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Abstract

Motivated by the pressing request of methods able to create prediction sets in a
general regression framework for a multivariate functional response and pushed by
new methodological advancements in non-parametric prediction for functional data,
we propose a set of conformal predictors that produce finite-sample either valid
or exact multivariate simultaneous prediction bands under the mild assumption of
exchangeable regression pairs. The fact that the prediction bands can be built around
any regression estimator and that can be easily found in closed form yields a very
widely usable method, which is fairly straightforward to implement. In addition,
we first introduce and then describe a specific conformal predictor that guarantees
an asymptotic result in terms of efficiency and inducing prediction bands able to
modulate their width based on the local behavior and magnitude of the functional
data. The method is investigated and analyzed through a simulation study and a
real-world application in the field of urban mobility.
Keywords: Functional data; Conformal Prediction; Prediction band; Exact prediction
set; Distribution-free prediction set; Finite-sample prediction set

1 Introduction

Functional Data Analysis (FDA, Ramsay and Silverman 2005) is now a fairly
established, but still very ebullient field of statistics whose goal is to develop theory
and methods to treat datasets composed of smooth functions. Since the first seminal
paper by Jim O. Ramsay (Ramsay 1982), many standard multivariate tools have been
translated to the functional realm: among those Functional Principal Component
Analysis (Ramsay and Silverman 2005, Chapter 10), Functional Linear Regression
(Ramsay and Silverman 2005, Chapter 12) and functional boxplots (Sun and Genton
2011), just to give a very partial and non-exhaustive list.

A crucial challenge in FDA is the issue of uncertainty quantification in prediction.
Intuitively, we are interested in creating prediction sets, namely subsets of the sample
space including a new functional observation with a certain nominal confidence level
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1− α. Only very recent works in FDA provide some knowledge into this theoretical
(but yet full of applied repercussions) issue, all of them focusing on the univariate
setting (i.e. a framework in which the functional observation consists of a single real-
valued function defined over a domain). These approaches can be classified in three
groups: the first one consists of works principally based on parametric bootstrapping
techniques (e.g., Degras 2011, Cao et al. 2012), the second one is characterized by the
application of dimensionality reduction techniques to manage the naturally infinite
dimensionality (e.g., Hyndman and Shahid Ullah 2007, Antoniadis et al. 2016). These
first two groups carry obvious drawbacks since they are either based on not easily
provable distributional assumptions and/or on asymptotic results. In addition, the
first class of approaches is computationally demanding, whereas the second one relies
on the approximations induced by basis projection. The third group is based on
a novel approach to forecasting in the framework of Conformal Prediction (CP)
(Diquigiovanni et al. 2021). This approach is able to output either exact or valid
prediction bands under minimal distributional assumptions and in an efficient way,
thus bypassing the methodological shortcomings identified in the previous literature.
However, this is done in the setting of univariate i.i.d. functional data. The objective
of the present work is to build from that contribution by extending the method to
multivariate functional data and to a regressive framework.

Formally, we will consider independent and identically distributed regression
pairs Z1, . . . ,Zn ∼ P , with Zi = (X i,Y i) consisting of a multivariate functional
response variable Y i and a set of (not necessarily scalar) covariates X i ∀i = 1, . . . , n.
Let Y i = (Yi1, Yi2, . . . , Yip) be a multivariate random function such that its j-th
component Yij (j = 1, . . . , p) is a random function taking values in L∞(Tj), which
is the family of limited functions y : Tj → R with Tj closed and bounded subset of
Rdj , dj ∈ N>0. For the sake of brevity, later in the discussion we will indicate the
space L∞(T1)× · · · × L∞(Tp) in which Y i takes values as

∏p
j=1 L

∞(Tj). Note that
the framework considered is extremely wide since both the domain Tj and the image
of Yij are allowed to be very different when j varies. X i = (Xi1, Xi2, . . . , Xip) is a
set of covariates such that its element related to the j-th component Xij (which is a
set of covariates itself) belongs to a measurable space and can be very general: for
example, Xij can be the usual vector of predictors, or it can be a set of functional
covariates allowing for a functional-on-functional regression model, or it can contain
both scalar and functional predictors. Let µj(xij) = E(Yij|Xij = xij) denote the
regression function for the j-th component of the i-th observation, and consistently
with this notation let us define the scalar value [µj(xij)](t) = E(Yij(t)|Xij = xij).

The aim of the article is to build a procedure able to output exact (or at least
valid) multivariate functional prediction bands under no assumptions on P and
µ1(·), . . . , µp(·) other than i.i.d. regression pairs. A multivariate functional prediction
band is a specific kind of prediction set that can be defined, consistently with the
well-known definition of univariate functional prediction band (López-Pintado and
Romo 2009, Degras 2017), as{

y = (y1, . . . , yp) ∈
p∏
j=1

L∞(Tj) : yj(t) ∈ Bj(t), ∀j ∈ 1, . . . , p, ∀t ∈ Tj,

}
with Bj(t) interval ∀j, t. Prediction bands are so relevant in the functional set
prediction framework due to their conceptual simplicity and because they can be
plotted in parallel coordinates (Inselberg 1985). A detailed discussion of the topic
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is provided by Diquigiovanni et al. (2021). For the sake of simplicity, later in the
discussion the term prediction band will be used to indicate a multivariate functional
prediction band, unless otherwise specified.

The terms valid prediction set and exact prediction set are instead used to indicate
the coverage ensured by a prediction set.

Valid prediction set Consistently with the notation of Lei et al. (2018), a valid
prediction set for Zn+1 = (Xn+1,Y n+1) - which is independent from and identically
distributed to Z1, . . . ,Zn - is the set Cn,1−α based on Z1, . . . ,Zn such that

P (Y n+1 ∈ Cn,1−α (Xn+1)) ≥ 1− α (1)

for any significance level α ∈ (0, 1), with Cn,1−α (x) = {y ∈
∏p

j=1 L
∞(Tj) : (x,y) ∈

Cn,1−α}

Exact prediction set An exact prediction set for Zn+1 = (Xn+1,Y n+1) - which
is independent from and identically distributed to Z1, . . . ,Zn - is the set Cn,1−α
based on Z1, . . . ,Zn such that

P (Y n+1 ∈ Cn,1−α (Xn+1)) = 1− α (2)

for any significance level α ∈ (0, 1) and with Cn,1−α (x) defined as above.
It is important to notice that the left side of Inequality (1) and of Equality (2)

refers to the unconditional coverage reached by the prediction set, i.e. the probability
is taken over the i.i.d. draws Z1, . . . ,Zn+1. In view of this, later in the discussion
the term coverage will be used to indicate the unconditional coverage and the term
empirical coverage will be used to indicate an estimate of the coverage.

The article is organized as follows: in Section 2 we introduce the CP framework; in
Section 3 we present the method developed; in Section 4 we discuss three simulation
studies aimed at investigating different aspects of the method; in Section 5 we apply
our method to a real-world application; in Section 6 we provide an overview of the
main findings and sketch directions of future research.

2 The Conformal Prediction Framework

Conformal Prediction is an innovative method to build either valid or exact prediction
sets under no assumptions other than exchangeable data (Vovk et al. 2005). Moreover,
the CP framework ensures that valid/exact prediction sets are obtained regardless
the sample size n (i.e. not only asymptotically), a fact that allows Conformal
Prediction to be used in an extremely wide range of different scenarios. In this
article we consider the Semi-Off-Line Inductive Conformal framework, also known
as Split Conformal (Papadopoulos et al. 2002), which represents a computationally
and methodologically convenient alternative to the original Transductive framework.
Split Conformal approach is characterized by two sub-frameworks: Non-Smoothed
Split Conformal framework and Smoothed Split Conformal framework 1. The two
procedures are defined below.

1since the term ‘Split Conformal’ itself is used to indicate ‘Non-Smoothed Split Conformal’,
later in the discussion we will use the following two terms to indicate the two sub-frameworks: Split
Conformal, Smoothed Split Conformal
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Split Conformal method Let z1, . . . ,zn be realizations of Z1, . . . ,Zn, and let
{1, . . . , n} be randomly splitted into two sets I1, I2 of size m and l respectively
such that n = m + l, m, l ∈ N>0. Let us also define the set {zh : h ∈ I1} as
training set, the set {zd : d ∈ I2} as calibration set and the nonconformity measure,
which represents the key aspect of Conformal Prediction, as any measurable function
A({zh : h ∈ I1}, z) taking values in R̄. The Split Conformal approach defines the

prediction set for Y n+1 as Cn,1−α (xn+1) :=
{
y ∈

∏p
j=1 L

∞(Tj) : δy > α
}

, with

δy :=
|{d ∈ I2 ∪ {n+ 1} : Rd ≥ Rn+1}|

l + 1
,

and nonconformity scores Rd := A({zh : h ∈ I1}, zd) for d ∈ I2, Rn+1 := A({zh :
h ∈ I1}, (xn+1,y)). Intuitively, nonconformity score Rd (Rn+1 respectively) scores
how different zd ((xn+1,y) respectively) is from the training set, and so δy indicates
the conformity of (xn+1,y) to the training set compared to the conformity of the
elements of the calibration set to the same training set (i.e. it is the p-value of
(xn+1,y), Vovk et al. 2005).

The Split Conformal method is particulary appealing since it outputs - by
construction - finite-sample, valid prediction sets by only assuming exchangeable
data. In fact, Diquigiovanni et al. (2021) show that, under the mild assumption that
{Rd : d ∈ I2} have a continuous joint distribution (an assumption that we will made
hereafter), the coverage ensured by Split Conformal prediction set is equal to an

easy-to-compute fixed quantity, i.e. P (Y n+1 ∈ Cn,1−α (Xn+1)) = 1− b(l+1)αc
l+1

, and it
is not only greater than or equal to 1− α. As a consequence, exact (and not only
valid) prediction sets are automatically obtained whenever b(l + 1)αc = (l + 1)α.

Smoothed Split Conformal method Moving from the Split Conformal frame-
work, let us consider a single realization of a uniform random variable in [0, 1], called
τn+1. The Smoothed Split Conformal approach defines the prediction set for Y n+1

as Cn,1−α,τn+1 (xn+1) :=
{
y ∈

∏p
j=1 L

∞(Tj) : δy,τn+1 > α
}

, with

δy,τn+1 :=
|{d ∈ I2 : Rd > Rn+1}|+ τn+1 |{d ∈ I2 ∪ {n+ 1} : Rd = Rn+1}|

l + 1
.

By introducing the element of randomization τn+1, the Smoothed Split Conformal
method outputs finite-sample, exact prediction sets by only assuming exchangeable
data (Vovk et al. 2005).

In order to avoid redundancy, later in the discussion we will mainly focus on Split
Conformal method, but the generalization of the main findings of this article to the
Smoothed Split Conformal method is reported in Appendix A.

3 Proposed Methodology

3.1 Nonconformity Measure

Moving from Diquigiovanni et al. (2021), we propose the following nonconformity
measure and nonconformity scores:

As({zh : h ∈ I1}, z̃) = sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ ỹj(t)− [µ̂jI1(x̃j)](t)

sj,I1(t)

∣∣∣∣∣
)

(3)
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Rs
d = sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ydj(t)− [µ̂jI1(xdj)](t)

sj,I1(t)

∣∣∣∣∣
)
, d ∈ I2 (4)

Rs
n+1 = sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣yj(t)− [µ̂jI1(xn+1,j)](t)

sj,I1(t)

∣∣∣∣∣
)

with z̃ = (x̃, ỹ), ỹ = (ỹ1, . . . , ỹp), x̃ = (x̃1, . . . , x̃p), yj the j-th component of y,
[µ̂jI1(xdj)](t) estimate of [µj(xdj)](t) based on {zh : h ∈ I1}, sI1 = {sj,I1}

p
j=1 set of

modulation functions with sj,I1 : Tj → R>0 a (strictly positive) function belonging to
L∞(Tj) based on {zh : h ∈ I1} called modulation function, and with the superscript
s introduced in order to emphasize the role of sI1 . It is fundamental to notice that no
specific assumptions are made on the estimators [µ̂1

I1(·)](t), . . . , [µ̂
p
I1(·)](t) (considered

in this case as random variables instead of observed values) since the Conformal
framework only requires the nonconformity scores Rs

d and Rs
n+1 to be computed on

the basis of the observations belonging to the training set and on zd and (xn+1,y)
respectively. As a consequence, finite-sample, either valid or exact prediction sets
are obtained regardless the choice of the regression estimators, allowing Conformal
Inference to be satisfactorily performed also when the underlying model is completely
misspecified.

By considering the Split Conformal method and the nonconformity measure (3),
if α ∈ (0, 1/(l + 1)) then Csn,1−α(xn+1) =

∏p
j=1 L

∞(Tj) since δsy is always greater or
equal than 1/(l + 1). If α ∈ [1/(l + 1), 1) (representing the scenario on which we will
focus on hereafter), then

Csn,1−α(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ks · sj,I1(t),

[µ̂jI1(xn+1,j)](t) + ks · sj,I1(t)] (5)

∀j ∈ {1, . . . , p}, ∀t ∈ Tj
}
,

with ks the d(l+1)(1−α)eth smallest value in the set {Rs
d : d ∈ I2}. The computation

needed to find analytically Csn,1−α(xn+1) is provided in Appendix A.1, together with
the definition of Csn,1−α,τn+1

(xn+1), i.e. the Smoothed Split Conformal prediction set
induced by nonconformity measure (3).

From a practical point of view, first of all the observed sample z1, . . . ,zn is used
to compute ks and s1,I1 , . . . , sp,I1 , and after that the prediction set is built around
the regression estimates [µ̂jI1(xn+1,j)](t), j ∈ {1, . . . , p}. Despite the fact that no

specific constraints on [µ̂jI1(·)](t) are required by the Split Conformal framework, the
choice of the regression estimators is fundamental in providing small prediction sets,
a key topic that will be investigated in Section 3.2: indeed, intuitively one is justified
in expecting prediction sets to be smaller when improved regression estimators are
chosen since they typically provide smaller nonconformity scores and so a smaller
value of ks (Lei et al. 2018). However, later in the discussion (and specifically in
Section 4 and Section 5) we will always consider the regression estimators as given by
the application at hand: in fact, our aim is to construct valid/exact prediction sets
in general and arbitrary prediction scenarios and not only in specific, well informed
frameworks.
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Under the exchangeability assumption of the regression pairs and regardless the
choice of sI1 and [µ̂jI1(·)](t), the prediction sets induced by nonconformity measure
(3)

• are either finite-sample valid (Split Conformal method) or finite-sample exact
(Smoothed Split Conformal method) for any distribution P ;

• are in closed form;

• are bands;

• are scalable 2.

Note that nonconformity measure (3) ensures multivariate simultaneous bands,
i.e. bands guaranteeing the desired coverage globally (i.e. for the multivariate
random function Y n+1). Proper multivariate simultaneous coverage represents
a leap forward with respect to univariate simultaneous coverage (i.e. coverage
holding for Yn+1,j) and pointwise coverage (i.e. coverage holding for Yn+1,j(t)).
Conformal prediction bands for multivariate functional data (5) can be proven
to be a superset of the multivariate functional bands found by concatenating the
p univariate prediction bands obtained by applying the nonconformity measure
supt∈Tj

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣ to the p components separately (Diquigiovanni
et al. 2021), and also a superset of the multivariate functional bands found by
concatenating the pointwise prediction intervals obtained by applying the pointwise
nonconformity measure

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣ ∀j ∈ {1, . . . , p}, ∀t ∈ Tj (see
Appendix A.1 for the proof). In other words, multivariate functional simultaneous
bands (5) ensure also both univariate simultaneous and pointwise validity, while the
converse is not guaranteed. The topic is further addressed by means of a simulation
study in Section 4.2.

Alongside the choice to base the nonconformity measure on the supremum metric,
the set sI1 of (strictly positive) modulation functions sj,I1 represents the core of our
approach. First of all, one can notice that prediction bands induced by {sj,I1}

p
j=1

and by {λ · sj,I1}
p
j=1 coincide ∀λ ∈ R>0 (see Appendix A.1 for the proof), and so later

in the discussion we will consider, for any equivalence class, the set of modulation
functions such that

∑p
j=1

∫
Tj sj,I1(t)dt = 1. In the next Section, we detail the role

of sI1 by highlighting its impact on the efficiency (i.e. the size) of the prediction
bands and we propose a specific set of modulation functions able to guarantee an
asymptotic result in terms of efficiency.

3.2 The Choice of the Set of Modulation Functions

Intuitively, in addition to the appealing properties presented in Section 3.1, a
prediction band should modulate its width over T1, . . . , Tp according to the local
variability of the data. Specifically, the aim is to obtain prediction bands able
to properly manage the fact that: focusing on the j-th component, the pointwise
evaluations of functional data may be characterized by highly different variability

2Indeed, conditional on the computational cost required to calculate the regression estimates
and the set of modulation functions (a set that can be chosen to be computationally parsimonious),
and by keeping the ratio l/n fixed when n grows, the time required to compute ks (and therefore
to output the prediction set) increases linearly with l, and so linearly with n
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Figure 1. Split Conformal multivariate prediction band for Y 201 = (Y201,1, Y201,2)
obtained by considering {s0

j}2
j=1 (at the top) and {sσj,I1}

2
j=1 (at the bottom) as set of

modulation functions. The dashed yellow lines represent the regression estimates.
α = 0.25, n = 200, m = l = 100.

when t ∈ Tj varies; the p components may be characterized by different magnitude.
In order to achieve these two purposes, a careful choice of a data-driven set of
modulation functions sI1 is recommended. In order to clarify this concept, let us
consider the following example: let p = 2 with y1, . . . ,y200 independent realizations
of Y 1, . . . ,Y 200 such that Yi1(t) = β1(t) + εi1(t) and Yi2(t) = β2(t) + εi2(t) (i =
1, . . . , 200, T1 = T2 = [0, 1]), with the systematic components defined simply as
β1(t) = 1, β2(t) = 0 ∀t ∈ [0, 1] and the independent functional error components
{εi1}200

i=1 ({εi2}200
i=1 respectively) obtained by means of a B-spline basis expansion

(Fourier basis expansion respectively) with normally distributed random vectors as
coefficients. In full generality, we consider [µ̂jI1(xn+1,j)](t) = β̂j(t), j = 1, 2, with

β̂1(t), β̂2(t) the estimates (based on {zh : h ∈ I1}) obtained by fitting the two
concurrent functional-on-functional linear models (Ramsay and Silverman 2005).
This example represents the simplest, almost trivial regression scenario which allows
to - hopefully - easily understand the crucial role of sI1 , but the discussion presented
hereafter naturally holds also when decidedly more complex regression functions
and regression estimators are taken into account. Figure 1 shows the multivariate
prediction band for Y 201 = (Y201,1, Y201,2) obtained by considering two different sets of
modulation functions: the two panels at the top of the Figure 1 show the multivariate
prediction band obtained by not modulating (i.e. by setting s1,I1(t) = s2,I1(t) =
1/
∑2

j=1 |Tj| ∝ 1 ∀t ∈ [0, 1]), whereas the two panels at the bottom of the same
Figure show the prediction band obtained by considering the two standard deviation
functions of the functional residuals as modulation functions (after normalization
in order to meet the condition

∑2
j=1

∫
Tj sj,I1(t)dt = 1). In order to distinguish the

two sets of modulation functions, later in the discussion we will denote the first
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set by s0 := {s0
j}
p
j=1 (whose notation excludes the subscript I1 to remark its lack

of dependence on the training set) and the second one by sσI1 := {sσj,I1}
p
j=1. The

prediction sets are obtained by considering the Split Conformal framework and by
setting α = 0.25, m = l = 100. Focusing on the two panels at the top of Figure
1, it is possible to notice that the two univariate prediction bands are far from
desirable: specifically, the univariate prediction band related to Y201,1 is large along
all the domain T1, whereas the one related to Y201,2 contains almost all the pointwise
evaluations of the functional data in the low-variance parts of T2 but excludes many
pointwise evaluations in the other, high-variance parts of the domain. In this specific
case, the absence of a modulation process does not allow to take into account: first
of all, the different variability of the data over T1 and T2 respectively; secondly,
the different magnitude that characterizes the two components. In so doing, one is
justified in expecting that a procedure based on {s0

j}2
j=1, although able to output

a valid prediction band, may be of limited practical use in real applications. Vice
versa, the set of modulation functions {sσj,I1}

2
j=1 properly adapts the width of the

prediction band according to the local variability of functional data, allowing for a
meaningful, interpretable and useful prediction band.

Beyond these common-sense considerations, a criterion that is both reasonable and
well-established in Conformal Prediction to discriminate between procedures able to
guarantee validity is the minimization of the size of the prediction sets outputted (also
known, in the Conformal framework, as maximization of efficiency, Balasubramanian
et al. 2014): this choice is due to the fact that desirable prediction sets should include
subsets of the sample space where the probability mass is highly concentrated (Lei
et al. 2013). In the context of our article, the aim would be to find the nonconformity
measure As({zh : h ∈ I1}, ·) (and so, practically, the set of modulation functions
sI1) inducing the smallest prediction bands. The first, fundamental step in assessing
the size of a prediction band for multivariate functional data is the definition of
the concept of ‘size’, a nontrivial task if compared to the traditional univariate and
multivariate statistical settings. By generalizing the definition given in Diquigiovanni
et al. (2021) to the multivariate case, we define the size of a multivariate prediction
band as the sum of the p areas between the upper and lower bound of the p univariate
prediction bands:

Q(sI1) :=

p∑
j=1

∫
Tj

2 · ks · sj,I1(t)dt = 2 · ks. (6)

Since Q(sI1) is a random variable depending on Z1, . . . ,Zn, the task of finding
the set of modulation functions minimizing the risk functional E[Q(sI1)] is unfeasible
in the case of no assumptions on P . A simplification of such a complex task consists
of considering the quantity to be minimized ks(∝ Q(sI1)) as an observed value
depending on z1, . . . ,zn instead of on Z1, . . . ,Zn according to the empirical risk
minimization principle (Vapnik 1992). In so doing, the optimization problem is
certainly simplified, but its resolution still remains unfeasible due to the specific
structure of ks. Indeed, ks is a specific empirical quantile of {Rs

d : d ∈ I2}, and
Rs
d (see Equation (4)) depends by construction both on the training set through
{zh : h ∈ I1} and on the calibration set through zd. Since by construction the set
of modulation functions sI1 depends only on the training set (as its dependence on
the calibration set would imply not to obtain closed-form valid prediction bands),

8



no rule minimizing ks only by combining the elements of the training set (i.e. by
varying sI1) can be found for general z1, . . . ,zn.

In view of this, we propose an alternative, unconventional strategy to build a set
of modulation functions able to guarantee an asymptotic result in terms of efficiency.
Specifically, the purpose is to find a couple of sets of functions (s̄I1 , s̄

c
I1,I2) such that:

• s̄cI1,I2 := {s̄cj,I1,I2}
p
j=1 is a set of functions such that s̄cj,I1,I2 meets the definition

of modulation function, but depends also on the calibration set through {zd :
d ∈ I2}, ∀j ∈ {1, . . . , p}

• prediction bands obtained by using s̄cI1,I2 as set of modulation functions are
smaller than or equal to (in terms of Equation (6)) those induced by the set of
modulation functions s0 for every possible value of n and for every possible
observed sample z1, . . . ,zn

• s̄I1 = {s̄j,I1}
p
j=1 is a set of modulation functions such that s̄j,I1 is equal to

s̄cj,I1,I2 , but in which the dependence on {zd : d ∈ I2} is replaced by the
dependence on {zh : h ∈ I1} ∀j ∈ {1, . . . , p}

• s̄cj,I1,I2 and s̄j,I1 converge to the same function when m, l → +∞, ∀j ∈
{1, . . . , p}

In so doing, prediction bands induced by the set of modulation functions s̄I1
are characterized by all the appealing properties presented in Section 3.1 (including
validity) and are asymptotically not wider than those induced by s0 regardless the
specific sample z1, . . . ,zn. In order to find (s̄I1 , s̄

c
I1,I2) satisfying the aforementioned

conditions, let us consider the structure of ks: operationally, ks computes a summary
of the multivariate functional residual for every observation in the calibration set, and
selects the d(l+ 1)(1−α)eth smallest value among them. In particular: the summary
is naturally induced by the specific nonconformity measure used, which searches the
greatest value of the absolute value of the modulated multivariate functional residual
over the p domains T1, . . . , Tp; ks is not affected by the l − d(l + 1)(1− α)e greatest
values of {Rs

d : d ∈ I2}. In view of this, a proper candidate for s̄cI1,I2 should ignore
the elements of {zd : d ∈ I2} leading to the l − d(l + 1)(1− α)e greatest values of
{Rs

d : d ∈ I2} and should modulate data based on the most extreme value observed
∀t ∈ Tj, j ∈ {1, . . . , p}.

Therefore, the couple of sets of functions (s̄I1 , s̄
c
I1,I2) we propose - which represents

a generalization of the finding of Diquigiovanni et al. (2021) in the univariate case -
is defined below. Formally, the set of functions s̄cI1,I2 is such that

s̄cj,I1,I2(t) :=
maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt

∀ j = 1, . . . , p, t ∈ Tj with

H2 :=
{
d ∈ I2 : sup

j∈{1,...,p}

(
sup
t∈Tj
|ydj(t)− [µ̂jI1(xdj)](t)|

)
≤ k

}
and k = ks

0
/
∑p

j=1 |Tj| the d(l + 1)(1− α)eth smallest value in the set{
sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) : d ∈ I2

}
.
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For the sake of simplicity, we assumed maxd∈H2 |ydj(t) − [µ̂jI1(xdj)](t)| 6= 0 ∀j ∈
{1, . . . , p}, t ∈ Tj. If this condition does not hold for at least one couple (t, j) but
the condition

∑p
j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt 6= 0 still holds (the case in

which
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt = 0 represents a pathological case

of no practical interest), in order to have that s̄cj,I1,I2(t) > 0 ∀j = 1, . . . , p, t ∈ Tj it
is sufficient to add a small, positive value to s̄cj,I1,I2(t) and to normalize accordingly.

The set of modulation functions s̄I1 is such that

s̄j,I1(t) :=
maxh∈H1 |yhj(t)− [µ̂jI1(xhj)](t)|∑p

j=1

∫
Tj maxh∈H1 |yhj(t)− [µ̂jI1(xhj)](t)|dt

∀ j = 1, . . . , p, t ∈ Tj with H1 = I1 if d(m+ 1)(1− α)e > m, otherwise

H1 :=
{
h ∈ I1 : sup

j∈{1,...,p}

(
sup
t∈Tj
|yhj(t)− [µ̂jI1(xhj)](t)|

)
≤ γ

}
and γ the d(m+ 1)(1− α)eth smallest value in the set

{
sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣yhj(t)− [µ̂jI1(xhj)](t)
∣∣) : h ∈ I1

}
.

If ∃(t, j) such that maxh∈H1 |yhj(t)− [µ̂jI1(xhj)](t)| = 0, the adjustment used for
s̄cj,I1,I2 is implemented.

Specifically, the fact that the set of modulation functions s̄I1 depends on α
(through γ) allows for a procedure able to modulate data according to the specific
value 1− α, i.e. the desired nominal coverage. In addition, such an unconventional
set of modulation functions is particularly useful when functional residuals show a
non-standard behavior (e.g. there are outliers). The following two theorems show
that (s̄I1 , s̄

c
I1,I2) satisfies the aforementioned conditions.

Theorem 1. Let m/n = θ with 0 < θ < 1 and let Var
[
[µ̂jI1(Xij)](t)

]
→ 0 ∀i ∈

{1, . . . , n}, ∀t ∈ Tj , ∀j ∈ {1, . . . , p} when m→ +∞. Then s̄cj,I1,I2 and s̄j,I1 converge
to the same function ∀j ∈ {1, . . . , p} when n→ +∞.

Theorem 2. If at least one of the functions {s̄cj,I1,I2(t)}
p
j=1 is not constant almost

everywhere over its domain, then Q(s0) > Q(s̄cI1,I2). Otherwise, Q(s0) = Q(s̄cI1,I2).

See Appendix A.2 for both proofs, together with the generalization of (s̄I1 , s̄
c
I1,I2),

Theorem 1 and Theorem 2 to the Smoothed Split Conformal framework. Due to the
very mild conditions required by the two theorems to hold, the set of modulation
functions s̄I1 can be used in many general frameworks and provides a new, we believe
appealing data-driven alternative to other solutions (e.g. sσI1). In the next Section,
the set of modulation functions s̄I1 is compared to other sets of modulation functions
in different simulated scenarios.

4 Simulation Study

In this Section we perform three simulation studies aimed at evaluating different
practical aspects of the method presented in Section 3. Since, to our knowledge, there
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are no methods dealing with building prediction bands in a multivariate functional
setting, the simulations will focus on exploring the empirical properties of our
method. In Section 4.1, the empirical coverage provided by the prediction bands is
evaluated in different scenarios, considering different sample sizes and different kinds
of model misspecification. In Section 4.2, we compare the multivariate prediction
bands obtained by the method presented in this article with those obtained by
concatenating the p univariate prediction bands induced by the Conformal approach
of Diquigiovanni et al. (2021). Finally, in Section 4.3, the three sets of modulation
functions presented in Section 3 ({s0

j}
p
j=1, {sσj,I1}

p
j=1, {s̄j,I1}

p
j=1) are compared in terms

of efficiency in order to highlight their strengths and weaknesses.
In all simulation studies, some quantities are kept fixed: p = 2, T1 = T2 = [0, 1],

α = 0.10. Three possible sample sizes are taken into account: n = 20, n = 200, n =
2000. We focus on the Split Conformal method and since the coverage reached by
Split Conformal prediction set is 1 − b(l + 1)αc/(l + 1) (see Section 2), the size
of the calibration set is set equal to l = 9, l = 99, l = 999 respectively in order to
obtain 1− b(l + 1)αc/(l + 1) = 1− α and consequently to facilitate the readability
of the results. A possible alternative would be to consider a different value of l
(e.g. n/2) and to evaluate the empirical coverage taking into account the coverage
1− b(l + 1)αc/(l + 1). Each combination of simulation study, scenario, sample size,
regression estimators and set of modulation functions is evaluated based on N = 5000
replications. Specifically, for each replication, a sample z1, . . . ,zn+1 is generated
and n randomly chosen elements are assigned to the training and calibration sets,
whereas the remaining element is considered as the one we aim to predict (however,
for the sake of simplicity, hereafter we will simply define the two sets as {zi}ni=1 and
zn+1). All simulations are computed using the R Programming Language (R Core
Team 2020).

4.1 Simulation Study 1: Coverage

The aim of the simulation study in this Section is to evaluate the empirical coverage
(computed as the fraction of the N = 5000 replications in which yn+1 belongs to
Cn,1−α (xn+1)) reached by the method presented in Section 3 in different scenarios
and for different values of n.

Specifically, the simulation study consists of two scenarios. In the first one, the
systematic component generating data is linear and, in addition to the case in which
the model is correctly specified, two different kinds of model misspecification are taken
into account: misspecification due to omitted relevant variable and misspecification
due to inclusion of irrelevant variable (see Rao 1971). In the second scenario, a third
kind of model misspecification is evaluated, i.e. functional form misspecification (see
Wooldridge 1994). The two scenarios are formally defined as follows:

• Scenario 1

Yi1(t) =β0(t) + β1(t)wi + εi1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi2(t) =β0(t) + β2(t)w2
i + εi2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with wi = i/(n + 1), β0(t), β1(t), β2(t) generated by means of a B-spline ba-
sis expansion of order four, with six basis functions, equally spaced knots,

11



Scenario 1
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 0.894[0.886,0.903] 0.896[0.888,0.905] 0.904[0.896,0.912]
n = 200 0.902[0.894,0.910] 0.894[0.885,0.903] 0.901[0.893,0.909]
n = 2000 0.899[0.890,0.907] 0.906[0.898,0.914] 0.902[0.894,0.911]

Scenario 2
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 0.907[0.899,0.915] 0.899[0.890,0.907] 0.904[0.896,0.913]
n = 200 0.899[0.891,0.907] 0.898[0.890,0.907] 0.901[0.893,0.909]
n = 2000 0.893[0.884,0.901] 0.893[0.884,0.901] 0.899[0.891,0.908]

Table 1. Simulation study 1: empirical coverage and related 95% confidence interval
in brackets for each combination of scenario, sample size and set of covariates.
α = 0.10, set of modulation functions {sσj,I1}

2
j=1.

coefficients generated independently by a standard normal random variable
and εi1(t), εi2(t) independent functional errors obtained by means of the same
B-spline basis expansion with independent standard normal random variables
as coefficients. It is important to notice that regression coefficient functions
β0, β1, β2 are generated only once, i.e. they do not vary between the N = 5000
replications.

• Scenario 2

Yi1(t) = exp(β0(t) + β1(t)wi + εi1(t)), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi2(t) = exp(β0(t) + β2(t)w2
i + εi2(t)), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with wi, β0(t), β1(t), β2(t), εi1(t), εi2(t) defined as in Scenario 1.

Both scenarios are evaluated considering the following three regression estimates:

• Set of Covariates 1. [µ̂1
I1(xi,1 = {1})](t) = [µ̂2

I1(xi,2 = {1})](t) = β̂0(t)

• Set of Covariates 2. [µ̂1
I1(xi,1 = {1, wi})](t) = β̂0(t) + β̂1(t)wi and [µ̂2

I1(xi,2 =

{1, w2
i })](t) = β̂0(t) + β̂2(t)w2

i

• Set of Covariates 3. [µ̂1
I1(xi,1 = {1, wi, w2

i })](t) = [µ̂2
I1(xi,2 = {1, wi, w2

i })](t) =

β̂0(t) + β̂1(t)wi + β̂2(t)w2
i

with β̂0(t), β̂1(t), β̂2(t) the estimates (based on {zh : h ∈ I1}) obtained by fitting each
time the corresponding functional-on-scalar linear model. Focusing on Scenario 1,
‘Set of Covariates 1’ represents the omitted relevant variable case, ‘Set of Covariates
2’ represents the case in which the model is correctly specified and ‘Set of Covariates
3’ represents the case in which an irrelevant variable is included, whereas Scenario 2
is characterized by functional form misspecification.

Table 1 shows the empirical coverage p̂, as well as the 95% confidence interval
[p̂± 1.96

√
p̂(1− p̂)/N ], obtained for each combination of scenario, sample size and

set of covariates considering the set of modulation functions {sσj,I1}
2
j=1. The results
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are decidedly satisfactory, as the empirical coverages are really close to 1− α = 0.90
and the observed confidence intervals always include the desired coverage regardless
the specific combination of scenario, sample size and set of covariates considered.
Specifically, the method presented in Section 3 is able to guarantee the desired
coverage also when the sample size is small and the model misspecified.

4.2 Simulation Study 2: Univariate and Multivariate Pre-
diction Bands

The simulation study of this Section is aimed at comparing the Multivariate Prediction
Bands outputted by the method presented in this article (MPB method) to the bands
obtained by Concatenating the p Univariate prediction Bands provided by the
Conformal approach presented in Diquigiovanni et al. (2021) (CUB method, see
Section 3.1 for further details). We focus on two aspects: empirical coverage and
efficiency. The empirical coverage is evaluated as described in Section 4.1, whereas
for each of the N = 5000 replications the size of the observed prediction band
Cn,1−α (xn+1) is defined as the average value Q(·)/2 (see Equation (6)).

Two different scenarios are considered: in the first one, the two components
Yi,1, Yi,2 share the systematic component, but they are characterized by independent
error terms; in the second one, the two components both share the systematic
component and the error term in the first half of the domain. In so doing, one is
justified in expecting the method presented in this article not to be affected by the
different specification of the error terms in terms of coverage, while the CUB method
to provide different empirical coverages according to the scenario considered. The
two scenarios are:

• Scenario 1

Yi1(t) =β0(t) + β1(t)wi + β2(t)w2
i + εi1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi2(t) =β0(t) + β1(t)wi + β2(t)w2
i + εi2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with wi, β0(t), β1(t), β2(t), εi1(t), εi2(t) defined as in Section 4.1.

• Scenario 2

Yi1(t) =β0(t) + β1(t)wi + β2(t)w2
i + ηi1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi2(t) =β0(t) + β1(t)wi + β2(t)w2
i + ηi2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with ηi1(t) = εi1(t),

ηi2(t) =

{
εi1(t) t ∈ [0, 0.5]

εi2(t) t ∈ (0.5, 1]

and wi, β0(t), β1(t), β2(t), εi1(t), εi2(t) defined as in Section 4.1.

As in the previous simulation study, three regression estimates are considered:

• Set of Covariates 1. [µ̂1
I1(xi,1 = {1})](t) = [µ̂2

I1(xi,2 = {1})](t) = β̂0(t)
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Scenario 1
MPB method

Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
n = 20 0.902[0.894,0.910] 0.897[0.889,0.906] 0.902[0.893,0.910]
n = 200 0.907[0.899,0.915] 0.909[0.901,0.917] 0.899[0.890,0.907]
n = 2000 0.899[0.891,0.908] 0.897[0.888,0.905] 0.904[0.896,0.913]

CUB method
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 0.812[0.801,0.822] 0.811[0.800,0.822] 0.813[0.802,0.824]
n = 200 0.820[0.809,0.830] 0.823[0.813,0.834] 0.805[0.794,0.816]
n = 2000 0.808[0.797,0.819] 0.801[0.790,0.812] 0.815[0.804,0.826]

Scenario 2
MPB method

Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
n = 20 0.899[0.890,0.907] 0.888[0.879,0.897] 0.905[0.894,0.915]
n = 200 0.900[0.892,0.908] 0.895[0.887,0.904] 0.893[0.882,0.904]
n = 2000 0.906[0.898,0.914] 0.899[0.891,0.908] 0.906[0.895,0.916]

CUB method
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 0.838[0.828,0.848] 0.829[0.819,0.840] 0.844[0.834,0.854]
n = 200 0.853[0.843,0.863] 0.843[0.833,0.853] 0.846[0.836,0.856]
n = 2000 0.857[0.848,0.867] 0.852[0.843,0.862] 0.863[0.854,0.873]

Table 2. Simulation study 2: empirical coverage and related 95% confidence interval
in brackets for each combination of scenario, method, sample size and set of covariates.
α = 0.10, set of modulation functions {sσj,I1}

2
j=1.

• Set of Covariates 2. [µ̂1
I1(xi,1 = {1, wi})](t) = [µ̂2

I1(xi,2 = {1, wi})](t) =

β̂0(t) + β̂1(t)wi

• Set of Covariates 3. [µ̂1
I1(xi,1 = {1, wi, w2

i })](t) = [µ̂2
I1(xi,2 = {1, wi, w2

i })](t) =

β̂0(t) + β̂1(t)wi + β̂2(t)w2
i

Note that ‘Set of Covariates 3’ represents the case in which the model is correctly
specified, while the other two sets of covariates represent a case of misspecification.

Table 2 shows the empirical coverage p̂, together with the 95% confidence interval
defined as in Section 4.1, obtained for each combination of scenario, method, sample
size and set of covariates considering the set of modulation functions {sσj,I1}

2
j=1. In

accordance with the results provided by the first simulation study, the MPB method
presented in this article ensures empirical coverages very close to 0.90, with only
two confidence intervals not including the target value 1− α. As regards the CUB
method, in both scenarios the empirical coverages are far from 1− α as expected,
and moving from Scenario 1 to Scenario 2 they grow due to the fact that the error
terms are dependent. In particular, in the first scenario almost all the confidence
intervals include the value (1− α)2 = 0.81, that is the coverage we expect from the
CUB method since the error terms are independent. In view of this, the simulation
study fully confirms the quite obvious conjecture that a carefully chosen multivariate
approach must be considered in order to obtain proper multivariate simultaneous
bands.
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Scenario 1
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 5.606[4.940,6.539] 5.373[4.704,6.322] 6.007[5.106,7.212]
n = 200 4.270[4.137,4.407] 3.820[3.706,3.943] 3.831[3.714,3.954]
n = 2000 4.166[4.126,4.206] 3.707[3.673,3.741] 3.702[3.666,3.737]

Scenario 2
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 5.279[4.623,6.186] 5.063[4.357,6.005] 5.637[4.788,6.814]
n = 200 4.133[3.996,4.279] 3.690[3.571,3.815] 3.698[3.575,3.823]
n = 2000 4.032[3.992,4.073] 3.583 [3.547,3.618] 3.578[3.543,3.614]

Scenario 3
Set of Cov. 1 Set of Cov. 2 Set of Cov. 3

n = 20 4.820[4.184,5.649] 4.568[3.932,5.446] 5.052[4.273,6.141]
n = 200 3.852[3.708,4.000] 3.442[3.319,3.565] 3.450[3.327,3.578]
n = 2000 3.773[3.731,3.817] 3.354[3.315,3.391] 3.347[3.310,3.385]

Table 3. Simulation study 2: median size (first and third quartile in brackets)
for each combination of scenario, sample size and set of covariates. MPB method,
α = 0.10, set of modulation functions {sσj,I1}

2
j=1.

Since the CUB method does not guarantee the desired coverage, hereafter we will
only focus on the efficiency of the prediction bands outputted by the MPB method.
Table 3 shows the median size (together with the first and third quartile in brackets) of
the prediction bands analyzed in Table 2. In addition to the two scenarios considered
so far, Table 3 also analyzes a third scenario in which εi1(t) = εi2(t) ∀i, t (and so
Yi1 = Yi2): despite its limited practical utility, this scenario represents an edge case
that can provide useful information. First of all, for each combination of scenario and
set of covariates, the size decreases when n grows, both because improved regression
estimates generally provide smaller nonconformity scores and because the value of
ks is less dependent on random fluctuations. Focusing now on each combination of
sample size and set of covariates, it is possible to notice that Scenario 1 typically
provides the biggest prediction bands, whereas Scenario 3 the smallest. From a
practical point of view, this evidence is due to the nonconformity measure used:
indeed, it searches the most extreme value of

∣∣(ydj(t)− [µ̂jI1(xdj)](t))/sj,I1(t)
∣∣ over

T1, T2, and so the nonconformity score computed when yd1 = yd2 as in Scenario 3 will
always be less than or equal to that computed when yd1 6= yd2. Scenario 2 represents
an intermediate case between Scenario 1 and Scenario 3 as regards the structure of
the error terms, and this is confirmed by the evidence provided by Table 3.

4.3 Simulation Study 3: Efficiency

The aim of the simulation study of this Section is to compare the three sets of
modulation functions ({s0

j}
p
j=1, {sσj,I1}

p
j=1, {s̄j,I1}

p
j=1) in terms of efficiency. To do

that, three different scenarios are taken into account: focusing just for now on the
error terms and ignoring the systematic components, in the first scenario the error
terms are characterized by a constant variability over the domains, in the second
scenario the variability differs whereas in the third scenario the presence of outliers
further complicates their specification. Formally, the three scenarios are:
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• Scenario 1. The two systematic components are defined as in the first scenario
of Section 4.1, while the independent functional errors εi1(t), εi2(t) are defined
as follows:

εij(t) =Bi+(n+1)(j−1),1+

Bi+(n+1)(j−1),2 cos
(
10π

(
t+ Ui+(n+1)(j−1)

))
+

Bi+(n+1)(j−1),3 sin
(
10π

(
t+ Ui+(n+1)(j−1)

))
∀i ∈ {1, . . . , n+1}, j ∈ {1, 2}, t ∈ [0, 1], with i.i.d. random vectors B1, . . . ,B2(n+1) ∼
N3(0,Σ), Σ having the entries on the main diagonal equal to 1 and the entries
outside the main diagonal equal to 0.7, i.i.d. random variables U1, . . . , U2(n+1) ∼
U [−0.5, 0.5].

• Scenario 2. The two systematic components are defined as in the first scenario
of Section 4.1, while the independent functional errors εi1(t), εi2(t) are obtained
by means of a B-spline basis expansion of order four, with 13 basis functions,
equally spaced knots and normal random vectors as vectors of coefficients.
Specifically, the 2 · (n+ 1) (observed) vectors of coefficients are independent
realizations of C = (C1, . . . , C13) ∼ N13(0,Σ) with Σ diagonal matrix such
that Var[Ca] = 0.001 ∀a 6= 7, Var[C7] = 9 · 10−6.

• Scenario 3

Yi1(t) =β0(t) + ηi1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi2(t) =β0(t) + ηi2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with β0(t) = 0 ∀t ∈ [0, 1],

ηij(t) =β1(t)wij + εij(t), i ∈ {1, . . . , n+ 1}, j ∈ {1, 2}, t ∈ [0, 1]

with β1(t) obtained by means of a B-spline basis expansion of order four, with
13 basis, equally spaced knots and all coefficients equal to 0 but the seventh
equal to 0.5, εij(t) defined as in Scenario 2, and if n = 20 then wij = 0
∀{i, j} 6= {1, 1}, w1,1 = 1, whereas if n ∈ {200, 2000} then

wij =

{
1 if i ∈

{
j + 40 · ζ : ζ ∈ {0, 1, 2, . . . , n

40
− 1}

}
0 otherwise

Despite the complex notation, the introduction of wij is aimed at obtaining that
∼ 5% of the multivariate functions y1, . . . ,yn+1 (i.e. 1 out of 21 when n = 20,
10 out of 201 when n = 200, 100 out of 2001 when n = 2000) is characterized,
in one of the two components, by the anomalous behavior induced by β1(t). We
propose such an unconventional structure for the error terms to simulate, for
example, a regression framework in which relevant variables are not available.

All three scenarios are evaluated considering only one set of covariates each, namely
the case in which the corresponding model is correctly specified. Figure 2 shows,
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Figure 2. Example of realization of the error term related to {Yi1}n+1
i=1 . First scenario

at the top, second scenario in the middle, third scenario at the bottom. n = 20.

for each scenario, a realization of the error terms {εi1}n+1
i=1 ({ηi1}n+1

i=1 for Scenario 3)
when n = 20.

Table 4 shows the median size (defined as in Section 4.2; first and third quartile
in brackets) of the N = 5000 prediction bands obtained for each combination of
scenario, sample size and set of modulation functions. All three scenarios share the
evidence that the prediction bands induced by {s0

j}2
j=1 are typically smaller than

those induced by the other two sets of modulation functions when the sample size is
very small (n = 20). This is due to the fact that regression estimates obtained with
a small training set size likely provide an unreliable (and potentially misleading) set
of modulation functions, leading to a preference for a set of modulation functions
not depending on I1. As proof of that, it is not surprising that the two data-driven
sets of modulation functions {sσj,I1}

2
j=1, {s̄j,I1}2

j=1 deliver the worst performance in
the most complex Scenario, i.e. Scenario 3. Focusing on the other two sample
sizes, in Scenario 1 the choice of not modulating seems appropriate due to the equal
magnitude of the two components and the constant variability over T1, T2, but, as
expected, the difference between the three alternative sets of modulation functions
decreases when n grows. Differently from Scenario 1, Scenario 2 is characterized by
multivariate residuals showing a lower variability in the central portion of T1 and T2:
as a consequence, {s0

j}2
j=1 provides large prediction bands since it is not able to adapt

the width of the band according to the local variability of the residuals, whereas
{sσj,I1}

2
j=1 is particularly effective since it induces a modulation process based on the

two standard deviation functions. Finally, {s̄j,I1}2
j=1 represents the best solution

in Scenario 3 given its ability to focus on the ‘least extreme’ ∼ (1 − α) · 100% of
data: indeed, differently from {s0

j}2
j=1 it is able to reduce the width of the band in

the central part of the domains, and differently from {sσj,I1}
2
j=1 it does not uselessly

enlarge the band in the same subinterval of T1, T2. Consequently, the simulation
study seems to confirm the statistical intuition given in Section 3.2 that the newly
launched set of modulation functions {s̄j,I1}

p
j=1 represents an interesting solution

when functional residuals show a non-standard behavior and a modulation process
driven by the value 1− α is needed.
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Scenario 1
{s0

j}2
j=1 {sσj,I1}

2
j=1 {s̄j,I1}2

j=1

n = 20 9.599[8.348,11.116] 12.205[10.121,14.853] 14.241[11.730,17.798]
n = 200 8.658[8.289,9.077] 8.835[8.442,9.246] 9.315[8.892,9.784]
n = 2000 8.568[8.449,8.692] 8.587[8.469,8.712] 8.681[8.561,8.806]

Scenario 2
{s0

j}2
j=1 {sσj,I1}

2
j=1 {s̄j,I1}2

j=1

n = 20 0.168[0.152,0.188] 0.190[0.167,0.221] 0.213[0.186,0.249]
n = 200 0.148[0.144,0.153] 0.126[0.123,0.130] 0.139[0.135,0.144]
n = 2000 0.146[0.145,0.148] 0.122[0.121,0.123] 0.134[0.133,0.136]

Scenario 3
{s0

j}2
j=1 {sσj,I1}

2
j=1 {s̄j,I1}2

j=1

n = 20 0.201[0.157,0.667] 0.294[0.212,1.767] 0.407[0.277,1.869]
n = 200 0.162[0.155,0.170] 0.167[0.161,0.172] 0.151[0.145,0.158]
n = 2000 0.160[0.157,0.162] 0.161[0.160,0.163] 0.145[0.143,0.147]

Table 4. Simulation Study 3: median size (first and third quartile in brackets) for
each combination of scenario, sample size and set of modulation functions. α = 0.10.

5 Case Study: Analysis of Bike Mobility in the

City of Milan

In order to illustrate the application potential of the method presented in this article,
in this section we focus on a case study concerning urban mobility, and specifically
the usage of a bike-sharing system in the Italian city of Milan. Moving from the
raw data and the context presented in Torti et al. (2021), the aim is to study the
behavior of subscribers of Bikemi, a bike sharing system active in the city in which
bikes are picked up and dropped off in specific docking stations located through the
city. Starting from raw data providing various information about picked up bikes
(simply pickups hereafter) and dropped off bikes (simply dropoffs hereafter) for each
day considered, and focusing our attention - as an example - on the Duomo district
only (i.e. the area in which Milan’s cathedral is), the multivariate functional response
variable yi = (yi1, yi2) representing the rate of dropoffs (yi1) and pickups (yi2) is
obtained via a standard kernel density estimation smoothing method (Hastie et al.
2009). In so doing, yi1(t) (yi2(t)) represents the dropoff (pickup) rate at time t, with
t ranging from 7 a.m. day i to 1 a.m. the next day (consequently, we assume that
day i ends at 1 a.m. the next day). The period considered starts on 25 January 2016
and ends on 6 March 2016: due to an error in the data collection, 25 February is
removed from the dataset in accordance with Torti et al. (2021), and so the sample
size is n = 41. Data are shown in the two top panels of Figure 3.

Like in Torti et al. (2021), the regression estimates are obtained by fitting a
concurrent functional-on-functional linear model (Ramsay and Silverman 2005). The
model hereby used includes as covariates a functional intercept, the temperature
function (after subtracting the average daily temperature function of the period
considered) in degrees Celsius, and a dummy variable indicating whether day i is a
weekday or not. Since the rates cannot be negative in any subinterval of the domain,
the predicted functions are truncated to 0. However, as discussed in Section 3.1, the
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Figure 3. Dropoff and pickup rates (top left, top right respectively), corresponding
functional predictions (center left, center right) and functional residuals (bottom left,
bottom right). Yellow curves refer to 29 February; continuous curves refer to the
observations in the training set, dashed curves to those in the calibration set.

purpose is to construct valid, meaningful and interpretable prediction bands also
when simple regression estimators are specified, and so the choice of the covariates,
as well as the functional form of the model, represents an aspect of limited interest
in the framework considered.

The method presented in Section 3 is performed by considering the three sets of
modulation functions {s0

j}2
j=1, {sσj,I1}

2
j=1, {s̄j,I1}2

j=1, α = 0.25 and m = 22, l = 19 in
order to assign, as in the simulation studies, about half of the observations to the
training set and to obtain the value 1−b(l+1)αc/(l+1) equal to 1−α. To remain as
neutral as possible, we will consider the case in which - after having labeled the days
considered with numbers from 1 to 41 - the observations referring to an odd day are
assigned to the training set and those referring to an even day to the calibration set,
with the observation related to day 20 assigned to the training set to satisfy m = 22.
Two possible prediction scenarios are taken into account for the scope of visualization:
in the first, we construct the multivariate prediction band for a weekday having
the average temperature function of the period as temperature function; in the
second, we construct it for a warmer than usual weekday (see Figure B.1 in Appendix
B for a graphical representation of the two functional covariates, together with
those observed). Figure 4 shows, for each of the three sets of modulation functions
({s0

j}2
j=1 in the first row, {sσj,I1}

2
j=1 in the second row, {s̄j,I1}2

j=1 in the third row),
the prediction sets induced by the two scenarios (first set of covariates in the first
column, second in the second column). In particular, each panel shows the prediction
band for the dropoff rate (light blue band) and the pickup rate (red band), with

19



0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

0

250

500

750

7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m. 10 p.m. 1 a.m
t

 D
ro

po
ff/

P
ic

ku
p 

ra
te

 [b
ik

es
/h

ou
r]

Figure 4. Prediction bands for the dropoff rate (light blue band) and the pickup
rate (red band). Each panel refers to a combination of set of modulation functions
({s0

j}2
j=1 at the top, {sσj,I1}

2
j=1 in the middle, {s̄j,I1}2

j=1 at the bottom) and scenario
(first set of covariates on the left, second on the right). The dashed lines indicate
the corresponding regression estimates. α = 0.25. Split into calibration/training set:
even/odd(+ day 20) days.

the two dashed lines representing the corresponding regression estimates. As for the
predicted functions, the prediction bands are truncated to 0, as the rates cannot be
negative in any subinterval of the domain. Note that this truncation does not involve
any kind of drawback since the coverage reached by the prediction sets remains
unchanged if a null probability portion of the bands is removed from the prediction
bands. It is evident that the prediction bands for dropoffs induced by {sσj,I1}

2
j=1 are

quite large in the initial portion of the domain compared to those obtained by not
modulating (i.e. {s0

j}2
j=1) and by the proposed set {s̄j,I1}2

j=1. In order to clarify this
aspect, let us consider Figure 3. Focusing on the residual functions of the dropoff
rates (i.e. the panel at the bottom left of the figure), it is easily noticeable that
the yellow curve (referring to weekday 35, i.e. 29 February, which is assigned to
the training set) shows an anomalous behavior in the initial part of the domain.
The panel at the top left of the same figure suggests that this is due to the fact
that day 35 was characterized by an unusually low dropoff rate compared to that
observed in the other weekdays (which are the curves showing a pick around 9 a.m.).
Consequently, by using {sσj,I1}

2
j=1 it is natural to obtain prediction bands for dropoffs

extremely wide in the first portion of the domain since this outlier has a huge impact
on the modulation process, while the corresponding prediction bands obtained by
not modulating are not adversely affected as {s0

j}2
j=1 does not modulate the width

of the band according to the local variability of the residuals. In view of this, the
set of modulation functions {s̄j,I1}2

j=1 represents an intriguing solution since, in
addition to modulate the width of the band along the domains, induces a modulation
process which is not misled by the anomalous behavior of day 35. However, similar
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considerations would have been made also if other observations than the one related
to day 35 had been assigned to the training set, as can be noticed by analyzing the
functional residuals of the observations assigned to the calibration set in the two
panels at the bottom of Figure 3 (dashed curves for the calibration set; continuous
curves for the training set). Despite the small sample size, the prediction sets of
Figure 4 can provide profitable information: first of all, subscribers of Bikemi seem
to mainly use bikes to go to Duomo in the morning, whereas in the early evening the
bike flow is reversed. Moving from the first set of covariates (weekday-temperature
equal to the mean temperature of the period) to the second one (weekday-warm
day), we notice that a higher temperature does not strongly affect people’s behavior
in the morning, whereas it involves a moderate increase in dropoffs and, at the same
time, a big increase in pickups in the period of time around 7 p.m.. The information
provided by the prediction bands can be indeed very useful to fleet managers in
identifying the periods of time in which the imbalance between pickups and dropoffs
could become critical based on the day of the week, the temperature function and
other possible carefully chosen covariates.

6 Conclusion and Further Developments

In the present work we have developed a procedure aimed at creating prediction bands
for multivariate functional data in a regression framework. Despite the paramount
importance of this topic both from the methodological and applied point of view, to
the best of our knowledge our method represents the first proposal in this direction.
Moving from the approach proposed by Diquigiovanni et al. (2021) for univariate
i.i.d. functional data, the method presented in this article builds finite-sample
either exact or valid prediction bands under the only assumption of exchangeable
regression pairs with multivariate functional response. These properties, together
with the fact that the procedure is scalable and the bands can be easily found in
closed form, allow to obtain meaningful prediction bands regardless the regression
estimator used, leading to a methodology which can be applied in a wide range of
application scenarios. Moreover, we have introduced a specific set of modulation
functions (namely {s̄j,I1}

p
j=1) achieving an asymptotic result in terms of efficiency

regardless the sample observed z1, . . . ,zn and inducing prediction bands whose width
varies along the domains and across the components according to the local behavior.
The simulation study and the real-world application provided in Section 4 and 5
respectively confirm the potential of the approach. Nevertheless, many possible
directions still remain unexplored. Among these, we plan to modify the methodology
in order to apply it when regression data are dependent (as in the case, for example,
of a functional time series); and, we plan to explore the impact of the regression
estimator on the size of the prediction sets.

Supplementary material

A Technical Proofs

A.1 Proof of Section 3.1

Computation to find Csn,1−α(xn+1)
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Since

δsy =

∣∣{d ∈ I2 ∪ {n+ 1} : Rs
d ≥ Rs

n+1

}∣∣
l + 1

,

Csn,1−α (xn+1) =

{
y ∈

p∏
j=1

L∞(Tj) : δsy > α

}
,

if α ∈ [1/(l+ 1), 1), then y ∈ Csn,1−α(xn+1) ⇐⇒ Rs
n+1 ≤ ks, with ks the d(l+ 1)(1−

α)eth smallest value in the set {Rs
d : d ∈ I2}. Then

sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣yj(t)− [µ̂jI1(xn+1,j)](t)

sj,I1(t)

∣∣∣∣∣
)
≤ ks

⇐⇒

∣∣∣∣∣yj(t)− [µ̂jI1(xn+1,j)](t)

sj,I1(t)

∣∣∣∣∣ ≤ ks ∀j ∈ {1, . . . , p},∀t ∈ Tj

⇐⇒ yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ks · sj,I1(t),
[µ̂jI1(xn+1,j)](t) + ks · sj,I1(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj.

As a consequence, the Split Conformal prediction set is

Csn,1−α(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ks · sj,I1(t),

[µ̂jI1(xn+1,j)](t) + ks · sj,I1(t)]

∀j ∈ {1, . . . , p}, ∀t ∈ Tj
}
.

Computation to find Csn,1−α,τn+1
(xn+1)

Consistently with the Split Conformal scenario, let us define

δsy,τn+1
:=

∣∣{d ∈ I2 : Rs
d > Rs

n+1

}∣∣+ τn+1

∣∣{d ∈ I2 ∪ {n+ 1} : Rs
d = Rs

n+1

}∣∣
l + 1

Csn,1−α,τn+1
(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : δsy,τn+1
> α

}
.

By definition, Csn,1−α,1(xn+1) = Csn,1−α(xn+1).
Since δsy,τn+1

∈ [τn+1/(l + 1), (l + τn+1)/(l + 1)], we will focus on the scenario in
which α ∈ [τn+1/(l+1), (l+τn+1)/(l+1)). Let us define ws the dl+τn+1− (l+1)αeth
smallest value in the set {Rd : d ∈ I2}, and rsn (vsn respectively) the number of
elements in the set {Rd : d ∈ I2} that are equal to ws and that are to the right (left
respectively) of ws in the sorted version of the set. Note that rsn = vsn = 0 when
the assumption about the continuous joint distribution of {Rd : d ∈ I2} is satisfied,
but generally speaking we will consider rsn, v

s
n ∈ N≥0 such that rsn + vsn ≤ l − 1. By

replicating calculations similar to those performed in the Split Conformal framework,
we obtain that:

• if

τn+1 >
(l + 1)α− b(l + 1)α− τn+1c+ rsn

rsn + vsn + 2
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then y ∈ Csn,1−α,τn+1
(xn+1) ⇐⇒ Rs

n+1 ≤ ws and so

Csn,1−α,τn+1
(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ws · sj,I1(t),

[µ̂jI1(xn+1,j)](t) + ws · sj,I1(t)]

∀j ∈ {1, . . . , p},∀t ∈ Tj
}
.

• if

τn+1 ≤
(l + 1)α− b(l + 1)α− τn+1c+ rsn

rsn + vsn + 2

then y ∈ Csn,1−α,τn+1
(xn+1) ⇐⇒ Rn+1 < ws and so

Csn,1−α,τn+1
(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
(
[µ̂jI1(xn+1,j)](t)− ws · sj,I1(t),

[µ̂jI1(xn+1,j)](t) + ws · sj,I1(t)
)

∀j ∈ {1, . . . , p},∀t ∈ Tj
}
.

Proof that the concatenation of the p univariate prediction bands ob-
tained by applying the nonconformity measure supt∈Tj

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣
to the p components separately is a subset of (5)

Let us define U sn,1−α(xn+1) as the multivariate prediction band obtained by con-
catenating the p univariate prediction bands induced by applying the nonconformity
measure supt∈Tj

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣ to the p components separately. Let
us define, with a slight abuse of notation,

R̃s
dj := sup

t∈Tj

∣∣(ydj(t)− [µ̂jI1(xdj)](t)
)
/sj,I1(t)

∣∣ , ∀d ∈ I2, ∀j ∈ {1, . . . , p}

and k̃sj the d(l+1)(1−α)eth smallest value in the set {R̃s
dj : d ∈ I2}. By construction

Rs
d = supj∈{1,...,p} R̃

s
dj, and so Rs

d ≥ R̃s
dj ∀j ∈ {1, . . . , p}, d ∈ I2 and then ks ≥ k̃sj

∀j ∈ {1, . . . , p}. In view of this, if y ∈ U sn,1−α(xn+1), i.e.

yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− k̃sj · sj,I1(t),
[µ̂jI1(xn+1,j)](t) + k̃sj · sj,I1(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj,

then

yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ks · sj,I1(t),
[µ̂jI1(xn+1,j)](t) + ks · sj,I1(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj,

i.e. y ∈ Csn,1−α(xn+1). As y ∈ Csn,1−α(xn+1) does not necessarily imply y ∈
U sn,1−α(xn+1), then U sn,1−α ⊆ Csn,1−α.

Proof that the concatenation of the pointwise prediction intervals ob-
tained by applying the pointwise nonconformity measure

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣
∀j ∈ {1, . . . , p}, ∀t ∈ Tj is a subset of (5)
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Let us define U sn,1−α(xn+1) as the multivariate prediction band obtained by
concatenating the pointwise prediction intervals obtained by applying the pointwise
nonconformity measure

∣∣(yj(t)− [µ̂jI1(xj)](t)
)
/sj,I1(t)

∣∣ ∀j ∈ {1, . . . , p}, ∀t ∈ Tj. Let
us define, with a slight abuse of notation,

R̃s
dj(t) :=

∣∣(ydj(t)− [µ̂jI1(xdj)](t)
)
/sj,I1(t)

∣∣ , ∀d ∈ I2,∀j ∈ {1, . . . , p}, ∀t ∈ Tj

and k̃sj (t) the d(l + 1)(1− α)eth smallest value in the set {R̃s
dj(t) : d ∈ I2}. By con-

struction Rs
d = supj∈{1,...,p}

(
supt∈Tj R̃

s
dj(t)

)
, and so Rs

d ≥ R̃s
dj(t) ∀j ∈ {1, . . . , p}, d ∈

I2, t ∈ Tj and then ks ≥ k̃sj(t) ∀j ∈ {1, . . . , p}, t ∈ Tj. In view of this, if
y ∈ U sn,1−α(xn+1), i.e.

yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− k̃sj (t) · sj,I1(t),
[µ̂jI1(xn+1,j)](t) + k̃sj (t) · sj,I1(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj,

then

yj(t) ∈
[
[µ̂jI1(xn+1,j)](t)− ks · sj,I1(t),
[µ̂jI1(xn+1,j)](t) + ks · sj,I1(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj,

i.e. y ∈ Csn,1−α(xn+1). As y ∈ Csn,1−α(xn+1) does not necessarily imply y ∈
U sn,1−α(xn+1), then U sn,1−α ⊆ Csn,1−α.

Proof that prediction bands induced by {sj,I1}
p
j=1 and by {λ · sj,I1}

p
j=1

coincide ∀λ ∈ R>0

Let Cλ·sn,1−α(xn+1) be the prediction band induced by the set of modulation functions
{λ · sj,I1}

p
j=1. The nonconformity scores are:

Rλ·s
d = sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ydj(t)− [µ̂jI1(xdj)](t)

λ · sj,I1(t)

∣∣∣∣∣
)

=
1

λ
Rs
d, d ∈ I2

Rλ·s
n+1 = sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣yj(t)− [µ̂jI1(xn+1,j)](t)

λ · sj,I1(t)

∣∣∣∣∣
)

=
1

λ
Rs
n+1.

Moreover, let us define:

δλ·sy :=

∣∣{d ∈ I2 ∪ {n+ 1} : Rλ·s
d ≥ Rλ·s

n+1

}∣∣
l + 1

,

with, as usual, Cλ·sn,1−α(xn+1) :=
{
y ∈

∏p
j=1 L

∞(Tj) : δλ·sy > α
}

. As a consequence,

y ∈ Cλ·sn,1−α(xn+1) ⇐⇒ Rλ·s
n+1 ≤ kλ·s, with kλ·s the d(l + 1)(1− α)eth smallest value

in the set {Rλ·s
d : d ∈ I2}. Since Rλ·s

d = Rs
d/λ ∀d ∈ I2, then kλ·s = ks/λ. Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs
n+1 ≤

ks

λ
⇐⇒ Rs

n+1 ≤ ks,

and since y ∈ Csn,1−α(xn+1) ⇐⇒ Rs
n+1 ≤ ks, then Cλ·sn,1−α(xn+1) coincides with

Csn,1−α(xn+1).
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A.2 Proof of Section 3.2

Proof of Theorem 1
Let us consider s̄j,I1(t), with j ∈ {1, . . . , p}. Since m/n = θ with 0 < θ < 1,

if n → +∞ then m → +∞. The scalar γ is the empirical quantile of order

d(m + 1)(1 − α)e) of {supj∈{1,...,p}

(
supt∈Tj

∣∣yhj(t)− [µ̂jI1(xhj)](t)
∣∣) : h ∈ I1}. First

of all note that

lim
m→+∞

d(m+ 1)(1− α)e
m

= lim
m→+∞

m+ 1− b(m+ 1)αc
m

and since
(m+ 1)α− 1

m
≤ b(m+ 1)αc

m
≤ (m+ 1)α

m
∀m ∈ N,

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α

then by the squeeze theorem we know that

lim
m→+∞

b(m+ 1)αc
m

= α

and then

lim
m→+∞

d(m+ 1)(1− α)e)
m

= 1− α.

Consequently, γ is the empirical quantile of order 1− α when m→ +∞.

Let us define wh := supj∈{1,...,p}

(
supt∈Tj

∣∣yhj(t)− [µ̂jI1(xhj)](t)
∣∣) ∀ h ∈ I1. The

random variables {Wh : h ∈ I1} from which {wh : h ∈ I1} are drawn are continuous
and after Var

[
[µ̂jI1(Xhj)](t)

]
→ 0 ∀j ∈ {1, . . . , p} they become i.i.d.. The Glivenko-

Cantelli theorem guarantees that the empirical distribution function of these variables
converges uniformly and almost surely pointwise to its distribution function, and
so also the empirical quantiles converge in distribution - and so in probability - to
the corresponding theoretical quantiles (see, for example, Van der Vaart 2000, chap.
21). In so doing, empirical quantile γ converges to q1−α, the theoretical quantile of
order 1− α. As a consequence:

H1 := {h ∈ I1 : sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣yhj(t)− [µ̂jI1(xhj)](t)
∣∣) ≤ q1−α}

when m→ +∞, with q1−α non-random quantity. Let us consider the numerator of
s̄j,I1(t) ∀j ∈ {1, . . . , p} as the denominator is a normalizing constant. ∀t ∈ Tj, the
sequence {maxh∈H1 |yhj(t) − [µ̂jI1(xhj)](t)|}m is eventually bounded by q1−α and is
eventually increasing since {|H1|}m is eventually increasing. Therefore the sequence
converges to its supremum by the monotone convergence theorem.

As regards s̄cj,I1,I2 , first of all it is possible to notice that if n → +∞ then
l = n(1− θ)→ +∞. In order to show the convergence of the numerator of s̄cj,I1,I2
to the same limit function, it is sufficient to consider the previous calculations by
substituting γ with k, m with l, H1 with H2 and I1 with I2 (except for [µ̂jI1(xhj)](t)

that is not substituted by [µ̂jI2(xhj)](t)). Finally, as the numerators of s̄j,I1,I2 and s̄cj,I1
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converge to the same function ∀j ∈ {1, . . . , p}, also the two normalizing constants
converge to the same value.

Proof of Theorem 2
For the sake of simplicity, let us focus on the case in which |H2| = d(l+1)(1−α)e.

Under the assumption concerning the continuous joint distribution of {Rd : d ∈ I2}
made in Secton 2 such condition is always satisfied, but for the sake of completeness
the proof when this assumption is violated is addressed below.

• ∀d ∈ H2, ∀j ∈ {1, . . . , p} the following relationship holds ∀t ∈ Tj:∣∣∣∣∣ydj(t)− [µ̂jI1(xdj)](t)

s̄cj,I1,I2(t)

∣∣∣∣∣
=

p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt ·
∣∣ydj(t)− [µ̂jI1(xdj)](t)

∣∣
maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|

≤
p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt,

and then

Rs̄c

d := sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ydj(t)− [µ̂jI1(xdj)](t)

s̄cj,I1,I2(t)

∣∣∣∣∣
)
≤

p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt.

Specifically, ∃ d ∈ H2 such that Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)−[µ̂jI1(xdj)](t)|dt

since ∀j ∈ {1, . . . , p} and ∀t ∈ Tj at least one function yd,j satisfies
∣∣ydj(t)− [µ̂jI1(xdj)](t)

∣∣ =

maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|.

• Let us define CH2 := I2 \ H2 and let (t∗d, j
∗
d) be the couple of values such that

∣∣∣ydj∗d (t∗d)− [µ̂
j∗d
I1(xdj∗d )](t∗d)

∣∣∣ = sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) ∀d ∈ I2.

If (t∗d, b
∗
d) is not unique, it is randomly chosen from the couples satisfying that

condition.

∀b ∈ CH2, by definition ofH2 it is possible to notice that
∣∣∣ybj∗b (t∗b)− [µ̂

j∗b
I1(xbj∗b )](t∗b)

∣∣∣ >
maxd∈H2 |ydj∗b (t∗b)− [µ̂

j∗b
I1(xdj∗b )](t∗b)| and so the following relationship holds:∣∣∣∣∣ybj∗b (t∗b)− [µ̂

j∗b
I1(xbj∗b )](t∗b)

s̄cj∗b ,I1,I2
(t∗b)

∣∣∣∣∣
=

p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt ·

∣∣∣ybj∗b (t∗b)− [µ̂
j∗b
I1(xbj∗b )](t∗b)

∣∣∣
maxd∈H2 |ydj∗b (t∗b)− [µ̂

j∗b
I1(xdj∗b )](t∗b)|

>

p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt.
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Consequently,

Rs̄c

b := sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ybj(t)− [µ̂jI1(xbj)](t)

s̄cj,I1,I2(t)

∣∣∣∣∣
)
>

p∑
j=1

∫
Tj

max
d∈H2

|ydj(t)− [µ̂jI1(xdj)](t)|dt.

Since:

• |H2| = d(l + 1)(1− α)e

• ∀d ∈ H2 R
s̄c

d ≤
∑p

j=1

∫
Tj maxd∈H2 |ydj(t) − [µ̂jI1(xdj)](t)|dt and ∃ d ∈ H2 such

that Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt

• ∀b ∈ CH2 R
s̄c

b >
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt

we conclude that ks̄
c

=
∑p

j=1

∫
Tj maxd∈H2 |ydj(t) − [µ̂jI1(xdj)](t)|dt, with ks̄

c
the

d(l + 1)(1− α)eth smallest value in the set {Rs̄c

d : d ∈ I2}.
If |H2| > d(l + 1)(1− α)e, then Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt

is valid ∀d ∈ H2 such that supj∈{1,...,p}

(
supt∈Tj |ydj(t)− [µ̂jI1(xdj)](t)|

)
= k and we

can conclude also in this case that ks̄
c

=
∑p

j=1

∫
Tj maxd∈H2 |ydj(t)− [µ̂jI1(xdj)](t)|dt.

Focusing now on the set of modulation functions s0, ∀d ∈ I2:

Rs0

d := sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣∣∣∣ydj(t)− [µ̂jI1(xdj)](t)

s0
j(t)

∣∣∣∣∣
)

= sup
j∈{1,...,p}

(
sup
t∈Tj

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)· p∑

j=1

|Tj| .

Since ks
0

is the d(l + 1)(1 − α)eth smallest value in the set {Rs0

d : d ∈ I2}, by
definition of H2 we can notice that

ks
0

= max
d∈H2

Rs0

d

= max
d∈H2

(
sup

j∈{1,...,p}

(
sup
t∈Tj

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)) · p∑

j=1

|Tj|

= sup
j∈{1,...,p}

(
sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)) · p∑

j=1

|Tj| .

Since by the integral mean value theorem we know that ∀j ∈ {1, . . . , p}

sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) · |Tj| ≥ ∫

Tj
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣ dt,

then the following relationship is valid:

p∑
j=1

sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) · |Tj| ≥ p∑

j=1

∫
Tj

max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣ dt.

(7)
In addition, by definition ∀j ∈ {1, . . . , p}

sup
j∈{1,...,p}

(
sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)) ≥ sup

t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)

27



and so:

p∑
j=1

sup
j∈{1,...,p}

(
sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)) · |Tj|

= sup
j∈{1,...,p}

(
sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣)) · p∑

j=1

|Tj|

≥
p∑
j=1

sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) · |Tj| .

(8)

By combining (7) and (8) we can notice that

sup
j∈{1,...,p}

(
sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣))· p∑

j=1

|Tj| ≥
p∑
j=1

∫
Tj

max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣ dt,

i.e. ks
0 ≥ ks̄

c
. Then, Q(s0) ≥ Q(s̄cI1,I2).

Specifically, the integral mean value theorem guarantees that ∀j ∈ {1, . . . , p}

sup
t∈Tj

(
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣) · |Tj| = ∫

Tj
max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣ dt

⇐⇒ max
d∈H2

∣∣ydj(t)− [µ̂jI1(xdj)](t)
∣∣ is constant almost everywhere,

i.e. if and only if s̄cj,I1,I2(t) is constant almost everywhere over Tj . Consequently, if
at least one of the functions s̄c1,I1,I2(t), . . . , s̄

c
p,I1,I2(t) is not constant almost everywhere

over its domain then the left side of (7) is strictly greater than the right side (implying
Q(s0) > Q(s̄cI1,I2)); otherwise, Q(s0) = Q(s̄cI1,I2).

Generalization of (s̄I1 , s̄
c
I1,I2), Theorem 1 and Theorem 2 to the Smoothed

Split Conformal framework
The functions s̄cI1 and s̄I1 are defined as in the Split Conformal framework, except

for: k (γ respectively) that is the dl + τn+1 − (l + 1)αeth (dm+ τn+1 − (m+ 1)αeth
respectively) smallest value in the corresponding set; similarly to the Split Conformal
framework, if dm+τn+1−(m+1)αe > m thenH1 = I1 and if dm+τn+1−(m+1)αe ≤ 0
we arbitrarily set s̄j,I1 = s0

j . Theorem 1 and Theorem 2 still hold by substituting
d(l+ 1)(1− α)e, d(m+ 1)(1− α)e with dl+ τn+1 − (l+ 1)αe, dm+ τn+1 − (m+ 1)αe.

B Supplementary Figures
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Figure B.1. Temperature function (after subtracting the average daily temperature
function of the period considered) in degrees Celsius for the observed days (blue
curves) and for the two hypothetical days (yellow curves).
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