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Abstract—A new finite-element technique for squirrel cage
Induction Motor features analysis is presented in this paper.
Motor performances are directly predicted performing on-load
test simulations, in several working points. The finite-element
analyses are carried out imposing both stator and rotor currents.
Thus, only magnetostatic simulations are needed to get the
electromagnetic quantities, such as torque and slip. Saturation
phenomena can be considered in any operating conditions under
load, with short computational time. In each motor working
point, a very fast finite-element procedure, closely linked with
the analytical machine model, is used to catch the proper current
distribution in stator and rotor slots. It allows the motor perfor-
mances to be predicted without the preliminary knowledge of
the machine equivalent circuit parameters. Experimental tests
are carried out and reported in order to verify analysis results.

Index Terms—AC machine, Induction Motor, Finite Ele-
ment Analysis, Modelling, Equivalent Circuit, Computational
Efficient IM Analysis.

I. INTRODUCTION

The Induction Motor (IM) is largely used in many appli-
cations, thanks to its low cost, good torque density and ro-
bustness. Despite the motor structure semplicity, the study of
electromagnetic phenomena, that occur inside the machine, is
complex [1]–[3]. For instance, on the IM rotor, a squirrel cage
winding is often placed, whose behaviour is not the same
as a common three-phase distributed winding, considering
the current distribution. Further, the induced currents in the
cage bars depend upon the relative speed between rotor and
stator main field. The frequency of rotor electric quantities
is not zero, then the rotor field position with respect to the
magnetizing air-gap flux density, is affected by the rotor bar
impedance angle.

The IM is easily analyzed using its equivalent circuital
model, where the rotor cage impedance is referred to one
phase of the stator. This analytical approach is well known
and commonly used for a first estimation of motor per-
formances [4]–[7]. The Finite Element Analysis (FEA) can
improve the IM equivalent circuit derivation. It allows the
complex saturation phenomena, that occur in no-load opera-
tions, to be better considered [8]–[11]. The IM equivalent
circuit 3-D parameters, as the stator end-winding leakage
inductance and the rotor rings resistance, can be computed
using analytical models [12]–[14].
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When the IM works under load, the interaction between
stator and rotor fields produces the motor torque and deter-
mines the net flux density in the air-gap. The machine exhibits
a saturation map different from the no-load one, owing to
high local saturations, scattered especially in the tooth tips.
Direct test simulations allows the on-load saturation to be
well considered in the computation of the equivalent circuit
lumped parameters and motor performances [14], [15].

The aim of the paper is to predict the steady-state perfor-
mance of a squirrel cage IM, performing FEA, where both
stator and rotor currents are imposed as field sources. The
key point of the procedure is to make FE analyses closely
connected with the motor analytical model with the purpose
of getting the proper stator and rotor current distribution in
the motor working under-load.

This technique allows the electromagnetic torque and
slip to be achieved by means of only magnetostatic FE
simulations. The advantage is twofold: iron saturation is well
considered in any working point and computational time is
short, avoiding complex time-stepping analyses.

Hereafter the on-load direct analysis approach is used
for a double cage motor characterization. However, this
technique can be applied to analyze IMs with any type of
rotor, such as closed slot squirrel cage and wound rotor
machines.

In presence of cage rotor motor, three-phase equivalent
winding, with the same behavior as the squirrel cage, is a
useful tool for imposing the proper rotor electric load and
computing the rotor flux linkages. In order to prove the
accuracy of the proposed analysis strategy, a comparison with
measurements is reported at the end of the paper.

II. ROTOR EQUIVALENT THREE-PHASE WINDING.

In the instant time t, ω esl is the relative mechanical speed
between the stator field and the rotor, in electric radiants
per second. Considering a sinusoidal air-gap flux density
distribution, the induced voltage, at the terminals of each
rotor bar, can be expressed as:
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where α esr is the electrical rotor slot angle, Qr is the rotor
slot number, Di and Lstk are the inner diameter and the stack



length. Rotor bar currents can be written as following:
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where żbar = |żbar|ejφr is the equivalent bar impedance żbar,
that takes into account the presence of cage short-circuit
rings.

Fig. 1 shows that, when only the main harmonic of
airgap flux is considered, spatial behavior of induced voltage
and current, in the rotor bars, exhibits almost a sinusoidal
waveform.
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Fig. 1. Induced voltage and current spatial distribution in the slots of a
squirrel cage rotor. In the drawing, vsl indicates the relative speed between
the air-gap flux density and the rotor, in meters per second; αer is the rotor
electrical angle.

An interesting trick is considering a three-phase rotor
equivalent winding sinusoidally distributed in the rotor slots.
Fig. 2 shows a sketch of such a three-phase rotor winding.
The shading indicates the theoretical conductor density be-
longing to each phase within the rotor slots. Forcing a three-
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Fig. 2. Sketch of the three-phase equivalent rotor winding.

phase current in the equivalent rotor winding, the sinusoidal
current distribution in the rotor slots, is reproduced. The

vectors kra, krb and krc define the fill factor of any rotor
slot, according to a given phase:

kra,i = sin (αesr/2 + αesr(i− 1)) ;

krb,i = sin (αesr/2 + αesr(i− 1)− 2π/3)

krc,i = sin (αesr/2 + αesr(i− 1)− 4π/3)

(3)

where i = 1, . . . , Qr. The rotor winding factor is computed
as following:
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Theoretically, the winding factor of a sinusoidally distributed
winding is equal to π/4.

The number of conductors per phase of the rotor winding
is fixed in order to have the same number of effective
conductors as the stator winding:

Nr kwr = Ns kws (5)

where Ns is the number of conductors per phase of the stator
winding and kws is the stator winding factor. The equivalence
(5) accounts to facilitate the parameter estimation of the
equivalent circuit. The number of series conductors per phase
in each rotor slot results in:
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krb

ncsr,c =
Nr∑Qr

i=1 krc,i
krc

(6)

The condition (4) makes the stator and rotor synchronous
inductance to be almost the same. They differ from the
leakage component, whilst the magnetizing component is the
same:

LMs =
3

π
µ0

(
Ns kws

2p

)2
Di Lstk

g′′

LMr =
3

π
µ0

(
Nr kwr

2p

)2
Di Lstk

g′′

(7)

where g′′ is the magnetic airgap, that takes into account the
iron saturation and the Carter coefficient. It follows:

LM = LMs = LMr

III. IM EQUIVALENT MODEL.

The challenge of simulating the IM under load, using
magnetostatic analyses, is to understand the proper relative
position of stator and rotor electric loads in any working
condition. For this reason the analytical model has to be
strictly connected with FEA. The IM steady-state vector
equations are [6], [7]:

~vs = Rs~is + jωs

(
Ls~is +M~ir

)
0 =
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s
~ir + jωs

(
Lr~i+M~is

) (8)



where Ls and Lr are the stator and rotor self inductance and
M is the mutual synchronous inductance. The equations in
(8) are linked with the mutual coupling equivalent circuit in
Fig. 3(a). The transformation constant t can be chosen equal
to the ratio between the stator and rotor effective number of
conductors. Considering (5) it results t = n = 1 and the T-
form of the equivalent circuit (Fig. 3(b) top) is derived, where
Lls and Llr are the stator and rotor leakage inductances.

Further the mutual synchronous inductance results the
same as the magnetizing component of stator and rotor self
inductances [7]:

M = LM (9)

Considering (9), imposing t equal to:

n′ = M/Lr = LM/Lr (10)

the inverse-Γ circuit can be obtained (Fig. 3(b) bottom). The
related steady-state space vector diagram is shown in Fig. 4.
The rotor flux linkage space vector ~λr lies along the d−axis.
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(b) Different arrangements of the IM equivalent circuit

Fig. 3. The choice of the transformation ratio t leads to different configura-
tions of the equivalent circuit. In the T-form, with n = 1, the rotor current
is already referred to the stator. The same for λr and the rotor parameters.

Stator and rotor current vectors, considering the inverse-Γ
model, are:

~is = isd + jisq = iµ + jiτ ; ~ir = jirq = −jiτ
M

Lr
(11)

The real part of the stator current, iµ, is the magnetizing
current, that produces stator and rotor main flux linkages.
The imaginary part of stator current, iτ , is the torque current,
that occurs when the motor is loaded.

Analyzing the motor according to the inverse-Γ model,
stator and rotor flux linkages, in the synchronous reference
frame, are given by:

λsd = Lsiµ; λsq =

(
Lls + Llr

M

Lr

)
iτ

λrd = Miµ; λrq = 0

(12)

The main advantage of the inverse-Γ model is that the
stator and rotor main flux linkages λsd and λrd are due only
to the real part of the stator current iµ, for this reason the
inverse-Γ model is particularly suitable to be linked with
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(a) Inverse Γ form of the IM equivalent circuit, using space vectors.
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(b) Vector diagram of the machine in the synchronous reference frame
related to the inverse-Γ model. At steady-state, all space vectors rotate,
with respect to the stationary reference frame, at the angular frequency
ωs

Fig. 4. The inverse-Γ equivalent circuit at steady-state is linked with the
space vector diagram in the synchronous reference dq, in which the rotor
flux space vector lies along the d-axis.



FEA. Once the flux λrd has been created, the motor torque
is determined by the imaginary component:

T =
3

2
p
M2

Lr
iµ iτ (13)

From the rotor voltage equation (8) the slip can be
achieved as:

s =
(3/2)Rr (iτ · n′)2

(3/2)ωsλrd (iτ · n′)
=

PJr
Ptrans

(14)

where PJr are the Joule losses in the rotor cage and Ptrans
is the transmitted power to the rotor.

IV. FEA PROCEDURE

The on-load analysis is carried out considering the time
instant in which the rotating dq reference frame overlaps the
αβ plane, as shown in Fig. 5. Stator and rotor current vectors
are set in the αβ reference frame for magnetostatic FEA.

Fig. 5. The machine stationary reference frame αβ oriented with stator
a magnetic axis. The time instant in which dq overlaps αβ is considered.
Stator and rotor current vectors can be forced in αβ. Current values are set
in order to verify the analytical hypothesis λrβ = 0.

The inverse-Γ model condition λrβ = 0 has to be
verified using FE, in each analyzed working point, in order to
proper connect FEA with the inverse-Γ model. The following
relationship between stator and rotor β−axis currents has to
be imposed:

irβ = −M
Lr
isβ (15)

A two steps FE procedure is necessary to get the proper rotor
current and the motor performances. In the first simulation,
inductances M and Lr = M + Llr are computed taking into
account carefully the iron saturation. In the second FEA
the condition (15) is imposed, the electromagnetic torque
and rotor Joule losses are directly computed from the field
solution. The slip is derived using (14), for a certain value
of the electric angular frequency ωs. In Fig. 6, the procedure
scheme is shown.

All the on-load magnetostatic simulations are carried out
imposing both stator and rotor current. The non-uniform
current distribution in rotor bars is neglected. This is a
reasonable assumption for operation close to nominal speed,
where the slip, and so the rotor frequency, is low.

At first, no-load simulations are performed in order to
estimate the stator magnetizing current iµ at rated voltage and
frequency. Only α-axis stator current is imposed for no-load
analysis. In Fig. 6, the no-load flux lines do not cross the α-
axis, thus stator flux linkage exhibits only the α-component.

~λr

~is = isα + jisβ ~ir = jirβ = −jisβ

M
Lls
Llr
Ls
Lr

~λs
Tdq ωsl
PJr PJs
Pfe

~is = isα + jisβ ~ir = −jisβM/Lr

~is ~irLls Llr

M

~λs
~λr

~is ~irsLt

Lϕ

~λs
~λrs

~is = isα = iµ

Rrs

Fig. 6. FE procedure scheme. The no-load test is carried out to find the
rated magnetizing current. In each on-load working point two steps analysis
is necessary to get the motor performances.

In the simulations under load, besides the current iµ, a
β-axis current is imposed in stator winding. The related rotor
current irβ has to be set using (15), in order to get the proper
operating condition according to the analytical model.

Several on-load working points are investigated, increas-
ing the stator torque current isβ = iτ .

In the first step of the on-load analysis procedure, in-
ductances M and Lr have to be computed. Stator and rotor
current vectors, forced in the machine, in the first simulation,
are:

~is = isα + jisβ = iµ + jiτ ;

~ir,1 = jirβ = −jiτ
(16)

where the rotor α-axis current is set to zero. The T-form
equivalent circuit parameters can be derived. In particular,
the leakage inductances Lls and Llr can be separated from
the magnetizing component M of Ls and Lr. Stator and
rotor flux linkages, considering current vectors in (16) are
analytically expressed as:

~λs = Ls~is +M~ir = Lsiµ + jLlsiτ ;

~λr = M~is + Lr~ir = Miµ − jLlriτ

(17)



Fig. 7. First simulation field solution flux lines. Imposing isβ = −irβ , the
rotor flux linkage along β-axis is not zero.

In Fig. 7, the first simulation field solution is reported.
The flux lines widely cross the α-axis, the rotor flux λrβ is
not equal to zero.

In Fig. 8, the flux lines, due to stator and rotor currents
along α and β axes, are split and put in evidence.

In Fig. 8(a) it is shown that the machine magnetizing field
is produced by the stator current along the α-axis. In Fig. 8(b)
resulting leakage flux lines are shown, when stator and rotor
β-axis currents are equal and opposite.

Stator and rotor flux linkage space vectors are derived
from the first FEA field solution. The inductances in the T-
form of equivalent circuit can be achieved as:

Lls =
λsβ
iτ

; Llr =
λrβ
−iτ

; M =
λrα
iµ

(18)

The relationship (15), between stator and rotor β-axis
currents, has to be applied, using the inductances computed
in (18), in order to set ~λr along the α axis, according to the
inverse-Γ model.

The rotor synchronous inductance is derived as:
Lr = M + Llr. The stator current does not change, whilst
the rotor β-axis current is corrected to perform a second FEA.
The stator and rotor current vectors in the second simulation
are:

~is = isα + jisβ = iµ + jiτ

~ir,2 = jirβ = −jiτ
M

Lr

(19)

In Fig. 10, the second simulation field solution is shown. It is
worth to notice that the flux lines within the rotor are almost
parallel to the α-axis, which means that λrβ ≈ 0.

Stator and rotor currents are imposed according to the
inverse-Γ equivalent model, the torque and the rotor Joule
losses are achieved from the second FEA field solution. The
slip can be computed using (14), where λrd = λrα is derived

α

β

λsα = (Lls +M)isα

λrα = M · isα

isα = iµ

(a) First simulation, α-axis flux lines. Only the stator current iµ acts along
the α-axis. It yields the magnetizing component of stator and rotor flux
linkages: Miµ. The magnetizing field flux lines are shown.

α

λsβ = Lls · isβ
λrβ = Llr · irβ

isβ = −irβ

β

isβ = iτ

(b) First simulation, β-axis flux lines. Along β axis stator and rotor currents
are equal and opposite. Leakage fluxes determine the β component of stator
and rotor flux linkages.

Fig. 8. Currents and fields acting along two axis in the first FEA simulation.

by means of the magnetic vector potential and ωs is the rated
electric angular frequency.

Let’s compare Fig. 9(a) and Fig. 9(b). In the first, leakage
flux lines are linked with stator and rotor winding, according
to leakage inductances Lls and Llr, when isβ = −irβ . In the
second, stator β current has been corrected, using (15). In this
case, the most of the β leakage flux lines are linked with the
stator winding. Notice that, using the inverse-Γ equivalent
model, the rotor leakage flux is referred to the stator and
leakage flux λsβ is related to the global leakage inductance
Lt:

λsβ = Ltisβ =

(
Lls + Llr

M

Lr

)
isβ (20)

In order to improve the simulation accuracy, the effective
iron length is considered: Lfe = kpackLstk, where kpack is
the packing coefficient. The electromagnetic torque and flux
linkages are derived considering the iron length Lfe. Instead,
the rotor Joule losses computed from FE solution, P FE

Jr , has



irβ = iτisβ = iτ

λsβ = Llsirβ = Llsiτ

λrβ = Llrisβ = −Llriτ

(a) Leakage fluxes in the field solution when the stator and rotor
current vector are: ~is = jisβ = jiτ and ~ir = jirβ = −jiτ . In this
situation the rotor flux linkage λrβ is no zero.

λsβ = Ltisβ = Ltiτ

isβ = iτ
irβ = LM

Lr
iτ

(b) Leakage fluxes in the field solution when the stator and rotor cur-
rent vector are: ~is = jisβ = jiτ and ~ir = jirβ = −jiτ (M/Lr).
The most of the leakage flux lines are linked with the stator winding.
The roto flux λrβ ' 0.

Fig. 9. Flux lines due to β-axis stator and rotor currents imposed, in (a),
equal and opposite. In (b) irβ = n′ isβ

to be corrected as PJr = P FE
Jr /kpack, to take into account that

the rotor bars resistance depends upon the pack length Lstk.

V. APPLICATION AND MEASUREMENTS COMPARISON

The presented procedure has been used to analyze a
2-pole, 11 kW, double-cage IM. The performances are pre-
dicted in several working points at the rated voltage and
frequency of 400 V, 50 Hz. The stator winding is full pitched
with six slots per pole per phase. Measurements have been
done increasing the torque from 25% up to 150% of the rated
value of 35 N m.

In Fig. 10 the on-load field solution in the rated working
point is shown.
Once the on-load field problem is solved, the voltage is

Fig. 10. On-load simulations result in the rated working point. A sketch
of the vector diagram is reported as well. Flux lines in the rotor are almost
parallel to the α-axis, since the flux λrβ ' 0. The stator flux space vector
is shifted, due to the imaginary component along β-axis.

TABLE I
FEA RESULTS INCREASING ROTOR TORQUE CURRENT.

TFE VFE iµ irβ isβ λrβ
(N m) (V) (A) (A) (A) (µWb)

8.3 399 3.11 2.29 2.3 0.098
16.6 399 3.08 4.57 4.61 0.88
24.8 400 3.04 6.86 6.91 3.0
32.9 400 2.99 9.12 9.19 2.9
40.8 399 2.95 11.45 11.55 5.6
48.6 398 2.92 13.72 13.88 26

computed from stator flux linkages, imposing the actual
value of the angular frequency. The effect of the stator end-
winding leakage inductance and resistance are considered
in the voltage computation. Increasing torque current, the
voltage drop on the stator impedance increases. The stator
magnetizing current has been decremented in each working
point, to take into account the on-load voltage drop, in order
to keep constant the stator winding voltage, equal to the
rated one. In Table I FEA results are reported in several
working points. The resulting voltage from FEA is equal to
the rated on in each on-load operation. The values of β-axis
rotor flux in the analyzed working points, are reported
together with stator and rotor current components along α
and β.

TABLE II
MOTOR PERFORMANCES MEASURED IN SEVERAL ON-LOAD WORKING

POINT WITH FEA RESULTS COMPARISON.

Load slip Tmeas TFE Is,meas Is,FE
(%) (N m) (N m) (A) (A)

25% 0.75 10 9.4 4.3 4.1
50% 1.48 18.5 18.3 6.2 5.9
75% 2.29 28 27.9 8.7 8.3
100% 3.10 37 37.2 11.3 10.8
125% 3.90 44.6 45.8 13.6 13.3
150% 4.60 51 52.8 15.6 15.4

In Fig. 11 and Table II data from measurements are com-
pared with FEA results. The good agreement between direct



Fig. 11. FEA results and measurements comparison. The torque versus
speed characteristic and the efficiency have been computed according to the
current standard

test simulations and measurements, proves the accuracy of the
analysis strategy, in all the operating conditions investigated.

VI. CONCLUSIONS

A new analysis procedure to quickly predict the IM
performances, has been presented. The analytical machine
model is closely linked with FEA, in order to properly set
stator and rotor currents in on-load simulation. The iron
saturation is well considered in any working points, both in
no-load and under load condition.

The analyzed motor is supplied by a constant voltage
source, thus no-load FE analyses are required to estimate
the magnetizing current at rated voltage and frequency. In
this paper, the analysis strategy has been applied for an IM
fed by the grid. The method can be useful to predict the
steady-state performances of a controlled IM. The analysis
technique is based only upon magnetostatic simulations, that
makes the computation time short. Further, the connection
with analytical model makes the process to get the right
value of stator and rotor currents fast and easy: only two
simulations are required to get the proper operating condition,
according to the analytical model.

The lumped parameters of the equivalent circuit in
Fig. 4(a) can be computed from FE solutions. Both the
inverse-Γ and the T form of the IM circuit can be built.
In particular, the definition of a rotor equivalent three-phase
winding allows the mutual inductance between stator and

rotor and the rotor leakage inductance to be easily computed
performing magnetostatic FEA.

The agreement between measurements and FEA results
proves the accuracy of the proposed strategy.
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