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Abstract
The evolution of the nuclear shell closure at N = 28 has gathered much interest
due to the observed discrepancies between the well-established shell model with
SDPF-U interaction and measurements of the semi-magic 46Ar isotope.

In particular, while a remarkable agreement was observed between theoretical
and experimental neutron separation energies, transition probabilities measured
with intermediate Coulomb excitation diverge by more than a factor of two from
their predicted values. The reason behind this mismatch has been pinned down
to the proton transition matrix elements and hints at an incorrect description of
the sd proton space below Z = 20.

The experiment analyzed and discussed in the present thesis addressed this
problem by directly probing the proton component of the wave function via
a proton-pickup direct reaction in inverse kinematics: 46Ar(3He, d)47K at an
energy of 9 MeV/u.

The measurement, performed at the Spiral 1 facility in GANIL with a post-
accelerated radioactive 46Ar beam impinging on a high-density cryogenic 3He
target, aimed at quantifying the transfer cross section to the 3/2+ level relative
to the 1/2+ ground state in 47K, relying on a state-of-the-art experimental
setup for a precise reconstruction of the kinematics of the reaction. The heavy
reaction fragment was identified by the high acceptance magnetic spectrometer,
VAMOS, while the high-granularity silicon DSSD detector, MUGAST, allowed
the measurement of the angular distribution of the light ejectile while also
performing particle identification. The AGATA gamma-ray tracking germanium
array measured the photons produced by the decay of the 47K excited states.

The experimental evidence indicates a substantially suppressed L = 2 transfer
to the first excited state of 47K, at odds with shell-model calculations that predict
the s1/2 and d3/2 orbitals as almost degenerate and not entirely occupied. The
results will also be discussed in the framework of ab initio and mean-field
calculations. In these theoretical results, the low occupancy of the s1/2 orbital,
in agreement with the high relative spectroscopic factor measured, implies a
central depletion of the proton wavefunction: a so-called bubble structure.

Daniele Brugnara
Padova, February 2022
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Chapter 1

Introduction

The advances in the study of the atomic nucleus are based on the comparison
between experimental observables and theoretical models that aim at under-
standing the quantum many-body problem that describes the atomic nucleus
and its fundamental constituents.

While this objective has sparked the interest of many physicists since the
discovery of radioactivity in 1896, the intent is far from achieved. A coherent
picture of the whole landscape would imply understanding all observables of
some 3600 known isotopes, combined with a similar amount of predicted and yet
unknown nuclei. Each atomic charge Z and mass A combination constitutes an
entirely different quantum-mechanical many-body system. Nevertheless, some
patterns and similarities emerge between different nuclei based on the underlying
physical laws. These patterns are fundamentally tied to physical phenomenons
and laws, and their study is essential for the progress in a modelization of the
nucleus based on its physics.

In the current interpretation, the existence of a single unified model that
possesses the ability to describe and predict every isotope of the Segrè chart
with satisfactory precision does not exist. The unification and coherence of all
nuclear models is a very desirable goal, yet the current capabilities in terms
of computational powers and advancements in nuclear structure theory need
to resort to approximations that can be more or less effective based on the
system and observables of interest. While great effort is being fruitfully spent
towards deriving theoretical tools such as interaction potentials from fundamental
physical principles, the nuclear theory structure mainly relies on two models: the
shell model and the mean-field methods. Both models aim at the simplification
of a strongly-interacting many-body system by extracting the effect of the
interaction of multiple particles as an average interaction, which generates
various configurations of bound states. The mean-field picture consists of an
iterative approximation of the solution to the many-body problem by generating
an average field where each particle is independent. The common field is
generated by the nucleons and computed at every iteration. On the other hand,
the shell model is based on the experimental evidence that some configurations
of protons and neutrons are characterized by intrinsic stability and related to
the so-called magic numbers. The first attempt was a description of the system
as non-interacting particles in a common containing field. While this description
proved successful in deriving the magic numbers, different observables were hardly
reproduced. The more refined evolution of the model required the addition of an
interaction term in the Hamiltonian that previously only contained the common
field. The quantum states of interest are expressed in terms of those of the
non-interacting model, translating the problem to the diagonalization of the

1



1. Introduction

interacting Hamiltonian matrix in the new basis. In a vast simplification of the
matter, the shell-model picture best describes the nuclear properties of isotopes
close to these particular configurations. In contrast, the mean-field picture
generally shows a complementary ability of best describing configurations far
from the magic numbers. The root of this duality can be found in the capability
of the mean-field framework to describe strongly correlated systems which feature
coherent (collective) behaviors. In order to obtain an accurate description in
the shell model picture of a strongly correlated system, the dimension of single-
particle basis states required for the diagonalization of the Hamiltonian matrix
can quickly reach a prohibitive computational cost.

Recent developments in the field of nuclear structure are quickly emerging
thanks to technological advances in the production and acceleration of radioactive
(unstable) isotopes. The new state-of-the-art facilities for the production of exotic
beams opened the possibility for the study of nuclei that are not present in nature
but are always of great interest for their physical or astrophysical properties.

The current work aims to add insight on the current knowledge nuclear
structure of the ground state of a particular isotope, 46Ar. This isotope is
composed of 28 neutrons and 16 protons. As a consequence, it lies in a region of
semi magicity: along the N = 28 shell closure. In the shell model picture,
it can be obtained by removing a pair of protons from the doubly magic
48Ca. As it turns out, 46Ar is located in a region where state-of-the-art shell-
model calculations are able to reproduce observables with remarkable precision.
These observables consist, for instance, in energy spectra, neutron separation
energies, or transition probabilities among different states. Moreover, recent
developments have shown the failure of these calculations in reproducing the
quadrupole transition probability between the ground state and first excited state
in 46Ar. This inconsistency is even more surprising if one considers how the same
calculations are able to reproduce precisely the neutron separation energy of this
isotope as well as the nearby ones. Recent developments and considerations have
pointed out that the problem might lie in the proton component of the wave
function. In particular, the proton contribution to the matrix elements that
describe the quadrupole transition probability between the two states appears
overestimated in the model.

The intent of this work is to probe the proton component of the wave functions
of 46Ar directly. The means of the study will focus on a direct proton-transfer
reaction on this radioactive isotope: 46Ar(3He,d)47K at an energy of 10 MeV/u.
Theoretical considerations on the nuclear structure properties of 46Ar will be
presented and discussed in relation to the experiment.

The experiment exploits the capabilities and latest developments in terms of
radioactive beams produced with the Isotope mass Separation Online (ISOL) in
GANIL, France. This technique relies on the post acceleration of the extracted
ions, which, in turn, guarantees precise optical characteristics of the beam,
essential for the study of direct reactions in inverse kinematics.

The detection and reconstruction of the nuclear reaction rely on a state-of-
the-art array that combines the latest technology in the nuclear field in terms
of heavy and light charge particle detection and γ-ray spectroscopy. The light
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charged particle detection and discrimination is performed by position-sensitive
double-sided silicon strip detector, MUGAST. The heavy-ion, 47K, is tagged
and measured by the large acceptance magnetic spectrometer VAMOS while
γ rays emitted from the recoiling isotope are measured with a high-purity
position-sensitive tracking germanium array, AGATA.

The high granularity of the setup allows for a precise measurement of the
dynamics of the reaction as well as the consistency check on the acquired data.

This work is organized in the following Chapters:

• Chapter 2 focuses on a brief introduction of the theoretical background
concerning direct reactions and their implication on the nuclear structure,
in particular in the framework of the shell model.

• Chapter 3 introduces part of the current studies performed on 46Ar and,
more in general on the N = 28 shell closure. The problem of transition
probabilities and the current understanding of these aspects are also be
discussed in more detail

• Chapter 4 describes the experimental setup, the calibrations, and its
performance.

• Chapter 5 presents the Monte Carlo Geant4 simulations performed to
characterize the experimental setup

• Chapter 6 documents the DWBA direct reaction calculations performed
with the Fresco code for the system of interest and other related cases

• Chapter 7 delineates the analysis procedure and the experimental outcome

• Chapter 8 discusses the results in the framework of current theoretical
models such as ab initio, mean-field and shell-model calculations.
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Chapter 2

Background on the Theory of
Nuclear Structure and Reactions

2.1 The Nuclear Shell Model

The hydrogen atom and, more generally, the atomic shell model represents
one of the main milestones in the development and the study of quantum
mechanics. In particular, in the atomic case, the model is developed as a central
potential generated in the nucleus of the atom that allows for the creation of
quantized bound states for the orbiting electrons. A spin-orbit coupling and
other considerations are also necessary for an accurate description of the system.
While the case of a single electron orbiting the central potential features an
analytical solution, the same cannot be said in the case of multiple interacting
electrons, where the problem needs to be solved with practical approximations
that often resort to quantum mechanical perturbation theory.

In the case of the nuclear shell model, the physical system in itself is similar,
in a way, to the atomic case, where nucleons can be thought of as orbiting a
common potential with one key difference: the overall potential is not external
but is generated by nucleons themselves. The overall common potential is the
sum of all interactions, and the spin-orbit component of the final potential
determines the energy levels generated by this common field.

Specific configurations of the quantum mechanical system, or in other words,
some numbers of protons and neutrons, can feature remarkable stability. These
unique configurations are one of the strongest pieces of evidence that the nuclear
shell model is a powerful tool in the description of the nuclear quantum many-
body system.

2.1.1 The Independent Particle Model

It is possible to imagine that a single nucleon orbiting in this central potential
will perturb the overall common field only slightly, so low-lying states can be
described as non-interacting particles in different quantum states. The single-
particle Schrodinger equation will have the following form [6]:

H0,iϕi(r) =
(︃

− ℏ2

2m∇2 + V0(r)
)︃
ϕi(r) = ϵiϕi(r)

In this expression, m represents the mass of the nucleon, V0 a central potential,
ϵi the single-particle energy and ϕi the wave function. The total Hamiltonian of
the system will be the sum of all single-particle Hamiltonians:

∑︁
i H0,i.

In this case, the many-body system is described by the single-particle
Hamiltonian, where the complex many-body system is reduced to the more

5



2. Background on the Theory of Nuclear Structure and Reactions

straightforward case of non-interacting nucleons orbiting in a common potential
V (r). On the other hand, the wave function will consist of the Slater determinant
containing the single-particle wave functions of the single nucleons.

Unfortunately, this approximation is too coarse. Nevertheless, it serves as a
starting point for one of the most successful techniques in the description of this
many-body quantum.

The shape of the mean potential V (r) will have a radial contribution which
can be chosen as a simple harmonic-oscillator potential (which has the advantage
of a closed-form solution) or another function tailored to the mean nuclear
potential such as the Woods-Saxon well. This choice, while important under
some aspects, is not crucial as the single-particle states ϕi will be used as the
basis to span the real solutions of the interacting-particle shell model, which
accounts for the nucleon-nucleon interactions.

Historically another term has been added to the central potential, which in
itself was not able to correctly predict the occurrence of the magic numbers, the
configurations with inherent stability. The inclusion of a spin-orbit component
was proven to be successful in describing the presence of the following magic
numbers: 2, 8, 20, 28, 50, 82, 126. The potential, in a simplified form, can be
expressed by a central well and a spin-orbit interaction:

V0(r, l · s, l2) = −V0 + 1
2mω

2r2 − Vso l · s − VB l2 (2.1)

where V0 represents the depth of the well, Vso (VB) the strength of the spin-
orbit (total angular momentum) term, and ω the harmonic oscillator frequency.
It is a common choice for the spin-orbit coefficient to include a dependence on the
position coordinate r, often as proportionality with the derivative of the radial
potential (mainly in the case of the Woods-Saxon). Nevertheless, in equation 2.1,
no radial dependence is be expressed so that the solution to this simplified
single-particle Hamiltonian will reduce to that of a simple harmonic oscillator
with all the considerations due to the angular momentum and spin couplings.
The coupling of the spin and orbit term renders the angular momentum states no
longer eigenstates of the system. As a consequence, the total angular momentum
quantum number J = l + s needs to be used. The quantum numbers of the
system, which can be divided in spherical harmonics and a radial component
due to the symmetry of the potential, are the common radial quantum number
n, the orbital angular momentum l, the total angular momentum j and its
projection on the quantization axis mj . The single-particle energy has the
following expression [6]:

ϵn,l,j = − V0 + ℏω
(︃

2n+ l + 3
2

)︃
− Vso

ℏ2

2

(︃
j (j + 1) − l (l + 1) − 3

4

)︃
− VBℏ2l (l + 1)
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The Nuclear Shell Model

The principal quantum number N = 2n+ l is often introduced due to the
presence of the degeneracy. A state relative to a given principal quantum number
contains all possible combinations of the sum of n and l [6]:

N = 0, 1, 2, . . .
l = N ,N − 2, . . . , 1 or 0

n = N − l

2

The single particle wave function will consist of the product of the radial
part uH.O.

n,l with the coupling of the spherical harmonic functions Yl,mj
with the

spin component Xs,ms to the good quantum number j:

ϕi = ϕnljm =
uH.O.

n,l (r)
r

[︁
Yl,mj

(θ, ϕ) ⊗Xs,ms

]︁j
mj

The radial component will consist in the solution of the differential equation:

− ℏ2

2m
d2u(r)
dr2 +

[︃
l(l + 1)ℏ2

2mr2 + V0(r)
]︃

= ϵu(r)

The radial component of the wave function is shown in Figure 2.1 where the
dependence of the probability density is shown as a function of the principal
quantum number (top) and a combination of different angular momenta.

The Slater determinant is created by progressively filling the lowest energy
states generated by the potential. Figure 2.2 shows the energy levels when the
orbit and spin-orbit perturbations are added to a simple harmonic oscillator
potential. The produced states are degenerate as no dependence on the total
angular momentum mj is produced so that the degeneracy of each orbit is
2(j + 1).

An evident phenomenon arises: the presence of significant energy gaps
between some of the states. Given the ansatz of the non-independent particle
model, in some nuclei which correspond to filling the low lying states progressively,
remarkable stability properties should be observed. While the independent
particle model clearly fails on accounting for nucleon-nucleon interactions
(nucleons in a strongly interacting system such as the nucleus cannot be expected
not to interact), other aspects are also not considered. Protons are affected
by an additional Coulomb interaction, and the symmetry energy which favors
N = Z nuclei is also not present. These aspects can be dealt with by considering
a different potential for protons and neutrons and other considerations beyond
the scope of this introduction.

Moreover, the physical justification behind the strong spin-orbit coupling
in the nucleus is not clear since its introduction [8]. More recent developments
associate the importance of the three-body forces for the occurrence of the
so-called spin-orbit shell closures [12].

7



2. Background on the Theory of Nuclear Structure and Reactions

Figure 2.1: Neutron radial wave functions of different orbits for A = 208 and
Z = 82 with a Wood-Saxon potential. More central orbits are associated to low
values of the angular quantum number l. Figure adapted from reference [6].

2.1.2 The Interacting Shell Model

While the non-interacting model is able to describe well some experimental
evidence, such as the occurrence of magic numbers, the assumption of the
absence of interaction between particles is too broad for the description of many
characteristics of the nucleus. This interaction cannot be treated perturbatively
and can be strong enough to modify dramatically the orbits generated by the
mean-field. In particular, a model of non-interacting particles will not be able
to describe the transition between different nuclear states, which requires non-
diagonal terms in the Hamiltonian matrix. As a consequence, it is necessary to
introduce some interaction between the particles and to observe its effect on the
structure properties of the nucleus.

It is clear that the potential assumed in equation 2.1 represents an
approximation of the complex many-body potential:

V (r1, . . . , rA) =
A∑︂
i,j

V2b(ri, rj) +
A∑︂

i,j,k

V3b(ri, rj , rk)
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0 ℏω

1 ℏω

2 ℏω

3 ℏω

0s1/2 10.35

0p1/2 17.25
0p3/2 16.35

1s1/2 24.15
0d3/2 23.25

0d5/2 21.75

1p1/2 31.05

1p3/2 30.15

0 f5/2 28.65

0 f7/2 26.55

0g9/2 30.75

HO HO+ℓ2
HO+ℓ2+ℓ·s

Figure 2.2: Example of effective single particle energies from an harmonic
oscillator potential. The addition of the spin orbit coupling term l · s to the
harmonic oscillator well generates energy gaps which are associated to nuclear
shells.

In this expression, the three-body potential V3b can be thought of as necessary
due to the fact that nucleons are not elementary particles and have their own
structure due to their additional degrees of freedom. Nevertheless the idea of
a common potential remains powerful and it is possible to express the general
potential in equation 2.1.2 as the common potential V0 in equation 2.1 plus a
residual interaction potential U :

V (r1, . . . , rA) = V0(r, l · s, l2) + U(r1, . . . , rA)
where U(r1, . . . , rA) = V (r1, . . . , rA) − V0(r, l · s, l2)

Building upon the results of the previous section, one can express the
Hamiltonian as the sum of the single-particle components plus the residual
(effective) interaction U . At the same time, the solution |Ψ⟩ of the full
Hamiltonian can be expressed as a linear combination of the states |ϕ⟩ that are
the solution to the non-interacting shell model:

H |Ψ⟩ = (H0 + U) |Ψ⟩ = E |Ψ⟩ where |Ψ⟩ =
N∑︂

k=1
ak |ϕk⟩

9



2. Background on the Theory of Nuclear Structure and Reactions

It is possible to express the Hamiltonian in terms of the matrix elements in
the single-particle basis |ϕi⟩. The matrix will contain diagonal terms consisting
in the single-particle energies and non-diagonal terms introduced by U :

Hl,k = ⟨ϕl|H |ϕk⟩ =⇒ Hl,k = ϵkδl,k + ⟨ϕl|U |ϕk⟩

In practice, the diagonalization of this matrix will return new levels and new
states, which will be the solution of the interacting shell model. Considering a
simple two level system, the Hamiltonian matrix will be a 2 × 2 matrix with
terms H1,1, H2,2, and H2,1 = H1,2 [6]. Solving the eigenvalue problem, the two
energies of the mixed configuration will be separated by:

∆E1,2 =
√︂

(H1,1 −H2,2)2 + 4H2
1,2

In this case, the off-diagonal term has the effect of increasing the separation
in energy of the two levels. The term a2

1,2 expresses the amount of mixing
between the two original configurations or, more precisely, the overlap between
the solution of the single particle Hamiltonian and that of the interacting one:

a1,2 =
(︃

1 + H1,2

H1,1 − E1

)︃− 1
2

The effect of the H1,2 term is to increase the amount of the |ϕ2⟩ state in
|Ψ1⟩, thus increasing the mixing between the two configurations.

In practice, considering a system of n particles and many orbitals leads to
more involved calculations that need the introduction of angular momentum
algebra and other concepts for the derivation of one and two-body matrix
elements. Nevertheless, it is sufficient to know that, even in this more complex
case, it is always possible to express n-particle matrix elements in terms of their
one and two-body counterparts [6].

2.1.3 Effective Interactions

The derivation of a two-particle residual interaction, here defined with U , is not a
straightforward procedure. One of the reasons is that the interaction is strongly
dependent on the model space, opening the possibility of different procedures
for the definition of this quantity.

In particular, one type of approach consists in the so-called realistic
interactions. The intent is to derive U from the free nucleon-nucleon interaction
based on experimental evidence. They are often obtained by fitting data of pp
and pn scattering experiments such as phase shifts or polarization data. The
general shapes of these potentials are chosen to respect all symmetries such as
translation, time-reversal, or rotation.

While this procedure attributes the most physical significance to the
interaction, a number of problematic aspects emerge to hinder the overall results.
In particular, protons and neutrons interact within the nuclear medium and
not in the vacuum. This difference requires the introduction of a process called
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renormalization of the force. Additional aspects are introduced by the truncation
scheme, which reduces the dimension of the basis of shell-model calculations and
thus limits the number of correlations that can be introduced by nucleons outside
the valence space. The evidence of a non-inert core is called core polarization
and accounts for the excitation of nucleons not considered in the valence space.

Effective (phenomenological) interactions change the approach to the problem
by neglecting to pin down the physical significance. Two body matrix elements
and single-particle energies are treated as free parameters and fitted to reproduce
experimental data such as excitation energies. An example is the SDPF-U
interaction [10] developed by F. Nowacki and A. Poves to describe nuclei in the
sd− pf valence space.

It is often convenient to separate the contributions to the Hamiltonian into
two components: the monopole and multipole Hamiltonians [4]. The former
describes the spherical mean-field and is thus responsible for the global saturation
properties and for the evolution of the spherical single-particle energies. The
latter contains the terms which are suited to describe the pairing and other types
of correlation, such as quadrupole interaction.

The combination of effective interactions with large-scale shell-model
calculations has accompanied the experimental efforts in the nuclear structure
community [3].

2.2 Direct Reactions as a Probe of the Nuclear Structure of
a Nucleus

This section will focus on addressing the interplay between the physics of nuclear
structure and that of reaction dynamics. Colliding nuclei can undergo a multitude
of possible reactions and their physical modeling can vary significantly. In the
course of this work, only a few reactions which mainly occur at low energies will
be considered:

• Elastic reaction: The scattered fragment is deflected but retains the
same center of mass-energy. The final state of the colliding nuclei remains
unchanged after the collision. The study of this process is crucial for the
definition of the optical potential of the system.

• Inelastic reaction: The scattered fragment has a different center of mass-
energy. The collision causes the excitation to nuclear states in the colliding
nuclei. It is studied because it gives information on the nuclear structure
of the colliding nuclei, such as the spin and parity of the excited states.

• Pickup/Stripping: In a direct transfer reaction, a nucleon is added or
removed from an orbital of the colliding nuclei. The reaction can be
considered direct if the other nucleons can be considered spectators in the
process. They can be considered a probe of the nuclear structure of the
nuclei, as will be discussed in this section.

11



2. Background on the Theory of Nuclear Structure and Reactions

• Fusion evaporation: In this case, all nucleons contribute to the reaction.
This collision is central, and the two systems merge in a compound nucleus
populating high excitation energy states. Often the excitation energy of
the compound nucleus is high enough to permit the evaporation of particles
which is then followed by an internal decay via γ-ray emission.

In particular, this work will focus on the use of direct transfer reaction for
the study of the nuclear structure of 46Ar. The choice of this reaction is justified
by the possibility of extracting information on the nature of particular states by
measuring the cross-section for the population of energy levels of interest. To
first approximation, the transfer of one proton to the ground state of 46Ar will
leave all other nucleons inert to the reaction, and the probability of populating
different states of 47K will give information on the overlap between the ground
state of 46Ar and the excited states of 47K.

The interplay between reaction dynamics and the nuclear structure leads to
the concept of spectroscopic factors.

2.2.1 A Hint on Scattering Theory

Figure 2.3: Diagram of the geometry involved in the differential cross section.

The differential cross-section dσ/dΩ is defined experimentally as the
probability density function (PDF) related to the flux of scattered particles
by a scattering center (cf. Figure 2.3). The PDF is a function of the spherical
coordinates θ and ϕ. The differential cross-section integrated over a finite solid
angle ∆Ω can be experimentally thought as the ratio between the scattered
and incoming fluxes of particles where the former is measured by instruments
detecting particles over a finite solid angle ∆Ω [5, 9]:∫︂

∆Ω
dΩ′ dσ

dΩ′ = Detected scattered flux in ∆Ω
Incoming Flux

In reality, multiple scattering centers (nt ×A) are present in the area A hit
by the incoming flux; as a consequence, the number of detected scattered events
I is proportional to the incoming flux, as well as the density of scattering centers
nt:
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I = I0 nt

∫︂
∆Ω

dΩ′ dσ

dΩ′ (2.2)

In order to treat the differential cross-section from the perspective of quantum
mechanics, it is necessary to identify this observable starting from Schrodinger’s
equation. In relative coordinates, it is possible to work in the center of mass
frame of reference, neglecting the total kinetic energy part of the equation. The
Hamiltonian will include the relative kinetic energy T̂ and m will represent the
reduced mass (m = m1+m2

m1m2
)1:

ĤΨ = EΨ where Ĥ = T̂ +Hp̂ +Ht
ˆ + V (2.3)

where T̂ is the kinetic energy operator of the system, Hp̂ and Ht
ˆ the

Hamiltonians accounting for the internal degrees of freedom (ξ) of respectively
the projectile and the target and V the interaction potential between the two
nuclei.

In the most general case, all interaction potentials need to be computed as the
sum of all nucleon-nucleon interactions. However, the system is best described by
considering the colliding nuclei as separate entities in the Hamiltonians Ĥp, Ĥt

which contain part of this interaction potential: Ut, Up. In the case of the
shell-model framework, these two potentials will be described by the effective
potential used in the model.

The residual part of the interaction will describe the effective projectile-target
interaction potential V :

Vtot =
∑︂

{ij}ij ∈p,t

V (ri, rj) = Ut + Up + V (2.4)

For the purpose of this section, it is assumed that the solution ϕi, i ∈ {p, t}
to the nuclear Hamiltonian that describes the internal structure of projectile
and target is known:

(Ĥi − ϵi)ϕi = 0 where i ∈ {p, t}

The information contained in the equation represents the spectroscopic
properties of the nucleus, stripping all other components in the dynamic
equation 2.3 that describes the nuclear reaction.

It is convenient to combine in a single Hamiltonian Hp̂ +Ht
ˆ = Hα̂ and wave

function ϕtϕp = ϕα the projectile and target components. Since target and
projectile consist of two independent systems, ϕα is a direct product so that also
the total energy will be the sum ϵαp

+ ϵαt
= ϵα. Conversely, β will represent the

direct sum (product) of the final-nuclei Hamiltonians (wave functions).
Let Ψ0

α(ξ,k, r) be the solution to the homogeneous equation of the dynamic
system of non-interacting nuclei, function of the relative coordinate r and wave
vector k:

1Due to the translational symmetry of the system, the center of mass coordinates will only
generate an additional phase in the wave function
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(T̂ +Hα̂ − E)Ψ0
α(ξ,k, r) = 0

Since only the kinetic term T̂ is present, the solution takes the form of a
product of a plane wave between the relative motion component and the nuclear
wave function:

Ψ0
α(ξ,k, r) = ϕα(ξ)eikα·r and E = Ekα

+ ϵα = ℏ2k2
α

2mα
+ ϵα

where r represents the relative coordinate r1 − r2 and is contained in the
plane wave solution (eik·r).

Since the interest behind this modelization of a nuclear reaction lies on a
specific reaction channel β described by two specific reaction fragments with the
wave function ϕβ , it is necessary to multiply both sides of equation 2.3 by ϕ∗

β

and integrate over all the internal coordinates ξ. Rearranging the equation, the
result does not have a trivial solution:

(E − ϵα − T̂α)ψβ(rα) =
∫︂
dξ ϕ∗

β V Ψα where ψβ(rα) =
∫︂
dξ ϕ∗

βΨα (2.5)

The label β indicates the reaction channel and is equal to α in the case of
the elastic reaction channel.

It is often useful to formulate the equation in terms of Green’s functions G0,
which are defined as the solution to the modified version of equation 2.5:

(E − ϵα − T̂α)G0
β(kβ , r, r′) = δ(r − r′)

The final solution will have the form of the sum of the homogeneous wave
plus the Green’s integral [5]:

ψβ(rα) = eikβ ·r δαβ +
∫︂
dr′ G0

β(kβ , r, r′)
(︃∫︂

dξ ϕ∗
β(ξ)V Ψα(r′, ξ)

)︃
(2.6)

It is possible to show, using the Fourier transform [5], that the Green’s
function takes the form of equation 2.7.

G0
β,± = − m

2πℏ2
e±ikβ |r−r′|

|r − r′|
(2.7)

So that, explicitly, equation 2.6 can be expressed in terms of the outgoing
Green’s function:

ψβ(rα) = eikβ ·r δαβ + m

2πℏ2

∫︂
dr′ e

ikβ |r−r′|

|r − r′|

(︃∫︂
dξ ϕ∗

β(ξ)V Ψα(r′, ξ)
)︃

(2.8)
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In the case of short range interactions, an asymptotic expression of the Green’s
function in equation 2.9 can be derived, keeping in mind that: |r − r′| −−−→

r→∞
r − r′ cos θ and 1/|r − r′| −−−→

r→∞
1/r:

G0
β,± −−−→

r→∞
− m

2πℏ2
eikβr

r
eik′

β ·r′
(2.9)

where k′
β indicates a vector of the same magnitude of kβ but with direction

parallel to r. Equation 2.8 in a region far from the potential, takes the following
asymptotic form [5]:

ψβ(rα) = eikβ ·r δαβ + m

2πℏ2
eikβr

r

∫︂
dr′ e−ik′

β ·r′
(︃∫︂

dξ ϕ∗
β(ξ)V Ψα(r′, ξ)

)︃
(2.10)

It is now possible to define the well known scattering amplitude as the integral
part of equation 2.10:

fαβ(θ) = − m

2πℏ2

∫︂
dr′ eik′

β ·r′
(︃∫︂

dξ ϕ∗
β(ξ)V Ψα(r′, ξ)

)︃
(2.11)

Up to this point, only projections of the solution Φα on the possible final
states have been considered. The final wave function is the combination of
all these overlaps that should generate, thanks to their completeness, the full
solution. In the asymptotic form, the wave function should take the following
form:

Ψα =

⎧⎪⎨⎪⎩
ϕαe

ikα·rα + ϕαfα,α(θ) eikα·rα

rα
elastic∑︁

α′ ̸=α ϕα′fα′,α(θ) eik
α′ ·rα

rα
inelastic∑︁

β ϕβfβ,α(θ) eikβ ·rβ

rβ
transfer

(2.12)

The overlaps relate to different possible reaction channels.
These results show that the outgoing wave function is a superposition of the

plane wave, with multiple spherical waves, each with its own proportionality
factor f that represents the scattering process and a reaction channel each.

2.2.2 The Differential Cross Section

Equation 2.2 represents the experimental cross-section; the connection with
the theoretical modelling is related to the wave functions through fluxes of
probability currents J:

dσ

dΩ = dΦ(Jout)
|Jinc|dΩ where J = ℏ

2mi (Ψ
∗∇Ψ − Ψ∇Ψ∗) (2.13)

With a substitution of the incident plane wave solution and the outgoing
spherical solution, it is possible to obtain:
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Jinc = ℏk
m

Jout = ℏk
m

+ ℏk
m

|f(k, k′, θ)|2êr + O
(︃

1
r3

)︃
So that far away from the scattering center, the outgoing flux of probability

in the solid angle dΩ is asympthotically:

dσ(Jout) = |f(k, k′, θ)|2 ℏk
m
dΩ + O

(︃
1
r

)︃
The first order of the expansion, according to equation 2.13 returns an elegant

expression of the cross section in terms of the function f .

dσ

dΩ = k′m

m′k
|f(k, k′, θ)|2 (2.14)

In this expression, primed variables represent the values after the reaction
process, relative to the outgoing flux. Note that ℏk/m is the velocity and that
for an elastic collision, where the mass and velocity norm remains the same after
the collision, the factor in front of f elides.

As a consequence, every reaction channel will be characterized by its own
scattering amplitude f . It is trivial to generalize equation 2.14 to express the
differential cross section of the reaction channel α → β [5]:(︃

dσ

dΩ

)︃
α→β

= mαkβ

mβkα
|fβ,α(k, k′, θ)|2 (2.15)

The connection between the Hamiltonian of the many-body nuclear system
and the physical observable of the differential cross-section is now evident. It is
clear that the observable itself is strongly dependent, not only on the kinematic
conditions of the two nuclei but also on the interaction potentials and thus on
the nuclear structure of the target and projectile nuclei.

In most experiments, the angular momentum projection is unknown, meaning
that no beam and target polarization Mp,Mt is present and no polarization
measurement of the reaction fragments Mβ1 ,Mβ2 is performed. The overall cross
section needs to be averaged over all possible angular momentum projections:

dσ

dΩ = 1
(2Jp + 1)(2Jt + 1)

∑︂
Mp,Mt,Mβ1 ,Mβ2

(︃
dσ

dΩ

)︃
α→β

(2.16)

2.2.3 The Optical Potential

In the shell-model picture, nucleons generate a common mean-field which is
contained in the nuclear Hamiltonian Ĥα. The residual of this interaction, as
stated in equation 2.4, constitutes the potential V which is explicitly included
in equation 2.3. Analogously to this idea, it is possible to imagine that the
colliding nuclei will interact via a common potential U(rα) before any exchange
of nucleons occurs. This central potential will depend only on the relative
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coordinates of the nuclei and can be optimized, in this approximation, as the
potential which best describes the elastic scattering process of the nuclei.

The central potential is unable to account for any nuclear structure in the
colliding nuclei so that no other reaction channel can exist if the residual potential
V is omitted. In other words, a direct reaction can be thought of as the result
of perturbations in elastic scattering theory.(︂

T̂ +Hα̂ + Uα − E
)︂

Ψα = (U − V ) Ψα (2.17)

Considering the homogeneous version of equation 2.17 by setting V = 0 and
the fact that the central potential Uα only depends on the relative coordinate,
it is possible to separate the wave function in a component that accounts for
the degrees of freedom (ϕα) and another component which describes the relative
motion χα(rα), solution to the equation:(︂

T̂ + Uα − Eχ

)︂
χα(rα) = 0 (2.18)

The wave function of the initial state α has been expressed in terms of the
components of the reaction channels by means of the overlap and reconstructed
as the sum of all possible channels in equation 2.12. Consequently, part of the
incident flux will be taken up by inelastic and transfer channels. Nevertheless,
considering a hermitian Hamiltonian in equation 2.18 that, in turn, means a real
potential Uα, it is impossible to correctly match the elastic channel as wished
from the expectations of the potential. The way to reduce the flux is to consider
the potential Uα which will generate some absorption of the incoming flux which
will then be distributed to the various inelastic and transfer-reaction channels.

Since the relative-motion Schrödinger equation 2.18 presents a well-behaved
central potential, it is possible to separate the solution in a spherical harmonic
Y m

l (θ, ϕ) and radial component fl(kα, rα) [5]:

χα(rα) = 4π
kαrα

∑︂
l,m

ileiσlfl(kα, rα)Y
∗m

l (r̂α)Y m
l (kα) (2.19)

An angular-momentum dependent phase shift eiσl has been introduced to
account for the Coulomb potential that, due to its asymptotic decay of 1

r , does
not decay fast enough at r → ∞ to justify the asymptotic plane wave expansion.
The expansion in the case of the Coulomb potential can be shown to introduce a
non-zero phase shift. However, the scattering amplitude can be sum to the elastic
component of the expansion. The radial component is defined as the solution to
the following equation which now includes also the angular momentum quantum
number l: (︃

ℏ2

2mα

(︃
d2

dr2 − l(l + 1)
r2

)︃
− Uα + Eα

)︃
fl(kα, rα) = 0

A common parametrization of the potential U is given by the sum of a real
and imaginary Woods-Saxon potential:
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f(r;R, a) = 1

1 + e
r−RV

aV

U(r) = V f(r;RV , aV ) + iWf(r;RW , aW )

where the parameters V,RV , aV ,W,RW , aW are defined (chosen) as those
that best describe the elastic reaction channel in a given system of nuclei and at
the proper reaction energy. It is also possible to formulate a realistic potential
based on first principles of the nucleon-nucleon interaction and the overall nuclear
model.

Similarly to the shell-model picture, the spin-orbit coupling is also expected
in the mean potential and in the relative motion wave function χα. The presence
of this additional term complicates the treatment of the optical potential:

Uso(r)(2 l · s) = (Vso + iWso)
(︃

ℏ
mαc

)︃2 1
r

df(r;Rso, aso)
dr

(2 l · s)

The introduction of the scalar product of the spin and angular momentum
operators complicate the radial expression. In practice, it is necessary to couple
the spherical harmonics in equation 2.19 to the spin wave function, since the
new good quantum number is j = l + s:[︁

Yl(θ) ⊗X1/2(σ)
]︁m

j

2.2.4 DWBA Approximation and Spectroscopic Factors

Recalling equation 2.17, and integrating over the internal degrees of freedom ξ
analogously to equation 2.5, the non-homogeneous version of the optical potential
equation can be obtained. Thanks to the property of the potential Uα which
does not depend on the internal degrees of freedom, it is possible to express the
equation as follows:

(E − ϵα − T̂α − Uα)ψβ(rα) =
∫︂
dξ ϕ∗

β (Vα − Uα) Ψα (2.20)

This equation can be, once again, solved by means of Green’s function
procedure. However, in this case, no analytical solution of the radial wave
function can be computed due to the presence of the potential Uα.

Defining χα as the relative motion solution to the homogenous version of
equation 2.20, that is setting Vα − Uα = 0, the projected wave function ψα can
be expressed in therms of the Green’s function associated to equation 2.20 as:

ψα = χα +
∫︂
dr′ Gα(r, r′)

∫︂
dξ ϕ∗

α (Vα − Uα) Ψα (2.21)

It is possible to show that the asymptotic expression of the outgoing Green’s
function G+ far from the scattering center has the following form [5]:
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G+
α (r, r′) −−−→

r→∞
− m

2πℏ2
eikαr

r
χ−

α (k′
α, r′) where

χ−
α (k′

α, r′) = 4π
kαr′

∑︂
l,m

i−lfl(kα, r
′)Y ∗ m

l (r̂′)Y m
l (k̂

′
α)

Which substituted in equation 2.21 gives the following asymptotic expres-
sion [5]:

ψα = χ+
α − mα

2πℏ2
eikαrα

rα

∫︂
dr′ dξ χ∗ −

α ϕ∗
α (Vα − Uα) Ψα

From equation 2.10, it is known that χ+
α , which is the solution to the radial

component of the Hamiltonian with the optical potential Uα, can be expressed
as the overlap with the solution to the free Hamiltonian (Uα = 0):

χ+
α (kα, rα) −−−→

r→∞
− mα

2πℏ2
eikαrα

rα

∫︂
dr′ eik′

α·r′
Uα(r′)χα(r′)

The scattering amplitude for the channel α → β can be divided into two
terms:

fα,β(θ) =
(︃
mα

2πℏ2

∫︂
dr′ eik′

α·r′
Uα(r′)χα(r′)

)︃
δα,β

+
(︃
mα

2πℏ2

∫︂
dr′dξ χ∗ −

β ϕ∗
β (Vβ − Uβ) Ψ+

α

)︃
The DWBA approximation consists in considering the incoming initial wave

function Ψ+
α as the product of the incoming radial function (distorted by the

optical potential) and the nuclear structure component of the wave function:

Ψ+
α ≈ ϕα(ξ)χ+

α (kα, rα)

This approximation can be understood by considering the exact wave function
Ψα as the linear combination of the eigenstates of the Hamiltonian that only
includes the optical potential Uα, which are a complete set. The integral in
bra-ket notation contains the overlap of the basis states with Ψα:

|Ψα⟩ =
∑︂

γ

⟨ϕγχγ |Ψα⟩ |ϕγ χγ⟩ (2.22)

Since the elastic channel is expected to possess the most significant overlap
with the original wave function Ψα, to a first approximation, the coefficient
⟨ϕαχα|Ψα⟩ should be the most important one, thus justifying the approximation.

In order to compute the differential cross section in the case of the DWBA
approximation and in the case of the transfer channel, it is necessary the
evaluation of the following integral:
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2. Background on the Theory of Nuclear Structure and Reactions

∫︂
dr′dξ χ∗ −

β (kβ , rβ)ϕ∗
β(ξ) (Vβ − Uβ)ϕα(ξ)χ+

α (kα, rα) (2.23)

One of the simplest examples is the (d, p) transfer reaction. The following
calculations will focus on this more straightforward case due to the presence of
the structure-less proton. Nevertheless, it is possible to generalize the procedure
to the (3He,d) reaction considering the deuteron optical potential and structure.
Figure 2.4 shows a conceptual schematic of the transfer reaction, where the
intrinsic degrees of freedom and relative coordinates are shown.

46Ar

3He

2H

47K

R
r

R

r’

R’

ξ’

ξ

ξ

ξ’

Figure 2.4: Schematic representation of the transfer reaction channel, in the
specific case of the pickup reaction of interest. The proton is transferred to the
inert 46Ar core. In green is depicted the proton, in red the deuteron core and in
blue the 46Ar core.

In the case of a (d, p) reaction, the potential Vβ is the sum of that of the
proton and neutron and the proton and the final channel with A nucleons:
Vβ = Vpn + VpA. The most common argument is that the potential VpA should
have the same effect of the optical potential Up and that the difference of the
remaining terms is approximately zero:

VpA − Up ≈ 0 (2.24)

The structure of the initial (with JA and MA) and final nuclei (with JB and
MB) takes the form of:

ϕα = ϕMA

JA
(ξ)ϕd(r)Xµd

1 (σp, σn)
ϕβ = ϕMB

JB
(ξ, rn)Xµp

1/2(σp)

Here ξ refers to the nucleon coordinates, r the relative distance between
neutron a proton in the deuteron radial wave function ϕd, X denotes the spin
wave functions, and σi the proton and neutron spin coordinates. With the
approximation of equation 2.24, the integration over the internal coordinates is
independent of the relative ones, and equation 2.23 is significantly simplified.

Some considerations are necessary to perform the integration over the internal
degrees of freedom between the nucleus before and after the transfer. The integral
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Direct Reactions as a Probe of the Nuclear Structure of a Nucleus

over the internal degrees of freedom, extracted from the rest of the integration
will have the following expression:∫︂

dξ ϕ∗MB

JB
(ξ, rn)ϕMA

JA
(ξ) (2.25)

The following step requires finding a way to express the nucleus after the
transfer relative to the one before. This can be done with the so-called coefficients
of fractional parentage β that can be used to obtain antisymmetric many-body
states for identical particles [5, 9] here obtained with the operator A. In particular,
the A bodies normalized antisymmetric wave function can be obtained with a
linear combination of the couplings of the A− 1 normalized antisymmetric wave
function coupled to the single body one:

ϕMB

JB
(ξ, rn) =

∑︂
A′,j,l

βj,l(A+ 1, A′) A[ϕJA′ (ξ) ⊗ φn,l,j(rn)]MB

JB

This expression consists in the so-called parentage expansion and is directly
linked with the shell-model framework. In particular, the intent is to expand
the nuclear wave function of a nucleus in terms of all possible coupling of the
single-particle shell-model states with the core nucleus. In the specific case of
the transfer of interest, it consists of an expression of the wave function ϕβ of
47K as the sum of all possible single-particle states coupled to the wave function
ϕα of 46Ar.

The presence of A represents the antisymmetrization operator and β the
coefficients of fractional parentage, whose value depends on the structure of
the nuclear wave function. The coupling is, as usual, carried out with the
Clebsch–Gordan coefficients.

[ϕm1
j1

⊗ φm2
j2

]m3
j3

=
∑︂

m2 m2

Cj1 j2 j3
m1 m2 m3

ϕm1
j1
φm2

j2

and φm
n,l,j represents the shell-model orbit:

φm
n,l,j(rn, σn) =

[︁
φ′

n,l(rn) ×X1/2(σn)
]︁m

j
and φ

′ ml

n,l (rn) = un,l(rn)Y ml

l (rn̂)

As a consequence, the overlap integral 2.25 reduces to an expression of the
angular momentum coupling coefficients, the amplitude βj,l(A− 1, A) and the
orbit of the transferred nucleon [5]:

∫︂
dξ ϕ∗MB

JB
(ξ, rn)ϕMA

JA
(ξ) =

(︃
A+ 1

1

)︃− 1
2∑︂

j,l

βj,l(A+1, A) CJA j JB

MA mj MB
φ

∗mj

nlj (rn, σn)

The binomial coefficient is introduced to account for the identical particle
formalism that has not been introduced in the course of this introduction. The
coefficient 1 stands for the transfer of a single nucleon. In the case of neutron
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2. Background on the Theory of Nuclear Structure and Reactions

and protons treated as distinguishable particles, the binomial coefficients need
to be substituted with the product of two binomial coefficients for protons and
neutrons. In this calculation, the strong assumption is that the core nucleons
are not affected by the transfer reaction. The square of the coefficient β is often
referred to as the spectroscopic factor Slj .

S
1
2
lj = βlj =

(︃
A+ 1

1

)︃ 1
2
∫︂
dξ drn, ϕ

∗MB

JB
(ξ)[ϕJA′ (ξ) ⊗ φn,l,j(rn)]MB

JB

It consists of the integral of the overlap between the two wave functions, that
of the final state and the initial state coupled to the single-particle orbit where
the nucleon will be transferred.

Substituting the overlap integral in the DWBA amplitude (equation 2.23), it
is possible to obtain the final cross section according to equation 2.15.(︃

dσ

dΩ

)︃
JAMAmd→JBMBmp

= mαkβ

mβkα
|fβ,α(k, k′, θ)|2

where mα,β represent the reduced masses of the system. Moreover, the
amplitude is the result of the angular momentum couplings:

fβ,α|JAMAmd→JBMBmp
=∑︂

l,j

CJA j JB

MA mj MB
C1/2 1/2 1

mp mn md
Cl 1/2 j

ml mn mj

(︂
il(2l + 1) 1

2 S
1
2
lj Bml

l

)︂
At last, the coefficient B contains the relative motion component χα,β , the α

index will stand for the deuteron and β for the proton. In this case, due to the
simplification introduced by equation 2.24 it has the following form:

Bml

l =i−l(2l + 1)− 1
2
mβ

2πℏ2

×
∫︂
drn drp χ

∗−
p (kp, rp)φ∗ml

nl (rn)Vnp(rn − rp)χ+
d (kd, rd)ϕd(rn − rp)

If the spin direction is not measured, as in the case of this experiment, the
measured cross section is averaged over all possible M components, as introduced
in equation 2.16 [5]:

dσ

dΩ = 1
3(2JA + 1)

∑︂
MBmpMAmd

(︃
dσ

dΩ

)︃
JAMAmd→JBMBmp

= 1
2
mαkp

mβkd

2JB + 1
2JA + 1

∑︂
l m ml

Slj |Bml

l |2
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Direct Reactions as a Probe of the Nuclear Structure of a Nucleus

This expression divides the cross-section into two terms: the spectroscopic
factor S dependent exclusively on the nuclear structure of the colliding nuclei
and another term B which depends on the relative motion and the shape of the
overlap between the populated states. Due to the presence of the Clebsch-Gordan
coefficients, the selection rules for a reaction consist in the angular momentum
conservation (JB = JA + l + 1

2 ) and the parity conservation (πB = πA (−1)l).
The part which includes B contains a strong dependence on the transferred

angular momentum l. A more in-depth discussion of the effect of the angular
momentum transfer in the specific case of this experiment will be discussed in
Chapter 6.

The spectroscopic factor S, on the other hand, represents a multiplication
factor of the overall cross-section and in the shell-model picture represents the
number of particles occupying a given j shell.

2.2.5 The Quenching of Spectroscopic Factors

The previous results can be generalized to the case of nucleon adding or removal.
In practical terms, the spectroscopic factor S represents a multiplicative factor
in front of the single particle (SP ) differential cross section [1]:

dσ

dΩ = gC2Si
dσSP

dΩ
The factor C consists of an additional isospin coefficient and is set equal

to 1 in most cases [13] while the coefficient g represents the statistical factor
dependent on the degeneracy of the state of interest labeled by i, which is set to
(2j + 1) for nucleon addition and 1 for the removal.

The expectation, in the shell-model framework, is that the sum of all single-
particle excitations with the same configuration should add up to the total
degeneracy of the orbital. This expectation is contained in the sum rule, where
adding all vacancies and occupations should amount to a factor of 2j + 1. In
particular, the sum of all spectroscopic factors to a state of a given j value can
be expressed as [1]:

(2j + 1)Nj =
∑︂

j

(2j + 1)C2S+
j +

∑︂
j

C2S−
j

In the previous expression, the spectroscopic factors for nucleon adding (S+)
and removing (S−) have been differentiated.

The total degeneracy 2j + 1 is modulated by the factor Nj that should be
conceptually equal to one.

Extensive experimental studies have been performed for the study of this
factor N . The investigation was motivated by the observed quenching of
the single-particle strength in all experimental data when compared to the
independent-particle shell-model limit.

In particular, Figure 2.5 presents the observed single-particle strength
compared to the shell-model limit as a function of the separation energy
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2. Background on the Theory of Nuclear Structure and Reactions

Figure 2.5: Ratio of measured single-particle strength over the independent-
particle shell-model prediction as a function of the asymmetry of separation
energy of protons and neutrons for argon isotopes. Experimental data of neutron-
transfer (p,d) reactions (in black and blue) are compared with results from
intermediate-energy knockout reactions (in red) [7, 11]. The green intervals
represent the total experimental and theoretical uncertainty relative to the data
shown with the black marker. Figure adapted from reference [1].

asymmetry between protons and neutrons. The data, consisting of transfer
(p,d) reactions in some argon isotopes, is compared to intermediate-energy
knockout reactions.

The quenching phenomenon reduces the single-particle strength by 30%−40%
compared to the shell-model prediction and is a ubiquitous feature of all
experimental data. The general consensus is that the cause is correlations
not accounted for in the model [1].

2.3 Conclusions

Spectroscopic factors and, in general, direct reactions appear as a powerful
tool for the investigation of the nuclear structure of a nucleus. The underlying
theory combines the reaction dynamics with the information on the nuclear
structure, which requires the introduction of the spectroscopic factors. These
coefficients cannot be considered observables directly, and it is their combination
with nuclear models that allow one to extract physical insight. In the case of the
current work, they are key elements to investigate the proton component of the
46Ar wave function, which has been shown to present problematic aspects from
the point of view of shell-model calculations [2]. This aspect will be discussed in
the next chapter in subsection 3.2.3
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Chapter 3

The problem of transition
probabilities in 46Ar
The evolution of the shell closure far from the so-called valley of β stability is an
essential element to test our understanding of the nuclear structure properties
and the occurrence of correlations in the shell-model picture of the nuclear
many-body system.

The study of a shell closure is not a simple matter as there exists no direct
observable related to a shell gap. Nevertheless, a shell gap can manifest itself and
become evident from many observables. A good indication of a significant gap
can be given by binding energies that are directly related to nucleon separation
energies. A nucleus featuring a closed-shell configuration is expected to present
high nucleon-removal energies when compared to an open-shell configuration. A
sharp increase in binding energy along an isotopic (or isotonic) chain indicates
that a shell closure has been reached.

Another indication of a substantial closed-shell configuration is given by
transition probabilities. In this case, the configuration does not allow for strong
correlations between nearly energy-degenerate orbitals, and the only possibility
for nucleons is to jump the shell gap in order to produce an excited state. This
generates a reduced overlap between the wave functions of the excited and ground
states, which, in turn, translates to a reduced transition probability between the
two states. On the other hand, highly correlated states feature many different
combinations of configurations which translate to a significant overlap between
the states and thus a large transition probability. The comparison between the
excitation energy value of the 2+

1 state or the transition probability and the
systematic values of nearby isotopes is a complementary picture to the binding
energy study for the evolution of a nuclear shell closure.

This chapter will describe how the study of the evolution of the N = 28
shell closure led to the discovery of nuclear structure properties at odds with
theoretical models for 46Ar. A brief introduction on the current knowledge of
this neutron shell closure will be followed by a more in-depth picture from the
nuclear structure point of view in the framework of nuclear models.

Figure 3.1 shows the landscape of the current nuclear chart with an insert on
the particular region of 46Ar, located in the neutron-rich side of the β stability
valley.
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The N=28 shell evolution

3.1 The N=28 shell evolution

It is well known that the nearby N = 20 and N = 28 shell closures differ
significantly both in nature and robustness.

On one side, the N = 20 gap is delimited by orbitals of different parities
(d3/2 below, positive and f7/2 above, negative), which, together with sub-shell
gaps in Z = 14, 16, hinders the onset of quadrupole correlations and generates
stability to the removal of up to five protons [34].

On the other hand, the N = 28 separates orbitals of the same parity and
experimental observables hint at a quick collapse of the gap with the removal of
only a few protons [33].

In particular, this rapid breakdown of the shell gap is correlated experimen-
tally by an enhancement of typical collective features not far from the doubly
magic 48Ca isotope that translate into reduced quadrupole excitation energy
(E(2+)) and high transition probabilities (B(E2)).

In particular, studies on the nuclear structure of 44S associate this isotope
with the onset of collectivity, pointing to a ground state mixed by spherical
and deformed configurations. These considerations arise from large measured
transition probabilities and point to a deformed ground state[14, 32]. Further
information was provided by the decay of the isomeric 0+

2 level [8] and its
spherical nature, in contrast with the prolate nature of the ground state. Further
investigation [4] led to the discovery of other low-lying states that are understood
as combinations of deformed and spherical configurations.

The 46Ar isotope features a relatively high excitation energy of the first 2+

state, offering a first hint of the presence of the shell gap. A further indication
is given by neutron knockout reactions that feature small cross sections for
the population of the 3/2− state in 45Ar [10], signaling an empty νp3/2 shell
above N = 28. Nevertheless, other studies [11, 29] performed with direct (d,p)
reactions suggest a progressive erosion of the shell gap. Further studies were
performed aiming at characterizing the shell closure in this isotope via mass
measurement and transition probabilities and will be discussed in detail in the
dedicated subsections (3.2.3 and 3.2.1).

Other evidence of the evolution of the shell closure can be found in the
lowering of the energy of the 0+

2 state in 46Ar [24] at 3695 keV to only 1365 keV
in 44S [16].

3.2 The case of 46Ar

Various considerations have been made in the literature regarding the nuclear
structure of this isotope, in particular, because it sits on the edge between magic
and more collective nuclei. Many experiments and theoretical considerations
focused on the study of the neutron component of the wave function in order to
gain information on the neutron shell gap by means of knockout and transfer
reactions (subsection 3.2.2) and mass measurements aimed at the study of
neutron separation energies (subsection 3.2.1). These studies present, in general,
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3. The problem of transition probabilities in 46Ar

good agreement with theoretical predictions, proof of the ability of the interacting
shell model and the various effective interactions developed for the sd and pf
major shells to describe observables in this region.

On the other hand, transition probabilities are also significant for the study
of the evolution of the shell closure. Measurement performed with Coulomb
excitation methods (subsection 3.2.3) revealed a surprising discrepancy with
the shell-model prediction that points at a sharp increase of the B(E2) value
in correspondence of 46Ar along the isotopic chain. The experimental data,
differing by a factor of more than two, features a drop in correspondence to the
N = 28 shell closure. Studies on the cause of this inconsistency have pointed out
that something needs to be understood on the proton component of the wave
function and will be explained in more detail in the following sections.

3.2.1 Neutron Separation Energies

The neutron separation energy is strongly correlated to the shell gap. When
compared to other isotopes in the same region, a deeply bound nucleon will be
associated with the presence of a shell closure and vice-versa.

Neutron separation energies consist of the comparison of the mass of a given
isotope with respect to the lighter isotope. As a consequence, the comparison of
the mass of 46Ar with that of the nearby 47Ar (45Ar) isotope constitutes a direct
indication of the energy necessary to add (remove) one neutron to (from) the
ground state of 46Ar. This comparison is able to probe the neutron component
of the wave function directly and is thus closely correlated with the N = 28 shell
gap.

If the pairing interaction were not present, this comparison would be sufficient.
However, due to the significant effect of this interaction, a staggering is always
observed in the binding energy trend of an isotopic chain, where odd nuclei show
a decrease in binding energy if compared to even nuclei. In order to circumvent
this effect, it is possible to remove it by considering the two-neutron separation
energy. Measuring the mass excess (ME) of isotopes separated by two neutrons
(with mass MEν), the two-neutron separation energy S2n is defined as:

S2n(Z,A) = 2 ·MEν +ME(Z,A− 2) −ME(Z,A)

The previous expression aims at removing the pairing contribution to the
mass trend but introduces another strong dependency caused by the proton-
neutron asymmetry in the mass formula (liquid-drop model). As a consequence,
a progressive drop in the previous expression of S2n is expected in the progression
towards neutron-rich nuclei that combines with the sudden decrease in value as
a shell closure is reached. The trend of S2n for exotic nuclei is not always of
straightforward interpretation due to these aspects [19].

Another observable related to mass measurement can be considered [3]: Dn,
defined as a function of the one-neutron separation energy Sn:

DN (Z,A) = (−1)N+1 [Sn(Z,A+ 1) − Sn(Z,A)]
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The case of 46Ar

This parameter (Dn) is expected to oscillate due to the pairing interaction,
while a sudden increase in value would be indicative of a shell gap. In the
shell-model picture, it can be understood as the progression of binding energy
as a shell is filled with neutrons at different Jz values.

Figure 3.2: Trend of the parameter Dn along various isotopic chains, figure
adapted from reference [19]. The graph indicates a large energy gap in 46Ar
which fades with the removal of two protons in the sulfur isotopes (left panel).
Shell-model predictions with the SDPF-U effective interaction appear in close
agreement with experimental data (right panel).

Two recent mass measurements of neutron-rich argon isotopes have been
performed at the National Superconducting Cyclotron Laboratory at Michigan
State University [19] and at ISOLDE/CERN [21]. Figure 3.2 shows the results
of the parameter Dn in the case of the argon isotopic chain in comparison with
some other significant nearby chains.

In particular, while the expected staggering is present, the most significant
feature is the prominent increase of Dn for N = 28 that hints at a considerable
shell gap in the case of the double magic 48Ca, as well as 50Ti (+2p) and 46Ar
(−2p). The removal of two more protons causes the N = 28 energy gap to fade,
as shown for the sulfur isotopic chain, pointing to 46Ar as the most neutron-rich
even semi-magic isotope located along the N = 28 shell closure.

Shell-model calculations performed with the SDPF-MU [35] and SDPF-
U [23] interactions are in close agreement with the experimental data, showing a
remarkable precision in the prediction of the shell gap in 46Ar.

The SDPF-U has been developed to suit calculations in the sd− pf valence
space. It is based on the phenomenology around the N = 28 shell closure and its
weakening far from the stability and has been shown to predict with remarkable
consistency many observables in the region. The authors of reference [23] remark
that, in the development of the interaction, special attention was dedicated to
the vanishing of the shell closure and on the evolution of the splitting of the
1/2+ and 3/2+ states in neutron-rich isotopes, hence the reason behind its use
in this work.
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3. The problem of transition probabilities in 46Ar

3.2.2 Transfer and Knockout Reactions

Neutron transfer and knockout reactions have been both performed for 46Ar.
In particular, the knockout reaction was performed at Coupled Cyclotron

Facility at the National Superconducting Cyclotron Laboratory at Michigan
State University [10]. The first indication of the shell closure persistence consists
of the small observed spectroscopic factor, amounting to 0.2(2) for the p3/2
orbit. The authors deduce a spectroscopic factor of 4.9(7) for the population
of the ground state of 45Ar, in agreement with shell-model calculations with a
valence shell dominated by the f7/2 state.

The neutron transfer reaction was performed at GANIL with the MUST
detector [12]. The authors inferred spectroscopic factors in full agreement with
the shell-model predictions, providing further confirmation of the presence of the
shell gap and pointing at a quenching of the p and f orbit splitting as the effect
responsible for the weakening of the N = 28 gap. In particular, the spectroscopic
factor relative to the state at 1791 keV (mainly f7/2) amounts to 0.17 and can
be compared to the ground state (mainly p3/2: 0.60) and the first excited state
at 1184 keV (mainly p1/2: 0.93).

While the interest has been mainly focused on the neutron component of
the wave function, as previously anticipated, the discrepancies start to arise in
observables which are characterized by a strong contribution from the protons.
The following chapters will focus on these cases, which offer the justification of
the experiment described in this work.

3.2.3 Electromagnetic Transition Probabilities

The reduced-transition probability B(Rl) between two states is related to the
matrix elements that contain the overlap between initial and final state (α and
β) by means of the electromagnetic operator Ω̂lµ:

B (Rl, Jα → Jβ) = 1
2Jα + 1

∑︂
MαMβ

⃓⃓⃓⟨︂
β
⃓⃓⃓
Ω̂lµ(R)

⃓⃓⃓
α
⟩︂⃓⃓⃓2

Where R stands for electric (E) or magnetic (M), Mα and Mβ the nuclear
angular momenta projections, and Jα and Jβ the total angular momenta. The
reduced transition probability B(Rl) is in turn related to the actual transition
probability Tfi (which also corresponds to the inverse of the lifetime of two
states) by the following expression [15]:

Tfi(l;R) = 8π(l + 1)
l[(2l + 1)!!]2

k2l+1

ℏ
B (Rl, Ji → Jf )

The expression depends on the energy of the emitted photon due to the
wave-vector magnitude k and on the angular momentum l. In the case of an
electric quadrupole transition probability, the explicit form for the equation is
the following:

T (E2) = 1.223 · 109E5B(E2)
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The case of 46Ar

Where the quadrupole reduced transition probability (B(E2)) is expressed
in e2fm4, and the energy E is in MeV.

From the definition of the matrix element, it is clear that both protons
and neutrons participate in the transition, and only in particular cases, the
approximation of a transition due only to protons or neutrons is effective. In
the independent particle shell-model picture, the transition between two states
is ascribed to the promotion of one nucleon from one orbit to another. In this
simplified case of transition between single-particle states, the overlap can be
computed in a simplified model to obtain the so-called Weisskopf estimates.
These values offer insight into the nature of a nuclear transition when compared
to values measured or calculated with more sophisticated models. In fact, they
can be considered an assessment of the degree of collectivity of a given state,
since the occurrence of more correlation will significantly increase the transition
probability when compared to the single-particle case. Generally, a high value
of the ratio between the measured transition probability and the Weisskopf
estimate is indicative of a collective nature.

The analysis of the trend of transition probabilities along isotopic chains is a
powerful insight into the evolution of the shells, with a sharp decrease in the
case of a shell closure.

Transition probabilities are not a direct observable but can be extrapolated via
two main methods: Coulomb excitation measurements and lifetime measurements.
Each experimental methodology is affected by its own difficulties and advantages.
Nevertheless, the duality and the correspondence between the two methodologies
allowed the exploration of this physical quantity of nuclei far from stability.

A detailed description with a special focus on the methodology is presented
in reference [7].

While the lifetime of a state is linked to the conceptually simple measurement
of the number of transitions occurring in a given time interval, the idea behind
the Coulomb excitation is somewhat less direct and yet still independent from
any nuclear model. The idea behind this methodology lies in the probability
of exciting a nucleus with a purely electromagnetic interaction. Thanks to this
known interaction, it is possible to ensure that the probability of exciting a
state is dependent only upon the initial and final wave function of the states of
interest. As a consequence, it is expected that, in the presence of a nucleus with
structure, the (elastic) Rutherford differential cross-section will be modulated by
the probability of populating a given state:

dσclx

dΩ = dσRuth

dΩ · P (i −→ f)

The probability P (i −→ f) is in turn proportional to the reduced transition
probability [13]. A Coulomb excitation measurement translates in the assessment
of the discrepancy between a structure-less Rutherford scattering with respect to
the measured cross-section due to the population of the states of interest. The
first measurements performed with this technique used electrons as projectiles.
Due to the dependence on the projectile Z, the experimental techniques evolved
for the use of heavy ions. A purely electromagnetic interaction was ensured
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3. The problem of transition probabilities in 46Ar

by limiting the maximum beam energy to allow a minimum approach distance
between beam and target larger than the sum of the nuclear radii. The interest
in performing Coulomb excitation measurements with radioactive beams to
extract transition probabilities in exotic nuclei further pushed the experimental
technique in using intermediate energy scattering. In this case, the kinematics of
the reaction is exploited to limit the detection to angles that are associated with
a maximum approach between target and beam larger than the nuclear radii.
The analysis is thus limited to a portion of the solid angle as explained in detail
in reference [13].

In the case of 46Ar, both Coulomb excitation measurements, as well as lifetime
experiments, have been performed.

In particular, two experiments took place at intermediate Coulomb excitation
energies in 1999 [29] and 2003 [9] at the National Superconducting Cyclotron
Laboratory at Michigan State University.

Further experimental efforts focused on the Coulomb excitation measurement
at barrier energy at GANIL in 2016 [5].

An independent lifetime measurement was performed at Laboratori Nazionali
di Legnaro [20], returning a transition probability at odds with the three Coulomb
excitation values but compatible with the shell-model figure. The measurement,
affected by low statistics and the impossibility of performing a Q-value gate on
the magnetic spectrometer, obtained a lifetime of 0.8+0.3

−0.4 ps for the 2+ state.
Table 3.1 presents a comparison of the values of the cited experiments. All

Coulomb excitation experiments feature compatible transition probability values,
while the lifetime measurement indicates a significant increase in value.

Reference Coul. Ex. [29] Coul. Ex. [9] Coul. Ex. [5] Lifetime [20]
(e2fm4) (e2fm4) (e2fm4) (e2fm4)

B(E2) ↑ 196(39) 218(31) 225(29) 570+335
−160

Table 3.1: Comparison of B(E2) transition probabilities as measured in
the referenced papers for 46Ar. Intermediate-energy Coulomb excitation
measurements [5, 9, 29] return compatible values, at variance with the lifetime
experiment [20].

Figure 3.3 compares the values obtained from the barrier-energy Coulomb
excitation experiment with the shell-model prediction with the SDPF-U
interaction and similar variations along the argon isotopic chain. The
experimental data suggest a gradual increase in transition probability starting
from N = 20, reaching the maximum value at N = 24 that follows a new
minimum in correspondence with the N = 28 shell closure. The available data
terminates with 48Ar where an increase in transition probability can be observed
once again. In particular, while the trend starting from 38Ar presents a similar
gradual increment in transition probability, in correspondence to the N = 28
shell closure, a prominent increase emerges, in contrast with the experimental
data. The following data for 48Ar indicates a convergence between the shell
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model and the data. A noteworthy consideration can be made for the shell-model
prediction for 46Ar, where all tested effective interactions predict a similar value,
which also corresponds to the highest transition probability in the neutron-rich
argon isotopic chain.

Figure 3.3: Evolution of transition probability of the argon isotopic chain for
experimental data (red, solid line) and shell-model predictions with various
SDPF effective interactions (green, magenta and cyan lines). Figure adapted
from reference [5]

The authors in reference [5] provide a detailed study of the transition matrix
elements by extrapolating the neutron (Mn) and proton (Mp) components by
combining the Coulomb excitation data with the inelastic (p,p′) scattering.
Figure 3.4 shows the evolution of the two components of the matrix elements
along the argon isotopic chain in the case of two different values of polarization
charges and can be compared with the SDPF-U interaction.

While a somewhat significant divergence with the shell-model prediction can
be observed in the neutron component in correspondence to 44Ar, the addition
of two more neutrons finds the SDPF-U prediction in much closer agreement in
correspondence to the shell closure. Regarding the proton component, however,
a gradual decline of amplitude can be observed in both experimental data and
theoretical prediction from the N = 20 shell closure up to 44Ar with similar
values and trends. In correspondence to 46Ar, however, a small drop in amplitude
in the data is opposed by a significant jump in the shell-model prediction. This
difference in trend and, more specifically, the overestimation of the proton
component of the matrix element has been proposed as a possible explanation
of the large reduced transition probabilities predicted by the shell model.

Recent developments showed that this problem is not limited to 46Ar, and is
also existent in 44S [18] (−2p with respect the argon isotope along the N = 28
shell).

The authors show that intermediate-energy Coulomb excitation measurements
are well in agreement with calculations performed with the SDPF-U interaction
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3. The problem of transition probabilities in 46Ar

Figure 3.4: Squared values of the matrix elements for neutrons (left panel)
and protons (right panel) along the argon isotopic chain. The experimental
data is shown with the standard polarization charges δn = δp = 0.5 (solid line)
and alternative values of δn = δp = 0.2 (dotted line). The SDPF-U interaction
prediction (dashed line) shows a remarkable discrepancy of the proton component
in correspondence to 46Ar. Figure adapted from reference [5].

Figure 3.5: Evolution of transition probabilities along the 48Ca (top panel), 46Ar
(middle panel) and 44S (bottom panel) isotopic chain. The experimental data is
compared with different values of neutron and proton polarization charges as
well as a quantification of the effective charge based on the model space. Figure
adapted from reference [18].
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in 38,40,42S. Nevertheless, reaching the shell closure in 44S, the same deviation
of the transition probability by a factor of two can be observed. A detailed
study has also been performed to assess the dependence of the reduced transition
probabilities from the polarization charge values (here summarized in Figure3.5).
In particular, a model was introduced to quantify the charge dependence from
the model space, effectively rendering the polarization charges dependent upon
the nucleus and the state. While the description of the model is beyond the
scope of this introduction, the authors conclude that the introduction of orbital
dependence on the polarization charges is not sufficient to justify the discrepancy
observed in 46Ar and 44S.

3.2.4 The Density Functional Theory (DFT) Picture

The 46Ar isotope has been studied extensively also in the framework of models
based on density functional theories, which consist in the natural evolution of
Hartree Fock mean-field calculations [6]. These are based on the variational
principle, applied to the energy functional with respect to the density matrix
and pairing tensor [26] to extract the properties of the ground state.

Relativistic Hartree-Bogoliubov with finite-range pairing interaction calcu-
lations with the NL3 effective interaction were first performed in the N = 28
region to test the onset of deformation along the neutron-rich side of the valley
of stability [17]. The model predicts a strong suppression of the energy gap with
a progression of deformed ground states starting with the phenomenon of shape
coexistence in 44S and evolving to a deep oblate minimum in 42Si. In the case
of 46Ar, a very flat potential energy surface was found, with the flat minimum
extending from a value of 0 of the deformation parameter β to a negative value
of β = −1, suggesting a soft oblate minimum.

Later studies exploiting the same theoretical framework found a similar trend
for the potential energy surface [27, 28]. Figure 3.6 shows the evolution of the
surface along the N = 28 shell, with the progressive onset of deformation, with
the 46Ar isotope presenting a minimum value spread over a large range of the
deformation parameter.

Recently developed state-of-the-art mean-field (and beyond) techniques
achieve a remarkable precision in the description of the nuclear matter
density properties [2]. While the average density profile configuration is very
similar for the great majority of isotopes in the Segrè chart, in some rare
cases, DFT calculations predict a density depletion in the central region of
some experimentally accessible isotopes. In particular, in the case of 46Ar,
independently performed relativistic mean-field calculations indicate a central
depletion of proton density [30, 31]. Isotopes associated with this remarkable
phenomenon have been named bubble nuclei, and the gathered theoretical and
experimental interest from the nuclear structure community has been manifold.
Knockout reactions have been used successfully as a tool to prove experimentally
this peculiar property in 34Si [22].

This central depletion, in terms of single-particle orbitals, translates into a
suppressed population of s1/2 orbitals that are characterized by a lower mean
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3. The problem of transition probabilities in 46Ar

Figure 3.6: Mean field potential energy surfaces computed in the
Hartree–Fock–Bogolyubov framework as a function of the deformation parameter,
graph adapted from reference [27]. (left panel) The evolution along the N = 28
shell closure indicates a quick onset of deformation along the neutron rich side.
(right panel) The angular momentum projected potential energy surface. The
plotted solid curves indicate an angular momentum of I = 0, 2, . . . 8, while the
dashed curve indicates the mean field result.

squared radius, in turn, caused by the vanished centrifugal barrier with respect to
higher angular momentum values. The candidate nuclei for the central depletion
phenomenon considered in the theoretical study in reference [31] consist of those
which are also neighboring even-even non-bubble nuclei, where the s1/2 orbital
is expected to be occupied.

Figure 3.7 shows the results of the relativistic mean-field calculations
performed in reference [31] and compares the doubly-magic 48Ca isotope with
46Ar. In terms of neutron density, the profile is not affected significantly by the
removal of two protons. In the case of the proton component, on the other side,
an evident depletion is present in the central portion of the density profile. This
is explained by the inversion of the d3/2 and s1/2 orbitals and by the drop in
Fermi energy caused by the removal of the two protons that brings it between
the energy of the two orbitals.

The results presented in Figure 3.7 also indicate the importance of
measurement of observables strictly dependent on the proton component of
the wave function. As a consequence, a direct proton transfer reaction can be
considered a very effective tool to shed light on the peculiar aspect further.

Section 8.2 of the final chapter (8) will discuss this aspect with new results
obtained with a Skyrme interaction. In particular, it will be discussed how
the inversion of the orbitals can be described by the SLy5 interaction with the
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Figure 3.7: Relativistic mean field calculations of the evolution from 48Ca to
46Ar. (top left panel) Neutron density profile for 48Ca (dashed line) and 46Ar
(solid line). (bottom left panel) Proton density profile showing a central depletion
for 46Ar. (top right panel) Single particle orbitals evolution for neutrons and
Fermi energy (dashed line) (bottom right panel) Single particle orbitals evolution
for protons and Fermi energy (dashed line). Adapted from reference [31]

introduction of a tensor component.

3.2.5 Shell-model calculations

In the course of this chapter, some results related to shell-model calculations
have been presented. In particular, section 3.2.3 focused on the discrepancy
between the transition probabilities calculated with the shell model with the
SDPF-U interaction and the experimental data.

A more detailed discussion regarding the shell-model picture will be presented
in Chapter 8 and specifically in section 8.1, where the results will be discussed
and compared to the experimental outcome.

In a concise anticipation of the calculations discussed in the section, the shell
model predicts a configuration of the ground state of 46Ar where neither the
s1/2 nor the d3/2 orbits are fully occupied. This, in turn, translates to similar
spectroscopic factors relative to the population of the ground state (1/2+) and
first excited state (3/2+) of 47K.
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3.3 Spectroscopy of 47K by Means of Direct Reactions from
48Ca

The single-particle states of 47K can be understood as hole configurations in the
closed-shell doubly-magic 48Ca nucleus. Direct reactions studies are an insightful
tool for the understanding of the nature of these excited states.

A 48Ca(−→d ,3He)47K direct reaction was performed at the Indiana University
multistage Cyclotron Facility (IUCF) with a beam of polarized deuterons at
an energy of 79.2 MeV [1]. The polarized deuterons in conjunction with the
measured angular distributions allowed the authors to distinguish not only
different values of transferred angular momentum l, but also to determine the j
transferred, discriminating the two cases: j = l ± 1

2 .
A total of seventeen states were populated:

• L = 0: The transfer to the ground state (1/2+) is associated with the
pick-up of a s1/2 proton in 48Ca, and the spectroscopic factor amounts to
C2S = 1.55. A second 1/2+ state was observed at an excitation energy of
3.83 MeV with C2S = 0.28. The two states exhaust 90% of the shell-model
strength limit.

• L = 1: No transitions were observed. The justification found by the
authors is twofold. On the one hand, the high surface absorption of the
3He particles may hinder the probability of pick-up of a proton in the
central 1p orbit. On the other hand, the strength of the d5/2 orbital
appears very fragmented and extends at higher excitation energies, above
the neutron separation energy. Since the 1p protons are more bound, the
relative hole states are expected to extend to even higher excitation energy.

• L = 2: These reaction were distinguished between j = 3/2 and j = 5/2. In
the first case, the first excited state of 47K was populated with C2S = 4.16,
thus reaching the shell-model limit. An additional higher-lying state was
populated at 3.88 MeV with C2S = 0.70. A total of ten j = 5/2 transitions
were also observed at excitation energy ranging from 3.32 MeV to 8.02 MeV,
and the sum of all spectroscopic factors amounted to 64% of the shell-model
limit. The reason for the fragmented nature of these states has been found
in terms of the coupling of a hole and a phonon relative to the collective
2+ state of 48Ca [36].

• L = 3: In a perfectly closed-shell configuration of 48Ca, no L = 3 transition
of proton pickup from the f7/2 orbits are expected. Nevertheless, the
presence of a low-lying 7/2− state in 47K indicates a small degree of
shell braking, associated with a low spectroscopic factor of C2S ≈ 0.08.
Although the simpler one-step DWBA calculation is able to reproduce well
the measured angular distribution, the population of the state could also
be attributed to a two-step process such as the proton pick-up from the
s1/2 coupled to a 3− state of 48Ca.
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Another study conducted with a different direct reaction (48Ca(t, α)47K) at
33 MeV [25] confirmed these results on the low lying states of 47K.

47
K

1/2+
0

17.5 (24) s

3/2+
360

1.1 (3) ns

7/2-
2020

6.3 (4) ns

Figure 3.8: Experimental spectroscopic information of the low lying states of
47K. The branching ratio for the 7/2− state to the ground state amounts to only
11.7(17)%.

For completeness, Figure 3.8 presents the known spectroscopic information of
the low lying levels of 47K. Not only the spin and parity levels are assigned, but
the lifetime of the excited states have also been measured. This spectroscopic
knowledge of 47K is of fundamental importance for the current experiments that
will rely on this information for many experimental considerations.

3.4 Conclusions

This chapter introduced some of the experimental and theoretical efforts
dedicated to the study of the region around 46Ar and the N = 28 shell closure.
This isotope emerges as an interesting study case due to the peculiar structure of
the proton component of the wave function and its implications on the observables
that are strongly dependent on it. While much experimental effort has been
placed on the study of the neutron-dependent observables to shed light on the
shell closure, this experiment aimed at a direct probe of the proton component
of the nuclear structure of 46Ar. This study was carried out by means of direct
proton transfer reaction with the intent of assessing the relative L = 2 transfer
to the 3/2+ state with respect to the L = 0 population of the ground state. The
next chapters will focus on the experimental considerations and, more in general,
on the analysis and outcomes.
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Chapter 4

The Experimental Setup and
Calibrations

4.1 The Production of the 46Ar Radioactive Beam

The 46Ar radioactive beam was provided by the Spiral 1 facility in GANIL
(Grand Accélérateur National d’Ions Lourds), Caen, France [6].

This facility has been at the forefront of innovation in the development of the
Isotope Separation On-Line (ISOL) techniques for radioactive beam production.
Such a technique relies on the extraction and post acceleration of isotopes
produced from reactions with a primary beam, thus allowing for beam optics
properties comparable to those of stable beams.

The SPIRAL 1 facility relies on thick graphite targets on which a high-
intensity primary heavy-ion beam impinges and on the subsequent diffusion of
the produced ions from the hot target to the ion source. The ions are ionized by
an ECR source (Nanogan III Electron Cyclotron Resonance) and are separated
and injected in the post acceleration stage, consisting of the CIME cyclotrons
(Cyclotron d’Ions à Moyenne Énergie). The radioactive beam is then delivered
to the experimental hall of interest.

Figure 4.1 shows an extrapolation of the expected production of each isotope
before the post acceleration section. Typically the intensities are reduced by
two orders of magnitude to account for the losses in charge breeding and post
acceleration. While all beams shown in the figure rely on the fragmentation
mechanism for the production, heavier radioactive beams on the neutron-deficient
side can also be produced via fusion evaporation as an alternative technique.

Figure 4.2 shows the layout of the SPIRAL 1 facility with the VAMOS hall,
which hosted the experimental setup.

In the particular case of this experiment, a primary beam of 48Ca impinged
on the primary carbon target with a power ranging from 300 W to 600 W and
energy of 60 MeV/u. The 46Ar radioactive isotopes were extracted from the
fragmentation products and post accelerated at an energy of 9.96 MeV/A and
an average intensity of 4 · 104 particles per second.

Figure 4.3 pictures one of the CIME cyclotrons open for repair with one of
the RF cavities extracted from the main body.

4.2 Experimental Apparatus

The overall setup of the experiment consists of the combination of multiple
state-of-the-art detectors: MUGAST+AGATA+VAMOS, whose performance is
documented in a separate publication[2].
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Figure 4.1: Extrapolation of the expected intensity and availability of isotopes
produced by the SPIRAL 1 setup, before the post acceleration procedure. Figure
adapted from reference [6].

Figure 4.2: The facility for the production of post-accelerated radioactive beams
in GANIL. Adapted from reference [17].

The radioactive beam, entering the reaction chamber after passing through
the beam tracker CATS [13], impinges on a cryogenic 3He target [7]. The
light reaction fragments are detected by the position-sensitive silicon detectors
MUGAST [2] at backward angles with respect to the beam and by MUST2 [14]
at forward angles.

The heavy fragments are identified by the magnetic spectrometer VAMOS [16,
18, 19] placed in its zero degrees configuration. Gamma rays emitted by the
de-excitation of the reaction fragments are detected by the segmented high purity
germanium array AGATA[1] placed ad backward angles.

A sketch of the experimental setup is shown in Figure 4.4, with a schematic
view of the direction of emission of the reaction fragments.

Each component of the setup has a particular purpose which and be detailed
in the following dedicated sections of the current chapter:
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Figure 4.3: Picture of CSS1, one of the post-acceleration cyclotrons, open for
inspection. The copper block consists of one of the four accelerating cavities.

• VAMOS (section 4.3):

1. Identify the reaction fragment (47K) on an event-by-event basis
2. Monitor the target thickness over time by measuring the magnetic

rigidity (Bρ) of the beam over time
3. Measure the recoiling-fragment β for an event-by-event Doppler

correction of the emitted γ rays
4. Track the beam current over time on the focal plane of the detector

• CATS2 (section 4.5):

1. Provide the position of entrance of the beam for the focusing procedure
and general beam monitoring

2. Track the incoming beam intensity
3. Measure the time of flight for the silicon detectors and the magnetic

spectrometer

• AGATA (section 4.7):

1. Measure the γ rays emitted by the excited reaction products such as
47K, populated by the 46Ar(3He,d)47K channel
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2. Detect the γ rays emitted by the inelastic excitation of the beam,
46Ar

• MUGAST and MUST2 (section 4.6):

1. Identify the light particles
2. Measure the energy and position of the emitted particles

Appendix C shows a schematic of the electronics chain of the setup.

Figure 4.4: View of the experimental setup showing the target, the silicon
detectors, the γ-ray detector, and the entrance of the magnetic spectrometer.
Arrows indicate a typical reaction event in terms of the direction of the emitted
particles.

4.2.1 The Kinematics of the Reaction

The reaction consists in a 46Ar(3He,d)47K proton-pickup direct reaction. As
a consequence of the kinematics of the process, the deuteron is emitted and
detected at backward angles in the laboratory frame of reference with the largest
cross section.

The beam energy in the center of the target, which corresponds to the average
reaction energy, requires detailed calculations due to the thickness of the target.
Table 4.1 presents the amount of energy lost by the argon ions in the various
layers between the beam tracker and the entrance of the magnetic spectrometer.

The selected charge state of the beam is 9+, which corresponds to a (measured)
magnetic rigidity value of Bρ = (2.328 ± 0.002) Tm.
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Beam position Eff. Thickness En. middle En. after
(mg/cm2) (MeV) (MeV)

Entrance - - 458.2
CATS2 0.84 (H8C10O4) 453.3 448.3
Ice Deposition 1.38 (H2O) 427.3 405.8
Havar 3.15 (Co42Cr20Ni13Fe19W) 392.6 379.3
3He 2.27 (3He) 357.2 334.1
Havar 3.15 (Co42Cr20Ni13Fe19W) 319.7 305.0
Ice Deposition 1.38 (H2O) 378.5 250.5
VAMOS - 271.2 -

Table 4.1: Energy of the beam while passing through different materials. Ice
thickness is assumed of 35µm, while the target thickness is averaged over the
beam shape of 3.72 mm with a density of 0.0045 g/cm3. Further details on the
density of the 3He gas are presented in Appendix A.

The (relatively) low energy of the beam and the various layers of material
(documented in Table 4.1) lead to a distribution of charge states (cf. subsec-
tion 4.3.6) that is higher on average compared to the original one, allowing the
magnetic spectrometer, with its maximum magnetic rigidity of 1.6 Tm[19], to
bend the trajectory of the beam ions within its focal plane.

The exponential-like decay of the cross-section in the center of mass frame of
reference is shown in Figure 4.5. Since the highest portion of the cross-section
for the direct reaction is contained at low angles, most of the deuterons will
be emitted at backward angles in the laboratory due to the frame of reference
transformation. The conversion between the angles in the laboratory is shown
in Figure 4.6, where small angles in the center-of-mass frame correspond to
backward angles, with respect to the beam direction, in the laboratory. The
energy and angle of emission of particles relative to a two-body reaction are tied
by the conservation of the four-momentum. For the reaction of interest, the
relation between angle and energy in the lab is presented in Figure 4.7. The
kinematics of the 47K ions is restricted within values of momentum and angle
that are always contained by the acceptance of the magnetic spectrometer, as
discussed in detail in subsection 5.2.7. The light deuteron fragments are detected
by MUGAST at angles between 118◦ − 172◦ which correspond to 2◦ − 23◦ in
the center of mass frame of reference.

As it is apparent from Figure 4.5, the L = 0 transfer presents a clear signature
if compared to other transferred angular momenta (such as L = 2 and L = 3),
as it appears strongly peaked at the lowest angles in the center of mass frame of
reference. In the laboratory frame of reference, this peculiarity translates to a
high expected number of counts in the annular detector, which is placed at the
most backward angles in the case of a high L = 0 transfer cross-section.

Another relevant aspect for the analysis is the position of the first L = 2
peak compared to the L = 0 distribution as it appears in correspondence to the
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Figure 4.5: Center-of-mass angular distributions with different types of
transfers and unitary spectroscopic factor for the proton-transfer direct reaction
46Ar(3He,d)47K.
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Figure 4.7: Kinematics of the light and heavy reaction fragments superimposed
with different scales. Due to the Lorentz boost, the heavy reaction fragment is
limited in a cone of maximum angle of aperture of 3.5 degrees.

minimum of the former, further differentiating the two distributions.
The objective of the experiment is to assess the relative amount of L = 0

and L = 2 transfer cross sections via a measurement of the L = 0 + L = 2
angular distributions. The analysis strategy relies on the deconvolution of the
total distribution into the constituent ones, relative to the two different values
of transferred angular momentum, because the 1/2+ and 3/2+ states of 47K
are too close in energy to be distinguished by measuring the energy of the light
reaction fragments.

The region of sensitivity of the MUGAST detector in the center of mass
reference falls in the interval [2◦, 24◦], where the first two peaks of the L = 0
distribution are present and can be compared to the first peak of the remaining
L = 2, 3 distributions. It is also evident that the number of deuterons measured
in the annular detector, where the first peak of the L = 0 distribution is present,
and the other distributions provide negligible contributions, will fix the overall
amount of counts that can be present in the second peak at around 18◦.

Given the low binding energy of the deuteron (2224.566(1) keV), the deuteron-
breakup reaction channel is also open with a significant cross section. This process
consists of a three-body reaction where after the transfer of one proton from the
target to the beam ion, the deuteron breaks in its constituent nucleons. This
reaction does produce 47K, which can be identified in the magnetic spectrometer,
while the protons can be detected and distinguished from the deuterons by the
silicon detectors. The magnetic spectrometer is not able to measure the emission
angle on the vertical plane with a resolution high enough to perform angular
distribution or spectroscopy on the heavy beam-like fragment so that a full
reconstruction of the three-body reaction 46Ar(3He,pn)47K is not possible in the
current experiment.
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4.3 The magnetic spectrometer: VAMOS

VAMOS[16, 18, 19], the VAriable MOde high acceptance Spectrometer, is a large
solid-angle ray-tracing magnetic spectrometer able to fully identify the reaction
fragments.

Its main components are schematically depicted in Figure 4.8. They consist
of two quadrupole magnets which focus the recoiling reaction fragments first
in the y then in the x directions, and a dipole, which separates the ions on the
dispersion (x) axis based on their magnetic rigidity Bρ:

Bρ = p

q
≈ C

A

q
βγ where C = c

eNa
≈ 3.105 T ·m , γ =

(︁
1 − β2)︁− 1

2 (4.1)

This expression contains a dependence of the magnetic rigidity from the
charge state q, the atomic mass A, Avogadro’s number Na, the speed of light
c, and electric charge e. As a consequence of the optics of the spectrometer,
ions with different magnetic rigidity will follow different trajectories. Thanks
to the detectors located in the focal plane of the spectrometer, it is possible
to reconstruct the path undertaken and measure the magnetic rigidity of each
fragment [15] to perform a full identification of the reaction fragments on an
event-by-event basis.

The spectrometer is exploited for several purposes in the analysis of the
experiment and is essential for the full reconstruction of the nuclear reaction
as well as other aspects such as beam monitoring (through the Bρ) and the
detection of the velocity β of the recoiling fragment for the Doppler correction.

The spectrometer was set in the zero degrees configuration. Thanks to its
high acceptance both in momentum and in solid angle, and due to the kinematics
of the reaction (cf. 4.2.1), virtually 1 all beam ions and reaction fragments are
accepted within the spectrometer (cf. 5.2.7).

The spectrometer is capable of an angular acceptance of ±7◦ in the polar
angle and ±10◦ in the azimuthal angle while the momentum acceptance is of
±30%.

In the focal position of the spectrometers, located 7600 mm from the target
and along the z-axis, several detectors are present:

1. Multi-Wire Parallel Plate Avalanche Counter (subsection 4.3.1)

2. Drift Chambers (subsection 4.3.2)

3. Ionization Chamber (subsection 4.3.3)

The overall active area of these detectors consists of a 1000 mm × 150 mm
surface and allows for the measurement of the observables inherent to the reaction
fragments, which will be described in the following subsections.

1Monte Carlo Geant4 simulations, discussed in subsection 5.2.7, indicate that more than
99% of ions emitted in each reaction fall within the acceptance of the spectrometer.
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Figure 4.8: Schematic of the main components of the VAMOS magnetic
spectrometer. The focal plane detectors are placed 760 cm after the target and
behind the quadrupole and dipole magnets. Picture adapted from reference [17].

Throughout the experiment, the magnetic rigidity (Bρ) was gradually
decreased in order to account for the progressively lowering of the energy of
the emitted ions due to the growing ice deposition (cf. subsection 4.4.2). The
magnetic field on the dipole was initially set to obtain a reference Bρ value of
1.05 Tm, which was later lowered to 0.95 Tm and kept at 0.9 Tm in the last
phase of the experiment.

4.3.1 The Multi-Wire Parallel Plate Avalanche Counter (MWPPAC)

The first of the focal plane detectors, located precisely in the focal plane position
(7600 mm from the target in the z direction), consists of a Multi-Wire Parallel
Plate Avalanche Counter.

Its main purpose is to provide a high-resolution measurement of the Time
of Flight (TOF) of the fragments, which is necessary for the velocity vector (β)
measurement. It serves as a start signal for the Time to Amplitude Converter
(TAC) that is, in turn, stopped by the delayed signal from CATS2, the beam
tracker (presented in Section 4.5). The choice to invert start and stop is a
common occurrence justified by the difference in rates observed by the two
detectors. In particular, the beam tracker is expected to reach a higher trigger
rate compared to the multiwire as not all events which cross the tracker will
eventually reach the multiwire, which would lead to many events where the start
signal will not be stopped. Conversely, if the MWPPAC acts as the start signal,
only events of interest will trigger the start of the TAC module allowing for a
lower dead time in the acquisition system.

With the same total active area of 1000 mm × 150 mm of the other focal-
plane detectors, the MWPPAC is composed of a central cathode and two anodes
separated by 2.2 mm each.
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The cathode is polarized at −450 V and consists of wires spaced 0.5 mm
apart, while the anode is grounded and is composed of wires spaced by 1 mm.

The chamber containing the MWPPAC is filled by isobutane (C4H10) at
a pressure of 7 mbar, contained by a Mylar window of 0.9µm, supported by
multiple nylon wires of 100µm diameter placed every 50 mm.

The ions crossing the detector ionize the gas along the trajectory; the free
electrons are accelerated by the electric field gradient and drift towards the
anodes generating an avalanche in the proximity of the wires, where the field is
more intense. The charge associated with the electron avalanche is collected in
the central cathode and read out by 20 electronically-independent sections that
provide 20 time signals. This segmentation allows for a reduced capacitance,
which in turn allows for a faster rise time of the signals and an improved time
resolution which has been measured at around 500 ps.

4.3.2 The Drift Chambers

The two drift chambers (DC) of VAMOS serve the purpose of detecting both
the horizontal and vertical crossing positions of the recoiling ion. By stacking
multiple drift chambers one after the other, it is possible to detect also the
direction of the velocity vector. The information provided will then be used
to compute the velocity (β), which depends on the reconstructed path and on
the time of flight. The former is computed by the trajectory reconstruction
procedure (briefly described in subsection 4.3.4). Additionally, this procedure
also allows for the reconstruction of the angles of emission with respect to the
target, making use of the observables provided by the drift chambers.

Each drift chamber detects an x position by measuring the maximum of the
induced charge distribution on the pads and a y position by measuring the drift
time of the electrons from the wire placed transversely.

The direction of the recoil can be extracted only if more than one drift chamber
detects the ion, while the position information requires a single measurement.

The drift chambers, located after the MWPPAC detector, are enclosed in
Mylar windows and contain isobutane (C4H10) at 7 mbar, exploiting the good
quenching properties of this gas.

Each drift chamber can be conceptually divided into two volumes: a drift
and an amplification volume. The former is the active volume where the crossing
ion produces a trail of primary electrons from the ionization of the gas. The
charges start the drift towards the Frisch grid [9] to later enter the amplification
region where the higher electrical field generates an avalanche which increases
the overall induced charge on the pads.

The cathode in the drift portion of the volume is placed in the upper part
of the chamber and is polarized at −500 V, while the Frisch grid is placed at
ground potential.

The Frisch grid effectively shields the induction pads from all charges in the
drift volume that has two important effects: renders the charge induced on the
pads independent of the position of primary ionization while also shielding the
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positive charges (characterized by a significantly lower drift velocity) from the
pads thus increasing the time resolution of the signal (shorter rise time).

The amplification volume increases the induced charge via secondary
ionization by means of a plane of 8 wires placed 15 mm below the Frisch
grid and spaced 10 mm apart from each other.

The cathode plane is placed at the bottom of the amplification volume and
consists of two rows of 160 staggered pads aligned along the dispersion plane
(x axis) made of gold-plated strips. The staggered disposition of the pads has
the objective of minimizing the chance of a loss of induced charge due to a
trajectory in correspondence of the segmentation between two pads. The strips
are arranged to cover the total surface for a total area coverage of 6.02 × 40 mm2

each and a pitch of 6.4 mm.
The drift chambers are physically and effectively connected to the MWPPAC

(subsection 4.3.1); as a consequence, the same low-pressure gas circulates between
them. At the final extremity of the detector array (MWPPAC+DC) a single
2.5µm Mylar window contains the isobutane gas supported by 32 vertical nylon
wires while separating it from the ionization chamber that features higher
pressures.

The amplification wires provide the (fast) timing signal (td) which is essential
to determine the drift velocity vd when compared to the time signal of the
MWPPAC (tMW P P AC) from which the y axis position can be extrapolated:

y = vd(td − tMW P P AC) where vdisobutane
≈ 5.528cm/µs

The x axis position, on the other hand, can be computed with a much higher
resolution, exploiting the induced charge on the pads. The choice of a higher
precision on the dispersion plane (x-axis) is justified by the strong correlation of
this value with the magnetic rigidity of the reaction fragment, which is, in turn,
essential for the identification in A/Q.

A common high-performance method to predict the charge distribution
induced from a point charge is the so-called Hyperbolic secant squared method
(SECHS) [10]. The same technique is also applied for the CATS2 beam tracker 4.5.
It is possible to observe [10] that the charge distribution from a point source on
pads of width w can be approximated by a squared secant function, allowing for
a position resolution higher than the discrete position of the center of the pad.
The induced charge Q on the pad in position x is given by:

Q(x) = a1

cosh2
(︂

π(x−a2)
a3

)︂
This approximation is convenient as the centroid position (a2) has an

analytical expression, function of the induced charge on the nearby strips
(QM−1, QM+1) of the highest induced charge strip QM :⎧⎪⎨⎪⎩a2 = a3

π tanh−1
√︃√

QM /QM−1−
√

QM /QM+1
2 sinh(πw/a3)

a3 = πw

cosh−1 1
2

(︁√
QM /QM−1+

√
QM /QM+1

)︁
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A systematic error as a function of the inter-strip position is present and
characterized in reference [10]. It is possible to exploit the cited characterization
to correct the position offset and recover an improved position resolution.

The nominal position resolution achieved by the described setup is 0.27 mm
in the x axis and of 0.35 mm in the y axis.

The stack of multiple drift chambers allows for the measurement of a total
of four parameters: xf (yf ), the position in the horizontal(vertical) direction,
and θf (ϕf ), the angle with respect to the horizontal(vertical) plane. The focal
plane angles, which will be often cited in the course of this section, must not be
confused with spherical coordinate angles (θS

f , ϕS
f ) as they consist in the angles

with respect to the plane in the x and y directions. The following transformation
relates the two different coordinates:{︄

θf = θS
f sin(ϕS

f )
ϕf = θS

f cos(ϕS
f )

4.3.2.1 Detector Calibration

The calibration necessary for an accurate position reconstruction with the SECHS
procedure consists in the gain matching of all the different pads to a reference
value with a simple quadratic dependence:

Qmatch
i = Ai +BiQi + CiQ

2
i

A reference pulse signal is injected in the electronics of each pad simultane-
ously to allow for the gain matching procedure.

4.3.3 The Ionization Chamber

The Ionization Chamber (IC) of VAMOS consists of an active gas volume of
1000 x 150 x 579 mm3, with a drift cathode in the upper part and a segmented
anode shielded by a Frisch grid. The anode segmentation is transverse with
respect to the beam entrance in order to allow for an energy loss measurement
in each of the six segments. The IC was filled with carbon tetrafluoride (CF4) at
a pressure of 120 mbar to allow for the beam to stop in the 4th segment, relying
on the first segments to measure the partial energy loss. The pressure was set to
allow the beam and the reaction fragments to stop fully within its active volume.

While the Frisch grid is kept at ground potential, the anode and cathode are
polarized at respectively 900 V and −2250 V.

The comparison between partial and total energy loss allows for discrimination
in Z of the reaction fragments.

4.3.3.1 Isotope identification

The linear stopping power of a charged ion passing through matter is strongly
dependent on many parameters. At the energies involved in this experiment,
the main cause of energy loss is the interaction of the ion with the electrons of
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the absorbing material, although nuclear losses also come into play at the lowest
energies. A well known parametrization of the (mean) mass stopping power
−
⟨︁

dE
dx

⟩︁
, in the range of 0.1 < βγ < 1000, is given by the Bethe equation[8]:

−
⟨︃
dE

dx

⟩︃
= Kz2Z

A

1
β2

(︃
1
2 ln 2mec

2β2γ2Wmax

I2 − β2 − δ(βγ)
2

)︃
(4.2)

With the following notation:

• K = 4πNAr2
emec2 is the coefficient

• z the charge number of the incident ion
• Z the atomic number of the absorber
• A the atomic mass of the absorber
• β = v

c
the velocity

• γ the Lorentz factor
• me the electron mass
• c the speed of light

• Wmax = 2mec2β2γ2

1+2γme/M+(me/M)2 is the maximum possible energy transfer to an
electron in a single collision

• I the mean excitation energy
• δ the density effect correction to ionization energy loss for relativistic ions
• NA the Avogadro’s number

• re = e2

4πϵ0mec2 the classical electron radius
• ϵo the vacuum permittivity
• M the incident ion mass in Wmax

The linear stopping power S also includes ρ, the density of the material:

S = ρ

⟨︃
dE

dx

⟩︃
In the limit of low ion energy (βγ < 1), it is possible to derive from

equation 4.2 the dependence of the energy loss in a common absorber as a
function of the kinetic energy of the incident charged particle E, its mass M
and the charge number [9]:

S = C1
Az2

E
lnC2

E

M

Where the C1, C2 constants depend on the material and all other constants
previously described. We expect then to be able to differentiate particles based
on their z and M values in a 2-dimensional plot of partial deposited energy and
total deposited energy. In practice, and in the specific case of the described
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ionization chamber and the reaction fragments of interest, the discrimination in
mass would require a higher resolution due to its higher absolute value.

More sophisticated models and parametrizations are used in real-world
applications compared to the standard Bethe equation (eq. 4.2), however, the
dependence on z and the energy trend remains qualitatively the same. Nuclear
stopping power is also often considered, although it appears only relevant at low
energies.

Figure 4.9 shows an example of the dependence on Z of the stopping power
in the case of the 3He gas contained in the target. The evaluation of the energy
loss of the ions in the gas is important for the reaction kinematics reconstruction.
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Figure 4.9: Stopping power as a function of the ion energy (46Ar and 47K) in the
case of a gaseous 3He target with a pressure of 4.5 · 10−3 g/cm3 which amounts
to 9.0 · 1020 atoms/cm3 [23]. The electronic stopping power in the energy range
of interest is several orders of magnitude more relevant in the stopping process.

4.3.3.2 Detector Calibration

An effective process to refine the calibration of the ionization chamber is to
compare the energy deposited in one segment with respect to the next. A 2-
dimensional plot shows that the data possess significant features which are highly
dependent on the energy loss parameters of the system (such as atomic charge
of the ion, density of the gas, thickness of the anode pads). This procedure is
discussed in section 5.1, where the calibration takes advantage of the comparison
with the simulated data.

The final atomic number selection is performed exploiting the correlation
of partial and total energy deposited, shown in Figure 4.10. In particular, the
partial energy deposition can be evaluated either in the first or in the first
two segments of the ionization chamber. Both cases are shown and lead to
comparable resolutions.
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(a) First Ionization Chamber segment

(b) First two ionization chamber segments

Figure 4.10: Partial deposited energy (∆E) vs total energy matrices for the
ionization chamber of VAMOS. The absence of counts in the punch-through
region indicates that the beam and all reaction fragments are stopped within
the active volume. Most of the statistics are due to 46Ar, the beam (Z = 18),
while the upper line corresponds to Z = 19.
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4.3.4 Trajectory Reconstruction

The idea behind the trajectory reconstruction of a magnetic spectrometer resides
behind the concept that there exists an (invertible) transformation Ω−1 that
maps the final hyper coordinates of the outgoing ion to a set of coordinates
which is not known a priori.

In this context, the effect of the magnetic field of the quadruples and of
the dipole on the trajectory of the particle can be fully synthesized in the
transformation Ω which maps the emission angles with respect to the target (θt

and ϕt) and the magnetic rigidity Bρ and path l to the coordinates measured by
the focal plane detectors: the position (xfp and yfp) and the angles with respect
to the plane (θfp and ϕfp). The transformation Ω would depend on the Bρ value
set on the spectrometer, nevertheless, it is simpler to remove the dependence
by expressing the magnetic rigidity and the path length as a discrepancy from
a reference value. A new coordinate δ = Bρ/Bρ0 is introduced as the ratio
between the magnetic rigidity of the fragment and the reference value set on the
dipole magnet Bρ0. The scaled coordinate is l = Path/Path0, where its value
refers to the nominal path from the target to the focal plane position along the
most central trajectory. This transformation relates the measured coordinates
on the focal plane to the remaining coordinates of interest as:

(xfp, θfp, yfp, ϕfp) Ω−1

−−−−−−→ (θt, ϕt, l, δ) (4.3)

Due to the presence of the quadrupole magnets and the inhomogeneities of
the magnetic fields, the use of algorithms dependent on the transfer map is not
a viable option.

On the other hand, thanks to the high-resolution mapping of the magnetic
field produced by the magnets performed during their design and production,
an approach relying on multi-particle tracking codes emerged as a better option.
In particular, the initial coordinate reconstruction makes use of the numerical
integration of the Newton-Lorentz equation performed in the ZGOUBI[12] code.

The trajectory reconstruction algorithm consists of the most recent develop-
ments on the original procedure described in reference [19]. The integration of
the equations is performed with a total of 20000 particles, covering the whole
acceptance (in angle and momentum) of the spectrometer and storing initial and
final coordinates presented in equation 4.3. A matrix of the mapping is thus
produced, making an interpolation and the approximation of the transformation
Ω possible. Once the mapping is known, it is possible to reconstruct a trajectory
by identifying the closest mapped final coordinates to the measured ones. The
closeness relation is selected with a parameterized root mean square distance
(D2 = α1(xm − xf )2 + α2(θm − θf )2 + α3(ym − yf )2 + α4(ϕm − ϕf )2) and its
parameters chosen by a χ2 minimization. A finer precision can be achieved by
interpolating the grid of the mapping.

The stored set of coordinates (initial+final) could be used for a multivariate
Taylor expansion to map the measured coordinates to the parameters of interest:
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δ =
i+j+k+t=7∑︂

i,j,k,t=0
C

(δ)
ijkt · xi

fp · θj
fp · yk

fp · ϕt
fp, (4.4)

θ =
i+j+k+t=7∑︂

i,j,k,t=0
C

(θ)
ijkt · xi

fp · θj
fp · yk

fp · ϕt
fp (4.5)

ϕ =
i+j+k+t=7∑︂

i,j,k,t=0
C

(ϕ)
ijkt · xi

fp · θj
fp · yk

fp · ϕt
fp, (4.6)

l =
i+j+k+t=7∑︂

i,j,k,t=0
C

(l)
ijkt · xi

fp · θj
fp · yk

fp · ϕt
fp (4.7)

Where the coefficients Ci
ijkt are computed on a set of trajectories simulated

by the tracking code (ZGOUBI). While a simultaneous fit of all trajectories
might seem like a sensible procedure, it can easily lead to systematic errors.

Avoiding a global fit of the whole parameter space, a two-step procedure
leads to improved results. The steps are dictated by the significant difference
in position resolution on the x- and y-axis of the spectrometer (corresponding
respectively horizontal and vertical plane). The discrepancy in resolutions stems
from the higher resolution of the x-position measurement that is computed from
the induced charge on the drift chamber’s pads if compared with the vertical
position, which depends on the drift time of the charge carriers in the gas.

The first step consists of the determination of the x position coordinates
first, with a scanning of the trajectories with an interval that is finer than the
position resolution in x of the focal plane detectors. The scanning fixes with
good precision the x value leaving the remaining parameters to be fixed. An
interpolation of the y-axis trajectories (with fixed x) with an expansion similar
to equation 4.7 is computed and used to extract the initial coordinates.

The extracted values of Bρ and Path are essential for the reconstruction of
the mass and charge state of the reaction fragment (cf. 4.3.5).

4.3.5 Fragment Identification

The values of β and γ are computed based on the ion path reconstruction D and
the time of flight of the fragment TOF :

β = D

TOF · c
Where the distance D is the path crossed by the ion between the target and

the point of crossing of the focal plane of VAMOS. Since the multiwire is placed
behind the nominal focal plane position, the overall distance is the sum of the
reconstructed distance Path (as described in subsection 4.3.4) with the addition
of an offset corrected by the angle between the focal plane and the ion trajectory:
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D = Path
cos (ϕfp) + DMW

F P

cos (θfp) cos (ϕfp)

At the same time, also the time of flight must be computed accounting for
the offset introduced by the time that the beam ions take to reach the target
starting from the CATS2 tracker. Since the MWPPAC in the focal plane of the
spectrometer acts as a start signal for the delayed stop of CATS2, the timing
value returned by the TDC (Time to Digital Converter) must be inverted and
offset by a constant amount, Offs:

TOF = Offs− tT DC (4.8)

The term Offs contains both the electronic delay in the logic start signal as
well as the time from the beam to reach the target, which is a constant value
since the beam is monochromatic.

With the values of the magnetic rigidity (Bρ) and velocity (β), it is possible
to compute the ratio A/Q according to equation 4.1.

Given the velocity and the total deposited (kinetic) energy Ek, it is possible
to extract the mass of the ion with the relativistic expression:

E = Ek +m0 = γm0c
2 =⇒ m0 = Ek

(γ − 1)c2

Which expressed in atomic mass units can be converted to:

A = Ek

(γ − 1)u where u = 931.494MeV/c2 (4.9)

The value of total energy needs to be coherent with the measured velocity
(β), on which depends the Lorentz factor γ. The velocity β depends on the time
of flight measured by the MWPPAC, while the total energy depends on the
ionization chamber. However, between the two detectors, the ion experiences an
energy loss in the drift chambers, and, as a consequence, the two values of Ek and
γ are not completely coherent. In order to correct for this aspect, it is necessary
to compute the amount of energy not measured between the two detectors with
the aid of a Monte Carlo simulation, as described in subsection 5.1.2. The
amount of lost energy is estimated through its linear dependence on the energy
deposited in the first layer of the ionization chamber.

Combining the trajectory reconstruction (subsection 4.3.4) for the extrapola-
tion of the magnetic rigidity with the velocity vector, equation 4.1 allows the
measurement of the ratio A/q, which is completely independent of the ionization
chamber data.

The charge state can then be found as the ratio of A/(A/q) referring to
equations 4.1 and 4.9.
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4.3.5.1 A/Q Optimization

The ratio A/Q depends on the time of flight of the fragment and on the Bρ
reconstruction, as shown in equation 4.1 and in particular depends on the time
of flight measured by the MWPPAC. This focal-plane detector is composed of
multiple wire sections and each is characterized by an intrinsic offset Offs (cf.
equation 4.8) that can vary with respect to the nearby wires.

Since the wires are placed along the x-axis direction (in the dispersion plane
of the spectrometer), a dependence of A/Q with respect to the focal-plane x
position can be observed in Figure 4.11a. The A/Q values are not perfectly
aligned with the expected values of the charge states of the beam (A = 46,
Q = [18, 14]). As a consequence, it is possible to introduce a shift on the value
of the offset dependent on the MWPPAC wire which has triggered. Figure 4.11b
shows the effect of this optimization. Nevertheless, a further deviation is present
in the comparison between the expected A/Q value as a function of the position
on the dispersion plane. This aberration is likely due to small deviations in
the Path reconstruction. Once again, it is possible to introduce a focal plane
position-dependent correction to align the A/Q states to the correct values, as
shown in Figure 4.11c. The applied correction was implemented with a spline of
third-degree polynomials that quantified the amount of shift in the Path variable
as a function of the dispersion plane position.

The same dependence of the deviation upon the focal plane position was
not observed in the y-axis direction, where in the totality of the y focal plane
acceptance, the mean of the point corresponded to the expected value.

While the correction has been extracted by computing the profile of the
beam charge states, the same values of shifts are also valid in the case of Z = 19
reaction fragments, as shown in Figure 4.12. The A/Q values appear aligned,
and no systematic trend is present.

4.3.5.2 Further Optimizations

If the charge state Q and the mass of an ion M are both identified, it is possible
to compute the (kinetic) energy Ek from its magnetic rigidity (Bρ) with the
following expression:

Ek =

√︄(︃
Bρc

Q

)︃2
+M2 −M

It is expected that the energy computed from the Bρ value and the energy
measured by the ionization chamber EIC summed with the non-measured energy
En.m. should coincide with the energy measured with the previous Bρ expression.

By considering the Q = 17 charge state of the 46Ar beam, a linear correction
was applied to the total energy (EIC + En.m.) with the following expression:

E = (EIC + En.m.) p1 + p0 (4.10)
It is possible to observe a time dependence of the charge state and the mass

of the ion. This is likely due to slight fluctuations of the pressure of the chamber
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(a) Correlation between focal plane x position and A/Q with no
corrections applied.

(b) Correlation after the MWPPAC time offset shift.

(c) Correlation with x-focal plane position dependent correction on
the P ath value

Figure 4.11: Aberration in the A/Q values dependent on the dispersion focal
plane position (x-axis) in different stages of the corrections applied. No selection
in atomic number Z has been applied for the current plot.
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Figure 4.12: Correlation graph between A/Q values with selected atomic number
Z = 19 after the correction procedure. No systematic trend is evident.

over time which in turn causes a broadening of the mass and charge state peaks.
A time-dependent shift has been introduced in the total energy of the ionization
chamber to minimize this effect. Figure 4.13 shows the successful effect of the
procedure.

Figure 4.13: Mass for the atomic number Z = 18 as a function of time before
and after the alignment.

4.3.6 Charge State Distribution

The energies involved in the experiment, between 9 MeV/u and 5 MeV/u, do
not guarantee a fully stripped ion, and a charge state distribution is expected
as the ion crosses the material layers. While the 46Ar ion is delivered to the
experimental hall with a 9+ charge state, this value quickly increases as layers
of material are crossed.
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The effect of a charge state distribution on the data is related to the Bρ
acceptance of the spectrometer, which is discussed more in detail in the simulation
subsection 5.2.7. A wide charge state distribution has a negative effect on the
acceptance of the spectrometer as it increases the Bρ spread of the reaction
fragments of interest. Nevertheless, a broad distribution is typical of isotopes
much higher in mass compared to 47K and 46Ar.
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Figure 4.14: Charge state distribution measured for 46Ar (in blue) and 47K (in
red).

Figure 4.14 shows the measured distribution for both 46Ar and 47K. While
17+ charge state is the most prominent state in both cases, it is clear that most
of the statistics are contained within a few charge states, making the impact on
the overall acceptance minimal.

The high acceptance of the spectrometer, together with a combination of
similar Bρ values for the 47K reaction fragments as well as the beam, allows the
detection of the majority of the events. The efficiency figure in excess of 99%
estimated from the Monte Carlo simulation (section 5.2) is relative to the focal
plane detectors and does not consist in an absolute value.

4.3.7 Event Selection

Every event in the magnetic spectrometer is selected with a graphical cut in the
∆E versus E matrix shown in Figure 4.10. An event is associated with a given
Z value if it occurs within the 2-dimensional cut on the correlation matrix of
partial and total energy.

A further selection with graphical cuts is then performed in the charge
versus mass-over-charge matrix (Figure 4.15), where the selections are placed in
correspondence with the peaks relative to different values of the charge state
and their A/q ratio. This methodology has been considered advantageous as it
helps to reduce contamination from nearby peaks and takes advantage of the
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limited dataset of produced isotopes. The reduction in contamination is justified
by the fact that the selection is performed in two dimensions and follows the
features of the matrix in Figure 4.15. A one-dimensional selection would also
produce an unwanted increase in the overlap of the tails of the distributions.
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(a) Z = 18

(b) Z = 19

Figure 4.15: Matrix of mass over charge state (x-axis) and charge state (y-axis)
with different selections in atomic number (Z). Z = 18 corresponding to argon
(top panel) and Z = 19, corresponding to potassium (bottom panel).
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4.4 HeCTOr: The Cryogenic Target

The cryogenic target [7] (HeCTOr, the 3He Cryogenic Target of Orsay) has been
developed to allow the study of direct reactions in inverse kinematics with weak
radioactive beams. It is able to cool the gas contained in its closed loop down
to temperatures around (5 − 6) K and achieve an overall effective thickness of
≈ 1020 atoms/cm2.

The cooled gas is contained within two 3.8µm thick Havar [5] windows in
a target cell exposed to the beam and placed in the reaction chamber 25 mm
behind the nominal target position. The target cell, shown in Figure 4.16 consists
of a solid copper support with a conic flange characterized by a 130◦ aperture
and a diameter of 16 mm of the smaller base.

The pressure can be set to a maximum of 1 bar, which causes a measured
transverse deformation of the Havar containment windows of 0.7 mm at room
temperature.

The gas contained in the target circulates in a closed-loop system while the
refrigerating medium consists of Liquid Helium (LHe), which is injected in the
upper part of the cryostat and reaches the target cell by means of gravity. An
additional thermal shield, cooled to liquid nitrogen temperatures, is placed before
the cold surfaces to decrease the overall LHe consumption.

Figure 4.16: Picture of the copper target cell. The aperture cone faces backward
angles towards the beam. A thermal shield is placed around the structure to
offer insulation from the radiated heat from the surroundings. Figure adapted
from reference [7].
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Figure 4.17: Temperature and pressure in the cryogenic target over time, the
fast increase in pressure corresponds to the filling of the target. The average
pressure achieved was 705 mbar and remained constant during the experiment.
Spikes observable in the temperature value correspond to the cyclic filling of the
refrigerating 4He.

4.4.1 The Deformation of the Target

The deformation of the target occurs as a response to the pressure difference
between the contained 3He and the reaction chamber vacuum. Using the material
properties of Havar and the (circular) boundary conditions of the surface, it is
possible to compute the predicted deformation given a pressure difference and
the radius of the support. Exploiting the results in reference [20], it is possible
to compute a deformation profile given the known experimental conditions.
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Figure 4.18: Target deformation profile, with a pressure of 700 mbar.

The membrane deformation model aims at finding a map between a two

72



HeCTOr: The Cryogenic Target

dimensional un-deformed body Ω (in R2) into a manifold in R3:

Φ(Ω) : R2 −→ R3

The relation between the differential pressure p0, the Cauchy stress tensor T
and the unit normal to the surface m̂ is given by the equation [20]:

− p0m̂ = ∇ · T (4.11)
Exploiting the symmetry of the system, it is possible to assign polar

coordinates to the original un-deformed surface Ω and cylindrical coordinates
of the deformed surface. In the case of small deformations, the model can be
further simplified by considering a linear mapping of the strain tensor to the
stress tensor T .

The following expansion parameter ϵ related to the strain can be defined [20]:

ε =
(︁
1 − ν2)︁Rp0

Y h
(4.12)

Where the symbols appearing in the equation and the adopted values are:

• h is the membrane thickness (3.8 · 10−3 mm)

• p0 is the pressure differential (7.0 · 104 Pa)

• R the boundary radius (8 mm)

• ν the Poisson’s ratio (0.28)

• Y the elastic modulus in tension (2.10 · 1011 Pa)

The final value of the expansion parameter is small (ϵ = 6.8 · 10−4), thus
justifying the procedure of approximation.

A fractional expansion in terms of ϵ of the coordinates mapping is necessary
due to the fact that the deformation perpendicular to the plane is of a different
order (O(ε)) compared to the deformation within the plane. The 1/3 fractional
exponent is chosen by the authors of reference [20] for mathematical reasons.

r = ρ+ ε1/3r1 + ε2/3r2 +O(ε),
θ = φ+ ε1/3θ1 + ε2/3θ2 +O(ε)
z = ε1/3z1 + ε2/3z2 +O(ε)

(4.13)

It is possible to prove that r1 = θ1 = 0 which simplifies the previous trans-
formation. Equation 4.11 translates to the following boundary value problem,
which can be easily solved with dedicated software such as Mathematica [22].

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ρ

d
dρ

[︃
ρ

(︃
dr2
dρ + ν r2

ρ + 1
2

(︂
dz1
dρ

)︂2
)︃]︃

− ν
ρ

(︃
dr2
dρ + 1

2

(︂
dz1
dρ

)︂2
)︃

− r2
ρ2 = 0

1
ρ

d
dρ

[︃
ρ
(︂

dz1
dρ

)︂(︃
dr2
dρ + ν r2

ρ + 1
2

(︂
dz1
dρ

)︂2
)︃]︃

= −1
(4.14)
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The differential equation problem features the following conditions on the
boundaries of the membrane and an additional condition on the symmetry of
the system given by the gradient at the center of the membrane:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r2(1) = 0
z1(1) = 0
dz1
dρ

⃓⃓⃓
0

= 0
r2(0) = 0

(4.15)

Once a solution {r1(ρ), z1(ρ)} has been found, the profile of the deformation
can be simply found by the inverse of the transformation in equation 4.14.

Figure 4.18 shows the result of the calculation in the case of a set pressure of
700 mbar, as set during the experiment.

Setting a pressure of 1000 mbar on the model returns a maximum deformation
of 0.7 mm, which is in full agreement with the deformation measured and quoted
in reference [7].

A deformation translates into an increased thickness which is dependent
on the angle of emission with respect to the target. In general, the effective
thickness of the material that the ion crosses depends on the emission angle as
the inverse of its cosine. This is no longer true in the case of a deformed target
which presents an increased thickness for smaller angles relative to that of a flat
target, as shown in Figure 4.19.
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Figure 4.19: Effective thickness in 3He as a function of the emission angle (left
panel) and angle of entrance on the HAVAR window (right panel). In red the
curve relative to a flat target and in blue a deformed target.
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Another effect of the target deformation is that the entrance angle on the
HAVAR windows is also different compared to the flat counterpart. This effect,
shown in Figure 4.19, also affects the effective thickness of the ice deposition
layer (cf. subsection 4.4.2).

These aspects, which imply a modification of 3He gas, HAVAR, and ice
crossed by the charged particles, have been accounted for using the measured
data on the position of emission of the reaction fragment combined with the
results of this deformation model.

4.4.2 The Ice Growth on the HAVAR Windows

The target itself, due to its many cold surfaces, acts as a cryogenic pump in the
vacuum of the reaction chamber. The HAVAR containment windows have shown
considerable ice deposition during the course of the experiment, consistent with
a linear increase of about 22.5µm per day in total.

This phenomenon could be closely monitored thanks to the presence of the
spectrometer that returns a Bρ value for the beam and can be used to extract
an estimate of the ice thickness by measuring the energy loss of the beam as it
passes through the target.

The evaluation of the ice growth in the course of the experiment is necessary
to correct for the energy loss of the outgoing deuterons in the reaction kinematic
calculations.

The ice layer can be thought of and analyzed as an additional layer with a
thickness measured as described in the current subsection and with the same
shape as the HAVAR window, being adherent to it.

Figure 4.20 shows the evolution of the magnetic rigidity (Bρ) during the
experiment. The filling of the target cell is highlighted in the red shaded region,
where a rapid decrease of the Bρ value indicates an increase in thickness that can
also be observed in Figure 4.17. A gradual and less rapid decrease in magnetic
rigidity is also present in correspondence to a stable pressure in the remainder
of the experiment as a result of ice growth.

4.5 The Beam Tracker: CATS2

The detector [13] consists of a low-pressure multiwire proportional chamber
designed specifically for radioactive beams. Two cells with a common anode and
an overall effective area of (70 × 70) mm2 are present. The anode is composed
of 10 − µm-thick golden tungsten wires spaced 1 mm apart that contribute to
the low 1% opacity of the system.

The wires are polarized at a tension of 800 V and located between two
perpendicularly segmented cathode planes at a distance of 3.2 mm. The cathodes
are made up of 28 strips of evaporated gold on 1.5 − µm-thick Mylar with a
thickness of 200 nm, a pitch of 2.54 mm, and an inter-strip of 0.2 mm.

Additional supporting Mylar foils are placed on each side of the beam tracker
for additional support.
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Figure 4.20: Magnetic rigidity (Bρ) evolution over time. The shaded region
represents the filling of the 3He target, while the remaining portion of the
graph represents the progression of the experiment. The superimposed red line
represents the value relative to the beam ions with charge state Q = 16.

The detector is filled with pure isobutane (C4H10) to exploit its quenching
properties and minimize the chances of the detector tripping due to higher rates.

The beam tracker is placed inline of the beam, 2.045 m before the nominal
target position.

An additional tracker, placed at a distance of 0.5 m inline from the other
one, can also be inserted. Their combination allows to obtain the direction of
the incident ion to improve the kinematics reconstruction.

In this particular experiment, the second beam tracker was removed to limit
the angular straggling, which would have hindered the performances of VAMOS.

4.5.1 Calibration and Performance

The gain on each strip, which is read out independently, is matched by injecting
a pulser signal on the wires and aligning the collected charge to a reference.

Various position finding algorithms are available; however, the one used in
the course of the analysis is the squared secant method, already mentioned
in the subsection regarding the theory of operation of the drift chambers of
VAMOS 4.3.2.
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Figure 4.21: Schematic view of the beam tracking detector CATS2. Image
adapted from reference [13]

The overall nominal resolution achieved is of 300µm on the X direction and
of 500µm on the Y direction. In-beam tests show an X(Y ) position resolution of
240µm (390µm) with a beam intensity of 1.6 · 105 pps which decreases to 440µm
(750µm) in the case of a higher counting rate of 1.4 · 106 pps. The counting rate
throughout the experiment was maintained within the first intensity limit.

The timing information is obtained by the wire signals, the anode, and is
expected to be in the order of 400 ps with an efficiency of virtually 100%.

A safe rate that can be sustained by the detector for long periods of time is
around 105 pps.
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Figure 4.22: Beam profile on the CATS2 detector, placed 2.045 m before the
nominal target position. All statistic is shown in the plot.

4.6 The MU(ST) GAS(PARD) T(RACE) (MUGAST) and
MUST2 Detectors

4.6.1 MUGAST

The MUGAST project is the combination of the silicon detectors of a future
array (GRIT) combined with the well-established electronics of MUST2 [14].
In total, around 3000 independent electronic channels need to be read out for
the full detector, consisting of energy and time of all strips on both sides of the
silicon detectors.

The array [2, 3] will be composed of a total of 8 square and 8 trapezoid
Double-Sided Silicon Strip Detectors (DSSD), covering most of the backward
portion of the solid angle of emission from the target. As shown in the technical
drawing in Figure 4.24 and in the experimental data of Figure 4.23, the solid
angle is covered by square (placed on the 90◦ ring) and trapezoid detectors
(covering angles of 105◦ to 155◦ with respect to the forward beam direction). At
last, a ring-shaped (annular) detector covers the most backward angles (159◦ to
2.95◦).

The detectors are placed 130 mm from the target nominal position that
differs from the cryogenic target position, as the latter is shifted by 25 mm in
the beam direction and towards the magnetic spectrometer.

The trapezoid detectors are 500 − µm-thick Neutron-Transmutation Doped
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Figure 4.23: Graph of the hit pattern on the silicon detector in the course of the
whole experiment. No particle gate has been applied. (left panel) x- and y-axis
position. (right panel) Three-dimensional plot, bigger boxes indicate a higher
amount of hits.

(NTD) silicon wafers with each side divided in 128 strips (710µm (front) 760µm
(rear) pitch) perpendicular to each other. They are placed with the ohmic side
facing the target to improve the performance of the pulse shape discrimination
techniques.

The annular detector is a 500 µm thick float zone wafer divided into 4
quadrants with 16 rings on the junction side and 4 sectors on the ohmic side.
The fine segmentation allows for an angular resolution of approximately 0.4◦

with respect to the nominal target position.
The electronics are placed along a ring-shaped support structure located at

90◦ with respect to the beam direction as shown in Figure 4.24. They consist
of boards containing 9 ASICs and MUFEE boards each, with the capability
of readout of 256 strips, corresponding to one entire detector[2]. The ASICs
deliver a multiplexed stream of data combining energy time and leading-edge
discriminator to the MUVI boards that allow the slow control and data processing
of the detector.

Figure 4.23 shows the overall statistics as a function of the position of the
whole array in the course of the experiment. It is possible to identify regions
of missing strips that are more common for some detectors, such as trapezoid
number 7. Another aspect worthy of note is the poor resolution in phi of the
position of the annular detector if compared to the one achieved in theta. This
aspect is related to the experimental interests in the sensitivity of the detector
since an angular distribution is dependent only on the angle with respect to the
beam trajectory.

MUST2[14], placed at forward angles in this particular configuration, is
an array of four 300µm DSSD detectors backed by 16 CsI crystals read by
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Figure 4.24: Technical drawing in 3D of the MUGAST detectors and the relative
support structure placed at backward angles. The incoming beam passes through
the annular detector pictured in green. Image adapted from reference [2].

photodiodes.
The combination of scintillators and thin position-sensitive silicon detectors

allows for an accurate particle discrimination with the partial energy deposition
procedure (∆E vs E), similarly to the one performed in the ionization chamber
of the magnetic spectrometer in subsection 4.3.3. The MUST 2 detector is placed
at forward angles where the differential cross section of the reaction of interest
is minimal. Additionally, fusion-evaporation reactions on the target materials
cause the emission of light charged particles in the forward cone that overlaps
with the angular coverage of MUST2. As a consequence, little information was
extracted from the array in the analysis of the experiment. Additionally, while
some 3He ions are detected in MUST2, they do not align with the kinematic line
of the elastic scattering reaction (46Ar(3He, 3He)46Ar). This is not surprising
considering the reduced angular coverage of MUST2 near 90◦, where the cross
section of this reaction is maximized.

4.6.2 Energy Calibration

The energy calibration of the setup consists in the alignment of all 128 strips
of both sides of the trapezoids and annular with an alpha source (in this case
239Pu, 241Am and 244Cm whose energies are reported in table 4.2).

The strips are read out by the MUFEE boars that incorporate a 14 bit ADC.
The total bit depth is shared between the two sides of the silicon detector. In
particular, the first 213 bits are reserved to the ohmic side (Y-strips, negative
polarity), while the remaining 213 ones are kept for the junction side (X-strips,
positive polarity). The pedestals of all strips are therefore aligned to the channel
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Figure 4.25: Picture of MUGAST while being mounted in the reaction chamber.
Photo by ©P. Stroppa/CEA

Nuclei Energy (MeV) Intensity Half-life (years)
5.15659(14) 70.77(14)
5.11443(8) 17.11(14)239Pu
5.1055(8) 11.94(14)

2.411 · 104

5.48556(12) 84.8(5)
5.44280(13) 13.1(3)241Am
5.38823(13) 1.66(2)

432.2

5.80477(5) 76.40(12)244Cm 5.76264(3) 23.60(12) 18.1

Table 4.2: Triple alpha emission energies, intensities and half-lives.

number 8192 before the calibration procedure.
The peaks are fitted with Gaussian distributions that also include the satellite

peaks. The reference value of the transition energy, shown in Table 4.2, is modified
to account for the energy loss of the alpha particle in the 0.3µm aluminum dead-
layer. A zero-extrapolation procedure is performed to align the zero energy value
with the electronics pedestal by modifying the dead-layer thickness [11]. At last,
a linear calibration is applied to the ADC channel value to obtain the reference
energy value.

Figure 4.26 shows the calibration applied in the case of the 128 strips of
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detector 1. Aside from the calibration, a re-mapping of the electronic channels
is also performed in order to align adjacent strips with adjacent numbers.

The analysis procedure requires a match of 1 MeV between the energy
measured on both layers in order to suppress spurious events. The final energy
of each event consists of the calibrated value of the X-side of the silicon (junction
side).

Figure 4.26: Spectra of MUGAST’s trapezoid MG1 acquired with a triple-alpha
source: 239Pu, 241Am and 244Cm before (top panel) and after (bottom panel)
the calibration. On the x axis are shown all the 128 X strips of the detector
while the y axis shoes the amplitude of the signal (top panel) or the energy
(bottom panel). Between the indexes of the strips is also present a mapping, as
the first index given by the electronics is mapped to a new index which respects
the spatial positioning of the strip.

Figure 4.27 shows the energy spectrum of the 241Am peaks measured with
the sum of all X-strips of detector 1. The total FWHM of 0.44 MeV, obtained
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according to the resolution model in appendix B, is a good indication of the
correct alignment of all strips. The resolution model consists of a Gaussian
distribution convoluted with an exponential to account for losses in charge
collection that generate a left tail on the peaks.

5.2 5.25 5.3 5.35 5.4 5.45
Energy [keV]

0

20

40

60

80

100

120

140

160

180

200

220
310×

C
ou

nt
s 

/ 1
2 

ke
V Data

Fit
5.39 MeV peak
5.44 MeV peak
5.49 MeV peak

Figure 4.27: Fit of the energy spectrum of all X strips of MUGAST trapezoid
MG1. The fit, performed according to the model in appendix B returned the
following values τ = (3.227 ± 0.007) · 10−2MeV, σ = (9.60 ± 0.03) · 10−3MeV
which amount to FWHM=0.044 MeV. The energies of the triple alpha source
are characterized in Table 4.2 and the peak is relative to 241Am.

4.6.3 Time Calibration

The calibration of the silicon detectors in both energy and time is necessary to
perform particle discrimination with the Energy Time-of-Flight method, which
will be briefly illustrated in subsection 4.6.4.

The time calibration is performed with a time calibrator which injects a
start and stop signal randomly at fixed intervals of N × τ . The value of N is a
random integer, and the time value of τ = 20 ns is chosen to span the whole TDC
(Time to Digital Converter) range of 640 ns. The calibration fits the discretized
peaks, separated by 20 ns and aligns them to the correct timing value with a
second-order polynomial, as shown in Figure 4.28. The procedure calibrates
the relative time but not the absolute value, which is sufficient for the particle
identification procedure that will be discussed in subsection 4.6.4.

The operation is performed both on the X- and Y-axis strips so that the
timing information can be obtained from both sides of the silicon detector.

The final time information in the analysis procedure is taken from the Y-
strips side (ohmic side), which is facing the target and is first irradiated by the
particles.
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Figure 4.28: Strip-time calibration of MUGAST. Several start and stop signals
are sent randomly and aligned to the correct time interval with a second-order
polynomial function. The graph shows the result before (top panel) and after
(bottom panel) the time alignment for each Y-axis strip of one of the trapezoids
(MG1).

4.6.4 Particle Discrimination: Energy-Time of Flight Technique

Assuming that the flight path of the particle ∆x to be a constant, the relation
between kinetic energy Ek and time of flight ∆t of a particle of mass m0 is the
following:

Ek(m0; ∆t) = m0√︂
1 − (∆x/∆t))2

−m0

The Time Of Flight (TOF) is measured with a calibrated Time to Amplitude
Converter (TAC) with a start given by MUGAST and the stop obtained by
the delayed signal of CATS2. As a consequence, the total time between start
and stop is correlated to the time of flight of the ion with the simple equation
∆t = delay − TOF . Additionally, the constant delay contains not only the
signal delay set but also the (constant) time of flight of the beam ions from the
beam tracker to the target position. The energy dependence of the E-TOF curve
follows the relation:
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disc(m0) = Ek(m0; delay − TAC) with ∆t > 0

and can be seen for different masses in Figure (4.29). In practice, different
particles are discriminated on the basis of this correlation between time and
energy. The main limitations of this procedure consist in the overall time and
energy resolution and the possible overlap of different particles in the punch-
through region at large energies.

Figure 4.29: Example of particle discrimination based on time of flight and
energy measurement, shown in the cases of masses multiples of and arbitrary
mass of 1.

Due to the time walk of the start signal given by the silicon detector, there
exists a further correlation between energy and time of flight which deviates
the measure E-TOF curve from the theoretical shape in Figure 4.29. As
a consequence, the experimental curve cannot be directly compared to the
theoretical one shown in the figure.

Figure 4.30 shows the energy time-of-flight selection of trapezoid 4 and the
annular detector. The black dots in the figure represent all the acquired statistics
in the course of the experiment. Three lines are present and correspond to the
detection of protons, deuterons, and alpha particles. Most of the statistics are
associated with the detection of protons emitted from the deuteron breakup
channel or fusion-evaporation reactions.

Fusion-evaporation reactions occur on heavy elements contained in the
HAVAR windows where elements such as cobalt and other metals are present.
On the other hand, fusion-evaporation on the light components of the target,
such as 3He and the ice deposition, is rarely associated with the emission of
light particles at backward angles due to the significant Lorentz boost in the
kinematics. Due to the high statistics acquired for protons in comparison to
the other particles, a considerable amount of these particles is present in the
punch-through tail of the distribution.
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Figure 4.30: Energy time-of-flight for the MUGAST trapezoid number 4 with
angular coverage [117◦ − 160◦] (top panel) and the annular detector with angular
coverage [163◦ − 171◦] (bottom panel). The graph shows the whole acquired
statistics in the case of no event selection (black dots), with a selection of 47K
in VAMOS (blue circles) and selecting also deuterons in MUGAST (solid red
circles).
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Only protons and deuterons are clearly present with the condition of the
detection of 47K in VAMOS in Figure 4.30.

Other significant considerations can be made regarding the average and the
maximum energies of both light particles. In particular, a two-body reaction
associates to an angle of emission a definite energy in the laboratory frame of
reference. While the energy measured by the silicon detector is affected by the
emission-angle dependent energy loss, a correlation between angle and energy
offers an indication of this kind of reaction.

Compared to the case without any selection, protons in coincidence with
VAMOS are always fully stopped in the silicon detector (no punch-through tail
is present) in the trapezoids and are limited to a maximum energy of about
6.5 MeV in the annular detector that is placed at more backward angles. While
deuterons are emitted with a seemingly continuous distribution in the case of no
selection on the spectrometer, once the condition on the reaction fragment of
interest is applied, the maximum energy is limited to ≈ 4.2 MeV in the case of
the trapezoids and ≈ 2.5 MeV in the case of the annular. Another aspect that
further supports this argument is the lower average energy of deuterons detected
in the annular detector in comparison to the trapezoids, which corresponds to
angles, in the laboratory, closer to 180◦.

4.6.5 Energy Loss Correction

While the energy shown in Figure 4.30 consists of the energy measured by the
silicon detector, in order to reconstruct the kinematics, it is necessary to recover
the energy after the reaction and before all the energy losses in the target. In
order to operate an energy loss reconstruction, it is essential to know the amount
of material crossed by the charged particle. Figure 4.19 shows how the amount
of 3He is strongly dependent on the emission direction, as well as how the angle
of incidence is affected by a deformed target which, in turn, changes the effective
thickness that the ion crosses in the window and in the ice layer.

The energy loss process, as introduced in Section 4.3.3.1, is a stochastic
process: as a consequence, there is no one-to-one correspondence between the
energy before and after the material layer. Given a definied initial value, the
energy after the crossed layer will be characterized by a probability distribution
that has a well-defined mean and a width (variance) which increases as the layer
thickness expands. As a consequence, the best effort in correcting for energy
losses will consist in adding the average energy loss after having computed the
material thickness according to the target deformation profile and the angle of
entrance in the window. It is, however, impossible to correct for the significant
energy straggling due to the variance of the distribution.

The energy before and after the correction is presented in Figure 4.31 as
a function of the angle of emission. The average energy increases while the
distribution appears more compact.
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Figure 4.31: Deuteron energy before and after the energy loss correction as a
function of the angle of emission. The calculations are based on the considerations
made on the shape of the target in subsection 4.4.1.

4.7 The Gamma-Ray Detector: AGATA

The AGATA (Advanced GAmma Tracking Array) detector [1] consists of a state-
of-the-art γ-ray tracking array composed of High Purity Germanium (HPGe)
crystals.

Its peculiarity is the ability to estimate the position of interaction of the
photon within 4 mm [1] by relying on the pulse shape measured by its electrically
segmented anodes. This allows the exploitation of γ-ray tracking algorithms
that are able to reconstruct γ ray scattering Compton events, thus reducing
the background and increasing the overall efficiency. The detector is widely
considered the next technological evolution compared to the previous generation
of γ-ray detectors that rely on scintillators surrounding each germanium detector
to suppress the background caused by Compton events. While a tracking array
aims at reconstructing events with multiple interactions, a Compton suppressed
detector vetoes any event with a germanium-scintillator time coincidence. In the
case of AGATA, the overall efficiency per solid angle is increased by the removal
of the Compton shields and the substitution with sensitive HPGe material. Other
advantages include an improvement of the Doppler correction capability due
to the high resolution of the position of interaction figure and all the benefits
derived from the position sensitivity. Moreover, the high degree of segmentation
could allow achieving a higher counting rate compared to conventional detectors
of comparable size.

Figure 4.32 shows the detector in the honeycomb support structure for the
configuration during the experimental campaign of 2019 in GANIL.
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Figure 4.32: Picture of the AGATA tracking- HPGe γ-ray detector. Photo by
©P. Stroppa/CEA

All germanium crystals are arranged in triple clusters that share a common
flange and liquid Nitrogen Dewar. Each crystal is segmented radially and
longitudinally in 6 sectors, for a total of 36 sectors each. A common central
contact is present in the center of the semiconductor crystal. All segments differ
in shape due to the geometry of the detector, as shown in Figure 4.33.

The position reconstruction algorithm is based on a pulse shape analysis
(PSA) procedure which minimizes the discrepancy between the signals measured
in each segment and a basis of signals which associates to a position of interaction
a set of signals in each segment. Figure 4.34 shows the sensitivity of normalized
signals to the position of interaction of the γ ray. Discriminating features are the
difference in drift time between electrons and holes that cause a difference in slope
of the charge collection, as well as a kink in the signal rise curve whose position
is dependent on the distance between the interaction point and the collection
anode (cathode). Another source of discrimination between different positions
of interaction is due to the charge induced in the neighboring segments, which is
higher for interactions segments closer to the point of interaction. A grid search
of a figure of merit (χ2) computed from the energy-normalized signal and the
signal bases is able to achieve a remarkable position resolution of ≈ 4 mm [21].

A total of 39 crystals were fully operational during the experiment, for a total
of 13 triple clusters and one double cluster, amounting to only two detectors
that were mounted but not operating correctly.

The coupling of the AGATA detector, which exploits the GTS trigger and
synchronization system (cf. [1]), with the remaining detectors, relies on the
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Figure 4.33: Segmentation of one HPGe crystal in different segments. Figure
adapted from reference [1].

Figure 4.34: Signals simulated for a segment located 40.25 mm from the front
face. The graph shows the core signal (left panel) of the hit segment and the and
the charge-induced signal on a the neighboring segment (right panel). Figure
adapted from reference [4]
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AGAVA (AGATA VME Adapter) interface. As a consequence, the array can
operate in standalone mode allowing the measurement of any γ-ray event in
the course of the experiment, without any trigger request from the ancillary
detectors. This trigger condition was chosen in the case of the present experiment
due to the low intensity of the radioactive beam and overall reduced background.
A coincidence (prompt) event of AGATA and any of the ancillaries must have a
condition on the difference of the AGATA time stamp and that of the AGAVA
module. Figure 4.35 shows the difference in timestamps of the AGATA and the
ancillaries. A condition must be set on the difference of timestamps according
to the coincidence peak to ensure proper prompt events. The timing condition,
shown in Figure 4.35 is a 100 ns window.
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Figure 4.35: Coincidence peak of AGATA with the ancillary detectors, with the
red shaded region correspollnding to the gate window of 100 ns.

4.7.1 Detector Calibration

The calibration of the array demands the energy alignment of the 36 segments and
the central contact (core) of each HPGe crystal. The calibration of all segments
requires a considerable amount of statistics if compared to the core spectra due
to their limited spatial size. As a consequence, the segments were calibrated
with a 60Co source. The core spectra, characterized by higher efficiency, allowed
the calibration to be performed with a 152Eu source.

In this experiment, the low energy of the γ rays of interest, only 360 keV,
makes the use of the tracking algorithm not necessary as Compton scattering
in crystals far from each other is unlikely. The optimal choice resides on the
add-back procedure, where the energy measured by the core of neighboring
crystals is added together, and the position of the incoming γ ray is chosen as
the one relative to the most energetic hit. The add-back procedure also has
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the added benefit of a straightforward efficiency estimation through the Geant4
simulations (an aspect which is treated in section 5.3).

Figure 4.36 shows the 152Eu source spectra produced by each core after the
calibration procedure. Each crystal appears well aligned and the performance of
the array in terms of resolution in the energy region of interest around 360 keV
appears satisfactory.

Figure 4.36: Calibrated core spectrum of a source of 152Eu source placed 85 mm
behind the target position of all detectors present. The full range (top panel)
and the energy region of interest around 360 keV (bottom panel) are shown. The
Europium lines appear well matched in all crystals.

Since the detector was operating in standalone mode, in the course of the
whole experiment, many γ rays originated from the decay chain of 46Ar isotopes
implanted in the reaction chamber were observed. Figure 4.37 shows the final
spectrum acquired and Figure 4.38 the hit pattern with all operational crystals.
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Figure 4.37: Total spectrum acquired in the course of the experiment in
standalone mode. Peaks observed correspond to the decay chain of 46Ar due to
implantation in the reaction chamber.
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Figure 4.38: Hit pattern on the HPGe tracking array in the course of the whole
experiment, showing the solid angle covered by the operational crystals.
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Chapter 5

Geant4 Simulations for the
Response of the Experimental
Apparatus

Geant4 [1, 2, 3] is a toolkit that allows the simulation of the interaction between
particles and matter based on Monte Carlo methods. It is developed in C++
and is able to simulate a considerable energy range from a few hundreds of eV
to several TeV.

The toolkit supports many physical processes such as particle decays, optical
electromagnetic, and hadronic processes, with the ability to include arbitrarily
complex geometries and materials.

Physical events can be obtained with generators by sampling the probability
density functions which characterize the process. An event generator for in-beam
nuclear reactions will create an event randomly, accounting for the experimental
distribution of the incoming beam in momentum, position, and angle. The
reaction will then be produced in a randomized position between the start and
the end of the target. The reaction fragments will be, in turn, emitted with an
angular distribution sampled from the differential cross section and emitted with
the relative momentum.

The simulation toolkit has proven essential for the simulation of the response
of the detectors to the particular experimental conditions that will be discussed
in the course of this Chapter.

5.1 The VAMOS Ionization Chamber Simulation

A Monte Carlo Geant4 simulation of the response of the ionization chamber of the
magnetic spectrometer (VAMOS) has been implemented in order to characterize
the detector and refine the data analysis.

In particular, the simulation includes the layers of material preceding the
ionization chamber, such as the Mylar containment windows of the MWPPAC
and the drift chambers. The detector response characterization is also useful for
precise calibration of each of the subsequent layers (pads) of the chamber.

In order to simulate the loss of charge in the junction between different pads,
a dead layer of 1 mm was added between the different rows of the ionization
chamber.

Figure 5.1 shows the three-dimensional representation of the detector with
a simulated ion of 400 MeV passing through the various layers and depositing
energy in the CF4 gas contained in the ionization chamber.
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Figure 5.1: Geant4 visualization of the ionization chamber with a 46Ar beam.
The position of the beam is fixed while the energy varies between 400 MeV and
200 MeV. The energy deposited is measured in the ionization chamber segments.

Using the Geant4 General Particle Source (GPS), it is possible to simulate the
emission of 46Ar and 47K ions with a uniform distribution ranging from 400 MeV
to 200 MeV, thus exceeding the experimental values. The necessity of high energy
data is necessary for the calibration procedure described in subsection 5.1.1. The
resolution obtained in each segment of the ionization chamber was measured
and verified both in the simulation and the experiment to verify the match for
46Ar ions. Angular straggling was also included in the generation of events to
simulate the increased energy deposited for trajectories that are not perfectly
longitudinal with respect to the ionization chamber.

5.1.1 Ionization Chamber Calibration

The simulation can be exploited to optimize the ionization chamber calibration.
While an initial calibration of the ionization chamber was performed by matching
the expected deposited energy of the beam ions in each layer, significant energy
straggling is present and hinders the outcome of the result. Additionally, a
systematic bias could be introduced if the layers that the ion passes are not
considered correctly. In order to remove this problem, it is possible to exploit the
correlation of the energy deposited in adjacent segments of the ionization chamber
(shown in Figure 5.2). The physical argument behind this process relies on the
continuity of the stopping power of a material (presented in subsection 4.3.3.1).
The ratio R1,2 between the energy deposited in adjacent segments of length ∆x,
can be approximated with the following ratios of the stopping power, already
introduced in subsection 4.3.3.1:

R1,2 =
∫︁ x1+∆x1/2

x1−∆x1/2
⟨︁

dE
dx

⟩︁
dx∫︁ x2+∆x2/2

x2−∆x2/2
⟨︁

dE
dx

⟩︁
dx
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Figure 5.2: Correlation graph between the energy deposited on a row (x-axis)
and the energy deposited on the next row (y-axis). The simulation in the case of
46Ar emitted in the geometrical center of the ionization chamber with a uniform
energy distribution from 50 MeV to 400 MeV is overlayed on the data with no Z
selection.

If the energy is high enough to be far from the Bragg peak, the stopping power
curve can be approximated with a linear dependence and, as a consequence,
also the ratio of energy deposition is expected to preserve the linearity with a
constant coefficient R1,2. Figure 5.2 shows this linear region with the addition of
far more complex features which are ascribed to lower energies of the ion, where
this approximation no longer holds true. Nevertheless, the simulation is able
to reproduce the correlation accordingly. Another feature that can be observed
in the correlation graph is the punch-through energy which corresponds to the
maximum energy that can be deposited in a segment and is strictly dependent
on the thickness of the material.

Since the beam is fully stopped within segment 4 of the chamber, the
correlation shapes are strongly dependent on the Bragg peak position. In
particular, when the energy of the charged ion is low enough, the stopping power
increases greatly (as introduced in subsection 4.3.3.1), generating an exponential-
like energy release in a short distance. Due to this abrupt energy release in a
small portion of the detector, a small change in the geometry will potentially
create a great change in the detector response. In particular, if the Bragg peak
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occurs near the junction between two pads, the matching between simulation
and real-world data is scarce. This effect is also caused by experimental aspects
which are not accounted for in the simulation, such as the non-linearity of the
pre-amplifiers that is more evident at low energies [12], or other effects such as
charge sharing between nearby pads. This aspect becomes clear in Figure 5.2,
where, in the "Bragg tail" region of the correlation plot, there is not a perfect
overlay between simulation and data.

Since no selection was applied in the correlation plot, it is possible to observe
how other values of atomic number, namely Z = 17, are also present in the
graph.

5.1.2 Estimate of the Not-Measured Energy

In order to estimate the amount of energy lost by the ion in the material which
precedes the ionization chamber, it is possible to exploit the linearity of the
energy released in subsequent layers when the ion is far from the Bragg peak.
This linearity assumption has been argued in the previous subsection and only
holds for the first segments of the ionization chamber. In particular, the reaction
fragment of interest (the 47K ion emitted in the direct reaction as well as 46Ar)
is expected to be stopped in the third or fourth rows of the ionization chamber.
As a consequence, it is possible to assume that in the first row, the energy is
still high enough to be far from the Bragg peak leading to a linear correlation
between the energy lost in the layers preceding the ionization chamber and the
energy lost in the first segment.

Since the Geant4 simulation includes all the material layers between the
MWPPAC detector and the IC, it is possible to extract this linear correlation
between the non-measured energy (∆En.m.) and the energy deposited in the
first layer (∆E0):

∆En.m. = p0 + p1∆E0

The correlation coefficients are, to a first approximation, independent from
the value of Z, so that it is possible to exploit the linear dependence in the case
of both argon and potassium.

Figure 5.3 shows the correlation plot with argon and potassium ions, as well
as the result of the linear fit performed in the region far from the Bragg peak
region. Even if it is clear that the dependence on Z of the extracted parameters
is negligible given the energy resolution, the adopted values are the average of
the extracted numbers.

It is interesting to observe how, outside the linear zone, the Z dependence
dominates, and ions with different atomic numbers trace different correlation
figures.

This correction of the charge state is necessary to extract the value of the
total energy of the ion presented in subsection 4.3.5.2.
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Figure 5.3: Not measured energy vs Energy loss in the first ionization chamber
row. Average of linear fits far from the Bragg peak: p0 = 11.44, p1 = 1.290.
Simulation of 1000 events with emission at an energy from 50 MeV to 400 MeV
of 46Ar and 47K.

5.2 The MUGAST Simulation

The simulation of the silicon detector arrays (MUGAST+MUST2) is carried out
with the NPTOOL toolkit [11] which is based on both ROOT [5] and Geant4.
The overall code handles the generation of events and the simulation of the
response of the detectors and has been extensively tested in the course of past
experiments. Modifications to the distributed codebase were performed in order
to further extend it to the case of the described experiment and will be briefly
discussed in this section.

Figure 5.4 shows a rendering of some events simulated with the setup of
interest.

The Monte Carlo simulation of the silicon detectors is essential in order to
correct for the solid angle efficiencies and to assess the effect of many experimental
aspects on the response of the detector, such as missing strips or the growing
thickness of the ice deposition on the HAVAR windows of the target.

The simulation implements the predictable and observed experimental
conditions in order to extract the response of the array to the different
reactions. This response assessment will be used in the data analysis statistical
considerations reported in Chapter 7.

The main aspects considered in the simulation, which will be discussed in
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Figure 5.4: Geant4 visualization of the MUGAST setup with the transfer reaction.

this section, are the following:

• Center-of-mass angular distribution

• Gaussian-distributed beam profile on target with specified sigma on X or
Y and mean position

• Beam angular straggling

• Beam energy spread

• Angular distribution dependence on the energy due to ice growth

• Accounting for dead strips

• Adjust thresholds strip by strip to match the data to characterize the
response at low energy

• Account for the effect of ice growth

• Dead layers
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5.2.1 Geometry of the Array

The simulated detectors include both MUST2 and MUGAST, as well as the
cryogenic target. An additional sensitive detector that measures energy and
position of interaction is placed at forward angles to estimate the acceptance of
VAMOS and will be discussed in more detail in subsection 5.2.7.

The geometry of the target is modified to include the (deformed) cryogenic
target, composed of the 3He gas at the experimental density, the deformed Havar
windows, and the Ice deposition.

A thin layer of aluminum is also added to the front faces of the detectors to
simulate the loss in deposited energy due to the passivated layer and a possible
slightly incomplete depletion of the silicon. The thickness of the aluminum
passive layer was extrapolated from the calibration procedure and changes for
each detector, according to the extrapolation performed in subsection 4.6.2.

The aluminum thickness ranged from 0.33µm to 0.40µm for the trapezoid
detectors and was set to 0.68µm for the annular.

5.2.2 Event Generation

The beam optics can be simulated by including standard distributed spread in
kinetic energy, position on the target and angle. Once the beam ion has been
traced, a reaction occurs along its path in the target material (3He). Heavy and
light reaction fragments are then emitted with angle and energy given by the
two-body kinematics with a suited excitation energy. The angle of emission is
randomly sampled according to the angular distribution provided in the center-
of-mass reference frame. Once the particles are emitted, if a sensitive detector is
reached, the events will be recorded.

Due to the kinematics of the reaction, which consists of the addition of a
proton to the beam ion, the light particle, the deuteron, will be emitted at mostly
backward angles where MUGAST is located (cf. subsection 4.2.1).

5.2.3 The Missing Strips

Each DSSD contains a total of 128 strips on each side. However, a fraction of
these channels can fail to the extent that no events will ever be recorded for a
given strip. This aspect is expected and can be induced by many factors, such
as damages accumulated during the previous experiments or a malfunctioning
contact. A strip can be considered fully functional if both the energy and the
time of flight are within the expected specifications.

A missing strip will cause a loss in efficiency that can be reproduced in the
Geant4 simulation. If a strip has been detected as non-operational, it will be
excluded in the analysis of the simulation in order to obtain the same detector
response of the experiment.

For the data analysis, a strip is considered fully functional if it has measured
at least one proton in the time span of the experiment, which means that both
the energy as well as the time of flight were properly computed for the strip.
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Figure 5.5: Comparison of MUGAST trapezoid number 7 which had the most
of the missing strips between data (top panel) and simulation (bottom panel).
The number of events in the trapezoid amounted to 8.4 · 104 and in the data to
3.2 · 104.
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This is a sensible choice due to the large number of protons measured by each
strip of the detector. At last, it is important to note that this choice will not
include any bias since a functional strip that by chance has not measured any
proton (a very unlikely occurrence) will simply be considered dead in both the
data and the simulation. This will not introduce systematic errors as it will only
slightly decrease the sensitivity of the detector without harming the comparison.

Trapezoid number 7 was by far the most affected by missing strips, an
aspect which is evident in Figure 5.5 and (4.23) where in many cases, no energy
signal was measured by the detector in the course of the experiment. In order
to verify the correspondence between simulation and acquired data visually,
various simulations with different angular momentum transfers and different
ice thicknesses (cf. subsection 5.2.5) were combined to obtain the response in
Figure 5.5 (right). Comparing the graphs, it is possible to validate the simulation,
and in particular, the loss of statistics in correspondence to the missing strips.

5.2.4 Electronic Thresholds

All the DSSD strips are read out by individual electronics channels [4], as a
consequence, each will be characterized by a threshold that might be not negligible
in the case of low energy deuterons that are emitted at the most backward angles
according to the kinematics of the reaction (cf. subsection 4.2.1). This effect can
be included in the simulated data by recording the minimum energy measured by
each strip in the experiment and applying a threshold condition on the measured
energy.

5.2.5 Ice Deposition on the Target Windows

Another experimental aspect that can be quantified with the simulation concerns
the ice deposition over time on the HAVAR windows of the cryogenic target.

Due to the kinematics of the reaction, which implies lower energy for deuterons
emitted at backward angles, a gradual increase in the detection threshold is
expected.

The observation of this phenomenon has been discussed in subsection 4.4.2.
Since the amount of ice is known thanks to the magnetic spectrometer Bρ
measurement, it is possible to quantify the number of deuterons measured
within a given ice thickness interval, effectively binning the number of deuterons
according to the amount of the ice.

A 5µm interval (bin) is considered spanning from 20µm to 55µm, thus
covering all the whole experimental range of different thicknesses of the ice.
For each bin value, a simulation was performed in the case of different angular
momentum transfer angular distributions (L = 0, 2, 3) with the correct excitation
energy as well as for the case of a uniform angular distribution with the three
possible excitation energies (Ex = 0 MeV, 0.360 MeV, 2.02 MeV) corresponding
to the excited states of 47K.

For each transferred angular momentum, simulations with a total of 70000
events each relative to different ice thickness geometries are added together
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proportionally to the number of deuterons detected in each ice interval. This
allows one to obtain a response of the detector to each of the three types of
transfer L = 0, 2, 3.

The value of the fine binning interval of 5µm is chosen so that simulations
relative to adjacent bins show an almost undetectable effect on the response of
the setup. In particular, a simulation with a given ice thickness shows marginal
differences in excitation energy and angular distribution when compared to the
same simulation with the ice increased by 5µm. As a consequence, it is possible
to conclude that the effect of the binning, if compared to a continuous change of
the thickness, has no impact on the simulation results.

5.2.6 Other Aspects

Other experimental aspects included in the simulation concern beam optics.
In particular the beam energy, position of incidence, and direction angle are
sampled from a Gaussian distribution with standard deviation respectively of
σ = 10 MeV, σ = 0.1 mrad, and σ = 2.5 mm. The values represent common
parameters for post accelerated radioactive beams, while the energy straggling
is justified by the presence of the beam tracker.

The increase of ice deposition has the effect of modifying the mid-target beam
energy and can reflect on a variation of the angular distribution. The DWBA
differential cross-section calculations presented in Chapter 6 showed marginal
variations in terms of the computed angular distributions. Nevertheless, each
simulation performed with a given ice thickness is associated with an angular
distribution calculated with the correct mid-target energy.

5.2.7 The Acceptance of VAMOS

Each deuteron measured by MUGAST is correlated with a heavy ion detected
in VAMOS since the presence of 47K is required for each event. It is clear that,
due to the two-body kinematics, the light and heavy fragments are strongly
correlated in angle and energy, and hence a bias could be introduced in the data
if the acceptance of the heavy fragment is not taken into account. Due to the
kinematics of this particular reaction and the significant Lorentz boost in the
laboratory frame of reference, the great majority of the fragments emitted are
expected to be accepted in the spectrometer (cf. 4.2.1). Nevertheless, a Monte
Carlo simulation is able to include effects due to the energy and the angular
straggling, making the quantification of this aspect possible.

A valid event in VAMOS translates to the emission of the heavy fragment
within the acceptance of the spectrometer in terms of Bρ and angle of emission,
as it is dependent on the optics of the magnetic elements and on the focal plane
detectors coverage. In the case of VAMOS, the high-resolution mapping of
the magnetic fields allows for the tracking of ions from the emission after the
target to the focal plane position, as briefly illustrated in subsection 4.3.4. The
same mapping can be used to compute if the heavy fragment detected in the
simulation by the simple detector at forward angles falls within the acceptance
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of the spectrometer. This detector measures both the energy and angles of
emission.

In order to determine the Bρ value, a charge state is randomly sampled
in the simulation according to the charge state distribution and together with
the ion (kinetic) energy Ek determines the magnetic rigidity according to the
following equation as a function of the mass M and charge state Q:

Bρ = 1
Qc

√︂
E2

k + 2Ek Mc

The reference value of Bρ of the spectrometer was modified multiple times
due to the ever-decreasing beam energy caused by the increase in ice thickness. In
the simulation, each interval of ice thickness was associated with the experimental
reference setting of Bρ0.

The three coordinates of interest are determined on an event-by-event basis,
computing the emission angles with respect to the target: θt, ϕt and the ratio of
magnetic rigidity: δ = Bρ/Bρ0.

In order to speed up the calculations, a first acceptance calculation is
performed to verify if the three coordinates are within the global maximum and
minimum values of the accepted trajectories. If this is not the case, the event is
rejected.

If all three parameters are within limits, the acceptance is not yet assured,
and the following procedure must be performed for each parameter.

Since the acceptance presents itself as a three dimensional matrix Mi,j,k,
where each element contains a number of values which correspond to the final
coordinates, when it is necessary to compute the acceptance of a parameter i,
the closest values of parameters j and k must be found to check if the value of
parameter i is within the accepted range.

It appears the necessity of definition of a metric to determine the closest
trajectory. In a similar way to the procedure described in subsection 4.3.4,
the closeness relation between different points is defined by the distance
d =

√︁
(pj/cj)2 + (pk/ck)2. In this case, the scaling constants cj , ck are defined

by the difference between maximum and minimum value of each parameter.
If the measured (simulated) parameter imeasured is compared to the maximum

imax and minimum imin values of the same parameter in the matrix, an event is
accepted if the following condition holds true:

Mimin,jc,kc
< Mimeasured,jc,kc

< Mimax,jc,kc
(5.1)

The fragment is accepted if it falls within range of all three parameters
(θt, ϕt, δ).

Figure 5.6 shows the acceptance of the spectrometer (namely the matrix
Mi,j,k) in the case of the projections on two axis. It is clear that it is not possible
to consider the acceptance of each parameter independently from the others.
This argument is even more evident in the case of the three-dimensional graph
in Figure 5.7 which clearly shows that some combinations of parameters are
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Figure 5.6: Two dimensional projections of the acceptance of each combination
of the three parameters: θt, ϕt and δ. Bins closer to red in gradient represent a
higher number of trajectories.
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Figure 5.7: Three dimensional acceptance of the magnetic spectrometer, based
on the three parameters θt, ϕt and δ. An event is accepted if it falls within the
volume delimited by the pictured three-dimensional surface.

impossible to accept. In simple terms, an event that is contained within the
pictured surface is an event that can be accepted by the spectrometer.

5.3 The AGATA Simulation

Gamma rays are observed in coincidence with 47K in the magnetic spectrometer
in correspondence to 360 keV and 1660 keV. A direct L = 2 transfer to the 3/2+

state would imply the emission of a 360 keV γ ray with a lifetime of 1.1 ns. At
the same time, direct feeding of the 7/2− state would imply the emission of two
γ rays (most of the time) of 360 keV and 1660 keV with a lifetime of the state of
6.3 ns (cf. the 47K level scheme in Figure 3.8).

As a consequence, direct feeding to the two states will produce different
responses on the tracking array. In particular, it is possible to verify if the
intensity of the two peaks at 360 keV and 1660 keV are compatible with the
results obtained from the analysis of the angular distribution.

In order to achieve this goal, it is necessary to account for all the geometrical
aspects of the experimental setup (absorption due to the various materials) as
well as to simulate the reaction and the emission of the γ rays based on the
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lifetime of the states. The latter is crucial since a long-lived state will decay
behind the cryogenic target, where γ-ray absorption is large.

The simulation of the HPGe γ-ray detector array relies on the Monte
Carlo Geant4 simulation code developed and maintained by the AGATA
collaboration [7] with supplementary features implemented for this experiment.

The cryogenic target is included as an additional ancillary detector that
can be added to the geometry of the array. The target was implemented by
reconstructing the geometry of the target cell [8], whose main material consists of
a relatively thick copper structure (as described in reference [8]). The accuracy
of the target cell geometry is essential to reproduce the real-world data correctly
as it is placed between the HPGe array and a nucleus decaying behind the target.
The target cell is supported from the top by additional metallic material and
encapsulated in a thin copper shielding box. The target and its support structure
are complemented by the MUGAST reaction chamber included in the simulation
in the GDML format. A block of iron placed in correspondence to the entrance
quadrupole of VAMOS completes the setup to simulate the potential Compton
background. The geometry of the complete setup is shown in Figure 5.8. The
emission from a 152Eu source positioned behind the target cell is shown. In
Figure 5.9, green lines indicate the emission of γ rays, red lines of electrons, and
blue lines of positrons. A close inspection of Figure 5.9 shows the shielding effect
caused by the target where two γ rays are deflected by Compton scattering and
one γ ray is fully absorbed in the copper structure.

A total of 39 fully operating crystals are placed in the simulation (13 triple
cluster and one double cluster with two non-operational detectors overall). In
order to reconstruct the γ-ray efficiency from the simulation, it is necessary to
include the intrinsic efficiency of each crystal which is a parameter that ranges
from 70% to 88% as documented in reference [10].

5.3.1 Source Measurement Validation

A 152Eu source run was performed at the end of the experiment in order to
validate the simulation. The source was centered in the x and y position and
placed 85 mm behind the target cell towards the magnetic spectrometer. As
a result, the target structure stands between the source and the HPGe array,
effectively shielding part of the emitted γ rays. This position was chosen to
evaluate the response to the emission of a γ ray from a long-lived state of the
recoiling nucleus. The efficiency of the detector depends not only on the distance
between the detector and the source but also on the amount of solid angle
covered by the target structure and the attenuation factor, which is dependent
on the energy.

As a consequence, two effects are to be expected:

• A reduction of the efficiency in absolute values due to the absorption of
some of the emitted γ rays by the (relatively) thick target cell
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Figure 5.8: Visualization of the source simulation with the full reaction chamber,
cryogenic target and AGATA.

Figure 5.9: Simulation of the 152Eu source placed 85 mm behind the target. In
green the γ-ray trajectories, in blue e+ and in red e−. The reaction chamber
and all nearby objects have been removed for visualization purposes.
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• The modification of the usual efficiency curve of a γ-ray detector due to
the energy dependence of the absorption coefficient. In particular, low
energy γ rays are expected to be affected more by the interposed material
if compared to higher energy photons. This aspect is dependent on the
material, mainly copper, as well as its thickness.

Figure 5.10 shows the comparison between simulation and experimental
data that appear in close agreement with each other. The fit procedure on the
experimental spectra has been performed using the resolution model described
in Appendix B and by using the integral of the distribution with the derived
statistical uncertainty. The model is introduced to account for the loss in
charge collection caused by neutron damage on the crystalline structure of the
germanium crystal, which manifests itself with the presence of a low energy (left)
tail on the peaks of the spectra [6].

310
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cy Simulated source at 85 mm from the target

Simulated source at 85mm w/o target and chamber

Simulated source at 340 mm from the target

Measured source at 85mm from the target

Figure 5.10: Comparison of Geant4 simulation and data of core detection
efficiency of AGATA with a 152Eu source. The solid lines correspond to a fit
of the efficiency curve parametrization performed according to reference [9].
Statistical errors on the fit are present but not visible due to their low relative
value. The presented curves are relative to the simulation (blue) and experimental
data (black), with the source placed 85 mm behind the target cell. The efficiency
curve with the same position but without the reaction chamber and the cryogenic
target (red) shows the γ-ray absorption. The efficiency with the source placed
further away from the spectrometer (green) shows the impact of a reduced solid
angle coverage.
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Comparing the efficiency curve at 85 mm (in black) with the simulation of
the same setup with the target and the reaction chamber removed, it is clear how
the presence of these structures affects the overall shape of the curve in absolute
terms as well as in terms of trend. In fact, the black line appears more attenuated
for low energy γ rays with respect to the red one, indicating the presence of
an absorber material. In the same figure, a simulation of the emission far from
the target structure (340 mm) shows how the diminished solid angle covered
by the germanium array negatively affects the efficiency. Nevertheless, another
interesting aspect can be observed, as the shape of the (red) curve relative to
the absence of the target structure is somehow recovered. This is due to the fact
that, in relative terms, the solid angle covered by the target cell has decreased
more if compared to that of the detector, making the absorption effect on the
curve less important.

A further consideration is necessary concerning the effect of the efficiency
from the AGATA analysis methodology. A γ-ray spectrum can be generated
using the AGATA cores (as in the case of the efficiency curves considered in
Figure 5.10), exploiting the add-back procedure or the tracking algorithm. In
order to reconstruct the efficiency of each analysis procedure from the simulated
data, the first two methods simply require the energy deposition evaluation of
Geant4. The efficiency of the tracking algorithm, on the other hand, also relies
on the positions of interactions. As a consequence, the efficiency figure can be
considered reliable only in the case of accurate correspondence of the position of
interaction of the data and the simulation. While in the case of the data, the
position figure depends on a χ2 minimization that searches for at the most a
single interaction within a segment, in the simulation, many more interactions
are present on average. This aspect is dealt with by packing close interaction
points by considering them as a single interaction with energy equal to the sum
of all energy and with the position equal to the energy-weighted average position
of all interactions. As a consequence of this further step, in order to remove the
potential introduction of systematic errors, only the case of core and add-back
spectra will be considered.

5.3.2 Event Generation and Reaction Simulation

While the efficiency as a function of the position of emission has been verified
with measured data, an additional step is necessary in order to simulate the
response of the detector in the course of the experiment.

In particular, an event must be generated with the correct physical properties.
On the one hand, the two-body kinematics and the energy losses need to be
considered to allow for the correct energy of emission of the 47K fragment. The
energy of emission affects the Doppler correction as well as the broadening of
the peaks observed. On the other hand, an event must be simulated with the
correct decay characteristics of the states of interest, namely the lifetime of the
states. A long-lived state of a few nanoseconds will decay far from the nominal
central position of the array, thus producing a broadening of the observed peaks.
The broadening of the Doppler corrected peaks can be understood starting from
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the Doppler formula that relates the energy of a γ ray emitted in the frame
of reference at rest (Eγ0) with respect to the energy (Eγ) in another frame of
reference which is moving at a velocity β with respect to the former:

Eγ

Eγ0

=
√︁

1 − β2

1 − β cosϑγ

where ϑγ indicates the angle between the velocity vector and that of the γ
ray. The source of the broadening can be broken down in its main constituents:
the uncertainty on the angle of emission ∆ϑγ , the uncertainty on the recoil
velocity ∆β and the intrinsic resolution ∆Eintr:

(︃
∆Eγ0

Eγ0

)︃2
=
(︃

β sinϑγ

1 − β cosϑγ

)︃2
× (∆ϑγ)2 +

(︃
β − cosϑγ

(1 − β2) (1 − β cosϑγ)

)︃2
× (∆β)2

+
(︃

∆Eintr

Eγ

)︃2

The first aspect to observe is that ∆Eγ0 is proportional to the energy of
the transition, making the broadening more evident for higher-energy γ rays.
The second uncertainty is related to the angle between the velocity vector (or
β) and the angle of emission of the photon. While for a short-lived state and
thanks to the high position resolution of AGATA (nominally 4 mm), this effect
is often negligible, in the case of interest, the emission consists in a stochastic
process where the photon can be emitted along the trajectory of the ion in a
position which follows the typical exponential distribution (in the case of one
single excited state). While the direction of β is measured by the magnetic
spectrometer, the angle of emission is affected by a large uncertainty in ∆ϑγ due
to this uncertainty on the position of emission.

Figure 5.11 shows the response of the detector in the case of feeding to three
different states: the 3/2+ and 7/2− states in the level scheme presented in Figure
3.8 as well as another short-lived state. Various aspects can be noted from the
difference between the spectra. On one side, the broadening of the 1660 keV
peak is very significant if compared to the intrinsic resolution of the detector of
a few keV. On the other hand, also the centroid of the 360 keV peak is shifted,
and its overall integral appears to be also affected by the different feeding due
to the delayed emission in the case of the population to the 7/2− state.

Table 5.1 shows the effect of the population to different states on the total
efficiency of AGATA. As expected, the detection of 360 keV γ rays decreases
significantly in the case of the feeding to the 7/2− state.
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Figure 5.11: Simulated and Doppler corrected γ-ray spectra of 106 reactions
in the case of three different populated states. The broadened peak around
1660 keV is caused by the long lived 7/2− state.

Feeding to 3/2+ Feeding to 7/2−

360 keV efficiency 2.7% 1.3%
1660 keV efficiency - 0.99%

Table 5.1: Simulated efficiency in the case of different populated states, including
reaction kinematics and lifetime of the populated states.
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Chapter 6

DWBA Calculations of
Proton-Transfer Cross-Sections
A thorough treatment of the nuclear reaction dynamics is essential in order to
extrapolate the nuclear structure information that is crucial for the outcome
of the experiment. This chapter will discuss some of the considerations and
calculations for the extraction of the angular distributions, which are in turn
necessary to extrapolate the final relative spectroscopic factors.

All nuclear reaction calculations are carried out with the Fresco code [12], a
program developed in Fortran to perform nuclear coupled-channel reaction
calculations. While Fresco includes a multitude of reaction calculations
procedures that can quickly reach high levels of complexity, the following chapter
will focus on simple finite range 1-step DWBA calculations. Due to the presence of
the structure of the cryogenic target, angles towards 90 degrees, where most of the
statistics are expected, were shadowed by the support structure, thus preventing
the measurement of the elastic scattering reaction (46Ar(3He, 3He)46Ar). This
reaction is often used to extract the parameters of the optical potential in the
entrance channel.

Nevertheless, the validity of the optical potentials considered in the following
chapter can be verified by comparison with other experimental data on direct
reactions.

In the case of the transfer reaction on 46Ar considered in this work, the
optical potentials necessary for a precise calculation are the following:

• Incoming scattering: 46Ar-3He

• Outgoing scattering: 47K-2H

• Core-core: 46Ar-2H

• Binding: 46Ar-1H

• Helium potential: 1H-2H

Various global optical potentials will be considered, tested, and compared to
experimental data in the following sections. Global optical potentials consist of
parametrizations of the Wood-Saxon function with respect to some parameters
that often correspond to the atomic number and mass as well as the incident
energy. They are generally obtained with a minimization procedure from the
angular distributions computed for the elastic channel with respect to the
experimental data. Consequently, their validity is often restricted within a
specific energy range and region of the Segrè chart. Due to this minimization
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6. DWBA Calculations of Proton-Transfer Cross-Sections

procedure, the amount of available data influences the performances of the global
potentials. The optical potential, modeled with the Wood-Saxon function, is
composed by the following terms:

V (r) = VR(r) + VSO(r) + VC(r) + i [WD(r) +WS(r) +WSO(r)]

The imaginary part of the potential is related to the absorption of the incoming
flux. The terms consist in the Coulomb potential Vc, the real (imaginary) part
of the potential well Vr (WS), the real (imaginary) spin-orbit component VSO

(WSO) and the surface absorption WD. Each term needs three constants that
can be parametrized with respect to the energy or the scattering nucleus: The
depth of the well V , the radius r, and the diffusivity parameter a.

Following along the line of the global deuteron potential developed by Han
et al. [6], the volume components for both real VR and imaginary WS terms will
have a simple shape described by:

VR(r) = − VR(E)
1 + exp

(︂
r−RR

aR

)︂
The surface absorption WD, on the other hand, will depend on the derivative

of the Wood-Saxon function so that it will reach a maximum of absorption along
the surface of the potential well:

WD(r) = −4WD(E)
exp

(︂
r−RD

aD

)︂
[︂
1 + exp

(︂
r−RD

aD

)︂]︂2

The spin-orbit components VSO and WSO will also be related to the derivative
and proportional to the spin-orbit scalar product:

VSO(r) = −
(︃

ℏ
mπc

)︃2
(L⃗ · S⃗) VSO

aSOr

exp
(︂

r−RSO

aSO

)︂
[︂
1 + exp

(︂
r−RSO

aSO

)︂]︂2

The Coulomb component VC is often parameterized with the simple Coulomb
potential outside the radius RC and considering a constant charge distribution
inside:

VC(r) =
{︄

C1
ZdZ
RC

(︂
3 − r2

R2
C

)︂
if r < RC

C2
ZdZ

r if r ⩾ RC

The region of sensitivity of the experiment, in the center-of-mass reference
frame, is between 2◦ and 23◦ (cf. Figure 7.8). In this region, the shape of the
angular distribution is dominated by the angular momentum matching between
the beam and target nuclei, while the optical parameters of the potential are of
secondary importance [5].
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Elastic Scattering

In the following sections, this will be apparent by a close match between the
calculated angular distribution for small angles and the progressive distancing
at larger angles. In particular, the absorption component of the potential will
dominate the decay at large angles in the center of mass so that a fine-tuning of
the parameters relative to the imaginary volume part is necessary to achieve a
good agreement for large angles.

6.1 Elastic Scattering

6.1.1 The Deuteron Potential

The deuteron potential consists in the exit channel for the reaction of interest on
46Ar. Some global optical potentials have been parametrized in order to describe
elastic scattering data between deuterons and heavy nuclei; in the current section,
three potentials will be considered:

• An et al. [1]: global optical potential obtained from data ranging from 12C
to 238U with energies of less than 183 MeV

• Han et al. [6]: global optical potential for nuclear masses ranging from
A = 12 to A = 209 with an energy of up to 200 MeV

• Bojowald et al. [4]: global potential produced with a reduced amount of
data for nuclear masses ranging from A = 27 to A = 208 and energies
comprised between 50 MeV to 80 MeV.

The elastic scattering data are available from a recent experiment performed
in GANIL at the SPIRAL1 facility for the study of the 47K(d,p)48K direct
reaction in inverse kinematics with a radioactive beam of 47K at 7.52 MeV/u [11].
The experiment took advantage of the same experimental setup with the addition
of DSSD square detectors placed at 90 degrees with respect to the target, thus
allowing the measurement of the elastic scattering reaction channel (47K(d,d)47K).
The elastic channel is of vital importance for this work as it corresponds to the
exit channel of the transfer reaction and is in a similar energetic range.

Figure 6.1 shows the comparison between the elastic data with the DWBA
calculations performed with three optical potentials developed by An et al. [1],
Han et al. [6], and Bojowald et al. [4]. While all three global potentials considered
are in good agreement with the data in the range of sensitivity 2◦-23◦, the
potentials parametrized by Han et al. show impressive compatibility in the whole
experimental range.

While no other public data exists for elastic scattering of deuterons on
47K, it is possible to test the same optical potential parametrizations with the
experimental data of reference [2]. The authors studied the spectroscopy of 47K
via direct reaction from the stable isotope 48Ca: 48Ca(d,3He)47K. Moreover,
the authors were also able to measure the elastic scattering reaction channel
(48Ca(d,d)48Ca) with bombarding energy of 79.2 MeV. While this energy is
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Figure 6.1: Ratio of the elastic over the Rutherford differential cross sections.
Comparison of DWBA reaction calculations with different optical potentials for
the elastic scattering reaction 47K(d,d)47K at 7.52 MeV/u in inverse kinematics.

significantly higher than the one of this work, it can still serve as a qualitative
benchmark of the potential parameters. Figure 6.2 shows the same potentials
considered in Figure 6.1 with updated values for the reaction of interest and
bombarding energy. The agreement between experimental data and the DWBA
theoretical distribution is satisfactory for angles closer to zero degrees and
diverges for larger values.

6.1.2 The A = 3 Potential

The optical potential for 3He represents the entrance channel, and while no
elastic scattering was measured for the present experiment, some considerations
can still be carried out. The global optical potentials considered in the case of
3He consist in:

• Trost et al. [13]: 3He global optical potential for nuclei with mass range
from 10 to 208 and energies from 10 MeV to 220 MeV

• Li et al. [8]: 3H global optical potential for nuclei from 48Ca to 232Th with
energies of less than 40 MeV

• Hyakutake et al. [7]: 3He potential for nuclei in the vicinities of 60Ni in an
energy range from 90 MeV to 120 MeV

• Becchetti et al. [3]: Global potential for 3H and 3He with bombarding
energies of less than 40 MeV

124



Proton Transfer Reactions

5 10 15 20 25 30 35 40
Center of Mass Angle [deg]

1−10

1

10

Rσ/σ
Data

An and Cai

Han et al.

Bojowald et al.

Figure 6.2: Ratio of the elastic over the Rutherford differential cross sections.
The DWBA calculations are compared to the experimental data with different
optical potentials for the elastic scattering reaction 48Ca(d,d)48Ca at 79.2 MeV
in direct kinematics [2].

• Liang et al. [9]: Global 3He optical potential for nuclei from 9Be to 208Pb
with energies of less than 270 MeV

Although, no experimental data exists in the case of elastic scattering on 3He,
the work by Becchetti et al. offers the parametrization of the optical potential for
both tritons and 3He. Experimental data of elastic scattering of tritons on 48Ca
exists in literature [10] with a beam energy of 33 MeV in direct kinematics, close
to the energy of interest. The similarity of the parametrization of tritons and
3He justifies some of the presented calculations, where the 3He parametrization
was tested on the elastic scattering of triton isotopes.

Figure 6.3 shows the experimental angular distribution compared to the
DWBA calculations performed with the previous optical potentials. The
comparison is favorable for angles in the angular range of interest with a
progressively increasing divergence for angles above ≈ 35◦. Similarly to the
previous cases, the optical potentials often fail at reproducing the absorption
component for increasing angles while still reproducing the positions of maxima
and minima of the distribution.

6.2 Proton Transfer Reactions

In transfer reaction calculations, the final and initial partitions differ due to the
transfer of one nucleon. As a consequence, also the optical potentials before and
after the transfer are different. One-step finite-range DWBA calculations are
performed for the following calculations and will be benchmarked with existing
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Figure 6.3: Ratio of the elastic over the Rutherford differential cross sections.
Scattering of 48Ca on tritons [10]: 48Ca(t,t)48Ca at 33 MeV (direct kinematics).
The x-axis is shown in logarithmic scale to accentuate the angular region of
interest which ranges from 0◦ to ≈ 23◦ in the center of mass frame of reference.

experimental data on the (48Ca(d,3He)47K) reaction, although at the much
higher energy of 79.2 MeV in direct kinematics [2].

6.2.1 48Ca(d,3He)47K

The calculation was performed using Wood-Saxon potentials to describe the
overlaps between incoming 48Ca ground state and the states of interest of 47K,
⟨48Ca|47K⟩. The calculations are made to reproduce the experimental data of
reference [2] which focuses on the study of the direct reaction using a (polarized)
deuterium beam on a 48Ca target. While a total of seventeen states of the
potassium isotope were populated, the current work aims to reproduce the
observed L = 0 and L = 2 transfers to 1/2+ and 3/2+ states of 47K. The authors
provide a parametrization of the optical potentials, which has also been included
in these calculations. A comparison between some of the global potentials is
shown in Figure 6.4, where the calculations account for the spectroscopic factors
inferred in the cited article.

In particular, two L = 0 reaction channels were observed for the proton
transfer to the ground state and to a level located excitation energy of 3.8 MeV.
The latter higher-lying state was shown to absorb a small amount of the j = 1/2
strength, amounting to a spectroscopic factor C2S = 0.28, which needs to be
compared with the value of C2S = 1.55 relative to the ground state.

As far as the L = 2 reaction channels are concerned, a total of twelve different
channels were observed. Nevertheless, while the j = 5/2 strength appears to be
very fragmented since the sum of the ten measured spectroscopic factors amounts

126



Proton Transfer Reactions

5 10 15 20 25 30 35
Angle [deg]

2−10

1−10

1

10

 [m
b/

sr
]

Ω
/dσ

 d

Data
Ref. pot.
Han + Ref. pot.
Han + Trost
Han + Becchetti
Han + Liang

S=1.552L=0 0 MeV C

6 8 10 12 14 16 18 20 22 24 26 28
Angle [deg]

3−10

2−10

1−10

1

10

 [m
b/

sr
]

Ω
/dσ

 d

Data
Ref. pot.
Han + Ref. pot.
Han + Trost
Han + Becchetti
Han + Liang

S=0.282L=0 3.8 MeV C

5 10 15 20 25 30 35
Angle [deg]

1−10

1

10

 [m
b/

sr
]

Ω
/dσ

 d

Data
Ref. pot.
Han + Ref. pot.
Han + Trost
Han + Becchetti
Han + Liang

S=4.162L=2 0.36 MeV C

6 8 10 12 14 16 18 20 22 24 26 28
Angle [deg]

2−10

1−10

1

 [m
b/

sr
]

Ω
/dσ

 d

Data
Ref. pot.
Han + Ref. pot.
Han + Trost
Han + Becchetti
Han + Liang

S=0.702L=2 3.88 MeV C

Figure 6.4: Comparison of single-step finite range DWBA calculations performed
with Fresco and the available experimental data for the direct reaction
48Ca(d,3He)47K at 79.2 MeV in direct kinematics [2]. The reference potential, in
blue, consist in the parametrization identified by the authors in reference [2] to
better reproduce the data, while the other combinations are the global optical
potentials considered in the current work.
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to 64% of the shell-model limit, the case for the j = 3/2 state is different. The
j = 3/2 strength appears to be exhausted by only two states in 47K: the first
excited state at 0.36 MeV and the higher-lying state at 3.88 MeV. The first state
takes up most of the strength with a spectroscopic factor of C2S = 4.16, while
the second only amounts to C2S = 0.7.

Since in the direct reaction with 46Ar, no evidence of populating the j = 5/2
states was observed, the calculations are shown only for j = 1/2 and j = 3/2,
which also correspond to the states of interest to this work.

In order to assess the performance of the optical potentials, various
combinations of parametrizations in the entrance and exit channels have been
considered. With the intent of limiting the number of cases, only two distinct
deuteron optical potentials have been considered. The calculation has also
been performed with the parameters presented by the authors in reference[2] to
compare the results with the global potential by Han et al.. Their performance in
the deuteron channel of interest has been proved in Figure 6.1. The combination
of the global potential by Han et al. with the parameters cited in the article for
the exit channel (3He) offers further confirmation of its efficacy. The distribution
considering the 3He potential by Becchetti et al. shows remarkable results,
especially in the sensitivity range up to 23◦, predicting correctly the position
of maxima and minima as well as the attenuation and relative intensity of the
peaks. The remaining combinations of the potential by Han et al. and Liang et
al. or Trost et al. show a similar trend but fail to reproduce the data as closely
as the other cases. More specifically, although the maxima and minima of the
distribution appear well-positioned, the attenuation of the angular distribution
is not accurately reproduced.

Further confirmation of the parametrization by Becchetti et al. is offered by
its ability to reproduce both tritons and 3He, which is proven by the performance
in the experimental range of interest in the elastic scattering on tritons in
Figure 6.3.

The considerations carried out according to the calculations presented in
Figure 6.3 and 6.4 for the 3He potential as well as Figure 6.1 for the deuteron
potential clearly point to the combination of Becchetti et al. and Han et al. as
the most most effective choice in modeling the reaction of interest.

6.2.2 46Ar(3He,d)47K

Given the previous remarks regarding the performance of the optical potentials,
the direct reaction on 46Ar has been computed with a singe step finite-range
DWBA calculation with two potentials for the entrance channel (Trost et al.
and Becchetti et al.) and two other potentials for the outgoing channel (An
et al. and Han et al.). Every combination of the selected potential has been
used to compute the angular distribution for the proton transfer channel do the
ground state (s1/2, L = 0), the first excited state at 360 keV (d3/2, L = 2) and
the state at 2.02 MeV (f7/2, L = 3). While the angular distributions shown in
Figure 6.4 hint at a sub-optimal performance of the potential of Trost et al., the
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calculations are included in the current section to quantify the dependence of
the final experimental result linked to the choice of the optical potential.
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Figure 6.5: Angular distribution for the 46Ar(3He,d)47K direct reaction with a
46Ar radioactive beam with an energy of 357.2 MeV (corresponding to the mid
target energy with an ice thickness of 35µm. Combinations of different optical
potentials are shown in the region of sensitivity of the experiment. (top left
panel) Elastic reaction channel. (top right panel) L = 0 transfer to the ground
state. (bottom left panel) L = 2 transfer to the d3/2 state at 0.36 MeV. (bottom
right panel) L = 3 transfer the state at 2.02 MeV.

Figure 6.5 shows the proton transfer reaction channels with the elastic
scattering on 3He in the angular range of experimental sensitivity. The ratio
between the elastic cross-section and the Rutherford cross-section shows a close
agreement between the two 3He optical potentials by Trost et al. and Becchetti
et al.. The transfer reaction channels, which are also dependent on the deuteron
optical potentials, show great similarity between the combinations of Becchetti
+ An and Becchetti + Han. The only observed discrepancy stemming from the
change of the deuteron potential resides in the L = 3 angular distribution at
zero degrees. Nevertheless, comparing the cross-section value, it is clear that
such a slight difference is undetectable since it lies in an angular range where
the L = 0 transfer cross-section is more than two orders of magnitude higher.

Concerning the combinations with the 3He optical potential by Trost et al.,
all reaction channels show similar angular distributions both in overall shape
as well as absolute value with the exception of the L = 0 transfer channel.
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In this case, the position of the maxima of the distributions is coherent with
those produced by Becchetti et al.. Nevertheless, the attenuation, similarly to
Figure 6.4, appears to be reproduced in a systematically different manner, while
the position of the first minimum of the L = 0 is also shifted by ≈ 3◦ in the two
combinations.

Figure 6.6 shows the same calculation in the whole angular range, where
discrepancies are more evident for angles closer to 180◦. In the graph relative
to the elastic channel, it is also possible to observe the absorption component
of the optical potential developed by Trost et al. and Becchetti et al. show a
similar trend.
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Figure 6.6: Angular distributions of Figure 6.5 in the full range. Discrepancies
progressively increase for angles far from zero degrees. (top left panel) Elastic
reaction channel. (top right panel) L = 0 transfer to the ground state. (bottom
left panel) L = 2 transfer to the d3/2 state at 0.36 MeV. (bottom right panel)
L = 3 transfer the state at 2.02 MeV.
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Chapter 7

Experimental Results

7.1 Analysis Strategy

The aim of the experiment is to measure the amount of L = 2 transfer to the
first excited (3/2+) state in 47K relative to the L = 0 transfer to the ground
state (1/2+) (cf. Figure 3.8). This chapter will focus on the procedure to extract
the needed information from the measured angular distribution.

In the case of nuclear states well separated in energy, the excitation energy
spectrum allows the determination of the integral of each peak corresponding
to an excited state. The states of interest of 47K are separated by 360 keV,
well below the experimental resolution in excitation energy. The resolution is
hindered by the energy straggling on the target materials and the considerable
thickness of the 3He target. Nevertheless, exploiting the significant difference
in angular distribution between the L = 0 and L = 2 transfer, it is possible to
extract this ratio from a fit of the data. In particular, the L = 0 transfer to the
ground state is characterized by a prominent peak at angles close to zero degrees
in the center of mass frame of reference, which corresponds to backward angles
in the lab (cf. Figure 4.6 and Figure 6.5). On the other hand, the first maximum
of the L = 2 transfer occurs at approximately 15◦, between the first and second
peak of the L = 0 distribution. In the laboratory frame of reference, the first
and second peaks are located respectively in correspondence to the annular and
trapezoid detectors. Consequently, the measured data is sensitive to the first
and second peaks of the L = 0 distribution and the first peaks of the L = 2, 3
transfers. Considering the differential cross sections integrated with respect
to the solid angle covered by the annular detector, only the L = 0 transfer is
expected to contribute to the measured deuterons significantly in this detector.
Practically, this array component will fix the amount of L = 0 transfer, which
will then be compared to the measured counts in the trapezoid detectors that
will determine the amount of higher L transfer.

The simulations introduced in Chapter 5 included many experimental
conditions which need to be considered not to introduce any bias in the
comparison between the simulations and the data.

Figure 7.1 presents a schematic view of the interplay between experimental
data and simulations and summarizes the analysis strategy that will be presented
in the current chapter. The goal is to compare the simulated response of the
setup to the different types of transferred angular momentum (L = 0, 2, 3) with
experimental data to perform a maximum likelihood fit. The central role is
played by the experimental data (in red), from which the conditions related to
the setup can be extracted. These aspects concern electronic thresholds, missing
strips, or target thickness and have been introduced in Chapter 5 and included in
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Figure 7.1: The response of the experimental apparatus has been characterized
with Geant4 Monte Carlo simulations (Chapter 5) in order to operate the
de-convolution of the transfer components (L = 0, 2, 3).

the Monte Carlo Geant4 simulation (in green). The geometry of the simulation
is changed to increase the amount of ice deposited on the HAVAR windows
of the target. The number of deuterons measured in the experimental data is
binned in 5µm intervals of ice thickness; simulations performed for each bin are
added together with a number of events proportional to the number of deuterons
measured. To each ice layer bin, its own angular distribution is associated. The
DWBA calculations are performed with Fresco (cf. Chapter 6) and account
for slight changes in the reaction dynamics caused by the gradual decrease in
mid-target beam energy.

The final result is obtained by comparing the response of the simulation
to the experimental data analyzed with the same procedure. Section 7.3
will present the procedure of extraction of the relative spectroscopic factors
(C2S[L = 2]/C2S[L = 0]) based on the comparison of the experimental response
with the simulated one.

Additional external calculations are necessary for the prediction on the
acceptance of the magnetic spectrometer (VAMOS), which also depends on the
experimental charge state distribution. The simulation of AGATA offers the
possibility of consistency checks on the data and will be presented at the end of
the chapter in section 7.5.

The main goal of this section is to extract this ratio of spectroscopic factors
from the maximum likelihood fit of the experimental response of the setup.
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7.2 Excitation Energy Spectrum

In all previous considerations concerning the energy loss of charged particles in
the target layers, an equal repartition of the total ice thickness, extrapolated
from the magnetic rigidity of the beam, has been assumed. To strengthen
this assumption, it is possible to exploit the peculiarity of the L = 0 angular
distribution, which is concentrated in the solid angle covered by the annular
detector. There, it is crucial to know the amount of ice deposited on the target
face, being the deuterons emitted at very low energy in the backward-most angles.
Due to the low integrated differential cross-section of the other distributions in
this angular range, it is possible to assume that all counts in the annular detector
should be relative to excitation energy equal to 0 MeV. The percentage of ice on
one face of the target relative to the other will effectively influence the position
of the excitation energy peak. In particular, with an increase in the amount
of ice on the backward face, the average energy loss correction applied to the
deuterons will increase, which, in turn, will amount to a decrease in the mean
excitation energy distribution. The excitation energy distribution measured by
the sole annular detector can be fitted with a Gaussian distribution, and the
extracted mean value and error can be compared to zero to verify if the ice
repartition on the target faces is consistent with the data.

The amount of ice facing the spectrometer was set, in the energy loss
calculations of the analysis procedure, in a range of values between 70% to
130% of the other side. The optimal value has been found to correspond to the
equal repatriation of the total ice thickness among the two sides of the target.
The total deuteron counts in the annular detector amounted to 135, and were
fitted a Gaussian. With an equal repartition on the two windows, the mean of
the excitation energy distribution is compatible with zero with a χ2 minimization
(−0.04 ± 0.16) or likelihood maximization (0.19 ± 0.34).

The excitation energy peak, shown in Figure 7.3, appears shifted at higher
excitation energy values, despite being centered in the annular detector. This
shift is generated by the counts in the trapezoid detectors at angles closer to 90◦.
It is attributed to the non-uniformity of the ice layer, which will be discussed in
subsection 7.2.1 and can also be observed in the simulated data in Figure 7.7.

In order to further the resolution of the excitation energy peak, two trial
procedures have been tested, both inherent to the beam optics and focalization.
The following paragraphs will focus on the two approaches.

7.2.0.1 Position Reconstruction with the Beam Tracker

The possibility of reconstructing the position of incidence of a 46Ar ion on the
target on an event-by-event basis will be considered in the current section. This
procedure usually requires the presence of two CATS2 beam tracker detectors,
usually separated by a distance of 0.5 m and placed 2 m before the nominal
target position. The measurement of the incidence of the charged ion on both
detectors allows the reconstruction of the position on the target exploiting the
measurement of the direction of the particle. In this particular experiment, the
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choice to insert in the beam trajectory only one of the two detectors was made to
reduce the straggling. Consequently, an event-by-event reconstruction requires
important assumptions that can be verified by the effect of the applied correction
on the excitation energy peak. Assuming that the beam focal point occurs in
a position slightly offset with respect to the target nominal location along the
longitudinal direction, the position measured by CATS2 will be proportional
to the position on the target. The assumptions for this argument to hold are
two: that the focal point of the beam is centered in the x-y plane and that no
optical elements are present in the trajectory after the beam tracker. While the
second hypothesis is certainly verified, the first will be considered in the next
subsection 7.2.0.2.

The position on the target (xT and yT ) can be reconstructed from the position
on CATS2 (xC and yC) with the simple linear relation:{︄

xT = Cx xC

yT = Cy yC

A minimization procedure will identify two coefficients Cx and Cy, which
best fit the experimental data.

Considering the former relation, it is possible to modify the standard
calculations for the kinematic reconstruction, now assuming that the direction
of the velocity and the position on the target are known from the beam position
measured by the tracker. This will cause a (slightly) variation of the angle of
emission and energy loss corrections. This correction is affected by the amount
of 3He gas crossed as well as the angle of incidence on the target windows.

In fact, the overall 3He thickness crossed by the particle will depend on the
position of incidence of the beam on the target and the emission direction of
the deuterons measured by the silicon detector. Since the beam does not hit
the target in its center, no longitudinal symmetry is present, the length of the
collision vector from the reaction point to the target edge is computed with
a minimization procedure. Aside from the total distance crossed in the gas
medium, the angle with the normal vector of the surface of HAVAR and the ice
deposit will modify the effective thickness of these materials.

A figure of merit has been defined to verify the outcome of each combination
of scaling parameters Cx and Cy. During the experiment, three states have been
populated, located at excitation energies of 0 MeV (corresponding to the 1/2+

state), 0.36 MeV (3/2+) and 2.02 MeV (7/2−). Anticipating the results presented
in the course of this chapter, little evidence of L = 2 transfer to the 3/2+ state
has been observed from the angular distribution. As a consequence, in order to
limit the number of free parameters in the fit, only two Gaussian distributions
were considered, corresponding to the two remaining states of 47K. A possible
choice for the figure of merit can be identified in the chi-square (χ2) value for
each parameter {Cx, Cy} combination. In order to correlate the observed χ2 and
the number of degrees of freedom k with a probability, the following integral can
be considered:
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p(X > x|H) =
∫︂ ∞

x

dx′ PDFχ2(x′; k) (7.1)

where PDFχ2(x; k) = 1
2k/2Γ(k/2)x

k/2−1e−x/2

In this case, p(X > x|H) represents the probability of obtaining a χ2 value
higher than the one measured (x), given the hypothesis H of a Gaussian model
with a specific set of coefficients {Cx, Cy}. The highest the probability, the most
likely for a set of coefficients to be correct.

A simple two-dimensional grid search for the coefficients Cx and Cy is tested,
with possible values ranging from −1.1 to 1.1 for a total of 10 points in each
dimension. For reference, a coefficient of 1 would indicate no focusing at all, while
a coefficient of ±1.1 indicates a diverging beam. Positive coefficients smaller
than one, on the other hand, are indicative of a focal point located behind the
nominal position of the target, while negative greater than −1 coefficients are
relative to a spot preceding the target.

Figure 7.2 (top panel) shows the results of the grid search procedure with
respect to the χ2 figure of merit. With the extent of the available statistics, it
is not possible to identify a single local maximum of probability. Nevertheless,
the broad peak around {Cx, Cy} = {0.3, 0.1} appears as the most likely choice,
with probability values (according to equation 7.1) ranging around 50%, the
optimal value. On the other hand, regions with unlikely coefficients (close to 1)
are penalized by a low probability score, well below 10%.

7.2.0.2 Beam-Spot Position

Another option can be considered regarding the beam optics: the case of a focal
point not aligned with respect to the nominal position of the target in the x-y
plane. This aspect is justified by the observation, in previous experiments [4], of
a beam-spot position out of the nominal center. Similar considerations to the
previous chapter can be applied in this case. In particular, a grid-search scan
of various possibilities can be performed, updating the energy loss and reaction
kinematic calculations to account for the case of a beam colliding in a specific
portion of the target.

The scan for the beam spot position ranges between −5 mm to 5 mm for
each dimension (x and y plane), for a total of 10 points in each direction.

The results with the figure of merit presented in equation 7.1 are presented
in Figure 7.2 (bottom panel). A broad peak in probability emerges in the region
around {x, y} = {1 mm, 1 mm}. This value is consistent with a good fit in the
nearby region, while more extreme values of beam-spot position are penalized
by low probabilities.

While the amount of statistics limits the results that can be achieved by this
procedure, the presented figures still serve as a further confirmation of the good
beam optics throughout the experiment.
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Figure 7.2: Grid search for a optimal excitation energy spectrum according to
the figure of merit in equation 7.1. (top panel) Position of incidence on the
target according the position on the beam tracker. (bottom panel) Beam spot
position in the x-y plane.
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Due to the absence of a unique relative minimum for both procedures and
the fact that none of them showed a significant advantage, all future excitation
energy spectra will assume a centered beam spot.

7.2.1 Ice Layer Uniformity

Due to the crystalline structure of the ice, the layer deposited on the HAVAR
windows cannot be expected to possess a uniformity similar to that of a stretched
metallic target. This aspect manifests in a poor resolution in the reconstruction
of the excitation energy, where the energy-loss correction is essential in order to
reconstruct the kinematics of the reaction. In particular, in a Geant4 simulation,
a physical volume will feature uniform surfaces, not accounting for the energy
straggling introduced by this aspect.

In order to account for a non-uniform thickness, a random value ∆x has been
sampled from a Landau distribution:

∆x = 1
πc

∫︂ ∞

0
dt e−t cos

(︃
t
x− µ

c
+ 2t
π

log
(︃
t

c

)︃)︃
where c represents the scaling parameter and µ the location parameter. Due

to the considerable tail of the distribution, the mean and variance integrals
do not converge. This particular distribution is chosen because it is used for
the description of fluctuations in the energy loss of a charged particle passing
through a thin material layer.

The thickness of the layer ∆x in the energy-loss calculations of the analysis
of the simulated data is sampled on an event-by-event basis using for µ the
expected thickness. The scaling c is set to match the left tail of the experimental
data and is found to be c = 0.2 ∗ µ.

Figure 7.3 shows a comparison between the measured excitation energy and
the simulated data. The two peaks are not completely resolved; nevertheless,
the presence of the two components is evident. Due to the presence of prominent
tails, the distributions do not resemble a Gaussian function, making a fit not a
simple endeavor.

The maxima of the peaks appear not aligned to 0 MeV and 2.02 MeV and
are shifted by the same amount to higher values. This is likely caused by the
assumption of a consistent ice thickness on the HAVAR window. In particular,
the peak in the annular detector appears well aligned with the expected value of
0 MeV, and the remaining counts are mainly introduced by the trapezoids that
shift the peak to higher values.

Another aspect worthy of note regards the excitation energy points at negative
energies. These experimental points can partly be attributed to the prominent
tail of the distribution caused by the non-uniform thickness of the ice layer, while
the remainder could be caused by a small proton contamination which will be
discussed in subsection 7.4.2.

It is important to note that the results obtained from the angular distribution
are independent of the energy loss reconstruction procedure since no selection is
applied on this distribution.
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Figure 7.3: Comparison of the experimental excitation energy spectrum (in
black) with the simulated spectrum (in red). The amount of counts in each
peak is added according to the results of the fit performed in subsection 7.3.2.
The prominent left tail of the distributions is caused by (and simulated as) the
non-uniformity of the ice layer. The shift at higher excitation energy values is
generated by counts in the trapezoids and is attributed to the non-uniformity
of the ice layer, discussed in subsection 7.2.1. The same shift is present in the
simulated data and can be observed in Figure 7.7.

7.3 Angular Distribution Deconvolution

7.3.1 An Introduction to the Procedure

The aim of this experiment is to extract the spectroscopic factors with a
parametrization of the probability density function of the angular distribution.

This section will focus on the procedure to extract the relative spectroscopic
factors in the framework of the maximum likelihood. The following definitions
will be used in the course of this section:

• θ: the distribution parameter (in the parameter vector space) i.e. the
spectroscopic factors of interest

• x : the measured dataset (i.e. the histogram and its bins)
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In probabilistic terms, the correct figures for the spectroscopic factors will
maximize the value of p(θ|x) which is the probability that the set of parameters
corresponds to θ given the dataset x [5].

It is possible to reformulate the problem as a function of p(x|θ), the probability
of obtaining the dataset x with parameters θ (the likelihood for θ), exploiting
Bayes’s theorem:

p(θ|x) = p(x|θ)p(θ)
p(x)

In this case, p(θ) the so-called prior probability. It represents the probability
of the set of parameters θ before the data x is taken into account. The choice
of the prior probability can significantly alter the results, and for this analysis,
the choice of a constant prior probability has been applied. A hard restrain on
positive spectroscopic values has been introduced for physical reasons by limiting
the maximization in this region.

On the other hand, p(x) represents the probability of obtaining the measured
dataset without accounting for any hypothesis, often referred to as model
evidence. This factor is constant in a given measurement and represents a simple
multiplicative (normalization) factor that is elided in any ratio of probabilities.

A more complete treatment of the concepts introduced here can be found in
the Particle Data Group [6] and references therein.

It is possible to relate this expression to the set of experimental observables:
{xi} = {N,ni}, where N is the total number of counts and ni are the number
of counts per bin. The likelihood for the parameters θ will now consist in
p(x|θ) ≡ p(n ∩N |θ):

p(n ∩N |θ) = p(n|N, θ)p(N |θ) (7.2)
The second term in equation 7.2 represents the probability dependence of

obtaining N events given the parameter set θ. Assuming a Poisson point process,
the probability of obtaining N counts amounts amounts to:

p(N |θ) = µN

N ! e
−µ

where µ corresponds to the average amount of events in the Poisson process in
unit time and N to the number of occurrences. Focusing on the remaining term
in the productory of equation 7.2 (p(ni|N, θ) = L(ni|N, θ)), which represents
the probability of having ni counts in bin i if N is the total number of events,
the correct choice is the multinomial distribution:

L(ni|N, θ) = N !
(︄∏︂

i

ni!
)︄−1(︄∏︂

i

(pθ
i )ni

)︄
(7.3)

With the condition on the total number of counts:

N =
∑︂

i

ni and 1 =
∑︂

i

pθ
i
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The probability factor pθ
i represents the probability of obtaining a count

in bin i and depends on the percentage of each type of transfer, as will be
explained in subsection 7.3.2. This probability will be extracted from the Geant4
simulation. Three possible transfer channels are considered (L = 0, 2, 3) and the
corresponding angular momentum will be labeled with index k. The simulation
is produced with a number of events with a factor of more than 104 with respect
to the experimental data in order to reduce statistical uncertainties.

Concerning the estimate of statistical uncertainties, in the case of a large
data sample, the inverse of the covariance matrix (cov(θi, θj)−1

i,j )) is related to
the hessian of the likelihood:

cov(θi, θj)−1
i,j = − ∂ ln L

∂θi, θj

⃓⃓⃓⃓
θmax

This expression is valid under some assumptions on the sample size; however,
in the case of the following analysis, this approximation is not necessary due to
the limited dimension of the parameters space θ which amounts to only two. A
better estimation of the errors can be identified in the (hyper)surface defined by
θ containing the maximum likelihood point described by:

ln L(θ) = ln L(θmax) − s2

2 (7.4)

where s represents the multiplication factor of a standard deviation confidence
interval for the parameters. In the simple case of two parameters, the standard
error (hypersurface) will consist in level curves of the likelihood surface (which
will be presented in Figures 7.4 and 7.5).

It is also possible to show that in the limit of a large sample, the likelihood will
approximate a Gaussian shape so that its logarithm will have a (hyper)parabolic
trend. In other words, if the shape of the likelihood is similar enough to a
Gaussian, the treatment of standard Gaussian errors is justified.

In the case of independent measurements xi Gaussian distributed around the
expected value pθ

i and with known variance σi, the log likelihood maximization
corresponds to the χ2 minimization by a scaling and a constant:

χ2(θ) = −2 ln L(θ) + constant =
N∑︂

i=1

(xi − pθ
i )2

σ2
i

(7.5)

As a consequence, the set of parameters that maximizes the likelihood
corresponds to that that minimized the χ2.

7.3.2 Comparison of Simulated Distributions

As presented in Chapter 2 the single particle differential cross section σSP and
its experimental counterpart σ can be related as [2]:

dσk

dΩ = g C2Sk
dσSP

k

dΩ (7.6)
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where k labels the populated state of interest (with a given angular momentum
l and a given j) [2]. As presented in subsection 2.2.5, C stands for an isospin
coefficient and is set equal to 1 in most cases, while g is the statistical factor
dependent on the degeneracy of the state of interest and is set to (2j + 1) for
nucleon addition and 1 for the removal.

This expression separates the reaction dynamics part (included in the
differential single-particle cross-section) from the nuclear structure, which is
contained in the spectroscopic factor Si and consists in the integrated overlap
between the wave-functions of the nucleus before and after the nucleon transfer.

In order to formalize the procedure from the statistical point of view, it is
necessary to extract the dependence of the probabilities (pi of equation 7.3) of
having counts in each bin with respect to the spectroscopic factors which will
act as the fit parameters. It is possible to decompose the problem in two events
Ak and Bi:

Ak Bi

Deuteron from reaction k Count falls in bin i
is detected

The values pi correspond to the probability of having a count in bin i: p(Bi),
which needs to be computed with the so-called law of total probability:

p(Bi) =
∑︂

k

p(Bi|Ak)p(Ak)

The two factors on the right-hand side of the equation can be computed as a
result of the Monte Carlo Geant4 simulation presented in section 5.2.

The probability of the reaction labeled by k to occur is proportional to the
cross-section since all other parameters remain constant. The total number of
reactions N can be obtained by summing the exclusive cross-sections:

Nk = K
∑︂

k

∫︂
4π

dΩ dσk

dΩ = K
∑︂

k

C2Sk

∫︂
4π

dΩ dσSP
k

dΩ

The constant K in the expression represents simply the experimental
conditions which are constant for each value of transferred angular momentum
and each bin:

K = Ibeam ntarget ∆t∆x

where Ibeam is the intensity in particles per second, ntarget is the numerical
target density (per unit of volume), ∆t the acquisition time, and ∆x the target
thickness.

Having associated the number of events to a given reaction σk, and considering
that the value of K is constant for all k, the probability that one particular
reaction generates an event is straightforward to compute. The probability p(σk)
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of each reaction labeled by k to occur is related to the ratio of the number of
events relative to one particular reaction Nk over the sum of all events. Exploiting
the constant value of K, the expression is the following:

p(σk) = σk∑︁
k′ σk′

= C2Skσ
SP
k∑︁

k′ C2Sk′σSP
k′

The event of interest p(Ak) refers to the detection of a deuteron and thus
depends on the detector efficiency ϵk in terms of solid angle coverage and
other experimental factors. As a consequence, the probability has the following
expression:

p(Ak) = C2Skσ
SP
k ϵk∑︁

k′ C2Sk′σSP
k′ ϵk

(7.7)

The expression is normalized by (p(
⋃︁

k Ak) =
∑︁

k p(Ak) = 1). On the other
hand, it is also possible to compute the probability of having a count in bin i of
the angular distribution which subtends a solid angle ∆Ωi with the following
integrals:

p(Bi|Ak) =
(︄∫︂∑︁

i′ ∆Ωi′

dΩ dσk

dΩ ϵk(Ω)
)︄−1 ∫︂

∆Ωi

dΩ dσk

dΩ ϵk(Ω) (7.8)

=
(︄∫︂∑︁

i′ ∆Ωi′

dΩ dσSP
k

dΩ ϵk(Ω)
)︄−1 ∫︂

∆Ωi

dΩ dσSP
k

dΩ ϵk(Ω) (7.9)

where the factor ϵk(Ω) has been introduced to account for the detection
efficiency, which depends on the coordinates Ω = (θ, ϕ). The efficiency is not
constant and depends on aspects such as the detector coverage or missing strips.
At the same time, it also changes with the reaction type (thus the presence of the
index k). Different reactions have a different probability of emission on the solid
angle covered by the detector, and different excitation energies have different
detection probability due to the presence of electronic thresholds.

In equation 7.9, the definition of the single-particle differential cross section
(eq. 7.6) was used. The spectroscopic factors present in the numerator and
denominator elide from the expression.

Also in this case the normalization is the following: p(
⋃︁

i Bi|Ak) =∑︁
i p(Bi|Ak) = 1. A Monte Carlo simulation which includes, in principle,

all experimental conditions, will perform the ratio of integrals of equation 7.9
accounting correctly for the efficiency factor ϵ.

If nS
k,i represents the number of counts in bin i of the simulation relative to

the reaction labeled by k, and NS
k the total number of ejectiles detected in the

simulation, expression 7.9 reduces to a simple ratio:

p(Bi|Ak) =
nS

k,i

NS
k

(7.10)

144



Angular Distribution Deconvolution

Similarly, the efficiency of detecting a deuteron from a reaction k is tied to
the simulation by the ratio between the total number of simulated events NS

tot.

ϵk = 1
σSP

k

∫︂
∆Ωi

dΩ dσSP
k

dΩ ϵk(Ω) = NS
k

NS
tot

(7.11)

Summing all reactions with different transferred angular momentum (sum
running over k), it is possible to obtain the expression for the probability of a
count in bin i (p(Bi)) by combining equations 7.7, 7.9, 7.10, and 7.11:

p(Bi) = 1∑︁
k′ C2Sk′σSP

k′ ϵk

∑︂
k

nS
k,iC2Skσ

SP
k ϵk

NS
k

(7.12)

The normalization condition using the expression for the total number of
counts is: NS

k =
∑︁

i n
S
k,.

If the main interest is related to relative spectroscopic factors, it is possible
to express each spectroscopic factor relative to the reference one. For simplicity,
the reference spectroscopic factor will be labeled by the index k = 0 and will be
relative to the L = 0 transfer. Therefore, the set of fit parameters which was
previously indicated by the set θk will be related to the spectroscopic factors as
the ratio:

θk = C2Sk′

C2S0

The previous equation 7.12 can be transformed as:

p(Bi) = 1∑︁
k′ θk′σSP

k′ ϵk

∑︂
k

nS
k,iθkσ

SP
k ϵk

NS
k

(7.13)

being θ0 = 1 by definition. Since the interest is limited at the relative
spectroscopic factor, the dimension of the parameter space is 2 (θ0 is constrained
to a unitary value).

7.3.3 The Experimental Outcome

Following the discussion in chapter 6, the analysis has been performed in the
case of two combinations of optical potentials:

• Becchetti et al. [3] (3He) and Han et al. [7] (deuteron)

• Trost et al. [8] (3He) and An et al. [1] (deuteron)

The first combination is the most promising one as it is able to reproduce the
differential cross section of the elastic scattering best. Nevertheless, the analysis
has also been performed with the same procedure with the combination of the
potentials by Trost et al. and An et al. in order to quantify the error introduced
by the optical potential parametrization.
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The maximization of the likelihood, due to the presence of a total of two
parameters, has been performed with a simple grid search, allowing to observe the
whole parameter space. Figure 7.4 (top left panel) presents the likelihood value as
a function of the relative spectroscopic factors: C2S[L = 2]/C2S[L = 0] (x-axis)
and C2S[L = 3]/C2S[L = 0] (y-axis). The likelihood is also compared to the χ2

value in the same range (top right panel). The two procedures return compatible
values for the amount of C2S[L = 2]/C2S[L = 0] and C2S[L = 3]/C2S[L = 0]
relative transfers, with the second one showing smaller statistical errors. In
both cases, the results hint at a suppressed L = 2 transfer, with a ratio of
spectroscopic factors that is compatible with zero. The red curves represent the
statistical error computed according to equation 7.4 and 7.5.

The gradients of both the likelihood and the χ2 in correspondence to the
minimum are also shown in Figure 7.4 (bottom panel). The shapes closely
resemble a parabolic one, justifying the treatment of errors in terms of standard
deviation. Only one minimum is present in the whole parameter space, while
the two fitted parameters appear anti-correlated. Table 7.1 presents the results
and statistical errors.

Figure 7.5 shows the same procedure applied to the simulation of the other
optical potential parametrization (Trost et al. + An et al.). The position of the
L = 2 relative transfer appears in the same location as the previous case, with
similar statistical errors and correlation. On the other hand, a shift of the L = 3
can also be observed. Similarly to the previous case, the results of the likelihood
maximization and χ2 minimization return statistically compatible results, with
the latter presenting reduced statistical errors.

The result of the fit performed in the laboratory reference frame is shown in
Figure 7.6 (left panel). Each component of the overall fit (in red) is also shown
independently, while the residues are presented in the right panel of the figure.
In order to be consistent with the described procedure, the assigned statistical
errors correspond to the variance of the multinomial distribution. The reduced
χ2 value corresponds to χ2/NDF = 0.83, and is associated with a probability of
0.79 according to equation 7.1. The fit residues show no systematic trend along
the angular range and appear evenly distributed around the zero value.

Experiments with thin targets and well-defined beam energy show clear
kinematic lines in the correlation plot between energy and angle in the laboratory
frame of reference. In the case of this experiment, the reaction energy is not
fixed due to the gradual increase in thickness of the ice layer. As a consequence,
little information can be conveyed by the energy and angle correlation plot.
Nevertheless, a plot of excitation energy as a function of the laboratory angle will
remove the dependence from the beam energy since all kinematic calculations are
performed accounting for this aspect. Figure 7.7 shows the two quantities for the
experimental data (left panel) and the simulation (right panel) for the case of the
identified maximum of the likelihood (Figure 7.4). Despite the limited statistics,
the peaks that arise from the maxima of the L = 0 and L = 3 distribution are
evident and appear well reproduced by the simulated data.
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Figure 7.4: Fit parameter search based on the likelihood (left panel) and χ2

(right panel). The fit is performed in the laboratory frame with a binning of 1
degree per bin. The parametrization of the optical potentials is by Becchetti et
al. [3] (3He) and Han et al. [7] (deuteron). The fit, presented in Figure 7.6 is
indicative of a suppressed L = 2 transfer. For ease of comparison the likelihood
L is presented as − ln L. Red lines indicate progressive values of the standard
error (1σ, 2σ). The middle and bottom panels represent respectively the profile
of the gradients in correspondence to the minimum for the L = 2 and L = 3
components.
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Figure 7.5: Fit results for the optical potential parametrization by Trost et al. [8]
(3He) and An et al. [1] (deuteron). All panels correspond to a similar procedure
as Figure 7.4.
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Figure 7.6: (top panel) Fit result on the laboratory count distribution relative to
the maximization of the likelihood shown in Figure 7.4. The various components
of the overall fit (red line) are shown, indicating a reduced amount of L = 2
transfer. (bottom panel) The residues with respect to the fitted distribution
indicate no systematic trend.
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Figure 7.7: Correlation of Laboratory angle and excitation energy for the
experimental data (left panel) and simulation (right panel). The latter has been
computed based on the maximization of the likelihood shown in Figure 7.4. The
accumulation of points appears reproduced in the experimental data.

7.3.4 Comparison with Theoretical Differential Cross Sections

7.3.4.1 Binned Angular Distributions

The experimental data consist of a binned distribution, i.e. a sampling of the
angular distribution in intervals of the polar angle, considering a cylindrical
symmetry.

It is indeed possible to obtain a center of mass distribution by applying
an inverse Lorentz boost to the reaction fragments since it is customary to
represent the angular distribution in this frame of reference, which removes some
macroscopic effects which are only due to the kinematics of the reaction but not
to the reaction channel properties.

In general, the number of counts in a binned angular distribution will depend
on the differential cross-section as:

ni ∝
∑︂

k

∫︂
∂Ωi

dΩdσk

dΩ ϵk(Ω) (7.14)

This expression is similar to those introduced in the previous section, where
the index i represents a given bin in θ, relative to a solid angle with boundaries
represented by ∂Ωi. The efficiency ϵk has been introduced to account for
experimental aspects. Index k expresses the various reaction channels. The
proportionality constant is the same for all bins and reactions and depends on
the integrated luminosity and can be neglected for the following reasoning.
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Angular Distribution Deconvolution

Since the aim is to express the angular distribution as a function of only θ
(and not ϕ), it is necessary to normalize the solid angle coverage in ϕ with the
help of a simulation where the reaction fragment is emitted isotropically in the
center of mass frame of reference.

The isotropic emission corresponds to the simulation of a constant differential
cross-section in equation 7.14:

nISO
i ∝

∫︂
∂Ωi

dΩ ϵk(Ω) (7.15)

If it is safe to assume that the binning is fine enough for the differential cross-
section to remain constant within the integration boundary ∂Ω, it is possible
to approximate equation 7.14 as a simple integration on the solid angle alone,
assuming the differential cross-section as constant.

On a first approximation, the efficiency relative to a given bin i does not
depend on the reaction label k in the case of isotropic emission. A small
dependence can be present due to detection thresholds which depend on the
excitation energy. While this aspect will be discussed later, taking the ratio of
equation 7.14 and 7.15, it is possible to obtain an approximated expression of
the measured differential cross section:

ni

nISO
i

∝
∑︁

k

∫︁
∂Ωi

dΩ dσk

dΩ ϵ(Ω)∫︁
∂Ωi

dΩ ϵ(Ω) ≈
∑︁

k
dσk

dΩ
⃓⃓
θi,ϕi

∫︁
∂Ωi

dΩ ϵ(Ω)∫︁
∂Ωi

dΩ ϵ(Ω) =
∑︂

k

dσk

dΩ

⃓⃓⃓⃓
θi,ϕi

(7.16)
In summary, it is possible to observe that the ratio between the data and the

simulated isotropic emission represents the differential cross-section in the case
of a fine binning. This approximation does not hold if the angular distribution
varies steeply within a bin.

Figure 7.8 shows the comparison between the calculated angular distributions
and the experimental data obtained with the described procedure. The
approximation of a constant value of ϵk in the case of isotropic emission depends
on the excitation energy of the reaction. As a consequence, it is possible to
remove this correlation by adding multiple isotropic simulations at the three
different excitation energies: 0, 0.36, and 2.02 MeV. The amount of events in each
simulation is proportional to the reaction cross section, which depends on the
spectroscopic factors obtained from the likelihood fit. The isotropic distributions
are also obtained by adding numerous simulations performed at different ice
thicknesses values.

The theoretical distributions have been computed with a weighted average
of the angular distributions at different mid-target beam energy values. The
weights applied are proportional to the number of deuterons measured at a given
reaction energy caused by the presence of the ice.

The convolution of the distribution appears well reproduced by the
experimental data. The most notable aspect is the correspondence of the
maximum of the L = 2 differential cross section to the minimum of the measured
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Figure 7.8: Comparison of the angular distribution in the center of mass with
the DWBA calculations of subsection 6.2.2. All distributions are shown together
with the convolution obtained from the maximization of the likelihood relative
to Figure 7.4.

distribution. This aspect points towards the sensitivity of the experiment to the
L = 2 transfer, which is then concluded to be very weak.

7.4 Evaluation of Systematic Errors

7.4.1 Optical Potential Dependence

An unavoidable source of uncertainty derives from the parametrization of the
optical potential. Section 6.2.2 focused on the characterization of the impact
of different parametrizations on the resulting angular distribution. A strong
argument was made for the combination of the optical potential by Becchetti et al.
for the incoming flux and by Han et al. for the outgoing channel. Nevertheless,
to quantify the error introduced by the choice of the potential is possible to
consider a different model, such as the combination of the parametrization by
Trost et al. and An et al..

While the distributions obtained by the two different combinations present a
difference in intensity of the first and second peaks of the L = 0 distribution (cf.
subsection 6.2.2), their position remains unvaried.

Figure 7.9 presents the contour generated by the 1σ and the minimum values
for the two potentials.

The effect of the different parametrization is to shift the C2S[L = 3]/C2S[L =
0] relative spectroscopic factor to higher values, while maintaining a similar
value for the amount of C2S[L = 2]/C2S[L = 0]. The statistical errors and the
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Figure 7.9: Two dimensional standard error contour based on the maximization of
the likelihood with the combination of optical potentials relative to Figure 7.4(top
panel) and 7.5(bottom panel). Different angular bin widths have been tested
to estimate potential systematic errors. The widths, expressed in degrees range
from 0.7◦ to 1.5◦ and return similar results.
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correlation appear similar. A further test on the possibility of the introduction
of systematic errors with different angular bin widths has also been verified in
both cases. All results appear compatible and no systematic trend emerges by
varying the angular bin width.

7.4.2 Proton Background Contribution

Further systematic uncertainty could be introduced by a contamination of protons
in the selection of the deuterons in the energy time-of-flight correlation matrix
(cf. Figure 4.30). This possibility has been tested by shifting the time of flight
of particles detected in MUGAST by 5 ns. This change allows for most of the
protons from the deuteron breakup reaction channel (46Ar(3He,pn)47K) to be
considered as deuterons. As a consequence, in the analysis, the detected particles
will be a combination of protons and deuterons. The same selection algorithm
is applied for the selection in the magnetic spectrometer, effectively processing
protons as if they were deuterons. This implies that all the reaction kinematic
calculations and energy loss correction are also computed for the protons.
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Figure 7.10: Comparison of the experimental excitation energy with the same
analysis performed by shifting the time of flight of the particles by 5 ns. The
procedure effectively allows protons to enter the selection of deuterons and are
processed as such.

Figure 7.10 shows the outcome of the procedure on the excitation energy
peak. The excitation energy distribution for the combination of protons and
deuterons (in black) has been normalized to the integral of the experimental
distribution (in red). Protons lose less energy in a medium with respect to
deuterons; as a consequence, the energy loss correction tends to apply higher
values of correction. Moreover, protons are tied to the three-body reaction
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46Ar(3He,pn)47K (since the gate on 47K in VAMOS is present), so that the
correlation between energy and angle is no longer significant. This procedure
estimates that a large contribution of protons would entail a high amount of
counts at excitation energies between −5 to 0 MeV, which are not observed in
the experimental data. In fact, only a few counts are present at very negative
energies, indicating a contamination lower than 2%.

7.5 The Gamma-Ray Spectrum

In coincidence with 47K, a considerable amount of protons is detected. These
counts are associated with the deuteron breakup reaction channel, consisting of
the three-body reaction 46Ar(3He,pn)47K.

Figure 7.11 shows the γ-ray spectrum in coincidence with 47K tagged in
VAMOS. Events are Doppler corrected on an event-by-event basis, using the
velocity vector provided by the magnetic spectrometer. Although the position
sensitivity of AGATA combined with the high resolution of HPGe detectors
usually allows a finer binning, the uncertainty introduced by the long-lived states
of 47K and presented in subsection 5.3.2, has the effect of broadening the peaks,
justifying a width of 8 keV.

A considerable amount of γ-rays at 360 keV are present, while an accumulation
of counts can also be observed at ≈ 1660 keV. This spectrum constitutes a
complementary picture of the previous considerations regarding the angular
distribution. As a consequence, it is of interest to investigate the origin of these
peaks.

The 7/2− state at 2020 keV has a 88(9)% branching ratio to the 360 keV
state so that most of the counts at 1660 keV should correspond to the emission
of a 360 keV photon.

The efficiency curve will modulate significantly the integral of the two peaks
that are far apart in energy. Further differences in efficiency are caused by the
half-lives of the two states: 1.1(3) ns in the case of the 3/2+ state and 6.3(4) for
the 7/2−.

The Geant4 simulation presented in section 5.3 contains both aspects and
can be used to interpret the experimental response in the case of two different
types of feeding. The background shown in Figure 7.11 is calculated by scaling
the Doppler corrected spectrum outside the coincidence peak of AGATA (cf.
Figure 4.35). The comparison indicates that the number of counts in the peak
at 360 keV is compatible with the feeding to the 7/2− state.

An accumulation of counts is also present around 1500 keV and corresponds
to the emission of a 1345(3) keV photon by isotopes of 46K implanted in the
chamber. These isotopes are, in turn, part of the decay chain of 46Ar. The
emission of the γ-ray occurs at rest, generating a broadening of the peak in the
Doppler-corrected spectrum. This aspect has been verified by comparison with
the spectrum without any Doppler correction.

The same consideration can be made for the distribution located near 550 keV
that can be ascribed to the 511 keV photons.
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Figure 7.11: Comparison of add-back γ-ray spectrum in coincidence with 47K in
VAMOS. The experimental data is compared with simulated data in the case of
direct feeding to the 3/2+ state and the 7/2− state.

Another accumulation of points is observed around 1319 keV, consistent with
the population of a 47K state at 3350(30) keV (5/2+, 3/2+), which decays to the
7/2− state.

To quantify the previous results in terms of spectroscopic factors, it is possible
to observe that the ratio between the amount of γ rays emitted at 360 keV (N360)
and at 1660 keV (N1660) is given by the following expression:

N360

N1660
= σSP

2 C2S[L = 2] ϵ360,2 + σSP
3 C2S[L = 3] ϵ360,3 BR

σSP
3 C2S[L = 3] ϵ1660,3 BR

where 2, 3 label respectively the 3/2+ and 7/2− states, σi the single-particle
cross sections, ϵ the detection efficiencies at the labeled energy and relative to
the indexed reaction and BR the branching ratio from the 7/2− to the 3/2+

state.
Rearranging the expression, the ratio of spectroscopic factors can be

determined from the ratio of γ rays count:

C2S[L = 2]
C2S[L = 3] =

BR ∗ σ3

(︂
ϵ1660,3

N360
N1660

− ϵ360,3

)︂
σ2 ϵ360,2

The efficiency values can be found in table 5.1 in the case of a reaction
populating the 7/2− or the 3/2+ state. The branching ratio is set to BR = 0.883
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and the single-particle cross sections amount to: σ2 = 1.67 mbarn/srad and
σ3 = 3.13 mbarn/srad. These values are obtained by averaging the cross sections
relative to different ice thicknesses with weights proportional to the number
of deuterons measured at a given mid-target beam energy. The integrals of
the two peaks amount to: N360/N1660 = 1.48 ± 0.52 which leads to a ratio of
spectroscopic factors of: C2S[L = 2]/C2S[L = 3] = 0.10 ± 0.36. The error is
large due to the limited amount of statistics; nevertheless, it is compatible with
the experimental value extracted from the angular distribution.

7.5.1 Triple Coincidences

A triple coincidence event requires the detection of a 47K reaction fragment in
VAMOS, a deuteron in MUGAST, and a γ ray in AGATA. The efficiency of the
combined setup, being the product of all efficiencies, significantly reduces the
statistics. Nevertheless, the high energy resolution of the HPGe detectors allows
for a precise gate on the photon energy, thus reducing the amount of background
in the time coincidence.

Figure 7.12 shows the Excitation energy spectrum of MUGAST in coincidence
with a detected 360 keV γ-ray. The spectrum shows a collection of points around
2 MeV, consistent with a L = 3 transfer. The left tail of the distribution
resembles the one observed in subsection 7.2.1 and was attributed to the ice
thickness non-uniformity.
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Figure 7.12: Excitation energy spectrum with triple coincidences relative to
the detection of 47K by VAMOS, a deuteron by MUGAST and a γ ray within
a 40 keV interval around 360 keV in AGATA. The counts accumulate around
2 MeV, indicating that most counts are relative to the direct population of the
state at 2020 MeV.

The γ-ray spectrum in coincidence with deuterons is shown in Figure 7.13,
where the peak a 360 keV corresponds to the counts shown in Figure 7.12.
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Figure 7.13: Addback spectrum in coincidence with 47K in VAMOS and deuterons
in MUGAST.

7.6 Conclusions of the Analysis

In conclusion, a reduced L = 2 transfer has been observed and the consistency
among the experimental data has been tested. Table 7.1 summarizes the
results obtained by the statistical considerations and the evaluation of the
systematic errors. The statistical correlation coefficient ρ1,2 between the relative
spectroscopic factors has been estimated as [5]:

ρ1,2 = cov[θ1, θj ]
σ1σ2

= −0.35

The choice of the optical potential, discussed in subsection 6.2.2, does not
affect the result relative to the L = 2 transfer, lowering the ratio of spectroscopic
factors ( C2S[L=2]

C2S[L=0] ) by 0.02, a value that corresponds to one fifth of the statistical
error.

The discrepancy with the values produced by shell-model calculations will
be discussed in Chapter 8 in the framework of current theoretical models.
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Value Statistical Binning
Uncertainty Uncertainty

C2S[L=2]
C2S[L=0] 0.10 +0.10

−0.10
+0.02
−0.01

C2S[L=3]
C2S[L=0] 1.10 +0.15

−0.13
+0.03
−0.02

Table 7.1: Final experimental results for the relative spectroscopic factors:
C2S[L=2]
C2S[L=0] and C2S[L=3]

C2S[L=0] . The uncertainties introduced in section 7.4 and 7.3.3
are reported.
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Chapter 8

Theoretical Considerations and
Conclusions
This section will discuss the experimental results in the framework of nuclear
models. The 46Ar isotope lies in a region where density functional theory, ab initio,
and shell-model calculations prove to be a powerful tool for the investigation of
the nuclear structure. In particular, theoretical models seem to indicate that
the experimental result observed in the previous chapter could be explained
by a structure property of the ground state of 46Ar. Since the landscape of
nuclear models is vast, this chapter has no intent of a detailed description of the
calculations but merely aims at offering a bigger picture in the discussion of the
experiment in terms of current theoretical frameworks in this field.

8.1 Shell-Model Calculations

The current section will present shell-model calculations performed to further
investigate the nature of the discrepancy with the experimental data and gain a
clear panoramic of the problem in terms of the model.

They were performed [11] with the m-scheme shell-model code ANTOINE[4,
5]. The code, developed in FORTRAN in 1999, allows for the treatment of
so-called giant matrices exploiting the Lanczos diagonalization method. The
necessity to operate with high dimensional matrices directly reflects the necessity
of a large valence space to obtain spectroscopic information comparable with
real-world data. The proliferation of the basis dimension is easy to grasp with a
simple calculation. Defining Dπ (Dν) as the valence space for protons (neutrons),
and nπ (nν) the number of valence protons (neutrons), the dimension N of the
basis is given by the product of two binomial coefficients:

N =
(︃
Dπ

nπ

)︃
×
(︃
Dν

nν

)︃
(8.1)

The calculations were performed with a neutron valence space spanning the
entire sd − pf shell and protons restricted to the sd shell. The truncation in
the m-scheme allowed the excitation of up to 4 jumps across the N = 28 gap
(4p− 4h configurations). Proton and neutron effective charges were set to the
standard value of δp = 0.5, δn = 1.5, similarly to the calculations performed in
reference [10] and [12].

According to equation 8.1, the dimension of the basis for the considered
valence space would amount to N = 14902327440, which in the case of
M = 0 Slater determinants with truncation reduces to an effective dimension of
N = 4784329.
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8. Theoretical Considerations and Conclusions

Table 8.1 presents the results for the spectroscopic information of interest
concerning the ground state and the first excited states of 46Ar and 47K. In
particular, the energy of the first excited state is close to the calculated value.
The same consideration cannot be made for the transition probability of 46Ar
that features the discrepancy already presented in the dedicated subsection 3.2.3.

Energy B(E2)↓
(keV) (e2fm4)

46Ar (Experimental) 1577(1) 43.2(44)
46Ar (SDPF-U) 1652 104
46Ar (Alternative) 1632 103
47K (Experimental) 360(1) -
47K (SDPF-U) 324 40.5
47K (Alternative) 302 45.0

Table 8.1: Comparison of the energy and transition probabilities of the first
excited state of 46Ar and 47K from the literature and the shell-model calculations
with the SDPF-U interaction and an alternative interaction.

A complementary calculation has also been performed with the NATHAN
code and an alternative interaction to test the stability of the shell-model results.
This interaction has been generated starting from the SDPF-U by changing the
monopoles between the protons in the pf shell and the neutrons. This alternative
interaction has been used for calculations involving the 7/2− state in 47K, thus
opening the pf space for protons. The interaction predicted the first (3/2+) state
in 47K at an excitation energy of 302 keV using the same valence space of the
SDPF-U calculations. Opening the Z = 20 core for protons (with configurations
of up to 4p− 4h) allowed the calculation of the 7/2− state that is predicted at an
energy of 2066 keV, in close correspondence with its experimental counterpart.
As far as 46Ar is concerned, this modified interaction returned an energy value
of 1632 keV for the 2+ state and a transition probability of 103 e2fm4, consistent
with the SDPF-U value.

The experimental electric quadrupole reduced transition probability (B(E2))
for the 3/2+ state of 47K is not known since no mixing ratio for the decay to the
1/2+ ground state has been measured experimentally. Nevertheless, combining
the shell-model values for the magnetic (B(M1) = 0.9 · 10−4 µ2

N ) and electric
(B(E2) = 45 e2fm4) reduced transition probabilities, it is possible to extract a
theoretical lifetime of τ = 0.92 ns that can be compared to the experimental
value of 1.59(40) ns. Increasing the number of basis states to include eight
particles and eight holes configurations has no effect on the calculated values,
implying that the truncation scheme does not affect the physical outcomes. The
theoretical value is well within two standard deviations with respect to the
measured lifetime, hinting at a satisfactory description of the nature of the two
states of 47K in the shell-model framework.
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Shell-Model Calculations

The spectroscopic factors for the direct proton-transfer reaction
(46Ar(3He,d)47K) can be computed with the SDPF-U interaction. The calcula-
tion was performed with the same truncation scheme with 4p−4h configurations.
Table 8.3 presents the results of the calculation. Neither the s1/2 nor the d3/2
orbitals appear completely filled in 46Ar. The spectroscopic factor of 0.94 relative
to the 7/2− state is an indication that a good description of the first two states
of 47K can be achieved by limiting the valence space of protons to the sd shell,
or, in other words, that the N = 20 is a strong shell closure.

Energy 1
2

+ state 3
2

+ state 7
2

− state
(keV) (keV) (keV)

47K (SDPF-U) g.s. 324 -
47K (Alternative) g.s. 302 2066
47K (ab initio) g.s. 2511 6106
47K (Experiment) g.s. 360.0(10) 2020.0(15)

Table 8.2: Excitation energy of the low lying states of 47K. The results are
presented for different models: the shell-model with the SDPF-U interaction and
an alternative interaction derived from it, as well as ab initio calculations.

C2S 1
2

+ state 3
2

+ state 7
2

− state
46Ar(d, p)47K (SDPF-U) 0.41 0.26 -
46Ar(d, p)47K (Alternative) 0.36 0.30 0.94
46Ar(d, p)47K (ab-initio) 0.66 0.025 0.69

Table 8.3: (Absolute) spectroscopic factors for the direct proton-transfer reaction
(46Ar(3He,d)47K) for the population of the ground state ( 1

2
+), the first excited

state ( 3
2

+) and the 7
2

− state of 47K. The results are presented for different models:
the shell-model with the SDPF-U interaction and an alternative interaction
derived from it, as well as ab initio calculations.

The occupation numbers of the orbitals for the ground state of 46Ar and
the first two excited states of 47K are presented in Figure 8.1. According to
the calculation, in the argon isotope, the 1s1/2 and 0d3/2 orbitals are occupied
respectively 58% and 76%. In the case of 47K, however, the shell-model picture
points at a ground state (1/2+) where the only non-filled orbital is the 1s1/2
with an occupation of 55%, while the first excited state (3/2+) is of completely
different nature with the 0d3/2 featuring an occupancy of only 76%. This is
consistent with the identification of these levels as single-particle proton holes in
the doubly-magic isotope 48Ca.

In the independent-particle picture, the probability of filling the s1/2 or d3/2
orbital, given these occupancy figures, is roughly equally shared between the two
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8. Theoretical Considerations and Conclusions

C2S[L]/C2S[L = 0] 3
2

+ state 7
2

− state
46Ar(d, p)47K (SDPF-U) 0.63 -
46Ar(d, p)47K (Alternative) 0.83 2.6
46Ar(d, p)47K (ab initio) 0.038 1.045
46Ar(d, p)47K (Experiment) 0.10+0.11

−0.12 1.10+0.18
−0.15

Table 8.4: Comparison of experimental and theoretical relative spectroscopic
factors according to some of the nuclear models discussed in this Chapter. The
results are presented for different models: the shell-model with the SDPF-U
interaction and an alternative interaction derived from it, as well as ab initio
calculations.

options. In particular, filling the first orbit will lead to the population of the
3/2+ state (L = 2 transfer), and placing the proton on the d3/2 orbit implies
populating the ground state (L = 0 transfer). This intuition is justified by the
single-particle nature of these low lying states of 47K.

The neutron component of the wave function, on the other hand, shows
minor differences with only a slight decrease in occupation of the f7/2 orbital.
This effect is not surprising given the progressive breakdown of the shell gap in
lower-Z isotopes along the N = 28 shell closure. The SDPF-U interaction, as
introduced in the previous paragraphs, can correctly account for the evolution
of the shell, and it is in agreement with experimental data in indicating 46Ar as
the last isotope where this gap is still significant.

Concerning the relative spectroscopic factors in 46Ar, the values relative
to the SDPF-U interaction are not compatible with the experimental data.
In particular, they are at a distance of more than 3 standard deviations plus
systematic errors with respect to the experimental data (cf. Table 8.4).

As a remark, the large figure given by the shell-model calculations for the
relative spectroscopic factor of the 7/2− state with the alternative interaction is
skewed by the low value of the calculation for the ground state case. In order
to remove this dependency, it is possible to define a new quantity R[L], the
spectroscopic factor relative to that of the 1/2+ and 3/2+ states:

R[L = 3] = C2S[L = 3]
C2S[L = 0] + C2S[L = 2]

A simple rearrangement of the terms shows that the same quantity can be
obtained for relative spectroscopic factors θ[L] = C2S[L]/C2S[L = 0] with the
following expression:

R[L = 3] = θ[L = 3]
θ[L = 2] + 1

The shell-model calculation achieves a value of R[L = 3] = 1.4, to be
compared with the experimental result of R[L = 3] = 1.0(2) for the optical
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Figure 8.1: Occupation numbers of orbits computed with the SDPF-U interaction.
The lighter shade indicates the orbital degeneracy and the darker color indicates
the calculated occupation of the states of interest.
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potential of Becchetti et al. and R[L = 3] = 1.5(2) for that of Trost et al. (cf.
subsection 7.4.1).

This value, together with the theoretical excitation energy of the 7/2− state
not too far off the experimental value, hints at a good shell-model description of
this state as a proton excited to an empty πf7/2 orbital.

At the same time, these results are a further indication of the failure of this
model to account for the physical properties of the ground state of 46Ar in terms
of the πs1/2 − πd3/2 wave function components.

8.2 The Density Functional Theory (DFT) Picture

Calculations of the ground state of 46Ar have also been performed by means of
DFT methods by G. Colò and collaborators [7].

The suppressed L = 2 transfer to the d3/2 orbital indicates its large occupancy.
This aspect, in turn, reflects the depletion of the s1/2 orbital that is more localized
in the inner part of the nucleus due to the vanishing of the centrifugal barrier of
the central potential. If the depletion effect is sufficiently large, a void in the
central portion of the density profile can emerge. This effect has been mentioned
in the introductory chapter in section 3.2.4. In order to correctly describe this
phenomenon, the theoretical model needs to be able to correctly describe the
inversion of the two orbitals, which leads to the filling of the d3/2 before the
more central s1/2.

The calculations were performed using a fully self-consistent Skyrme Hartree-
Fock with the inclusion of the tensor interaction, similarly to those performed in
reference [1].

A zero range tensor term in the Skyrme force is introduced, dependent on two
tensor strength parameters, T and U (cf. reference [1] and references therein).
The contact dependence (zero range) is due to the presence of the delta function
δ(r).

V T =T

2

{︃[︃
(σ1 · k′) (σ2 · k′) − 1

3 (σ1 · σ2) k′2
]︃
δ(r)

+δ(r)
[︃
(σ1 · k) (σ2 · k) − 1

3 (σ1 · σ2) k2
]︃}︃

+ U

2 {(σ1 · k′) δ(r) (σ2 · k) + (σ2 · k′) δ(r) (σ1 · k)

−2
3 [(σ1 · σ2) k′ · δ(r)k]

}︃
.

(8.2)

In the previous expression, the operators k = (∇1 − ∇2)/2i acts on the right
and k′ acts on the right. The tensor terms affect the spin-orbit potential USO:

USO = W0

2r

(︃
2dρq

dr
+ dρq′

dr

)︃
+
(︃
α
Jq

r
+ β

Jq′

r

)︃
(8.3)

The label q indicates protons or neutrons and ρ stands for the density while
J represents the spin-orbit density. The parameters α and β are constituted by
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The Density Functional Theory (DFT) Picture

two terms (α = αC + αT ) each representing the central exchange and the tensor
contribution.
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Figure 8.2: DFT calculation with the SLy5 force, a Skyrme-like interaction [7].
In light blue is shown the 46Ar isotope, in green 44S and in violet 42Si. The
x-axis presents the radius in fm and the y-axis the proton density in fm−3. (top
left panel) No bubble structure is present in 46Ar as holes are located in the d3/2
orbital, while protons occupy the more central s1/2. (top right panel) Adding
the more refined SLy5+Tw interaction, introduced in reference [1] generates a
central depletion caused by the inversion of the two orbitals. (bottom left panel)
Adding a surface pairing interaction the depletion is less pronounced and yet still
present, also for 46Ar. (bottom right panel) Similar effects can also be observed
in the case of a volume pairing.

Figure 8.2 shows the result of the SLy5 parametrization (top left panel) in
comparison with the SLy5+Tw (top right panel), thus introducing a tensor
component to the interaction. The parametrization of the tensor terms of the
latter is obtained perturbatively on top of the previous SLy5 force [1] and predicts
a different proton density profile.

In particular, the SLy5 force hints at the presence of the bubble structure
only in 42Si, while the SLy5+Tw force finds an analogous structure also for
44S and 46Ar. The Sly5 interaction behaves similarly to alternative energy
density functionals in predicting a standard ordering of the orbitals and, as a
consequence, no central depletion. The introduction of a tensor component with
the SLy5+Tw interaction is one of the cases where the inversion is present while
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the energy is high enough to counterbalance the effect of the pairing interaction.
The description of the inversion of the orbitals in itself is not sufficient, as

the bubble structure is weakened by the pairing correlation effect that tends to
promote nucleons above the Fermi energy.

Consequently, the energy gap between the two orbitals needs to be sufficiently
large to reduce the effect of the pairing correlation. This aspect can be clearly
seen in Figure 8.2, where the introduction of the pairing force tends to fill the
central depletion (bottom row) with respect to the bubble structure observed
with no pairing interaction (top right panel). Two different types of pairing
have been tested, a surface pairing and a volume pairing. The volume pairing
interaction is a contact interaction of the form:

Vvol = V0δ(r)

Where V0 defines its strength, while the surface term has the analogous
expression:

Vsurf = V0(1 − ρ

ρ0
)δ(r)

As expected, the addition of this interaction in both the volume and surface
case has the effect of partially filling the central depletion. Nevertheless, the
central density does not appear completely saturated in all three isotopes.

In terms of occupation probabilities, the calculation before the introduction
of the pairing interaction predicts an occupation of 0 for the s1/2 and 1 for the
d3/2. The effect of the pairing is to increase the occupation of the s1/2 to 0.54
and decrease that of the d3/2 to 0.78 [7] (equivalent values are obtained for the
surface and volume pairing).

Independent calculations with a different Skyrme force performed in the
framework of Skyrme Hartree Fock Bogoliubov, including a volume or surface
pairing interaction (and a combination of them), hints at a similar bubble
structure formation in 46Ar [16]. Different strengths of the pairing interaction
are tested based on values derived by the empirical pairing energy gap. These
values are associated with a (low) probability of occupation of the s1/2 orbit that
ranges from 0.056 (in the case of mixed surface and volume pairing) to 0.269 for
a stronger pairing force.

These results, observed in independent calculations and with different trials
of pairing interaction, in combination with the experimental result that finds a
low occupation of the s1/2 orbital, corroborate the hypothesis of this peculiar
structure in 46Ar.

Coincidentally, the 44S isotope presents a similar structure. This particular
isotope has been shown (subsection 3.2.3) to present the same discrepancy in
terms of transition probabilities, similar to the 46Ar case.
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8.3 Ab initio Calculations

The development of the ab initio framework relies on the extensive effort
of deriving an effective theory from the underlying symmetries of quantum
chromodynamics. Recent developments on these techniques opened the possibility
of calculations not limited to light nuclei, pushing the frontier to the medium-mass
region of the Segrè chart.

The quantum chromodynamics, which governs the strong force, can be treated
by perturbative expansion only in the high energy scale. At low energies, relevant
for nuclear physics phenomenons, the coupling constant is too large to justify
the use of perturbation theory. Nevertheless, the vast amount of degrees of
freedom that would constitute the treatment in terms of single quarks can be
diminished in virtue of the confinement of quarks by considering composite
particles such as nucleons and pions. This simplification allows the development
of an effective Lagrangian, composed of effective interactions that still contain the
same symmetries as the original QCD Lagrangian. A perturbative expansion can
be introduced in terms of the coupling parameter Q/Λ. In this case, Q represents
the momentum scale of the typical physical process and Λ the breakdown scale.
The effective Lagrangian cannot describe physics with energies beyond this
parameter; typical values are around Λ ≈ 1 GeV. From the Lagrangian, it is
possible to extract progressive expansions of the nuclear interactions where the
next leading order presents more vertices of interaction with respect to the
leading order. Each vertex is proportional to a constant that is identified by
fitting nucleon-nucleon scattering data in the current practice.

Ab initio calculations have been performed [2] for 46Ar using the NNLOSAT
interaction [9] with the self consistent Green’s function method [6, 8, 13, 14].

While a full explanation of the calculation is beyond the scope of this work,
the outcome of the calculation is presented to offer further insight into the
experiment.

In particular, the same bubble profile density structure introduced in the
previous section (8.2) has also been predicted in 46Ar with the NNLOSAT
calculation [2]. This, in turn, translates to the spectroscopic factors shown in
Table 8.3, which results in a reduced value of C2S = 0.025 for the transfer to
the 3/2+ state of 47K, in line with the fact that the πd3/2 orbit is almost full in
the ground state of 46Ar.

The comparison with the experimental data (Table 8.4) indicates that the
results are fully compatible. In particular, the relative spectroscopic factor to the
3/2+ state appears well within error. The same consideration can be made for
the 7/2− state that appears within the statistical error. Table 8.2 presents the
excitation energy of the states of interest in 47K according to the calculations.
The reason behind the significant dilatation of the energy spectrum is found in
the nature of the underlying principles of the ab initio methodology. In particular,
the interactions obtained from prime principles are able to reproduce the single-
particle energies with uncertainties around 1 − 2 MeV. These discrepancies stem
from the theoretical uncertainty on the nuclear interaction.

Following the same considerations of the shell-model calculations, the value

171



8. Theoretical Considerations and Conclusions

of the L = 3 transfer over the sum of the L = 0 and L = 2 returns a value of
R[L = 3] = 1.01, compatible with the experimental data (R[L = 3] = 1.0(2)).
This is not surprising since both the relative figures are in agreement.
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8.4 Summary and Conclusions

An impressive amount of experimental and theoretical effort has been dedicated
in the past and recent times for the study of nuclear structure around the N = 28
shell closure. In particular, the study of the shell evolution and its demise far
from the valley of stability has never failed to attract the interest of the nuclear
structure scientific community. Much of the experimental effort has been focused
on studying the neutron energy gap with the intent of assessing its presence or
progressive fading in the most neutron-rich isotopes. The experimental data on
the matter are manifold, ranging from neutron removal energies to (neutron)
transfer or knockout reactions. The combination of this extraordinary effort
leaves little probability for alternative interpretations: the neutron shell closure
fades progressively in the most neutron-rich isotones. In particular, 44S has been
associated with the onset of collectivity. Nuclear models appear in agreement
with the prediction of this progressive deterioration of the N = 28 energy gap
both in the framework of density functional theory and shell-model calculations.

While these considerations might indicate that the physics in this particular
region is well understood, a surprising discrepancy between theoretical models
and experimental data has been observed in 46Ar. The availability of radioactive
beams in state-of-the-art facilities opened the possibility to perform Coulomb
excitation experiments on isotopes far from stability. The comparison of
transition probabilities between the shell model with the SDPF-U interaction
and intermediate energy Coulomb excitation experiments reveals a discrepancy
of more than factor two, with theory largely over-predicting the experimental
value. While the experimental data give a drop in transition probability as the
N = 28 shell closure is reached in the argon isotopic chain, the shell model
predicts a sharp increase. This aspect is even more surprising if one considers the
good performance of the shell model in the prediction of transition probabilities
of nearby isotopes, with one exception. A recent intermediate-energy Coulomb
excitation experiment revealed the same discrepancy of a factor of approximately
two for 44S, located just below (−2p) with respect to 46Ar.

An insightful study performed with the LISE setup at GANIL allowed the
extraction of proton and neutron matrix elements that concur to the total
transition probability. The authors concluded that the main factor in the large
discrepancy of the transition probability in 46Ar was related to an overestimation
of the proton matrix element. This clue is also backed by the evidence that
neutron-dependent observables are well described by the theoretical model.

The experiment presented in this work aimed at directly probing the proton
component of the wave function. A proton transfer direct reaction was performed
in GANIL at the SPIRAL1 facility on 46Ar. This reaction, 46Ar(3He,d)47K,
relied on the production of this radioactive isotope with a primary beam of
48Ca and a post acceleration to 9.9 MeV/u. The beam impinged on a newly
developed gaseous cryogenic 3He target cooled at ≈ 7 K. The experimental setup
allowed the full reconstruction of the two-body reaction, with the detection of
the heavy 47K ion in the magnetic spectrometer (VAMOS) and of the deuteron
by a position-sensitive silicon detector (MUGAST). The high-purity germanium
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tracking array (AGATA) allowed the measurement of γ-rays emitted after the
population of the states of the potassium isotope.

The experimental outcome hints at a suppressed L = 2 transfer, indicative
of a high degree of occupancy of the d3/2 orbital in the 46Ar ground state,
inconsistent with the shell-model calculation that predicts a somewhat similar
occupation for the s1/2 and d3/2 orbitals. This discrepancy further motivates
the argument concerning the failure of the shell model in the description of the
proton component of the wave function.

From a heuristic point of view, the small experimental B(E2) can be justified,
in a shell-model framework, with a restriction of the s1/2 and d3/2 proton space
that the SDPF-U interaction predicts as fully open (almost degenerate shells).
The result found in this work, i.e. a significant closure of the πd3/2 shell in 46Ar
combined with an empty s1/2, points exactly in that direction.

A brief discussion has also been introduced on the implication of the low
occupancy of the s1/2 orbit on the density profile in the framework of density
functional theory calculations. In particular, some calculations are able to predict
the inversion of the two orbitals, hinting at the presence of a central proton
density depletion. The same effect is shown in the case of 44S that, remarkably,
reflects the same discrepancy in terms of transition probabilities.

Ab initio calculations also provide an independent picture and predict a low
spectroscopic factor relative to the 3/2+ state, compatible with the experimental
evidence. At the same time, also the spectroscopic factor of the 7/2− state
appears compatible with the data. The same central proton density depletion is
observed in ab initio calculation.

8.5 Future Perspectives

This thesis presents a fundamental insight on the nuclear structure problem of
46Ar, offering also a hint for further investigation for this isotope and analogous
ones such as 44S. This work has pointed out the failure of shell-model interactions
in describing the proton wave function of 46Ar, and it will hopefully spur further
experimental and theoretical studies.

The use of direct reactions to study nuclear structure properties of these
isotopes could be extended with the proton-removal reaction 47K(3H,4He)46Ar
that would offer a complementary picture to the current work and exploit the
higher intensity achievable with radioactive 47K beams in ISOL facilities. At
the same time, the proton removal from 46Ar (46Ar(d,3He)45Cl) could help to
confirm the ground state structure of this argon isotope with the potential of
measuring absolute spectroscopic factors thanks to the simpler CD2 target.

A more direct investigation on the charge density of 46Ar, with the specific
aim of studying the central depletion (bubble structure), could be performed
with electron scattering techniques. This study could also be extended to other
isotopes which are expected to share this peculiar structure, such as 44S and
42Si. These experiments could be carried out in facilities such as Scrit Electron

174



Future Perspectives

Scattering Facility At Riken [15] or in the future at the planned Facility for a
High-Power Energy Recovery Linac at Orsay, PERLE [3].

The development of state-of-the-art high purity germanium tracking arrays
such as AGATA and GRETINA offers the unique possibility to also perform
precise lifetime measurements in combination with the plunger setup and various
ancillary detectors. The high efficiency and Doppler correction capabilities
of these arrays could represent a decisive factor to improve upon previous
measurements. In particular, a high-statistic measurement of the lifetime of the
2+ state of 46Ar could help to resolve the disagreement between the lifetime and
relativistic Coulomb excitation experiments.
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Appendix A

3He equation of state

A.1 Equation of state

The equation of state is a functional relationship between some parameter which
describe the thermodynamical state of a substance. In particular, for the current
work, it is essential to extract the density of the 3He gas contained in the
cryogenic target as a function of the measured pressure and temperature. The
equation of state is constituted by an implicit function of some macroscopic
variables. In the case of a gas these often consist in pressure p, volume V and
temperature T :

f(p, V, T ) = 0

The knowledge of the equation of state allows to derive all other macroscopic
quantities of the system. And in the case of a ideal gas, it takes the common
form of:

pV −NkBT = 0

Where kB represents the Boltzmann constant. This equation often represents
a starting point for a physical equation of states which is applicable to real-world
data as it fails to include the effect of long range correlations to the macroscopic
variables of the system. The impact of the interaction among the gas molecules
is more important near the critical point of the gas, making the equation of ideal
gasses not a precise approximation.

Various models can be employed, nevertheless a direct measurement of the
system near its critical point is necessary for a precise assessment of the density
as a function of pressure and temperature. In the case of 3He, the measurement
of pressure, density and temperature for a pure 3He gas has been performed in
reference [1]. The authors were able to measure the gaseous density as a function
of the pressure at different temperatures and near the critical point (Figure A.1,
top). The appearance of a critical point for temperatures around 3.3 K is evident,
as a inflection point gradually appears lowering the temperature. Another density
measurement was performed varying the temperature at different pressure values
(Figure A.1, bottom).

The results of the tables included in the article are presented in Figure A.1
and have been used to interpolate the equation of state in the experimental
temperature and pressure range in order to compute the density of the 3He gas.
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Figure A.1: Measurements of 3He equation of state, data extracted from the
table in reference [1]. (Top) Density as a function of the pressure at different
temperatures. (Bottom) Density as a function of the temperature at different
pressures.
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Resolution model

B.1 Resolution model

The to loss of charge collection is a common aspects of many kinds of detectors
and is apparent in the response of the detector. In the particular case of this
thesis, this aspect can be observed in the response of the γ-ray detector AGATA
where the damage caused by neutrons on the crystalline structure of the high
purity germanium detectors causes a loss of collected charge and as a consequence
a left tail on each energy peak. The same behavior can be also observed on the
silicon detectors, in this case on the energy spectra of Mugast.

It can be useful, in first approximation, to model the response due to a lossy
detector as the convolution of the probability density functions (PDF), a general
Gaussian distribution and a decaying exponential. The latter is introduced
under the assumption that the amount of lost charge decays exponentially in
probability.

The convolution of two PDF distributions can be computed with an integral
as follows:

h(x;µ, σ, τ) = (f ◦ g)(x;µ, σ, τ) = (g ◦ f)(x;µ, σ, τ) =
∫︂ ∞

−∞
f(x− t) g(t)dt

where in this case the two distributions are the common Gaussian distribution
which simulates the intrinsic resolution:

g(x;µ, σ) = 1
σ

√
2π

(︂
e− 1

2 ( x−µ
σ )2)︂

And the exponential distribution limited on the negative values of x,
accounting for the lossy behavior:

f(x; τ) = 1
τ
e

(x−µ)
τ Θ(µ− x)

It is possible to show that the analytical expression of the convolution has
the form of the following equation [1]:

f(x;µ, σ, λ) = 1
2τ e

1
2τ

(︁
σ2
τ −2µ+2x

)︁ (︄
1 − erf

(︄
σ2

τ − µ+ x
√

2σ

)︄)︄
Where erf(x) represents the error function, related to the cumulative

distribution of the Gaussian PDF:

erf(x) = 2√
π

∫︂ x

0
e−t2

dt
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The mean of the distribution is given by µ− τ and the variance by σ2 + τ2.
Figure B.1 shows an example of a convolution of the two distributions, in
particular the parameters chosen correspond to those inferred from the fit in
Figure 4.27 in subsection 4.6.2.
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Figure B.1: Convoluted distribution (in blue) of a Gaussian distribution (in
orange) and an exponential (in green) with µ = 5.44, σ = 0.0096, τ = 0.032. The
FWHM can be computed numerically and corresponds to ≈ 0.044.
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Appendix C

Electronics chain

C.1 Electronics chain
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