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ABSTRACT

Aims. This paper describes a new technique for determining the optimal period of a pulsar and consequently its light curve.
Methods. The implemented technique makes use of the principal component analysis (PCA) applied to the so-called waterfall di-
agram, which is a bidimensional representation of the acquired data of the pulsar. In this context, we have developed the python
package pywpf to easily retrieve the period with the presented method.
Results. We applied this technique to sets of data of the brightest pulsars in visible light that we obtained with the fast photon counter
Iqueye. Our results are compared with those obtained by different and more classical analyses (e.g., epoch folding), showing that the
periods so determined agree within the errors, and that the errors associated with the waterfall-PCA folding technique are slightly
smaller than those obtained by the χ2 epoch-folding technique. We also simulated extremely noisy situations, showing that by means
of a new merit function associated with the waterfall-PCA folding, it is possible to become more confident about the determined
period with respect to the χ2 epoch-folding technique.

Key words. Methods: data analysis – Techniques: miscellaneous – pulsars: light curve – Principal Component Analysis

1. Introduction

High time resolution astrophysics (HTRA) investigates all types
of celestial objects presenting rapid irradiance variability. Phe-
nomena of interest include occultation measurements, oscilla-
tions in white dwarfs, flickering in cataclysmic variables, tim-
ing of pulsars, rapid variability in X-ray binaries, and accreting
compact objects. Among these, pulsars are perhaps the most fre-
quently studied HTRA objects because of their exotic nature and
the possibility of investigating fundamental relativistic physical
and astrophysical problems. A peculiar characteristic of these
objects is their (quasi-) periodic signal, given by the combination
of two factors: the beacon-like source that is due to an approxi-
mately conical light-emission beam of a very fast spinning neu-
tron star, and the position of the Earth within the cone-scanned
sky regions. With our instruments Aqueye/Aqueye+ (Barbieri
et al. 2009a,b; Zampieri et al. 2015), applied to the Asiago
Copernicus telescope (Italy), and Iqueye (Naletto et al. 2009),
applied to the ESO New Technology Telescope (NTT; La Silla,
Chile), we have investigated the visible light emitting pulsars
that are accessible with medium size telescopes (Zampieri et al.
2011; Gradari et al. 2011; Germanà et al. 2012; Zampieri et al.
2014; Spolon et al. 2019). Only four of them can be seen with
these telescopes: PSR B0531+21 (Crab pulsar), PSR B0540-69
in the Large Magellanic Cloud, PSR B0833-45 (Vela pulsar),
and the most recent PSR J1023+0038 (Ambrosino et al. 2017;
Zampieri et al. 2019); another pair of weaker optical pulsars
(PSR B0656+14 and PSR B0630+17, also known as Geminga)

are accessible only with larger telescopes (for the properties of
optical pulsars, see, e.g., Mignani 2011).

One of the most important analyses to be performed on the
pulsars is the determination of their (quasi) periods, P. In addi-
tion, because these objects lose energy by particle or light emis-
sion, their angular momentum varies in time, and the pulsation
period slowly increases. Thus, from the analysis of the period
variation in time, information can be obtained about the pulsar
lifetime (∝ P/Ṗ) and evolution. To retrieve the most accurate
value of the pulsar period from the measured data, and conse-
quently to obtain the best light curves, different techniques have
been developed. These techniques depend on the data that can
be obtained with the available instrumentation. For the best time
resolution, the selected time bin has to be as small as possible:
but reducing the time bin also implies that the collected signal
per time bin becomes increasingly smaller, down to the limit
of photon counting. Depending on the instrumentation perfor-
mance, there are generally two types of dataset formats: if the
time bin is relatively long with respect to the photon rate, practi-
cally all time bins have a nonzero value and the signal is essen-
tially a continuous function of time; instead, if the time bin is too
short, many bins have a zero signal and a few have a value of 1
or a few units, providing a Poisson distribution signal.

There is no clear evidence of a (quasi) periodicity (see for
example Fig. 1) in these signals in general, and dedicated analy-
sis tools are required to identify these features. We briefly review
the most common techniques for determining the pulsar period,
and then we describe how to obtain it by means of a novel tech-
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Fig. 1. Example of a light curve from the Crab pulsar (PSR B0531+21)
acquired with Iqueye at NTT. Because the count rate is relatively low,
with a time bin of ∆t = 0.1 ms, the periodic signal is not evident.

Table 1. Observations used in the waterfall-PCA folding analysis. Ac-
quisitions were performed with the Iqueye instrument at the NTT at
La Silla Observatory, Chile. Arrival times of detected photons are cor-
rected to the Solar System barycenter (SSB) using the software TEMPO2
(Hobbs et al. 2006; Edwards et al. 2006).

Obs. ID PSR Source Date Total time
OBS1 B0540-69 2009-12-13 3500 s
OBS2 B0531+21 (Crab) 2009-12-15 7200 s
OBS3 B0833-45 (Vela) 2009-12-18 3600 s

nique that makes use of the principal component analysis (PCA).
To do this, we investigated two different situations: one that we
can define as low noise, for which a very simple algorithm can
be used; and a second, the high noise, for which a suitable merit
function had to be defined. The first situation applies to all the
real cases we have investigated, which are the observations of the
Crab pulsar taken in Asiago (Germanà et al. 2012), PSR B0540-
69 (Gradari et al. 2011), and the Vela pulsar (Spolon et al. 2019)
taken at the NTT in La Silla. The second situation has been re-
produced artificially by adding noise to the Vela pulsar data. The
obtained results not only agree with those obtained by means of
other well-established techniques, but the use of PCA provides
a higher level of versatility, which allows obtaining more confi-
dence in the obtained results.

The structure of the paper is the following. Section 2 gives
a brief description of the standard techniques typically used to
estimate a pulsar period, and we also recall the description of
the so-called waterfall diagram. In Section 3 a description of the
PCA is given. Then, Sections 4 and 5 explain the simplest way
to apply the PCA to a waterfall diagram to determine the pulsar
period, which corresponds to the low-noise case; the results ob-
tained with this technique are also compared to those obtained
by a more conventional technique. Finally, in Section 6 we de-
scribe the method (waterfall-PCA folding) used in the highest
noise case, in which a dedicated approach had to be considered;
moreover, a comparative analysis with the results obtained by a
standard technique is provided. A summary of all the observa-
tions used for this analysis is reported in Table 1.

2. Common techniques for determining the pulsar
period

To analyze pulsar data, the first convenient step is to identify the
possible presence of a signal periodicity simply using a Fourier
transform technique, for example, the fast Fourier transform
(FFT). This is a very simple and straightforward method, but
it has some intrinsic limitations: in some cases, periodic features
are not so evident in an FFT, especially if the signal is rather

noisy; the determination of the correct frequency is limited by
the poor FFT frequency resolution, which depends on the num-
ber of input elements and on the ability of the software to deal
with large arrays. In practice, because of these limitations, the
FFT is used only for a preliminary identification of a possible pe-
riodic signal. When the periodicity is confirmed, more accurate
analyses have to be performed to improve the frequency mea-
surements.

A very well established technique for proceeding in the data
analysis after having identified the periodicity, is to fold the sig-
nal, using the so-called epoch-folding technique (Leahy et al.
1983a,b; Leahy 1987; Gregory & Loredo 1992; Larsson 1996).
In this case, a reasonable target period P is assumed either by the
FFT analysis or by available information on the observed pulsar;
then a trial period Pt relatively close to P is used to scan a suit-
able time region around P in search for the optimal period, P∗.
The search is realized by dividing Pt into N period time bins and
coadding the pulsar timing data modulo Pt into these period time
bins (the phase period is often used instead of the time period,
with the phase period ranging between 0 and 1). By coadding
(folding) the signal over a large number of periods, assuming the
period constant over the time of folding, the statistics per period
time bin is largely increased, and the pulse shape is generated.
The more distant the trial period Pt from the actual period P∗,
the less accurate the light curve with respect to the correct light
curve: to identify the best estimate of the actual period, and so to
find the most accurate result, the standard procedure at this point
is to vary the trial period by small amounts and to produce a set
of light curves. By defining a suitable merit function and iterat-
ing the process searching for the highest merit function value, it
is possible to increase the accuracy of the trial period and finally
to obtain the optimum solution.

Thus, the problem of finding the best light curve is finally
reduced to defining the optimal merit function. A fairly common
algorithm used for this aim is calculating the χ2 value for the
estimated light curve (Leahy et al. 1983a,b; Leahy 1987; Lars-
son 1996): it can be shown that the highest χ2 value provides the
most accurate light curve. This approach is routinely adopted,
and suitable algorithms can be found in dedicated software li-
braries (e.g., the timing analysis software for X-ray Astronomy
xronos1 and stingray2). Other adopted techniques are the Z-
test (Buccheri et al. 1983) and the H-test (de Jager et al. 1989;
de Jager & Büsching 2010), which do not depend on the time
binning.

Another accurate method that is not as frequently applicable,
however, is the so-called waterfall diagram. The signal is folded
to increase the statistics in this method as well, but the data anal-
ysis procedure is different. In this case, the total observation time
is divided into M time intervals, usually with M ≥ 20, and fold-
ing is performed separately over each time interval with a com-
mon trial period Pt to obtain M light curves. Then, each light
curve is stacked as a row in a matrix,

W =
(
wm,n

)
∈ RM×N ;

by associating a color scale with the intensity of the light-curve
signal, this matrix can finally be represented as a color image.

This method allows detecting minute differences in the initial
phase of the pulse even by simple visual inspection. An example
is shown in Fig. 2, where the described method is applied with
M = 200 to the analysis of the period of the Crab pulsar, OBS2.
1 https://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/
xronos.html
2 https://github.com/StingraySoftware/stingray
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Fig. 2. Waterfall diagram of a two-hour Crab pulsar acquisition OBS2 (Table 1). The two columns have the same datasets, same number of
divisions (M = 200), and time bin (∆t = 10 µs), but different trial periods Pt. The left column has Pt = 33.637 20 ms, and the right column has
Pt = 33.637 26 ms, i.e., a difference of 60 ns . The top panels are the average along the m-axis (number of divisions or number of light curves,〈W〉m) of each waterfall matrixW. Vertical straight lines appear only when the adopted period corresponds to the best estimate. In addition, a
perfectly straight line may not be possible because we did not consider pulsar spin-down or other effects in this calculation.

On the left, we show the image that is obtained when the trial
folding period Pt differs from the actual period P∗: it is clearly
evident that the initial phase of the pulse changes because the
folding period is incorrect, which produces tilted lines. Here we
adopted a folding period Pt that largely differs from P∗ to ex-
aggerate the visual effect, but it can be shown that this method
is also very effective in measuring very small inclinations of the
lines that correspond to very small deviations of the folding pe-
riod from the actual one.

In practice, as in the previous case, the procedure to follow is
to introduce small variations in the trial period Pt and to produce
the corresponding waterfall diagrams; when the waterfall dia-
gram shows straight vertical lines (see Fig. 2 right column), the
best-fit period has been obtained. Notwithstanding its simplicity,
the accuracy of this method is quite remarkable, and period val-
ues as accurate as those obtained by the epoch-folding technique
can be obtained. An example of its accuracy is shown in Fig. 2,
where a curvature of the vertical lines is visible, if not as clearly.
This waterfall diagram has been obtained from a ∼7200 s obser-
vation of the Crab pulsar by folding the data with a period that
is correct at the middle of the observation and using M = 200.
This residual curvature is due to the phase shift that occurred
during the observing time as a consequence of the extremely
low Crab pulsar regular spindown. This period variation can be
measured with multiple observations, and at the time of obser-
vation (Zampieri et al. 2014), we obtained Ṗ ≈ 4.2 × 10−13 s s−1:
this corresponds to a total change in the period of 3 ns from the
beginning to the end of the observation, or equivalently, to a to-
tal phase variation of −0.0096. These numbers demonstrate the
goodness of this method in highlighting these extremely small
period or phase variations as well.

Unfortunately, this technique can only be applied with good
results when the searched periodic signal is higher than the noise.
When the noise is not negligible, the signal in the waterfall image
has a very poor contrast, which makes detecting any periodicity

0 10 20 30
Pulse phase bin

0

5

10

15

20

L
ig

ht
cu

rv
es

(M
=

20
)

25400

25600

25800

26000

26200

Ph
ot

on
co

un
ts

pe
rt

im
e

bi
n

Fig. 3. Waterfall diagram for the PSR B0833-45 (Vela pulsar) observed
for 180 min with Iqueye at the NTT (OBS3; Table 1). No vertical feature
is evident, although the data have been folded in just M = 20 rows. The
waterfall was generated with a Pt = 89.367 15 ms and a time bin of
∆t = 2.793 ms.

very difficult. As an example, Fig. 3 shows the waterfall diagram
for the PSR B0833-45 (OBS3; Table 1) using M = 20 and the
nominal folding period: clearly, no straight vertical feature is ev-
ident, at least by eye.

The idea at the basis of this paper is to understand whether
with a suitable software analysis, we can extract the hidden in-
formation of the actual pulsar period from waterfall images like
the one shown in Fig. 3, where the human eye or simple tech-
niques fail to detect any feature. We show that the PCA, which
is widely used in many scientific applications, offers such a tool.
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û

Fig. 4. For a bidimensional dataset with the distribution shown in this
figure, the PCA allows defining the directions û and v̂ of the orthogonal
maximum variances, so providing the direction of largest variation.

3. Principal component analysis

The PCA (F.R.S. 1901) is a mathematical tool that spans many
fields of contemporary science: it is mainly used in image com-
pression and more generally computer graphics, but also in
statistics, mathematics, signal processing, meteorology, and so
on. Depending on the field of application, this general technique
is subject to small differences in implementation and so is of-
ten called in different ways: in computer graphics and in statis-
tics, it is called PCA, in signal processing, it is better known
as Karhunen-Loève transform (KLT; Karhunen 1947; Lévy &
Loève 1948) and is used for very low signal-to-noise ratio de-
noising (while maintaining the basic characteristics of PCA, the
algorithm and the method of application in this field are differ-
ent from those of the PCA); other names by which this anal-
ysis technique is also known are independent component anal-
ysis (ICA; Hyvärinen et al. 2001), Hotelling transform (HT;
Hotelling 1933, 1936), proper orthogonal decomposition (POD;
see, e.g., Berkooz et al. 1993), and others.

The PCA is a relatively simple nonparametric method for
extracting useful information from data that are otherwise dif-
ficult to interpret. Practically, the PCA is a way of identifying
patterns in data and expressing the data in such a way as to high-
light their similarities and differences: from a geometrical point
of view, this corresponds to representing the data in a suitable
reference frame such as to highlight their structure. For this, the
algorithm uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of val-
ues of uncorrelated variables called principal components (PCs).
This transformation is defined in such a way that the first PC
has as high a variance as possible (i.e., it accounts for as much
of the variability in the data as possible), and each following
component in turn has the highest possible variance under the
constraint that it has to be orthogonal to (uncorrelated with) the
preceding components.

As a simple example, we can think of a dataset with two vari-
ables represented in the xy reference frame (xy-basis) as the set
of points shown in Fig. 4. The figure shows that the data have
a principal direction of variation. This is identified with the u-
axis. The second most important direction orthogonal to u is the
v-axis. The PCA is a technique for identifying these two direc-
tions and to give them a priority on the basis of where the data
have the largest dispersion. In practice, the PCA allows redefin-
ing the datasets in a new reference frame, on the uv-basis, which
has its origin at the centroid of the data and is oriented in such a
way as to obtain uncorrelated data, that is, their covariance with
respect to the (u, v) coordinates is zero. The directions of these
axes are the socalled PCs.

The algorithm for redefining the data with respect to the PCs
is rather simple and consists of five steps. The first is to subtract

the mean value of the data, which has to be done independently
for the various variables: in the assumed two-dimensional data
sample, the average value ⟨x⟩

(〈
y
〉)

has to be subtracted from all
the x (y) coordinates. Second, the covariance matrix C has to be
calculated: in this example, C is a matrix. The third step is cal-
culating the eigenvectors eℓ and the corresponding eigenvalues
λℓ of the covariance matrix. This process is equivalent to finding
the reference frame in which the covariance matrix is diagonal,
that is, where the variables are uncorrelated: in this reference
frame, the covariances (i.e., the nondiagonal elements of the ma-
trix) are all equal to zero, and only the variances (the diagonal
elements) remain. The orientations of the axes of this reference
frame are provided by the eigenvector set {e}, which constitute
an orthonormal basis, and the corresponding eigenvalue set {λ} is
equal to the variances along the directions of the corresponding
eigenvectors eℓ. In the given example, the two eigenvectors pro-
vide the unitary direction vectors û and v̂ shown in Fig. 4. The
corresponding eigenvalues are equal to the variances of the data
along these two directions, and the eigenvalue associated with
the û eigenvector is the highest.

In the fourth step, the eigenvectors are ordered by the cor-
responding eigenvalue from highest to lowest, to order the di-
rection given by the eigenvectors in order of importance. If the
ordered eigenvectors are used as columns of a matrix, a so-called
feature vector F is obtained. In practice, this step allows priori-
tizing the PCs, with the most important ones retaining the largest
amount of the data information. This is a very important step be-
cause it is possible to decide how much information of the origi-
nal data to maintain by simply deciding how many PCs are used
in the following step. If all the PCs are retained, all the infor-
mation is preserved. Frequently, only the first ordered PCs have
large variance, while the remaining ones provide a much smaller
contribution: by discarding the less important PCs, the complex-
ity of the system can be largely reduced (dimensional reduction)
at the well-acceptable price of taking out only a minor amount
of data information. With the final fifth step, the new dataset is
obtained: the feature vector is used as a transformation matrix
that takes the data points from the xy reference frame to the uv
frame by means of the equation

A(u, v) =
(
A(x, y) − 〈A(x, y)

〉)
F,

where A(x, y) is a point in the xy reference frame,
〈
A(x, y)

〉
is the

dataset centroid, and A(u, v) is the corresponding point in the uv
reference frame.

Routines for applying PCA algorithms can be found in many
libraries of commercial scientific standard packages3. For the
data reduction that is specifically required for waterfall-PCA
folding routines, the software pywpf4 has been developed, and it
has been used throughout the following sections.

4. Application of the PCA to the waterfall diagrams
of the Crab pulsars

To verify the possibility of applying the PCA technique to the
waterfall diagrams to determine the optimal folding period, some
tests were made in the simplest case of the Crab pulsar (OBS2;
see Table 1). The procedure we followed was first to produce
different M × N waterfall diagrams Wℓ (with N = 336 num-
ber of columns, i.e., the number of time bins in the folding pe-
riod, and M = 200 number of rows, i.e., the number of segments
3 For example in python scikit-learn: https://scikit-learn.org.
4 The pywpf package: https://github.com/tcassanelli/
pywpf, developed by T. Cassanelli.
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Fig. 5. Waterfall diagrams,Wℓ, where each sheet has M×N dimension.
M corresponds to the number of divisions (number of rows), N is the
number given by the trial period Pℓ (i.e., Pt of the iteration ℓ) divided by
a chosen time bin ∆t: N = round

[
Pℓ/∆t

]
. A data point has an amplitude

given by the number of counts. L corresponds to the total number of trial
periods Pℓ or number of iterations. For this particular case, L = 3,M =
5, and N = 9. The PCA is computed for everyWℓ, which returns (ℓ,m)
eigenvalues and eigenvectors.

into which the whole acquisition has been divided), and then to
vary the folding period Pℓ, where ℓ is the index associated with
the trial period (and L is the total number of iterations). Fig. 5
shows a graphical representation of the waterfalls while iterating
over ℓ:Wℓ. Then we applied the PCA to each of them, consid-
ering these waterfall images as M-dimensional datasets (i.e., a
set of 336 200-dimensional hypervectors corresponding to the
columns of the waterfallWℓ). From this analysis, a set of M N-
component eigenvectors eℓ,m with ℓ = 1, . . . , L; m = 1, . . . ,M
and of the corresponding eigenvalues λℓ,m were obtained per
each waterfallWℓ. The eigenvalues obtained with the waterfall
corresponding to the nominal period P∗ show that λ∗,1, the one
associated with the first PC eigenvalue, strongly dominated the
others, providing a ratio

Λ∗,1 =
λ∗,1∑M

m=2 λ∗,m
= 0.996 36,

and all the components of the corresponding eigenvector e∗,1 had
substantially the same value (∼ 1/

√
200). This is an expected

result: when the period is the best-fit period, all the rows of
the waterfall are ideally identical, and so each hypervector is
equal to the unitary hypervector multiplied by a constant, that
is, the value of the signal intensity of the corresponding time
bin. This means that in the 200-dimension space, the optimal M-
dimensional dataset lies along the hyperdiagonal: in practice, all
the points are aligned along this privileged direction. Along this
direction, the dataset has the largest variance, which is the value
provided by the eigenvalue, while in all the other perpendicular
directions, the variance is almost null.

By analyzing the eigenvalues for the various waterfallsWℓ,
we also realized that the ratio Λℓ,1 has a peak in correspondence
of the optimal folding period. These results suggested monitor-
ing the behavior of the eigenvalue of the first PC eigenvector to
estimate the best folding period. In Fig. 6 the first PC eigenvalue,
λℓ,1, is shown. The folding period is changed multiple times, and
when the peak is found, a smaller step can be defined, that is,
∆s = 1 ns for Fig. 6. In this case, the highest value of the first
PC eigenvalue is easily found in correspondence of a pulsar pe-
riod of PPCA = 33.637 261 ms: compared to the one provided

6.8 7.0 7.2 7.4 7.6
Time µs + 33.63 ms (Total counts: 85 418 006; M = 200)

0

50

100

150

200

λ
`,

m
ei

ge
nv

al
ue

s

λ`,1

λ`,2

λ`,3

PPCA = 33.637 261 ms

Fig. 6. First PC eigenvalue, λℓ,1, vs folding period (∆s = 1 ns) for an
acquisition of the Crab pulsar with Iqueye at the NTT, OBS2 (Table 1).
For this case, M = 200 was chosen, and the best-fit period found was
PPCA = 33.637 261 ms (with a search of L = 1000 iterations). Second
and third eigenvalues, λℓ,2 and λℓ,3, are plotted as well. Their amplitude
is significantly lower than λℓ,1, especially near PPCA.
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Fig. 7. Crab pulsar (PSR B0531+21) light curve obtained by fold-
ing the data with the period found using the maximum value of the
first PC eigenvalue, PPCA (as shown in Fig. 6), and compared to the
period from the Jodrell Bank monthly ephemerides, PJB. The Jodrell
Bank period was computed using PINT at the observation time, and
the period ⟨PJB⟩t was obtained by averaging over the whole transit
(of duration t = 7200 s). The difference between the two methods is∣∣∣PPCA − ⟨PJB⟩t

∣∣∣ = 0.1766 ns.

by the Jodrell Bank monthly ephemerides (Lyne et al. 1993)5 at
the same date of the Iqueye observations. This really remarkable
result demonstrates the accuracy of this technique, at least for
this simple case, which is definitely comparable to if not better
than other standard and much more well-established techniques
at long radio wavelengths.

From the obtained results in Fig. 6, we can now use the es-
timated period from the first PC eigenvalue and fold the dataset.
In Fig. 7 we show the folded data when the maximum value
from the first PC eigenvalue and the one from the Jodrell Bank
monthly ephemerides are used (see Lorimer & Kramer 2012,
Chapter 7). The Jodrell Bank period, PJB, was computed using
PINT (Luo et al. 2019) referenced to SSB at the observed time
stamps, then the average period over the whole recording was
computed. The computed PJB takes the pulsar period into ac-
count: dispersion measure (DM), P, Ṗ, and other parameters (at
a fixed epoch) to predict the period at a certain time stamp t.

The application of the PCA to the waterfall diagrams allows
an additional check of the goodness of the obtained results. Be-
cause ideally, at the optimal period P∗ the first PC eigenvector
e∗,1 should be parallel to the hyperdiagonal in the M-dimensional

5 http://www.jb.man.ac.uk/~pulsar/crab.html
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Fig. 8. Absolute value of the scalar product,
∣∣∣sℓ,1
∣∣∣ (1), of the first PC

eigenvector with the 200-dimension hyperdiagonal unitary vector as a
function of the trial period in the case of the Crab pulsar. The scalar
product (when a high signal-to-noise ratio is available) reaches magni-
tude 1 in a plateau region. Eigenvalue and scalar are plotted together in
Fig. 15. The period PPCA was computed with the first PC eigenvalue,
Fig. 6.

space, the optimal period can be obtained when the absolute
value of the scalar product,

sℓ,m = eℓ,m · d̂ (1)

of this eigenvector with the hyperdiagonal unitary vector d̂ is
maximum and ideally equal to 1. The behavior of the scalar prod-
uct sℓ,1 in the previously examined case is shown in Fig. 8: this
plot confirms the expected result: the largest scalar product cor-
responds to the nominal period. Furthermore, the value of the
scalar product assumes values close to 1 only in a small range
of the abscissa, with a discontinuity at about ±120 ns from the
nominal period. Outside this range, the data are no longer well
aligned, and the first PC eigenvector is far from being parallel to
the hyperdiagonal. As we show in Section 6, this consideration
can be used as a result quality check when the noise is much
larger than in this case.

5. Application of the PCA to the waterfall diagrams
of other visible pulsars

The same technique was applied to the more noisy cases of the
other two optical pulsars we observed in 2009 with Iqueye at
the NTT in La Silla (Chile): the PSR B0540-69 in the Large
Magellanic Cloud (Gradari et al. 2011), and the PSR B0833-45
in the Vela supernova remnants (Spolon et al. 2019). To reduce
the noise, it was necessary to take M ≤ 20 only in these cases.

As shown in the bottom panel of Fig. 9 , which refers to
an acquisition of about 58 min of the PSR B0540-69 (OBS1;
see Table 1), the behavior of the first PC eigenvalue (λℓ,1)
as a function of the trial period is rather noisy, and the peak
is not as clearly defined as in the previous case. By means
of a standard Gaussian fit, an improved estimated period can
be found. The obtained peak period corresponds to PPCA =
(50 663 540.00±8.60) ns (with the reported error from the Gaus-
sian peak position ±8.60 ns). To cross-check the goodness of
this result, we determined the best period on the same dataset
also by means of the more well-established epoch-folding tech-
nique with χ2 optimum. The period obtained in this way is
Pχ2 = (50 663 540.00± 4.34) ns, shown in the top panel of Fig. 9
, where both periods agree within less than 10 ns (the time bin
size ∆s).

Fig. 9 also shows the Gaussian full width at half maximum
(FHWM), which differs by 0.1 µs. Nevertheless, this simple es-
timated test shows that results from the epoch folding and the
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Fig. 9. First eigenvalue compared to epoch folding for PSR B0540-69.
The top panel shows the χ2 optimization and the bottom panel the first
PC eigenvalue for a waterfallW with M = 20 number of divisions. The
eigenvalue, λℓ,1 presents a noisier signal, i.e., a lower signal-to-noise
ratio. However, the maximum from each plot reaches a similar result
within less than 10 ns. The periods, Pχ2 and PPCA, were determined by
a least-squares fit and adjusting a Gaussian (red line). The center of the
Gaussian is the reported period, and the errors are 4.34 ns and 8.60 ns.
The FWHM of the Gaussian is also reported. Both sets were started with
the same initial conditions, ∆s = 10 ns, ∆t = 1 ms, number of iterations,
and initial trial period.

PCA are very similar, but epoch folding shows a clear noise re-
duction, that is, it is superior.

Finally, we also show here the results obtained in the case
of the Vela pulsar (OBS3; Table 1). PSR B0540-69 is much less
noisy than the Vela pulsar, which can be seen either in the epoch-
folding analysis or in the first PC eigenvalue of Figs. 9 and 10.

In Fig. 10 we have avoided to fit a Gaussian because the sig-
nal is too noisy to retrieve a good measurement. However, the
reported periods by only taking the maxima reach very similar
values. The difference between the two periods is ∆P = 120 ns.

We also monitored in these two cases the behavior of the
scalar product sℓ,1 (1) between the first PC eigenvector and the
unity vector parallel to the hyperdiagonal in the M-dimensional
space (M = 20 in this case). The obtained results are shown
in Fig. 11. These plots clearly show that the analysis of the
scalar product sℓ,1 is not as sensitive as the analysis of the first
PC eigenvalue, λℓ,1, for determining the optimal period: while
Figs. 9 and 10 show a clear trend that allows accurately defining
the highest value of the eigenvalue, in Fig. 11 it is much more
difficult to determine the maximum in the scalar product. How-
ever, these plots allow us to unequivocally report that the opti-
mal period is located in the region in which the absolute value
of the scalar product is rather flat and reaches the highest values,
higher than 0.8: this is a range of confidence that allows assess-
ing that the inferred period is within a plateau of a flat region.
Figs. 9 and 10 also show that the same period we found from the
first PC eigenvalue, PPCA, is within this high-amplitude region
in Fig. 11.

6. Performance in case of a noise-limited signal

To properly confirm the possible performance of the application
of PCA to the waterfalls to determine the pulsar periods, we con-
ducted a test to determine the limit for the detection of the op-
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Fig. 10. First eigenvalue compared to epoch folding for PSR B0833-
45. The top panel shows the χ2 optimization and the bottom panel the
first PC eigenvalue for a waterfall W with M = 20 number of divi-
sions. Similarly as in Fig. 9, the noise level is higher in the first PC. The
optimum peaks are close, and their difference is ∆P =

∣∣∣PPCA − Pχ2

∣∣∣ =
120 ns. Both sets were started with the same initial conditions, ∆s =
10 ns, ∆t = 2.793 ms, number of iterations, and initial trial period.

timal period when the noise was artificially increased. Then we
compared the results with those obtained applying epoch folding
and χ2 optimization under the same conditions.

To do this, we started with the same dataset as we used for
the previous determination of the Vela pulsar period. This file
collects the detection times of about 5.5 million photons, and
the obtained optimal period is P∗ = 89 367.09 µs (top panel
Fig. 10), as seen before. Producing the light curve with N = 32
phase bins (∆t ⋍ 2.793 ms), the average counts per bin value are
∼173 000, and the peak-to-valley (PtV) of the Vela pulsar pulse
profile is just less than 1.6 % of it (Spolon et al. 2019). Then we
artificially increased the (white) noise by simply adding photon
counts uniformly distributed in time. For example, adding an-
other 5.5 million counts corresponds to twice the average with
no change in the pulsar oscillation, and to bring the PtV to
about 0.8 %. We analyzed several cases for which we reduced the
PtV value, and we stopped when we reached 23 million counts,
which corresponds to a nominal PtV of less than 0.4 %. Ideally,
the noise addition does not alter the pulsar light curve, so that the
expected determined optimal period should be noise indepen-
dent. To produce a correct comparison between the two meth-
ods, all period searches were performed using the same initial
trial period Pt = 89.367 ms, and the time events were binned at
∆t = 2.793 ms. The time period variation we used for the search
was ∆s = 10 ns, which implies L = 1000 iterations in a time
range of ±5 µs around the nominal optimal period.

To quantify the goodness of the results when using the χ2

optimization, we adopted a confidence parameter CPχ2 , defined
as

CPχ2 =
χ2

max − χ2
avg

χ2
rms

, (2)

where χ2
max is the maximum of χ2, and χ2

avg and χ2
rms are the av-

erage and the standard deviation of χ2 outside the region of the
peak. The quantity CPχ2 is substantially the signal-to-noise ratio
for the χ2 function, but we prefer to call it differently because
we consider the pulsar light curve as a signal on top of the back-

ground noise, and with this definition we avoid possible misun-
derstandings. A description of how to build the CPχ2 is shown
in Fig. 12. We consider the period we found when CPχ2 ≳ 5
reliable. In the second column of Table 2, we report the CPχ2

value for some of the cases we analyzed. We can confirm the
robustness of this technique because in all the cases, the proce-
dure returned a period corresponding to the nominal one within
the errors. However, as the top panel of Fig. 13, which corre-
sponds to the χ2 values for the most noisy case, clearly shows,
the procedure determined the right value in this extreme case es-
sentially by chance: the maximum of this function is a single
isolated value above the average in the region of the correct pe-
riod, but its significance is very poor (CPχ2 ≈ 2–3).

When we performed the analysis on these noisy datasets to
search for the highest value of the first PC eigenvalue λℓ,1, we
realized that even if this technique were a powerful tool for de-
termining the periods for all the visible pulsars, its performance
under these extreme conditions was not as good as the χ2 opti-
mization: when we reached a total count of about 12–13 million,
the peak of λℓ,1 was no longer discernible from the noise. How-
ever, we also realized the possibility of improving the algorithm
performance by using the additional available piece of informa-
tion, that is, the scalar product of the eigenvectors by the hyper-
diagonal. The optimal period is associated with the maximum of
the absolute value of the scalar product sℓ,m in (1), thus we can
use it to define a new and very accurate merit function.

First, for each trial period Pℓ and the relative waterfallWℓ,
we considered the highest absolute value sℓ,max of all the scalar
products,

sℓ,m = eℓ,m · d̂ i.e., sℓ,max ≡ max
0<m≤M

∣∣∣sℓ,m
∣∣∣

(when the situation becomes very noisy, it may happen that the
first PC eigenvalue is no longer associated with the highest abso-
lute value of the scalar product, but with the second or the third;
because it is fundamental to find the eigenvector that is better
coaligned with the hyperdiagonal in our analysis, we preferred
to give priority to this parameter). Then, taken the λℓ,max eigen-
value, corresponding to the eigenvector eℓ,max which provides the
maximum scalar product sℓ,max, we define

ξℓ ≡ sℓ,maxλℓ,max (3)

as the waterfall-PCA folding merit function in correspondence
to the trial period Pℓ. Fig. 14 shows an example of this merit
function with the Vela pulsar data, and Fig. 15 shows the same
for the Crab pulsar, which is the case that is not limited by noise.
Finally, we used the ξ-function in the same way as the χ2 in the
previous analysis: we calculated all the ξℓ values as a function of
the trial periods Pℓ, and obtained the optimal period when ξℓ is
at its maximum value.

As an example, in Fig. 16 we compare the results of the op-
timal period Vela pulsar search using either χ2 or the ξ-function.
The case ξℓ (M = 15) shows a clear and stronger central peak
than the corresponding case shown in the bottom panel of Fig. 10
, where only the first PC eigenvalue was used. The periods found
using either the χ2 or the ξℓ (M = 15) functions have a difference
on the order of nanoseconds, which is well within the errors.

During our analysis, we realized that using a different num-
ber M of divisions, slightly different results could be obtained
(see, e.g., Fig. 17). Thus, we decided to provide a still more ac-
curate merit function by averaging the obtained ξℓ for all the used
values of M. For example, in this test, we varied M in the range
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Fig. 11. Absolute value of the scalar product,
∣∣∣sℓ,1
∣∣∣, of the first PC eigenvector and the hyperdiagonal unit vector as a function of the trial period.

Left: PSR B0540-69, same data as in Fig. 9. Right: PSR B0833-45, same data as in Fig. 10. In both cases, the optimum period lies within the
plateau region, or where the maximum, ∼1 is achieved. The dashed vertical line corresponds to PPCA, the optimum value found by the first PC
eigenvalue (from Figs. 9 and 10). The same behavior is shown in the high signal-to-noise ratio case for PSR B0531+21 in Fig. 8. The total time
and observation data are stated in Table 1.
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Fig. 12. Example calculation of the CPχ2 value. Data correspond to the
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top panel of Fig. 10 ). The average, χ2

avg, and rms, χ2
rms, are computed

outside the gray area (off signal). The dataset achieves a CPχ2 of 7.57.

Table 2. Values of the CPs for some of the cases we analyzed. Column
2 lists the CPχ2 values obtained with the χ2 optimization (2), and Col-
umn 3 shows the CPξ values obtained with the waterfall-PCA folding
technique (5). Considerations included to build the CP are shown graph-
ically in Fig. 12.

Total counts CPχ2 CPξ
5 550 238 7.57 8.90
6 937 797 7.80 7.78
8 325 357 6.55 6.79

11 100 476 4.90 4.97
16 650 714 3.22 4.60
20 813 392 5.25 5.66
22 200 952 2.29 4.21
23 588 511 2.89 3.50

M = 3, 4, . . . , 20 and obtained6

〈
ξℓ
〉

M ≡
1

M − 3

M=20∑

M=3

(
ξℓ
)

M . (4)

6 This differs from summing along the m index (introduced in Section
4). The m index does not exist in the merit function ξℓ because its de-
pendence vanishes in Eq. (3).
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Fig. 13. Epoch-folding χ2 analysis and waterfall-PCA folding to search
for the optimal period in the case of the maximum noise (23 million
total counts; bottom row Table 2). Both methods have been set with
the same time bin (∆t), start trial period, and step period increase (∆s).
For comparison purposes, both datasets have been normalized by their
maxima.

To quantify the goodness of the results obtained by using Eq.
(4), we defined a confidence parameter in this case as well,

CPξ =

〈
ξℓ
〉

Mmax −
〈
ξℓ
〉

Mavg〈
ξℓ
〉

M rms
, (5)

where
〈
ξℓ
〉

Mmax is the maximum of
〈
ξℓ
〉

M , and
〈
ξℓ
〉

Mavg and〈
ξℓ
〉

M rms are the average and the standard deviation of
〈
ξℓ
〉

M out-
side the region of the peak. The corresponding expressions of
Eq. (2) show that we can use these two parameters to compare
the results of the two methods.

Column 3 in Table 2 provides the values for the confidence
parameters CPξ determined in this case: by comparing these
values with the corresponding CPχ2 values, we can see that
the waterfall-PCA folding technique provides some more con-
fidence in the goodness of the results. Figs. 17 and 18 show the
change in the merit function with the number of division or when
(white) noise is increased.

A better way to visualize how the average over M improves
the waterfall-PCA folding function,

〈
ξℓ
〉

M is shown in Fig. 19.
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Fig. 14. Construction of the waterfall-PCA folding merit function ξℓ
(3) for M = 10 for the Vela pulsar observation (no noise added). The
plot shows three curves, the maximum scalar (1), the eigenvalue corre-
sponding to the same sℓ,max, and the merit function ξℓ. The merit func-
tion shows a clear and stronger signal-to-noise ratio than the scalar or
eigenvalues alone.
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Fig. 15. Construction of the waterfall-PCA folding merit function ξℓ
(3) for M = 200 for the Crab pulsar observation. The plot shows three
curves, the maximum scalar (1), the eigenvalue corresponding to the
same sℓ,max (high signal-to-noise ratio case corresponds to the first PC
eigenvalue), and the merit function ξℓ. The strength in signal-to-noise
ratio for an ideal pulsar observation is clear. The scalar, very low with
respect to the rest (with 1 the maximum amplitude) of the curves, is
plotted in Fig. 8. Eigenvalues from the same dataset are shown in Fig. 6.

This merit function waterfall (different from the light-curve wa-
terfalls in Figs. 2 and 3) shows ξℓ = ξℓ(M), and the top panel
takes the average over all M cases, Eq. (4). A clear noise reduc-
tion is visible because noise cancels out while the signal adds up.
The computation of CPξ (third row Table 2) was made only over
the average case with lower noise

〈
ξℓ
〉

M .
To further confirm the obtained results, this analysis was per-

formed three times by adding (white) noise to the original signal
with different random seeds. All three cases showed equivalent
results, that is, equivalent numbers in Table 2.

Some considerations have to be made in relation to the analy-
sis of the latter and more noisy case. This is a somewhat limiting
situation for both techniques (see Fig. 13). For the epoch-folding
χ2 technique, we verified not only that when the noise is in-
creased, there is no longer a convergence on the optimal period,
but also that changing the time bin in this case occasionally pro-
vides the determination of an incorrect period. For the waterfall-
PCA folding technique, in 8 out of the 20 different checked M
values, when the time bin was fixed, the algorithm returned the
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Fig. 16. Comparison epoch folding and waterfall-PCA folding for the
original Vela pulsar data (total counts: 5 550 238 and ∆s = 10 ns). To
facilitate comparison, both outputs (χ2 and ξℓ) were normalized by their
maxima. The red line shows the best Gaussian fit with an error in the
centered position of 6.216 ns and 8.379 ns for χ2 and ξℓ. Fig. 13 shows
the same dataset when (white) noise is added.
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Fig. 17. Waterfall-PCA folding merit function, ξℓ, for waterfalls Wℓ

with a different number of divisions, M = 3, 4, 8, 10, and 15. The signal-
to-noise ratio is clearly improved when M is increased up to a certain
value (for this case for M > 10, the signal is slightly degraded). The
Vela pulsar data have the the original number of counts. The second row
from top to bottom corresponds to the same merit function as plotted in
Fig. 14.

same incorrect peak as the χ2 peak. However, because of the
possibility of having M − 3 datasets, we can be more confident
about the goodness of the peak occurring with higher frequency.
Moreover, because of this possible incorrect detection, we have
to specify that the corresponding value of CPξ reported in Table
2 was always calculated considering the peak measured at the
nominal period, independently of the possible presence of other
higher peaks. Fig. 13 and 17 show that the incorrect detections
are concentrated at the low M values, indicating that this tech-
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Fig. 19. Amplitude of each waterfall-PCA folding merit function, ξℓ(M)
(color map rows). The top panel shows the average of all M values,
3 ≤ M ≤ 20, and it is then plotted as a solid line. A scatter plot of the
original data is overplotted (with the same amplitude color bar). There
is a clear noise reduction in the

〈
ξℓ
〉

M computed with Eq. (4). The case
corresponds to the nominal Vela pulsar of 5.5 million counts. The solid
line has a CPξ = 8.9 (Table 2). Some discrete merit functions (rows in
the color map) are plotted in Fig. 17.

nique is more accurate for high M values. The latter and noisiest
case is a limiting situation for both techniques.

6.1. Future considerations

Some additional points can be taken at the time to execute the
PCA over these types of datasets. So far, we have assumed that

no instrumental effect is added to our data, which is not true in
principle. By observing an on and off pulse, a statistical informa-
tion about the instrument itself can be extracted. This statistical
information will be most sensitive when binning is applied to
the data, which may change the data distribution. Using this ad-
ditional statistical information from the observation, a weighted-
PCA algorithm (Delchambre 2015) can be implemented to fur-
ther consider the photon statistics, and to possibly improve the
signal search. This is particularly important because the PCA
method searches for the variance direction, but does not distin-
guish whether the variance comes from signal or from noise.

In addition, information from pulsars such as PSR
B0531+21 might be used as timing calibrators in a nodding strat-
egy. That is, PSR B0531+21 (calibrator) would be observed,
then a nearby target source would be observed, and then again
the calibrator. After this, we could examine the known drift in the
rubidium clock and verify discrepancies with the GPS pulse-per-
second timing correction (Naletto et al. 2009). A precise timing
of the arrival wavefront will increase the performance of either
waterfall-PCA or epoch folding. This is specifically suitable at
the time when optical signals of pulsars are searched for that
have not previously been seen at these wavelengths.

7. Conclusions

We have described a new technique, the waterfall-PCA folding,
for obtaining the best period estimate of fast periodic objects like
pulsars. A complete and easy-to-use python package has been
developed for this purpose, pywpf.

This new technique is a rather powerful tool for performing
this type of analysis. We applied it to data acquired with our
instrument Iqueye (Table 1), which works in the visible light.
The obtained results have been compared with those obtained by
other more classical methods such as the χ2 epoch-folding tech-
nique. The performed analysis showed that the waterfall-PCA
folding techniques works as expected and provides a small im-
provement over the classical method also in extremely noisy sit-
uations. The waterfall-PCA folding, in addition, allows verifying
the goodness of the obtained results, providing a simple tool for
determining whether the best-fit period is within the range of
confidence.

Although a specific implementation is beyond the purpose
of this work, this technique might in principle also be extended
to other spectral ranges (e.g., infrared or X-rays) if significant
photon-counting statistics are available. The required condition
is that an adequate number of counts per period or bin can be
collected in a rather limited interval of time (which is usually
not the case for, e.g., the gamma-ray band), before the pulsar
slowdown or timing irregularities start to significantly affect the
accuracy of the period determination. In the latter case, the evo-
lution of the pulsar period has to be incorporated in the analysis
and a timing solution is needed. When it can be fruitfully ap-
plied, the waterfall-PCA folding also confirms the robustness of
the results, providing a simple tool for exploring their confidence
range.

Acknowledgements. This work is based on observations made with ESO Tele-
scopes at the La Silla Observatory under programme IDs 082.D-0382 and 084.D-
0328(A), and on observations collected at the Copernico Telescope (Asiago,
Italy) of the INAF-Osservatorio Astronomico di Padova. We acknowledge the
use of the Crab pulsar radio ephemerides available at the web site of the Jodrell
Bank radio observatory (http://www.jb.man.ac.uk/~pulsar/crab.html;
Lyne et al. 1993). Aqueye and Iqueye have been realized with the support of the
University of Padova, the Italian Ministry of Research and University MIUR,
the Italian Institute of Astrophysics INAF, and the Fondazione Cariparo Padova.
L. Z. acknowledges financial support from the Italian Space Agency (ASI)

Article number, page 10 of 11

http://www.jb.man.ac.uk/~pulsar/crab.html


T. Cassanelli et al.: New technique for determining a pulsar period: Waterfall principal component analysis

and National Institute for Astrophysics (INAF) under agreements ASI-INAF
I/037/12/0 and ASI-INAF n.2017-14-H.0 and from INAF “Sostegno alla ricerca
scientifica main streams dell’INAF” Presidential Decree 43/2018. We thank the
developers of astropy (Astropy Collaboration et al. 2013, 2018), numpy (Har-
ris et al. 2020), scipy (Virtanen et al. 2020), matplotlib (Hunter 2007), and
stingray (Huppenkothen et al. 2019). T. Cassanelli wishes to thank Paul Scholz
and Jing Luo for their helpful discussions about epoch folding, radio pulsar fold-
ing, and X-ray observations.

References
Ambrosino, F., Papitto, A., Stella, L., et al. 2017, Nature Astronomy, 1, 854
Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156,
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