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Abstract: In the latest few decades, molecular docking has imposed itself as one of the most used
approaches for computational drug discovery. Several docking benchmarks have been published,
comparing the performance of different algorithms in respect to a molecular target of interest, usually
evaluating their ability in reproducing the experimental data, which, in most cases, comes from
X-ray structures. In this study, we elucidated the variation of the performance of three docking
algorithms, namely GOLD, Glide, and PLANTS, in replicating the coordinates of the crystallographic
ligands of SARS-CoV-2 main protease (Mpro). Through the comparison of the data coming from
docking experiments and the values derived from the calculation of the solvent exposure of the
crystallographic ligands, we highlighted the importance of this last variable for docking performance.
Indeed, we underlined how an increase in the percentage of the ligand surface exposed to the
solvent in a crystallographic complex makes it harder for the docking algorithms to reproduce
its conformation. We further validated our hypothesis through molecular dynamics simulations,
showing that the less stable protein–ligand complexes (in terms of root-mean-square deviation and
root-mean-square fluctuation) tend to be derived from the cases in which the solvent exposure of the
ligand in the starting system is higher.

Keywords: molecular docking; molecular dynamics; SARS-CoV-2; main protease, Mpro; docking
benchmark

1. Introduction

In the 1980s, with the first study provided by Kuntz et. al [1], the computational
technique of molecular docking had its birth. The efficiency, speed, and robustness of this
method make its presence a constant in every structure-based drug-discovery pipeline [2].
To give a brief explanation, molecular docking consists of a multistep computational process
that aims to find the best conformation of a molecule to bind to another to form a stable
complex [3]. In the field of medicinal chemistry, as is deductible, its main application is
finding the best molecules to bind in a firm way to the desired target (a protein, a nucleic
acid, etc.). The algorithm starts with the exploration of the conformations space of the
ligands (exploiting the so-called “search algorithm”). The conformations (called “poses”)
are then classified by a “scoring function”, which attributes a numeric value to the goodness
of the interaction according to energetical and/or geometrical function.

After a series of iterations, the final conformations are presented from the program to
the user and ranked by the internal scoring function [4].

In the last 30 years, many docking programs have been developed. Among them,
GOLD [5] (a genetic docking algorithm developed by the Cambridge Crystallographic
Data Center—CCDC), Glide [6] (a systematic docking program released under license
by Schrödinger), AutoDock [7] (a non-commercial genetic algorithm from The Scripps
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Research Institute), AutoDock VINA [8] (created by the same organization and released for
non-commercial use), and PLANTS [9] (an algorithm based on an “Ant Colony Optimiza-
tion” method) have gained popularity.

The performance of molecular docking programs can be measured by evaluating
their ability to reproduce the experimental structural data, such as the crystallographic
coordinates of a ligand into its binding site [10]. This ability has been evaluated in several
benchmarks [11,12] to rank the performance of different algorithms regarding a specific
target, usually using as the key parameter the root-mean-square deviation (RMSD) between
the coordinates of the different poses given by the program and the crystallographic ones.

The ability to reproduce a crystallographic conformation strongly relies on different
factors. First, the geometrical characteristics of the binding site, such as extension and
shape, play a very important role; it is known that the performance of the algorithms
has been improved to dock molecules in “cavities” or “pockets”, rather than surfaces of
proteins [13]. Second, the nature and the dimensions of the ligand are also crucial. Indeed,
very small ligands may explore different places in a binding site, and the interactions that
they can establish are usually few in number, reducing the “synergism” which could induce
a molecule to keep a peculiar shape in a pocket [14]. On the other hand, even if drug-like
molecules generally have higher conformational freedom, their dimensions force them to be
oriented into a site in a more conserved way, so they have less roto-translational freedom.

In this study, we examined the ability of three docking programs characterized by
diverse conformational sampling algorithms to efficiently reproduce the crystallographic
pose of different ligands bound in different sites of a protein. To accomplish this task, a
target in which several crystal structures were solved with the ligands located in different
sites of the macromolecule itself was needed. To this scope, we considered a very recent
and relevant target in the current pharmaceutical scenario, namely the SARS-CoV-2 main
protease (Mpro).

In the last couple of years, with the pandemic spreading of the SARS-CoV-2 virus, the
world of medical sciences had found itself fighting a new and dangerous adversary [15,16].
This biological entity, which is part of the coronavirus family, has been demonstrated to
cause a pulmonary infection which eventually leads to serious complications, as witnessed
by the high number of deaths that have already been linked to it (more than 5 million, at
the present day [17]). The replication cycle of this virus strongly relies on the activity of its
main protease (known as Mpro or 3CLpro, a crystallographic structure example is reported
in Figure 1) [18]. Indeed, this protein is responsible for the cleavage of the propeptide
transcribed by the viral genome. In this way, the formation of all the functional proteins
for the building of new virions takes place, and so the viral infection can proceed. Even
if many molecules have been shown to bind to Mpro [19] and inhibit its activity, and even
if a molecule is currently in phase III clinical trial for this purpose (PF-07321332, from
Pfizer [20,21]), no drug has already been approved by the European Medicinal Agency
for the treatment of SARS-CoV-2 (also called “COVID-19”). Computational methods have
already proven to be beneficial in the research for new potential inhibitors for Mpro, as the
literature witnesses [22,23]. In this work, we decided to implement a molecular-docking-
based approach relying on the programs GOLD, Glide, and PLANTS. These algorithms are
considered “orthogonal” because they are characterized by diverse placing and scoring
algorithms to obtain the best solution to the “protein–ligand posing problem”. Each of
these programs was used to dock each of the different non-covalent ligands of the various
crystal structures of Mpro, and this allowed us to evaluate the factors which influence the
variability in reproducing the crystallographic poses. A self-docking protocol similar to
the one herein reported had already been developed by our laboratory, with the name
“DockBench”. This program was implemented with success in several workflows, as the
literature assesses [24,25]. In this study, a slightly modified version of that tool was used,
which exploits only three docking programs at the present moment but can expand the
analysis of the results obtained.
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Figure 1. Representation of the crystal structure of Mpro (PDB:7L10). The two monomers composing
the protein are colored differently, while the residues of the catalytic dyad, Cys145, and His41 are
labeled in each of the monomers.

Looking at the docking benchmarking protocols on Mpro, we see that a remarkable
study has already been conducted and published by Zev et al. [26]. In that specific work,
six different docking programs were evaluated in their performance in reproducing the
Mpro non-covalent ligands’ crystallographic poses, and three of those algorithms have also
been compared in their ability to correctly place Mpro covalent ligands into their proper
binding site. In our work, we decided to expand the considerations brought by that study,
evaluating specifically how docking performance changes in respect of the crystallographic
data that have to be reproduced.

Indeed, we considered in our calculations parameters such as the solvent exposure of
the ligand and the influence of the crystallographic water molecules in docking calculations,
focusing our evaluations just on non-covalent Mpro ligands. We executed the experiment in
two different scenarios, one which excluded the crystallographic waters from the calculation
(which we will name “Scenario 1”), and one which induced the docking programs to
consider them (called “Scenario 2”). After that, we compared the docking results with
the percentage of solvent exposure of the crystallographic pose of the ligand, successfully
confirming that a higher solvent exposure tendentially reflects a worsening in the ability
to reproduce the crystallographic pose by the algorithms (that, as already mentioned, are
better trained for “cavities” rather than “surfaces”). To further investigate this aspect,
we expanded our computational analysis by performing a molecular dynamics (MD)
experiment, in which each crystallographic ligand was left free to move for 5ns (three
replicas per system). This approach (known as “MD post-docking”) has already become
part of our computational protocol [27,28] and is based on the fact that the conformations
of the ligands, which are less prone to be displaced from their initial position during the
simulation, are related to higher stability and binding strength with the target. In the case
presented, this principle was applied directly to the crystallographic conformations of the
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ligands rather than to docking poses. This was performed because the goal was not to
select the most promising molecules in binding to a specific region of the protein; instead,
the objective was to elucidate which are the features of the crystallographic ligands that
tend to guarantee a tighter binding with the receptor. Our evaluation demonstrated that the
molecules bound to the orthosteric pocket of Mpro keep their position much stronger than
the molecules crystallized on other sites, further validating our solvent exposure-based
theory. A representation of the Mpro ligands crystallized in the various sites of the protein
is given in Figure 2.

Figure 2. Representation of all the crystallographic ligands of Mpro superposed. To give a better
view, just one protein structure is represented (the one coming from PDB:7L10). The ligands which
are crystallized inside the catalytic pocket are colored in magenta, while all the small molecules
crystallized outside the orthosteric binding site are colored in cyan.

2. Results and Discussion
2.1. Scenario 1—Docking Calculations without Considering the Crystallographic Water Molecules

The results of our docking protocol for this section (which are numerically reported in
the Supplementary Materials File “Selfdocking_scenario1.csv”) are graphically represented
with colormaps. All the colormaps present in this study are based on a colorimetric scale
delineating the RMSD values, starting from 0 Å, which corresponds to a molecular docking
pose exactly super posable to the crystallographic one (maximum docking performance,
represented by the dark blue color), and reaching values of 5 Å or higher (minimum docking
performance, all represented by the dark red color), corresponding to a very low level of
overlap between the coordinates of the pose produced and the ones of the crystallographic
conformation. The colormaps in Figure 3 show the self-docking results obtained on the
different Mpro crystal structures in the case in which water molecules are not considered in
the calculation. As is depicted, the RMSD values were far lower for all the complexes in
which the crystallographic ligand is located in the orthosteric pocket.
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Figure 3. Colormaps represent the results of the self-docking experiments in the case in which the
crystallographic water molecules are not considered during the docking runs. (A) Results coming
from the average of the RMSDs of all the poses for each docking run. (B) Results derived just from
the RMSD between the crystallographic ligand coordinates and the pose classified as the best from
the scoring function. (C) Results of the self-docking experiments if just the pose showing the best
RMSD value between its coordinates and the crystallographic ones are retained. The x-axis lists
all the different protein–ligand complexes, which are plotted against the different pairs docking
program-scoring function used for this study, reported in the y-axis.

To give a better resolution of this, we separated each map into two different colormaps,
one grouping all the 78 proteins in which the ligand is located into the catalytic pocket, and
one including all other cases (41 complexes).

We analyzed the data coming from the calculations, and we determined that, looking
at all the complexes with all the different couples docking program-scoring functions,
we see that the average values of all the RMSDs obtained was 5.76Å (“RMSD_average”).
Looking at the average of the RMSDs coming from the poses which were scored as the best
ones from the algorithms’ scoring functions (“RMSD_scor_func”), we see that the value
was 5.10Å. If the lowest RMSD values only are taken into account for each docking run
(“RMSD_sorted”), the mean of the values was 3.70Å.

The average values were also calculated separately for all the complexes in which
the crystallographic ligand is located in the catalytic pocket, and for all other cases. The
colormaps for these different conditions are reported in Figures 4 and 5.

First, the analysis focused on the complexes having the crystallographic ligand located
within the orthosteric pocket. For this set of systems, we calculated the average RMSD value
of all the poses (“RMSD_average”), which was revealed to be 4.54Å. Then we computed
the average of the RMSD values coming from the poses which were ranked with the best
score from the scoring functions (“RMSD_scor_func”), and its value was 3.43Å. Finally,
the average RMSD value of the poses with the lowest RMSD in each run was calculated
(“RMSD_sorted”), and its measure was 2.45Å.

Second, the same steps were performed for the rest of the protein–ligand complexes,
which are the ones in which the crystallographic ligand is located outside the orthosteric
binding site. Moreover, in this case, the first passage involved the calculation of the average
RMSD value of all the poses generated for these systems (“RMSD_average”), and its
measure was 8.08Å. Then, the mean of the RMSD values coming from the poses which
received the highest rank from the scoring functions was calculated (“RMSD_scor_func”)
and was revealed to be 8.29Å. In the end, the average value of the lowest RMSDs of each
run was computed (“RMSD_sorted”), and its measure was shown to be 6.08Å.
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Figure 4. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized inside the orthosteric pocket in the situation in which the crystallographic water molecules
are not considered during the docking runs. (A) Results coming from the average of the RMSDs of all
the poses for each docking run. (B) Results derived just from the RMSD between the crystallographic
ligand coordinates and the pose classified as the best from the scoring function. (C) Results of the
self-docking experiments if just the pose showing the best RMSD value between its coordinates and
the crystallographic ones is retained. The x-axis lists all the different protein–ligand complexes, which
are plotted against the different pairs docking program-scoring function used for this study, reported
in the y-axis.

Figure 5. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized outside the orthosteric pocket in the case in which the crystallographic water molecules
are not considered during the docking runs. (A) Results coming from the average of the RMSDs of all
the poses for each docking run. (B) Results derived just from the RMSD between the crystallographic
ligand coordinates and the pose classified as the best from the scoring function. (C) Results of the
self-docking experiments if just the pose showing the best RMSD value between its coordinates and
the crystallographic ones is retained. The x-axis lists all the different protein–ligand complexes, which
are plotted against the different pairs docking program-scoring function used for this study, reported
in the y-axis.

The results obtained for Scenario 1 are summarized in Table 1.
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Table 1. Table representing the self-docking results obtained for Scenario 1.

Results for Scenario 1—Docking Calculations Executed without Considering the Water Molecules

RMSD_Average (Å) RMSD_Scor_Func (Å) RMSD_Sorted (Å)

All the 119 protein–ligand complexes 5.76 5.10 3.70

The 78 complexes with the ligand inside
the catalytic pocket 4.54 3.43 2.45

The 41 complexes with the ligand outside
the catalytic pocket 8.08 8.29 6.08

2.2. Scenario 2—Docking Calculations Considering the Crystallographic Water Molecules

The outcomes of our molecular docking experiment for this section (which are re-
ported in the Supplementary Materials File “Selfdocking_scenario2.csv”) are graphically
represented with colormaps, which were created with the same criteria listed in the previ-
ous paragraph. The results reported in the colormaps in Figures 6–8 reveal the self-docking
performance obtained on the different Mpro crystal structures in the case in which the
crystallographic water molecules within 5 Å from the ligand were retained during the
calculation. Moreover, in this case, it is easy to notice that the values result in being
far better for the complexes in which the small molecule of interest is in the orthosteric
binding site.

Figure 6. Colormaps represent the results of the self-docking experiments in the case in which the
crystallographic water molecules at 5 Å or nearer to the ligand itself are taken into account during the
docking runs. (A) Results coming from the average of the RMSDs of all the poses for each docking
run. (B) Results derived just from the RMSD between the crystallographic ligand coordinates and
the pose classified as the best from the scoring function.(C)Results of the self-docking experiments if
just the pose showing the best RMSD value between its coordinates and the crystallographic ones is
retained. The x-axis lists all the different protein–ligand complexes, which are plotted against the
different pairs docking program-scoring function used for this study, reported in the y-axis.
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Figure 7. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized inside the orthosteric pocket in the situation in which the crystallographic water molecules
at 5 Å or nearer to the ligand itself are taken into account during the docking runs. (A) Results coming
from the average of the RMSDs of all the poses for each docking run. (B) Results derived just from
the RMSD between the crystallographic ligand coordinates and the once of the pose classified as the
best from the scoring function. (C) Results of the self-docking experiments if just the pose showing
the best RMSD value between its coordinates and the crystallographic ones are retained. The x-axis
lists all the different protein–ligand complexes, which are plotted against the different pairs docking
program-scoring function used for this study, reported in the y-axis.

Figure 8. Colormaps represent the results of the self-docking experiments only for the ligands
crystallized outside the orthosteric pocket in the situation in which the crystallographic water
molecules at 5 Å or nearer to the ligand itself are taken into account during the docking runs.
(A) Results coming from the average of the RMSDs of all the poses for each docking run. (B) Results
derived just from the RMSD between the crystallographic ligand coordinates and the once of the
pose classified as the best from the scoring function. (C) Results of the self-docking experiments if
just the pose showing the best RMSD value between its coordinates and the crystallographic ones are
retained. The x-axis lists all the different protein–ligand complexes, which are plotted against the
different pairs docking program-scoring function used for this study, reported in the y-axis.

Similar to the first scenario, we divided each colormap into two sets, one with the
78 proteins having the ligand located into the catalytic pocket, and the other including all the
remaining cases (41 proteins). Considering all the protein–ligand complexes with all the dif-
ferent pairs docking program-scoring function, the mean values of all the RMSDs obtained
(“RMSD_average”) was 5.64Å, but focusing only on the mean of the RMSDs derived from
the poses which were given the highest rank from the algorithms (“RMSD_scor_func”),
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the value resulted to be 4.83Å. Looking only at the best RMSDs for each docking run
(“RMSD_sorted”), we see that the average of the values was 3.68 Å.

As already performed for Scenario 1, also in Scenario 2, the analysis was divided
between the complexes in having the crystallographic ligand crystallized into the catalytic
pocket, and for all other situations.

We reported the colormaps which resulted from this evaluation, and those are repre-
sented in Figures 7 and 8.

We started from the complexes in which the ligand is located inside the catalytic
pocket in the crystal. For those systems, the mean of the RMSD values coming from all the
poses(“RMSD_average”) resulted in being 4.22Å. Then, the average of the RMSDs derived
from the scoring function highest-ranked poses in all the docking runs (“RMSD_scor_func”)
was computed, and its value was 3.11Å. In the end, also the average value between the
lowest of the RMSDs in each docking run was calculated (“RMSD_sorted”) and was
revealed to be 2.26Å.

Second, we repeated the analysis for all the complexes in which the crystallographic
ligand is located outside the orthosteric pocket. For these systems, the average of the RMSD
coming from all the poses collected in the docking runs (“RMSD_average”) was calculated
to be 8.32Å. Next, we computed the mean of the RMSD values derived from the poses which
received the highest score (from the scoring functions) in each run (“RMSD_scor_func”),
and this value was 8.11Å. Last, also the average value between the lowest of the RMSDs in
each docking run was calculated (“RMSD_sorted”), giving 6.36 Å.

The results obtained for Scenario 1 are summarized in Table 2.

Table 2. Table representing the self-docking results obtained for Scenario 2.

Results for Scenario 2—Water Molecules 5 Å or Nearer to the Ligand Considered in Docking Calculations

RMSD_Average (Å) RMSD_Scor_Func (Å) RMSD_Sorted (Å)

All the 119 protein–ligandcomplexes 5.64 4.83 3.68

The 78 complexes with the ligand inside
the catalytic pocket 4.22 3.11 2.26

The 41 complexes with the ligand outside
the catalytic pocket 8.32 8.11 6.36

Just analyzing the numbers coming from the average values allows us to see how the
performance of the docking programs dramatically increases when the ligand is docked
inside the catalytic pocket rather than on the surface of the protein, in line with the fact that
the molecules have a limitation in the conformation that they can explore into a binding
site. Together with this, the ligands can exploit their accessible surface area to interact with
the protein more efficiently, following the principle of “complementarity” [29,30].

2.3. Solvent Exposure Analysis

The results of the docking calculations were then analyzed in light of the data coming
from the solvent exposure analysis. For each docking program-scoring function pair, the
best RMSDs given by the docking calculation were evaluated against the solvent exposure
of the ligand in its crystallographic pose. The results were reported in different plots, one
for each couple docking program-scoring function, also in this case dividing the graphs in
respect to the “scenario” from which the docking result was coming. To give an example,
we reported in this article the plots for the pair GOLD-goldscore for each of these cases
(Figures 9 and 10).
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Figure 9. Scatter plots showing the different distribution of the RMSD values between the coordinates
of the best pose from the GOLD-goldscore docking experiment in respect to the solvent exposure
of the corresponding crystallographic ligands. The red dots represent the values having the ligand
crystallized inside the catalytic pocket while the blue dots represent the ligands crystallized on
the other sites of Mpro. As can be noticed, the molecules showing the best values of RMSD are, in
most cases, located inside the orthosteric pocket and characterized by low solvent exposure. This
plot depicts part of the results of Scenario 1, and so the crystallographic water molecules are not
considered in the docking runs of which the outcomes are here represented.

Figure 10. Scatter plots showing the different distribution of the RMSD values between the coor-
dinates of the best pose from the GOLD-goldscore docking experiment in respect to the solvent
exposure of the corresponding crystallographic ligands. The red dots represent the ligands that are
originally crystallized inside the catalytic pocket, while the blue dots represent the ligands crystallized
in the other parts of Mpro. As can be noticed, the molecules showing the best values of RMSD are
in most cases located inside the orthosteric pocket and characterized by low solvent exposure. This
plot depicts part of the results of Scenario 2, meaning that the crystallographic water molecules at
5 Å or nearer to the ligand are also considered in the docking runs of which the outcomes are here
represented.
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The plots arising from all other docking program-scoring function pairs, both in
Scenario 1 and Scenario 2, are reported in Supplementary Materials Figure S1. From these
graphs, we can easily see how the best RMSDs values tended to be derived from protein–
ligand complexes in which the solvent exposure of the ligand is low, and, most of the
time, this means that the small molecule is crystallized in the binding pocket (indicated
with the red dots in the plots). There are some cases in which the mean RMSD values
were suboptimal also for this kind of ligands, and this can be due to several reasons. In
some situations, of which the complexes 5REH, 5RE9, 5RGK (represented in Figure 11),
and 7AVD are an example, the solvent exposure was tendentially higher in respect to the
other orthosteric ligands, while, in other cases, the increase in RMSD can be attributable to
the small dimensions of the ligand itself, making it harder for the docking algorithms to
reproduce the reference pose in a pocket of such considerable volume (the complexes 5R82
and 5RG0 are an example for this) [31].

Figure 11. Representation of the crystallographic complex conformation of 5RGK, one of the protein–
ligand complexes in which the crystallographic ligand is located inside the orthosteric binding site,
but the docking calculation results in high RMSD values. This is mainly due to the high level of
solvent exposure that characterizes this ligand, which locates just a small portion of its structure
inside the pocket, leaving the rest in an outer zone. The ligand is represented with stick representation
(C-atom are colored in magenta), and the catalytic dyad (Cys145 and His41) is highlighted, as well as
the His163 and the binding site residue interacting with the ligand. To give a better representation,
the surface of the protein in a 5 Å radius from the ligand is represented and colored in blue.

On the other hand, there are also some cases in which the best RMSD given by the
protocol was pretty low, even if the crystallographic ligand was not placed inside the
orthosteric pocket. This is the case, for example, of 7LFP (the crystallographic pose is
reported in Figure 12); the ligand was placed at the interface between the monomers, and
so its solvent exposure and RMSDs values were low, even if was marked to be “outside the
catalytic pocket”. A similar situation is observed on 5RF0, where the ligand, even if not
located into the orthosteric pocket, is not situated in the peripheral part of the protease.
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Figure 12. Representation of the crystallographic pose of 7LFP, which is one of the protein–ligand
complexes in which, even if the crystallographic ligand is located outside the orthosteric binding site,
the RMSD values between the original coordinates and the ones given from the docking runs are
considerably low. The reason for this can be found in the very low solvent exposure of this ligand,
which is located in the interface between the monomers, and so is shielded by them. The ligand is
represented in orange, and the catalytic dyad (Cys145 and His41) of both monomers is highlighted.
To give a better representation, the surface of the protein in a 5 Å radius from the ligand is represented
and colored in blue.

2.4. Molecular Dynamics Simulations

For each of the 119 crystallographic complexes, three different molecular dynamics
simulations (MD) of 5 ns each were collected to examine the behavior of the ligands in
a dynamic environment. The trajectories were wrapped, aligned to the first frame and
the root-mean-square fluctuation (RMSF) of the ligand, as well as the RMSD between
its crystallographic and final coordinates (“RMSD_final”), and were calculated for every
single experiment. For each protein, the values coming from the average of the RMSFs and
“RMSD_final” derived from the replicas were considered. Considering all the simulations
collected, the average of all the ligand RMSF values was calculated to be 5.28 Å, while the
average of the RMSD values between the coordinates of the crystallographic conformation
of the ligand and the ones coming from the last frame of the trajectory (“RMSD_final”) was
of 8.89 Å.

As already performed for the docking results analysis, we first focused on the com-
plexes in which the crystallographic ligand is originally located inside the orthosteric
pocket. For these systems, the average of all the RMSFs coming from the simulations was
2.19 Å. The mean value of the RMSDs of the ligands in the last frame of each trajectory
(“RMSD_final”) was instead calculated to be 4.43 Å.

Second, we concentrated on the systems in which the crystallographic position of the
ligand (and so its initial location) is outside the catalytic pocket. For these systems, the
average value of all the ligand RMSFs during the trajectories was calculated to be 11.15Å.
Then the RMSD value between the final coordinates of the ligands and their crystallographic
ones (“RMSD_final”) were considered. The average of these values, for all the trajectories
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collected for these complexes, was 17.66Å. The output files of the molecular dynamics
simulation geometric analysis are available in Supplementary Materials “MD_data.csv”.

As already performed for the docking experiments, also for MD results, the average
values of RMSF and “RMSD_final” were plotted against the percentage of solvent exposure
of the crystallographic conformation of the ligand, and the plots that were obtained are
reported in Figures 13 and 14.

As expected, the complexes in which the ligand is crystallized in the orthosteric site
(marked with the red dots in the scatter plot) tended to fluctuate much less than the ligands
which are complexed in the external parts of the protease (represented with the blue dots
in the graphs). As depicted, MD analysis confirms that the best values in terms of RMSF
and “RMSD_final”, which are correlated to a more energetically stable situation for the
protein–ligand complex, come from the systems in which the crystallographic ligand is
localized inside the catalytic pocket and are characterized by a low percentage of solvent
exposure. These outcomes further support the already-mentioned hypothesis about the
correlation between the improvement of the docking performances in the case in which the
binding site is a pocket rather than a surface.

The overall results obtained with molecular dynamics simulations are summarized in
Table 3. A graphical representation of the molecular dynamics simulations is reported in
Supplementary Materials “Video_S1.mp4”. In this video, the ligands crystallized into the
catalytic pocket are colored in magenta, while the other ligands are colored in cyan.

Figure 13. Scatter plots showing the different distribution of the mean RMSF values between the
coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics
simulations in respect to the solvent exposure of the corresponding crystallographic ligands. The red
dots represent the ligands thatwere originally crystallized inside the catalytic pocket, while the blue
dots represent the ligands crystallized in the other parts of Mpro. As can be noticed, the molecules
showing the best values of RMSF after the analysis of the trajectories are mainly located inside the
catalytic pocket and characterized by a low solvent exposure of the original crystallographic pose.
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Figure 14. Scatter plots showing the different distribution of the mean RMSD values between the
final coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics
simulations in respect to the solvent exposure of the corresponding crystallographic ligands. The red
dots represent the ligands thatwere originally crystallized inside the catalytic pocket, while the blue
dots represent the ligands crystallized in the other parts of Mpro. As can be noticed, the molecules
showing the best values of RMSF after the analysis of the trajectories are mainly located inside the
catalytic pocket and characterized by a low solvent exposure of the original crystallographic pose.

Table 3. Results of the molecular dynamics experiments.

Results of the Molecular Dynamics Simulations

RMSD_Final (Å) RMSF_Average (Å)

All the 119 protein–ligandcomplexes 8.98 5.28

The 78 complexes with the ligand inside
the catalytic pocket 4.43 2.19

The 41 complexes with the ligand outside
the catalytic pocket 17.66 11.15

3. Materials and Methods
3.1. Software Overview

The molecular modeling operations were executed with the Molecular Operating
Environment (MOE) suite (version 2019.01) [32]. The molecular docking calculations were
carried out with CCDC GOLD (version 2020), Schrodinger Glide (from the Schrödinger
suite 2021.3), and PLANTS. The solvent exposure calculation was performed with a series
of SVL commands (exploiting “moebatch” of the MOE suite) implemented into a python
script. The systems for molecular dynamics simulations were prepared by using tleap [33]
and VMD [34]. The simulations were then carried out with ACEMD3 [35](version 3.3.0), a
licensed program based upon OpenMM [36] (version 7.4.0). The modeling and docking
calculations were performed on a 12 CPU (Intel Xeon E5-1620 3.50 GHz) Linux Worksta-
tion, while the MD simulations were carried out on a GPUs-cluster based composed of
20 NVIDIA GPUs.
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3.2. Structure Preparation for Docking Calculations

The different crystal structures of Mpro were collected from the Protein Data Bank [37].
Among these, the proteins which did not present any ligand, or which were complexed
with a covalent ligand, were excluded. This way, only the non-covalent protein–ligand
complexes were retained, and the complete list of all the 119 complexes used is available in
Supplementary Material Table S1. The structures were grouped into a database and were
prepared with MOE “QuickPrep” tool. With this tool, each complex was properly prepared
to recreate the small missing loops in the structure, assigning the proper conformation to
the residues with alternate orientation (based on occupancy) and adding the hydrogens
to the system (this last passage was performed with the MOE “Protonate 3D” tool). The
hydrogens added this way were then minimized by using the AMBER10:EHT force field
implemented in MOE [38].

After these preliminary but crucial steps, each complex was manually examined and
treated to eliminate every molecule, except for the crystallographic waters and the main
ligand. Each complex was then independently saved.

3.3. Docking Calculations

For each of the complexes prepared, the crystallographic ligand was separated from
the protein and self-docked into its binding site. For each docking program, all the scoring
functions available were used for separate runs, and in each run, 5 poses were collected
for the ligand. GOLD supports 4 different scoring functions: goldscore, chemscore, asp,
and plp; Glide supports two main functions for docking, which are Glide-SP and Glide-XP,
while PLANTS implements plp and chemplp.

For each docking-program-scoring function couple, the docking calculation was car-
ried out in two different scenarios: one in which the crystallographic water molecules were
not considered (which we refer to as Scenario 1) and one in which also the water molecules
5 Å or nearer from the ligand atoms were taken into account into the computation (which
we refer to as Scenario 2).

When all the docking calculations were executed, the ligand root-mean-square devi-
ation (RMSD) between the coordinates of each one of the poses and the crystallographic
conformations were computed. The data of major interest were the RMSD in respect to
the pose which is marked with the highest score by the program (RMSD_scor_func), the
lowest RMSD of the docking run (RMSD_sorted), and the average of the RMSDs of all
the poses generated (RMSD_average). The output files of the self-docking experiments
executed are available in the Supplementary Materials (“Selfdocking_scenario1.csv” and
“Selfdocking_scenario2.csv”).

3.4. Solvent Exposure Calculation

For each Mpro complex, the solvent exposure of the main crystallographic ligand
was calculated with an SVL script based on MOE “moebatch”. The output of such cal-
culation was the percentage of the ligand surface which is exposed to the solvent in the
protein–ligand crystallographic complex. All the percentages obtained are presented in
Supplementary Materials Table S2.

3.5. Molecular Dynamics Simulations Setup and Execution

All the protein–ligand Mpro systems were independently prepared for molecular
dynamics simulations. The program tleap was used for the creation of the simulation box,
which was set to be cubic and characterized by a 15 Å padding. The solvation model used
was the explicit TIP3P, and the neutralization of the system was performed by adding Na+

and Cl− ions until the salt concentration inside the box reached the value of 0.154 M.
The systems then underwent a two-passage equilibration. In the first one, both protein

and ligand atoms were subjected to a harmonic position restrain of 5 kcal/mol. The length
of this step was set to 0.1 ns, and the ensemble used was the canonical one (NVT). During
the second equilibration step, the ensemble was set to NPT (isothermal–isobaric), the length
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was 0.5 ns, and the harmonic restrains (always 5 kcal/mol) were applied both on the ligand
and on the alpha-carbons of the protein backbone.

After these preliminary steps, 3 replicas of 5 ns each were collected for each system;
the ensemble was again the NVT one, and no restraints were applied. At the end of the
simulations, the average root-mean-square fluctuation (RMSF) of the ligand during the
trajectory, as well as the RMSD betweencrystallographic coordinates of the ligand and the
ones coming from the last frame of the trajectory, were collected.

4. Conclusions

In this study, we evaluated the performance of three orthogonal docking algorithms
in reproducing the crystallographic pose of several ligands located in different parts of
the same target, which, in our case, was the SARS-CoV-2 main protease (Mpro). Our
analysis revealed how, even if the docking programs used operate in different ways to
give the final conformations to the user, all of them perform much better in the case in
which the ligands are located in a binding pocket rather than crystallized outside of it.
Specifically, we reported that their performance tends to decrease with the increment of
the exposure of the crystallographic pose to the solvent. This was confirmed both from
the experiments executed without considering the crystallographic water molecules in the
docking calculations and from the ones taking into account the waters 5 Å or nearer to the
ligand. Molecular dynamics simulations further give credit to our study, demonstrating
how the less-fluctuating ligands (and so the most stable) through the trajectories were the
ones crystallized inside the orthosteric binding site of Mpro.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15020180/s1: “Supplementary_material.docx” (containing Table S1, Table S2, and Figure
S1), the CSV files “Selfdocking_scenario1.csv”, “Selfdocking_scenario2.csv” and “MD_data.csv”,
“Video_S1.mp4”.
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