
ABSTRACT

In recent years, increasing attention has been fo-
cused on the genetic evaluation of protein fractions in 
cow milk with the aim of improving milk quality and 
technological characteristics. In this context, advances 
in high-throughput phenotyping by Fourier-transform 
infrared (FTIR) spectroscopy offer the opportunity 
for large-scale, efficient measurement of novel traits 
that can be exploited in breeding programs as indica-
tor traits. We took milk samples from 2,558 Holstein 
cows belonging to 38 herds in northern Italy, operating 
under different production systems. Fourier-transform 
infrared spectra were collected on the same day as milk 
sampling and stored for subsequent analysis. Two sets 
of data (i.e., phenotypes and FTIR spectra) collected in 
2 different years (2013 and 2019–2020) were compiled. 
The following traits were assessed using HPLC: true 
protein, major casein fractions [αS1-casein (CN), αS2-
CN, β-CN, κ-CN, and glycosylated-κ-CN], and major 
whey proteins (β-lactoglobulin and α-lactalbumin), 
all of which were measured both in grams per liter 
(g/L) and proportion of total nitrogen (% N). The 
FTIR predictions were calculated using the gradient 
boosting machine technique and tested by 3 different 
cross-validation (CRV) methods. We used the following 
CRV scenarios: (1) random 10-fold, which randomly 
split the whole into 10-folds of equal size (9-folds for 
training and 1-fold for validation); (2) herd/date-out 
CRV, which assigned 80% of herd/date as the training 
set with independence of 20% of herd/date assigned as 
the validation set; (3) forward/backward CRV, which 
split the data set in training and validation set accord-
ing with the year of milk sampling (FTIR and gold 
standard data assessed in 2013 or 2019–2020) using 

the “old” and “new” databases for training and valida-
tion, and vice-versa with independence among them; 
(4) the CRV for genetic parameters (CRV-gen), where 
animals without pedigree as assigned as a fixed train-
ing population and animals with pedigree information 
was split in 5-folds, in which 1-fold was assigned to the 
fixed training population, and 4-folds were assigned to 
the validation set (independent from the training set). 
The results (i.e., measures and predictions) of CRV-gen 
were used to infer the genetic parameters for gold stan-
dard laboratory measurements (i.e., proteins assessed 
with HPLC) and FTIR-based predictions considering 
the CRV-gen scenario from a bi-trait animal model 
using single-step genomic BLUP. We found that the 
prediction accuracies of the gradient boosting machine 
equations differed according to the way in which the 
proteins were expressed, achieving higher accuracy 
when expressed in g/L than when expressed as % N 
in all CRV scenarios. Concerning the reproducibility 
of the equations over the different years, the results 
showed no relevant differences in predictive ability be-
tween using “old” data as the training set and “new” 
data as the validation set and vice-versa. Comparing 
the additive genetic variance estimates for milk protein 
fractions between the FTIR predicted and HPLC mea-
sures, we found reductions of −19.7% for milk protein 
fractions expressed in g/L, and −21.19% expressed as 
% N. Although we found reductions in the heritability 
estimates, they were small, with values ranging from 
−1.9 to −7.25% for g/L, and −1.6 to −7.9% for % 
N. The posterior distributions of the additive genetic 
correlations (ra) between the FTIR predictions and the 
laboratory measurements were generally high (>0.8), 
even when the milk protein fractions were expressed 
as % N. Our results show the potential of using FTIR 
predictions in breeding programs as indicator traits 
for the selection of animals to enhance milk protein 
fraction contents. We expect acceptable responses to 
selection due to the high genetic correlations between 
HPLC measurements and FTIR predictions.

Predicting milk protein fraction using infrared spectroscopy and a gradient  
boosting machine for breeding purposes in Holstein cattle
L. F. Macedo Mota,1 V. Bisutti,1 A. Vanzin,1 S. Pegolo,1* A. Toscano,1 S. Schiavon,1 F. Tagliapietra,1 L. Gallo,1  
P. Ajmone Marsan,2 and A. Cecchinato1
1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’ Università 16,  
35020 Legnaro, Italy
2Department of Animal Science, Food and Nutrition (DIANA) and Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production 
(CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy

 

J. Dairy Sci. 106
https://doi.org/10.3168/jds.2022-22119
© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Received March 25, 2022.
Accepted October 10, 2022.
*Corresponding author: sara.pegolo@ unipd .it

mailto:sara.pegolo@unipd.it


Journal of Dairy Science Vol. 106 No. 3, 2023

Key words: cross-validation strategies, genetic 
parameters, milk protein fraction prediction, prediction 
accuracy

INTRODUCTION

Milk protein composition is a key of milk that has an 
important biological effect on its quality and techno-
logical traits, such as milk coagulation and cheesemak-
ing aptitude (Silva and Malcata, 2005; Amalfitano et 
al., 2019). The major caseins (αS1-CN, αS2-CN, β-CN, 
and κ-CN) and whey proteins (α-LA and β-LG) rep-
resent approximately 90% of the milk protein content 
(Walstra, 1999) and are related to important sources of 
active peptides with different physiological and nutri-
tional effects (Silva and Malcata, 2005). Milk protein 
fractions have, therefore, been identified as a selection 
criterion in dairy cattle to improve milk technological 
traits (Amalfitano et al., 2019). However, assessing 
milk protein fractions at the individual level in dairy 
cattle is difficult and time-consuming due to high 
phenotyping costs, which are a deterrent to large-scale 
quantification.

From a technological point of view, advances in milk 
Fourier-transform infrared spectroscopy (FTIR) for 
high-throughput phenotyping of dairy cattle allows the 
assessment of complex traits that are difficult and ex-
pensive to measure on a large scale. Milk FTIR spectra 
have been used for direct prediction of different pheno-
types in milk, such as fat (Rutten et al., 2010), fatty 
acids (Soyeurt et al., 2011), protein fractions (Baba et 
al., 2021), lactoferrin (Soyeurt et al., 2020), minerals 
(Zaalberg et al., 2021), and highly detailed milk compo-
sition traits (Grelet et al., 2016; Bonfatti et al., 2017b; 
Mota et al., 2021b). Recently, increasing attention has 
been directed to the potential usefulness of milk FTIR 
spectroscopy for large-scale phenotyping, as the tech-
nique is cost-effective, fast, nondestructive, and able 
to phenotype a large number of animals (Baba et al., 
2021). In this context, high-throughput measurement 
by milk FTIR can be considered a suitable method 
for application in dairy breeding programs (Rutten et 
al., 2011; Bittante et al., 2013; Cecchinato et al., 2013, 
2020).

The main concern regarding the use of FTIR spec-
troscopy to predict milk composition is its predictive 
ability. However, appropriate statistical methods using 
rank-reduction and variable selection can be used to 
identify the relevant FTIR wavelengths and capture the 
nonlinear relationships between predictor variables and 
target traits (Soyeurt et al., 2020; Mota et al., 2021b), 
which can lead to improvements in predictive ability. 
These factors are, therefore, important in dairy cattle 
selection (Karoui et al., 2010; Zaalberg et al., 2019) 

and provide helpful support for farm managers to make 
decisions on several aspects of management of the 
farm. Further improvements in FTIR prediction abil-
ity have come from statistical approaches that better 
capture and describe the complex relationship between 
chemical bonds and milk components related to specific 
wavelengths (Soyeurt et al., 2020; Pegolo et al., 2021; 
Mota et al., 2022). Moreover, Grelet et al. (2015) have 
pointed out that differences in the spectrometers used 
to measure the FTIR spectra could result in predic-
tion bias and less accurate predictions. Furthermore, 
prediction accuracy is also affected by time as a result 
of changes in the FTIR spectrometer parameters, such 
as light source intensity, detector sensitivity, and la-
ser stability, although zero-set calibration and weekly 
calibration adjustments for milk components (i.e., fat, 
lactose, protein, and TS) can minimize these changes in 
the signal intensity over time (Young, 1978; Nieuwoudt 
et al., 2021).

The potential application of FTIR-predicted traits 
(i.e., indicator traits) for breeding purposes depends on 
their genetic correlations with measured traits. Several 
authors have reported high genetic correlations be-
tween gold standard measurements (i.e., measured by 
HPLC) and FTIR predictions for different traits, such 
as milk coagulation aptitude, fatty acid profiles, and 
other milk components (Cecchinato et al., 2009, 2015; 
Soyeurt et al., 2010; Sanchez et al., 2017). Nevertheless, 
even moderate predictive ability provides valuable in-
formation for breeding programs as the breeding value 
of a sire is based on a rather large amount of data 
on many relatives that allows noise estimated breeding 
value correction (Poulsen et al., 2014). Furthermore, 
Rutten et al. (2010) showed that the size of training set 
data strongly affects the FTIR predictive ability and 
the correlation between prediction and gold standard 
phenotype measurement. As a solution, Mota et al. 
(2021a) used pooled multibreed data to increase the 
training set size.

In this work, therefore, we investigated the potential 
use of FTIR predictions of milk protein fractions in 
Holstein cattle as indicator traits for breeding purposes. 
The specific aims were (1) to assess the predictive abil-
ity of gradient boosting machine (GBM) using random 
10-fold and leave-one-batch-out CRV methods for true 
proteins (TP), specifically the casein fractions β-CN, 
κ-CN, αS1-CN, and αS2-CN, total casein (TCN), the 
whey proteins α-LA and β-LG, and total whey proteins 
(TWP), expressed as proportions of total nitrogen (% 
N) and contents in milk (g/L); (2) to measure FTIR 
predictive ability using calibration and validation da-
tabases collected in different years, thereby testing the 
reproducibility of GBM equations over time; and (3) to 
estimate the genetic parameters for FTIR predictions 
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and milk protein fractions measured by the gold stan-
dard method (i.e., HPLC), based on bi-trait genomic 
model analysis.

MATERIALS AND METHODS

The animal procedures in this study were approved 
by the Organismo Preposto al Benessere Degli Ani-
mali (OPBA; Organization for Animal Welfare) of the 
Università Cattolica del Sacro Cuore (Piacenza, Italy) 
and by the Italian Ministry of Health (protocol number 
510/2019-PR of 19/07/2019). The study was carried 
out also following ARRIVE (Animal Research: Report-
ing of In Vivo Experiments) guidelines.

Field Data

For this study, we integrated data from previous 
research projects. The data set was compiled by the 
LATSAN and BENELAT projects, whose aims are to 
develop new strategies and innovative tools to improve 
animal welfare and milk quality in dairy farming (Pego-
lo et al., 2021), the COWPLUS project, which is aimed 
at evaluating multibreed dairy production systems in 
mountain areas (Stocco et al., 2017), and the AGER 
project, within which several farm-level interventions 

supporting dairy industry innovation were developed 
(Bisutti et al., 2022). The phenotypic information from 
COWPLUS project were obtained from specialized 
(Holstein and Brown Swiss) and dual-purpose breeds 
(Alpine Grey, Rendena, and Simmental) belonging to 
32 multibreed dairy farms (which showed 2 or 5 breeds 
in the herd) located in the province of Trentino (north-
eastern Italy).

Milk samples were collected once during the evening 
milking from specialized dairy breeds, including Hol-
stein (1,618 cows from 30 herds) and Brown Swiss (586 
cows from 30 herds), and dual-purpose breeds Alpine 
Grey (80 cows from 14 herds), Rendena (116 cows from 
9 herds), and Simmental (158 cows from 16 herds), 
which the cows belonged to 38 herds managed under 
different dairy systems in northern Italy (Table 1). The 
cows were housed mostly in sand-bedded freestalls and 
fed twice a day on TMR based on corn and sorghum 
silage or hay (Emilia-Romagna and Trentino Region 
herds) supplemented with concentrates. The cows were 
sampled once after health checks; specifically, animals 
with clinical disease or on medical treatment were 
excluded from the study. Further details on the multi-
breed data set measured in 2013 are available in Stocco 
et al. (2017) and on the Holstein data set measured in 
2019 and 2020 in Pegolo et al. (2021).
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Table 1. Schematic representation regarding the number of animals with phenotypic and Fourier-transform infrared information across the 
herd explored in this study

Trait1

Herd/location

Total
Herd 1: 

Lombardy
Herd 2: Emilia-

Romagna
Herd 3: Emilia-

Romagna
Herd 4: 
Veneto

Herd 5: 
Veneto

Herd 6: 
Veneto

Herds 7–38: 
Trentino

TP  g/L 22 70 927 133 17 67 1,174 2,410
 % N 21 69 917 129 17 67 1,168 2,388

Casein           
 αs1-CN  g/L 20 70 927 131 17 67 1,169 2,401

 % N 19 69 921 128 17 66 1,170 2,390
 αs2-CN  g/L 21 69 911 133 17 64 1,188 2,403

 % N 21 70 908 133 17 67 1,183 2,399
 β-CN  g/L 21 70 920 133 17 67 1,183 2,411

 % N 20 69 905 130 17 66 1,188 2,395
 κ-CN  g/L 21 69 921 133 17 65 1,177 2,403

 % N 20 69 905 133 17 67 1,190 2,401
 Glyco-κ-CN  g/L 20 69 911 133 17 65 1,154 2,369

 % N 20 69 908 133 17 67 1,166 2,380
 TCN  g/L 22 70 924 132 17 66 1,172 2,403

 % N 21 70 919 127 17 67 1,178 2,399
Whey protein           
 α-LA  g/L 20 70 915 133 17 67 1,193 2,415

 % N 21 71 910 133 17 67 1,186 2,405
 β-LG  g/L 22 70 929 133 17 67 1,164 2,402

 % N 20 68 918 131 17 66 987 2,207
 TWP  g/L 22 70 923 133 17 67 1,168 2,400

 % N 21 70 921 132 17 67 1,169 2,397
1TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total whey protein; g/L = protein fraction contents in grams 
per liter of milk; % N = protein fraction in percentage of nitrogen.
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Phenotypic and Infrared Information

Milk samples were collected in 55 batches (i.e., herd/
date combinations, where each cow was sampled once 
and each herd was sampled on a specific date): 32 
batches in 2013 (1,197 cows), 17 in 2019 (1,011 cows), 
and 6 in 2020 (350 cows). The large herd (herd 3; Table 
1) was sampled in 2019 in 14 batches (856 cows) and 
in 2020 in 2 batches (80 cows), considering an experi-
mental design where each batch was included in the 
analysis of milk coagulation properties on fresh milk, 
and the laboratory could only process a maximum 
of roughly 65 milk samples per day, as described in 
Pegolo et al. (2021). All procedures and protocols were 
identical for both databases assessed in 2013 and 2019 
to 2020. The individual milk samples were maintained 
at 4°C until laboratory analysis (within 24 h). Each 
sample was divided into the following 2 aliquots: bro-
nopol preservative was added to 1 sample, which was 
then transferred to the laboratories of the Breeders’ 
Association of the Veneto or of the Province of Trento 
for analyses of milk quality and composition, and the 
other sample, without preservative, was transported to 
the University of Padova (Legnaro, Padova, Italy) for 
analysis of milk protein fractions by validated reversed-
phase HPLC (Maurmayr et al., 2013).

The following milk protein traits were measured: true 
protein (TP), the major casein fractions αS1-CN, αS2-
CN, κ-CN, and β-CN, total casein (TCN; the sum of 
all casein fractions), the major whey proteins β-LG and 
α-LA, and TWP (the sum of all whey protein frac-
tions). The milk protein fraction traits were expressed 
as grams per liter of milk (g/L), calculated by multiply-
ing each milk protein fraction determined by HPLC by 
the milk casein contents obtained by FTIR and as a 
percentage of the total milk nitrogen content (% N).

Milk FTIR spectra were recorded on 2,558 Holstein 
cows and analyzed with a MilkoScan FT6000 (Foss 
Electric); specifically, they consisted of the transmit-
tance values measured at 1,060 wavenumbers ranging 
from 5,011 to 925 (cm−1). The 2 spectra obtained were 
averaged before the data analysis, expressed as an 
absorbance value [log(1/transmittance)], and standard-
ized to mean zero and standard deviation equal to one. 
Principal component analysis of the FTIR spectral in-
formation was performed, and the Mahalanobis distance 
was calculated; particularly, animals were considered 
outliers when they exhibited a Mahalanobis distance 
based on FTIR information from the average spec-
tral population greater than 3.5 standard deviations 
(Figure 1). The principal component analysis results 
pointed out a similarity between old and new FTIR 
files, indicating that no preprocessing was required to 
mitigate possible biases due to differences in baseline 

absorbance over time. After FTIR quality control, milk 
spectral data from 2,496 Holstein cows remained in the 
data set. Following phenotypic quality control of the 
milk protein fractions, observations outside the interval 
between 3 standard deviations below and above the 
mean of each batch were removed. After phenotypic 
quality control, 2,437 cows remained for the analysis; 
specifically, we had 1,197 cows sampled in 2013, 1,011 
cows sampled in 2019, and 229 in 2020, all under simi-
lar conditions. A summary of the records for the milk 
protein fractions by the herd is shown in Table 1. The 
average (± SD) DIM was 188.26 ± 112.47, parity 2.3 
± 1.51, milk yield 29.30 ± 10.01 kg, and the number of 
cows per herd/date ranged from 17 to 930. Descriptive 
statistics for the milk protein fractions expressed in g/L 
and % N are summarized in Table 2; the boxplots for 
the milk protein fractions across herds are shown in 
Supplemental Figure S1 for g/L and Supplemental Fig-
ure S2 for % N (https: / / doi .org/ 10 .6084/ m9 .figshare 
.21864596 .v1; Mota et al., 2023).

The 1,067 cows whose phenotypic information was 
acquired in 2019 and 2020 were genotyped with the 
Geneseek Genomic profiler Bovine 100K SNP Chip 
assay (Neogene). The non-autosomal regions were ex-
cluded from the subsequent genotypic quality control. 
Autosomal markers presenting minor allele frequen-
cies of less than 0.05, deviating significantly from the 
Hardy–Weinberg equilibrium (P ≤ 10−5), and with a 
call rate lower than 0.95, were removed. After quality 
control, 1,056 cows and 81,274 SNP markers remained 
in the data set.

CRV Scenarios

The FTIR prediction for each milk protein fraction 
was assessed using random 10-fold cross-validation 
(CRV) and 3 batch-independent CRV scenarios [i.e., 
herd/date-out, forward/backward (F/B), and 5-fold 
genetic parameters].

Random 10-Fold. In a random 10-fold CRV, the 
data set considering an admixture of breeds was split 
into 10-folds of equal size within each breed, with 9-folds 
used as the training set and the remaining 1-fold as the 
validation set to assess model performance. This CRV 
scenario was replicated 10 times, with the average value 
of these 10 replications used to determine the predictive 
ability of the model.

Herd/Date Out. In the herd/date-out CRV, which 
was based on the herd and date on which samples were 
collected, 80% of the population was randomly assigned 
to the training set (44 herd/dates), and the other 20% 
to the validation set (11 herd/dates). Given the vari-
ability in herd size, random sampling was carried out to 
ensure greater homogeneity in the number of animals in 
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the training and validation sets. For this, batches were 
grouped into 5 similar groups based on the number of 
cows (ranging from 43 to 45 cows) and then divided 
into 80% for training and 20% validation within each 
group. This CRV scenario was repeated 10 times as for 
the random 10-fold. The 80% herd/dates (i.e., the en-
tire herd/date which encompasses the production level) 
considered in the training set were independent of that 
20% of herd/date considered in the validation set.

F/B. In this CRV scenario, we wanted to assess the 
predictive ability of the GBM equations across the dif-
ferent years of sampling to test their reproducibility 
over time. The training and validation were subsets 

of animals classified according to the year the FTIR 
spectral data were recorded, and the herds in the “old” 
(2013; multibreed herds, 1,197 cows) and “new” data 
set (2019–2020, 1,240 Holstein cows) were completely 
independent among them. For the Forward CRV, “old” 
FTIR data were used as the training set, whereas the 
“new” was assigned as the validation set. For the Back-
ward CRV, the “new” FTIR data were assigned to the 
training set and the “old” FTIR data as the validation 
set. The farms considered in training and validation 
sets were completely independent among them.

CRV for Genetic Parameters. We used CRV for 
genetic parameters (CRV-gen) to assess the useful-
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Figure 1. (A) Average value for Fourier-transform infrared (FTIR) information expressed as absorbance (solid line represents the average, 
and color region represents the mean ± 3 SD) and (B) principal component (PC) for the FTIR spectral data of milk samples. Colors represent 
the years of FTIR assessment; old population (2013; n = 1,197 cows) and new population (2019 and 2020; n = 1,241 cows).
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ness of FTIR predictions as a potential indicator trait 
for breeding purposes. In the first step, we assigned 
a fixed training population considering animals with-
out pedigree information from the multibreed data 
set (138 Holstein cows, 537 Brown Swiss, 74 Alpine 
Grey, 101 Rendena, and 107 Simmental) to exploit all 
the available FTIR information efficiently. Next, the 
data set that considers animals with known pedigree 
and genomic information (i.e., the new FTIR data set 
sampled between 2019 and 2020; Supplemental Figure 
S3, https: / / doi .org/ 10 .6084/ m9 .figshare .21864596 .v1; 
Mota et al., 2023), which encompasses 23 herds/date, 
and we used it as the base to split the population into 
5-folds based on herd-date randomly. The entire herd-
date was considered within each fold, approximately 4 
herd-date for 2-fold and 5 herd-date for 3-folds. From 
these 5-folds, 1-fold was assigned to the fixed training 
population, and 4-folds were assigned to the validation 
set (independent from the training set), aiming to guar-
antee a large number of animals in the validation set. 
Thus, the training set comprised the fixed population 
(957 cows without pedigree information) plus 1-fold, 
and the validation set 4-folds. Finally, we repeated the 
process 5 times, and predictions obtained on each vali-

dation set (a total of 5 different validation folds) were 
used to estimate the genetic parameters using a bi-trait 
animal model for the FTIR predictions and the mea-
surements using the HPLC approach for milk protein 
fractions.

FTIR Calibration Equations

We selected the GBM statistical method because 
previous results indicated that this method achieved 
the highest accuracy of FTIR-based prediction of dif-
ferent phenotypic traits compared with the partial least 
squares (PLS; Mota et al., 2021b). We compared the 
GBM performance against the gold-standard method 
(PLS) for milk protein fractions in grams per liter 
(g/L) and percentage of nitrogen (% N) for the fol-
lowing CRV scenarios: 10-folds, herd/date-out, F/B 
(Supplemental Table S1, https: / / doi .org/ 10 .6084/ m9 
.figshare .21864596 .v1; Mota et al., 2023). The PLS 
regression was implemented using the PLS R package, 
version 2.8.1 (Mevik and Wehrens, 2007).

The milk protein fractions were predicted using the 
GBM, an ensemble learning approach that converts 
weak learners into strong learners through a sequential 
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Table 2. Descriptive statistics for milk protein fractions expressed in different ways in Holstein cows after 
quality control1 

Trait2 N Mean SD Minimum Maximum IQR3

Protein fraction content (g/L)     
 TP 2,429 32.48 3.849 22.7 43.32 5.04
Casein      
 αS1-CN 2,421 9.24 1.18 5.92 12.73 1.56
 αS2-CN 2,424 3.12 0.71 1.29 4.98 0.93
 β-CN 2,431 9.82 1.53 5.68 14.10 2.13
 κ-CN 2,423 5.32 1.10 2.55 8.24 1.55
 Glyco-κ-CN 2,388 1.79 0.66 0.44 3.88 0.92
 TCN 2,422 27.45 3.11 19.30 36.30 4.10
Whey protein      
 α-LA 2,436 0.87 0.17 0.39 1.36 0.25
 β-LG 2,421 3.99 1.14 1.42 7.14 1.55
 TWP 2,419 4.99 1.13 2.21 8.20 1.51
Protein fraction proportion (% N)     
 TP 2,407 92.46 2.94 84.84 100.35 4.00
Casein      
 αS1-CN 2,411 26.28 1.84 20.85 31.68 2.58
 αS2-CN 2,420 8.91 1.86 4.13 13.81 2.50
 β-CN 2,416 28.01 2.86 20.19 35.73 3.97
 κ-CN 2,422 15.12 2.39 8.97 21.58 3.38
 Glyco-κ-CN 2,401 5.08 1.71 1.36 10.24 2.39
 TCN 2,419 78.30 1.16 75.07 81.43 1.56
Whey protein      
 α-LA 2,426 2.50 0.53 1.06 3.95 0.78
 β-LG 2,224 9.13 2.56 3.16 16.00 3.90
 TWP 2,417 14.17 2.70 7.02 21.44 3.54
1For descriptive trait by herd, see Supplemental Figures S1 and S2 (https: / / doi .org/ 10 .6084/ m9 .figshare 
.21864596 .v1; Mota et al., 2023).
2TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein; g/L 
= protein fraction contents in grams per liter of milk; % N = protein fraction in the percentage of nitrogen.
3IQR = interquartile interval.

https://doi.org/10.6084/m9.figshare.21864596.v1
https://doi.org/10.6084/m9.figshare.21864596.v1
https://doi.org/10.6084/m9.figshare.21864596.v1
https://doi.org/10.6084/m9.figshare.21864596.v1
https://doi.org/10.6084/m9.figshare.21864596.v1
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combination of different regression tree models, with 
bias and variance reduced by shrinkage and variable 
selection (Hastie et al., 2009). This method was chosen 
because of its greater accuracy with FTIR-based pre-
dictions of different phenotypic traits and validation 
scenarios (Mota et al., 2021b). We implemented GBM 
with a random tuning of the 4 main hyperparameters 
[i.e., the number of trees, learning rate, maximum tree 
depth, and minimum samples per leaf; Natekin and 
Knoll, 2013]. We performed the random tuning by split-
ting the training subset into 5-fold to optimize the hy-
perparameters and increase model performance [i.e., 
higher accuracy and lower root mean square error 
(RMSE)]. The number of trees values were determined 
in the range 100 to 5,000 in intervals of 100, the learn-
ing rate in the range 0.01 to 1 in intervals of 0.01, the 
maximum tree depth in the range 5 to 80 in intervals of 
5, and minimum samples per leaf in the range 10 to 100 
in intervals of 10. The GBM model was built with a 
random search using the h2o.grid function in the R h2o 
package (https: / / cran .r -project .org/ web/ packages/ 
h2o). The relative importance of the FTIR wavelength 
predictor was determined by calculating the relative 
influence of the FTIR wavelength on predictive ability 
improvements during the regression tree building pro-
cess, this being the sum of the squared improvements 
over all internal nodes of the tree for which the FTIR 
wavelength was chosen as the partitioning variable 
(Hastie et al., 2009). The predictive ability of the GBM 
approach was assessed by Pearson correlation (r) be-
tween the observed and predicted phenotypes, and 
RMSE were assessed in the validation set across the 
CRV scenarios. The RMSE was calculated as 
∑ −( )

,
y y
n

lab pred
2

 where ylab is the measured phenotype 

and ypred is the predicted phenotype in the validation 
set. We assessed the model unbiasedness by the slope of 
the linear regression of the gold standard laboratory 
measurements on predicted values in each CRV sce-
nario for milk protein fractions.

Genetic Parameters

The genetic parameters for gold-standard labora-
tory measurements (ylab) and FTIR-based predictions 
from CRV-gen scenario (ypred; i.e., 5 different validation 
sets), for milk protein fractions expressed in g/L and 
% N with a bi-trait animal model using a single-step 
genomic BLUP, separately for each fold, as follows:
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where ylab is the gold standard laboratory measurement 
and ypred is the FTIR-based prediction from the CRV-
gen scenario for milk protein fractions; blab and bpred are 
the vectors of the fixed effects of DIM (6 classes: class 
1, less than 60 d; class 2, 60–120 d; class 3, 121–180 
d; class 4, 181–240 d; class 5, 241–300 d; class 6, more 
than 300 d), parity (4 classes: 1, 2, 3, ≥4), and herd-
date for gold standard laboratory measurement and 
FTIR-based prediction, respectively; alab and apred are 
the vectors of additive genetic effects for gold standard 
laboratory measurement and FTIR-based prediction, 
respectively; Xlab, Xpred, Wlab, and Wpred are the inci-
dence matrices relating ylab and ypred to the fixed effects 
(blab and bpred) and the additive effects (alab and apred), 
respectively; and elab and epred are the residual effect 
for gold standard laboratory measurement and FTIR-
based prediction, respectively. The single-step genomic 
BLUP model was fitted under the following assump-
tions for the random effects: 
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are the genetic variances in the gold standard measure-
ments, the FTIR-based predictions, and the covariances 
between them, respectively; R is the (co)variance re-
sidual matrix
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where σe lab ,
2  σe pred ,

2  and σe lab pred,  are the residual vari-
ances in the gold standard measurements, the FTIR-
based predictions, and the covariances between them, 
respectively; I is the identity matrix, and the symbol ⊗ 
represents the Kronecker product. H is a matrix that 
combines pedigree and genomic information (Aguilar et 
al., 2010), and its inverse (H−1) is given by 

 H A
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− −
− −−















1 1
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where A−1 is the inverse of the pedigree relationship 
matrix, A22

1−  is the inverse of the pedigree relationship 
matrix for genotyped animals, and G−1 is the inverse of 
the genomic relationship matrix obtained according to 
VanRaden (2008). We assumed a flat prior distribution 
for the fixed effects and used an inverse Wishart distri-
bution as a prior for the random effects.
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Heritability (h2) was calculated based on the poste-
rior (co)variance estimates for each trait as 
h2 2 2 2= +( )σ σ σa a e , where σa

2 is the additive genetic vari-

ance, and σe
2 is the residual variance for the gold stan-

dard measurements (ylab) or FTIR-based predictions 
(ypred) of milk protein fractions expressed in % N and 
g/L. Genetic (rg) and phenotypic (rp) correlation esti-
mates were calculated as follows:

 r rg
a lab pred

a lab a pred
p

p lab pred

p lab

= =
σ

σ σ

σ

σ σ

, ,

2 2 2
 and 

× × pp pred

,
2

 

where σp lab
2  and σp pred

2  denote the phenotypic variance 
calculated as the sum of σa

2 and σe
2, and σp lab pred,  is the 

phenotypic covariance between traits calculated as the 
sum of the additive genetic and residual covariance for 
the gold standard measurements (ylab) or FTIR-based 
predictions (ypred).

The model was implemented in the R package BGLR 
1.0.9 (Pérez and de los Campos, 2014). The genetic 
parameters were obtained from the posterior distribu-
tion using the Markov Chain Monte Carlo method 
via Gibbs sampling. We ran a single chain of 500,000 
cycles, with a burn-in of the first 50,000 iterations, with 
samples stored every 10 cycles. Hence, the posterior 
means were obtained from 45,000 samples, and the 
analysis converged through visual inspection using the 
Bayesian output analysis (Smith, 2007), and for the 
Geweke (Geweke, 1992), the convergence was attained 
for the evaluated traits with a P-value > 0.15.

RESULTS

FTIR Prediction

The fitting statistics of the GBM model for milk 
protein fractions using the different CRV strategies 
are shown in Table 3, expressed in g/L, and Table 4, 
expressed in % N. Predictive ability was lower when the 
milk protein fractions were expressed in % N than in 
g/L (Supplemental Figure S4, https: / / doi .org/ 10 .6084/ 
m9 .figshare .21864596 .v1; Mota et al., 2023). These re-
ductions in prediction accuracy ranged from −27 to 
−51% using the 10-fold CRV scenario [except total ca-
sein (TCN), which increased by 3.61%], −2.47 to −51% 
using herd/date-out, −7.59 to 52.31 for F/B, and −1.2 
to −45% using CRV-gen (Supplemental Figure S4). On 
the other hand, comparing the average RMSE for each 
average was observed a reduction of 36% with values 
ranging from −1 to −88%, whereas an increased 23% 
for αS2-CN, 28% for glycosylated (glyco)-κ-CN, 19% 

for α-LA, 26% for β-LG, and 20% for TWP (Table 3 
and 4).

Predictive ability for milk protein fractions expressed 
in g/L ranged from 0.63 ± 0.069 to 0.88 ± 0.020 with 
random 10-fold CRV, 0.62 ± 0.063 to 0.83 ± 0.077 
with herd/date-out, 0.60 ± 0.063 to 0.78 ± 0.053 with 
F/B, and 0.62 ± 0.067 to 0.87 ± 0.031 with CRV-
gen (Table 3). True protein and TCN showed better 
prediction accuracy than α-LA, which had the lowest 
predictive ability across all the CRV scenarios evalu-
ated. With F/B, the predictive ability of the models 
based on FTIR milk spectra was lower than those 
obtained from a random 10-fold CRV scenario, with 
reductions ranging from −4.8% for α-LA to −19.8% 
for β-LG (Table 3). Unbiased estimation based on 
the regression slope of the gold standard measures of 
milk protein fractions on the FTIR-predicted values 
indicated a great difference across the CRV scenarios. 
The slope values obtained with the F/B CRV scenario 
indicated a prediction bias greater than 1, with values 
ranging from 10% for glyco-κ-CN to 27% for blood 
β-CN and a decrease of 8% for TP. The slope coeffi-
cient estimates obtained with the random 10-fold and 
5-fold genetic CRV scenarios were less biased than 
those obtained with the herd/date-out and F/B CRV 
scenarios. These results agree with the assessment of 
model fit by RMSE and showed that the random 10-
fold CRV and CRV-gen scenarios led to lower residual 
parameters compared with herd/date-out and F/B, 
showing a greater reduction in the RMSE ranging 
from 4% for κ-CN to 55% for α-LA, and from 8% for 
β-CN to 73% for α-LA, respectively (Table 3).

The predictive ability of milk protein fractions ex-
pressed in % N ranged from 0.34 ± 0.034 to 0.86 ± 
0.023 with random 10-fold CRV, 0.33 ± 0.094 to 0.79 
± 0.071 with herd/date-out, 0.31 ± 0.024 to 0.73 ± 
0.084 with F/B, and 0.36 ± 0.036 to 0.81 ± 0.022 with 
CRV-gen (Table 4). The best predictive abilities were 
obtained for TCN (R2 = 0.73–0.86) and TP (R2 = 
0.60–0.64), and the lowest for β-CN (R2 = 0.31–0.36) 
across all the CRV scenarios evaluated (Table 4). With 
the F/B CRV scenario, the predictive ability of FTIR 
predictions was lower than that of the random 10-fold 
CRV scenario, with reductions ranging from −6.3% for 
TP to −15.79% for αS1-CN (Table 4). On the other 
hand, CRV-gen exhibited lower predictive ability than 
random 10-fold CRV, ranging from −1.56% for TP to 
−8.33 for glyco-κ-CN. However, the milk protein frac-
tions β-CN and TWP showed an increased predictive 
ability of 4.7 and 2.63%, respectively. Inflation, esti-
mated as the regression slope of the measured milk pro-
tein fractions on the FTIR-predicted values, indicated a 
slight variation in slope values between random 10-fold 
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CRV and CRV-gen, with slope values ranging from 0.97 
± 0.038 for TWP to 1.12 ± 0.011 for αS2-CN, and from 
0.97 ± 0.024 for β-CN to 1.12 ± 0.01 for glyco-κ-CN, 
respectively (Table 4). In contrast, the slope of the F/B 
CRV scenario showed a tendency to biased predictions, 
with values ranging from 1.08 ± 0.034 for TP to 1.26 
± 0.060 for TWP. Overall, FTIR prediction using the 
herd/date-out and F/B CRV scenarios produced more 
biased predictions than random 10-fold CRV and 5-fold 
CRV-gen.

Associations Between FTIR Wavelength Absorbance 
and Milk Protein Fractions

Overall, the milk protein fractions fell in the same 
FTIR wavelength regions, whether measured g/L 
(Figure 2) or % N (Figure 3). For milk protein frac-
tions expressed in g/L, 3 main regions were found to 
explain more than 0.5% importance in the GBM ap-
proach (Figure 2). Significant individual FTIR wave-
lengths ranged from 37 for glyco-κ-CN to 68 for αS2-CN 
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Table 3. Average model predictive performance (R2) and SD values for milk protein fractions in grams per liter of milk considering different 
cross-validation (CRV) scenarios

Trait1  CRV scenario2 R2 RMSE3 Slope4 RMSE/mean5 (%)

TP  Random 10-fold 0.88 ± 0.020 1.35 ± 0.117 0.99 ± 0.025 4.16
 Herd/date-out 0.83 ± 0.077 1.53 ± 0.371 1.08 ± 0.028 4.71
 Forward/backward 0.78 ± 0.053 1.74 ± 0.387 0.92 ± 0.096 5.36
 CRV-gen 0.87 ± 0.031 1.36 ± 0.159 0.98 ± 0.029 4.19

Casein       
 αS1-CN  Random 10-fold 0.70 ± 0.017 0.63 ± 0.018 1.02 ± 0.033 6.82

 Herd/date-out 0.68 ± 0.048 0.66 ± 0.069 1.08 ± 0.081 7.14
 Forward/backward 0.66 ± 0.066 0.72 ± 0.050 1.15 ± 0.049 7.79
 CRV-gen 0.69 ± 0.035 0.65 ± 0.038 1.05 ± 0.048 7.03

 αS2-CN  Random 10-fold 0.68 ± 0.042 0.41 ± 0.014 1.03 ± 0.063 13.14
 Herd/date-out 0.65 ± 0.087 0.46 ± 0.036 1.11 ± 0.091 14.74
 Forward/backward 0.61 ± 0.091 0.48 ± 0.023 1.22 ± 0.115 15.38
 CRV-gen 0.65 ± 0.048 0.43 ± 0.008 1.08 ± 0.083 13.78

 β-CN  Random 10-fold 0.70 ± 0.027 0.84 ± 0.054 1.03 ± 0.043 8.55
 Herd/date-out 0.68 ± 0.081 0.89 ± 0.104 1.13 ± 0.095 9.06
 Forward/backward 0.65 ± 0.054 0.91 ± 0.108 1.27 ± 0.104 9.27
 CRV-gen 0.69 ± 0.037 0.86 ± 0.036 1.09 ± 0.073 8.76

 κ-CN  Random 10-fold 0.71 ± 0.054 0.74 ± 0.146 1.04 ± 0.035 13.91
 Herd/date-out 0.68 ± 0.066 0.77 ± 0.160 1.12 ± 0.077 14.47
 Forward/backward 0.65 ± 0.067 0.81 ± 0.228 1.26 ± 0.085 15.23
 CRV-gen 0.69 ± 0.046 0.75 ± 0.153 1.05 ± 0.056 14.10

 Glyco-κ-CN  Random 10-fold 0.72 ± 0.027 0.33 ± 0.019 1.04 ± 0.027 18.44
 Herd/date-out 0.71 ± 0.090 0.36 ± 0.033 0.92 ± 0.028 20.11
 Forward/backward 0.66 ± 0.052 0.38 ± 0.054 1.10 ± 0.074 21.23
 CRV-gen 0.70 ± 0.039 0.34 ± 0.026 1.02 ± 0.028 18.99

 TCN  Random 10-fold 0.83 ± 0.019 1.29 ± 0.072 0.99 ± 0.036 4.70
 Herd/date-out 0.81 ± 0.027 1.39 ± 0.099 1.13 ± 0.057 5.06
 Forward/backward 0.79 ± 0.044 1.69 ± 0.245 1.25 ± 0.103 6.16
 CRV-gen 0.82 ± 0.023 1.29 ± 0.077 1.02 ± 0.049 4.70

Whey protein       
 α-LA  Random 10-fold 0.63 ± 0.069 0.11 ± 0.008 1.06 ± 0.045 12.64

 Herd/date-out 0.62 ± 0.051 0.17 ± 0.013 1.10 ± 0.059 19.54
 Forward/backward 0.60 ± 0.063 0.19 ± 0.014 1.24 ± 0.089 21.84
 CRV-gen 0.62 ± 0.067 0.11 ± 0.011 0.95 ± 0.039 12.64

 β-LG  Random 10-fold 0.81 ± 0.094 0.55 ± 0.064 1.10 ± 0.046 13.78
 Herd/date-out 0.72 ± 0.121 0.63 ± 0.113 1.15 ± 0.047 15.79
 Forward/backward 0.65 ± 0.137 0.60 ± 0.076 1.19 ± 0.052 15.04
 CRV-gen 0.76 ± 0.097 0.56 ± 0.066 1.11 ± 0.055 14.04

 TWP  Random 10-fold 0.79 ± 0.089 0.57 ± 0.036 1.03 ± 0.062 11.42
 Herd/date-out 0.69 ± 0.128 0.66 ± 0.144 1.07 ± 0.075 13.23
 Forward/backward 0.67 ± 0.013 0.69 ± 0.085 1.12 ± 0.119 13.83
 CRV-gen 0.75 ± 0.099 0.60 ± 0.054 1.02 ± 0.073 12.02

1TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein. 
2CRV-gen = CRV for genetic parameters. 
3RMSE = root mean square error.
4Slope = the slope of the linear regression of the gold standard laboratory measurements on predicted values across the CRV scenarios for each 
trait.
5RMSE/mean (%) = RMSE expressed as a ratio of the mean for each trait. 
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(Supplemental Figure S5, https: / / doi .org/ 10 .6084/ m9 
.figshare .21864596 .v1; Mota et al., 2023), covering 3 
main regions (3,200–2,900 cm−1, 1,750–1,500 cm−1, and 
1,250–950 cm−1). Twenty-nine wavelengths were shared 
by at least 5 milk proteins expressed in g/L, including 
1,680 cm−1 (9 traits), 1,727, 2,972, 2,975, and 3,149 
cm−1 (8 traits), 1,677 and 2,979 cm−1 (7 traits), 1,619, 
1,653, 1,684, 2,968, 2,983, 3,018, 3,022, 3,184, and 3,191 
cm−1 (6 traits), and 1,006, 1,561, 1603, 1,615, 1,646, 
1,715, 2,918, 2,987, 2,991, 2,995, 3,029, 3,122, and 3,241 
cm−1 (5 traits). These regions contributed between 0.61 

and 2.21% of predictive ability in the GBM approach. 
Consistent with these results, the main milk FTIR 
wavelength regions were highly correlated with the 
target milk protein traits expressed in g/L, with values 
ranging from −0.25 to −0.97 and from 0.23 to 0.99 (r; 
Supplemental Figure S6, https: / / doi .org/ 10 .6084/ m9 
.figshare .21864596 .v1; Mota et al., 2023).

For milk proteins expressed in % N, 4 main regions 
(in the case of TP, αS2-CN, κ-CN, glyco- κ-CN, β-LG, 
and TWP) and a further 5 (in the case of αS1-CN, β-CN, 
TCN, and α-LA) were found to explain more than 0.5% 
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Table 4. Average model predictive performance (R2) and SD values for milk protein fractions in the percentage of nitrogen considering different 
cross-validation (CRV) scenarios

Trait1  CRV scenario2 R2 RMSE3 Slope4 RMSE/mean5 (%)

TP  Random 10-fold 0.64 ± 0.041 1.76 ± 0.087 0.98 ± 0.013 1.90
 Herd/date-out 0.62 ± 0.045 1.88 ± 0.098 1.05 ± 0.025 2.03
 Forward/backward 0.60 ± 0.046 1.93 ± 0.038 1.08 ± 0.034 2.09
 CRV-gen 0.63 ± 0.047 1.81 ± 0.082 0.98 ± 0.018 1.96

Casein       
 αS1-CN  Random 10-fold 0.38 ± 0.028 1.44 ± 0.113 1.05 ± 0.021 5.48

 Herd/date-out 0.35 ± 0.077 1.53 ± 0.059 0.93 ± 0.043 5.82
 Forward/backward 0.32 ± 0.021 1.58 ± 0.102 1.19 ± 0.056 6.01
 CRV-gen 0.38 ± 0.038 1.49 ± 0.011 1.07 ± 0.025 5.67

 αS2-CN  Random 10-fold 0.38 ± 0.029 1.47 ± 0.047 1.02 ± 0.011 16.50
 Herd/date-out 0.35 ± 0.104 1.58 ± 0.099 0.97 ± 0.019 17.73
 Forward/backward 0.34 ± 0.019 1.68 ± 0.124 1.19 ± 0.031 18.86
 CRV-gen 0.37 ± 0.026 1.51 ± 0.032 1.03 ± 0.016 16.95

 β-CN  Random 10-fold 0.34 ± 0.034 2.10 ± 0.063 0.99 ± 0.025 7.50
 Herd/date-out 0.33 ± 0.094 2.37 ± 0.109 1.11 ± 0.042 8.46
 Forward/backward 0.31 ± 0.024 2.56 ± 0.069 1.16 ± 0.049 9.14
 CRV-gen 0.36 ± 0.036 2.24 ± 0.071 0.97 ± 0.024 8.00

 κ-CN  Random 10-fold 0.47 ± 0.035 1.74 ± 0.079 1.02 ± 0.020 11.51
 Herd/date-out 0.45 ± 0.065 1.79 ± 0.091 0.96 ± 0.033 11.84
 Forward/backward 0.43 ± 0.022 1.88 ± 0.025 1.15 ± 0.039 12.43
 CRV-gen 0.46 ± 0.035 1.77 ± 0.061 0.98 ± 0.023 11.71

 Glyco-κ-CN  Random 10-fold 0.48 ± 0.029 1.23 ± 0.037 1.08 ± 0.009 24.21
 Herd/date-out 0.43 ± 0.034 1.28 ± 0.045 1.17 ± 0.017 25.20
 Forward/backward 0.41 ± 0.029 1.36 ± 0.056 1.22 ± 0.028 26.77
 CRV-gen 0.44 ± 0.030 1.23 ± 0.042 1.11 ± 0.010 24.21

 TCN  Random 10-fold 0.86 ± 0.023 0.44 ± 0.044 1.06 ± 0.011 0.56
 Herd/date-out 0.79 ± 0.071 0.59 ± 0.062 1.14 ± 0.019 0.75
 Forward/backward 0.73 ± 0.084 0.66 ± 0.089 1.17 ± 0.026 0.84
 CRV-gen 0.81 ± 0.022 0.52 ± 0.043 1.04 ± 0.017 0.66

Whey protein       
 α-LA  Random 10-fold 0.44 ± 0.074 0.39 ± 0.063 0.99 ± 0.025 15.60

 Herd/date-out 0.41 ± 0.108 0.40 ± 0.098 1.09 ± 0.039 16.00
 Forward/backward 0.40 ± 0.172 0.43 ± 0.073 1.15 ± 0.047 17.20
 CRV-gen 0.43 ± 0.079 0.36 ± 0.066 1.06 ± 0.031 14.40

 β-LG  Random 10-fold 0.57 ± 0.046 1.59 ± 0.109 0.98 ± 0.010 17.42
 Herd/date-out 0.52 ± 0.073 1.72 ± 0.154 1.14 ± 0.015 18.84
 Forward/backward 0.51 ± 0.011 1.79 ± 0.322 1.22 ± 0.023 19.61
 CRV-gen 0.57 ± 0.047 1.63 ± 0.109 0.98 ± 0.011 17.85

 TWP  Random 10-fold 0.38 ± 0.062 2.08 ± 0.107 0.97 ± 0.038 14.68
 Herd/date-out 0.36 ± 0.083 2.14 ± 0.178 1.12 ± 0.056 15.10
 Forward/backward 0.34 ± 0.037 2.23 ± 0.301 1.26 ± 0.060 15.74
 CRV-gen 0.39 ± 0.063 2.10 ± 0.102 1.06 ± 0.041 14.82

1TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein. 
2CRV-gen = CRV for genetic parameters.
3RMSE = root mean square error.
4Slope = the slope of the linear regression of the gold standard laboratory measurements on predicted values across the CRV scenarios for each 
trait.
5RMSE/mean = RMSE expressed as a ratio of the mean of each trait. 
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of importance in the GBM approach (Figure 3). The 
number of significant individual FTIR wavelengths 
ranged from 44 for β-CN to 63 for αS1-CN, κ-CN, and 
TCN (Supplemental Figure S5), which covered the 
following regions: 4,900 to 4,650 cm−1, 3,600 to 3,350 
cm−1, 3,200 to 2,900 cm−1, 2,550 to 2,400 cm−1, 1,750 
to 1,500 cm−1, and 1,250 to 950 cm−1. These regions 
are related to overtones and combinations of the vibra-
tions of some chemical bonds, such as C–O symmetric 
stretching, C=O stretching, C–H, N–H, O–H, and S–H. 
Some peaks exhibited moderate to strong associations 
with milk protein fractions expressed as % N in these 
regions (Figure 3). The major wavelength shared by at 
least 6 milk proteins was 1,603 cm−1 [variable impor-

tance (VI) > 0.90%], which was shared by TP, αS1-CN, 
αS2-CN, TCN, β-LG, and TWP. The wavelength 3,245 
cm−1 (VI 0.71% to 1.66%) and 1,688 cm−1 (VI 0.60% to 
3.03%) were each shared by the following 6 milk pro-
tein fractions: TP, αS1-CN, αS2-CN, β-CN, TCN, and 
β-LG in the former case, and β-CN, κ-CN, glyco-κ-CN, 
α-LA, β-LG, and TWP in the latter case. Fourteen 
wavelengths (i.e., 3,041, 1,611, 971, 3,091, 3,234, 1,607, 
3,207, 3,049, 1,646, 1,665, 1,580, 3,026, 3,211, 3,029) 
were shared by a group of 5 milk proteins (Supplemen-
tal Figure S5B) and explained 0.61 to 2.70% of the 
predictive ability of the GBM approach. The Pearson 
correlations among the major milk FTIR wavelength 
regions with the target milk protein fractions expressed 
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Figure 2. Variable importance for single-wavelength absorbance associations across the entire Fourier-transform infrared spectrum (1,060 
wavelengths) for milk protein fractions [true protein (TP); major casein fractions: αs1-CN, αs2-CN, κ-CN, glycosylated-κ-CN (glyco-κ-CN), 
β-CN; total casein (TCN); major whey proteins: β-LG and α-LA; and total whey protein (TWP)], expressed in grams per liter of milk.
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as % N were highly correlated, with ranges of −0.18 to 
−0.98 and 0.17 to 0.99 (Supplemental Figure S7, https: 
/ / doi .org/ 10 .6084/ m9 .figshare .21864596 .v1; Mota et 
al., 2023).

Genetic Parameters of Laboratory-Measured  
and FTIR-Predicted Milk Protein Fractions

Table 5 reports the genetic parameter estimates for 
laboratory-measured and FTIR-predicted milk protein 
fractions expressed in g/L, which yielded heritability 
estimates that were either moderate (TCN, TP, glyco-
κ-CN, αS2-CN, and α-LA) or high (β-CN, αS1-CN, 
β-LG, κ-CN, and TWP). Heritability estimates for 

the FTIR-based predictions were slightly lower than 
those obtained for the laboratory measurements (Table 
5). However, these reductions were slight, ranging 
from −1.93% for β-CN to −7.25% for α-LA, mean-
ing that FTIR-based predictions effectively capture 
the variability in milk protein fractions (Figure 4A). 
On the other hand, the additive genetic, residual, and 
phenotypic variances for the FTIR-based predictions 
were considerably lower than for the laboratory mea-
surements; specifically, between −6.62% (αS1-CN) and 
33.33% (αS2-CN) for genetic variance, between −1.25% 
(αS1-CN) and −29.17% (αS2-CN) for residual variance, 
and between −3.01% (αS1-CN) and −30.47% (αS2-CN) 
for phenotypic variance (Figure 4A).
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Figure 3. Variable importance for single-wavelength absorbance associations across the entire Fourier-transform infrared spectrum (1,060 
wavelengths) for milk protein fractions [true protein (TP); major casein fractions: αs1-CN, αs2-CN, κ-CN, glycosylated-κ-CN (glyco-κ-CN), 
β-CN; total casein (TCN); major whey proteins: β-LG and α-LA; and total whey protein (TWP)], expressed as the percentage of the total milk 
nitrogen content (% N).

https://doi.org/10.6084/m9.figshare.21864596.v1
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For the milk protein fractions expressed as % N, 
the heritability estimates observed for α-LA (h2 = 
0.266), αS2-CN (h2 = 0.293), and TCN (h2 = 0.375) 
were moderate, whereas those observed for TP, αS1-
CN, β-CN, κ-CN, glyco-κ-CN, β-LG, and TWP were 
high, with values ranging from 0.434 to 0.798 (Table 
6). The heritability estimates for the FTIR predictions 
displayed the same trend as the laboratory measure-
ments, although they were slightly lower (Figure 4B). 
The differences were smaller for αS2-CN (−1.68%), 
glyco-κ-CN (−1.77%) and β-LG (−1.87%), and larger 
for αS1-CN (−6.63%) and TWP (−786%; Figure 4B). 
However, we observed considerably smaller additive 
genetic, residual, and phenotypic variances in the 
FTIR-based predictions compared with the laboratory 
measurements (Figure 4B). The differences ranged from 
−7.72% (TP) to −41.83% (αS2-CN) for genetic vari-
ance, from −1.75% (TWP) to −40.48% (αS2-CN) for 
residual variance, and from −5.07% (TP) to −40.88% 
(αS2-CN) for phenotypic variance (Figure 4B).

Genetic and Phenotypic Correlations Between 
Laboratory Measurements and FTIR Predictions

The estimated posterior densities of the genetic and 
phenotypic correlations between the laboratory mea-
surements and FTIR-based predictions of milk proteins 

are reported in Figure 5 in g/L and Figure 6 as % N. 
For the protein fractions expressed in g/L, the averages 
of the posterior genetic correlations were high, ranging 
from 0.88 ± 0.033 for α-LA to 0.98 ± 0.005 for TP. The 
phenotypic correlations were lower, with values ranging 
between 0.64 ± 0.034 for α-LA and 0.86 ± 0.012 for 
TP (Figure 5). The posterior densities were skewed and 
their shape was similar across subsets of the data for 
genetic correlations, whereas slightly different densities 
were observed for the phenotypic correlations (Figure 
5). The genetic correlations were high for the protein 
fractions expressed as % N, ranging from 0.87 ± 0.017 
for α-LA to 0.97 ± 0.013 for TP (Figure 6). However, 
the phenotypic correlations were lower than 0.80, ex-
cept for TP (0.81 ± 0.0212) and TCN (0.87 ± 0.0153; 
Figure 6). The posterior distributions of the genetic 
correlations were skewed with small differences across 
the subsets, whereas, in contrast, large differences were 
observed in the posterior distributions of the pheno-
typic correlations (Figure 6).

DISCUSSION

FTIR Predictive Ability

The magnitude of the predictive ability of FTIR 
determines its effectiveness for farm management and 
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Table 5. The average and, in parentheses, the range of SD of genetic parameters estimates across the 5-folds from cross-validation for genetic 
parameters for milk protein fractions expressed as grams per liter for the gold-standard measurement (laboratory) and Fourier-transform 
infrared predicted1 

Trait2

Genetic parameter

σa
2 σe

2 σp
2 h2

TP  Laboratory 2.984 (0.4692–0.5044) 4.611 (0.6125–0.8598) 7.595 (0.3496–0.7235) 0.395 (0.0334–0.0409)
 Predicted 2.764 (0.4189–0.4552) 4.476 (0.5039–0.6473) 7.244 (0.2497–0.4597) 0.383 (0.0286–0.0421)

Major casein       
 αS1-CN  Laboratory 0.529 (0.0067–0.0851) 0.401 (0.0115–0.0858) 0.931 (0.0091–0.0179) 0.569 (0.0093–0.0292)

 Predicted 0.494 (0.0045–0.0408) 0.409 (0.0089–0.0384) 0.903 (0.0143–0.0561) 0.547 (0.0083–0.0324)
 αS2-CN  Laboratory 0.174 (0.025 0–0.0349) 0.384 (0.0409–0.0449) 0.558 (0.0283–0.0351) 0.313 (0.0496–0.0731)

 Predicted 0.116 (0.0105–0.0160) 0.272 (0.0221–0.0289) 0.388 (0.0162–0.0260) 0.302 (0.0292–0.0480)
 β-CN  Laboratory 0.626 (0.0801–0.0962) 0.388 (0.0953–0.1356) 1.014 (0.0542–0.0962) 0.621 (0.0358–0.0707)

 Predicted 0.510 (0.0575–0.0735) 0.333 (0.0673–0.1084) 0.843 (0.0351–0.0796) 0.609 (0.0348–0.0597)
 κ-CN  Laboratory 0.251 (0.0384–0.0438) 0.226 (0.0433–0.0605) 0.477 (0.0202–0.0431) 0.529 (0.0427–0.0655)

 Predicted 0.192 (0.0259–0.0321) 0.188 (0.0319–0.0451) 0.380 (0.0101–0.0319) 0.517 (0.0288–0.0426)
 Glyco-κ-CN  Laboratory 0.125 (0.0192–0.0219) 0.251 (0.0311–0.0455) 0.376 (0.0219–0.0401) 0.337 (0.0332–0.0522)

 Predicted 0.096 (0.0129–0.0163) 0.202 (0.0201–0.0341) 0.298 (0.0152–0.0301) 0.327 (0.0479–0.0657)
 TCN  Laboratory 1.961 (0.2852–0.3421) 2.965 (0.3311–0.4566) 4.926 (0.0251–0.3212) 0.399 (0.0355–0.0524)

 Predicted 1.699 (0.2429–0.2916) 2.755 (0.2862–0.4095) 4.453 (0.1950–0.2911) 0.382 (0.0306–0.0409)
Whey protein       
 α-LA  Laboratory 0.011 (0.0008–0.0015) 0.031 (0.0013–0.0019) 0.042 (0.0010–0.0011) 0.262 (0.0268–0.0365)

 Predicted 0.008 (0.0004–0.0008) 0.025 (0.0009–0.0044) 0.033 (0.0013–0.0044) 0.243 (0.0215–0.0338)
 β-LG  Laboratory 0.198 (0.0259–0.0298) 0.168 (0.0363–0.0487) 0.366 (0.0255–0.0401) 0.546 (0.0402–0.0454)

 Predicted 0.149 (0.0182–0.0205) 0.135 (0.0271–0.0364) 0.284 (0.0190–0.0296) 0.530 (0.0289–0.0578)
 TWP  Laboratory 0.182 (0.0274–0.0332) 0.208 (0.0372–0.0475) 0.390 (0.0251–0.0351) 0.470 (0.0359–0.0493)

 Predicted 0.147 (0.0176–0.0259) 0.179 (0.0277–0.0361) 0.326 (0.0189–0.0252) 0.452 (0.0284–0.0489)
1For more details, see Supplemental Table S2 (https: / / doi .org/ 10 .6084/ m9 .figshare .21864596 .v1; Mota et al., 2023).
2TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein. σa

2 = genetic variance; σe
2 = residual 

variance; σp
2 = phenotypic variance.
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breeding purposes. Traditionally, FTIR predictive abil-
ity is assessed by phenotyping a small number of ani-
mals using gold-standard measurements, which results 
in under-optimistic evaluations of complex phenotypes. 
Mota et al. (2021a) evaluated CRV performed on a 
training set comprising specialized and dual-purpose 
breeds to ensure a sufficiently large population size 
and observed improvements in predictive ability over 
a single breed population. In the present study, we 
evaluated different CRV scenarios and a multibreed 
population (specialized and dual-purpose breeds) to 
evaluate the prediction performance of the model for 
milk protein fractions. Comparing the performances of 

the different CRV scenarios, smaller reductions in the 
predictive ability were observed as the independence 
between the training and validation sets increased. 
These reductions in the coefficient of determination 
(R2) values were around −9.01% (−4.76 to −19.75%) 
and −10.97% (−6.25 to −15.79%) for F/B, −4.92% 
(−1.39 to −12.66%) and −6.55% (−2.94 to −10.42%) 
for herd/date-out, and −2.80% (−1.14 to −6.17%) and 
−1.54 (−8.33 to 4.71%) for CRV-gen, for milk protein 
fractions expressed in g/L (Table 3) and % N (Table 
4), respectively.

Overall, milk protein fractions expressed in g/L had 
higher predictive ability across the CRV scenarios. 
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Figure 4. Relative difference for genetic σa
2( ), residual σr

2( ), and phenotypic σp
2( ) variance estimates and heritability (h2) for Fourier-transform 

infrared (FTIR) prediction and gold standard measurement of milk proteins expressed as g/L (A) and % N (B). The relative difference (%) was 
calculated as [(genparpred − genparmeas)/genparmeas] × 100, where genparpred and genparmeas are the genetic parameters ( ,σa

2  σr
2, σp

2, and h2) for FTIR 
predicted and measured milk protein fractions, respectively. TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = 
total of whey protein.
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However, we observed a greater reduction in R2 with 
the F/B scenario compared with a random 10-fold 
CRV, from −19.8 to −4.8% in g/L and from −6.3 to 
15.8% as % N, which could be ascribed to differences in 
FTIR acquisition over time (i.e., oldest, 2013 vs. newest, 
2019–2020), this being an extreme case of independence 
between the training and validation sets. In addition, 
FTIR measurements over time can present variations 
in the interferometer signal leading to changes in the 
vibrational bands caused by altered shapes, intensities, 
and relative intensities (Pelletier, 2003), which reduce 
the prediction accuracy, mainly for more complex milk 
components, such as fatty acids (Bonfatti et al., 2017a). 
Nieuwoudt et al. (2021) evaluated the day-to-day varia-
tion in FTIR spectra and observed a significant effect on 
accuracy; they used variance-simultaneous component 
analysis to monitor spectral variation, which allowed 
them to correct shifts in peak intensity or band shape, 
which would reduce predictive ability. Pretreatments 
for spectral noise reduction are very common and of-
ten important for obtaining robust predictive models, 
mainly the Savitzky–Golay smoothing algorithm used 
to attenuate high-frequency signals coming from noise 
and tends to retain important chemical signals (Savitz-
ky and Golay, 1964). The principal component analysis 
of the milk FTIR spectra is useful for detecting pos-

sible differences in spectra values over time and using 
a noise reduction strategy to remove these differences 
across files. When the principal component analysis 
indicates a dissimilarity across FTIR information, in-
crease the distance between structural relationships 
between variables and find potential clusters affecting 
the predictive model ability biases due to differences in 
baseline absorbance. However, we found no significant 
differences between the old and new FTIR data sets (P 
> 0.05), which did not contribute to biased or lower 
FTIR predictions.

The FTIR-based predictive abilities for milk proteins 
expressed as % N ranged from 0.38 to 0.86 for random 
10-fold CRV, 0.35 to 0.79 for herd/date-out, 0.32 to 
0.73 for F/B, and 0.38 to 0.81 for CRV-gen, and R2 
were higher than those previously obtained using dif-
ferent statistical approaches, which were in the ranges 
0.14 to 0.82 (Baba et al., 2021), 0.18 to 0.28 (Rutten 
et al., 2011), and 0.13 to 0.36 (Bonfatti et al., 2011). 
Higher predictive abilities were obtained in the case of 
TP, TCN, and TWP in g/L and % N compared with 
the other traits, which might be due to their higher 
concentrations in milk (Table 3). The lower predictive 
ability observed for milk protein fractions expressed as 
% N compared with g/L agrees with previous results 
(Bonfatti et al., 2011). This suggests that FTIR infor-
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Table 6. The average and, in parentheses, the range of SD of genetic parameter estimates across the 5-folds from cross-validation for genetic 
parameters for milk protein fractions expressed as a percentage of nitrogen for the gold-standard measurement (laboratory) and Fourier-
transform infrared predicted1 

Trait2

Genetic parameter3

σa
2 σe

2 σp
2 h2

TP  Laboratory 1.295 (0.2045–0.2246) 1.701 (0.2996–0.3357) 2.996 (0.2103–0.2496) 0.434 (0.0759–0.0861)
 Predicted 1.195 (0.1803–0.1979) 1.649 (0.2355–0.2738) 2.845 (0.1517–0.1906) 0.420 (0.0699–0.0753)

Major casein       
 αS1-CN  Laboratory 0.447 (0.0795–0.0867) 0.313 (0.0639–0.1217) 0.760 (0.0329–0.0869) 0.588 (0.0411–0.0543)

 Predicted 0.292 (0.0333–0.0374) 0.239 (0.0493–0.0829) 0.531 (0.0349–0.0762) 0.549 (0.0690–0.0929)
 αS2-CN  Laboratory 0.619 (0.0699–0.0814) 1.459 (0.0986–0.1139) 2.078 (0.0701–0.0796) 0.298 (0.0317–0.0386)

 Predicted 0.360 (0.0164–0.0199) 0.868 (0.0229–0.0408) 1.229 (0.0166–0.0356) 0.293 (0.0285–0.0357)
 β-CN  Laboratory 3.428 (0.4608–0.4943) 0.866 (0.5641–0.6252) 4.294 (0.4602–0.5012) 0.798 (0.0297–0.0558)

 Predicted 2.651 (0.3022–0.3761) 0.770 (0.3924–0.4678) 3.421 (0.2987–0.3605) 0.775 (0.0225–0.0445)
 κ-CN  Laboratory 1.229 (0.2039–0.2374) 0.773 (0.2809–0.3336) 2.002 (0.2004–0.2395) 0.614 (0.0221–0.0395)

 Predicted 1.126 (0.1678–0.2121) 0.747 (0.2369–0.2968) 1.873 (0.1704–0.2108) 0.601 (0.0149–0.0293)
 Glyco-κ-CN  Laboratory 0.956 (0.2057–0.2604) 0.739 (0.1851–0.2941) 1.695 (0.0830–0.1091) 0.564 (0.0531–0.0740)

 Predicted 0.795 (0.1397–0.1693) 0.639 (0.1587–0.2329) 1.434 (0.0637–0.1603) 0.554 (0.0355–0.0781)
 TCN  Laboratory 0.418 (0.0811–0.0976) 0.664 (0.0907–0.1072) 1.082 (0.0321–0.0509) 0.386 (0.0798–0.0872)

 Predicted 0.313 (0.0292–0.0349) 0.521 (0.0353–0.0487) 0.834 (0.0199–0.0351) 0.375 (0.0591–0.0662)
Whey protein       
 α-LA  Laboratory 0.160 (0.0095–0.0129) 0.422 (0.0287–0.0699) 0.582 (0.0013–0.007) 0.275 (0.0221–0.0897)

 Predicted 0.118 (0.0123–0.0145) 0.325 (0.0140–0.0209) 0.443 (0.0075–0.0145) 0.266 (0.0324–0.0372)
 β-LG  Laboratory 0.546 (0.0948–0.1068) 0.472 (0.1029–0.1329) 1.018 (0.0220–0.0930) 0.536 (0.0458–0.0810)

 Predicted 0.475 (0.0506–0.0655) 0.428 (0.0614–0.1285) 0.903 (0.0191–0.1101) 0.526 (0.0619–0.0871)
 TWP  Laboratory 1.403 (0.2366–0.2824) 1.658 (0.2743–0.3399) 3.061 (0.0941–0.1898) 0.458 (0.0762–0.0836)

 Predicted 1.187 (0.1727–0.2150) 1.629 (0.1875–0.2621) 2.816 (0.0733–0.1604) 0.422 (0.0703–0.0799)
1For more details, see Supplemental Table S3 (https: / / doi .org/ 10 .6084/ m9 .figshare .21864596 .v1; Mota et al., 2023).
2TP = true protein; glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein. 
3σa

2 = genetic variance; σe
2 = residual variance; σp

2 = phenotypic variance.
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mation can capture different biological data related to 
variations in milk protein fractions according to how 
these traits are expressed.

For practical application in breeding, the usefulness 
of FTIR predictions as potential indicator traits for 
genetic evaluation rests on obtaining FTIR-predicted 
values and gold standard measurements from a large 
number of samples. The CRV-gen scenario we devised 
to make FTIR predictions for genetic analyses was per-

formed on large training (n = 1,253 cows) and valida-
tion sets (n = 1,184 cows) and gave predictive ability 
values ranging from moderate to high (Tables 3 and 4). 
Similarly, Rutten et al. (2010) demonstrated that as-
sembling large reference populations makes it possible 
to improve the accuracy of FTIR-based predictions in-
tended for estimating genetic parameters. We obtained 
moderate to high FTIR-based predictive abilities (R2) 
for milk protein fractions expressed in both g/L and % 
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Figure 5. Posterior distribution of genetic and phenotypic correlation between gold standard and Fourier-transform infrared (FTIR) predic-
tion using the cross-validation for genetic parameter scenarios for milk protein fraction expressed in grams per liter of milk. TP = true protein; 
glyco-κ-CN = glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein.
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N, indicating their potential use for breeding purposes. 
Although Soyeurt et al. (2011) suggested that an R2 
higher than 0.75 is required for use in animal breeding 
programs, Poulsen et al. (2014) observed that moderate 
predictive ability also provides valuable information for 
breeding programs. In this case, when FTIR predictive 
ability is moderate, the breeding value of a bull based on 
information from many progenies allows noise predic-

tion correction. The greater predictive ability obtained 
may be due to the GBM selecting the milk spectra that 
can capture greater variability in milk chemical compo-
sition (Figures 2 and 3) and by their flexibility in map-
ping the complex associations between predictors and 
target phenotypes (Friedman, 2002; Azodi et al., 2020). 
Mota et al. (2021b), comparing machine learning and 
penalized regression against PLS regression, observed a 
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Figure 6. Posterior distribution of genetic and phenotypic correlation between gold standard and Fourier-transform infrared (FTIR) 
prediction for milk protein fraction expressed as the percentage of the total milk nitrogen content (% N). TP = true protein; glyco-κ-CN = 
glycosylated-κ-CN; TCN = total casein; TWP = total of whey protein.
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superior ability of GBM to predict difficult-to-measure 
milk traits. A similar pattern was also found in this 
study in which GBM showed superiority against PLS, 
with R2 increasing from 2 to 49% for protein fractions 
(Supplemental Table S1, https: / / doi .org/ 10 .6084/ m9 
.figshare .21864596 .v1; Mota et al., 2023).

Associations Between Milk FTIR Wavelength 
Absorbances and Milk Protein Fractions

The FTIR wavelength absorbance is characterized by 
the effect of electromagnetic radiation, which is cor-
related with the stretching and bending vibrations of 
specific chemical bonds within a molecule (Karoui et 
al., 2010). The number of spectral regions associated 
with milk protein fractions varies according to how the 
proteins are expressed: 3 main regions for g/L and 4 or 
5 for % N. Consequently, the biological background of 
milk protein fractions expressed as % N is more com-
plex and requires more wavelength regions for its pre-
diction. In addition, milk protein fractions expressed in 
g/L and % N shared 3 wavelength regions (3,200–2,900 
cm−1, 1,750–1,500 cm−1, and 1,250–950 cm−1), which 
are related to the fingerprint region (C–O, C–C, C=C, 
C–H, N–O, C–N, C=CH2, O–H, amide II, and amide 
III bands), corresponding to common chemical bonds 
present in milk components such as fat, protein, lac-
tose, carbohydrates, and organic acids (Soyeurt et al., 
2010; Bittante and Cecchinato, 2013; Wang et al., 2016; 
Zaalberg et al., 2019). In particular, casein profiles are 
expected to be associated with absorption peaks related 
to the wavenumbers 1,250 cm−1 (amide III), 1,550 cm−1 
(amide II), and 1,650 cm−1 (amide I; Osborne, 2000). 
However, Wang et al. (2016) found a significant as-
sociation between CSN3 and the wavenumbers around 
1,269 and 1,550 cm−1.

The infrared band amides I, II, and III are frequently 
used to assess milk protein contents (Etzion et al., 
2004). However, vibrations on the water wavelengths 
related to the O–H groups are sensitive to interactions 
between water and the polar lipids and proteins present 
in milk, affecting the contribution of water to spec-
trum variability (Dousseau and Pézolet, 1990). These 
regions, mapping on 4,900 to 4,650 cm−1, 3,600 to 3,350 
cm-1, and 2,550 to 2,400 cm−1, explained the significant 
effect on milk protein fractions when expressed as % N. 
Wavelength regions 4,500 to 5,000 cm−1 contribute to 
vibrations of the N–H and C = O groups in the proteins 
(Subramanian and Rodriguez-Saona, 2009), and the 
genes DGAT1 and CSN3 are significantly associated 
with this region (Wang et al., 2016). The wavelength 
region 3,600 to 3,350 cm−1 consists of absorbance from 
stretching vibrations of hydroxyl groups (O–H) and 

amide A of proteins (N–H). Overall, the wavenumbers 
are known to contain information on milk components, 
and statistical approaches that can perform variable 
selection (GBM) have the advantage of being able 
to map the complex associations (e.g., nonlinear and 
interactions) between the FTIR wavelengths and the 
target trait (Natekin and Knoll, 2013).

Genetic Parameters for Laboratory Measurements 
and FTIR-Based Predictions of Milk Proteins

Phenotyping milk protein fraction is still a bottle-
neck, so techniques for precisely and reliably recording 
them are required to improve breeding program selec-
tion efficiency. Increasing the genetic gain rate using 
FTIR technologies can reduce the cost of measuring 
complex phenotypes on a large scale during different 
stages of lactation (Seidel et al., 2020). However, it is 
important to identify their genetic variations. The heri-
tability estimates for milk protein fractions expressed 
in g/L and % N, assessed by gold standard laboratory 
measurements and FTIR-based predictions, show that 
the additive genetic effect influences them. However, 
notable reductions in the genetic parameters were ob-
served for αS2-CN and β-LG expressed in g/L and for 
αS1-CN, and αS2-CN expressed as % N. In contrast, 
the heritability estimates for α-LA and TCN in g/L, 
and TWP and αS1-CN as % N were large. Our find-
ings show that robust predictive models that include 
a larger number of samples in the training data set 
and a more complex algorithm may be able to capture 
the relationships between milk FTIR and milk protein 
fraction more accurately, corroborating the suitability 
of FTIR prediction of milk protein fractions for genetic 
evaluation purposes.

The observed reductions in the genetic parameters 
between FTIR-based predictions and gold standard 
measurements are consistent with results from previous 
studies (Cecchinato et al., 2009, 2020; Rutten et al., 
2010). However, reductions in the heritability estimates 
observed in our study are smaller than those found by 
Cecchinato et al. (2020), ranging from −32 to −81%. 
This difference may be explained by the different abili-
ties of the statistical models used to deal with complex 
associations between infrared spectra and the target 
phenotype in the calibration equations. Bonfatti et al. 
(2017b) estimated the genetic parameters for FTIR 
prediction of different milk-related traits and observed 
a significant association between predictive ability and 
reductions in the genetic parameters for FTIR-pre-
dicted traits. These reductions were smaller for traits 
predicted with an R2 higher than 0.90 than those with 
an R2 lower than 0.80.
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Correlations Between Laboratory Measurements  
and FTIR Predictions of Milk Protein Fractions

The magnitude of the genetic correlations between 
FTIR-based predictions and gold-standard laboratory 
measures is the main parameter for determining the 
feasibility of including such indicator traits in animal 
selection for breeding purposes (Cecchinato et al., 2009, 
2020; Rutten et al., 2011). Successful incorporation into 
a breeding program depends on the degree of genetic 
gain attained through indirect selection, which is di-
rectly related to the strength of the genetic correlation 
between the target and FTIR-predicted trait. Milk 
protein fractions are important for the dairy industry 
because they influence milk’s technological properties, 
mainly during the coagulation process, whereby the 
milk protein fractions αS1-CN and κ-CN lead to reduc-
tions in coagulation time (Amalfitano et al., 2019). Our 
estimates of the genetic correlations between the gold 
standard measurements and FTIR predictions were 
high and ranged from 0.87 to 0.99 (Figures 5 and 6). 
The strength of the genetic correlations varied as a 
function of predictive ability: as FTIR predictive ability 
increased, the genetic correlation between the predicted 
values and the gold standard measures also increased, 
as shown in Supplemental Figure S8A (https: / / doi .org/ 
10 .6084/ m9 .figshare .21864596 .v1; Mota et al., 2023). 
In this regard, we obtained higher genetic correlations 
than in previous studies (Bonfatti et al., 2017b), espe-
cially for β-CN (0.95 vs. 0.63), α-LA (0.88 vs. 0.57), 
and β-LG (0.94 vs. 0.77). Slight differences in the ge-
netic correlations were observed for TP (0.99 vs. 0.98), 
αS1-CN (0.91 vs. 0.94), αS2-CN (0.91 vs. 0.87), κ-CN 
(0.95 vs. 0.90), whereas no difference was observed for 
TCN. On the other hand, the genetic correlations for 
milk protein fractions expressed as % N ranged from 
0.88 to 0.97, strikingly different from the results of pre-
vious studies, ranging from 0.23 to 0.90 (Bonfatti et al., 
2017b; Cecchinato et al., 2020). Furthermore, although 
we observed moderate predictive ability for αS1-CN, αS2-
CN, β-CN, κ-CN, Glyco-κ-CN, α-LA, β-LG, and TWP 
expressed as % N, the genetic correlation between the 
gold standard measures and the FTIR predictions was 
greater than 0.80. This high correlation indicates that 
there is little or no reranking of the animals concern-
ing their expected breeding value according to gold-
standard measurements. Rutten et al. (2011) assessed 
the genetic parameters of FTIR predictions and milk 
proteins expressed as % N and found predictive ability 
to vary from 0.18 (αS1-CN) to 0.56 (β-LG), resulting 
in genetic correlations ranging from 0.62 (β-CN) to 
0.97 (TWP), good enough for exploitation in breeding 
programs. Concerning milk technological traits, Cec-
chinato et al. (2009) found R2 values from 0.46 to 0.52 

for infrared predictions of curd firming, with genetic 
correlations between the measures and the predictions 
ranging from 0.71 to 0.87, and R2 values from 0.61 to 
0.69 for infrared predictions of coagulation time, with 
genetic correlations ranging from 0.91 to 0.96.

The phenotypic correlations between the gold stan-
dard measurements and FTIR predictions of milk pro-
tein fractions expressed in g/L and % N ranged from 
0.63 to 0.87 and were dependent on FTIR predictive 
ability (Supplemental Figure S8B). Differences in the 
association between the phenotypic correlations and 
the model’s predictive ability according to whether 
milk proteins were expressed in g/L or % N can be 
explained by differences in the contributions of the 
genetic and environmental effects. The same trend 
has been observed in dairy cattle (Rutten et al., 2010; 
Bonfatti et al., 2017b) and beef cattle (Cecchinato et 
al., 2011; Savoia et al., 2021), where the genetic correla-
tions between the infrared predictions and measured 
traits were less dependent on predictive ability than 
the phenotypic correlations. Milk protein fractions 
with the highest predictive abilities in the calibration 
equation exhibited the highest genetic and phenotypic 
correlations with the relative gold standard measure-
ment. However, a low to moderate R2 can also give 
rise to acceptable genetic and phenotypic correlations. 
Therefore, our results support for the potential applica-
tion of the developed prediction equation for breeding 
purposes to enhance milk quality and cheesemaking 
aptitude.

CONCLUSIONS

This study showed that FTIR spectra can be suc-
cessfully exploited for the prediction of milk protein 
fractions expressed both in g/L and % N, although the 
predictions were in general more reliable when proteins 
were expressed in g/L, as in % N requires more FTIR 
wavelengths to capture the phenotypic variability. 
Similar regions of the FTIR spectra were found to ex-
plain the variability of traits expressed in g/L and in 
% N, confirming that they share the same biological 
background. The heritability estimates for milk protein 
fractions assessed by laboratory measurements and 
FTIR predictions followed the same trend with slight 
differences among them. The high genetic correlations 
between the FTIR predictions and the laboratory mea-
surements found in our study provide evidence for their 
potential use as indicator traits in breeding programs 
aimed at altering protein fractions and improving milk 
quality and cheesemaking ability. Further studies could 
be conducted applying the FTIR calibrations on a 
population database, provided that FTIR spectra are 
available, and estimating genetic parameters and ge-

Macedo Mota et al.: FOURIER TRANSFORM INFRARED PREDICTIONS FOR BREEDING

https://doi.org/10.6084/m9.figshare.21864596.v1
https://doi.org/10.6084/m9.figshare.21864596.v1


Journal of Dairy Science Vol. 106 No. 3, 2023

nomic breeding values exploiting longitudinal data and 
random regression models.
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