). 

In addition to the ordered recruitment, the DR modulation plays a crucial role in the size 

principle, ensuring the attainment of maximum contraction in each muscle unit (Mendell, 2005a). 

Fast MUs consist of muscle fibres with shorter contraction and relaxation times compared to slow 

MUs. Consequently, a higher DR is required to achieve tetanic contractions in fast MUs (Burke, 

1981). The DR is primarily constrained by the duration of the after-hyperpolarization period of the 

motoneuron, and interestingly, larger motoneurons tend to exhibit shorter after-hyperpolarization 

periods. This difference in after-hyperpolarization duration between smaller and larger 

motoneurons might be attributed to the presence of different Ca2+ activated K+ channels in the slow 

and fast motoneurons, that reducing the time between consecutive action potentials, allow for the 

fusion of individual muscle twitches (Bączyk et al., 2022). 
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Although large motoneurons reach high DR, these are sustainable only for a short time, in 

accordance with the low resistance to fatigue of fast muscle units. From the electrical point of view, 

this is attributable to the spike-frequency adaptation phenomenon, which is more evident for larger 

motoneurons (Pascoe et al., 2014a; Enoka & Duchateau, 2017). This difference is likely attributable 

to the difference in persistent inward currents, which tend to inactivate faster in larger 

motoneurons (Heckman & Enoka, 2012). Persistent inward currents are fundamental for the 

bistable behaviour of the motoneuron, which allows for repetitive firing and to sustain tonic 

contractions (Heckman et al., 2008). Indeed, their faster inactivation in larger motoneurons 

disfavour the amplification of tonic inputs, favouring the amplification of phasic (short) inputs 

(Manuel et al., 2007). 

 

  



24 
 

1.6. The Neuromuscular Junction 

 

In this chapter we will briefly introduce some basic concepts on the neuromuscular junction, 

as it is the fundamental interface where the neural signalling is translated into muscle contraction. 

Indeed, the neuromuscular junction is responsible for converting each motoneuron action potential 

into a MU action potential (Tintignac et al., 2015). 

The reliability of neuromuscular junction transmission is a critical assumption in HD-EMG 

studies because the technique relies on detecting the MU action potentials generated by individual 

MUs at the muscle surface. Therefore, if the conversion of the neural signalling at the 

neuromuscular junction level is unstable, we would not be able to infer on the motoneuron 

functioning (Del Vecchio et al., 2020). 

The neuromuscular junction is composed of a motor nerve terminal, a synaptic cleft, and a 

postsynaptic muscle fibre membrane (also called motor end plate). The motor nerve terminal 

contains vesicles filled with acetylcholine, a neurotransmitter critical for transmitting nerve 

impulses to the muscle fibre. Upon the arrival of an action potential at the motor nerve terminal, 

voltage-gated Ca2+ channels are activated, leading to an influx of Ca2+ ions. This increase in 

intracellular calcium triggers the fusion of acetylcholine-containing vesicles with the motor nerve 

terminal's membrane, releasing acetylcholine into the synaptic cleft. Acetylcholine diffuses across 

the synaptic cleft and binds to nicotinic acetylcholine receptors on the motor end plate. This binding 

event opens cation channels, predominantly allowing the influx of Na+ ions and resulting in 

depolarization of the muscle fibre membrane, thus generating the MU action potential (Omar et al., 

2023). 

Given the fundamental importance of the neuromuscular junction, many biological 

mechanisms ensure its stability and reliability (Bloch-Gallego, 2015). Among these, the safety factor 

of neuromuscular transmission is fundamental for the one-to-one correspondence between the 

motoneuron signalling and muscle unit action potentials. The safety factor can be defined as the 

“number of acetylcholine quanta actually released compared to the number which must act to 

generate an action potential” (Wood & Slater, 1997). In normal conditions, the amount of released 

acetylcholine is greater than the amount required to generate action potentials in the muscle unit, 

therefore allowing for a safety margin capable of compensating for fluctuations in the amount of 

released acetylcholine (Wood & R. Slater, 2001). Thanks to the safety factor, the neuromuscular 

transmission is a highly reliable process, capable of resisting to many stressors, including aging 
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(Robbins, 1992) and disuse (Sarto et al., 2022a), and therefore allowing for the reliable recording of 

the motoneuron discharge activity at muscle level. 

However, it should be noted that particular conditions might impair the neuromuscular 

junction transmission (Tintignac et al., 2015), and this should not be overlooked when using the HD-

EMG technique. 

 

 

 
Figure 1-6: Schematic representation of the Neuromuscular Junction. At the NMJ, the motoneuron's axon terminal releases the 
neurotransmitter acetylcholine (ACh). The motor end-plate, located on the muscle fibre sarcolemma, contains acetylcholine receptors. 
Upon release, acetylcholine molecules diffuse across the synaptic cleft, a minute space between the axon terminal and motor end-
plate, where they bind to the acetylcholine receptors. This binding initiates a series of events leading to muscle fibre contraction.  
Figure from https://openstax.org/details/books/anatomy-and-physiology. 
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1.7. The Muscle Action Potential 

 

The influx of Na+ ions in the muscle fibre results in the generation of a depolarizing graded 

potential called the end-plate potential. The end-plate potential is a local, depolarizing event that 

occurs at the motor end-plate and is not propagated along the entire muscle fibre. The end-plate 

potential needs to reach a certain threshold level for the muscle fibre to initiate an action potential 

(Feher, 2017). If the end-plate potential is strong enough to reach the threshold, voltage-gated Na+ 

channels located in the adjacent regions of the sarcolemma (cell membrane of the muscle fibre) 

open in response to the depolarization caused by the end-plate potential. The opening of voltage-

gated sodium channels allows an influx of Na+ into the muscle fibre, leading to a rapid depolarization 

of the sarcolemma. This depolarization propagates along the sarcolemma, initiating an action 

potential that spreads bidirectionally throughout the entire muscle fibre (Sherwood, 2010). As the 

action potential travels along the sarcolemma, it enters the network of transverse tubules (T-

tubules) that penetrate deep into the interior of the muscle fibre. The T-tubules play a crucial role 

in excitation-contraction coupling by rapidly transmitting the action potential into the core of the 

muscle fibre, allowing simultaneous activation of all sarcomeres (Frontera & Ochala, 2015). The 

action potential travels along the T-tubules and reaches the sarcoplasmic reticulum, a specialized 

network of membrane-enclosed compartments filled with Ca2+. The action potential alters the 

conformation of dihydropyridine receptors located on the T-tubule membrane, which then activate 

ryanodine receptors located on the sarcoplasmic reticulum (specifically, at the level of the terminal 

cisternae). The activation of ryanodine receptors leads to the release of stored Ca2+ from the 

sarcoplasmic reticulum into the cytoplasm (Rebbeck et al., 2014). This sudden increase in 

cytoplasmic Ca2+ concentration initiates the subsequent steps of the excitation-contraction coupling 

process, which consists in the binding and sliding of myosin to actin. This movement of myosin pulls 

the actin filaments towards the centre of the sarcomere, resulting in muscle contraction (Feher, 

2017). 

Of note, the generation and propagation of muscle action potentials is the final electrical 

event in the MU, and it is the event generating the electrical signal recorded via HD-EMG. 
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Figure 1-7: Structure of the muscle fibre and myofibrils. The A-band corresponds to the length of the thick filaments (myosin), 1.6 μm. 
The I band corresponds to the thin filaments (actin) where they do not overlap with the thick filaments. Its width depends on the 
activation of the muscle. The Z-line or disk is where the thin filaments from opposite sarcomeres are attached. The M-line in the middle 
of the A-band keeps the thick filaments cantered and in register. The clear zone in the middle of the A-band is the region where thin 
filaments do not overlap thick filaments. 
Figure and caption from (Feher, 2017). 
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1.8. Plasticity of the Neuromuscular System 

 

In physiology, the term “plasticity” summarises the ability of cells to adapt their phenotype, 

at any stage in their development, in response to changes in their state or environment (Winlow & 

McCrohan, 1987). Obviously, this concept extends to the organ and tissue level, defining the 

capacity of our entire body to adapt to a broad range of stressors, in both physiology and pathology 

(Laidler, 1994). 

The neuromuscular system does not make any exception to this principle and shows high 

plasticity, both during development and in adulthood (Kandel et al., 2012). Obviously, the maximum 

plasticity of the neuromuscular system manifests during the early development stages, when the 

connection between the brain and the muscle is formed for the first time. In this situation, new 

motoneurons are generated and they start establishing connections with the developing muscle. 

This first attempt of connection is prone to errors and most of the original connections are removed 

with time (in a process named pruning), leading to an exclusive and functional communication 

between the motoneuron and a set of muscle fibres (Winlow & McCrohan, 1987). On the muscle 

side, this phase is characterised by the fusion of myoblasts and the formation of myotubes, which 

after establishing connection with motoneurons become able to contract. In this phase, the 

functional demand will shape the phenotype of muscle fibres and motoneurons determining a 

complex and hierarchical organisation of the neuromuscular connections that tends to remain 

stable during adulthood (Chalif & Mentis, 2022). 

During adulthood and in healthy people, the neuromuscular system adapts mainly to the 

external demand (e.g., loading and unloading) with its muscular component exhibiting the major 

structural adaptations (Campbell et al., 2013; Ahtiainen, 2019; Smith et al., 2023). On the neural 

side, motoneurons mainly respond with functional adjustments that will be reflected in a different 

discharge activity (Škarabot et al., 2021), while the innervation pattern tends to be preserved (Inns 

et al., 2022; Sarto et al., 2022b). For clarity, the last statement does not intend that the innervation 

pattern never changes in adulthood, but rather specifies that this is a very slow and gradual 

adaptation, that becomes evident in advanced aging (Hepple & Rice, 2016). 

Obviously, there are exceptions to the general stability of the innervation pattern. Indeed, 

two extreme cases stimulate the acute plasticity of the innervation pattern in adulthood, the 

severance of the motoneuron’s own axon and the severance of the axons of neighbouring 

motoneurons (Winlow & McCrohan, 1987). While these scenarios are infrequent occurrences in the 
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context of healthy adults, they can emerge as responses to traumatic injury, pathological conditions 

(Chalif & Mentis, 2022), or even as a natural consequence of the advanced aging process (Piasecki 

et al., 2016; Jones et al., 2022). When the motoneuron’s axon is damaged or axotomized (physically 

interrupted), many molecular changes take place in the motoneuron body, which are primarily 

aimed at driving the restoration of the original innervation pattern. This reinnervation process is 

often successful, allowing for the preservation of function (Winlow & McCrohan, 1987). If the 

reinnervation process is not successful, axons of neighbouring motoneurons can create new 

branches and innervate the denervated muscle fibres. This phenomenon is named collateral 

sprouting and is fundamental to prevent death of the denervated fibres and muscle atrophy (Tam 

& Gordon, 2003; Udina et al., 2011). However, axon sprouting is not the privileged choice of 

regeneration as it comes with a trade-off between the complete loss of function and the optimal 

function. For example, the newly formed synapses through axon sprouting may exhibit synaptic 

instability. Unlike the mature and well-organized synapses formed during development, these 

sprouted synapses might be less stable and reliable (Chalif & Mentis, 2022). Axon sprouting will also 

cause an enlargement of the MU with consequent loss in precision and fine regulation of force 

production and with increased demand on the motoneuron, which needs to supply depolarising 

currents to more synapsis than originally intended (Tam & Gordon, 2009). 

Overall, the functional adaptation of the motoneurons, and in general of the MUs, are the 

preferred adaptive mechanism of the neuromuscular system as it provides a fast and reliable way 

to respond to external stressors and different functional demands (Škarabot et al., 2021; Chalif & 

Mentis, 2022). While the direct investigation of the changes in the innervation profile (both during 

development and in adulthood) is usually performed in vitro or in animal models, the functional 

plasticity of the motoneuron and in general of the neuromuscular system can be investigated in vivo 

with non-invasive or minimally invasive techniques such as EMG recordings (Farina & Enoka, 2023). 

Nowadays, HD-EMG is the most widely used technique to study the plasticity of the neuromuscular 

system in humans and most of our knowledge on the neuromuscular functioning and adaptations 

in humans are derived from EMG or similar techniques (e.g., electroencephalography), which are 

perfectly suitable for the discovery of the physiological mechanisms regulating the functioning of 

the neuromuscular system or how these adapt to acute and chronic stressors (Atherton & 

Wilkinson, 2023). 
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2. Introductory Chapter 2: High-Density Surface Electromyography 

 

In chapter 1, we presented the mechanisms that generate the MUs action potentials and we 

explained why the action potentials detected at muscle level can be used to estimate the 

motoneuron discharge activity. In this chapter, we explain how the action potentials from single 

MUs can be discriminated with the non-invasive technique of surface HD-EMG, and the 

technological advances that allowed for this. 

HD-EMG is a sophisticated technique that involves recording multiple surface EMG signals 

using at least four closely spaced, small-diameter electrodes (Gallina et al., 2022). The application 

of HD-EMG to study single MU behaviour is a relatively recent development that gained significant 

popularity over the past 15-20 years (Farina et al., 2004, 2014a). The adoption of HD-EMG was 

facilitated by advancements in electrode manufacturing techniques and computational tools, which 

enabled researchers to achieve high spatial resolution in recording muscle activity (Farina et al., 

2016). This increased resolution allows for the identification of a large number of MUs and for 

detailed mapping of MU action potentials across the muscle surface (Del Vecchio et al., 2020). 

An important advantage of HD-EMG is its non-invasiveness, as it requires no invasive 

procedures and involves placing electrodes on the skin surface. This feature makes it suitable for 

various research applications, including the basic study of the physiological mechanisms of neural 

control of muscle force production (Del Vecchio et al., 2019b) up to neuromuscular disorders 

(Nishikawa et al., 2022). Furthermore, the spatial resolution of this technique allows for the 

recognition of the same MU across different data collection points and increases the precision in 

monitoring changes in MUs properties across interventions (Martinez-Valdes et al., 2017). 

Continued advancements in HD-EMG technology, such as extended multi-channel systems 

with hundreds of electrodes, enable simultaneous recording from large muscle regions or from 

different muscles, enabling researchers to investigate muscle synergies and complex motor tasks 

(Del Vecchio et al., 2023). Additionally, machine learning algorithms applied to HD-EMG data hold 

promise for automating motor unit identification, accelerating the time consuming process of MUs 

decomposition and editing (Wen et al., 2021). 

Overall, the exponential evolution and application of the HD-EMG technique has the 

potential to transform our understanding of the neural control of muscle force production. 
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2.1. Development of High-Density surface Electromyography as a Non-Invasive Tool to Study the 

Activity of Single Motor Units 

 

The first ever successful attempts to record the activity of single MUs in humans were 

performed with wire intramuscular electrodes in the first half of the 20th century. This primacy is 

usually attributed to Kurt Wachholder (Wachholder, 1928) and to Edgar Adrian and Detlev Bronk 

(Adrian & Bronk, 1928, 1929). Adrian and Bronk are recognised as those who discovered that neural 

impulses arrive at the muscle following the all-or-none principle and that graded force production 

is achieved through modulation of impulse frequency and recruitment of additional MUs. 

During the 20th century, the effort of many researchers allowed for the design of new 

intramuscular recording systems that reduced the discomfort for the participant and increased the 

quality of the recorded signal (Duchateau & Enoka, 2011). In this framework, Elwood Henneman 

made one of the largest contribution in unveiling the mechanisms of neuromuscular functioning, 

although in animal models, with the definition of the “size principle” (Mcphedran et al., 1965; 

Wuerker et al., 1965; Henneman & Olson, 1965; Henneman et al., 1965a, 1965b). Indeed, 

Henneman was able to demonstrate that in cat muscles new MUs are recruited with increased 

intensity of electrical stimulation to the sciatic nerve, and that are derecruited following the same 

order. Additionally, the ability to detect the MUs firing behaviour allowed him to identify that 

increased force production is associated to increased DR and that higher impulses are usually 

coming from larger motoneurons. 

Soon after, many researchers took advantage of the advances in intramuscular EMG for the 

validation of the size principle in humans (Milner‐Brown et al., 1973) and for the identification of 

other physiological aspects of neural control. For example, it was demonstrated that although the 

recruitment order is usually preserved, the force intensity at which the MUs are recruited is strictly 

dependent on the speed of contraction, with explosive contractions resulting almost in the 

simultaneous recruitment of all the MUs (Freund, 1983). In this extreme situation, it is also possible 

that faster MUs are recruited before slower ones, given the higher conduction velocity of the larger 

motoneuron’s axon. However, given the minimal differences in recruitment time, it is virtually 

impossible to experimentally demonstrate the fact. Additionally, in the late ‘80s it was 

demonstrated that the recruitment of new MUs continues up to some percentage of the maximum 

force production range, after which the modulation of MUs DR is the only possible mechanism to 

increase force production (De Luca, 1985). Of note, the upper limit for the recruitment of additional 

MUs (full MUs recruitment) is muscle specific, and it is usually lower for smaller, compared to larger 
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muscles, and grossly ranging between 50 and 90% of maximum force (Kukulka & Clamann, 1981; de 

Luca et al., 1982). 

Overall, intramuscular EMG recordings have the undoubtful recognition of the first tool for 

the investigation of neural control in humans and provided a way to define most of the fundamental 

physiological mechanisms governing neuromuscular control (Duchateau & Enoka, 2011). 

The technological advancements of intramuscular EMG were driven both by advanced 

needle manufacturing techniques and decomposition techniques. Indeed, the discrimination of 

single MUs was originally performed visually by manually classifying the prominent impulses in the 

intramuscular EMG signal. This technique, although effective, was extremely time consuming and 

prone to error. To overcome these limitations, different research groups proposed semi-automated 

spike sorting methods, which provided the possibility to accurately identify a few concurrently 

active MUs from voluntary contractions at low and moderate force levels (LeFever & De Luca, 1982; 

Mcgill et al., 1985; Stashuk, 1999). 

The possibility of automatic or semi-automatic decomposition of EMG signals made possible 

to experiment with new recording techniques and drove the development of multi-channel 

intramuscular recording systems capable of resolving partially superimposed MU action potentials 

(LeFever & De Luca, 1982). The introduction of multi-channel recording systems paved the way for 

the development of surface EMG techniques oriented at the identification of single MUs activity 

(Merletti et al., 2008). 

The detection of single MUs from surface EMG systems became reality in the early 2000s 

(Blok et al., 2002; Lapatki et al., 2004), when large grids of multiple recording electrodes were 

developed (Lapatki et al., 2004). One problem of EMG recordings from the muscle surface is that 

the volume conductor acts as a low-pass filter on the EMG signal, therefore smoothing the resulting 

signal and reducing the possibility to discriminate the contribution of single MU action potentials in 

the generation of the interference EMG signal. In this situation, the high spatial sampling of large 

grids with multiple recording electrodes increases the likelihood of observing unique MU action 

potentials at least in some electrodes and increases the chances to discriminate the contribution of 

single MUs. 

With time, electrodes manufacturing moved from dry grids attached directly to the skin to 

flexible grids firmly attached to the skin with adhesive foam and in contact with the skin via 

conductive paste. This system allowed to reduce the electrode-skin contact impedance, to make it 

similar across the different channels and to reduce/remove movement artefacts (Merletti et al., 
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2008). This technological advancement allowed to reduce the disturbing/noisy component in the 

recorded EMG signal and enhanced the representation of MU action potentials. 

Given the high number of recording channels and the complexity of the surface EMG signal 

(in comparison to the intramuscular one), it is practically impossible to manually discriminate the 

contribution of single MUs from HD-EMG recordings. Therefore, the advances in manufacturing 

techniques were accompanied by the development of sophisticated algorithms specifically designed 

to identify single MUs from the interference HD-EMG signal (Gazzoni et al., 2004; Kleine et al., 2007; 

Holobar & Zazula, 2007; Negro et al., 2016; Chen & Zhou, 2016). 

Thanks to the high spatial sampling, specialised grids and decomposition algorithms, it is now 

possible to decompose a high number of single MUs from HD-EMG recordings in different muscles 

and up to moderate to high intensities of contraction (Del Vecchio et al., 2019b). Additionally, MUs 

behaviour can now be investigated both in the time and space domain, allowing researchers for 

novel analyses and to acquire additional knowledge in the mechanisms of neural control of muscle 

force production (as explained in the next paragraphs). 

All the advances of the HD-EMG technique opened a new era in the study of MUs physiology 

and activity in response to different stimuli (Martinez-Valdes et al., 2018a; Casolo et al., 2021), in 

health and pathology (Drost et al., 2001; Gallego et al., 2015b), to injury (Nuccio et al., 2021) and 

for man-machine interface applications (Farina et al., 2017). 
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Figure 2-1: Motor unit activity in space and time. Motor unit action potential recorded with a grid of 61 electrodes (13 by 5 electrodes, 
inter-electrode distance 5 mm) from the biceps brachii muscle during an isometric contraction at 10% of the maximal force. The bipolar 
signals derived along the direction of the muscle fibres are shown in the top panel. The electrode grid was placed distal with respect 
to the innervation zone of the motor unit. The signals detected along the rows show similar action potential shapes with a delay 
corresponding to the propagation along the muscle fibres. The multi-channel action potential is a three-dimensional signal in time 
and space. The two-dimensional spatial representations for two-time instants (11 ms and 14 ms after the generation of the action 
potential) are shown (bottom panel). The circles on the plane representing the spatial coordinates represent the locations of the 
electrodes of the grid. The spatial distributions have been interpolated for the graphical representation. The values reported for each 
location of the grid correspond to the amplitude of the action potential, indicated by circles in the multi-channel signal shown in the 
top panel. 
Figure and caption from (Merletti et al., 2008). 
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2.2. Generation of the Interference Electromyography Signal 

 

Although the mathematical component of the models used to describe the HD-EMG signals 

is outside the scope of this thesis, the theoretical concepts behind the generation of the recorded 

signal are fundamental to understand the remaining of this introductory chapter and the 

methodological rationale of the experimental chapters. 

The surface HD-EMG technique records the electrical activity of the contracting muscle from 

a large area of the skin with a high number of electrodes (Gallina et al., 2022). This basic concept 

implies at least 3 fundamental assumptions (Farina & Merletti, 2001; Merletti & Farina, 2016): 

1- The recording signal is generated by the summation of the action potentials of each MU 

active in the area below the recording grid. The summation of the action potentials 

increases the complexity of the signal and hides the contribution of single action 

potentials. 

2- The recorded signal is a filtered version of the electrical activity of single muscle fibres. 

The filtering effect is due to the conductivity of the volume conductor, which can be 

described as all the tissue located between muscle fibres and skin. 

3- The geometry of the muscle fibres and the distance from the innervation zone alters the 

shape and synchronisation of the MU action potentials. 

 

Point 1 is common for any system of EMG recording (e.g., intramuscular and surface) while 

points 2 and 3 are specific of surface HD-EMG. As a consequence of point 2, the signal recorded with 

HD-EMG is more complex and difficult to dissociate in the contribution of single MUs. 

The generation of the action potential has been described in chapter one from the 

physiological point of view. In this context, it is important to understand the implications of MU 

action potentials summation. When few MUs are simultaneously active, there are small chances 

that their action potentials will happen in overlapping time windows and their summation will be 

minimal. Increasing the intensity of the contraction, and therefore the number of recruited MUs, 

many action potentials will happen in overlapping windows and the summation of their contribution 

will alter the shape of the resulting MU action potentials. Furthermore, the action potentials of 

larger MUs will exceed those of smaller MUs, hiding their contribution (Del Vecchio et al., 2020). 

With these considerations, it is understandable that the contribution of larger MUs will be easier to 

discriminate than that of smaller MUs, and that increasing contraction intensity, it will become 
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progressively more difficult to identify the contribution of small MUs. This concept is fundamental 

in the interpretation of MU properties when recording at different intensities. Indeed, increasing 

contraction intensity, the identification of single MUs in HD-EMG recordings will be biased toward 

higher-threshold (and larger/faster) MUs (Del Vecchio et al., 2019a; Nuccio et al., 2021). At the same 

time, the simpler EMG signal at low intensity of contraction will allow for the identification of a 

greater number of MUs. In practical terms, the understanding of EMG signal generation will guide 

the researcher in the design of recording protocols that maximise both the number of identified 

MUs and their representation across the recruitment range. It must be noted that an excessive 

superimposition of action potentials greatly reduces the chances of discriminating the MU action 

potentials of different MUs, therefore making it extremely challenging to detect single MUs at 

maximum contraction intensity (Del Vecchio et al., 2019b). 

The volume conductor acts as a filter on the EMG signal, altering the shape of the MU action 

potentials and increasing their similarity (Farina & Merletti, 2001). To a larger volume conductor 

corresponds a greater filtering effect and similarity between MU action potentials. This is one of the 

greatest limitations in the HD-EMG technique as the number of identifiable MUs greatly differs 

between anatomical locations in the same subject or within subjects (Oliveira et al., 2022). Indeed, 

the most commonly investigated muscles are those located closer to the surface and with reduced 

volume conductor, such as the tibialis anterior (Cudicio et al., 2022), the biceps brachii (Casolo et 

al., 2023) and the distal portion of the vastus lateralis (Nuccio et al., 2021). 

After the MU action potential is generated in the innervation zone, it propagates through 

the muscle fibre to the end of the fibre. This process can be observed in HD-EMG recordings thanks 

to the spatial resolution of the grid. The innervation zone can be identified as the point of inversion 

in the propagation direction of action potentials and the extinction of the action potential can be 

observed in the electrodes with greater distance to the innervation zone (Casolo et al., 2020). The 

process of generation, propagation and extinction of the action potential is accompanied by a 

modification in the amplitude (and observed shape) of the action potential (Farina & Merletti, 2001). 

The ability to discriminate the propagation of action potentials depends on the anatomical 

characteristics of the muscle and it is easier to observe in pennate muscles (Mesin et al., 2007). 
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Figure 2-2: Generation and propagation of the motor unit action potential. The action potential originates at the level of the 
neuromuscular junction (NMJ) and propagates in opposite directions in the muscle fibre. The area in which the action potential starts 
propagating in different directions identifies the innervation zone. The action potential travels along the fibres until its progressive 
extinction at the fibre end plate and at the tendons. Panel A is a theoretical representation of the action potential generation and 
propagation while Panel B is the resulting simulation in a surface high-density grid with different spatial filtering approaches. 
Figure adapted from (Farina & Merletti, 2001). 
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2.3. Decomposition of the Interference Electromyography Signal 

 

The identification of the discharge activity of single MUs from the interference EMG signal is 

achievable via a process called decomposition. HD-EMG decomposition can be performed with 

different computational methods  (Gazzoni et al., 2004; Kleine et al., 2007; Holobar & Zazula, 2007; 

Negro et al., 2016; Chen & Zhou, 2016) but for the scope of this thesis, we will only focus on the 

convolutive blind-source separation approach proposed by Francesco Negro in 2016 (Negro et al., 

2016). 

To facilitate effective decomposition, preliminary steps of signal transformation must be 

executed. These entail both extension and whitening of the HD-EMG signals. Extension incorporates 

delayed replicas of the original signals, converting the convolutive model into an instantaneous one 

(Negro et al., 2016). Whitening, on the other hand, serves to decorrelate the extended 

measurements, mitigating the impact of volume conductor filtering and enhancing the spatial-

temporal representation of the signals (Martinez-Valdes & Negro, 2023). The result is a more 

localized and temporally precise delineation of motor unit action potentials. The combination of 

extension and whitening is also referred to as ‘convolutive sphering’ (Thomas et al., 2006). 

At the core of the decomposition process lies an iterative optimization procedure based on 

independent component analysis. This involves applying the optimization algorithm to the whitened 

and extended measurements, initializing from an appropriate estimate and converging to a local 

maximum of the chosen contrast function. The main goal of independent component analysis is to 

estimate the mixing matrix and the original sources. The algorithm aims to find a set of filters that, 

when applied to the mixed signals, produce statistically independent output signals. These output 

signals are the estimated source signals (Thomas et al., 2006). The culmination of this step yields a 

pulse train that describes the probability of motor unit discharges at distinct time points (Martinez-

Valdes & Negro, 2023). 

The technical terms used in this paragraph are well explained in the glossary section at the 

end of the thesis. 
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Figure 2-3: Schematic representation of the convolutive blind source separation approach. Motoneuron pools generate multiple action 
potentials (a), which can be recorded from the muscle. Motor unit firings of single motor units need to be separated from the 
interference electromyography signal (b) with blind source separation techniques. The signals are first extended to convert the 
convolutive model into an instantaneous one. A whitening transformation is then applied to the extended measurements to 
compensate for the spatial and temporal characteristics of the motor unit potential shape (c). Afterward, the solutions of the inverse 
problem are extracted by maximizing iteratively a specific cost function selected to identify sparse sources (d). Clustering methods 
and accuracy measures (i.e., silhouette measure, SIL) are then used to identify the discharge times of the decomposed motor unit (e). 
SIL, silhouette score. 
Figure and caption from (Martinez-Valdes & Negro, 2023). 

 

Upon completing the initial motor unit decomposition, the subsequent phase involves 

accuracy assessment and manual editing. These are critical steps in refining the extracted motor 

unit spike trains and ensuring the robustness and reliability of the analysis. 

Given that the identification of pulse trains relies on broad statistical characteristics of the 

sources, there exists a level of uncertainty regarding their attribution to individual motor units or 

potential combinations of multiple motor units that may not have been accurately separated. To 

address this challenge, various accuracy metrics have been developed to assess the quality of the 

decomposition outcome and the accuracy of the identified motor unit spike trains. The most 

common accuracy measures are the Pulse-to-Noise Ratio (Holobar et al., 2014) and the Silhouette 
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Measure (Negro et al., 2016). These metrics offer a quantitative evaluation of the decomposition 

process by analysing the amplitude of the source spikes relative to the underlying baseline noise. 

However, it is important to acknowledge that while these metrics provide valuable insights 

into the overall quality of the motor unit decomposition, they do not assure absolute accuracy. 

Therefore, manual editing is required to ensure reliable motor unit spike trains (Del Vecchio et al., 

2020). 

During the manual editing process, an experienced operator examines the decomposed MU 

pulse trains. This visual assessment aims to identify any anomalies or irregularities, such as missed 

discharges or erroneous spikes, within the extracted motor unit spike trains. Based on the visual 

inspection, the operator can add missing firing instants or remove wrong ones to ensure that the 

extracted spike trains closely align with expected physiological patterns (Hug et al., 2021a). 

 

 

Figure 2-4: Motor unit spike train editing. Motor unit spike train editing needs to be performed following the automatic decomposition 
results as missing firings and additional firings can provide unreliable spike train results. (a) Instantaneous firing rate (top of the figure) 
calculated from the spike train obtained from the automatic decomposition results (bottom of the figure). The red arrows represent 
missing firings while the green arrow represents an additional firing. These missing and additional discharges increase the variability 
of motor unit firing (top of the figure). (b) Following the addition of missing firings, removal of the additional firing, and recalculation 
of spike train results, the variability in instantaneous firing rate is reduced (top of the figure). 
Figure and caption from (Martinez-Valdes & Negro, 2023). 
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2.4. Considerations for the Analysis of High-Density Electromyography Recordings 

 

The analysis of HD-EMG recordings can be performed both on the global EMG signal and on 

the decomposition outcome. In a basic assumption, the two analyses should provide similar results 

since the global EMG signal generates from the summation of the discharge activity of single MUs. 

However, this idea does not take into account the filtering effect of the volume conductor and the 

summation/cancellation of concurrent action potentials, among many other confounding factors 

(Farina & Enoka, 2023). 

Before the development of advanced decomposition algorithms based on blind source 

separation techniques (Holobar & Zazula, 2007; Negro et al., 2016), the study of the neural drive to 

the muscle was mainly based on rough estimates from the global EMG signal, as the detection of 

single MUs activity from the skin surface was particularly challenging (Farina et al., 2016). With time, 

many simulation (Keenan et al., 2006; Farina et al., 2008) and experimental studies (Del Vecchio et 

al., 2017) demonstrated that the association between global EMG variables and the underlying 

behaviour of the active MUs is weak, and suggested that investigating single MUs might provide 

better estimates of the neural drive to the muscle and its effect (Farina & Enoka, 2023). A clear 

description of why global EMG cannot be considered a reliable estimator of the neural drive to the 

muscle was provided by Dario Farina and Roger Enoka (Farina & Enoka, 2023), who stated that “any 

mathematical descriptor of the EMG signal that does not separate the neural and muscle fibre 

contributions in the surface EMG cannot be used to infer neural control strategies”. A practical 

explanation of this statement is provided in the next paragraphs. 

From global EMG, signal amplitude is often investigated. EMG amplitude is associated to the 

number and size of active MUs and increases with the number of recruited MUs. This is a valid 

indicator of the muscle electrical activity and it is closely related to the force produced by the muscle 

(Milner‐Brown & Stein, 1975; Farina et al., 2014a). However, since force production depends from 

both DR modulation and recruitment, global EMG amplitude cannot be used to infer the properties 

of the single MUs that are recruited and to infer the amount of neural drive. For example, while the 

amplitude of the global EMG signal increases at increasing intensities of contraction, the amplitude 

of the action potential of newly recruited MUs is not necessarily larger than that of MUs recruited 

earlier. Additionally, the rate of change in global EMG amplitude is only weakly correlated with the 

rate of change in single MU action potential amplitudes (Del Vecchio et al., 2017). When it is 

impossible to separate the neural and muscular contribution to force production, results can be 
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misinterpreted and lead to wrong conclusions. For example, it was demonstrated that during leg 

extension, the global EMG amplitude is different between the vastus lateralis and the vastus 

medialis muscle (Martinez-Valdes et al., 2018b). If the analysis is limited to the global EMG 

amplitude, we could conclude that the two muscles receive different amount of neural drive, but if 

we look also at single MUs properties, and in particular at their DR modulation, we understand that 

the difference in global EMG amplitude is due to peripheral differences like size of the MUs or 

amount of volume conductor, but not to the neural drive (Martinez-Valdes et al., 2018b; Farina & 

Enoka, 2023). The same consideration can be misleading also when investigating muscle synergies 

with global estimates (Hug et al., 2021b, 2023). 

Apart from a rough estimate of global EMG amplitude, there are cases in which global EMG 

can provide reliable estimations. Conduction velocity (CV) represents the velocity of propagation of 

the action potentials along the muscle fibres. If this is investigated from the action potentials 

pertaining to single MUs, it is possible to estimate the CV of each MU with high precision (Farina et 

al., 2002). If this is estimated from the global EMG signal, the estimated value will be representative 

of the CV of the population of active MUs (Farina et al., 2000). Although the estimation of single 

MUs CV is more informative, the agreement with global CV is high (Del Vecchio et al., 2017). For this 

reason, global CV is usually considered a reliable estimate. This is probably due to the fact that CV 

depends on the peripheral properties (e.g., muscle fibre size) and not on the central control (Casolo 

et al., 2023), therefore not necessarily requiring to separate the central and peripheral 

contributions. 

As a final remark, the global EMG signal from HD-EMG recordings is often used to map the 

activation level of the muscle. Activity maps can be applied to precisely detect electrical activity 

across different regions of the muscle and to identify how the muscle activation differs during the 

execution of specific tasks (Gallina & Botter, 2013) or in conditions such as low-back pain (Murillo 

et al., 2019). Additionally, activity maps can still provide detailed information in the cases where 

decomposition of single MUs is not feasible (Lulic-Kuryllo et al., 2022). However, it must be noted 

that also this technique can be biased by the inhomogeneous distribution of the volume conductor 

across the muscle area, and this potential limitation should always be considered. 

Based on the beforementioned and in agreement with authoritative opinions (Farina & 

Enoka, 2023), the investigation of the neural strategies of muscle force production should be 

performed, whenever possible, via analysis of single MU properties. For this reason, the 

experimental chapters of this thesis will focus on the investigation of populations of single MUs.  
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2.5. Bipolar Surface Electromyography: Use Cases in the High-Density Electromyography Era. 

 

Before the introduction of HD-EMG, non-invasive EMG recordings were commonly 

performed with pairs of surface electrodes. This simpler setup is often referred to as “bipolar EMG”, 

a technique that measures the difference in voltage between two electrodes on one muscle (i.e., it 

allows to observe an EMG signal in differential montage) (Besomi et al., 2019). Although with this 

approach it is not possible to identify the contribution of single MUs or to investigate spatial features 

such as conduction velocity, the interference EMG signal is usually processed to extract information 

concerning the amplitude of the signal and its power spectral density. Amplitude measures such as 

root mean square and linear envelop are usually associated to the force produced by the muscle, 

while the frequency content of the signal is often adopted to study muscle fatigue (Merletti & 

Farina, 2016). In the previous section, we discussed about the major limitations of these global 

measures performed on the interference EMG when studying human physiology and physiological 

adaptations. However, there are areas of study that still find the use of this technique helpful and 

informative. 

Although HD-EMG promises to be the new frontier of electromyography recordings (Farina 

et al., 2016), it is rapidly evolving by increasing the number of utilised electrodes (which could also 

be considered as the amount of recorded information), and therefore of the complexity of the 

recorded signal. For this reason, the use of HD-EMG finds noticeable obstacles in fields like 

biomechanics and sports science. Indeed, these disciplines often involve the study of complex (on 

multiple planes) and dynamic movements. Additionally, these disciplines frequently demand the 

collection of EMG signals from multiple muscles (e.g., 10 or more agonist and antagonist muscles) 

(Mesquita et al., 2023), which is impractical with HD-EMG, and bipolar EMG remains the only 

solution able to provide an accurate estimate of muscle electrical activity (Luca, 1997). In these 

scenarios, bipolar EMG proves to be a highly effective tool for studying: 

- Onset of muscle activation 

- Force produced by the muscle 

- Muscle fatigue 

 

In these specific cases, bipolar EMG can provide accurate information with limited 

complexity in the experimental setup, in addition to simplified analysis and interpretation of the 

results (Luca, 1997). 
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Obviously, also bipolar EMG requires accurate selection and implementation of the 

experimental setup, including the size and spacing of the electrodes, as well as the anatomical 

location (Vieira et al., 2017). Indeed, bipolar configuration is particularly sensible to muscle cross-

talk, as it does not allow to perform double-differential derivation which increases the selectivity of 

the recording and reduces the contribution of neighbouring muscles to the recorded signal (Luca, 

1997). 

One of the major challenges to the use of HD-EMG are dynamic tasks, a circumstance under 

which bipolar EMG can be more effective and accurate. Indeed, plastic HD-EMG grids usually have 

a certain stiffness, which will cause the grid to detach during repetitive movements or will introduce 

movement artefacts in the recorded signal. Although some manufacturers began producing textile 

grids, which adapt better in dynamic movements, these solutions are much more expensive and 

their use is limited to few (e.g., 2) muscles.  Furthermore, the dimension of the HD-EMG recording 

systems is not compatible with on-field evaluations, especially if the activity of multiple muscles is 

investigated. 

In conclusion, although HD-EMG seems to be the most powerful technique currently 

available for the study of MUs physiology, it is not by default the best approach, and the complexity 

of this technique should be weighted based on the necessity of the research question. 
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3. Experimental Chapter 1: Lower Limb Suspension Induces Threshold-Specific Alterations of Motor 

Units’ Properties that are Reversed by Active Recovery 
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3.1. Background 

 

In healthy people, the motoneuron discharge activity is fundamental for the maintenance of 

posture and for locomotion (Bączyk et al., 2022). Consequently, any increase or reduction in physical 

demand will be reflected into different levels of motoneuron discharge activity (Duchateau & 

Hainaut, 1990; Seki et al., 2001; Del Vecchio et al., 2019a; Škarabot et al., 2022). 

The adaptation of the neuromuscular system to exercise (i.e., increased physical demand) 

has been extensively studied both with intramuscular EMG and surface HD-EMG (Del Vecchio et al., 

2019a; Jones et al., 2022; Škarabot et al., 2022). The majority of these studies have reported an 

increase in DR after periods of resistance exercise, suggesting that this could be a pivotal adaptation 

to support enhanced force production (Škarabot et al., 2021). 

Surprisingly, limited attention has been given to the adaptation of the neuromuscular system 

to disuse (i.e., decreased physical demand) and little evidence is available about it. Contrary to what 

can be expected, disuse periods are common and have significant known consequences on many 

organs and metabolic functions (Clark, 2009; Reggiani, 2015; Sarto et al., 2023). Indeed, disuse can 

be experienced at any age and for a variety of reasons, spanning from disease to space flight. 

Recently, space agencies like the “European Space Agency” (ESA) and the “Agenzia Spaziale 

Italiana” (ASI), among others, have funded numerous projects aimed at understanding the 

consequences of space flight and, in particular, of reduced gravity (Biolo et al., 2017; Monti et al., 

2021). These projects drove some of the major advances in our knowledge of the physical 

adaptations to reduced physical demand. A reduction in gravity translates in a reduced mechanical 

load on our body, similarly to a reduction of physical activity (Juhl et al., 2021). On earth, this 

situation is mimicked via models of muscle unloading like bed-rest, cast immobilisation, or limb 

suspension (Reggiani, 2015; Sarto et al., 2022b). 

Given our knowledge that increased physical demand drives an increase in motoneuron DR, 

it is reasonable to hypothesize that the reduced physical demand experienced in low gravity could 

lead to a reduction in DR. About 30 years ago, two research groups tried to elucidate this, suggesting 

that a reduced motoneuron DR is one of the factors contributing to force loss following periods of 

disuse (Duchateau & Hainaut, 1990; Seki et al., 2001, 2007). However, the techniques that they 

adopted only allowed for a rough estimation of these adaptations and were never applied to 

muscles involved in locomotion, which is the most affected type of movement in low-gravity 

environments (Clark, 2009).  
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3.2. Abstract 

 

Purpose: To non-invasively test the hypothesis that short-term lower-limb unloading would induce 

changes in the neural control of force production (based on motor units’ properties) in the vastus 

lateralis muscle, and that possible changes are reversed by active recovery. 

Methods: Ten young males underwent 10 days of unilateral lower limb suspension (ULLS) followed 

by 21 days of active recovery. During ULLS, participants walked exclusively on crutches with the 

dominant leg suspended in a slightly flexed position (15-20 degrees) and with the contralateral foot 

raised by an elevated shoe. The active recovery was based on resistance exercise (leg press and leg 

extension) and executed at 70% 1RM, 3 times/week. Maximal voluntary contraction (MVC) of knee 

extensors and motor units’ properties of the vastus lateralis muscle were measured at baseline, 

after ULLS and after active recovery. Motor units were identified using High-Density 

Electromyography during trapezoidal isometric contractions at 10, 25 and 50% of the current MVC 

and individual motor units were tracked across the three data collection points. 

Results: 1428 unique motor units were identified and 270 of them (18.9%) were accurately tracked. 

After ULLS, MVC decreased by -29.77%, motor unit’s absolute recruitment/derecruitment 

thresholds were reduced at all the contraction intensities (with the changes between the two 

variables strongly correlated) while discharge rate was reduced at 10 and 25% but not at 50% MVC. 

Impaired MVC and motor units’ properties fully recovered to baseline levels after active recovery. 

Similar changes were observed both in the pool of total and tracked MUs. 

Conclusion: Our novel results demonstrate, non-invasively, that 10 days of ULLS affected neural 

control altering predominantly the discharge rate of lower-, but not of higher-threshold motor units, 

suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold. 

However, after 21 days of active recovery, the impaired motor units’ properties were fully restored 

to baseline levels highlighting the plasticity of the components involved in neural control. 
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3.3. Highlights 

 

- Little is known about the consequences of disuse on the neural control of large muscles and 

how these can be reversed. 

- We studied changes in motor units' properties in the vastus lateralis muscle after 10 days of 

unilateral lower-limb suspension and after 21 days of active recovery. 

- A short period of muscle unloading reduces the discharge rate of lower-, but not of higher-

threshold motor units, suggesting a preferential impact of disuse on motoneurons with a 

lower depolarization threshold. 

- The restoration of neural control requires about twice the duration of the disuse period. 
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3.4. Abbreviations 

 

In alphabetical order: 

 

AR Active recovery 
AR10 Day 10 of AR 
AR21 Day 21 of AR 
COVsteady Coefficient of variation of the steady-state phase 
DERT Derecruitment threshold 
DR Discharge rate 
EMG Electromyography 
HD-EMG High-Density EMG 
LS0 Baseline (day 0 of the limb suspension) 
LS10 Day 0 of the limb suspension 
MUs Motor units 
MVC Maximal voluntary contraction 
PNR Pulse to noise ratio 
RT Recruitment threshold 
ULLS Unilateral lower limb suspension 
XCC Cross-correlation coefficient 
ΔDRR-T Delta DR from recruitment to target 
ΔForceR-T Delta force from recruitment to target 
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3.5. Introduction 

 

Skeletal muscle disuse is a condition that can be experienced at any age and for a broad 

variety of reasons, including injury, hospitalization (e.g., during disease and after surgery), and even 

during space flight. In order to investigate the effects of disuse on neuromuscular health, and 

identify potential countermeasures, different experimental models have been proposed (Reggiani, 

2015; Sarto et al., 2022b) (e.g., limb suspension, limb immobilization and bed-rest). Regardless of 

the implemented model or the investigated muscle, reduction in muscle force is considered a 

primary consequence of disuse (Clark, 2009). Currently, several mechanisms underlying disuse-

induced muscle force reduction have been proposed, such as muscle atrophy (Clark, 2009) and 

altered contractile properties of muscle fibres (Monti et al., 2021) (i.e., excitation-contraction 

coupling) based on what observed after limb suspension and bed-rest. However, these mechanisms 

are considered insufficient to fully explain the loss of muscle force, suggesting that other key 

processes might be involved (Clark, 2009; Monti et al., 2021). 

Disuse has been also defined as a reduction in the number of action potentials delivered by 

motoneurons (Reggiani, 2015) and, in light of this, it is surprising that very little attention has been 

given to the role of neural signalling to the muscle in disuse conditions. Indeed, the available 

knowledge is limited to the seminal works of Duchateau and Hainaut (Duchateau & Hainaut, 1990) 

and Seki (Seki et al., 2001, 2007) based on intramuscular electromyographic (EMG) recordings in 

hand muscles (i.e., adductor pollicis and first dorsal interosseous). These works consistently reported 

that hand cast immobilization results in a reduction of motor units’ (MUs) discharge rate (DR) across 

different contraction intensities although discrepant conclusions were reached on whether the 

alterations in MUs DR were more pronounced for lower- or higher-threshold MUs. Specifically, 

Duchateau and Hainaut (Duchateau & Hainaut, 1990) directly observed that the gain in MUs DR was 

predominantly reduced in lower-threshold MUs while, the results of Seki, indirectly suggested that 

the higher-threshold MUs might be more affected, based on a reduced slope of their force-

frequency relationship (Seki et al., 2001). These contrasting results may be attributed to the 

different interpretation of the data, but also to the pioneering approaches adopted in these 

investigations that only allowed for the manual identification of a small number of MUs, which could 

introduce variability into the results. Additionally, it is unknown whether the findings of these 

studies might be limited to small muscles, since larger muscles use different neural strategies to 
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control force production (De Luca, 1985) (from now on referred as neural control (Farina et al., 

2016)). 

Over the last years, the development of EMG technologies and the introduction of multi-

channel recording systems, namely High-Density EMG (HD-EMG) (Farina et al., 2016), allowed for 

the non-invasive detection of a large and representative population of MUs active in different 

regions of the examined muscle (Del Vecchio et al., 2020). Moreover, these unique features allow 

for the appropriate investigation of MUs activity in large muscles (Farina et al., 2016) like the knee 

extensors, which are fundamental for locomotion and independence in daily tasks, and for the 

identification and tracking of individual MUs over time (Martinez-Valdes et al., 2017). Besides, the 

concurrent recording of force might provide additional insights on the discharge characteristics of 

the simultaneously activated MUs and their common synaptic input, especially at lower intensities 

of contraction (Enoka & Duchateau, 2017). 

Therefore, the aim of this study was to take advantage of HD-EMG to investigate how 10 

days of unilateral lower-limb suspension (ULLS), a well-established model of disuse induced with 

limb unloading (Berg et al., 1991), can alter the neural control in a large thigh muscle (i.e., vastus 

lateralis). Furthermore, we also investigated the condition of neural control after 21 days of active 

recovery (AR) based on moderate to high-intensity resistance exercise. Our hypotheses were that 

(i) 10 days of ULLS would be sufficient to induce detectable alterations of neural control, particularly 

via alterations of MUs DR and (ii) that 21 days of AR (about twice the duration of the ULLS) would 

be sufficient to restore neural control. 

 

  



52 
 

3.6. Methods 

3.6.1. Participants and experimental protocol 

 

This study was part of a larger investigation aimed at detecting early biomarkers of 

neuromuscular degeneration after short-term unloading (Sarto et al., 2022a). 

The investigation was conducted in accordance with the Declaration of Helsinki, and 

approved by the Ethics Committee of the Department of Biomedical Sciences of the University of 

Padova (Italy), reference HEC-DSB/01-18. Volunteers were enrolled in the study after examination 

of medical history and signing the written consent form. 

Twelve recreationally active young adults volunteered to participate in this study. Only male 

individuals were accepted to reduce the risk of deep venous thrombosis associated with ULLS that 

is more common in females (Bleeker et al., 2004). Inclusion criteria were 18-35 years of age, body 

mass index between 20 and 28 kg m−2 and involvement in recreational physical activities (1-3 

times/week, self-reported). Exclusion criteria were: sedentary lifestyle, smokers, history of deep 

venous thrombosis and any other condition preventing the safe participation in the study. 

Prior to the beginning of the study, participants were familiarized with the study procedures 

and practiced carrying out daily tasks while performing ULLS (Tesch et al., 2016). Measurements 

were conducted at baseline (day 0 of the limb suspension, LS0), after 10 days of ULLS (LS10) and 

following 21 days of AR (AR21) (Fig. 3-1A). At LS10, participants were tested immediately after the 

interruption of the limb suspension. At AR21, the tests were executed 72 hours after the last 

exercise session to avoid muscle fatigue. 

The duration of the AR phase was based on previous observations that full recovery of 

muscle function after a two-week lower limb immobilization required an AR period lasting twice as 

long (4 weeks) as the disuse phase (Suetta et al., 2009). In this study, an intermediate measurement 

of maximum voluntary isometric contraction (MVC) was also performed after 10 days of AR (AR10) 

to monitor how much force had been recovered with respect to LS0 (Fig. 3-1A). 

Participants were asked to refrain from intense exercise, coffee and alcohol intake during 

the 24 hours preceding the data collection. 

 

3.6.2. Unilateral lower limb suspension 

 

The dominant lower limb (right leg for all the participants) was suspended in a slightly flexed 

position (15 to 20 degrees of knee flexion) with straps connecting the shoulders and the suspended 
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foot (Fig. 3-1A) while the opposite foot was fitted with an elevated shoe (50 mm sole) to prevent 

the suspended lower limb from touching the ground while moving, as originally described by Berg 

et al. (Berg et al., 1991). Volunteers walked exclusively on crutches during the whole ULLS period 

and avoided any loading or active contraction of the suspended limb (Berg et al., 1991). The straps 

were always worn when the participants had the necessity to walk but were removed while sitting 

or lying in bed. Participants were instructed on how to properly wear the straps during the 

familiarization session. 

Precautionary measures to prevent deep venous thrombosis have been taken as previously 

described (Sarto et al., 2022a). Compliance was evaluated through daily calls and messages. 

 

3.6.3. Active recovery 

 

The AR phase started 72 hours after the end of the suspension period and was conducted 

for the following 21 days. The AR program was based on unilateral resistance exercise performed 3 

times/week with at least 24h of recovery between sessions. Every session was composed of 3 sets 

of 10 repetitions of leg press and leg extension at 70% 1RM after a warm-up period at 30% 1RM. 

Both exercises were executed from full knee extension (0 degrees) to ∼90 degrees limb flexion. Sets 

were separated by a 2-min rest. The time under tension was set at ∼2 seconds both in the concentric 

and eccentric phases. 

1RM was estimated from the 4-6RM during the first exercise session (Brzycki, 1993) of each 

week and the load employed was adjusted accordingly. 

The choice of the intensity and the decision to indirectly estimate the 1RM, was based on 

the participants characteristics, not previously involved in resistance exercise and coming from 10 

days of complete unloading of the lower limb. 

 

3.6.4. Maximal voluntary isometric contraction 

 

MVC was assessed during maximal voluntary isometric contraction of the knee extensor 

muscles at 90° knee angle, using a custom-made knee dynamometer fitted with a load cell (RS 206–

0290) attached above the ankle through straps as previously described (Monti et al., 2021; Sarto et 

al., 2022a) (Fig. 3-1B).  
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In order to ensure correct assessment of the MVC (Gandevia, 2001), participants practiced 

the task during the familiarization session supervised by an experienced operator and were all 

instructed to “push as hard as possible” by pushing the dominant leg against the load cell, and then 

to maintain the contraction for 3/4 seconds. After a standardized warm-up executed up to 70% of 

their perceived maximum, participants practiced the maximal task until they became able to 

consistently reach their maximum force values. During every contraction, participants were 

stabilized to the seat with straps at the waist in order to prevent any compensatory movement and 

loud verbal encouragement was provided to encourage the maximum voluntary effort. At the data 

collection points, the test was repeated three times with 60 seconds of rest and only the contraction 

with the maximum value was considered for the MVC calculation. 

 

3.6.5. HD-EMG matrix placement 

 

The HD-EMG signal was recorded from the vastus lateralis muscle (Fig. 3-1B) using a matrix 

of 64 equally spaced electrodes (GR08MM1305, OT Bioelettronica, Torino, Italy) filled with 

conductive cream (Ac cream, OT Bioelettronica, Torino, Italy) and arranged over 5 columns and 13 

rows with 8 mm interelectrode distance, which corresponded to 30.72 cm2 of recording area. 

The matrix was placed following the muscle fascicle orientation (detected with B-mode 

ultrasound (Mylab70, Esaote, Genoa, Italy) (Hug et al., 2021b) and with the central electrodes of the 

last two rows of the matrix over the innervation zone (Botter et al., 2011a). The ultrasound 

recordings were used also to detect muscle borders and avoid the placement of the matrix across 

adjacent muscles. 

The innervation zone was detected between 35% and 20% of femur length (Botter et al., 

2011a) with low-intensity percutaneous electrical stimulation using a pen electrode with an 

electrical current of 8-16 mA (Digitimer Ltd, Welwyn Garden, Hertfordshire, UK) (Sarto et al., 2022a). 

Before placing the matrix, the skin was shaved, cleaned with 70% ethanol and then with 

abrasive-conductive paste (Spes medica, Salerno, Italy). Reference electrodes were placed on the 

malleolus and patella bones. 

After the recordings, the matrix border was marked with a permanent marker and 

emphasized by the operator at every meeting with the participants to allow the reproducible 

placement of the matrix in the following data collection points (Casolo et al., 2020). 
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3.6.6. HD-EMG recordings 

 

The HD-EMG signal was recorded during trapezoidal contractions (Fig. 3-1C) at three 

different submaximal intensities (10, 25 and 50% MVC). All the contractions had a total duration of 

30 seconds. The ramp-up and ramp-down phases were performed with a linear force 

increase/decrease set at 5% MVC per second (Del Vecchio et al., 2019a) and the duration of the 

steady-state phase was adjusted accordingly (Fig. 3-1C) (e.g., at 25% MVC the ramps lasted 5 

seconds each and the steady-state 20 seconds, for a total 30 seconds contraction). All the 

trapezoidal contractions were repeated twice with 60 seconds of rest and the different intensities 

were proposed in random order. Participants received real-time visual feedback of the force 

produced and were instructed to match the trapezoidal template as precisely as possible. 

EMG and force signals were sampled at 2048 Hz with the EMG-Quattrocento (OT 

Bioelettronica, Torino, Italy). The EMG signal was recorded in monopolar configuration, amplified 

(×150) and band-pass filtered (10–500 Hz) at source (Del Vecchio et al., 2019a). Force was recorded 

synchronously with the EMG signal and the offset was removed before starting the recording. 

 

3.6.7. Force and HD-EMG signal analyses 

 

The force signal was converted to newton (N) and low-pass filtered (fourth-order, zero-lag, 

Butterworth, 15 Hz cut-off) (Del Vecchio et al., 2019a). Force steadiness was computed as the 

coefficient of variation of force recorded during the steady-state phase (COVsteady) of the 

trapezoidal contractions and expressed as percentage (i.e., the ratio of the standard deviation to 

the mean) (Enoka & Farina, 2021). 

The HD-EMG signal was band-pass filtered between 20 and 500 Hz (second-order, 

Butterworth) and decomposed into discharge times of the MUs with the validated convolutive blind 

source separation technique (Fig. 3-1D)(OTBioLab+, OT Bioelettronica, Torino, Italy)(Negro et al., 

2016). After the decomposition, the pattern of discharge times for each MUs was visually inspected 

and manually edited (Hug et al., 2021a). Only the identified MUs with a pulse to noise ratio (PNR) ≥ 

28 decibel (dB) (sensitivity > 85%), were maintained for further analyses (Holobar et al., 2014). 

All the MUs decomposed from the two trapezoidal contractions recorded at the same 

intensity during the same data collection point (for each participant) were pooled and analysed 

together after the removal of duplicated MUs (as explained in section 2.3.5). This approach allowed 

to increase the number of unique MUs, to reduce the variability induced by the inability of the 
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participant to reproduce the trapezoidal path and to avoid results biased by the duplication of values 

that would occur without removing the duplicated MUs. 

For each identified MU, the absolute and relative (as percentage of MVC) recruitment 

threshold (RT) and derecruitment threshold (DERT), and the average discharge rate (DR) at 

recruitment, derecruitment and during the steady-state phase were computed.  

MUs DR was calculated over the first and last 4 discharges at recruitment and de-recruitment 

and during the entire steady-state phase (Del Vecchio et al., 2019a). 

DR modulation was defined as the difference between the DR at recruitment and the DR at 

the start (first 10 discharges) of the steady-state phase (delta DR from recruitment to target, ΔDRR-

T). The difference between the target force (i.e., 10, 25 and 50%) and the force at recruitment 

(ΔForceR-T) was also computed. 

MUs properties were first analysed based on contraction intensity and then by recruitment 

threshold. In particular, MUs with a RT ≤ 25% MVC were compared to those with a RT ≥ 25% MVC 

and were defined as lower- and higher-threshold MUs, respectively. The analyses comparing lower- 

and higher-threshold MUs have been performed both in the pool of total and tracked MUs. 

Signal processing and analyses were performed with custom Python scripts (Release 3.9.7, 

Python Software Foundation, USA). 

 

3.6.8. MUs tracking and duplicates removal 

 

MUs action potential waveforms and their spatial distribution (Fig. 3-1E) were used to 

recognize the same MUs across different recording sessions as previously described (Maathuis et 

al., 2008; Martinez-Valdes et al., 2017; Del Vecchio et al., 2020). Briefly, the tracking method is 

based on the normalized two-dimensional cross-correlation value (XCC) between the waveforms of 

individual MUs generated by spike-triggered average on a 25 ms time-window and accounts both 

for the shape and the location of the waveforms (Martinez-Valdes et al., 2017; McManus et al., 

2021). Different thresholds of similarity were set based on whether MUs tracking was used to 

remove duplicated MUs within the same recording session or to track them across the different data 

collection points. Pairs of MUs from the same recording session with XCC ≥ 0.9 were considered 

duplicates (Maathuis et al., 2008) and, therefore, the MU with the lowest PNR was removed from 

the following analyses (Holobar et al., 2014). To track the MUs longitudinally, the XCC threshold was 
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set ≥ 0.8 to account for minor differences in the matrix placement (Maathuis et al., 2008; Martinez-

Valdes et al., 2017). 
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Figure 3-1: Schematic representation of the study design (A) and procedures of data collection and analysis (B-E). Data were collected 
at baseline (day 0 of limb suspension), after 10 days of ULLS and after 21 days of active recovery (data collection points were named 
LS0, LS10 and AR21 respectively) (A). MVC, maximal voluntary contraction was recorded also after 10 days of active recovery (AR10). 
HD-EMG was recorded from the vastus lateralis muscle (B) during ramp contractions at 10, 25 and 50% MVC. Ramp slope was 
standardized at 5% MVC per second (C). The recorded electrical activity of the muscle was decomposed to obtain the pattern of 
discharge times of the MUs (D) and the MUs action potential shape was used to track the MUs longitudinally across the different data 
collection points (E). XCC, cross-correlation coefficient, is the measure of similarity between the MUs action potential shape. 
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3.6.9. Statistical analysis 

 

Concerning MVC and force steadiness, variables normality of the distribution was assessed 

through the Shapiro–Wilk test. Since the normality assumption was satisfied, a one-way repeated 

measure analysis of variance (ANOVA) was used. Sphericity was tested with Mauchly’s test and 

when the assumption of sphericity was violated, the correction of Greenhouse-Geisser was applied. 

Post-hoc pairwise T-tests were conducted with Holm's correction when the overall model had a p-

value less than 0.05. 

All the MUs properties were analysed using linear models (time as fixed effect, random 

intercept, clustered by participant) as multiple MUs were recorded from each participant (Sarto et 

al., 2022a; Yu et al., 2022). Normality for the residuals of each variable was assessed through visual 

inspection of the Q-Q plot and histogram. If normality of the residuals was not confirmed, a 

generalized linear mixed effect models was used instead. Post-hoc comparisons were conducted 

with Holm’s correction when the overall model had a p-value less than 0.05. 

Repeated measures correlation was used to determine the common within-individual 

association for paired measures assessed at the three data collection points (Bakdash & Marusich, 

2017). For this analysis, participants average values were used as a representation of the clustered 

values (i.e., MUs properties) as commonly done in studies with HD-EMG (Del Vecchio et al., 2019b; 

Nuccio et al., 2021). Fixed slopes were employed to estimate a single correlation coefficient for all 

subjects, which simplifies the model and improves the stability and accuracy of the estimates 

(Bakdash & Marusich, 2017). 

Mixed models were computed with jamovi 2.2.2 (Sydney, Australia – R language) while the 

other analyses were performed using Python (Release 3.9.7, Python Software Foundation, USA, 

pingouin package (Vallat, 2018)). Statistical significance was accepted at p<0.05. The results are 

reported and plotted as mean (standard error) for linear models and as mean (standard deviation) 

for the ANOVAs. Partial eta squared (η²p) was also reported for ANOVAs. 
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3.7. Results 

3.7.1. Participants 

 

Out of 12 participants, one dropped out after baseline measures for personal reasons. All 

the others successfully completed the study without any adverse event. Participants characteristics 

were age: 22.1 (2.9) years; height: 178 (3.1) cm; body mass: 72.1 (7.1) kg; BMI 22.9 (2.1) kg*m-2. 

Due to the inability to decompose MUs with a PNR above 28 dB at LS10 and AR21, one participant 

was excluded from the analyses. Hence, a total of 10 participants were included in the final analyses.  

 

3.7.2. Maximal voluntary isometric contraction and force control 

 

Complete statistical summary of MVC and COVsteady is available as Supplementary 

material (Table Supp 3-1). 

For MVC, a main effect of time was observed (p<0.001, η²p=0.842). Compared to LS0, MVC 

decreased at LS10 (-29.77%, p<0.001), remained lower at AR10 (-15.28%, p=0.002) and returned to 

LS0 values at AR21 (Fig. 3-2A). 

COVsteady, showed a main effect of time at all the contraction intensities (p=0.017 and 

η²p=0.364 at 10%, p=0.001 and η²p=0.656 at 25%, p=0.001 and η²p=0.699 at 50% MVC). Compared 

to LS0, COVsteady increased at LS10 at 25% MVC (+54.95%, p=0.008) and decreased at AR21 for all 

the contraction intensities (-16.77%, p=0.020 at 10%; -22.43%, p=0.002 at 25%; -15.36%, p=0.033 at 

50% MVC)(Fig 3-2B). 
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Figure 3-2: Bar plots representing the maximal voluntary isometric contraction MVC (A) and the COV of the steady state phase (B) at 
the different data collection points. COV of the steady state phase is also represented at the three different submaximal contraction 
intensities (i.e., 10, 25 and 50% MVC). Data are displayed as mean ± SD and the changes for every participant are highlighted by a 
connected point plot. Significance levels are: *p<0.05, **p<0.01, ***p<0.001. 

 

3.7.3. MUs Decomposition and Tracking 

 

A total of 1428 unique MUs (616 at 10%, 541 at 25% and 271 at 50% MVC) were identified, 

with an average PNR of 35.04 (2.23) dB at 10%, 33.00 (1.87) dB at 25% and 31.80 (1.36) dB at 50% 

MVC. Of these, 270 MUs (18.90% of the total pool) were tracked (Fig. 3-1E) across the three data 

collection points with an average XCC of 0.88 (0.04) at 10%, 0.92 (0.03) at 25% and 0.93 (0.03) at 

50% MVC. The obtained values are in line with the methodological validation of the technique 

(Martinez-Valdes et al., 2017).  

 

3.7.4. Total pool of MUs 

 

A complete statistical summary of MUs properties is available as Supplementary material 

(Table Supp 2-4). 

MUs absolute RT (Fig. 3-3A) and DERT (Fig. 3-3B) were reduced at LS10 (compared to LS0) 

for all the contraction intensities (-20.69% at 10%, -15.15 at 25%, -19.56 at 50% MVC; p<0.001 for 

RT. -18.93% at 10%, -25.43% at 25%, -22.34% at 50% MVC; p<0.001 for DERT) and completely 

recovered to the LS0 values at AR21 at 10 and 50% MVC. At 25% MVC, instead, the RT at AR21 

exceeded the LS0 level (+10.61%, p=0.002).  
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Compared to LS0, MUs relative RT (Fig. Supp 3-1A) was increased at LS10 at 10 and 25% MVC 

(+11.10%, p=0.008 at 10%; +19.10%, p<0.001 at 25%). At AR21, relative RT returned to baseline 

values at 10% but not at 25% MVC (+11.10%, p=0.003). MUs relative DERT (Fig. Supp 3-1B) was 

increased at LS10 at 10% MVC (+16.10%, p<0.01) and returned to baseline values at AR21. 

Compared to LS0, MUs DR at recruitment (Fig. 3-4A) was reduced at LS10 at 10 and 25% (-

12.25% at 10%, -12.53% at 25% MVC; p<0.001) while increased at 50% MVC (+10.09%, p=0.039). At 

AR21, DR at recruitment returned to baseline values at 10 and 50% while exceeded the LS0 values 

at 25% MVC (+7.05%, p<0.001). At 10% MVC, DR at derecruitment was reduced at LS10 (-5.65%, 

p=0.002) and returned to baseline values at AR21. At 25 and 50% MVC, DR at derecruitment did not 

change between LS0 and LS10 (Fig. 3-4B). The DR of the steady-state phase (Fig. 3-4C) decreased at 

LS10 at 10 and 25% MVC (-12.54% at 10%, -9.80% at 25% MVC; p<0.001) and exceeded the LS0 

values at AR21 (+5.51%, p=0.006 at 10% and +7.35%, p<0.001 at 25%). At 50% MVC, the DR of the 

steady-state phase increased at LS10 (+5.98%, p=0.044) and returned to the LS0 values at AR21. 

Changes in the total pool of MUs classified as lower and higher-threshold reflected closely 

what observed for MUs at 10-25% and those at 50% MVC and are extensively presented in 

Supplementary material (Fig. Supp 3-3 and Table Supp. 3-3). Briefly, ULLS affected the RT and DERT 

of both lower- and higher-threshold MUs while DR was affected only for lower-threshold MUs. 
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Figure 3-3: Swarm plots representing the absolute MUs RT (A) and DERT (B) at the three data collection points. From left to right, MUs 
properties are presented for the three different submaximal contraction intensities (i.e., 10, 25 and 50% MVC). Individual MUs are 
represented by dots and clustered by subject. Summary data are presented as mean ± SEM and the direction of the changes is 
highlighted by a connection line. Significance levels are: **p<0.01, ***p<0.001. 
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Figure 3-4: Swarm plots representing the MUs DR at recruitment (A), derecruitment (B) and during the steady-state phase (C) at the 
three data collection points. From left to right, MUs properties are presented for the three different submaximal contraction intensities 
(i.e., 10, 25 and 50% MVC). Individual MUs are represented by dots and clustered by subject. Summary data are presented as mean ± 
SEM and the direction of the changes is highlighted by a connection line. Significance levels are: *p<0.05, **p<0.01, ***p<0.001. 
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3.7.5. Correlations 

 

Repeated-measures correlations were used to describe the strength of the association 

between two variables of interest and whether these associations were statistically significant. 

A moderate to strong positive correlation was observed between MVC and absolute RT at 

10, 25 and 50% MVC (r=0.80, 0.69 and 0.89, respectively)(Fig. 3-5A) as well as between MVC and 

absolute DERT (r=0.78, 0.73 and 0.96) (Fig. 3-5B) and between absolute RT and DERT (r=0.75, 0.89 

and 0.90) (Fig. 3-5C). Significance for all the correlations was p<0.001. 

 

 

Figure 3-5: Plots of the repeated-measures correlation describing the common within-individual association between MVC and 
absolute RT (A), MVC and absolute DERT (B), absolute RT and DERT (C) across the different data collection points. From left to right, 
correlations are presented at the three different submaximal contraction intensities (i.e., 10, 25 and 50% MVC). r value is reported in 
the upper-left of each figure. Significance level is p<0.001 for all the correlations. 
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3.7.6. DR modulation 

 

A reduced ΔDRR-T between LS0 and LS10 was observed at 10 and 25% (-21.19% at 10%, 

p=0.035 and -41.6% at 25%, p<0.001) but not at 50% MVC. The ΔDRR-T returned to LS0 at AR21 at 

10 and 25% MVC but exceeded the LS0 values at 50% (+23.73%, p=0.039) (Fig. Supp 3-2A). The 

relative ΔForceR-T (Fig. Supp 3-2B) was reduced at LS10 compared to LS0 at 10 and 25% (-23.50% at 

10%, p=0.005 and -35.00% at 25%, p<0.001) but not at 50% MVC. The ΔForceR-T returned to LS0 at 

AR21 at 10% MVC but not at 25% (-20.10%, p=0.003). 

 

3.7.7. Pool of tracked MUs 

 

Absolute RT (Fig. 3-6A) was reduced at LS10 compared to LS0 (-24.95%, p=0.017 for lower- 

and -21.17%, p=0.003 for higher-threshold MUs) and returned to the LS0 values at AR21. The same 

trend was observed for DERT (-31.55%, p=0.003 for lower- and -29.48%, p<0.001 for higher-

threshold MUs)(Fig. 3-6C). Both the relative RT and DERT of the tracked MUs (Fig. 3-6B and 3-6D) 

did not differ at any measurement.  

DR at recruitment (Fig. 3-6E) and during the steady-state (Fig. 3-6G) phase approached the 

borderline of a significant reduction for lower (-8.86%, p=0.051 at recruitment and -7.27%, p=0.057 

during the steady-state phase for LS0 vs LS10), but not for higher-threshold MUs that did not 

change. DR at derecruitment was not affected by the interventions (Fig. 3-6F). ∆DRR-T was not 

affected by the intervention both for lower- and higher-threshold MUs (Fig. Supp 3-4A). A visual 

representation of the between and within participants variability of tracked MUs is available in Fig. 

Supp 3-5. 
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Figure 3-6: Swarm plots representing the MUs properties 
obtained from the pool of tracked MUs. MUs RT and DERT are 
presented in both absolute (A, C) and relative terms (as percent 
of the MVC)(B, D) and MUs DR is shown at recruitment (E), 
derecruitment (F) and during the steady-state phase (G), at the 
three data collection points. From left to right, MUs properties 
are presented based on the classification of lower- and higher-
threshold (i.e., recruited below or above 25% MVC). Individual 
MUs are represented by dots and clustered by subject. Summary 
data are presented as mean ± SEM and the direction of the 
changes is highlighted by a connection line. Significance levels 
are: *p<0.05, **p<0.01, ***p<0.001. 
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3.7.8. Summary of MUs properties 

 

In the total pool of MUs, absolute RT and DERT were reduced at LS10 at all the contraction 

intensities and recovered to baseline levels at AR21. Differently, MUs DR was reduced at LS10 but 

only at 10 and 25% MVC while, at 50%, DR increased compared to LS0. At AR21, DR returned to 

baseline levels at 50% MVC while it exceeded the baseline levels at 10 and 25% MVC. The changes 

in MUs absolute RT, DERT and DR were confirmed in the pool of tracked MUs. 

At LS10, relative RT was increased at 10 and 25% but not at 50% MVC. At AR21, it recovered 

to baseline levels at 10% but not at 25% MVC. Relative RT did not change in the pool of tracked MUs. 

The range of DR (ΔDRR-T) and force modulation (ΔForceR-T) was reduced at LS10 compared to 

LS0 at 10 and 25% but not at 50% MVC. ΔDRR-T returned to baseline levels at AR21 both at 10 and 

25% MVC. ΔForceR-T returned to baseline levels at AR21at 10% but not at 25% MVC. No changes 

were identified in the pool of tracked MUs. 
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3.8. Discussion 

 

The main finding of this study was that a short period of unloading of the dominant lower 

limb (i.e., 10 days of ULLS) in young healthy men is sufficient to induce a detectable alteration of the 

neural strategies used to control muscle force production (here referred as neural control (Farina et 

al., 2016; Del Vecchio et al., 2020)) in the vastus lateralis muscle predominantly by reducing the DR 

of lower-, but not of higher-threshold MUs. Moreover, 21 days of AR (about twice the duration of 

ULLS) based on resistance exercise are sufficient to restore neural control and even to suggest the 

beginning of an exercise-induced overcompensation, highlighting the remarkable functional 

plasticity of the neural components. 

The threshold-specific alterations of MUs DR demonstrate a different impact of disuse on 

the motoneurons innervating lower- and higher-threshold MUs in the large vastus lateralis muscle. 

This finding shows a similarity with the seminal work of Duchateau and Hainaut (Duchateau & 

Hainaut, 1990) on small hand muscles and suggests that that the preferential impact of disuse on 

the motoneurons innervating lower-threshold MUs is a general phenomenon. In other words, this 

response appears as a fundamental mechanism independent from the size or the anatomical 

location and characteristics of the considered muscle (Henneman et al., 1965a; De Luca, 1985). 

Unveiling the effects of unloading on the neural control of vastus lateralis, a large 

component in the group of knee extensor muscles which are fundamental for daily life motor tasks 

and with key metabolic roles, may have significant relevance for developing practices aimed at 

preventing or recovering the disuse-induced neuromuscular impairments. For example, knowing 

the preferential deterioration of the motoneurons innervating lower-threshold MUs, and the rapid 

onset of this alteration, might drive the development of rehabilitation protocols specifically 

designed at targeting these motoneurons (low intensities of exercise) and suitable to be carried out 

shortly after the cause of disuse (e.g., injury or surgery). 

 

3.8.1. MUs DR is affected by ULLS 

 

Our data indicate a difference between the ULLS-induced changes in absolute RT/DERT, 

observed both in lower- and higher-threshold MUs, and the changes in DR that differed for lower- 

and higher-threshold MUs. Notably, all these changes were confirmed also in the pool of tracked 

MUs where there are no confounding effects due to different populations of decomposed MUs 
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(Martinez-Valdes et al., 2017; Casolo et al., 2020), thereby strengthening the reliability of the 

results. 

The strong correlation between absolute RT and DERT suggests that the order of recruitment 

and derecruitment was not altered by disuse, in other words, short-term disuse seems to not cause 

deviations from the Henneman’s Size Principle (Mendell, 2005a). Additionally, the correlation 

between MVC and absolute RT/DERT highlights a synergic change of the two parameters and 

indicates that the reduced RT observed at LS10 at all the contraction intensities should be a 

consequence of internal muscular impairments affecting equally all the MUs. Indeed, recent 

evidence suggests that short periods of bed-rest and ULLS are sufficient to impair muscle fibres 

contractility by altering intracellular calcium handling (Monti et al., 2021) and muscle fibres specific 

force (Brocca et al., 2015). Interestingly, these changes were identified evenly in slow and fast 

muscle fibres. In this case, the recruitment of MUs with altered contractile properties will generate 

lower contractile force and, therefore, all the MUs will be recruited at lower absolute intensities. 

Regarding the different effect of ULLS on DR of lower- and higher-threshold MUs, we 

hypothesized the possibility of alterations specific to the motoneurons with a lower depolarization 

threshold (that are expected to innervate smaller MUs possibly composed by a prevalence of slow-

type muscle fibres (Burke, 1981; Mendell, 2005a; Heckman et al., 2009; Casolo et al., 2020)). Indeed, 

it was demonstrated that 3 weeks of knee immobilization induce a phenotype shift from slow to 

fast fibres (Hortobágyi et al., 2000; Ciciliot et al., 2013). This phenomenon might be related to, and 

anticipated by, a different functional preservation of lower- and higher-threshold motoneurons. In 

this case, although higher-threshold motoneurons might retain largely unaltered DR activity (at least 

for 10 days), muscle fibres are unable to effectively translate the neural signalling in force 

production due to impaired contractile properties (Monti et al., 2021). 

In addition to the beforementioned, mechanisms such as the recurrent inhibition 

(Piotrkiewicz et al., 2004) (i.e., motoneuron inhibition mediated by the Renshaw cells) or synaptic 

noise (Faisal et al., 2008; Dideriksen et al., 2012, 2015) (i.e., random disturbing synaptic activity in 

neurons that can alter the common input to the motoneurons) could contribute to the modulation 

of the lower-threshold motoneurons’ activity. Indeed, the reduced force steadiness that we 

observed at LS10 at 25% MVC suggests the presence of synaptic noise induced by ULLS, in light of 

recent evidence suggesting that altered synaptic noise might be responsible for altered steadiness 

at lower intensities of contraction (Faisal et al., 2008; Dideriksen et al., 2012, 2015). 
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Based on what previously mentioned, we hypothesized that as a consequence of peripheral 

impairment of the muscle fibres mechanical contractile properties after disuse (Monti et al., 2021), 

MUs are recruited at lower absolute intensities. At the same time, the reduced DR for the lower-

threshold MUs introduces an additional neural limitation to force production. Increasing contraction 

intensity, and recruiting higher-threshold MUs, the higher-threshold motoneurons with preserved 

functionality may in principle try to compensate for the force-loss caused by impaired lower-

threshold motoneurons (already recruited and sustaining force production) but in practice would 

have little or no effect due to mechanical constraints of muscle fibres (Brocca et al., 2015; Monti et 

al., 2021). This last hypothesis suggests that DR reduction of lower-threshold MUs, alongside 

impaired muscle fibres mechanical contractile properties (Monti et al., 2021) (and many other 

factors), could be responsible for the reduction in muscle force commonly observed after disuse. 

 

3.8.2. Reduced DR, but not DR modulation, might be responsible for reduced muscle force 

 

To further investigate the changes in MUs DR, we analysed the DR modulation (∆DRR-T) of 

single MUs. In the total pool of MUs, the DR modulation was reduced for lower-, but not for higher-

threshold MUs. However, in the same pool, lower-threshold MUs were recruited at a higher 

intensity in relative terms (i.e., the relative RT of the MUs decomposed at 10 and 25% MVC at LS10 

was higher than at LS0). Therefore, we concluded that the DR modulation was only partially affected 

by ULLS and that the observed difference was mainly a consequence of a differently balanced 

population of MUs decomposed at LS10 compared to LS0. This was also confirmed in the pool of 

tracked MUs were no significant difference in DR modulation was observed. It should be noted, 

however, that tracked MUs showed a trend similar to what observed in the total pool, suggesting 

that significant alteration of DR modulation might become apparent with longer-term unloading or 

more severe models of disuse, as previously suggested (Duchateau & Hainaut, 1990). Indeed, the 

work of Duchateau and Hainaut on hand muscles (Duchateau & Hainaut, 1990) reported a larger 

reduction in DR modulation for lower- compared to higher-threshold MUs after 6-8 weeks of hand 

cast immobilization. This finding suggests that the preferential impact of disuse on the motoneurons 

innervating lower-threshold MUs should be expected for both smaller and larger muscles, despite 

different utilization of MUs recruitment strategies and DR modulation to sustain force production 

(i.e., smaller muscles are expected to achieve the full MUs recruitment at lower intensity of 

contraction, compared to large muscles, and to rely more on DR modulation to achieve the MVC 
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(Henneman et al., 1965a; De Luca, 1985)). Unfortunately, this information is not available in the 

study of Seki (Seki et al., 2001) which also reported a reduction in DR modulation after 6 weeks of 

cast immobilization but did not investigate whether this was more pronounced in lower- or higher-

threshold MUs. 

Altogether, our findings suggest reduced DR, but not DR modulation, as an early determinant 

of force loss after short periods of unloading and that impaired DR modulation might become a 

limiting factor at later stages. 

 

3.8.3. Neural control is restored by an active recovery period 

 

21 days of AR (about twice the duration of the ULLS intervention) with a resistance-exercise 

protocol executed at 70% 1RM completely restored the LS0 levels of muscle force and neural 

control. Our hypothesis is that increased neural drive to the muscle during the AR period, induced 

by increased demand of motor tasks (Škarabot et al., 2021), stimulated both the recovery of intrinsic 

properties of the motoneurons and of the contractile muscle tissue. Additionally, some parameters 

(e.g., force steadiness and MUs DR) also exceeded the LS0 levels suggesting the early onset of some 

exercise-induced over compensatory adaptations (Škarabot et al., 2021). In particular, the improved 

force steadiness might suggest an enhanced adaptive response of the superior centres of 

neuromuscular control (Dideriksen et al., 2015). 

The complete recovery observed after 21 days of AR, at least in young and healthy men, 

highlights the plasticity of the components involved in the regulation of neural control, and the 

complete reversibility of the changes induced by short periods of unloading. It should be noted, 

however, that although the full recovery was achieved, a longer time (compared to the duration of 

unloading) was necessary, likely suggesting a sort of unloading-induced hysteresis in the recovery 

process. Notably, the necessity of a prolonged recovery period for the restoration of the neural 

control in young and healthy men could have profound implications for fragile populations (e.g., 

older people), for which the recovery after a period of disuse could be difficult and further delayed 

(Suetta et al., 2009). 

 

3.8.4. Methodological considerations 
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In line with previous studies (Del Vecchio et al., 2019a; Casolo et al., 2021; Nuccio et al., 

2021), potential alterations in MUs behaviour could not be assessed during very high contraction 

intensities or at the MVC due to a progressive increase in the number of superimposed and 

overlapping MUs action potentials in the recorded EMG signal. Nevertheless, the range of intensity 

analysed in this study is crucial for most of the daily tasks and has, therefore, clinical and 

physiological relevance. 

The differences in relative RT/DERT between LS0 and LS10 in the total pool of MUs indicate 

that the populations of MUs decomposed at the two data collection points might slightly differ, 

suggesting that alterations in the MUs action potential properties (Piasecki et al., 2021; Inns et al., 

2022; Sarto et al., 2022a) (such as the shape and its complexity (Sarto et al., 2022b)) might have 

affected the results of the decomposition favouring the detection of MUs with a higher RT. This 

observation carries at least 2 implications; (i) the decomposition algorithm successfully identified 

active MUs even after an unloading period (ii) while comparing MUs properties before and after 

severe interventions, close attention has to be paid to the comparability of the decomposed pool of 

MUs (Power et al., 2022). Therefore, longitudinal tracking of the same MUs provides stronger 

evidence of changes affecting the single MUs, although it significantly reduces the number of 

investigated MUs (about 20% of the total pool) and the statistical power. In addition, MUs tracking 

might preferentially identify MUs with a better-preserved action potential shape and therefore 

those less affected by the intervention (Power et al., 2022). For this reason, the discussion of the 

paper focused mainly on the interpretation of the results obtained from the total pool, while the 

analysis of the tracked pool of MUs was used to validate and support the results. 

We acknowledge, as a limitation in the study design, the absence of a control group which 

could have been useful to experimentally demonstrate the maintenance of the MUs properties 

across the study period and to verify the performance of decomposition and MUs tracking in 

absence of intervention. 

Finally, even though 10 days of ULLS were sufficient to induce noticeable impairments in 

neural control, longer duration (de Boer et al., 2007), more severe models of disuse (Widrick et al., 

2002) or different populations (e.g., older adults) (Mahmassani et al., 2019) might highlight different 

adaptations. 
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3.9. Conclusion 

 

Our novel results demonstrate, for the first time in large muscles, that ULLS induces a 

preferential deterioration of motoneurons innervating lower-threshold MUs and suggest this 

deterioration as one of the early determinants of force loss after periods of disuse. Furthermore, 

integrating our findings with the available literature, we propose that the preferential impact of 

disuse on the motoneurons innervating lower-threshold MUs is a fundamental physiological 

mechanism independent from the size, location and function of the considered muscle. 

Additionally, the possibility to investigate non-invasively the changes in neural control after 

ULLS and AR with HD-EMG could have significant relevance for the development of perspective 

countermeasures aimed at delaying or recovering the disuse-induced impairments. 
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3.10. Supplementary Material 

 

 

Figure Supp 3-1: Swarm plots representing the relative (% MVC) MUs RT (A) and DERT (B) at the three data collection points. From 
left to right, MUs properties are presented for the three different submaximal contraction intensities (i.e., 10, 25 and 50% MVC). 
Individual MUs are represented by dots and clustered by subject. Summary data are presented as mean ± SEM and the direction of 
the changes is highlighted by a connection line. Significance levels are: *p<0.05, **p<0.01, ***p<0.001. 
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Figure Supp 3-2: Swarm plots representing the ΔDR from recruitment to target force (A) and the Δ force from recruitment to target 
(B) at the three data collection points. From left to right, MUs properties are presented for the three different submaximal contraction 
intensities (i.e., 10, 25 and 50% MVC). Individual MUs are represented by dots and clustered by subject. Summary data are presented 
as mean ± SEM and the direction of the changes is highlighted by a connection line. Significance levels are: *p<0.05, **p<0.01, 
***p<0.001. 
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Figure Supp 3-3: Swarm plots representing the MUs properties 
obtained from the pool of total MUs classified as lower- and 
higher-threshold. MUs RT and DERT are presented in both absolute 
(A, C) and relative terms (as percent of the MVC)(B, D) and MUs DR 
is shown at recruitment (E), derecruitment (F) and during the 
steady-state phase (G), at the three data collection points. From 
left to right, MUs properties are presented based on the 
classification of lower- and higher-threshold (i.e., recruited below 
or above 25% MVC). Individual MUs are represented by dots and 
clustered by subject. Summary data are presented as mean ± SEM 
and the direction of the changes is highlighted by a connection line. 
Significance levels are: *p<0.05, **p<0.01, ***p<0.001. 
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Figure Supp 3-4: Swarm plots representing the ΔDR from recruitment to target force (A) obtained from the pool of tracked MUs at the 
three data collection points. From left to right, MUs properties are presented based on the classification of lower- and higher-threshold 
(i.e., recruited below or above 25% MVC). Individual MUs are represented by dots and clustered by subjects. Summary data are 
presented as mean ± SEM and the direction of the changes is highlighted by a connection line. No significant change was identified. 
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Figure Supp 3-5: Absolute RT and DR during the steady-state phase of tracked MUs. Swarm plots representing the MUs absolute RT 
(A) and DR (B) classified as lower- and higher-threshold with the direction of the changes for each participant highlighted by 
connection lines. Individual MUs are represented by dots and clustered by subject. Significance levels are: *p<0.05, ***p<0.001. 
Representative pointplot showing the behaviour of the same MUs across the data collection points (C) of participants 1, 2, 3 and 4. 
No higher-threshold MUs were tracked across the 3 data collection points for participant 3.3.  
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Table Supp. 3-1. Summary statistics for ANOVAs 

Parameter 
LS0 

Mean (SD) 
LS10 

Mean (SD) 
AR10 

Mean (SD) 
AR21 

Mean (SD) 
Overall 

(p) 

LSO vs 
LS10 
(p) 

LS10 vs 
AR21 

(p) 

LS0 vs 
AR21 

(p) 

MVC (N) 
816.18 
(97.22) 

573.20 
(104.70) 

690.41 
(82.09) 

806.54 
(96.68) 

< 0.001 < 0.001 < 0.001 0.769 

 
    

 
LSO vs 
AR10 

(p) 

LS10 vs 
AR10 

(p) 

AR10 vs 
AR21 

(p) 

      0.001 < 0.001 < 0.001 

Parameter 
LS0 

Mean (SD) 
LS10 

Mean (SD) 
AR10 

Mean (SD) 
AR21 

Mean (SD) 
Overall 

(p) 

LSO vs 
LS10 
(p) 

LS10 vs 
AR21 

(p) 

LS0 vs 
AR21 

(p) 

COVsteady 
at 10% (%) 

2.94 (0.73) 3.07 (0.43) / 2.44 (0.42) 0.017 0.619 0.020 0.020 

COVsteady 
at 25% (%) 

1.95 (0.51) 3.03 (0.44) / 1.52 (0.28) 0.001 0.008 0.003 0.004 

COVsteady 
at 50% (%) 

1.77 (0.28) 2.03 (0.38) / 1.50 (0.21) 0.001 0.112 0.002 0.033 

N, Newton; RT, recruitment threshold; DERT, derecruitment threshold; DR, discharge rate. 
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Table Supp. 3-2. MUs properties in the total pool of MUs divided by contraction intensity 

Parameter 
LS0 

Mean (SE) 
LS10 

Mean (SE) 
AR21 

Mean (SE) 
Model results 

(p) 
LSO vs LS10 

(p) 
LS10 vs AR21 

(p) 
LS0 vs AR21 

(p) 

10% MVC 
       

Absolute RT 55.1 (4.50) 43.7 (4.52) 58.1 (4.53) < 0.001 < 0.001 < 0.001 0.116 

Relative RT 6.74 (0.49) 7.49 (0.49) 7.23 (0.50) 0.009 0.008 0.306 0.107 

Absolute DERT 44.9 (3.86) 36.4 (3.88) 44.2 (3.89) < 0.001 < 0.001 < 0.001 0.667 

Relative DERT 5.41 (0.40) 6.28 (0.40) 5.44 (0.40) < 0.001 < 0.001 < 0.001 0.920 

DR at recruitment 7.02 (0.33) 6.16 (0.33) 7.28 (0.33) < 0.001 < 0.001 < 0.001 0.135 

DR at derecruitment 6.02 (0.21) 5.68 (0.21) 6.14 (0.21) < 0.001 0.002 < 0.001 0.249 

DR at steady-state 8.52 (0.43) 7.35 (0.44) 8.78 (0.44) < 0.001 < 0.001 < 0.001 0.247 

ΔDRR-T 1.51 (0.19) 1.19 (0.19) 1.51 (0.19) 0.017 0.035 0.035 0.998 

ΔForceR-T 3.31 (0.48) 2.53 (0.49) 2.79 (0.49) 0.006 0.005 0.302 0.078 

25% MVC 
       

Absolute RT 132 (6.88) 112 (7.04) 146 (6.93) < 0.001 < 0.001 < 0.001 0.002 

Relative RT 16.2 (0.64) 19.3 (0.67) 18.0 (0.65) < 0.001 < 0.001 0.025 0.003 

Absolute DERT 121.5 (6.0) 90.6 (6.19) 124.9 (6.06) < 0.001 < 0.001 < 0.001 0.447 

Relative DERT 15.0 (0.81) 15.9 (0.84) 15.6 (0.83) 0.342    

DR at recruitment 7.66 (0.37) 6.70 (0.37) 8.2 (0.37) < 0.001 < 0.001 < 0.001 < 0.001 

DR at derecruitment 5.56 (0.19) 5.37 (0.19) 5.71 (0.19) 0.014 0.193 0.011 0.193 

DR at steady-state 9.39 (0.33) 8.47 (0.33) 10.08 (0.33) < 0.001 < 0.001 < 0.001 < 0.001 

ΔDRR-T 2.62 (0.20) 1.53 (0.21) 2.30 (0.21) < 0.001 < 0.001 < 0.001 0.109 

ΔForceR-T 8.77 (0.64) 5.70 (0.67) 7.01 (0.65) < 0.001 < 0.001 0.025 0.003 

50% MVC 
       

Absolute RT 271 (15.3) 218 (16.2) 264 (16.1) < 0.001 < 0.001 < 0.001 0.474 

Relative RT 33.4 (1.26) 34.3 (1.39) 31.5 (1.38) 0.055    

Absolute DERT 273 (17.0) 212 (18.0) 289 (17.9) < 0.001 < 0.001 < 0.001 0.123 

Relative DERT 33.7 (1.60) 33.1 (1.73) 34.8 (1.72) 0.445    

DR at recruitment 8.82 (0.47) 9.71 (0.51) 9.03 (0.50) 0.04 0.039 0.159 0.558 

DR at derecruitment 5.99 (0.22) 6.43 (0.24) 5.76 (0.24) 0.013 0.080 0.012 0.279 

DR at steady-state 11.7 (0.44) 12.4 (0.47) 12.2 (0.47) 0.038 0.044 0.499 0.178 

ΔDRR-T 3.16 (0.23) 2.88 (0.31) 3.91 (0.26) 0.022 0.484 0.039 0.062 

ΔForceR-T 16.7 (1.25) 15.5 (1.44) 18.2 (1.33) 0.070    

Summary statistics of MUs properties with linear models. 
For RT and DERT, absolute values are expressed in newton (N) and relative values are expressed as % MVC. MUs DR is expressed as 
pulse per second (pps). Normality of residuals was granted for all the variables. 
RT, recruitment threshold; DERT, derecruitment threshold; DR, discharge rate; ΔDRR-T, delta DR between recruitment and target force; 
ΔForceR-T, delta force between recruitment and target; MVC, maximum voluntary isometric force. 
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Table Supp. 3-3. MUs properties in the total pool of MUs divided in lower- and higher-threshold MUs 

Parameter 
LS0 

Mean (SE) 
LS10 

Mean (SE) 
AR21 

Mean (SE) 
Model results 

(p) 
LSO vs LS10 

(p) 
LS10 vs AR21 

(p) 
LS0 vs AR21 

(p) 

Lower-threshold 
       

Absolute RT † 91.5 (5.58) 74.2 (5.67) 100.3 (5.66) < 0.001 < 0.001 < 0.001 0.013 

Relative RT † 11.2 (0.54) 12.7 (0.56) 12.4 (0.55) 0.004 0.005 0.505 0.026 

Absolute DERT † 80.9 (3.79) 59.8 (3.92) 82.3 (3.89) < 0.001 < 0.001 < 0.001 0.677 

Relative DERT † 9.90 (0.41) 10.48 (0.43) 10.24 (0.42) 0.459    

DR at recruitment 7.32 (0.31) 6.38 (0.31) 7.68 (0.31) < 0.001 < 0.001 < 0.001 0.004 

DR at derecruitment 5.81 (0.19) 5.54 (0.19) 5.91 (0.19) < 0.001 < 0.001 < 0.001 0.177 

DR at steady-state 8.94 (0.29) 7.93 (0.29) 9.49 (2.29) < 0.001 < 0.001 < 0.001 < 0.001 

Higher-threshold 
       

Absolute RT 289 (15.0) 227 (15.6) 280 (15.6) < 0.001 < 0.001 < 0.001 0.267 

Relative RT 35.6 (0.86) 35.6 (0.97) 33.3 (0.97) 0.020 0.990 0.035 0.035 

Absolute DERT 285 (17.4) 219 (18.3) 305 (18.3) < 0.001 < 0.001 < 0.001 0.052 

Relative DERT 35.2 (1.45) 33.8 (1.58) 36.4 (1.58) 0.125    

DR at recruitment 8.92 (0.50) 9.83 (0.54) 9.24 (0.54) 0.060    

DR at derecruitment 6.04 (0.22) 6.41 (0.25) 4.73 (0.25) 0.021 0.201 0.017 0.201 

DR at steady-state 11.5 (0.44) 12.3 (0.47) 11.9 (0.47) 0.037 0.033 0.378 0.378 

Summary statistics of MUs properties with linear models. 
For RT and DERT, absolute values are expressed in newton (N) and relative values are expressed as % MVC. MUs DR is expressed as pulse 
per second (pps). † indicates variables analysed with generalized linear mixed effect models since normality of residuals was not granted. 
RT, recruitment threshold; DERT, derecruitment threshold; DR, discharge rate; MVC, maximum voluntary isometric force. 

 

  



83 
 

Table Supp. 3-4. MUs properties in the tracked pool of MUs divided in lower- and higher-threshold MUs 

Parameter 
LS0 

Mean (SE) 
LS10 

Mean (SE) 
AR21 

Mean (SE) 
Model results 

(p) 
LSO vs LS10 

(p) 
LS10 vs AR21 

(p) 
LS0 vs AR21 

(p) 

Lower-threshold 
       

Absolute RT † 107.0 (7.99) 80.3 (5.99) 108.0 (8.07) 0.011 0.017 0.017 0.929 

Relative RT † 13.4 (1.11) 14.2 (1.19) 13.6 (1.13) 0.851    

Absolute DERT † 93.5 (7.29) 64.0 (4.99) 60.6 (7.06) 0.002 0.003 0.004 0.774 

Relative DERT † 11.8 (0.942) 11.5 (0.91) 11.5 (0.92) 0.962    

DR at recruitment 7.11 (0.34) 6.48 (0.34) 7.19 (0.34) 0.021 0.051 0.033 0.751 

DR at derecruitment 5.90 (0.22) 5.60 (0.22) 5.81 (0.22) 0.278    

DR at steady-state † 8.39 (0.41) 7.78 (0.36) 8.79 (0.45) 0.002 0.057 0.001 0.157 

Higher-threshold 
       

Absolute RT 274 (19.9) 216 (19.9) 274 (19.9) 0.001 0.003 0.003 0.976 

Relative RT 34.2 (1.73) 35.7 (1.73) 32.9 (1.73) 0.399    

Absolute DERT 268 (20.6) 189 (20.6) 299 (20.6) < 0.001 < 0.001 < 0.001 0.076 

Relative DERT 33.3 (2.21) 31.0 (2.21) 36.2 (2.21) 0.056    

DR at recruitment 9.22 (0.86) 9.42 (0.86) 9.27 (0.86) 0.952    

DR at derecruitment 6.15 (0.38) 6.24 (0.38) 5.65 (0.38) 0.254    

DR at steady-state 11.9 (0.70) 12.1 (0.70) 11.8 (0.70) 0.817    

Summary statistics of MUs properties with linear models. 
For RT and DERT, absolute values are expressed in newton (N) and relative values are expressed as % MVC. MUs DR is expressed as pulse 
per second (pps). † indicates variables analysed with generalized linear mixed effect models since normality of residuals was not granted. 
RT, recruitment threshold; DERT, derecruitment threshold; DR, discharge rate; MVC, maximum voluntary isometric force. 
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4.1. Background 

 

Type 1 diabetes, is a chronic autoimmune disorder characterized by the destruction of 

insulin-producing beta cells in the pancreas (Daneman, 2006). The exact trigger for this autoimmune 

response remains the subject of research, but a combination of genetic predisposition and 

environmental factors is believed to underpin its onset (Redondo et al., 2001; Devendra et al., 2004). 

This disease typically develops in children and young adults, although it can occur at any age. The 

onset is often sudden, with symptoms such as excessive thirst, frequent urination, unexplained 

weight loss, and fatigue (Devendra et al., 2004). 

The destruction of pancreatic beta cells impairs the body's ability to regulate blood glucose 

levels effectively because, without insulin, glucose accumulates in the bloodstream causing high 

blood sugar levels (in a condition named hyperglycaemia). Repetitive dysregulation of the 

physiological glycaemic levels leads to a number of severe complications including heart disease, 

stroke, kidney disease, neuropathy, and vision problems (Daneman, 2006). Therefore, maintaining 

blood glucose levels within a target range is essential (ElSayed et al., 2023). 

At present, the therapeutic approach remains limited to the exogenous administration of 

insulin. This indispensable hormone is supplied either through traditional injections or continuous 

infusion via insulin pumps, constituting the cornerstone of T1D management (von Scholten et al., 

2021). Effective management of the type 1 diabetes condition requires careful monitoring of sugars 

and insulin intake and can delay the onset of long-term complications (Nathan et al., 1993). 

However, people with type 1 diabetes still face a sevenfold excess in mortality compared to the non-

diabetic population (Dorman et al., 1984) and, even when they are controlling diabetes with 

external insulin administration, still experience a reduction in life expectancy of about 15 years, due 

to the comorbidities and complications that inevitably arise (Pelletier et al., 2012). 

In this framework, a better understanding of the consequences of type 1 diabetes is a driving 

force behind advancements in treatment and care, as these discoveries lead to new therapies, 

medications, and technologies, offering hope for improved quality of life and life expectancy (von 

Scholten et al., 2021). Additionally, the development of new screening techniques allowing for an 

early detection of these complications, is fundamental to promptly implement optimal 

interventions, thereby maximizing positive clinical outcomes and alleviating the load on the 

healthcare system. 
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4.2. Abstract 

 

Purpose: to investigate the early consequences of type 1 diabetes on the neural strategies of muscle 

force production. 

Methods: motor units (MUs) activity was recorded from the vastus lateralis muscle with High-

Density surface Electromyography during isometric knee extension at 20 and 40% of maximum 

voluntary contraction (MVC) in 8 type 1 diabetes (4 males and 4 females, 30.5±3.6 years) and 8 

control (4 males and 4 females, 27.3±5.9 years) participants. Muscle biopsies were also collected 

from vastus lateralis and muscle fibre analyses (myosin heavy chain (MyHC) isoforms) were 

conducted for fibre type distribution (protein content) and mRNA expression. 

Results: MVC was comparable between groups as well as MUs conduction velocity, action 

potentials’ amplitude and proportions of MyHC protein isoforms. Nonetheless, MUs discharge rate, 

relative derecruitment thresholds and mRNA expression of MyHC isoform I were lower in type 1 

diabetes. 

Conclusion: young people with uncomplicated type 1 diabetes adopt different neural strategies to 

control muscle force production compared to control. Furthermore, these differences are 

detectable non-invasively prior to any functional manifestation (compared to force production and 

fibre type distribution). 

Significance: These novel findings suggest that type 1 diabetes has early consequences on the 

neuromuscular system and highlights the necessity of a more comprehensive characterization of 

neural control in this population. 

 

  



87 
 

4.3. Highlights 

 

- Young uncomplicated type 1 diabetes and control participants exhibit different neural 

strategies of muscle force production 

- These differences are detectable non-invasively with High-Density Electromyography before 

any functional manifestation 

- These findings highlight the necessity of an in depth characterization of the neuromuscular 

functioning in type 1 diabetes 
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4.4. Abbreviations 

 

In alphabetical order: 

 

5-HT Serotonin, 5-hydroxytryptamine 
AHP Afterhyperpolarization 
AIC Akaike Information Criterion 
BMI Body mass index 
Ca2+ Calcium 
COVsteady Coefficient of variation of the steady-state phase 
CV Conduction velocity 
DERT Derecruitment threshold 
DEXA Dual-energy X-ray absorptiometry 
DR Discharge rate 
HD-EMG High-Density surface Electromyography 
MUs Motor units 
MVC Maximum voluntary isometric contraction 
MyHC Myosin heavy-chain 
Nm Newton-metre 
PNR Pulse to noise ratio 
RMS Root mean square 
RT Recruitment threshold 
VO2max Maximum oxygen consumption 
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4.5. Introduction 

 

Type 1 diabetes is a chronic disease caused by immune-mediated destruction of pancreatic 

beta-cells that are responsible for insulin production and maintenance of glucose homeostasis. This 

condition is estimated to affect about 10% of the total diabetic population and its incidence is rapidly 

increasing worldwide (Daneman, 2006; Mayer-Davis et al., 2017). Although a considerable 

heterogeneity exists within the clinical phenotype of type 1 diabetes, the progression of the 

condition leads to the development of comorbidities and complications that could eventually affect 

quality of life (Alvarado-Martel et al., 2015) and increase the risk of premature mortality (Vergès, 

2020). To delay the onset of these complications, early detection of subtle alterations is 

fundamental and, for this reason, people living with type 1 diabetes undertake regular health 

screenings. Unexpectedly, during these screenings little attention is being devoted to the 

neuromuscular system despite its importance not only for maintaining glucose homeostasis, but 

also for locomotor capacity and independence in carrying out activities of daily living (Periasamy et 

al., 2017). Additionally, it is now recognised that the degeneration of skeletal muscle health is a 

direct consequence of type 1 diabetes (Monaco et al., 2019; Minnock et al., 2022). 

Muscles of people with uncomplicated type 1 diabetes overexpress pro-inflammatory genes 

(Minnock et al., 2022), exhibit alterations in mitochondrial ultrastructure and bioenergetics, altered 

proportions of type 2 (glycolytic) fibres and increased myofiber grouping (Dial et al., 2021), 

compared to healthy people. Taken together, these molecular alterations cause in people with 

uncomplicated diabetes, a reduction in muscle force, increased fatigability (Monaco et al., 2019) 

and reduced adaptations to exercise (Minnock et al., 2022). Interestingly, this cluster of impairments 

known as "diabetic myopathy" has been defined as a form of accelerated muscle aging, as it 

manifests also in young adults (Monaco et al., 2019). In this framework, it is important to note that 

the available literature is focusing on the study of the muscle tissue in people classified as “with” or 

“without” diagnosed neuropathy, and that this classification has been used to suggest that muscle 

alterations precede the onset of diabetic neuropathy (Monaco et al., 2017). However, very little is 

known about the neural condition of this population before the clinical manifestation of 

neuropathy. 

As a matter of fact, muscle health and function do not depend solely on intrinsic properties 

of the muscle fibres, but rely on the interaction with neural components that determine the neural 

drive to the muscle (i.e., the sum of the motoneurons spiking activities) (Farina et al., 2014b). 
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Specifically, the transmission of motor stimuli from the motor cortex to the effector muscle is 

entrusted to specialised cells, the motoneurons, which are concurrently responsible for direct 

transmission of the activation signal and for the integration of multiple excitatory and inhibitory 

inputs (Heckman & Enoka, 2004). Therefore, modifications to the motoneuron transmission or 

dysregulation of its modulatory inputs can significantly impact the neural drive to the muscle. 

Relating to the theory of accelerated muscle aging, recent evidence of motoneuron 

deterioration in the aged-muscle (Hepple & Rice, 2016; Larsson et al., 2019) may indirectly suggest 

a potentially similar degeneration of the motoneurons and/or alterations of their properties, as a 

consequence of type 1 diabetes. In addition, it is also plausible to suggest that the chronic 

inflammation and altered mitochondrial functioning that are evident in people with type 1 diabetes 

could be associated with neural degeneration (Feldman et al., 2017). Taken together, all these 

alterations should be likely reflected into a different behaviour and properties of the voluntarily 

activated motor units (MUs). 

In light of this, the main aim of the present study was to investigate the behaviour of single 

MUs in young people with uncomplicated type 1 diabetes compared to a healthy control group, in 

order to expand our knowledge on the neural condition of this population and to explore the 

neuromuscular consequences of the theory of accelerated aging. In line with this theory, our 

hypothesis was that people with type 1 diabetes should present a different MUs behaviour 

compared to the control group, possibly reflecting changes in MUs properties commonly observed 

during aging (e.g., reduced MUs firing frequency). However, we also expected these differences to 

be mild, in agreement with previous evidence from our group on mild alterations on molecular 

markers of muscle health (e.g., inflammation) (Minnock et al., 2022). 
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4.6. Methods 

4.6.1. Participants and experimental protocol 

 

This study was part of a larger investigation aimed at clarifying the neural and muscular 

condition of those living with type 1 diabetes in comparison to healthy people (Minnock et al., 2022). 

This study was approved by the Human Research Ethics Committee of University College 

Dublin (LS-17-113-Minnock-DeVito) and conformed to the standards set by the Declaration of 

Helsinki. Details of the study protocol were explained orally and in writing to the participants prior 

to obtaining their written informed consent to partake in the intervention. 

Sixteen participants, 8 living with type 1 diabetes without comorbidities, and 8 healthy 

controls volunteered for the study. The groups were equally matched for sex (4 males and 4 females 

per group). Inclusion criteria were age between 18 and 45 years, type 1 diabetes diagnosed for at 

least 12 months, BMI <30 kg/m2, non-smokers, absence of comorbidities and complications (self-

reported) and no ongoing chronic pharmacological treatments. Participants were not habitual 

exercisers (less than 2h of physical activity per week (Active Australia Survey)) and with mean 

metabolic equivalent of task expenditure <500 MET weekly (GPAQ scores). The type 1 diabetes 

group consisted of seven multiple daily injection users and one insulin pump user with an HbA1c of 

8.31 ± 2.40% (67.34 ± 26.19 mmol/mol) and diabetes duration of 16.9 ± 7.6 years. All female 

participants were using oral hormonal contraceptives. 

Participants visited the research facility in three different occasions with 7 days between 

each visit. During the first visit, participants were familiarized with study procedures, 

anthropometric data and maximum oxygen consumption (VO2max) were obtained. In the second 

visit, the maximum voluntary isometric contraction (MVC) was measured and muscle electrical 

activity was recorded with HD-EMG. In the third visit, muscle biopsies were collected. 

Participants were asked to refrain from intense exercise, coffee and alcohol intake during 

the 24 hours preceding data collection. All the tests were performed in the morning (Valli et al., 

2021). 

 

4.6.2. Body composition, maximal oxygen consumption and voluntary isometric torque 

 

Body composition was assessed by dual-energy X-ray absorptiometry (DEXA) (Lunar iDXA, 

GE Healthcare, London, UK). 
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VO2max was measured during a one-minute incremental test on a cycle ergometer (Excalibur 

Sport) to volitional exhaustion using an open circuit metabolimeter (Quarkb2 Cosmed, Rome, Italy). 

MVC of the quadriceps muscle was assessed at 90° knee angle, with hip fixed at 90° using a 

knee dynamometer with a load cell attached above the ankle through straps. The participant's back 

was supported in an upright position and the hip was stabilised to the table with adjustable straps 

to limit compensation (Valli et al., 2023). Three attempts were allowed with a 3-min rest between 

trials. During each trial, participants were instructed to generate force “as strongly and as quickly as 

possible”, and then to maintain the contraction for 3 seconds. Loud verbal encouragement and 

visual feedback were provided. The highest force (N) was converted to torque (Nm) by multiplying 

the force value for the lever arm expressed in meters. The maximum torque value attained by each 

participant was considered for the MVC calculation and used to determine the normalized target 

torques of the submaximal trapezoidal contractions. 

 

4.6.3. High-Density EMG recordings 

 

Myoelectrical activity of the vastus lateralis muscle was recorded with HD-EMG during 

submaximal trapezoidal isometric contractions using an adhesive matrix of 64 equally spaced 

electrodes (5 columns and 13 rows with 8-mm interelectrode distance (GR08MM1305, OT 

Bioelettronica, Torino, Italy) filled with conductive cream (Ac cream, OT Bioelettronica, Torino, 

Italy). 

The matrix was positioned and oriented as previously described (Casolo et al., 2020) with a 

16-electrode dry array used to identify the innervation zone located in the distal portion of the 

vastus lateralis muscle (Botter et al., 2011b). The innervation zone was identified as the point of 

inversion in the propagation direction of action potentials along the electrode column, and the 

correct orientation was considered the one providing the clearest visualisation of action potentials 

propagation (Del Vecchio et al., 2017). Muscle belly was identified by palpation to avoid placing the 

matrix across adjacent muscles. 

Before placing the matrix, the skin was accurately shaved, cleaned with 70% ethanol and 

then with abrasive-conductive paste (Spes medica, Salerno, Italy). 

Trapezoidal contractions were performed at 20 and 40% of the MVC and repeated twice with 

1 minute of rest. Each contraction consisted of a ramp-up and a ramp-down phase with a constant 

increase/decrease speed of 5% MVC per second, with a 10 seconds steady-state phase in between. 
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The two intensities were proposed in random order to minimise any potential effect of fatigue on 

MUs activity. Participants received real-time visual feedback of the torque produced and were 

requested to match it as precisely as possible. 

The HD-EMG and torque signals were sampled at 2048 Hz with the EMG-Quattrocento (OT 

Bioelettronica, Torino, Italy). The HD-EMG signal was recorded in monopolar configuration, 

amplified (×150) and band-pass filtered (10–500 Hz) at source (Del Vecchio et al., 2019a). 

 

4.6.4. Torque and High-Density EMG analysis 

 

Torque signal was low-pass filtered (fourth-order, zero-lag, Butterworth) with a cut-off 

frequency of 15 Hz (Del Vecchio et al., 2019a) and converted to Nm. Torque steadiness was 

computed as the coefficient of variation of the steady-state phase (COVsteady) and expressed as 

percentage (Wu et al., 2019; Enoka & Farina, 2021). 

The HD-EMG signal was band-pass filtered between 20 and 500 Hz (second-order, 

Butterworth) and decomposed to obtain the discharge pattern of the MUs with a validated 

technique based on blind source separation (Negro et al., 2016). After the decomposition, the 

discharge pattern was visually inspected and manually edited (Hug et al., 2021a). Identified MUs 

whose discharge pattern had a pulse to noise ratio (PNR) ≥ 28 dB, which corresponds to a sensitivity 

above 85%, were maintained for further analyses (Holobar et al., 2014). Signals were processed and 

analysed using custom-written scripts (MATLAB R2020a, MathWorks, Natick, MA, USA; Python 

3.9.7, Python Software Foundation, USA). 

All the MUs decomposed from the two trapezoidal contractions recorded at the same 

intensity (for each participant) were pooled and analysed together after the removal of duplicated 

MUs, in order to reduce the risk of having too small and non-representative samples of MUs. MUs 

were considered duplicates if the two-dimensional cross-correlation coefficient between the action 

potential waveforms of two individual MUs was ≥ 0.9 as previously described (Maathuis et al., 2008; 

Valli et al., 2023). In case of duplicated MUs, the MU with the lowest PNR was removed from the 

following analyses. The MUs action potential waveforms were generated by spike-triggered 

averaging on a 50 ms time-window (Martinez-Valdes et al., 2017). 

From the discharge pattern of the individual MUs, the recruitment threshold (RT), 

derecruitment threshold (DERT), the average discharge rate (DR) at recruitment, derecruitment and 
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during the steady-state were computed for each identified MU. From the MUs action potential 

waveforms, MUs conduction velocity (CV) and action potential amplitude were computed. 

MUs RT and DERT were defined as the normalised torque level (% MVC) corresponding to 

the first and last MUs discharge, respectively (McManus et al., 2021). 

MUs DR was calculated over the first and last 4 discharges at recruitment and de-

recruitment, respectively, and during the entire steady-state phase (Del Vecchio et al., 2019a). 

MUs CV and MUs action potential amplitude were computed during the steady-state phase 

on the double differential derivation of MUs action potential waveforms along the electrode 

columns as previously extensively described (Casolo et al., 2020). Briefly, a minimum of four up to a 

maximum of eight double differential channels belonging to the same electrode column were 

selected. Selected channels were those presenting the clearest propagation of action potentials 

with minimal change in shape and the highest correlation coefficient. Once the channels were 

selected, a multichannel maximum likelihood algorithm was adopted to calculate MUs CV (Farina et 

al., 2001). 

MUs action potential amplitude was calculated as the root mean square of the waveforms 

(RMS) on the same channels used for CV calculation.  

 

4.6.5. Muscle sampling, myosin heavy-chain isoforms and gene expression analysis 

 

Muscle biopsies were collected using a 14-gauge semi-automatic spring-loaded biopsy 

system with a compatible coaxial introducer needle (Medax Srl Unipersonale; San Possidonio, Italy). 

Biopsies were taken at rest from the vastus lateralis muscle, immediately frozen in liquid nitrogen 

and stored at −80°C (Minnock et al., 2022). 

Without thawing, a portion of muscle tissues was weighed (≤30 mg), placed directly into the 

QIAzol Lysis Buffer (Qiagen, Milan, Italy), and ruptured using a Polytron homogeniser (Kinematica 

AG, Switzerland). Total RNA was extracted and analysed by real-time PCR as previously described 

(Minnock et al., 2020). 

Sequences of the specific primers are: MyHC1-F 5’-CAG AGA AGC TGC TCA GCT C-3’ and 

MyHC1-R 5’-GCG TGA TGA TGC GGC TCA-3’; MyHC2A-F 5’-CTG ATT CAC TAT GCT GGT GTT-3’ and 

MyHC2A-R 5’-TCC TCC AGC TCC CTC TCC TT-3’; MyHC2X-F 5’-ACC TGG TGG ACA AAC TGC AA-3’ and 

MyHC2X-R 5’-GGT CAC CTT TCA GCA GTT AGA-3’. 
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Another portion of muscle tissue was used to assess the relative content of Myosin heavy-

chain (MyHC) protein isoforms (Monti et al., 2021). Muscle biopsy was mechanically solubilised in 

Laemmli solution (Laemmli, 1970) in the presence of proteases and phosphatases inhibitors, and 

subjected to a single cycle of thermal shock at 65°C before being cooled down at −20°C. Protein 

concentration was determined using the Folin–Lowry method with BSA as a reference (LOWRY et 

al., 1951). Approximately 25 μg of protein from each sample were separated on 8% SDS-PAGE mini-

gels (Mini-PROTEAN Tetra Handcast System, Bio-Rad) for 1 h at 50 V constant and then for ∼40 h at 

60 V constant in a cold room. Following the electrophoresis, the gel was stained using a modified 

Colloidal Coomassie Blue Staining method (Neuhoff et al., 1988; Kang et al., 2002). The protein 

bands (MyHC-I, MyHC-IIA and MyHC-IIX) were then quantified by densitometric analysis to assess 

the relative proportion in each subject. 

 

4.6.6. Statistical analysis 

 

The normality of the distribution of BMI, Leg Fat (%), leg fat (kg)), VO2max, MVC, COVsteady, 

MyHC protein content of isoform I, IIA, IIX and MyHC mRNA levels of isoform I, IIA, IIX was assessed 

using the Shapiro-Wilk test. The equality of variance was tested using Levene's test. For variables 

that met the assumptions of normality and equal variance, independent samples T-tests were 

performed to examine differences between groups. Leg fat (kg), MVC (Nm), MyHC protein content 

of isoform IIX and mRNA levels of MyHC-IIA were non-normally distributed and were therefore 

analysed using the non-parametric Mann-Whitney U test. 

All the other variables obtained from the analysis of the decomposed MUs were analysed 

using linear mixed models as multiple MUs were recorded from each participant (Sarto et al., 2022a; 

Yu et al., 2022; Valli et al., 2023). 

To compare MUs behaviours between two groups of both sexes, linear mixed-effects models 

fit by maximum likelihood were performed using ‘lme4’ (Bates et al., 2015) and ‘lmerTest’ 

(Kuznetsova et al., 2017) from R packages (fixed effect: group, contraction intensity and sex, random 

effect: subject). The model of each variable was further compared using the Akaike Information 

Criterion (AIC) to analyse if sex has a significant effect and should be included in the model. The 

model with a lower AIC was considered as a better fit model. 

Mixed models were computed with RStudio (Version 1.4.1103) while T-tests using jamovi 

2.2.2 (Sydney, Australia – R language). Statistical significance was accepted at p<0.05. The results 
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are reported and plotted as mean ± standard error for linear models and reported and plotted as 

mean ± standard deviation for T-tests. 
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4.7. Results 

4.7.1. Participants characteristics 

 

All the participants successfully completed the study without any adverse event associated 

with muscle testing, muscle biopsy or glycaemic fluctuations. 

Table 4-1 shows data and P-values for differences between groups for body composition, 

cardiorespiratory fitness, muscle strength and torque steadiness. The two groups were comparable 

(no significant differences) for all the parameters. 

 

Table 4-1. Age, body composition, VO2max, muscle strength 
and contraction steadiness 

 
Control 
(4M/4F) 

Type 1 diabetes 
(4M/4F) 

P-
value 

Age  
(years) 

27.38 ± 5.92 30.50 ± 3.66 0.225 

BMI 
(kg/m2) 

23.83 ± 2.89 26.25 ± 2.61 0.101 

Leg fat 
(%) 

28.24 ± 8.06 27.85 ± 11.44 0.939 

Leg fat 
(kg) † 

3.53 ± 0.924 4.15 ± 2.20 0.798 

    

VO2max 
(ml/kg/min) 

32.86 ± 5.58 33.44 ± 9.59 0.886 

MVC 

(Nm) † 
171.99 ± 101.97 182.06 ± 47.65 0.279 

    

COVsteady 
at 20% (%) 

2.74 ± 0.61 2.30 ± 0.91 0.276 

COVsteady 
at 40% (%) 

2.57 ± 0.93 1.92 ± 0.39 0.087 

Values are presented as mean ± SD. Statistical differences 
were determined by Independent Samples T-Test or Mann-
Whitney U-test based on normality of distributions. Non-
normal distribution is reported with a dagger (†). Statistical 
significance was accepted at p<0.05. 
M, males; F, females; BMI, body mass index; MVC, maximum 
voluntary contraction; COVsteady, coefficient of variation of 
the steady-state phase during contractions at 20 and 40% 
MVC. 
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4.7.2. Motor units’ properties 

 

After the removal of duplicated MUs, a total of 306 unique MUs (90 at 20% and 59 at 40% 

MVC for control, 81 at 20% and 76 at 40% MVC for type 1 diabetes,) were identified. This resulted 

in an average number of MUs per participant of 11.40 ± 6.83 at 20% and 9 ± 7.29 at 40% MVC. The 

yield of the decomposition was lower for females with an average number of decomposed MUs of 

6.57 ± 3.73 at 20% and 4.00 ± 1.91 at 40% MVC, compared to 15.63 ± 6.14 at 20% and 13.37 ± 7.50 

at 40% MVC in males. For one female participant with type 1 diabetes, it was not possible to 

accurately (PNR > 28 dB) decompose any MUs and, therefore, that participant was excluded from 

the analysis of MUs properties. 

Descriptive statistics for MUs properties are presented in Table 4-2. 

MUs RT (expressed as percentage of MVC)(Fig. 4-1A) was comparable between the two 

groups both at 20 and 40% MVC. MUs DERT (Fig. 4-1B) was lower in the type 1 diabetes group at 

40% (p=0.004) but not at 20% MVC. 

 

 

Figure 4-1: MUs recruitment (RT) and derecruitment (DERT) thresholds. Swarm plots representing the MUs RT (A) and DERT (B) in the 
two groups. From left to right, MUs properties are presented for the two submaximal contraction intensities (i.e., 20 and 40% MVC). 
Individual MUs are represented by dots and clustered by subject. Summary data are presented as mean ± SEM. Significance levels are: 
**p<0.01. 
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At 20% MVC, MUs DR at recruitment (Fig. 4-2A) and derecruitment (Fig. 4-2B) was 

comparable between the two groups while it was lower in the type I diabetes group during the 

steady-state phase (p=0.026)(Fig. 4-2C). At 40% MVC, MUs DR was lower in the type 1 diabetes 

group at recruitment (p=0.017) and during the steady-state phase (p=0.027) but not at 

derecruitment. 

Both MUs CV (Fig. 4-3B) and action potential amplitude (Fig. 4-3C) were comparable across 

the groups. A visual representation of MUs CV estimation can be found in Fig. 4-3A. 

 

 

Figure 4-2: Discharge rate (DR). Swarm plots representing the MUs DR at recruitment (A), derecruitment (B) and during the steady-
state phase (C) in the two groups in pulses per second (pps). From left to right, MUs properties are presented for the two submaximal 
contraction intensities (i.e., 20 and 40% MVC). Individual MUs are represented by dots and clustered by subject. Summary data are 
presented as mean ± SEM. Significance levels are: *p<0.05. 
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Figure 4-3: MUs Conduction velocity (CV) and root mean square (RMS). Visual example of conduction velocity calculation based on 
the MUs action potential shape across the grid of recording electrodes (A). Swarm plots representing the MUs CV (B) and RMS (C) 
calculated during the steady-state phase in the two groups. From left to right, MUs properties are presented for the two different 
submaximal contraction intensities (i.e., 20 and 40% MVC). Individual MUs are represented by dots and clustered by subject. Summary 
data are presented as mean ± SEM. No significant differences were identified. 
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4.7.3. MyHC proteins and mRNAs 
 

Both the relative proportions of MyHC protein isoforms (I, IIA and IIX)(Fig. 4-4A) and the 

mRNA levels of MyHC-IIA and MyHC-IIX (Fig. 4-4B) were comparable between the two groups. 

Nevertheless, a reduced mRNA expression of MyHC-I was observed in the type 1 diabetes group 

compared to control (p=0.038). Descriptive statistics for MyHC isoforms is presented in Table 4-2. 

 

 

Figure 4-4: Myosin heavy-chain (MyHC). Bar plots representing the percent protein content (A) and mRNAs expression relative to the 
housekeeping gene (B) of MyHC isoforms (i.e., I, IIA and IIX) in the two groups. Individual values for every participant are represented 
by diamonds of different colours. Summary data are presented as mean ± SD. Significance levels are: *p<0.05. 
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Table 4-2. Descriptive statistics for MUs properties and myosin heavy-chain isoforms. 

 Control (4M/4F) Type 1 diabetes (4M/3F) P-value 

MUs properties at 20% MVC    

RT (%) 14.00 ± 0.77 14.10 ± 0.85 0.866 
DERT (%) 12.10 ± 0.90 11.20 ± 1.20 0.444 
DR at recruitment (pps) 8.00 ± 0.30 7.30 ± 0.30 0.171 
DR at derecruitment (pps) 7.30 ± 0.20 6.90 ± 0.20 0.147 
DR at steady-state (pps) 9.80 ± 0.33 8.60 ± 0.37 0.026 * 
CV (m/s) 4.70 ± 0.15 4.80 ± 0.17 0.990 
RMS (mV) 0.48 ± 0.11 0.62 ± 0.12 0.769 

MUs properties at 40% MVC    

RT (%) 26.90 ± 1.20 24.40 ± 1.10 0.213 
DERT (%) 26.70 ± 1.30 19.90 ± 1.20 0.004 ** 
DR at recruitment (pps) 9.20 ± 0.46 7.40 ± 0.49 0.017 * 
DR at derecruitment (pps) 7.50 ± 0.43 7.10 ± 0.47 0.330 
DR at steady-state (pps) 12.20 ± 0.55 10.20 ± 0.59 0.027 * 
CV (m/s) 5.10 ± 0.13 4.80 ± 0.15 0.340 
RMS (mV) 0.93 ± 0.23 1.08 ± 0.24 0.994 
    
 Control (4M/4F) Type 1 diabetes (4M/4F) P-value 

MyHC isoforms - Proteins    

MyHC-I (%) 58.10 ± 14.7 60.70 ± 16.60 0.742 
MyHC-IIA (%) 28.80 ± 9.63 29.70 ± 15.00 0.892 
MyHC-IIX (%) † 13.00 ± 9.62 9.54 ± 9.25 0.382 

MyHC isoforms - mRNAs    

MyHC-I (relative expression) 3321.00 ± 835.00 2419.00 ± 732.00 0.038 * 
MyHC-IIA (relative expression) † 1414.00 ± 825.00 1117.00 ± 678.00 0.442 
MyHC-IIX (relative expression) 774.00 ± 371.00 559.00 ± 412.00 0.292 

Values are presented as mean ± SE for MUs properties and as mean ± SD for MyHC. 
Statistical differences were determined by linear mixed models for MUs properties and by Independent Samples T-Test 
or Mann-Whitney U-test based on normality of distributions for MyHC. Non-normal distribution is reported with a dagger 
(†). Statistical significance was accepted at p<0.05. Significance levels are reported as * p<0.05 and ** p<0.01. 
M, males; F, females; RT, recruitment threshold; DERT, derecruitment threshold; DR, discharge rate; pps, pulses per 
second; CV, conduction velocity; RMS, root mean square; MyHC myosin heavy-chain. 
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4.8. Discussion 

 

The main findings of this study were that young people with uncomplicated type 1 diabetes 

and control peers utilize different neural strategies (based on MUs activity) to control muscle force 

production, and that HD-EMG is able to detect these differences before any functional 

manifestation. 

These findings unveil unknown consequences of type 1 diabetes on the neuromuscular 

system and  challenge the conventional notion that muscle degeneration precedes neural 

degeneration (Monaco et al., 2017). Instead, they suggest an interconnection between these 

processes. 

Our novel findings emphasize the need for a deeper understanding of how type 1 diabetes 

affects both neural and muscular aspects of the neuromuscular system, potentially reshaping our 

perspective on this condition. 

For easy of reading, the concept of “neural strategies used to control muscle force 

production” will be referred as “neural control” (Farina et al., 2016) through the manuscript. 

 

4.8.1. Neural control of force production 

 

In the present study, the two groups were matched for age and sex and, after the functional 

assessment, they resulted also comparable for anthropometrics, aerobic capacity and muscle 

strength (i.e., MVC). Considering the similar MVC between the two groups, a similar MUs behaviour 

was expected since MUs properties are directly associated to force production and control 

(Mendell, 2005a). Nevertheless, differences in MUs derecruitment thresholds and DR have been 

detected between the two groups. 

During contractions at 40% MVC, it was observed that the threshold at which MUs are 

derecruited was lower in individuals with type 1 diabetes whilst no differences were detected in the 

recruitment threshold. This suggests that in individuals with type 1 diabetes, at least during 

moderate intensity contractions (i.e. up to 40% MVC), MUs remain active for a longer period of time. 

Moreover, since no differences were detectable at 20% MVC, it is possible that initial signs of altered 

recruitment/derecruitment strategies are unveiled only at higher intensities of contraction, when 

more and faster MUs are required to sustain force production. Moreover, in order to increase force 

production, the already recruited MUs are expected to increase their DR proportionally to the 

contraction intensity (Mendell, 2005a; Dideriksen & Del Vecchio, 2023). Interestingly, DR was lower 
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in those with type 1 diabetes and, also for this parameter, the differences were more evident at 

40% than at 20% MVC. Taken together, the beforementioned differences in derecruitment 

thresholds and DR suggest that the neural strategies used to control force production differ 

between those with and without type 1 diabetes, especially at higher contraction intensities, where 

larger and faster MUs have to be recruited. 

Although differences in neural control have been identified in this study, more complex is to 

search for the underlying mechanisms responsible for them. Since motoneurons are the structure 

integrating and converting the neural inputs into an output signal appropriate to control force 

production in the innervated muscle fibres, alterations in the motoneuron firing will necessarily 

reflect in altered MUs properties (Heckman & Enoka, 2004). Action potentials of the motoneuron 

originate in the soma through different channels and, among these, calcium ion (Ca2+) channels are 

considered fundamental for the initiation and modulation of action potentials (Rekling et al., 2000). 

Although there is no direct evidence of altered motoneuron functioning in those living with 

uncomplicated type 1 diabetes, a number of factors point toward this possibility. Specifically, 

mitochondrial impairments and increased ROS production are detectable in the skeletal muscle of 

people living with type 1 diabetes (Monaco et al., 2018; Minnock et al., 2022) and a compromised 

interplay between mitochondria and the endoplasmic reticulum (and therefore Ca2+ handling) has 

been widely demonstrated in this population (Guerrero-Hernandez & Verkhratsky, 2014). These two 

alterations can induce dysregulation of Ca2+ homoeostasis and aberrant Ca2+ signalling and recent 

evidence shows that this is happening in neurons and glia at later stages of the diabetic condition, 

when diabetic neuropathy is clinically evident (Verkhratsky & Fernyhough, 2014). Therefore, 

motoneurons suffering of impaired mitochondrial functioning would consequently present altered 

Ca2+ flux and Ca2+ handling which would eventually affect the generation and modulation of action 

potentials. Regarding action potentials modulation, Ca2+-activated potassium channels are 

responsible for the long-lasting afterhyperpolarization (AHP) happening after each action potential. 

Increased duration of the AHP would delay the consequent depolarisation of the motoneuron and 

reduce the MUs DR (Heckman & Enoka, 2004; Power et al., 2022) and, therefore, impaired 

mitochondria and Ca2+ flux/handling in the motoneuron might be responsible for the lower DR 

observed in type 1 diabetes.  

Obviously, other mechanisms could be involved in the reduction of MUs DR such as the 

numerous ionotropic inputs that control motoneuron gain and DR. For instance, there is evidence 

highlighting the key role of serotonin (5-hydroxytryptamine, 5-HT) in regulating the discharge rate 
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of motoneurons via excitatory 5-HT receptors on the soma and dendrites by modulating persistent 

inward currents, Ca2+ currents and AHP (Heckman et al., 2005; Kavanagh et al., 2022). Since 

alterations of serotonergic neurotransmission have been demonstrated in type 1 diabetes 

(Manjarrez et al., 2006; Martin et al., 2021), it is plausible to suggest that altered levels of 5-HT could 

contribute to the manifestation of neural impairments by reducing MUs DR (Heckman & Enoka, 

2004). 

In summary, our hypotheses regarding potential motoneuron function alterations and 

monoaminergic system changes support the association between type 1 diabetes and the aging 

process. Specifically, it is widely accepted that motoneurons deteriorate during aging (Hepple & 

Rice, 2016; Larsson et al., 2019) and recent evidence shows reduced intrinsic motoneuron 

excitability as a consequence of aging, likely mediated by decreases in the amplitude of persistent 

inward currents (Hassan et al., 2021a; Orssatto et al., 2021). 

Aging often results in a decline in motoneuron DR (Hepple & Rice, 2016), a trend we 

observed in individuals with type 1 diabetes. However, as aging progresses, motoneuron 

degeneration leads to muscle fibre denervation, followed by reinnervation through collateral 

sprouting (Tam & Gordon, 2003). While sprouting is crucial to prevent severe muscle atrophy and 

fibre loss, it often causes a shift in fibre phenotype to match that of the innervating motoneuron 

(Udina et al., 2011). Slower motoneurons tend to be better preserved during aging and are more 

likely to support reinnervation. Consequently, faster (type 2) muscle fibres, typically innervated by 

slow motoneurons, are prone to degeneration, transitioning towards slower type 1 fibres due to 

insufficient stimulation from overly branched motoneurons, leading to muscle fibre atrophy (Tam 

& Gordon, 2009). 

Given that our participants with type 1 diabetes were young, it is plausible that initial 

motoneuron alterations affecting DR were present. However, the innervation pattern and fibre 

size/function remained relatively intact. Therefore, only the observed reduction in DR of some MUs 

in the type 1 diabetes group may not be sufficient to induce a noticeable reduction in muscle force. 

Furthermore, if the process of sprouting and MU enlargement had commenced in our type 

1 diabetes group, it might still be in its early stages, and the newly innervated fibres could have 

retained their contractile properties (Gordon et al., 2004). In this larger MUs, each motoneuron 

discharge would activate more muscle fibres, possibly resulting in a similar force output achieved 

with lower DR (Enoka & Fuglevand, 2001). 
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The interpretation of the findings of this study suggests possible molecular mechanisms that 

may be altered in individuals with uncomplicated type 1 diabetes, which could contribute to the 

different neural control in this population. 

However, further research is needed to confirm these hypotheses and to understand the 

underlying causes of these differences. This necessity is particularly relevant in light of our finding 

of delayed DERT that might be contradictory with the hypothesis of altered serotoninergic 

neurotransmission, as delayed DERT is often associated to an increase in persistent inward currents 

(Heckman et al., 2005). 

 

4.8.2. Differences in neural control are detectable before functional manifestation 

 

Since participants with type 1 diabetes presented different MUs properties while levels of 

force production were comparable to the healthy controls, we investigated whether peripheral 

adaptations might have compensated for these differences. 

Muscle fibres are the physical effector of the motoneuron signalling and, therefore, we 

examined whether the two groups would exhibit a different distribution of fibre types (Miller et al., 

2015). However, the protein distribution of MyHC isoforms (i.e., I, IIA and IIX) were comparable 

between the groups and although the mRNA levels of MyHC-I were lower in people with type 1 

diabetes, this was not reflected in a different slow/fast phenotype, suggesting that a transcriptional 

reprogramming may be occurring but muscle fibres are still resilient to metabolic changes. Indeed, 

our findings of lower expression of MyHC-I mRNAs in type 1 diabetes align with the literature 

suggesting that muscle fibres may undergo a shift towards a glycolytic phenotype at later stages in 

the diabetic condition (Fritzsche et al., 2008; Andreassen et al., 2014), at least in males (Dial et al., 

2021).  

In addition, MUs amplitude and velocity of propagation of the action potentials across the 

muscle fibres (i.e., MUs CV) were comparable between the two groups. Similar CV suggests that the 

mechanisms responsible for transmitting the depolarisation through the membrane of muscle fibres 

are preserved (i.e., ion channels) (Jurkat-Rott & Lehmann-Horn, 2004) and, given the relationship 

between MUs CV and diameter of muscle fibres (Blijham et al., 2006; Methenitis et al., 2016; Casolo 

et al., 2023) we could also expect similar muscle fibres size between the two groups. Additionally, 

comparable amplitude of action potentials suggest that MUs size could also be similar between the 

two groups (Pope et al., 2016). 
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Altogether, these findings indicate that people with type 1 diabetes present different neural 

strategies of muscle force production even without any evident deterioration of muscle fibres 

composition and functioning. 

 

4.8.3. Methodological considerations 

 

As a constraint of the decomposition of HD-EMG recordings, it is currently difficult to 

accurately discriminate active MUs at high intensities of contraction. This is due to a progressive 

increase in the number of superimposed and overlapping MUs action potentials in the recorded 

EMG signal (Valli et al., 2023). Therefore, potential alterations in MUs behaviour could not be 

assessed during MVC or very high intensities of contractions, de facto preventing us from observing 

the behaviour of higher-threshold MUs and of motoneurons with a higher depolarisation threshold. 

In addition, decomposition of HD-EMG recordings from female participants usually yields a 

relatively low number of identified MUs compared to males, mainly as a consequence of the 

thickness of the volume conductor, which, acting as a filter on the recorded signal, negatively 

influences the separation of the contributions of the different MUs (Oliveira et al., 2022). 

Nevertheless, we believe that the range of intensity analysed in this study is crucial for most 

of the daily tasks and the inclusion of female participants (Lulic-Kuryllo & Inglis, 2022) allows for a 

broader generalizability of the findings providing, despite some technical limitations, noticeable 

clinical and physiological relevance. 

In this study, we used the amplitude of the MUs action potential as an indicator of MUs size. 

However, it is widely recognized that estimation of MUs action potential amplitude from surface 

EMG is not sensitive to small changes and that it can be biased by a number of factors, including the 

volume conductor (Del Vecchio et al., 2017). Therefore, future studies adopting more sensitive 

techniques (e.g., intramuscular recordings) are necessary to clarify this aspect.  

As a major limitation of this study, we acknowledge that the limited sample size did not allow 

for the identification of differences between sex, especially regarding the adaptations of 

lower/higher threshold MUs and of slower/faster muscle fibres that have been demonstrated to 

differ between males and females with type 1 diabetes (Dial et al., 2021).  

 

4.8.4. Final considerations and future perspectives 
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This study provides unique evidence of detectable differences in the neural control of force 

production between people with uncomplicated type 1 diabetes and control peers, before any 

functional manifestation. 

Notably, the available literature suggests that the muscle degeneration observed in type 1 

diabetes is independent from the neurological condition, and that it anticipates the development of 

diabetic neuropathy (Monaco et al., 2017). However, the findings from our study challenge this 

notion by suggesting that variations in neural function exist even before the manifestation of 

diabetic neuropathy. Consequently, our results hint at the possibility that neural and muscular 

degeneration may not be as distinct as previously believed, implying that these two systems may 

undergo changes concurrently or with less clear delineation than previously proposed. 

Expanding our knowledge on the neural consequences of type 1 diabetes might guide the 

development of screening procedures aimed at the early detection of neural alterations in type 1 

diabetes with non-invasive techniques, as well as for the design of interventions to delay the onset 

of diabetic myopathy and accelerated muscle aging. 

It would be valuable for future research to examine the impact of factors such as sex, age, 

glycaemic control, and presence of diabetic complications on neural control, or how the diabetic 

population responds to exercise or disuse interventions compared to healthy controls. This would 

provide a more comprehensive understanding on how this condition can affect neural control. 
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5. Experimental Chapter 3: Tutorial: a step-by-step guide to the analysis of central and peripheral 

motor unit properties from High-Density Electromyography with openhdemg 
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5.1. Background 

 

The final experimental chapter of the thesis is a tutorial article presenting the fundamental 

steps for a complete investigation of MUs properties from HD-EMG recordings. This tutorial article 

represents the culmination of my research experience with the HD-EMG technique during the PhD 

and, for the first time, it clearly explains step-by-step all the notions necessary to analyse HD-EMG 

recordings, filling a significant gap in the existing literature by offering detailed insights into this 

process. 

Additionally, in this tutorial article I introduce openhdemg, an innovative open-source 

framework specifically designed for the analysis of central and peripheral MUs properties from HD-

EMG recordings. Unlike proprietary software, openhdemg is freely accessible, enhancing 

accessibility and efficiency for researchers in the field of EMG. This framework plays a pivotal role 

in democratizing the analysis of HD-EMG data, empowering researchers with its user-friendly 

interface and advanced capabilities. 

The key functionalities of the openhdemg library are presented in the tutorial article and 

extensively explained at (https://www.giacomovalli.com/openhdemg/). 

openhdemg has been developed in Python 3. Users might wonder why Python was chosen 

over the more traditional MATLAB, especially given MATLAB's prevalence in the scientific 

community working with HD-EMG. The choice of Python aligns with the principles of open-source 

software, promoting transparency, collaboration, and knowledge sharing. Python's flexibility, vast 

ecosystem of libraries, and a thriving community make of it an ideal platform for openhdemg 

development. By adopting Python, we foster an environment where researchers can easily extend 

and customize openhdemg to suit their specific needs, ensuring the framework's longevity and 

adaptability. 

The openhdemg framework has been publicly released on July 4, 2023, and it stands as the 

only available free and open-source solution for the analysis of MUs properties. The commitment 

to open-source principles reflects a dedication to fostering collaboration and knowledge sharing 

among HD-EMG researchers worldwide. 

 

  

https://www.giacomovalli.com/openhdemg/
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5.2. Abstract 

 

High-Density surface Electromyography (HD-sEMG) is the most established technique for the 

non-invasive analysis of single motor unit (MU) activity in humans. It provides the possibility to study 

the central properties (e.g., discharge rate) of large populations of MUs by analysis of their firing 

pattern. Additionally, by spike-triggered averaging, peripheral properties such as MUs conduction 

velocity can be estimated over different regions of the muscles and single MUs can be tracked across 

different recording sessions. In this tutorial, we guide the reader through a step-by-step 

investigation of MUs properties and provide both the theoretical knowledge and practical tools 

necessary to lower the barriers in the implementation of the HD-sEMG technique. The practical 

application of this tutorial will be based on openhdemg, a free and open-source framework for the 

automated analysis of MUs properties built on Python 3 and composed of different modules for HD-

sEMG data handling, visualisation, editing, and analysis. openhdemg is interfaceable with most of 

the available recording software and equipment, and all the built-in functions are easily adaptable 

to different experimental needs. The framework also includes a graphical user interface which 

enables users with limited coding skills to perform a robust and reliable analysis of MUs properties 

without coding. 
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5.3. Highlights 

 

- There is an urgent need for clear guidelines, instructions and open-source software to 

analyse motor units’ activity from High-Density Electromyography recordings. 

- This tutorial guides the reader through all the steps necessary to perform a complete 

investigation of MUs properties providing both theoretical knowledge and practical tools. 

- In this context, we introduce openhdemg, an innovative, free, and open-source framework 

for the automated analysis of motor units’ properties from High-Density Electromyography. 
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5.4. Abbreviations 

 

In alphabetical order: 

 

CNS Central Nervous System 
COVisi Coefficient of variation of Interspike interval 
DR Discharge Rate 
EMG Electromyography 
HD-EMG High-Density Electromyography 
HD-sEMG High-Density surface Electromyography 
iEMG Intramuscular Electromyography 
ISI Interspike interval 
MUAP Motor Units Action Potential 
MU Motor Unit 
MUCV Motor Unit Conduction Velocity 
MVC Maximum Voluntary Contraction 
PNR Pulse to Noise Ratio 
PPS Pulse Per Second 
RMS Root Mean Square 
SIL Silhouette Score 
XCC Cross-Correlation Coefficient 
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5.5. Introduction 

 

The motor unit (MU) is the basic functional component of the neuromuscular system that 

consists of an alpha motoneuron, its axon, and the muscle fibres it innervates (Sherrington, 1925; 

Heckman & Enoka, 2012). The central nervous system (CNS) responds to the locomotor functional 

demands by sending trains of axonal discharges (i.e. neural information or activation signal), which 

in turn elicit action potentials in the innervated muscle fibres (i.e. MUs action potentials (MUAPs)) 

(Heckman & Enoka, 2004, 2012). In simple terms, MUs act as a transducer that converts the neural 

activation signal into muscular forces. Indeed, because of a large physiological safety factor in 

synaptic transmission at the neuromuscular junction (Wood & R. Slater, 2001; Sarto et al., 2022a), 

there is a one-to-one relation between the discharges of a motoneuron and the MUAPs evoked in 

the muscle (Wood & R. Slater, 2001; Duchateau & Enoka, 2011). 

During voluntary muscle contractions, the MUAPs can be detected at the muscle level via 

electromyographic (EMG) recordings, therefore making the motoneurons the only cells of the CNS 

that can be recorded in humans with non-invasive or minimally-invasive techniques (Farina et al., 

2004; Merletti & Farina, 2009). Recent advancements in EMG techniques have led to the 

development of High-Density surface EMG (HD-sEMG), where densely populated grids of closely 

spaced small-diameter recording electrodes are applied directly to the skin overlying the muscles 

(Gallina et al., 2022). The elevated spatial sampling of these grids allowed the researchers to record 

MUAPs from different regions of the muscle, thus increasing the possibility to discriminate spatially 

non-overlapping MUAPs and the number of single MUs that could be accurately decomposed 

(Farina et al., 2016). These advancements have allowed, for the first time, the simultaneous 

discrimination of large and representative populations of concurrently active MUs without invasive 

procedures (Farina et al., 2016). 

These peculiar features established HD-sEMG as the preferred tool for the investigation of 

how the CNS controls voluntary movements in physiological conditions, and opened a new era in 

the study of MUs physiology and activity in response to different stimuli (Martinez-Valdes et al., 

2018a; Casolo et al., 2021; Škarabot et al., 2022; Valli et al., 2023), in health and pathology (Drost 

et al., 2001; Gallego et al., 2015b), to injury (Nuccio et al., 2021) and for man-machine interface 

applications (Farina et al., 2017). 

In this tutorial, we provide the reader with the theoretical knowledge necessary to perform 

a complete investigation of central and peripheral MUs properties from decomposed HD-sEMG 
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recordings. Additionally, in this context we introduce openhdemg, an innovative, freely available, 

and open-source framework specifically designed for the automated analysis of MU properties in 

HD-EMG recordings (Fig. 5-1). 

 

 

Figure 5-1: The openhdemg framework. openhdemg is a free, versatile and open-source framework for the analysis of single motor 
unit (MU) properties from High-Density Electromyography (HD-EMG) recordings. It can be virtually interfaced with any custom or 
commercial system for HD-EMG data acquisition and decomposition. Starting from the discharge pattern of the identified MUs, 
openhdemg automates the steps of visualisation, processing and analysis of the decomposed HD-EMG file. Developed using Python 
3, a widely recognized programming language for data analysis, openhdemg provides a rich set of built-in functions that can be further 
expanded using popular tools for signal processing, machine learning, and statistics available in the Python ecosystem. 
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5.6. Lowering the barriers to the use of HD-sEMG with openhdemg 

 

Although some general consensus and standardisation on HD-sEMG data acquisition and 

analysis has been recently proposed (Gallina et al., 2022; Martinez-Valdes et al., 2023), the 

implementation of this technique still faces notable challenges. One such challenge is the limited 

availability of practical guidelines, instructions and user-friendly open-source software for the 

analysis of MUs activity (Felici & Del Vecchio, 2020). Indeed, proper analysis of HD-sEMG recordings 

requires specialized knowledge and expertise in signal processing and computational methods, 

alongside advanced coding skills, which may preclude some laboratories from such type of research. 

The aim of this tutorial article is to lower the barriers to the implementation of the HD-sEMG 

technique by providing the reader with the theoretical knowledge and practical tools necessary to 

investigate MUs properties from HD-sEMG recordings. 

Specifically, this tutorial has been structured as a step-by-step guide to the analysis of central 

and peripheral MUs properties and combines simple and clear guidelines with an easy-to-read code 

implementation of all the showed concepts. 

The tutorial will briefly cover basic concepts of signal acquisition and decomposition (as 

these phases generate the information to be analysed) and will then cover, in detail, the following 

steps: 

- Load the decomposed HD-sEMG file in a working environment; 

- Visualise, inspect and process the decomposition outcome; 

- Discard unwanted MUs based on objective criteria; 

- Track MUs within and between recording sessions; 

- Analyse central and peripheral MUs properties; 

 

For organisational purposes, the main text of the manuscript will focus on the theoretical 

aspects necessary to correctly investigate MUs activity. Alongside the text, figures and figures’ 

captions will illustrate the application of all the discussed notions. Furthermore, a clear and in-depth 

documentation of the code implementation will allow the users to interactively follow all the steps 

of this tutorial and to implement their own analyses. 

The practical application of the tutorial can be easily followed by readers with any scientific 

background and no advanced or strong knowledge of signal processing and coding will be required. 
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In order to achieve or purpose, we developed openhdemg, a free and open-source 

framework specifically designed for the analysis of MUs properties from HD-EMG recordings. 

openhdemg is written in Python 3 (Python Software Foundation, USA) and, at the time of writing, it 

is composed of 8 modules and 60 functions for HD-EMG data handling, visualisation, editing and 

analysis easily adaptable to different experimental needs (Fig. 5-1). All the functions are designed 

for the maximum simplicity and convenience of the user and are extensively documented at 

https://www.giacomovalli.com/openhdemg/. Of note, the use of the openhdemg framework can 

be extended also to intramuscular HD-EMG recordings, although this tutorial article will only focus 

on HD-sEMG recordings. 

Noticeably, openhdemg is designed to be interfaced with any available system for data 

acquisition and decomposition, starting from the commercially available software up to any 

personal implementation of these phases, with little or no customisation required by the user. 

For didactic purpose, the user is encouraged to follow the tutorial article with the provided 

code implementation of all the showed concepts. This approach enables users to directly utilise the 

individual functions within the openhdemg framework. These functions are designed to offer 

maximum customization and flexibility, allowing for further extension with well-known Python 

libraries dedicated to signal processing and data analysis (as depicted in Fig. 5-1). By doing so, users 

can leverage their ability to perform advanced investigations. 

However, the reader can also decide to use the built-in graphical user interface (presented 

in Fig. 5-2), which enables users to perform analysis tasks with ease and efficiency without writing 

a single line of code. The graphical interface contains all the tools needed to follow this tutorial 

article and to analyse MUs properties in real-life scenarios. For the interested readers, the use of 

the graphical interface is well documented at 

(https://www.giacomovalli.com/openhdemg/gui_intro/). 

 

https://www.giacomovalli.com/openhdemg/
https://www.giacomovalli.com/openhdemg/gui_intro/
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Figure 5-2: The Graphical user interface. The openhdemg framework is equipped with a practical and functional graphical interface 
that integrates the most relevant high-level functions of the openhdemg library and that allows users to perform a broad range of 
visualisation, processing and analysis tasks in a time-efficient manner and without coding. High-Density Electromyography, HD-EMG; 
Motor units, MUs. 
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5.7. Fundamentals of HD-sEMG signal acquisition and decomposition 

 

Although the explanation of procedures for HD-sEMG signal acquisition and decomposition 

into MUs discharge patterns goes beyond the scope of this article, these are the prerequisites for 

generating the output that is subsequently analysed, and are determinant for the quality of the 

analysis. Therefore, the following two sections are intended to provide a brief overview of the 

fundamental concepts for HD-sEMG data acquisition and decomposition in light of the subsequent 

analyses. For the readers that need further explanations, we redirect to more specialised articles 

covering these topics (Besomi et al., 2019; Merletti & Muceli, 2019; Del Vecchio et al., 2020; Merletti 

& Cerone, 2020; McManus et al., 2020). Additionally, Fig. 5-3 provides a visual representation of the 

key steps in HD-sEMG signal acquisition and decomposition in light of the subsequent analyses. 

 

5.7.1. Signal acquisition 

 

Being the primary step of all the studies involving HD-sEMG recordings, the signal acquisition 

phase will determine the type of analysis that can be performed, the number of accurately identified 

MUs and the reliability of the obtained results. 

According to recent consensus (Gallina et al., 2022), if the scope is to investigate both central 

and peripheral properties of single MUs, the HD-sEMG signal should be recorded during isometric 

contractions (Fig 5-3A-C) with densely populated grids of closely spaced (2.5 – 10 mm) electrodes 

of small diameter (0.5 – 3 mm). Additionally, the number and distribution of the recording 

electrodes should be adequate to accurately represent the propagation of MUAPs through the 

muscle fibres. Nowadays, it is common practice to use 32 or more recording electrodes, especially 

on large muscles (Del Vecchio et al., 2017; Cohen et al., 2023; Okudaira et al., 2023). 

Given that HD-sEMG signals have a bandwidth of approximately 10–500 Hz, the signal should 

be preferentially recorded with a sampling rate of at least 2000 Hz (McManus et al., 2020). 

Additionally, the signal should be recorded in monopolar configuration (montage), in order to 

maximise the information that can be collected and to allow for different off-line spatial filtering 

(e.g., single or double differential) (Fig. 5-3G) (Gallina et al., 2022). 

For the investigation of peripheral MUs properties such as MUs conduction velocity (MUCV) 

or amplitude of the MUAPs, it is absolutely necessary to standardise the location in which the grid 

is attached and its orientation (Merletti & Muceli, 2019). Indeed, the estimation of peripheral MUs 

properties is affected by the dimension and direction of muscle fibres, which vary across the muscle 



120 
 

area (Casolo et al., 2023). For these analysis, the grid should be placed following the muscle fibres 

anatomical orientation and its position should be standardised with respect to an easily-identifiable 

superficial innervation zone (Martinez-Valdes et al., 2023). Both the direction of the fibres and the 

innervation zones can be accurately identified with different methods, including the use of linear 

electrode arrays (Del Vecchio et al., 2017; Casolo et al., 2020) or with low-intensity percutaneous 

electrical stimulations (Botter et al., 2011a) coupled with ultrasound imaging (Hug et al., 2021b; 

Valli et al., 2023). 

 

5.7.2. Signal decomposition 

 

MUs decomposition is a semi-automated process aimed at extracting the discharge pattern 

of single MUs from interference EMG signals. Over the last 20 years, different decomposition 

techniques have been specifically implemented for HD-EMG recordings (Holobar & Zazula, 2007; 

Ning et al., 2015; Negro et al., 2016; Chen & Zhou, 2016). Among these, the ones based on 

convolutive blind source separation have gained widespread adoption because of their ability to 

efficiently resolve superimposition of action potentials and their robustness in the presence of signal 

artefacts (Holobar & Zazula, 2007; Negro et al., 2016). These techniques are considered “semi-

automated” since an automated phase aimed at identifying and refining the mathematical vectors 

representing the contribution of single MUs is usually followed by a manual refinement of the 

decomposition outcome (as briefly showed in Fig. 5-3D-F) (Enoka, 2019; Del Vecchio et al., 2020). 

While technicalities of MUs decomposition are beyond the scope of this tutorial, it is 

essential to comprehend the output it generates, which contains the foundational variables for all 

subsequent analyses on single MUs. 

The basic and most important output variable is the time at which each MU is active (Fig. 5-

3F). The times of discharge of each MU are usually represented as a one-dimensional array 

containing the instants of discharges or, alternatively, as a binary representation of the MUs 

behaviour over time (i.e., each sample is assigned 0 if the MU is not discharging or 1 if the MU is 

discharging) (Fig. 5-3H). This very basic information is fundamental to perform the majority of the 

analysis, including MUs recruitment and derecruitment threshold (RT and DERT), discharge rate (DR) 

and MUCV. 

In order to estimate the RT and DERT, the information about the times of discharge has to 

be associated with an auxiliary input signal. Similarly, for the estimation of MUCV or other peripheral 
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properties, the times of discharge have to be associated with the raw multichannel EMG signal. 

Therefore, these variables have to be included in the decomposed EMG file when the researcher 

wants to investigate both central and peripheral MUs properties. 

Finally, the decomposed file must contain information about the sampling rate, which is 

fundamental to express all the estimated parameters in time units. 

The beforementioned variables in the decomposed HD-sEMG file are sufficient to perform a 

complete investigation of central and peripheral MUs properties. However, it must be noted that 

the times of discharge provide very limited information on the reliability of the identified MUs and 

do not allow to apply any signal-based metrics of accuracy, therefore preventing the discrimination 

of a properly identified MU from decomposition errors. To overcome this limitation, the files 

decomposed via blind-source separation contain also the decomposed source, which is the result of 

the decomposition from which the times of discharge are detected, and which allows to estimate 

the relative magnitude of the spikes in respect to the baseline noise (Holobar et al., 2014; Negro et 

al., 2016). 
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Figure 5-3: High-Density surface Electromyography (HD-sEMG) signal acquisition and decomposition. Representative example of HD-
sEMG recordings performed during isometric and standardised contractions (A). Specific pools of motoneurons are recruited 
depending on the target task, resulting in a series of precisely modulated action potentials (B) that cause the depolarisation of the 
sarcolemma and the generation of the desired muscle force. (C). The summation of all the action potentials generated by different 
motoneurons generates the interference EMG signal (D) which, if acquired during isometric tasks, can be decomposed in the 
discharge pattern of individual motor units (MUs) (E, F). For flexibility in the off-line analysis, the interference EMG signal is usually 
recorded in monopolar montage, although other spatial filtering techniques can be adopted (G). Regardless of the contraction type 
and setup for EMG signal acquisition, the decomposed HD-sEMG file should contain all the variables necessary for the subsequent 
analysis of central and peripheral MUs properties, including at least the times of discharge of each MU (H), the raw EMG signal, the 
auxiliary input signal, the sampling rate, and ideally the decomposed source (E). Maximum voluntary contraction, MVC; number, N; 
Hertz, Hz. 
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5.8. Load the decomposed HD-sEMG file in a working environment 

 

The analysis of the decomposed HD-sEMG files requires specific algorithms or software, 

which are typically implemented in programming languages such as Python and MATLAB. Therefore, 

the decomposed HD-sEMG file needs to be imported into a suitable working environment. Since this 

tutorial is based on openhdemg, the only user-friendly solution currently available for the analysis 

of single MUs activity, the proposed working environment has been specifically designed to enhance 

the user experience with this framework. 

A working environment generally refers to the set of resources necessary to carry out a 

particular task or job. In the context of this tutorial, we refer to the combination of a computer, a 

programming language, an integrated development environment and a set of algorithms. 

The programming language required by openhdemg is Python (v3.11), which can be 

downloaded and installed from (https://www.python.org/). The integrated development 

environment is a software that facilitates to write, test, and debug code. The suggested integrated 

development environment to follow this tutorial is Visual Studio Code (can be downloaded and 

installed from https://code.visualstudio.com/). Once Python and Visual Studio Code are installed, 

the user needs to download the set of pre-built algorithms (usually named “library” in Python, which 

indicates a collection of reusable code modules and functions). As previously mentioned, 

openhdemg is the library used in this tutorial. openhdemg is hosted at PyPI 

(https://pypi.org/project/openhdemg/) and can be installed as “pip install openhdemg” from the 

Python terminal. The user is encouraged to install openhdemg and other libraries in a specific 

“virtual environment”, which is a self-contained directory that contains a specific version of Python 

and its dependencies. The users without previous experience using Python are strongly encouraged 

to follow the detailed guide through the beforementioned steps at 

(https://www.giacomovalli.com/openhdemg/tutorials/setup_working_env/). 

Once the working environment is set, the user is ready to perform the analyses presented in 

this tutorial exploiting the functionalities of openhdemg. As previously introduced, the code 

necessary to analyse the decomposed HD-sEMG file will not be presented in the main text of the 

manuscript, which will instead prioritise the theoretical and visual aspects. However, from the 

supplementary material section of this article, the user can download different Python files (.py 

extension) that contain all the code necessary to replicate the analyses presented in this tutorial 

https://www.python.org/
https://code.visualstudio.com/
https://pypi.org/project/openhdemg/
https://www.giacomovalli.com/openhdemg/tutorials/setup_working_env/
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alongside an extensive step-by-step explanation of the code provided. These files can be opened 

and executed directly in Visual Studio Code. 

The user that immediately wants to test the example code can download 4 decomposed 

example files (named Pre_25_a, Pre_25_b, Post_25_a and Post_25_b) from Mendeley Data (link to 

include upon acceptance of the article). The recordings have been performed 4 weeks apart (i.e., 

“Pre” and “Post”) in a young subject performing moderate physical activity and in duplicates (i.e., 

“a” and “b” indicate the same contraction repeated twice at each timepoint). These sample files 

contain all the variables necessary to investigate both central and peripheral MUs properties. 
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5.9. Visualization, inspection and processing of decomposition outcome 

 

As shown in Fig. 5-4A, the sample decomposed HD-sEMG file contains a trapezoidal 

contraction ranging from 0 to 25% MVC for a total duration of about 30 seconds. In this example 

file, the auxiliary input signal represents the participant’s generated force and is expressed as % 

MVC. This type of contraction is very common in HD-sEMG studies and it has been preferred for the 

scope of the tutorial as it allows to detect the progressive and ordered recruitment and 

derecruitment of different MUs and their DR modulation during voluntary isometric contractions 

(Nuccio et al., 2021; Valli et al., 2023). 

As research in HD-sEMG advances, however, different types of contraction such as triangular 

and explosive contractions, are also becoming of common use to address specific research questions 

(Del Vecchio et al., 2019b; Hassan et al., 2021b; Mesquita et al., 2022). Obviously, the flexibility and 

customisability of the openhdemg framework makes it suitable also to work with these (and other) 

novel contraction types. 

In Fig. 5-4B, the same MUs have been sorted based on their order of recruitment. This 

visualisation is useful to detect the distribution of the decomposed MUs and whether the 

decomposition procedure identified MUs through the whole or the majority of the volitional 

recruitment range of the tested muscle, or only at specific force levels. The latter phenomenon can 

be typically observed in contractions executed at higher force levels (e.g., 50 or 70% MVC) where 

the superimposition of larger MUAPs generated by MUs with higher RT might prevent the 

observation of the smaller MUAPs generated by lower-threshold MUs (Fig 5-4C-D) (Del Vecchio et 

al., 2019a; Casolo et al., 2021; Valli et al., 2023). 

From the visualisation of the discharge times, however, it is difficult to have a complete 

understanding of the MUs discharge activity. Therefore, it is usually more informative to visualise 

each MUs discharge pattern both as a function of time (X axis, in seconds) and as a function of DR 

(left Y axis, in pulses per second) as shown in Fig. 5-4E. Indeed, from this representation of the MUs 

discharge activity, it is possible to observe some typical physiological characteristics of the MUs 

discharge such as the motoneuron’s linear response to the depolarizing current it receives (Fig. 5-

4E) (Mendell, 2005b) and the common drive to the muscle (Fig 5-4B) (De Luca & Erim, 1994). 

Regarding muscle force, Fig. 5-4B highlights two common problems in HD-sEMG recordings: 

(i) the auxiliary input signal shows the presence of a signal offset and (ii) of a noisy component that 

might affect some analyses like the MUs RT and DERT. 
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The beforementioned examples and observations, although do not provide any objective 

measurement, present a clear overview of the quality of the HD-sEMG recording and decomposition 

output, and grant enough guidance for editing the HD-sEMG file before estimating the MUs 

properties. 

In this regard, the openhdemg library offers a complete pipeline for the processing of the 

decomposition outcome before MUs analysis, including the removal of auxiliary input signal offset 

and different filtering techniques to reduce electric noise, both in the auxiliary input and in the raw 

EMG signal when needed (as exhaustively shown in the code implementation and in Fig. 5-4F-H).  

In the context of this tutorial article, we recognize the need to explicitly state that signal 

filtering is a complex topic and that the appropriate filter type should be selected based on the 

user’s specific needs. We therefore redirect the reader to more specific articles covering this topic 

(Clancy et al., 2002; McManus et al., 2020). 

A final adjustment, often necessary while preparing the HD-sEMG file for analyses, is to 

remove areas of the recording with unwanted neuromuscular activation before and after the actual 

contraction phase (e.g., movement artefacts). This editing can be efficiently performed by resizing 

the HD-sEMG file in a narrower time-window that only includes the active contraction phase. During 

this process, the user should be careful to resize the EMG and auxiliary input signal in the same time 

window but, at the same time, all the other variables in the time domain, or depending from the 

time-window of interest, should be adjusted accordingly. For example, If the EMG signal is resized, 

all the instants of discharge will take a different value, which can be simplified as the original value 

minus the number of samples removed from the initial part of the HD-sEMG file. 
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Figure 5-4: Visualization, inspection and processing of decomposition outcome. The content of the decomposed High-Density surface 
Electromyography (HD-sEMG) file can be practically inspected by visualising the binary representation of motor units (MUs) discharge 
times eventually coupled with the auxiliary input signal (A). To better detect the distribution of the decomposed MUs, these can be 
visualised based on their order of recruitment (B). In this visualisation, the recruitment thresholds provide information on whether 
the decomposition procedure identified MUs through the majority of the volitional recruitment range of the tested muscle, or only 
at specific force levels, as typically observed in contractions executed at higher force levels (C, D). The discharge behaviour of single 
MUs can be better visualised by the instantaneous discharge rate which, in the showed example, reflects the motoneuron’s linear 
response to the depolarizing current it receives (E). The auxiliary input signal can be adjusted before the analysis via filtering of the 
noisy components (F) (in this example figure, a 4th order, zero-lag low-pass Butterworth filter with 15 Hz cut-off frequency was used) 
and via removal of signal offset (G). Similarly, also the EMG signal can be filtered if the decomposed HD-sEMG file only contains its 
unprocessed version (H) (in this example figure, a 2nd order, zero-lag band-pass Butterworth filter with a frequency range of 20-500 
Hz was used). Maximum voluntary contraction, MVC; number, N; recruitment threshold, RT; pulses per second, PPS. 
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5.10. Discard unwanted MUs based on objective criteria 

 

The term “unwanted MUs” is used to indicate those MUs that do not respect some 

qualitative criteria of accuracy or with irrelevant features for the intended analysis. In the context 

of HD-sEMG and MUs detection, the term” accuracy” refers to the accurate identification of the 

MUs discharge behaviour with respect to their physiological discharge pattern, which can be either 

known a priori in simulation studies or assumed from intramuscular recordings (Mambrito & De 

Luca, 1984; Holobar et al., 2009). 

One of the reasons why MUs activity is usually investigated during standardised tasks is that 

the discharge behaviour of the MUs is highly predictable from the performed task. Consequently, 

unexpected and unregular discharge profiles might indicate errors in the identification of the 

specific MU discharge times, at least in healthy individuals. 

For example, during trapezoidal contractions, the frequency of the discharge pattern of each 

MUs is expected to progressively increase from the moment of recruitment through all the 

ascending phase of the contraction. Similarly, the steady-state phase should show a maintenance 

of the frequency (or a slow and constant decrease) that is then progressively reduced during the 

descending phase (Fig. 5-5A) (Pascoe et al., 2014b; Del Vecchio et al., 2017). 

In light of this, a common parameter used to estimate the physiological behaviour of the 

identified MUs (and to indirectly infer on their accuracy) is the variability of the MUs discharge 

pattern during the steady-state phase of the contraction (Hu et al., 2014). This variability can be 

estimated as the coefficient of variation of the interspike interval (COVisi), which is the ratio 

between the standard deviation of the interspike interval (ISI) array and its average value, usually 

expressed in percent.  The ISI array represents the time-difference between consecutive discharge 

instants of each MU. 

High values of the COVisi indicate high variability in the MUs discharge pattern and, 

according to recent consensus and research articles, the COVisi during the steady-state phase of the 

contraction could serve as a criterion for identifying inaccurate MUs and excluding them from 

subsequent analyses (Martinez-Valdes et al., 2017; Gallina et al., 2022). 

However, there are limitations in the use of the COVisi as a criterion to determine the 

reliability of the decomposition. Indeed, the type of contraction heavily influences the MUs ISI and 

its variability, which might be elevated also in accurately identified MUs whenever the steady-state 

phase is either very short (2-5 seconds) or completely absent (as showed in Fig. 5-5B-C). Additionally, 
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MUs behaviour in non-physiological conditions such as neuromuscular diseases and extreme muscle 

fatigue might not respect the assumption of regular discharge activity of the MUs, therefore 

preventing the use of COVisi as a metric to evaluate the accuracy of the decomposition (Holobar et 

al., 2012; Taylor et al., 2016). 

Another approach for the discrimination of accurately identified MUs consists in the use of 

signal-based metrics of accuracy such as the pulse to noise ratio (PNR) (Holobar et al., 2014) or the 

silhouette score (SIL) (Negro et al., 2016), which are estimated from the decomposed source. 

The PNR is a ratio between the signal and the noise (i.e., the time moments in which the MU 

is estimated to have or not to have discharged) expressed in decibels (dB). Specifically, the 

distinction between signal and noise is determined by a threshold estimated via a heuristic penalty 

function that accounts for the variability of the ISI and for the MUs DR (Holobar et al., 2012). 

Therefore, also the PNR value is influenced by the MUs discharge behaviour (Holobar et al., 2014). 

Common PNR thresholds used to determine a sufficient level of accuracy are PNR ≥ 30 dB, although 

also PNR ≥ 28 dB could be accepted if supported by a careful visual inspection of the MUs discharges 

by experienced investigators (Holobar et al., 2014; Valli et al., 2023). 

The SIL provides an estimation of reliability similar to the PNR although with a different 

approach. Indeed, the SIL is defined as the normalized measure of the distance between the clusters 

of the detected discharge points and the cluster of the noise values (Fig. 5-5D and 5-5E). Compared 

to the PNR, the SIL has two main advantages in the estimation of accuracy as (i) it does not depend 

on the discharge behaviour of the MUs and (ii) being a normalised measure ranging from 0 to 1, it 

is of easy interpretation and directly associated to metrics like the rate of agreement that are 

commonly used in the validation of the decomposition algorithms (Negro et al., 2016). 

Common SIL thresholds used to determine a sufficient level of accuracy are SIL ≥ 0.9. 

However, as for the PNR, lower values of about 0.88 can be accepted if supported by careful visual 

inspection of the MUs discharges by experienced investigators (Negro et al., 2016). 
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Figure 5-5: Accuracy of the identified motor units. The coefficient of variation of interspike interval (COVisi) estimates the regularity 
of the motor units (MUs) discharge events. When applied to the steady-state phase of trapezoidal contractions, it can be used to 
estimate the accuracy of the identified MU (e.g., MU 1 vs MU 16 in panel A). However, the COVisi is greatly affected by the discharge 
rate (DR) modulation necessary to increase or decrease muscle force production. Indeed, the COVisi is not an appropriate metric for 
contractions with a very short (B) or completely absent (C) steady-state phase. The silhouette score (SIL) is a signal-based metrics of 
accuracy estimating the separation between the signal (the source signal at the time of firing of the identified MU) and the noise. 
The SIL is therefore estimated on the decomposed source and is not affected by the discharge behaviour of the MU. Additionally, 
being a normalised value, it provides a clear indication of correctly (D) and incorrectly (E) identified MUs. Maximum voluntary 
contraction, MVC; pulses per second, PPS. 
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5.11. Track MUs within and between recording sessions 

 

The possibility to recognise and track the same MU across different recordings and recording 

sessions opened new possibilities in the understanding of how MUs adjust to various types of 

interventions, including muscle disuse and pharmacological treatments (Goodlich et al., 2023; Valli 

et al., 2023). Indeed, comparing the same population of MUs over time provides a more robust 

estimation of their changes and filters the contribution of different MUs that can be detected at 

different data collection points (Maathuis et al., 2008; Martinez-Valdes et al., 2017). 

The recognition of the same MU is based on the comparison of their MUAPs representation 

across the channels of the recording grid, thus accounting both for the shape of the MUAPs and 

their spatial distribution. The estimation of the MUAPs is accomplished via spike-triggered averaging 

of the EMG signal (Stein et al., 1972; Taylor et al., 2002). Spike-triggered averaging involves 

identifying a specific time window (e.g., 50 ms) in the EMG signal centred on each firing event of a 

MU, and then averaging all the signals within that window. This procedure, that has to be performed 

in each grid channel, enhances the definition of the MUAP by reducing the contribution of action 

potentials generated by neighbouring MUs. A visual representation of the spike-triggered averaging 

technique is provided in Fig. 5-6A. 

For MUs tracking, the spike-triggered averaging is often performed on the single differential 

derivation of the EMG signal, because the comparison of the MUAPs in monopolar configuration 

tends to overestimate similarities (Martinez-Valdes et al., 2017). The single differential signal is 

calculated by subtracting the EMG signal in two adjacent channels of the grid along the direction of 

the muscle fibres. 

The estimation of similarity between the MUAPs representation of two MUs is usually 

achieved via two-dimensional cross-correlation analysis (Martinez-Valdes et al., 2017). This analysis 

returns a two-dimensional array of values representing a subset of the discrete linear cross-

correlation between the input that is then normalised for the different energy levels of the two 

MUs. The cross-correlation coefficient (XCC) is computed as the maximum value of the normalised 

cross-correlation array. XCC represents the degree of correlation between the two arrays, with 

values closer to 1 indicating a stronger correlation. In cases where a MU exhibits high correlation 

with multiple MUs in the other contraction, only the MU with the highest XCC is considered for the 

pair matching (Martinez-Valdes et al., 2017). 
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The tracking technique maximises the likelihood of observing the same MU in different 

recordings and proved to be effective also after weeks of various interventions (Martinez-Valdes et 

al., 2018a; Del Vecchio et al., 2019a; Casolo et al., 2020; Valli et al., 2023). It should be noted, 

however, that a number of factors can undermine the successful tracking. When the tracking is 

performed in different recording sessions, the grid of electrodes has to be re-applied at each data 

collection point and changes in the grid position will alter the MUAPs representation over the 

different electrodes. Therefore, it is fundamental to re-apply the grid in the same exact position at 

each recording session. To date, the most precise way to ensure correct placement consists in 

marking the skin with a permanent marker. Apart from technical aspects, muscle morphology and 

MUAPs can also be affected by particular interventions (Inns et al., 2022; Sarto et al., 2022b), thus 

requiring extra attention in the validation of the tracking results. 

Due to the possible confounding factors in the longitudinal MUs tracking, it becomes of 

extreme importance to check the reliability of the cross-correlation measure by visualising the 

overlying MUAPs from the pair of MUs across each channel, and to determine the 

inclusion/exclusion by verifying the effective overlapping of the MUAPs shape and their spatial 

distribution (Fig. 5-6B-D). 

In order to account for the minor differences in grid placement or changes in the MUAPs 

profile, the XCC threshold is commonly set ≥ 0.8 (Lulic-Kuryllo et al., 2021; Oliveira & Negro, 2021; 

Cudicio et al., 2022), although some authors adopted also XCC ≥ 0.7 (Del Vecchio et al., 2019a; 

Casolo et al., 2020). 

After identifying pairs of MUs, the user can decide to perform the subsequent statistical 

analyses considering both the populations of total and tracked MUs. In this case, the tracked 

population can be used as a validation of the results observed in the total population (Valli et al., 

2023). Alternatively, if the tracked population of MUs is sufficiently large and representative, the 

analysis can be exclusively performed on the tracked MUs. This elegant approach allows for the 

precise detection of single MU changes over time, offering valuable insights into the dynamics and 

adaptations of the neuromuscular system (Casolo et al., 2020). 

Recently, MUs tracking has also been employed for the identification of the same MUs within 

the same recording session (Valli et al., 2023) with an XCC threshold ≥ 0.9 because this condition 

doesn’t need to account for a different placement of the recording grid or for changes in MUAPs 

due to interventions, as previously proposed (Maathuis et al., 2008). 
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Figure 5-6: Motor units tracking. The shape and spatial representation of motor units (MUs) action potentials (MUAPs) shape allows 
for the recognition of the same MU within and between recording sessions. The estimation of smooth MUAPs is performed via 
averaging of all the MUAPs representations at each discharge event of the investigated MU (A). The tracking procedure is performed 
via two-dimensional cross-correlation analysis of the MUAPs representation (B, C, D). In these example figures, the MUAPs have been 
estimated from the single differential spatial filtering. The visualisation of the overlapping MUAPs of tracked pairs is fundamental for 
the validation of the cross-correlation analysis and must be always performed, regardless of the cross-correlation coefficient (XCC) 
valueb (C, D). Number, N; maximum voluntary contraction, MVC. 
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5.12. Analyse central MUs properties. 

 

Sections 8 and 9 will introduce a number of fundamental parameters for the analysis of MUs 

properties that are often tuned based on empirical observations, personal experience and 

experimental needs. Therefore, the proposed values should only be considered as representative 

examples that do not constitute standards. Indeed, this necessity of flexibility is embraced by the 

openhdemg framework, which allows the user to fully customise any implemented function based 

on specific needs (as demonstrated in the code implementation). 

The definitions of the various properties presented in section 8 and 9 are based on recent 

consensus statements. For more comprehensive explanations, readers are directed to (McManus et 

al., 2021; Gallina et al., 2022; Martinez-Valdes et al., 2023). 

MUs RT/DERT and DR are often referred as “central” properties due to their close relation 

with the discharge behaviour of the innervating motoneurons (Heckman & Enoka, 2004). Indeed, 

these variables reflect the intrinsic properties of each motoneuron and the integrated modulatory 

stimuli it receives, making them of primary interest in the study and characterisation of the neural 

control of voluntary muscle force production (Heckman & Enoka, 2012). 

MU RT and DERT are simply defined as the force level at which a motor unit begins and ends 

to discharge action potentials repetitively. Therefore, for the analysis of MUs RT and DERT, the 

presence of an auxiliary input signal representing the participant’s muscle force is fundamental. The 

auxiliary input signal can be expressed in different units of measurement (e.g., V, mV, Kg, N, Nm) 

and it is often reported in both absolute and normalised terms (i.e., as % MVC). 

In practical terms, the estimation of these two parameters can be simply performed by 

identifying the first and last element in the array containing the times of discharge of each MU, and 

then extracting the value for the auxiliary input signal at the corresponding instants (Fig. 5-7A).  

MUs DR represents the neural drive to the muscle and is defined as the number of action 

potentials discharged per second by a single MU. However, given its variability during contractile 

tasks, it is common practice to visualise the instantaneous DR, which is obtained dividing the 

sampling rate by the ISI between two consecutive discharges (Fig. 5-7A). Of note, MUs DR is 

expressed as pulses per second (PPS), unlike typical frequency units. 

In order to reduce this variability and to obtain a more robust estimation, MUs DR is usually 

analysed and reported as the average instantaneous DR over a number of consecutive discharges. 

MUs DR can be estimated within different phases of a voluntary contraction, such as in the 
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recruitment phase, derecruitment phase and the steady-state phase. For recruitment and 

derecruitment, it is necessary to find a compromise between robustness and sensitivity (Del Vecchio 

et al., 2020). This is often achieved by averaging the intervals generated by few (e.g., 3-5) 

consecutive discharges at the beginning and at the end of the contraction (Fig 5-7A) (Del Vecchio et 

al., 2019a; Valli et al., 2023). During the steady-state phase, all firings can be averaged (Škarabot et 

al., 2022). However, if the steady-state phase is long (e.g., > 20-25s), the estimation of MUs DR is 

affected by the physiological decline in DR, especially for MUs with lower recruitment thresholds 

(Pascoe et al., 2014b). In such cases, it is possible to limit the estimation of MUs DR to a fixed number 

of discharges (e.g., 20-50) at the beginning of the steady-state phase. 

 

 

Figure 5-7: Analysis of central motor units properties. Motor units (MUs) recruitment threshold (RT) and derecruitment threshold 
(DERT) are estimated as the force value (which can be expressed both in absolute and relative terms) at which the MU begins or 
stops to discharge action potentials repetitively. In this example, MUs discharge rate (DR) is estimated as the average value of a 
number of consecutive discharges at recruitment, derecruitment and during the entire steady-state phase. Based on the criteria used 
to manually determine the inclusion and exclusion of firings, the results of these analyses can vary significantly. Therefore, it is 
necessary to consistently adopt the same criteria for the manual editing of MUs discharges in order to have consistent and reliable 
results from the analysis of central MUs properties. Pulses per second, PPS; maximum voluntary contraction, MVC; interspike 
intervals, ISIs. 
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5.13. Analyse peripheral MUs properties 

 

MUCV and amplitude of the action potentials are often referred to as “peripheral” 

properties, as they primarily depend on the morphology and biology of the innerved muscle fibres 

(Casolo et al., 2023). Therefore, these two parameters have significant physiological relevance in 

the investigation of aspects concerning the generation and propagation of the MUAPs in response 

to the motoneuron discharges (Blijham et al., 2006; Campanini et al., 2009). 

MUCV represents the speed at which the MUAPs propagate along the sarcolemma of the 

muscle fibres belonging to single MUs and it is considered a “size principle parameter” due to its 

linear association with MUs RT and with muscle fibre diameter (Andreassen & Arendt-Nielsen, 1987; 

Del Vecchio et al., 2017; Casolo et al., 2023).  

MUAP amplitude is considered an important parameter for inferring the size of single MUs, 

but it must be noticed that estimation from surface HD-sEMG recordings presents high variability. 

Indeed, MUAP amplitude is considerably influenced by muscle architecture, subcutaneous tissue 

thickness and proximity of the MU among other factors. Although this value can be informative, the 

direct estimation of MUs size from measures of MUAP amplitude is not generally recommended 

(Martinez-Valdes et al., 2023). MUAP amplitude can be quantified using various measures, including 

peak-to-peak distance or root-mean-square of the MUAPs. When reported alongside MUCV, MUAP 

amplitude can be calculate on the same MUAPs and channels used for MUCV estimation (Del 

Vecchio et al., 2017). 

The estimation of the MUAPs for the analysis of peripheral MUs properties is usually 

performed via spike-triggered averaging of the EMG signal as previously described. For the 

estimation of MUCV, the spike-triggered averaging is usually computed on the double differential 

derivation of the EMG signal along the direction of the muscle fibres. This spatial filtering decreases 

the presence of non-propagating components and attenuates the end-of-fibre effect, thus 

enhancing the representation of MUAPs propagation (Fig. 5-8A-C) (Gallina et al., 2022). The double 

differential signal is calculated over three adjacent channels of the grid by subtracting the EMG 

signal in the first channel from twice the EMG signal in the second channel, and then subtracting 

the EMG signal in the third channel. 

Given the definition of MUCV as a size principle parameter, the spike triggered average for 

this analysis is usually calculated over a number of discharges that provide a balance between the 

smoothing in the MUAPs (improved by a higher number of averaged samples) and the 
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representation of the MUCV value at the recruitment phase. Although there is no reference value, 

the actual literature seems to favour the computation of the spike-triggered average over the first 

20-50 discharges at recruitment (Martinez-Valdes et al., 2018a; Casolo et al., 2023). 

On the generated MUAPs, the estimation of MUCV is performed via maximum likelihood 

estimation of the time delay over a number of channels with specific characteristics. Given its 

complexity, the technical implementation of the maximum likelihood estimation cannot be 

explained adequately in this tutorial and the reader is encouraged to read specific articles on the 

topic (Farina et al., 2000, 2002). 

The identification of channels for estimating MUCV involves a manual selection process. It 

requires the visual examination of adjacent channels within a column of the grid to identify those 

that show the clearest propagation of the action potential and exclude the innervation zone 

(identified as the inversion of the action potential shapes and of their direction of propagation). The 

choice of the channels is supported by the cross-correlation value between adjacent pairs. This 

cross-correlation analysis helps in identifying pairs with strong similarities in their MUAP patterns, 

indicating consistent propagation characteristics. Additionally, a minimum cross correlation 

threshold is often employed to ensure the acceptability of pairs. Similarly to MUs tracking, a 

threshold ≥ 0.8 is expected to yield most reliable estimations, although a cross-correlation threshold 

≥ 0.7 is also often adopted (Škarabot et al., 2022). A minimum of 2 channels are technically sufficient 

for MUCV estimation via maximum likelihood. However, it is strongly recommended to include 3 or 

more channels to increase the accuracy of the estimates. 

It is important to note that the physiological range of MUCV during voluntary contractions 

typically falls between 2 and 8 m/s (Farina et al., 2002; Beretta-piccoli et al., 2019). Any values 

outside of this range are likely to be the result of errors in data collection (e.g. electrodes 

misalignment) or analysis (e.g., wrong selection of the channels) and should be disregarded. 

Given the complexity of the selection of appropriate channels, and the necessity of visual 

inspection, the user is encouraged to refer to Fig. 5-8D-F for a clear presentation of this procedure. 
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Figure 5-8: Analysis of peripheral motor units properties. The estimation of motor units (MUs) conduction velocity (MUCV) is usually 
performed on the MUs action potentials (MUAPs) representation estimated from the double differential spatial filtering of the raw 
EMG signal (A, B, C). MUCV represents the speed at which the MUAPS propagate along the sarcolemma of the muscle fibres (D). For 
the reliable estimation of MUCV, it is fundamental to select the largest number of adjacent channels (in the direction of muscle fibres, 
represented in columns in the openhdemg interface) showing a clear propagation of action potentials and high cross-correlation 
coefficients (XCC). In the selection of the channels, it is necessary to avoid the MUAPs presenting the end-of-fibres effect (extinction 
of action potentials) (E) and the innervation zone (inversion in the propagation direction) (F), as these will significantly alter the 
estimation of the MUCV value. 
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5.14. Final remarks and conclusions 

 

This tutorial provides a detailed explanation of crucial steps for the analysis of MUs 

properties from HD-sEMG recordings. Furthermore, it introduces the possibility to perform MUs 

analyses with openhdemg, an efficient tool that can lower the barriers to the implementation of the 

HD-EMG technique thanks to its user-friendly structure, extensive documentation, and flexible 

architecture easily accessible to researchers with varying levels of programming experience. 

openhdemg is an opensource framework in continuous expansion and will continue to 

evolve based on user feedback and emerging research needs, fostering collaboration and 

knowledge sharing within the HD-EMG community. 
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6. General discussion 

 

This thesis is constituted by two experimental chapters in which the HD-EMG technique has 

been used to investigate the consequences of muscle disuse and type 1 diabetes on the neural 

control of muscle force production. In addition to these investigations, the last chapter is dedicated 

to the development of an open-source framework designed to facilitate the analysis of HD-EMG 

recordings. 

HD-EMG is a relatively modern evolution of surface EMG that allows for the investigation of 

neural control by monitoring directly and non-invasively the behaviour of active MUs (Gallina et al., 

2022). It provides insights into the properties of muscle membrane and of the innervating 

motoneurons, which are particularly valuable when studying conditions that affect the 

neuromuscular system (Gallego et al., 2015b). 

Due to the only recent introduction and evolution of the HD-EMG technique, our previous 

understanding of the adaptation and degeneration of neural control to different conditions was 

often limited by the absence of suitable techniques. For example, the classic bipolar surface EMG 

does not allow to detect individual MUs and can only provide a rough and indirect estimate of MUs 

behaviour (Farina & Enoka, 2023). Before the introduction and evolution of HD-EMG, intramuscular 

EMG was the most common method to identify single MUs. Indeed, intramuscular EMG has been 

widely adopted in the study of MUs behaviour in humans, it allowed for major advances in the field 

and is widely adopted in clinical settings (Piasecki et al., 2021). However, this technique presents 

several limitations, such as the invasiveness, the small sampling area, and the capacity to identify 

only a small number of MUs, therefore limiting the range of possible analysis (Farina et al., 2016). 

Given these technical limitations, the neuromuscular consequences of muscle disuse and other 

chronic conditions, including type 1 diabetes, have been under-researched. 

For example, the few available studies on muscle disuse predominantly focused on small 

muscles, where intramuscular EMG can provide the best results (Duchateau & Hainaut, 1990; Seki 

et al., 2001, 2007). However, small muscles may substantially differ in properties and adaptations 

from larger muscles, which adopt different strategies of muscle force production (De Luca, 1985). 

Given the significance of large muscles for locomotion and daily activities, this limitation significantly 

impacts the existing knowledge base. 

In the context of type 1 diabetes, it is well-established that this condition leads to various 

long-term complications, including neuropathy (Daneman, 2006). Yet, there is a considerable lack 
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of knowledge concerning the neuromuscular status of individuals with type 1 diabetes prior to the 

clinical diagnosis of neuropathy, and how this degeneration evolves over time, before becoming 

manifest (Monaco et al., 2017). 

In both type 1 diabetes and muscle disuse, the limited understanding of their effects on the 

neuromuscular system prevents the development of effective countermeasures and the design of 

early detection screenings, therefore demanding additional investigation with appropriate 

techniques. 

Finally, while HD-EMG holds great potential for investigating neural control and 

neuromuscular degeneration, its widespread adoption has been limited by the technical 

complexities associated with data collection and analysis (Felici & Del Vecchio, 2020). Indeed, 

sophisticated algorithms are necessary to analyse the acquired data, requiring expertise in signal 

processing and coding. This barrier prevented many researchers from adopting this technique and 

slowed down the progress in the study of neuromuscular degeneration. Consequently, this work 

also addressed the development of a tool aimed at enabling researchers to overcome these 

challenges and leverage HD-EMG for further advancements in this field. 

 

6.1. Altered neuromuscular function: a common outcome of Muscle disuse and type 1 diabetes 

 

Muscle disuse (as investigated in Experimental Chapter 1) and type 1 diabetes are distinct 

conditions, differing primarily in their aetiology, duration, and progression. 

Aetiology: Muscle disuse can arise from various factors that reduce limb loading, including 

diseases requiring hospitalization, injuries preventing movement, and conditions like space flights 

that reduce gravitational load. In these scenarios, reduced muscle activation leads to decreased 

neural drive to the muscle, driving adaptations within the neural components and resulting in a 

significant decline in force production (Reggiani, 2015). Conversely, type 1 diabetes is an 

autoimmune disease primarily affecting pancreatic beta cells (Devendra et al., 2004). Consequently, 

the associated comorbidities and complications mainly result from disrupted glycaemic control. For 

instance, type 1 diabetes adverse effects on skeletal muscle likely arise from extreme glucose 

fluctuations in both muscle and motoneurons, potentially leading to increased production of 

reactive oxygen species and higher inflammation, thereby damaging the affected structures 

(Monaco et al., 2017). 
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Duration: Muscle disuse typically lasts for relatively short periods, ranging from days to 

months (excluding chronic forms of reduced physical activity that are not the focus of this thesis). 

In contrast, type 1 diabetes persists throughout all the lifespan from the initial onset. This disparity 

in duration corresponds to differences in the intensity and pace of the conditions' consequences. 

Progression: Due to the different magnitude of the physiological alterations induced by the 

two conditions, neural degeneration progresses more rapidly during muscle disuse than in type 1 

diabetes. However, the chronic nature of diabetes fundamentally alters its management and long-

term outcomes. Muscle disuse can often be counteracted by exercise interventions after a period 

of reduced mobility, potentially allowing complete recovery, especially in young individuals (Valli et 

al., 2023). Conversely, for type 1 diabetes, while interventions can slow progression and maintain 

the condition, manifest neuromuscular alterations are likely to develop over time, making a 

complete prevention of the progression improbable (Monaco et al., 2019). 

Despite these differences, both conditions inevitably lead to a decline or change in 

neuromuscular function, as elucidated in the experimental chapters of this thesis. The effective 

management of these conditions necessitates of a comprehensive understanding of the ongoing 

changes, alongside with sophisticated techniques capable of precisely detecting even subtle 

alterations in the neural condition. Such capabilities facilitate the early detection of neuromuscular 

degeneration and guide the implementation of timely and individual-tailored interventions. 

In this context, the experimental chapters presented in this thesis not only contribute to our 

understanding of muscle disuse and type 1 diabetes but also underscore the critical importance of 

cutting-edge techniques like HD-EMG in advancing our ability to detect and manage neuromuscular 

conditions effectively. 

 

6.2. Discharge rate as an indicator of the neural condition 

 

HD-EMG can provide different estimates of the neural and muscular condition, yet, MUs DR 

emerges as one of the primary indicators of the consequences associated with the underlying 

neuromuscular conditions. This observation finds support in the existing literature (Nuccio et al., 

2021; Škarabot et al., 2022; Nishikawa et al., 2022) and is also corroborated by the experimental 

chapters presented in this thesis. Additionally, MUs DR exhibits a remarkable capacity to reflect 

changes in response to both positive interventions (e.g., exercise) (Škarabot et al., 2021) and 
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negative stressors (e.g. disuse) (Duchateau & Hainaut, 1990), with a particular sensitivity to even 

minor modifications (Dideriksen & Del Vecchio, 2023). 

in the present thesis, the two experimental chapters involving negative stressors such as 

disuse and type 1 diabetes, both induced a reduction in DR, which might be caused by changes in 

the intrinsic properties of the motoneuron, diminished descending neural inputs to the 

motoneuron, altered excitatory/inhibitory feedback mechanisms, or perturbations in 

neuromodulatory processes at the spinal level (Heckman & Enoka, 2012). 

In this regard, although the understanding of the precise causes of reduced DR is challenging 

and should be further investigated in the context of the specific disease (i.e., type 1 diabetes in our 

case), DR might still represent a biomarker for assessing neural condition. Indeed, the potential 

utility of such a parameter as a robust biomarker for assessing neural condition hides in its simplicity, 

making it an interesting tool for both clinical and research applications. Furthermore, its sensitivity 

to both subtle and pronounced changes might allow for early detection of neural adaptations or 

abnormalities. 

In clinical settings, early detection is crucial for timely interventions, especially in conditions 

where neural alterations can progress insidiously. From a research perspective, researchers can 

utilize MUs DR to investigate the effects of different interventions, and use this information to guide 

further investigations aimed at understanding the processes that drive these adaptations. 

It is necessary to mention, however, that although MUs DR can be informative, in research 

settings it is often not sufficient to obtain a complete picture of the underlying changes or of the 

mechanisms responsible for them. For example, in our study of type 1 diabetes, it has been 

necessary to combine this information with additional analyses uncovering the muscular condition, 

which allowed for a more comprehensive understanding of the disease (Minnock et al., 2022). 

Indeed, we combined the analysis of MUs DR with the estimation of peripheral MUs properties such 

as MUs CV and amplitude of the action potentials. Given the strong relationship between peripheral 

MUs properties and the size of muscle fibres (Casolo et al., 2023), we could exclude structural 

alterations in the muscle, hypothesis that also found support in the analysis of muscle biopsies. 

It must be noted, however, that analyses such as MUs CV are more time-consuming and 

technically more complicated than the straightforward estimation of MUs DR, especially until 2022, 

when no software was available to perform these analyses.  
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6.3. Challenges and solutions for the widespread adoption of HD-EMG 

 

As evidenced in this thesis and in the existing literature, HD-EMG can be successfully adopted 

to investigate the neuromuscular condition. Furthermore, its potential applications in screening and 

monitoring are promising. However, despite its clear benefits, the widespread adoption of HD-EMG 

for both research and non-research purposes remains a challenge (Felici & Del Vecchio, 2020). 

There are a number of factors limiting the use of HD-EMG, including: 

- Data Collection Complexity: HD-EMG requires precise electrode placement, both in position 

and orientation, in addition to requiring a good skin-electrode contact. This is time-

consuming and requires specialised training. 

- Signal Processing Complexity: The raw data generated by HD-EMG is of complex 

interpretation and sophisticated algorithms are necessary to extract the discharge activity 

of single MUs. 

- Equipment Cost and Availability: Acquiring the necessary hardware for HD-EMG can be 

expensive (20.000 to 50.000 €), limiting access for many researchers. 

- Interpretation Complexity: Interpreting HD-EMG data requires expertise in neuromuscular 

physiology and understanding of the underlying signal processing techniques. 

- Knowledge Dissemination: Resources for training and education, both for data collection and 

analysis are rarely available, impeding the approach of new users. 

 

To overcome these barriers, a collaborative approach across multiple disciplines is 

necessary, and it should encompass engineers to design user-friendly and cheaper machines for 

data collection, those developing the algorithms for the analysis, and those knowing the 

physiological principles required to interpret the results. 

In the third experimental chapter of this thesis, we aimed at lowering some of the barriers 

by developing the first (and currently unique) available tool for HD-EMG data analysis. This open 

source framework, named openhdemg, is oriented to a broad range of users, as previously 

described, and aims to address the limitations in signal processing complexity, interpretation 

complexity and knowledge dissemination. 

Indeed, openhdemg is not simply a software or tool to perform analysis tasks, as it represents 

a community-driven project. It provides a platform where individuals from various backgrounds can 

collaborate, share their expertise, and collectively advance the field. Additionally, the project’s 
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website will be enriched with authoritative tutorials aimed at providing guidance to those 

approaching the technique. 

This collaborative and inclusive approach is expected to contribute significantly to the wider 

adoption of HD-EMG, making it more accessible to researchers and professionals across different 

disciplines. 
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7. Future perspectives 

 

The studies presented in the experimental chapters provide novel insights on the neural 

condition in disuse and type 1 diabetes, expanding on the available literature. However, they also 

open to more research questions and highlight the necessity of a better characterisation of the 

studied conditions. In this final section, I will present some hypothetical or planned extensions to 

the presented projects and the associated research hypothesis. 

Furthermore, an open-source community project is, by definition, a long-term activity with 

expected future developments. As the project grows and collaborations increase, we expect 

evolutions and advancements. Some of these anticipated developments are also discussed in this 

final section. 

 

7.1. Muscle disuse 

 

We demonstrated that 10 days of unilateral lower limb suspension induce a noticeable 

reduction in muscle force production and MUs DR in young adult males during isometric submaximal 

contractions. At the same time, we also demonstrated that the neural consequences were specific 

for lower-threshold motoneurons. Furthermore, we also demonstrated that an active recovery 

period, lasting twice as much as the disuse period, is necessary to recover from the disuse-induced 

impairments. 

In light of this, many questions and considerations arise: 

- What happens with longer duration of disuse? 

- What happens if more or less severe models of disuse are adopted? 

- What would be the manifestation of the neural impairment in different types of 

contractions? 

- Could we observe differences between males and females? 

- How would older individuals respond compared to younger ones? 

- How would all these variables and the type of exercise affect the recovery period? 

 

Although we observed a preferential impairment of 10 days of disuse on lower-threshold 

motoneurons, it is unknown whether this response will be preserved during longer disuse periods 

or with more severe models, such as complete limb immobilisation. Therefore, this aspect will 

benefit from a direct assessment. Looking at literature, we will be facing with very limited evidence 
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on neural adaptations to disuse (Duchateau & Hainaut, 1990; Seki et al., 2001, 2007), although one 

study suggests that the preferential degeneration of lower-threshold MUs is present also after 3 

weeks of cast immobilisation on hand muscles (Duchateau & Hainaut, 1990). Additionally, if we look 

at the more extensive literature on molecular and structural changes after disuse, we could expect 

this finding to remain valid, considering the studies suggesting a preferential degeneration of slower 

muscle fibres in response to different disuse models and duration (Appell, 1990; Ohira et al., 2002; 

Widrick et al., 2002) and even to complete muscle denervation (e.g., after spinal cord injury) (Ciciliot 

et al., 2013). 

For what concerns the different types of contraction that can be performed during the 

neuromuscular assessment, we could expect contrasting findings when applied to different disuse 

models or duration. For example, it has been demonstrated that the changes in rate of force 

development after disuse do not closely match those in muscle force, whit the changes in rate of 

force development that might manifest at later stages, or even not manifest at all (Campbell et al., 

2019). Additionally, biological studies demonstrated that bed rest induces a greater reduction in 

fibres’ maximum shortening velocity compared to limb suspension (Reggiani, 2015). Overall, the 

available literature suggests that faster or slower types of contraction, such as trapezoidal or 

explosive, might detect different adaptations to disuse. 

Regarding sex differences, we have no evidence of how males and females respond to disuse 

for what concerns neural control, and we also know very little about the physiological differences 

in neuromuscular recruitment strategies that seem to be present between males and females (Guo 

et al., 2022; Lulic-Kuryllo & Inglis, 2022). Therefore, studies aimed at investigating the different 

neuromuscular response to disuse between males and females are needed. Additionally, in line with 

our approach to other parameters, it could be helpful to consider the existing literature on sex 

differences in molecular adaptations to disuse (Rosa-Caldwell & Greene, 2019), which suggests that 

a noticeable difference on the impact of disuse in males and females should be expected, with 

females that appear to be more susceptible to disuse. 

Aging has been associated with increased susceptibility to disuse-related effects 

(Mahmassani et al., 2019), as well as with a reduced capacity to activate the muscle (i.e., reduced 

activation capacity) (Suetta et al., 2009). Consequently, we could expect that neural degeneration 

may be more pronounced in older individuals, although possibly following a similar trajectory to 

that observed in younger individuals. 
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Lastly, the time required for recovery from disuse consequences may be greatly influenced 

by exercise parameters (i.e., type, duration, intensity, and frequency), by the duration of disuse 

(with longer disuse likely requiring extended recovery) (Nunes et al., 2022), and the age of 

participants (Suetta et al., 2009). Indeed, older participants may require more time to recover and 

may not fully regain their previous performance capacity (Hvid et al., 2014; Rejc et al., 2018). 

Therefore, there is a broad range of recovery protocols that could be designed and that have not 

been tested yet. For example, these protocols might aim at obtaining the best results when applied 

to different disuse models, to disuse periods of different duration, and for different populations. 

 

7.2. Type 1 diabetes 

 

Type 1 diabetes is a chronic disease which consequences are closely related to the quality of 

glycaemic control and the duration of the diseases (Pelletier et al., 2012). Indeed, poor glycaemic 

control and disease duration are associated with an early onset of comorbidities and complications 

(Nathan et al., 1993; Daneman, 2006). Consequently, it is plausible to believe that these above-

mentioned factors, and age, may have a significant impact on the development of neuromuscular 

problems. 

Our study showed, for the first time, that young people living with type 1 diabetes, with good 

fitness level, glycaemic control, and no clinical manifestation of neuropathy present different 

strategies of neural control compared to a matched healthy control group. This basic, but still novel 

finding highlights the importance of gaining a more comprehensive understanding of the neural 

condition in type 1 diabetes, and to become aware of how the aforementioned factors affect the 

progression of the disease from a neural perspective. 

In light of this, many questions and considerations arise. In particular, how do age, diabetes 

duration, and glycaemic control influence the progression of neural degeneration in type 1 

diabetes? 

We could hypothesise that age, diabetes duration, and glycaemic control are interconnected 

factors that negatively impact the progression of neural degeneration in type 1 diabetes (Daneman, 

2006). Also according to the available literature on the consequences of these factors on muscle 

health (Monaco et al., 2021), we expect that older individuals with longer diabetes durations and 

poorer glycaemic control will exhibit more pronounced neural degeneration. 
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Building upon the previous hypothesis, we expect that neural degeneration in type 1 

diabetes will not remain limited to a mild manifestation but will extend to functional and structural 

alterations. Specifically, we suggest that individuals with more advanced neural degeneration will 

experience reduced muscle force and mass. 

If people with type 1 diabetes present various levels of neural degeneration across their 

lifespan and based on the quality of the management of the condition, it is also reasonable to 

hypothesise that that individuals with type 1 diabetes may exhibit blunted neural adaptations to 

exercise, as previously demonstrated for functional adaptations (Minnock et al., 2022), with greater 

differences in the older cohort. 

Finally, we postulate that males and females with type 1 diabetes may exhibit different 

responses to neural degeneration or experience varying magnitudes of manifestation, as previously 

demonstrated at muscle level (Monaco et al., 2021; Dial et al., 2021). Therefore, it would be of 

interest to examine whether sex-based differences in neural degeneration, and responses to 

exercise interventions exist in the context of type 1 diabetes. 

 

7.3. openhdemg 

 

Since the initial public release on July 2023, the openhdemg framework has been facing some 

challenges and obtained noticeable achievements. As for any community-based project, the 

greatest challenge is to gather people with similar or complementary expertise to contribute 

together to the development of new functionalities, to improve the existing ones and to improve 

the overall usability and accessibility of the framework. 

A series of actions have been taken to achieve these goals, including: 

- Website redesign: we performed a comprehensive website redesign to simplify site URLs 

and create direct links that connect users between the documentation and the source code. 

These changes improved the online resource navigation, making it more user-friendly. 

- Tutorial articles: periodically, we publish tutorial articles aimed at guiding new users through 

the fundamental concepts necessary to take advantage of the library's capabilities. These 

tutorials aim to simplify the experience of newcomers to the library. 

- Graphical user interface section: we dedicated a website section to cover all the use cases 

of our graphical user interface. This guide enables new users to exploit the library's 

functionalities without requiring coding skills. 
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- Contributor recruitment: To expand our community of contributors, we've introduced a 

dedicated website section that outlines the project's roadmap and provides information on 

how individuals can get involved and contribute to the development of the openhdemg 

framework. 

 

All these actions simplified and favoured the approach of new users and increased the 

awareness of the public of what an open-source community-driven project means. Indeed, we 

received a number of feedback and suggestions that drove the second public release (September 

11, 2023) and that opened discussions on the future necessities of the project. 

Our outreach efforts, online and during international conferences, allowed us to establish 

connections with HD-EMG experts who have generously agreed to contribute to the ongoing 

development of the library's functionalities. Additionally, we are in the process of collaborating with 

these experts to create educational materials that will serve for the educational goals of the 

openhdemg framework in the near future. 

In conclusion, the future development of the openhdemg framework will be driven by the 

objective necessities of open-source projects and by the feedback of the users, with the main goal 

of favouring a collaborative and friendly environment. 
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Glossary 

 

In alphabetical order: 

 

All-or-none principle The concept that a neuron or muscle fibre either fully responds to 
a stimulus (fires) or does not respond at all. 

Afterhyperpolarization 
phase 

A brief period following an action potential during which the 
neuron's membrane potential becomes more negative than the 
resting potential. 

Baseline Noise The background noise present in the HD-EMG signal that is 
unrelated to MU action potentials. Accurate decomposition aims 
to distinguish MU spikes from this noise. 

Computational Tools These are software and algorithms used to process and analyse 
EMG data. Advances in computational tools have played a crucial 
role in the analysis of HD-EMG recordings, enabling the 
identification and mapping of MU action potentials. 

Contrast Function The contrast function is used in the iterative optimization 
procedure of independent component analysis. It's a 
mathematical function that guides the optimization algorithm to 
find the best estimates for the mixing matrix and original sources. 

Convolutive Blind-Source 
Separation 

A computational method used in HD-EMG decomposition to 
separate the mixed signals from multiple MUs. 

Convolutive Sphering Convolutive sphering is a signal processing technique used to 
transform signals so that they become more amenable to 
separation. In the context of HD-EMG decomposition, it involves 
extending and whitening the recorded signals to convert a 
convolutive model into an instantaneous one, making it easier to 
separate MU action potentials. 

Current flow The movement of electric charge (ions) through the neuron's 
membrane, which is responsible for changing the membrane 
potential. 

End-Plate Potential The depolarizing graded potential generated at the motor end 
plate in response to acetylcholine binding. It must reach a 
threshold for the muscle fibre to initiate an action potential. 

Excitatory post-synaptic 
potential 

The change in the membrane potential of a neuron that makes it 
more likely to generate an action potential. 

Extension In the context of HD-EMG signal processing, extension refers to 
incorporating delayed replicas of the original signals. This 
transformation helps convert the convolutive model into an 
instantaneous one. 

Filters Filters, in the context of HD-EMG decomposition, are sets of 
parameters or mathematical operations applied to the mixed 
signals during independent component analysis. These filters aim 
to produce statistically independent output signals, which are the 
estimated source signals representing MU activity. 
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Histochemical profiles The staining patterns of muscle fibres that can be used to identify 
their type and characteristics. 

Independent Component 
Analysis 

A mathematical technique used in HD-EMG decomposition to 
estimate the mixing matrix and original source signals. It aims to 
find filters that produce statistically independent output signals, 
which represent the estimated MU action potentials. 

Inhibitory post-synaptic 
potential 

The change in the membrane potential of a neuron that makes it 
less likely to generate an action potential. 

Innervation Zone The innervation zone is the area of a muscle where the 
motoneuron's axon enters to innervate the muscle fibres. It's a 
critical location for EMG electrode placement. 

Input Conductance The size of the motoneuron soma and dendritic branches 
determines input conductance. Smaller motoneurons have higher 
input resistance and are easier to recruit. 

Input resistance The ease with which a neuron's membrane potential changes in 
response to incoming electrical signals. 

Input-output function Describes the relationship between the magnitude of synaptic 
input and the discharge rate (frequency of action potentials) of 
motoneurons. 

Interference 
Electromyography Signal 

This is the recorded electrical activity of a contracting muscle 
obtained using HD-EMG. It's characterized by the superimposition 
of action potentials from multiple MUs and is influenced by the 
volume conductor and muscle fibre geometry. 

Ion channels Proteins in a neuron's membrane that control the flow of ions 
(e.g., sodium, potassium, calcium) in and out of the cell. 

Ionotropic synaptic 
channels 

Ligand-gated channels that mediate synaptic transmission by 
responding to neurotransmitter binding. 

Leak channels Ion channels that allow the passage of ions, primarily potassium, 
and regulate the resting potential. 

Man-Machine Interface Man-machine interface refers to technologies or systems that 
allow direct communication or interaction between a human and 
a machine. In this context, HD-EMG can be used as an interface 
for controlling machines or devices based on muscle signals. 

Mixing Matrix In the context of independent component analysis (ICA) and 
source separation, the mixing matrix is a mathematical matrix 
that describes how the original source signals (in this case, MU 
action potentials) are linearly combined to create the observed 
mixed signals (recorded HD-EMG signals). The goal of ICA is to 
estimate this matrix, allowing the separation of the original 
sources. 

Monoclonal antibodies Antibodies that target specific isoforms of proteins, used in 
muscle fibre typing. 

MU Decomposition This is the process of separating the combined EMG signal from 
multiple MUs into individual MU action potentials. It's a complex 
task that requires advanced algorithms. 

Muscle unit A group of muscle fibres innervated by a single motoneuron, 
functioning as a coordinated unit. 



153 
 

Pulse Train A series of discrete pulses or spikes in the decomposed HD-EMG 
signal that represent the firing times of individual MUs. 

Random synaptic noise Variability in the synaptic inputs to a motoneuron due to random 
factors. 

Resting potential The baseline electrical charge of a neuron's membrane when it's 
not transmitting signals 

Sigmoidal relationship A characteristic curve that describes the relationship between 
motoneuron discharge rate and muscle force, showing a 
threshold beyond which further increases in discharge rate do not 
result in higher contractile force. 

Spatial Resolution Spatial resolution refers to how finely the technique can detect 
and distinguish signals from different areas of the muscle surface. 

Synaptic input The current flow from dendrites to the soma, driving 
depolarisation and initiating action potentials. 

Voltage-gated channels Channels that open or close in response to changes in membrane 
potential and play a role in generating and propagating action 
potentials. 

Voltage-gated Na+ channels Channels that open in response to a depolarization of the 
membrane potential and are responsible for the rapid 
depolarization phase of an action potential. 

Volume Conductor This refers to the tissues between muscle fibres and the skin 
through which the EMG signal passes. It affects the filtering and 
propagation of muscle action potentials, leading to changes in 
their shape and synchrony. 

Whitening Whitening is a signal processing technique applied to the HD-
EMG signals. It serves to decorrelate the extended 
measurements, reducing the impact of volume conductor filtering 
and improving the spatial-temporal representation of the signals. 
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