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Abstract. In this paper we study the asymptotic behavior of u-capacities of small sets and its
application to the analysis of the eigenvalues of the Dirichlet-Laplacian on a bounded planar domain
with a small hole. More precisely, we consider two (sufficiently regular) bounded open connected sets
Ω and ω of R2, containing the origin. First, if ε is close to 0 and if u is a function defined on Ω,
we compute an asymptotic expansion of the u-capacity CapΩ(εω, u) as ε → 0. As a byproduct, we
compute an asymptotic expansion for the Nth eigenvalues of the Dirichlet-Laplacian in the perforated
set Ω \ (εω) for ε close to 0. Such formula shows explicitly the dependence of the asymptotic expansion
on the behavior of the corresponding eigenfunction near 0 and on the shape ω of the hole.
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1. Introduction

This paper deals with the asymptotic behavior of the so-called u-capacities of small sets and its application
to the analysis of the eigenvalues of the Dirichlet-Laplacian on a bounded domain with a small hole.

The dependence of the spectrum of the Laplace operator upon regular and singular domain perturbations has
been long investigated by several authors with many different techniques. A fundamental tool in the analysis of
the eigenvalues of the Dirichlet-Laplacian upon domain perturbation has revealed to be the so-called (condenser)
capacity.

So, if we consider a bounded, connected open set Ω of R2, then for every compact subset K of Ω, the
(condenser) capacity of K in Ω is defined as

CapΩ(K) ≡ inf

{∫
Ω

|∇f |2 dx : f ∈ H1
0 (Ω) and f − ηK ∈ H1

0 (Ω \K)

}
, (1.1)

Keywords and phrases: Dirichlet-Laplacian, eigenvalues, small capacity sets, asymptotic expansion, perforated domain.
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where ηK is a fixed smooth function such that supp ηK ⊆ Ω and ηK ≡ 1 in a neighborhood of K. The infimum
in (1.1) is achieved by a function VK ∈ H1

0 (Ω) such that VK − ηK ∈ H1
0 (Ω \K) so that

CapΩ(K) =

∫
Ω

|∇VK |2 dx ,

where VK (capacitary potential) is the unique solution of the Dirichlet problem ∆VK = 0 in Ω \K ,
VK = 0 on ∂Ω ,
VK = 1 on K .

(1.2)

By saying that VK solves (1.2) we mean that VK ∈ H1
0 (Ω), VK − ηK ∈ H1

0 (Ω \K), and∫
Ω\K
∇VK · ∇φdx = 0 ∀φ ∈ H1

0 (Ω \K).

Moreover, if Ω and K are sufficiently regular (for example Lipschitz), one can interpret the boundary conditions
of problem (1.2) in the trace sense (cf., e.g., Costabel [15]).

It is well-known that the spectrum of the Dirichlet-Laplacian on the bounded domain Ω does not change if
we remove a compact subset K of zero capacity (cf., e.g., Rauch and Taylor [48]). If we denote by

0 < λ1(Ω) < λ2(Ω) ≤ · · · ≤ λN (Ω) ≤ . . .

and

0 < λ1(Ω \K) < λ2(Ω \K) ≤ · · · ≤ λN (Ω \K) ≤ . . .

the sequences of the eigenvalues of the Dirichlet-Laplacian in Ω and in Ω \K, respectively, then Rauch and
Taylor [48] also proved that the Nth eigenvalue λN (Ω \K) of the Dirichlet-Laplacian in Ω \K is close to λN (Ω)
if and only if the capacity CapΩ(K) of K in Ω is small.

The result by Rauch and Taylor [48] can be seen as a continuity result for the eigenvalues with respect to
the capacity. On the other hand, a higher regularity result holds. Indeed, Courtois [16] has investigated the
behavior of the spectrum of the Dirichlet-Laplacian in X \A, where X is a closed Riemannian manifold and A
a “small” compact subset. In particular, he has shown that if K ⊆ Ω is compact and CapΩ(K) is small then
the function

λN (Ω \K)− λN (Ω) (1.3)

is differentiable with respect to CapΩ(K). Therefore, one can obtain asymptotic expansions for the difference
in (1.3) in terms of the capacity CapΩ(K).

If, for example, λN (Ω) is simple, then in order to obtain more refined asymptotic expansions of the difference
λN (Ω \K)− λN (Ω), one can take into account also the behavior of the corresponding eigenfunction uN . More
precisely, one can replace the capacity CapΩ(K) by the so-called uN -capacity CapΩ(K,uN ).

So, if u is a function in H1
0 (Ω), we introduce the u-capacity by setting

CapΩ(K,u) ≡ inf

{∫
Ω

|∇f |2 dx : f ∈ H1
0 (Ω) and f − u ∈ H1

0 (Ω \K)

}
. (1.4)



ASYMPTOTIC BEHAVIOR OF U-CAPACITIES AND SINGULAR PERTURBATIONS 3

The infimum in (1.4) is achieved by a function VK,u which is the unique solution of the Dirichlet problem

 ∆VK,u = 0 in Ω \K ,
VK,u = 0 on ∂Ω ,
VK,u = u on K ,

(1.5)

so that

CapΩ(K,u) =

∫
Ω

|∇VK,u|2 dx .

As above, by saying that VK,u solves (1.5) we mean that VK,u ∈ H1
0 (Ω), VK − u ∈ H1

0 (Ω \K), and

∫
Ω\K
∇VK,u · ∇φdx = 0 ∀φ ∈ H1

0 (Ω \K).

Definition (1.4) can be extended to H1(Ω) functions, by setting, for any u ∈ H1(Ω), CapΩ(K,u) ≡
CapΩ(K, ηKu) being ηK as in (1.1).

Such an object can be successfully employed in order to compute asymptotic expansions of (simple) eigenval-
ues. Indeed, the following result holds (cf. Proof of Theorem 1.2 in Courtois [16] and Abatangelo, Felli, Hillairet,
and Léna [1], Thm. 1.4).

Theorem 1.1. Let λN (Ω) be a simple eigenvalue of the Dirichlet-Laplacian in a bounded, connected, and open
set Ω. Let uN be a L2(Ω)-normalized eigenfunction associated to λN (Ω) and let (Kε)ε>0 be a family of compact
sets contained in Ω concentrating to a compact set K with CapΩ(K) = 0. Then

λN (Ω \Kε) = λN (Ω) + CapΩ(Kε, uN ) + o(CapΩ(Kε, uN )) , as ε→ 0 . (1.6)

The aim of this paper is twofold. On one hand, we wish to investigate the asymptotic behavior of CapΩ(Kε, u)
as ε→ 0, when Kε = εω (with ω a sufficiently regular open set) and u a generic function. On the other hand,
we want to combine such asymptotic analysis with the formula (1.6) of Theorem 1.1 and obtain asymptotic
expansions of λN (Ω \ (εω)) where the dependence both on the structure of the normalized eigenfunction uN
around 0 and on the geometry of ω is explicit. We emphasize that in our case, the limit compactK of Theorem 1.1
consists of just one point, namely {0}, and therefore the corresponding capacity is equal to zero.

1.1. Asymptotic behavior of u-capacities

We will be working in the frame of Schauder classes and thus, in order to introduce the geometric setting of
the paper, we now fix

α ∈]0, 1[ ,

and we assume that

Ω and ω are open bounded connected subsets of R2 of

class C1,α such that R2 \ Ω and R2 \ ω are connected,

and such that the origin 0 of R2 belongs both to Ω and ω.

(1.7)
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For the definition of functions and sets of the Schauder classes C0,α and C1,α we refer for example to Section 6.2
of Gilbarg and Trudinger [24]. Condition (1.7) implies that there exists a real number ε0 such that

ε0 > 0 and εω ⊆ Ω for all ε ∈]− ε0, ε0[ .

Then we denote by Ωε the perforated domain defined by

Ωε ≡ Ω \ (εω) ∀ε ∈]− ε0, ε0[ .

Clearly, Ωε is an open bounded connected subset of R2 of class C1,α for all ε ∈] − ε0, ε0[\{0}. Moreover, the
boundary ∂Ωε of Ωε is the union of the two connected components ∂Ω and ∂(εω) = ε∂ω, for all ε ∈]− ε0, ε0[.
We also note that Ω0 = Ω \ {0}.

Then we assume that

u ∈ H1(Ω) is analytic in a neighborhood of 0. (1.8)

We are interested in studying the behavior of CapΩ(εω, u) as ε tends to 0. More precisely, our aim is to obtain as
much accurate and constructive as possible expansions for CapΩ(εω, u) in terms of the parameter ε. Moreover,
besides the dependence on ε, we want to highlight the effect of the geometry of the problem (i.e., Ω and ω) and
of the function u on CapΩ(εω, u).

As we shall see, to reach this goal, one can try to follow different strategies.

1.1.1. Asymptotic behavior of the capacity and conformal mappings

A standard method to convert a boundary value problem for the Laplace equation defined in a generic
Jordan domain with one hole into a (possibly) easier one is to exploit conformal mapping theory. In this way,
one can transform the original problem into a boundary value problem defined in an annular domain of the type
A(r, 1) ≡ {z ∈ C : r < |z| < 1} for some r > 0. Then one can try to find explicit formulas for the solution of the
transformed problem in A(r, 1) and finally to exploit those formulas for the representation of the solution of
the original problem. Clearly, an approach of this type can be applied also to the computation of the capacity
CapΩ(εω), since it is defined by means of the solution of a Dirichlet problem for the Laplacian with locally
constant boundary data.

So we identify R2 with the complex plane C and we assume that ∂Ω and ∂ω are the image of two simple
closed curves ζo and ζi of class C1,α from the boundary ∂D of the unit disk D to C. By the Riemann Mapping
Theorem, one deduces that for each ε ∈]− ε0, ε0[\{0} there exist a unique r[ε] ∈]0, 1[ and a unique holomorphic
homeomorphism g[ε] from the set A(r[ε], 1) onto Ωε such that the map g[ε] can be extended to an element of
class C1,α(A(r[ε], 1),C) (which we still denote by g[ε]) and such that g[ε](1) = ζo(1) (cf. Lanza de Cristoforis
and Rogosin [34], Thm. 3.1). Moreover, g[ε] is a homeomorphism of A(r[ε], 1) onto Ωε. Now we observe that if
we compose the solution of  ∆Vr[ε] = 0 in A(r[ε], 1) ,

Vr[ε] = 0 on ∂D ,
Vr[ε] = 1 on r[ε]∂D

(1.9)

with the map g(−1)[ε] we obtain an harmonic function in Ωε, vanishing on ζo(∂D) = ∂Ω and equal to 1 on
εζi(∂D) = ε∂ω. On the other hand, by a direct computation one verifies that the solution of problem (1.9) is
delivered by

Vr[ε](z) ≡
log |z|
log r[ε]

∀z ∈ A(r[ε], 1) .
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As a consequence, the capacitary potential Vεω can be represented as

Vεω(z) ≡ log |g(−1)[ε](z)|
log r[ε]

∀z ∈ Ωε .

Then one obtains the following formula for the capacity CapΩ(εω)

CapΩ(εω) = − 2π

log r[ε]
∀ε ∈]− ε0, ε0[\{0} .

Therefore, if we want to understand the behavior of CapΩ(εω) as ε→ 0 we need to investigate r[ε] for ε close to
0. On the other hand, by Lanza de Cristoforis [30, 31], we know that there exist ε1 ∈]0, ε0[ and a real analytic
function R from ]− ε1, ε1[ to ]0,+∞[ such that

r[ε] = εR[ε] ∀ε ∈]0, ε1[ .

Moreover, R[0] > 0 and the term R[0] depends on the geometry of ∂Ω = ζo(∂D) and of ∂ω = ζi(∂D).
Accordingly, we deduce the formula

CapΩ(εω) = − 2π

log ε+ logR[ε]
∀ε ∈]0, ε1[ . (1.10)

Then by (1.10) we have that

CapΩ(εω) = − 1

log ε

2π(
1 + 1

log ε logR[ε]
) ∀ε ∈]0, ε1[ .

Hence, there exists a real analytic map R̃ from a neighborhood of (0, 0) in R2 with values in R such that

CapΩ(εω) = R̃
[
ε,

1

log ε

]
,

for ε positive and close to 0. By the analyticity of R̃, one immediately deduces that

CapΩ(εω) =
∑

(k,l)∈N2

γ(k,l)ε
k
( 1

log ε

)l
, (1.11)

for ε positive and small enough, and where the double power series
∑

(k,l)∈N2 γ(k,l)x
k
1x

l
2 converges absolutely for

(x1, x2) in a neighborhood of (0, 0).
Even if one could explicitly deduce from Lanza de Cristoforis [30, 31] the limiting value R[0], we emphasize

that no attempt has been done so far in order to derive from the real analyticity of R̃ the exact value of all
the coefficients γ(k,l) appearing in (1.11). Moreover, if one tries to apply this method for the computation of
the u-capacity CapΩ(εω, u), one faces the problem to find an explicit solution of problem (1.9) with the third
condition replaced by

Vr[ε](z) = u(g[ε]z) ∀z ∈ r[ε]∂D .

Then clearly such a dependence on g[ε] and on u of the Dirichlet datum on the hole makes even more involved
the computation of the coefficients of the corresponding expansion of the capacity. Therefore, in order to provide



6 L. ABATANGELO ET AL.

an explicit and constructive expansion for CapΩ(εω, u) we prefer to follow a different strategy, which does not
relies on conformal mappings.

1.1.2. Asymptotic expansion for the capacity

Boundary value problems in domains with small holes have been largely investigated in the frame of asymp-
totic analysis. In order to study these problems several asymptotic expansion techniques have been developed:
for example, the method of matching outer and inner asymptotic expansions proposed by Il’in (cf., e.g., [27]),
the compound asymptotic expansion method of Maz’ya, Nazarov, and Plamenevskij [39, 40], and the asymptotic
analysis of Green’s kernels in domains with small cavities by mesoscale asymptotic approximations of Maz’ya,
Movchan, and Nieves [36]. In Bonnaillie-Noël and Dambrine [9] and in Bonnaillie-Noël, Dambrine, and Lacave
[10], the authors have exploited the method of multiscale asymptotic expansions to analyze the two-dimensional
Dirichlet-Laplacian in a domain with moderately close small perforations. The Dirichlet problem in a planar
domain with a small hole has received attention also from the numerical point of view. A numerical approach
is proposed, e.g., in Babuška, Soane, and Suri [5] and Chesnel and Claeys [13]. Problems in perforated domains
find several applications, as an example, in the frame of shape and topological optimization (cf. Novotny and
Soko lowsky [42]) and in inverse problems (cf. Ammari and Kang [3] and Ammari, Kang, and Lee [4]).

An asymptotic expansion of the capacity as the hole collapses to a point can be deduced by the analysis of
energy integrals in perforated domains that can be found in Section 8.1 of Maz’ya, Nazarov, and Plamenevskij
[39]. In particular, they prove that

CapΩ(εω) = − 2π

log ε+ 2π
(
H(0,0) +N

) + o(εδ) , ∀δ > 0 , (1.12)

for ε small and positive, where e2πN is the logarithmic capacity (or outer conformal radius) of ω and H(0,0) is
the value at x = 0 of the unique harmonic function h in Ω such that h(x) = − log |x|/(2π) for all x ∈ ∂Ω. In
particular, by combining (1.10) and (1.12), we deduce that

logR[0] = 2π
(
H(0,0) +N

)
.

We also note that expansions for the capacity for the case of several small inclusions can be deduced from
the corresponding expansion of the capacitary potential obtained in Section 3.2.2 of Maz’ya, Movchan, and
Nieves [36]. Moreover, one could produce an asymptotic expansion of CapΩ(εω) in the higher-dimensional case.
However, in such a case, the asymptotic behavior would differ from that of (1.12) since the logarithmic term
would not be present in the asymptotic expansion in dimension greater than or equal to three.

Our aim is now two-fold. On the one hand we want to extend the study of the asymptotic behavior of
CapΩ(εω) to the u-capacity CapΩ(εω, u). On the other hand, we want to represent CapΩ(εω, u) in terms of
convergent power series whose coefficients can be explicitly constructed by solving given systems of integral
equations on fixed domains (not depending on ε). As we shall see, the computation of higher order terms in the
expansion of CapΩ(εω, u) is necessary if for example u and its derivatives up to a certain order vanish at the
origin of R2.

1.1.3. The functional analytic approach

To reach our goal, we adopt the Functional Analytic Approach proposed by Lanza de Cristoforis [30, 31] for
the analysis of singular perturbation problems in perforated domains. This method indeed allows to prove real
analyticity properties for the solution of boundary value problems in perforated domains for elliptic equations
(see Lanza de Cristoforis [32] for the Laplace equation) and systems (as the Lamé equations in Dalla Riva and
Lanza de Cristoforis [18] and the Stokes system in Dalla Riva [17]). Therefore, by this approach, one can deduce
the possibility to expand the solution or related quantities in convergent power series. Then, to construct these
power series, we follow the strategy of [20] and we compute the coefficients in terms of the solutions of recursive
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systems of integral equations and of quantities related to the data of the problem (such as the unperturbed
domain Ω, the inclusion ω, and the function u).

We now observe that by assumption (1.8) on the analyticity of u and by analyticity results for the composition
operator (cf. Böhme and Tomi [7], p. 10, Henry [26], p. 29, Valent [53], Thm. 5.2, p. 44), possibly shrinking ε0,
there exists a real analytic map U# from ]− ε0, ε0[ to C1,α(∂ω) such that

u(εt) = U#[ε](t) ∀t ∈ ∂ω , ∀ε ∈]− ε0, ε0[ (1.13)

(for the definition and properties of analytic maps, we refer to Section 15 of Deimling [21]). Then for all
ε ∈]− ε0, ε0[\{0}, we denote by uε the unique solution in C1,α(Ωε) of the problem ∆uε = 0 in Ωε ,

uε(x) = 0 for all x ∈ ∂Ω ,
uε(x) = U#[ε](x/ε) for all x ∈ ε∂ω .

(1.14)

Clearly,

Vεω,u(x) = uε(x) , ∀x ∈ Ωε ,∀ε ∈]− ε0, ε0[\{0} ,
Vεω,u(x) = u(x) , ∀x ∈ εω , ∀ε ∈]− ε0, ε0[\{0} .

Accordingly, by the Divergence Theorem, we have

CapΩ(εω, u) =

∫
Ωε

|∇uε|2 dx+

∫
εω

|∇u|2 dx

= −
∫
∂(εω)

∂uε
∂νεω

uε dσ + ε2

∫
ω

(∇u)(εt) · (∇u)(εt) dt

= −
∫
∂ω

νω(t) · ∇
(
uε(εt)

)
u(εt) dσt + ε2

∫
ω

(∇u)(εt) · (∇u)(εt) dt ,

(1.15)

for all ε ∈] − ε0, ε0[\{0}. Here above the symbols νω and νεω denote the outward unit normal to ∂ω and to
∂(εω), respectively.

As we have mentioned, our goal is to provide a fully constructive and complete asymptotic expansion for
CapΩ(εω, u) as ε→ 0. In order to do so, we follow the methods developed in [20] for the solution of the Dirichlet
problem in a planar perforated domain. However, in [20] the Dirichlet datum on the boundary of the hole ∂(εω)
is given by rescaling a fixed function g defined on ∂ω, i.e., by considering the function g(·/ε). Here, instead, the
boundary condition on ∂(εω) is given by the trace of u on ∂(εω). Such a trace can be expressed as u(ε(x/ε)),
that is the rescaling of the ε-dependent function U#[ε](·) = u(ε·). Thus we will need to take into account also
such a dependence. By (1.15), the quantity CapΩ(εω, u) can be expressed as the sum of

ε2

∫
ω

(∇u)(εt) · (∇u)(εt) dt (1.16)

and of (the opposite of) the integral on ∂ω of the function

t 7→ νω(t) · ∇
(
uε(εt)

)
u(εt) . (1.17)

By the analyticity of u in a neighborhood of 0, one can easily show that the term in (1.16) is a real analytic
function of ε around 0 and accordingly it can be expanded in power series of ε. On the other hand, the integral
on ∂ω of the function in (1.17) needs a more careful analysis. Thus, as a preliminary step, we will need to
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provide an expansion for the function in (1.17). Then, by integrating such an expansion, we will be able to
obtain the corresponding result for CapΩ(εω, u). Namely, we show that

CapΩ(εω, u) =−
(
u(0)

)2
limt→∞Hi

0(t)−Ho
0 (0) + (2π)−1 log |ε|

+ ε

( ∞∑
n=1

εn−1
n+1∑
l=0

c(n,l)

(limt→∞Hi
0(t)−Ho

0 (0) + (2π)−1 log |ε|)l

)
,

for ε close to 0, where Ho, Hi are solutions to some auxiliary Dirichlet boundary value problems in Ω and in
R2 \ω, respectively (see (5.2) and (5.3)), and {c(n,l)}(n,l)∈N2

l≤n+1

is a family of real numbers which we explicitly define

(cf. Thm. 5.2 and Rem. 5.3).
In particular, under vanishing assumption for u, we are able to prove the validity of the following result (cf.

Thm. 5.4 and Rem. 5.5 below).

Theorem 1.2. Let assumption (1.8) hold. Assume that there exists k ∈ N \ {0} such that

Dγu(0) = 0 ∀|γ| < k ,

and that there exists β ∈ N2 such that |β| = k and

Dβu(0) 6= 0 .

Then

CapΩ(εω, u) = ε2k

(∫
R2\ω

|∇uk|
2 dt+

∫
ω

|∇u#,k|
2 dt

)
+ o(ε2k) as ε→ 0 ,

where u#,k is defined as in Proposition 4.2 and uk is the unique solution of problem (5.18).

As we shall see, the terms
∫
R2\ω |∇uk|

2 dt and
∫
ω
|∇u#,k|2 dt depend both on the geometric properties of

the set ω and on the behavior at 0 of the function u (but not on Ω). We note that in the present paper, we
confine ourselves to the case of dimension two. Our techniques for studying the asymptotic behavior of the
capacity CapΩ(εω, u) are based on potential theory for the Laplace equation. By such a method, the analysis
in dimension two of a Dirichlet problem as the one in (1.14) presents some differences with that of the same
problem in dimension higher than two. This is mainly because of the different aspect of the fundamental solution:
(a constant which multiplies) a logarithmic function of the norm in dimension two and a natural power of the
inverse of the norm in dimension higher than or equal to three. The results of the present paper rely on the
asymptotic expansions of [20] for the solution of the Dirichlet problem for the Laplacian in a perforated planar
domain. One could adapt the results of [20] to the case of dimension higher than two and one could expand
CapΩ(εω, u) as a power series in ε. Indeed, one may show that CapΩ(εω, u) depends real analytically on ε in a
neighborhood of 0 (cf. [32], Thm. 6.2). Instead, in dimension two, one cannot hope to expand CapΩ(εω, u) as a
power series in ε since, as it is well known, a logarithmic term appears.

1.2. Asymptotic expansions of the eigenvalues

The asymptotic behavior of the eigenvalues of the Laplacian in domains with small holes has been long
investigated by several authors.

One of the first contributions is probably due to Samarskĭı [49] that showed that the perturbation of an
eigenvalue λN for the Dirichlet-Laplacian when a small set ωε is removed from a subset Ω of R3 admits the
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following estimate

∆λN ≤ 4πκ2
NCapΩ(ωε) +O(CapΩ(ωε)

2) , (1.18)

where κN is the maximum value of the Nth normalized eigenfunction on ωε (cf. Maz’ya, Nazarov, and
Plamenevskĭı [38]).

Later on, in the paper [48], Rauch and Taylor studied the behavior of the eigenvalues and eigenfunctions of
the Laplacian in a domain Ω where a “thin” set is removed. A consequence of their (more general) results is
that if Ω and ω are sufficiently regular bounded open subsets of Rn containing the origin, and λN (·) is the Nth
eigenvalue of Dirichlet-Laplacian then

λN (Ω \ (εω))→ λN (Ω) as ε→ 0+ . (1.19)

In view of the estimate (1.18) of Samarskĭı [49] and the convergence result (1.19) of Rauch and Taylor [48],
many authors have then started to compute asymptotic expansions for the eigenvalues of the Laplacian (under
various boundary conditions) in domains with small holes.

For example, Ozawa has devoted a series of papers (cf., e.g., [43–47]) to the computation of asymptotic
expansions for the eigenvalues of the Laplacian, under many different boundary conditions, when we make a
small perforation. In particular, Ozawa has shown in [45] that if n = 2 and ω is the unit ball B2(0, 1) then

λN (Ω \ (εB2(0, 1))) = λN (Ω)− 2π(log ε)−1(uN (0))2 +O((log ε)−2) as ε→ 0+ , (1.20)

where λN (Ω) is a simple eigenvalue for the Dirichlet-Laplacian in Ω and uN a corresponding L2(Ω)-normalized
eigenfunction.

Moreover, Maz’ya, Nazarov, and Plamenevskĭı (see, e.g., [38, 39], Chap. 9) have produced asymptotic expan-
sions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. For
example, in the three dimensional case, they have shown in [38] that for the first eigenvalue of the Laplacian
with Dirichlet condition we have

λ1(Ω \ (εω)) = λ1(Ω) + 4πCap(ω)(u1(0))2ε+ [4πu1(0)Cap(ω)]2

×
{

Γ(0) +
u1(0)

4π

∫
Ω

u1(x)|x|−1 dx
}
ε2 +O(ε3) as ε→ 0+ ,

(1.21)

where u1 is a corresponding L2(Ω)-normalized eigenfunction in Ω, Cap(ω) the harmonic capacity of ω and Γ
is a function defined through an auxiliary boundary value problem. We note that since the first eigenfunction
u1 does not vanish inside Ω, u1(0) 6= 0 and thus the asymptotic expansion in (1.21) is sharp. However, this in
general is not the case if we consider different eigenvalues λN . In particular, we note that if we consider the
asymptotic expansion of (1.20), then if the origin belongs to a nodal line of the eigenfunction uN , we have
uN (0) = 0. Therefore (1.20) reduces to

λN (Ω \ (εB2(0, 1))) = λN (Ω) +O((log ε)−2) as ε→ 0+ . (1.22)

As a consequence, in view of (1.22), in case uN (0) = 0 one may need to compute further terms in the asymptotic
expansion.

Subsequently, many authors have started to study the behavior of the spectrum of the Laplacian under
removal of “small” sets in the Riemannian setting. As an example, we mention the works by Besson [6], Chavel
[11], Chavel and Feldman [12], Colbois and Courtois [14], Courtois [16].

As we have already mentioned, one can find in Proof of Theorem 1.2 of Courtois [16] and in Abatangelo,
Felli, Hillairet, and Theorem. 1.4 of Léna [1] an asymptotic formula for the eigenvalues involving the notion of
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u-capacity (see Eq. (1.6) of Thm. 1.1). In particular, if Ω and ω are as in (1.7) and λN (Ω) is simple, this reads
as

λN (Ω \ (εω)) = λN (Ω) + CapΩ(εω, uN ) + o(CapΩ(εω, uN )) as ε→ 0+ . (1.23)

As a consequence of (1.23), in order to find an asymptotic expansion in the parameter ε we need to compute
CapΩ(εω, uN ). Abatangelo, Felli, Hillairet, and Léna [1] have computed such quantity for specific sets as ball and
segment and they have shown explicitly the dependence of CapΩ(εω, uN ) on the behavior of the eigenfunction
uN around the origin. In particular if n = 2 and ω = B2(0, 1), they have proved that

CapΩ(εB2(0, 1), uN ) =

{
2π
| log ε| (uN (0))2(1 + o(1)) , if k = 0 ,

2kπε2kb2(1 + o(1)) , if k ≥ 1 ,

where k ∈ N and b ∈ R \ {0} are such that

r−ku(r(cos t, sin t))→ b sin(a− kt) in C1([0, 2π]) ,

as r → 0+ for some a ∈ [0, π[ .
Here, instead, we wish to emphasize the interaction with the geometry of the hole and the structure of the

eigenfunction near 0. In order to do so, we confine to the two-dimensional case and we exploit the power series
expansion for CapΩ(εω, u) of Section 5, with u = uN and where ω is a quite general regular open set as in (1.7).

Under the assumption that the Nth eigenvalue λN (Ω) for the Dirichlet-Laplacian is simple, if uN is a L2(Ω)-
normalized eigenfunction related to λN (Ω) satisfying some vanishing assumption, we are able to prove the
following (cf. Thm. 6.2).

Theorem 1.3. Let the Nth eigenvalue λN (Ω) for the Dirichlet-Laplacian be simple and let uN be a L2(Ω)-
normalized eigenfunction related to λN (Ω). Assume that there exists k ∈ N \ {0} such that DγuN (0) = 0 for all
|γ| < k and that there exists β ∈ N2 such that |β| = k and Dβu(0) 6= 0. Then

λN (Ω \ (εω)) = λN (Ω) + ε2kC(uN , ω) + o(ε2k) as ε→ 0+ , (1.24)

where C(uN , ω) an explicitly defined positive constant depending on uN and on ω (cf. Sect. 6).

One of the consequences of our asymptotic expansion (1.24) of Theorem 1.3 is that it gives the order of the
difference

λN (Ω \ (εω))− λN (Ω)

for a wide family of holes ω. A second important consequence is that the constant C(uN , ω) in (1.24) is explicitly
defined in terms of solutions to Dirichlet problems in ω and R2 \ ω for the Laplace equation. The Dirichlet data
depend on the Taylor expansion of the normalized eigenfunction at 0. In particular, it shows the dependence of
C(uN , ω) both on uN and ω and thus provides a starting point on the investigation of “optimal” inclusions ω
for such constant (under different constraints).

We note that in the last years the investigation of this type of problems has been carried out in many different
directions. Maz’ya, Movchan, and Nieves have [37] have constructed the asymptotic approximation to the first
eigenvalue and corresponding eigenfunctions of Laplace operator inside a domain containing a cloud of small rigid
inclusions. Lanza de Cristoforis [33] has considered a Neumann eigenvalue problem and shown representation
formulas in terms of analytic maps and log ε (depending on the dimension n). Sharp estimates when a ball is
removed at the vertex of a sector are contained in Lamberti and Perin [29]. Henrot [25] has considered perforated
domains in the frame of extremum problems for eigenvalues of elliptic operators. Finally, Ammari, Kang, and
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Lee [4] have developed an asymptotic theory for eigenvalue problems under domain perturbations by a method
based on potential theory and on the Gohberg-Sigal theory of meromorphic operator-valued functions.

1.3. Organization of the paper

The paper is organized as follows. Section 2 is a section of preliminaries where we provide an integral equation
formulation for the boundary value problem defining the u-capacity. In Sections 3 and 4 we compute power
series expansions for some auxiliary functions. Section 5 contain our main result on the power series expansion
of the u-capacity of a small set. In Section 6, we compute the asymptotic expansion of an eigenvalue of the
Dirichlet-Laplacian in the perforated domain Ω \ (εω) as the size ε of the hole εω tends to 0 and in Section 7 we
discuss optimal locations of small holes. Section 8 is devoted to some numerical computations on the behavior
of the eigenvalues of an ellipse with a small hole and Section 9 to their analytical justification.

2. Preliminaries

2.1. Classical notions of potential theory

In order to analyze the behavior of the solution to problem (1.14) as ε → 0 we shall exploit an approach
based on potential theory, which allows to convert a boundary value problem into a set of integral equations
defined on the boundary of the domain. The method relies on the representation of the solution in terms of
some specific integral operators, namely the single and the double layer potentials.

In order to define these operators, we denote by S the fundamental solution of ∆ ≡
∑2
j=1 ∂

2
j in R2, that is

the function from R2 \ {0} to R defined by

S(x) ≡ 1

2π
log |x| ∀x ∈ R2 \ {0} .

Now let O be an open bounded subset of R2 of class C1,α. Let φ ∈ C0,α(∂O). Then v[∂O, φ] denotes the
single layer potential with density φ, i.e.,

v[∂O, φ](x) ≡
∫
∂O

φ(y)S(x− y) dσy ∀x ∈ R2,

where dσ denotes the arc length element on ∂O. As is well known, v[∂O, φ] is a continuous function from R2

to R. The restriction v+[∂O, φ] ≡ v[∂O, φ]|O belongs to C1,α(O). Moreover, if we denote by C1,α
loc (R2 \ O) the

space of functions on R2 \O whose restrictions to U belong to C1,α(U) for all open bounded subsets U of R2 \O,
then v−[∂O, φ] ≡ v[∂O, φ]|R2\O belongs to C1,α

loc (R2 \ O).
If ψ ∈ C1,α(∂O), then the double layer potential is denoted by w[∂O, ψ]:

w[∂O, ψ](x) ≡ −
∫
∂O

ψ(y) νO(y) · ∇S(x− y) dσy ∀x ∈ R2 ,

where νO denotes the outer unit normal to ∂O and the symbol · denotes the scalar product in R2. Then the
restriction w[∂O, ψ]|O extends to a function w+[∂O, ψ] of C1,α(O) and the restriction w[∂O, ψ]|R2\O extends to

a function w−[∂O, ψ] of C1,α
loc (R2 \ O).

The single and the double layer potentials will be used to construct solutions to boundary value problems
for the Laplace equation. To do so, we need to understand their boundary behavior. Accordingly, to describe
the properties of the trace of the double layer potential on ∂O and of the normal derivative of the single layer
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potential, we introduce the boundary integral operators WO and W ∗O:

WO[ψ](x) ≡ −
∫
∂O

ψ(y) νO(y) · ∇S(x− y) dσy ∀x ∈ ∂O ,

for all ψ ∈ C1,α(∂O), and

W ∗O[φ](x) ≡
∫
∂O

φ(y) νO(x) · ∇S(x− y) dσy ∀x ∈ ∂O ,

for all φ ∈ C0,α(∂O). Then WO is a compact operator from C1,α(∂O) to itself and W ∗O is a compact operator
from C0,α(∂O) to itself (see Schauder [50, 51]). The operators WO and W ∗O are adjoint one to the other with
respect to the duality on C1,α(∂O)×C0,α(∂O) induced by the inner product of the Lebesgue space L2(∂O) (cf.,
e.g., Kress [28], Chap. 4). For the theory of dual systems and the corresponding Fredholm Alternative Principle,
we refer the reader to Kress [28] and Wendland [54, 55]. Moreover,

w±[∂O, ψ]|∂O = ±1

2
ψ +WO[ψ] ∀ψ ∈ C1,α(∂O) ,

νO · ∇v±[∂O, φ]|∂O = ∓1

2
φ+W ∗O[φ] ∀φ ∈ C0,α(∂O)

(see, e.g., Folland [22], Chap. 3).
Finally, we shall need to consider subspaces of C0,α(∂O) and of C1,α(∂O), consisting of functions with zero

integral on ∂O. Accordingly, we set

Ck,α(∂O)0 ≡

{
f ∈ Ck,α(∂O) :

∫
∂O

f dσ = 0

}
for k = 0, 1 .

2.2. An integral formulation of the boundary value problem

Our aim is now to convert problem (1.14) into a system of integral equations and we do so by following the
strategy of Lanza de Cristoforis [32] and of [20]. The first attempt to solve (1.14) would be to represent the
solution in terms of a double layer potential. However, due to the presence of a hole in the domain, this in
general is not possible for all boundary data and we may need to use, for example, also single layer potentials
(cf. e.g., Folland [22], Chap. 3). Thus we need to split the problem in a part which can be solved in terms of
the double layer potential and a part which will be represented by a single layer potential. This will be done via
Fredholm Theory by characterizing the image of the trace of the double layer potential as the orthogonal to the
kernel of the adjoint operator. The dimension of the kernel equals the number of holes in Ωε, and therefore, in
this specific case, is equal to one. A real analyticity result upon ε for the generator of the kernel is provided by
Proposition 2.1 (see also Rem. 2.2). Now we proceed as in [20] and we introduce the map M ≡ (Mo,M i,M c)
from ]− ε0, ε0[×C0,α(∂Ω)× C0,α(∂ω) to C0,α(∂Ω)× C0,α(∂ω)0 × R by setting

Mo[ε, ρo, ρi](x) ≡ 1

2
ρo(x) +W ∗Ω[ρo](x) +

∫
∂ω

ρi(s) νΩ(x) · ∇S(x− εs) dσs ∀x ∈ ∂Ω ,

M i[ε, ρo, ρi](t) ≡ 1

2
ρi(t)−W ∗ω [ρi](t)− ε

∫
∂Ω

ρo(y) νω(t) · ∇S(εt− y) dσy ∀t ∈ ∂ω ,

M c[ε, ρo, ρi] ≡
∫
∂ω

ρi dσ − 1 ,
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for all (ε, ρo, ρi) ∈]− ε0, ε0[×C0,α(∂Ω)×C0,α(∂ω). Then we can prove the following result of Section 3 of Lanza
de Cristoforis in [32] (see also [20], Prop. 4.1).

Proposition 2.1. The following statements hold.

(i) The map M is real analytic.
(ii) If ε ∈] − ε0, ε0[, then there exists a unique pair (ρo[ε], ρi[ε]) ∈ C0,α(∂Ω) × C0,α(∂ω) such that

M [ε, ρo[ε], ρi[ε]] = 0.
(iii) The map from ]− ε0, ε0[ to C0,α(∂Ω)× C0,α(∂ω) which takes ε to (ρo[ε], ρi[ε]) is real analytic.

Remark 2.2. For each ε ∈] − ε0, ε0[\{0}, let τε be defined by τε(x) ≡ ρo[ε](x) for all x ∈ ∂Ω and τε(x) ≡
|ε|−1ρi[ε](x/ε) for all x ∈ ∂(εω). Then

1

2
τε +W ∗Ωε

[τε] = 0 ,

∫
∂(εω)

τε dσ = 1 ,

for all ε ∈]− ε0, ε0[\{0}.

We now turn to consider the part which can be actually solved by the double layer potential. Indeed, by
standard Fredholm theory and classical potential theory, one sees that for ε ∈]− ε0, ε0[\{0} the boundary datum
gε defined by

gε(x) ≡ 0 ∀x ∈ ∂Ω , gε(x) = U#[ε](x/ε)−
∫
∂(εω)

U#[ε](x/ε)τε(x) dσx ∀x ∈ ∂(εω) ,

belongs to the image of the trace of the double layer potential (for the definition of U# see (1.13)). Then, as in
[20], we define the map Λ ≡ (Λo,Λi) from ]− ε0, ε0[×C1,α(∂Ω)× C1,α(∂ω)0 to C1,α(∂Ω)× C1,α(∂ω) by

Λo[ε, θo, θi](x) ≡ 1

2
θo(x) +WΩ[θo](x)

+ ε

∫
∂ω

θi(s) νω(s) · ∇S(x− εs) dσs ∀x ∈ ∂Ω ,

Λi[ε, θo, θi](t) ≡ 1

2
θi(t)−Wω[θi](t) + w[∂Ω, θo](εt)

− U#[ε](t) +

∫
∂ω

U#[ε]ρi[ε] dσ ∀t ∈ ∂ω ,

for all (ε, θo, θi) ∈]− ε0, ε0[×C1,α(∂Ω)×C1,α(∂ω)0. Then we have the following result of Section 4 of Lanza de
Cristoforis [32] on the regularity of Λ (cf. [20], Prop. 4.3).

Proposition 2.3. The following statements hold.

(i) The map Λ is real analytic.
(ii) If ε ∈] − ε0, ε0[, then there exists a unique pair (θo[ε], θi[ε]) ∈ C1,α(∂Ω) × C1,α(∂ω)0 such that

Λ[ε, θo[ε], θi[ε]] = 0.
(iii) The map from ]− ε0, ε0[ to C1,α(∂Ω)× C1,α(∂ω)0 which takes ε to (θo[ε], θi[ε]) is real analytic.

Remark 2.4. For each ε ∈] − ε0, ε0[\{0}, let µε be defined by µε(x) ≡ θo[ε](x) for all x ∈ ∂Ω and µε(x) ≡
θi[ε](x/ε) for all x ∈ ∂(εω). Then

1

2
µε +WΩε

[µε] = gε ,
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for all ε ∈]− ε0, ε0[\{0}.

By summing the double layer potential with density µε (cf. Rem. 2.4) and a convenient multiple of the single
layer potential with density τε (cf. Rem. 2.2), we can recover the solution uε. In particular, by arguing as in
Proposition 4.5 of [20], the following Proposition 2.5 shows how to represent the rescaled function uε(εt) by
means of the functions ρo[ε], ρi[ε], θo[ε], and θi[ε] introduced in Propositions 2.1 and 2.3 (see also Section 5 of
Lanza de Cristoforis [19, 32], Sect. 2.4).

Proposition 2.5. Let ε ∈]− ε0, ε0[\{0}. Then

uε(εt) ≡ w+[∂Ω, θo[ε]](εt)− w−[∂ω, θi[ε]](t)

+

∫
∂ω

U#[ε]ρi[ε] dσ

(
v+[∂Ω, ρo[ε]](εt) + v−[∂ω, ρi[ε]](t) +

log |ε|
2π

)
×
(

1∫
∂ω

dσ

∫
∂ω

v[∂Ω, ρo[ε]](εs) + v[∂ω, ρi[ε]](s) dσs +
log |ε|

2π

)−1

for all t ∈ (ε−1Ω) \ ω.

3. Power series expansions of the auxiliary functions (ρo[ε], ρi[ε])
and (θo[ε], θi[ε]) around ε = 0

As described in the Introduction, an intermediate goal is to provide a series expansion in ε for the integral
over ∂ω of the function

t 7→ νω(t) · ∇
(
uε(εt)

)
u(εt) .

Thus, the idea is first to construct an expansion for νω(t) · ∇
(
uε(εt)

)
u(εt) and then to integrate such an

expansion on ∂ω. Since uε(εt) is represented by means of the auxiliary density functions (ρo[ε], ρi[ε]) and
(θo[ε], θi[ε]), the plan is to obtain an expansion for those densities and then to get the one for uε(εt) by
exploiting the representation formula of Proposition 2.5.

In the following Proposition 3.1 (see [20], Prop. 5.1), we present a power series expansion around 0 of
(ρo[ε], ρi[ε]). Throughout the paper, if j ∈ {1, 2}, then (∂jF )(y) denotes the partial derivative with respect to
xj of the function F (x) ≡ F (x1, x2) evaluated at y ≡ (y1, y2) ∈ R2.

Proposition 3.1. Let (ρo[ε], ρi[ε]) be as in Proposition 2.1 for all ε ∈] − ε0, ε0[. Then there exist ερ ∈]0, ε0[
and a sequence {(ρok, ρik)}k∈N in C0,α(∂Ω)× C0,α(∂ω) such that

ρo[ε] =

+∞∑
k=0

ρok
k!
εk and ρi[ε] =

+∞∑
k=0

ρik
k!
εk ∀ε ∈]− ερ, ερ[ ,

where the two series converge uniformly for ε ∈]− ερ, ερ[ in C0,α(∂Ω) and in C0,α(∂ω), respectively. Moreover,
the pair of functions (ρo0, ρ

i
0) is the unique solution in C0,α(∂Ω)× C0,α(∂ω) of the following system of integral

equations

1

2
ρo0(x) +W ∗Ω[ρo0](x) = −νΩ(x) · ∇S(x) ∀x ∈ ∂Ω ,

1

2
ρi0(t)−W ∗ω [ρi0](t) = 0 ∀t ∈ ∂ω ,
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∂ω

ρi0 dσ = 1 ,

and for each k ∈ N \ {0} the pair (ρok, ρ
i
k) is the unique solution in C0,α(∂Ω)×C0,α(∂ω) of the following system

of integral equations which involves {(ρoj , ρij)}
k−1
j=0 ,

1

2
ρok(x) +W ∗Ω[ρok](x)

=

k∑
j=0

(
k

j

)
(−1)j+1

j∑
h=0

(
j

h

)
νΩ(x) · (∇∂h1 ∂

j−h
2 S)(x)

∫
∂ω

ρik−j(s)s
h
1s
j−h
2 dσs ∀x ∈ ∂Ω ,

1

2
ρik(t)−W ∗ω [ρik](t)

= k

k−1∑
j=0

(
k − 1

j

)
(−1)j+1

j∑
h=0

(
j

h

)
th1 t

j−h
2 νω(t) ·

∫
∂Ω

ρok−1−j(∇∂h1 ∂
j−h
2 S) dσ ∀t ∈ ∂ω ,∫

∂ω

ρik dσ = 0 .

In Proposition 3.2, instead we determine the coefficients in the power series expansion of (θo[ε], θi[ε]).

Proposition 3.2. Let (θo[ε], θi[ε]) be as in Proposition 2.3 for all ε ∈]− ε0, ε0[. Then there exist εθ ∈]0, ε0[ and
a sequence {(θok, θik)}k∈N in C1,α(∂Ω)× C1,α(∂ω)0 such that

θo[ε] =

∞∑
k=0

θok
k!
εk and θi[ε] =

∞∑
k=0

θik
k!
εk ∀ε ∈]− εθ, εθ[ , (3.1)

where the two series converge uniformly for ε ∈]− εθ, εθ[ in C1,α(∂Ω) and in C1,α(∂ω)0, respectively. Moreover,

(θo0, θ
i
0) = (0, 0) , θo1 = 0 ,

and θi1 is the unique solution in C1,α(∂ω)0 of

1

2
θi1(t)−Wω[θi1](t)

=

1∑
h=0

th1 t
1−h
2 (∂h1 ∂

1−h
2 u)(0)−

1∑
l=0

l∑
h=0

∫
∂ω

sh1s
l−h
2 (∂h1 ∂

l−h
2 u)(0)ρi1−l(s) dσs ∀t ∈ ∂ω ,

(3.2)

and for each k ∈ N \ {0, 1} the pair (θok, θ
i
k) is the unique solution in C1,α(∂Ω) × C1,α(∂ω)0 of the following

system of integral equations which involves {(θoj , θij)}
k−1
j=0 ,

1

2
θok(x) +WΩ[θok](x) (3.3)

= k

k−2∑
j=0

(
k − 1

j

)
(−1)j+1

j∑
h=0

(
j

h

)
(∇∂h1 ∂

j−h
2 S)(x) ·

∫
∂ω

θik−1−j(s) νω(s)sh1s
j−h
2 dσs

∀x ∈ ∂Ω ,
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1

2
θik(t)−Wω[θik](t) =

k−1∑
j=0

(
k

j

)
(−1)j+1

j∑
h=0

(
j

h

)
th1 t

j−h
2

∫
∂Ω

θok−jνΩ · ∇∂h1 ∂
j−h
2 S dσ (3.4)

+

k∑
h=0

(
k

h

)
th1 t

k−h
2 (∂h1 ∂

k−h
2 u)(0)−

k∑
l=0

l∑
h=0

(
k

l

)(
l

h

)∫
∂ω

sh1s
l−h
2 (∂h1 ∂

l−h
2 u)(0)ρik−l(s) dσs

∀t ∈ ∂ω .

Proof. We follow the strategy of Proposition 5.2 in [20]. We first note that the real analyticity of the map which
takes ε to (θo[ε], θi[ε]) (cf. Prop. 2.3 (iii)) imply the existence of εθ and {(θok, θik)}k∈N such that (3.1) holds.
Clearly, by Proposition 2.3 (ii) we have

Λ[ε, θo[ε], θi[ε]] = 0 ∀ε ∈]− ε0, ε0[ .

By computing the derivative with respect to ε in the equality above, we deduce that

∂kε (Λ[ε, θo[ε], θi[ε]]) = 0 ∀ε ∈]− ε0, ε0[ ,∀k ∈ N .

Therefore,

∂kε (Λo[ε, θo[ε], θi[ε]])(x) =
1

2
∂kε θ

o[ε](x) +WΩ[∂kε θ
o[ε]](x) (3.5)

+ ε

k∑
j=0

(
k

j

)
(−1)j

j∑
h=0

(
j

h

)∫
∂ω

∂k−jε θi[ε](s) sh1s
j−h
2 νω(s) · (∇∂h1 ∂

j−h
2 S)(x− εs) dσs

+ k

k−1∑
j=0

(
k − 1

j

)
(−1)j

j∑
h=0

(
j

h

)∫
∂ω

∂k−1−j
ε θi[ε](s) sh1s

j−h
2 νω(s) · (∇∂h1 ∂

j−h
2 S)(x− εs) dσs = 0

∀x ∈ ∂Ω ,

∂kε (Λi[ε, θo[ε], θi[ε]])(t) =
1

2
∂kε θ

i[ε](t)−Wω[∂kε θ
i[ε]](t) (3.6)

−
k∑
j=0

(
k

j

) j∑
h=0

(
j

h

)
th1 t

j−h
2

∫
∂Ω

∂k−jε θo[ε](y) νΩ(y) · (∇∂h1 ∂
j−h
2 S)(εt− y) dσy

−
k∑
h=0

(
k

h

)
th1 t

k−h
2 (∂h1 ∂

k−h
2 u)(εt)

+

k∑
l=0

l∑
h=0

(
k

l

)(
l

h

)∫
∂ω

th1 t
l−h
2 (∂h1 ∂

l−h
2 u)(εt)∂k−lε ρi[ε](t) dσt = 0 ∀t ∈ ∂ω ,

for all ε ∈]− ε0, ε0[ and all k ∈ N, where we understand that
∑k−1
j=0 is omitted for k = 0. By classical properties

of real analytic maps, we have (θok, θ
i
k) = (∂kε θ

o[0], ∂kε θ
i[0]) for all k ∈ N. Therefore, by taking ε = 0 in (3.5)

and (3.6), we deduce that (θo0, θ
i
0) = (0, 0), that θo1 = 0, that θi1 solves equation (3.2), and that (θok, θ

i
k) is a

solution of (3.3) and (3.4) for all k ∈ N \ {0, 1}. Then, to conclude, it suffices to note that the uniqueness in
C1,α(∂Ω)×C1,α(∂ω)0 of the solutions of (3.2) and of (3.3), (3.4) follows by classical potential theory (cf., e.g.,
Folland [22], Chap. 3).
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4. Series expansion of νω(·) · ∇
(
uε(ε·)

)
u(ε·) around ε = 0

We now turn to construct a series expansion for νω(·) · ∇
(
uε(ε·)

)
u(ε·) for ε in a neighborhood of 0, whose

coefficients will be defined by means of the sequences {(ρok, ρik)}k∈N and {(θok, θik)}k∈N introduced in Section 3.
The strategy is to compute the derivatives with respect to ε in the representation formula of Proposition 2.5
and to exploit the power series expansions for the densities. As a consequence, as in Proposition 6.1 of [20], the
first step is the following Proposition 4.1, where we prove a representation formula which can be easily obtained
by Proposition 2.5, Propositions 3.1 and 3.2, and by standard properties of real analytic maps (see also Lanza
de Cristoforis ([32], Thm. 5.3 and [19], Thm. 3.1)).

Proposition 4.1. Let {(ρok, ρik)}k∈N and {(θok, θik)}k∈N be as in Propositions 3.1 and 3.2, respectively. Let

um,0(t) ≡ 0 ∀t ∈ R2 \ ω ,
um,1(t) ≡ −w−[∂ω, θi1](t) ∀t ∈ R2 \ ω ,

um,k(t) ≡ 1

k!

k−1∑
j=0

(
k

j

)
(−1)j

j∑
h=0

(
j

h

)
th1 t

j−h
2

∫
∂Ω

θok−j νΩ · (∇∂h1 ∂
j−h
2 S) dσ

− 1

k!
w−[∂ω, θik](t) ∀t ∈ R2 \ ω , ∀k ≥ 2

and

vm,k(t) ≡ 1

k!

k∑
j=0

(
k

j

)
(−1)j

j∑
h=0

(
j

h

)
th1 t

j−h
2

∫
∂Ω

ρok−j∂
h
1 ∂

j−h
2 S dσ +

1

k!
v−[∂ω, ρik](t)

∀t ∈ R2 \ ω ,

gk ≡
1

k!

k∑
l=0

l∑
h=0

(
k

l

)(
l

h

)∫
∂ω

sh1s
l−h
2 (∂h1 ∂

l−h
2 u)(0)ρik−l(s) dσs ,

rk ≡
1

k!
∫
∂ω

dσ

k∑
j=0

(
k

j

)
(−1)j

j∑
h=0

(
j

h

)∫
∂ω

sh1s
j−h
2 dσs

∫
∂Ω

ρok−j∂
h
1 ∂

j−h
2 S dσ

+
1

k!
∫
∂ω

dσ

∫
∂ω

v[∂ω, ρik] dσ ,

for all k ∈ N. Then the following statements hold.

(i) There exists ε∗ ∈]0, ε0] such that the series
∑∞
k=0 gkε

k and
∑∞
k=0 rkε

k converge absolutely in ] − ε∗, ε∗[.
Moreover,

g0 = u(0) .

(ii) If Ωm ⊆ R2 \ ω is open and bounded, then there exists εm ∈]0, ε∗]∩]0, 1[ such that εΩm ⊆ Ω for all ε ∈
]− εm, εm[ and such that

uε(ε·)|Ωm
=

∞∑
k=1

um,k|Ωm
εk + (

∞∑
k=0

gkε
k)

∑∞
k=0 vm,k|Ωm

εk + (2π)−1 log |ε|∑∞
k=0 rkε

k + (2π)−1 log |ε|
(4.1)

for all ε ∈]−εm, εm[\{0}. Moreover, the series
∑∞
k=1 um,k|Ωm

εk and
∑∞
k=0 vm,k|Ωm

εk converge in C1,α(Ωm)

uniformly for ε ∈]− εm, εm[.
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By Proposition 4.1, we can then prove an expansion for the map in (1.17).

Proposition 4.2. With the notation introduced in Proposition 4.1, let

u#,k(t) ≡
∑

(h,j)∈N2

h+j=k

∂h1 ∂
j
2u(0)

h!j!
th1 t

j
2 ∀t ∈ R2 ,

ũk(t) ≡
k∑
l=0

νω(t) · ∇um,l|∂ω(t)u#,k−l(t) ∀t ∈ ∂ω ,

ṽk(t) ≡ νω(t) · ∇vm,k|∂ω(t) ∀t ∈ ∂ω ,

g̃k(t) ≡
k∑
l=0

glu#,k−l(t) ∀t ∈ ∂ω ,

for all k ∈ N. Then there exists ε̃ ∈]0, ε∗]∩]0, 1[ such that

νω(·) · ∇
(
uε(ε·)

)
|∂ωu(ε·)|∂ω =

∞∑
k=1

ũk(·)εk +

( ∞∑
k=0

g̃k(·)εk
) ∑∞

k=0 ṽk(·)εk∑∞
k=0 rkε

k + (2π)−1 log |ε|
(4.2)

for all ε ∈] − ε̃, ε̃[\{0}. Moreover, the series
∑∞
k=0 g̃kε

k,
∑∞
k=0 ũkε

k, and
∑∞
k=0 ṽkε

k converge in C0,α(∂ω)
uniformly for ε ∈]− ε̃, ε̃[.

Proof. We first note that if we take ε̃ ∈]0, ε∗[ small enough, then for ε ∈]− ε̃, ε̃[ we have that

u(εt) =
∑

(i,j)∈N2

εi+j
∂i1∂

j
2u(0)

i!j!
ti1t

j
2

=

∞∑
h=0

( ∑
(i,j)∈N2

i+j=h

∂i1∂
j
2u(0)

i!j!
ti1t

j
2

)
εh =

∞∑
h=0

u#,h(t)εh ∀t ∈ ∂ω ,

and that the power series
∑∞
h=0 u#,h|∂ωε

h converges in C0,α(∂ω) uniformly for ε ∈] − ε̃, ε̃[. Possibly taking a
smaller ε̃, we observe that for ε ∈]− ε̃, ε̃[ we have

( ∞∑
k=1

νω · ∇um,k|∂ωε
k
)( ∞∑

h=0

u#,h|∂ωε
h
)

=

∞∑
k=0

ũkε
k ,

( ∞∑
k=0

gkε
k
)( ∞∑

h=0

u#,h|∂ωε
h
)

=

∞∑
k=0

g̃kε
k

where the series converge in C0,α(∂ω) uniformly for ε ∈]− ε̃, ε̃[ and we have set

ũk ≡
k∑
l=0

νω · ∇um,l|∂ωu#,k−l|∂ω , g̃k ≡
k∑
l=0

glu#,k−l|∂ω .

Then the validity of (4.2) follows by Proposition 4.1 (see Eq. (4.1)).
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Now we would like to obtain an expression for νω(·) · ∇
(
uε(ε·)

)
|∂ωu(ε·)|∂ω in the form of a convergent series

of the type

∞∑
n=0

ϕε(·)εn .

On the other hand, because of the quotient in (4.2), we don’t have yet an expression as above. However, by
exploiting exactly the same argument of ([20], Thm. 6.3), we can prove Theorem 4.3 below where we exhibit a
series expansion for the map which takes ε to νω(·) · ∇

(
uε(ε·)

)
|∂ωu(ε·)|∂ω.

Theorem 4.3. With the notation introduced in Proposition 4.1, let {ãn}n∈N be the sequence of functions from
∂ω to R defined by

ãn ≡
n∑
k=0

g̃n−kṽk ∀n ∈ N .

Let {λ̃(n,l)}(n,l)∈N2 , l≤n+1 be the family of functions from ∂ω to R defined by

λ̃(n,0) ≡ ũn , λ̃(n,1) ≡ ãn ,

for all n ∈ N, and

λ̃(n,l) ≡ (−1)l−1
n∑

k=l−1

ãn−k
∑

β∈(N\{0})l−1 , |β|=k

l−1∏
h=1

rβh

for all n, l ∈ N with 2 ≤ l ≤ n+ 1. Then there exists ε̃′ ∈]0, ε0]∩]0, 1[ such that

νω(·) · ∇
(
uε(ε·)

)
|∂ωu(ε·)|∂ω =

∞∑
n=0

εn
n+1∑
l=0

λ̃(n,l)(·)
(r0 + (2π)−1 log |ε|)l

(4.3)

for all ε ∈]− ε̃′, ε̃′[\{0}. Moreover, the series

∞∑
n=0

εn
n+1∑
l=0

λ̃(n,l)η
l

(r0η + (2π)−1)l

converges in C1,α(∂ω) uniformly for (ε, η) ∈]− ε̃′, ε̃′[×]1/ log ε̃′,−1/ log ε̃′[.

Remark 4.4. With the notation of Theorem 4.3, a straightforward computation shows that

λ̃(0,0) = ũ0 = 0 ,

λ̃(0,1) = ã0 =
(
u(0)

)2 ∂

∂νω
v−[∂ω, ρi0] .
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5. Series expansion of CapΩ(εω, u)

Our aim is now to deduce a full expansion for the u-capacity CapΩ(εω, u), which is given as the sum of∫
Ωε
|∇uε|2 dx and of

∫
εω
|∇u|2 dx. As a first step, we provide an expansion for

∫
εω
|∇u|2 dx around ε = 0. As we

shall see, the term
∫
εω
|∇u|2 dx depends analytically on ε and thus can be expanded in a power series. Therefore,

we compute such a power series in the following lemma.

Lemma 5.1. Let {ξn}n∈N be the sequence of real numbers defined by

ξ0 ≡ 0 , ξ1 ≡ 0 , ξn ≡
2∑
j=1

n−2∑
l=0

∫
ω

∂ju#,l+1(t)∂ju#,n−l−1(t) dt ∀n ≥ 2 .

Then there exists εξ ∈]0, ε0] such that

∫
εω

|∇u|2 dx =

∞∑
n=2

ξnε
n

for all ε ∈]− εξ, εξ[\{0}. Moreover,

ξ2 = |∇u(0)|2m2(ω) ,

and the series

∞∑
n=2

ξnε
n

converges uniformly for ε ∈]− εξ, εξ[. (The symbol m2(. . . ) denotes the two-dimensional Lebesgue measure of a
set).

Proof. If ε ∈]− ε0, ε0[\{0}, by the Theorem of change of variable in integrals, we have∫
εω

|∇u|2 dx = ε2

∫
ω

|(∇u)(εt)|2 dt .

Then we note that by assumption (1.8) on the analyticity of u, by analyticity results for the composition operator
(cf. Böhme and Tomi [7], p. 10, Henry [26], p. 29, Valent [53], Thm. 5.2, p. 44), there exists εξ ∈]0, ε0] such
that the map from ]− εξ, εξ[ to C0,α(ω) which takes ε to (∂ju)(ε·)|ω is real analytic. Possibly shrinking εξ, one
verifies that for ε ∈]− εξ, εξ[\{0},

(∂ju)(εt) =
1

ε
∂j(u(εt))

=
1

ε

∞∑
h=0

∂ju#,h(t)εh

=
1

ε

∞∑
h=1

∂ju#,h(t)εh−1ε =

∞∑
h=0

∂ju#,h+1(t)εh ∀t ∈ ω ,
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where the series
∑∞
h=0 ∂ju#,h+1|ωε

h converges in C0,α(ω) uniformly for ε ∈]− εξ, εξ[. As a consequence,

(∂ju)2(εt) =

∞∑
n=0

(
n∑
l=0

∂ju#,l+1(t)∂ju#,n−l+1(t)

)
εn ∀t ∈ ω ,∀ε ∈]− εξ, εξ[\{0} .

By the continuity of the linear operator from C0,α(ω) to R which takes a function h to its integral
∫
ω
hdt, by

summing on j ∈ {1, 2}, one deduces that possibly taking a smaller εξ

∫
ω

|(∇u)(εt)|2 dt =

∞∑
n=0

( 2∑
j=1

n∑
l=0

∫
ω

∂ju#,l+1(t)∂ju#,n−l+1(t) dt

)
εn , (5.1)

for all ε ∈]− εξ, εξ[\{0}. In particular,

2∑
j=1

∫
ω

∂ju#,1(t)∂ju#,1(t) dt =

∫
ω

(
(∂1u(0))2 + (∂2u(0))2

)
dt

= |∇u(0)|2
∫
ω

dt = |∇u(0)|2m2(ω) .

Then, by multiplying equation (5.1) by ε2, we deduce the validity of the lemma.

By integrating over ∂ω formula (4.3) and adding the coefficients of Lemma 5.1, by Theorem 4.3 we can
immediately deduce the validity of our main result on the asymptotic behavior of CapΩ(εω, u).

Theorem 5.2. With the notation introduced in Proposition 4.1, Theorem 4.3 and Lemma 5.1, let {c(n,l)}(n,l)∈N2

l≤n+1

be the family of real numbers defined by

c(n,l) ≡ −
∫
∂ω

λ̃(n,l) dσ + δ0,lξn ,

for all n, l ∈ N with l ≤ n+ 1 (where δ0,l = 1 if l = 0 and δ0,l = 0 if l 6= 0). Then there exists εc ∈]0, ε0]∩]0, 1[
such that

CapΩ(εω, u) =

∞∑
n=0

εn
n+1∑
l=0

c(n,l)

(r0 + (2π)−1 log |ε|)l

for all ε ∈]− εc, εc[\{0}. Moreover, the series

∞∑
n=0

εn
n+1∑
l=0

c(n,l)η
l

(r0η + (2π)−1)l

converges uniformly for (ε, η) ∈]− εc, εc[×]1/ log εc,−1/ log εc[.
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Remark 5.3. With the notation of Theorem 5.2, we observe that Remark 4.4 and a straightforward computation
based on Folland ([22], Lem. 3.30) imply that

c(0,0) =0 ,

c(0,1) =−
∫
∂ω

(
u(0)

)2 ∂

∂νω
v−[∂ω, ρi0] dσ = −

(
u(0)

)2 ∫
∂ω

ρi0 dσ = −
(
u(0)

)2
.

Moreover, if we denote by Ho
0 the unique solution in C1,α(Ω) of{

∆Ho
0 = 0 in Ω ,

Ho
0 (x) = S(x) for all x ∈ ∂Ω ,

(5.2)

and by Hi
0 the unique solution in C1,α

loc (R2 \ ω) of
∆Hi

0 = 0 in R2 \ ω ,
Hi

0(t) = S(t) for all t ∈ ∂ω ,
supt∈R2\ω |Hi

0(t)| < +∞ ,
(5.3)

then by ([20], Prop. 7.3) we have

r0 = lim
t→∞

Hi
0(t)−Ho

0 (0) .

Accordingly,

CapΩ(εω, u) =−
(
u(0)

)2
limt→∞Hi

0(t)−Ho
0 (0) + (2π)−1 log |ε|

+ ε

( ∞∑
n=1

εn−1
n+1∑
l=0

c(n,l)

(limt→∞Hi
0(t)−Ho

0 (0) + (2π)−1 log |ε|)l

) (5.4)

for all ε ∈] − εc, εc[\{0}. Moreover, in case ω is a Jordan domain, we deduce by Section 4 of [41] that

e2π limt→∞Hi
0(t) is the logarithmic capacity (or outer conformal radius) of ω. Ho

0 (0) is the value at 0 of the
unique harmonic function in Ω which agrees with S on ∂Ω. In other words,

H(0,0) = −Ho
0 (0) , N = lim

t→∞
Hi

0(t) ,

where H(0,0) and N are as in formula (1.12). Finally, we note that the if we look at the first summand in
the right hand side of equality (5.4), then the information on the function u is in the numerator, whereas the
geometry of Ω and ω is taken into account in the denominator.

5.1. Asymptotic behavior of CapΩ(εω, u) under vanishing assumption for u

We now assume that there exists k ∈ N \ {0} such that

Dγu(0) = 0 ∀|γ| < k , Dβu(0) 6= 0 for some β ∈ N2 with |β| = k . (5.5)

Then condition (5.5) and Proposition 3.2 imply that

(θok, θ
i
k) = (0, 0) ∀k < k , θo

k
= 0 , (5.6)
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and that θi
k

is the unique solution in C1,α(∂ω)0 of

1

2
θi
k
(t)−Wω[θi

k
](t) =

k∑
h=0

(
k

h

)
th1 t

k−h
2 (∂h1 ∂

k−h
2 u)(0)

−
k∑
h=0

(
k

h

)∫
∂ω

sh1s
k−h
2 (∂h1 ∂

k−h
2 u)(0)ρi0(s) dσs ∀t ∈ ∂ω ,

i.e.,

1

2
θi
k
(t)−Wω[θi

k
](t) = k!

(
u#,k(t)−

∫
∂ω

u#,kρ
i
0 dσ

)
∀t ∈ ∂ω . (5.7)

Then equations (5.6), (5.7), and Proposition 4.1 imply that

um,k = 0 ∀k < k , um,k = − 1

k!
w−[∂ω, θi

k
] . (5.8)

As a consequence, by classical potential theory, um,k is the unique solution in C1,α
loc (R2 \ ω) of the following

problem 
∆um,k = 0 in R2 \ ω ,
um,k(t) = u#,k(t)−

∫
∂ω
u#,kρ

i
0 dσ for all t ∈ ∂ω ,

supt∈R2\ω |um,k(t)| < +∞ .
(5.9)

Moreover, by assumption (5.5) and Proposition 4.1 we have

gk = 0 ∀k < k , gk =
1

k!

k∑
h=0

(
k

h

)∫
∂ω

sh1s
k−h
2 (∂h1 ∂

k−h
2 u)(0)ρi0(s) dσs =

∫
∂ω

u#,kρ
i
0 dσ . (5.10)

Then by (5.5) and by Propostion 4.2 we verify that

u#,k = 0 ∀k < k , (5.11)

and accordingly Proposition 4.2 and equations (5.8), (5.11) imply

ũk = 0 ∀k < 2k , ũ2k = u#,k|∂ω

(
∂um,k

∂νω

)
. (5.12)

Furthermore, by (5.10) and (5.11) we have

g̃k = 0 ∀k < 2k , g̃2k = gku#,k|∂ω = u#,k|∂ω

∫
∂ω

u#,kρ
i
0 dσ . (5.13)

Then, as an intermediate step for computing the coefficients of the expansion of the u-capacity CapΩ(εω, u),
we consider the quantities ãn, λ̃(n,l) introduced in Theorem 4.3 for representing the behavior of νω(·) ·



24 L. ABATANGELO ET AL.

∇
(
uε(ε·)

)
|∂ωu(ε·). A straightforward computation based on (5.12), (5.13) implies that

ãn = 0 ∀n < 2k , ã2k = g̃2kṽ0 = ṽ0u#,k|∂ω

∫
∂ω

u#,kρ
i
0 dσ ,

and accordingly

λ̃(n,0) = 0 ∀n < 2k , λ̃2k,0 = ũ2k = u#,k|∂ω

(
∂um,k

∂νω

)
, (5.14)

λ̃(n,1) = 0 ∀n < 2k , λ̃2k,1 = ã2k = ṽ0u#,k|∂ω

∫
∂ω

u#,kρ
i
0 dσ , (5.15)

and

λ̃(n,l) = 0 ∀(n, l) such that n− l + 1 < 2k and that 2 ≤ l ≤ n+ 1 . (5.16)

In particular, λ̃(n,l) = 0 for all (n, l) such that n < 2k+1 and that 2 ≤ l ≤ n+1. Moreover, a simple computation
shows that

ξn = 0 ∀n < 2k , ξ2k =

∫
ω

|∇u#,k|
2 dt .

Finally, by Theorem 5.2 and by integrating equalities (5.14)–(5.16), we obtain

c(n,0) = 0 ∀n < 2k ,

c2k,0 = −
∫
∂ω

ũ2k dσ +

∫
ω

|∇u#,k|
2 dt

= −
∫
∂ω

u#,k|∂ω

(
∂um,k

∂νω

)
dσ +

∫
ω

|∇u#,k|
2 dt ,

c(n,1) = 0 ∀n < 2k , c2k,1 = −
∫
∂ω

ã2k dσ = −
∫
∂ω

ṽ0u#,k|∂ω dσ

∫
∂ω

u#,kρ
i
0 dσ ,

and

c(n,l) = 0 ∀(n, l) such that n− l + 1 < 2k and that 2 ≤ l ≤ n+ 1 .

In particular, c(n,l) = 0 for all (n, l) such that n < 2k + 1 and that 2 ≤ l ≤ n+ 1. Since um,k = − 1
k!
w−[∂ω, θi

k
],

then um,k is harmonic at infinity (cf. (5.8)). As a consequence, the decay properties of its radial derivative (cf.
Folland [22], Prop. 2.75) and the Divergence Theorem imply that

∫
∂ω

∂um,k

∂νω
dσ = 0 .
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Accordingly,

−
∫
∂ω

u#,k|∂ω

(
∂um,k

∂νω

)
dσ = −

∫
∂ω

(
u#,k|∂ω −

∫
∂ω

u#,k|∂ω dσ
)(∂um,k

∂νω

)
dσ .

Since, um,k solves problem (5.9), we have um,k = u#,k −
∫
∂ω
u#,k dσ on ∂ω, and thus

−
∫
∂ω

(
u#,k|∂ω −

∫
∂ω

u#,k|∂ω dσ
)(∂um,k

∂νω

)
dσ = −

∫
∂ω

um,k

(
∂um,k

∂νω

)
dσ .

On the other hand, the harmonicity at infinity of um,k and the Divergence Theorem imply that

0 <

∫
R2\ω

|∇um,k|
2 dt = −

∫
∂ω

um,k

(
∂um,k

∂νω

)
dσ

(cf. Folland [22], p. 118). As a consequence,

−
∫
∂ω

u#,k|∂ω

(
∂um,k

∂νω

)
dσ =

∫
R2\ω

|∇um,k|
2 dt > 0 . (5.17)

Moreover, if we denote by uk the unique solution in C1,α
loc (R2 \ ω) of


∆uk = 0 in R2 \ ω ,
uk(t) = u#,k(t) for all t ∈ ∂ω ,
supt∈R2\ω |uk(t)| < +∞ ,

(5.18)

then clearly

uk = um,k +

∫
∂ω

u#,kρ
i
0 dσ ,

and thus ∫
R2\ω

|∇uk|
2 dt =

∫
R2\ω

|∇um,k|
2 dt .

We now turn to consider the product

−
∫
∂ω

ṽ0u#,k|∂ω dσ

∫
∂ω

u#,kρ
i
0 dσ .

We first note that

ṽ0 = νω · ∇vm,0|∂ω = νω · ∇v−[∂ω, ρi0]|∂ω .
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On the other hand, by Proposition 3.1 and the jump formula for the normal derivative of the single layer
potential,

νω · ∇v−[∂ω, ρi0]|∂ω =
1

2
ρi0 +W ∗ω [ρi0] =

1

2
ρi0 +

1

2
ρi0 = ρi0 .

Accordingly, ∫
∂ω

ṽ0u#,k|∂ω dσ =

∫
∂ω

u#,kρ
i
0 dσ .

By Proof of Lemma 7.2 of [20], we have ∫
∂ω

u#,kρ
i
0 dσ = lim

t→∞
uk(t) ,

which implies

−
∫
∂ω

ṽ0u#,k|∂ω dσ

∫
∂ω

u#,kρ
i
0 dσ = −

(
lim
t→∞

uk(t)

)2

.

As a consequence, under assumption (5.5), by Remark 5.3 and formula (5.4), we can deduce the validity of the
following (cf. Thm. 1.2).

Theorem 5.4. Let assumption (5.5) hold. Then

CapΩ(εω, u) = ε2k

(∫
R2\ω

|∇uk|
2 dt+

∫
ω

|∇u#,k|
2 dt−

(
limt→∞ uk(t)

)2

(limt→∞Hi
0(t)−Ho

0 (0) + (2π)−1 log |ε|)

)

+

∞∑
n=2k+1

εn
n−2k+1∑
l=0

c(n,l)

(limt→∞Hi
0(t)−Ho

0 (0) + (2π)−1 log |ε|)l
,

(5.19)

for all ε ∈]− εc, εc[\{0}.

Remark 5.5. Therefore, by (5.19) we have

CapΩ(εω, u) = ε2k

(∫
R2\ω

|∇uk|
2 dt+

∫
ω

|∇u#,k|
2 dt

)
+ o(ε2k) as ε→ 0 . (5.20)

Moreover, we note that the terms
∫
R2\ω |∇uk|

2 dt and
∫
ω
|∇u#,k|2 dt depend both on the geometrical properties

of the set ω and on the behavior at 0 of the function u (but not on Ω).

6. Asymptotic expansion of λN(Ω \ (εω))

The aim of this section is to obtain an asymptotic expansion of λN (Ω \ (εω)) by combining the results on
CapΩ(εω, u) of Section 5 and the approximation fomula (1.6) for the eigenvalues (see Courtois [16], Proof of
Thm. 1.2 and Abatangelo, Felli, Hillairet, and Léna [1], Thm. 1.4).
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To do so, we take α ∈]0, 1[, Ω and ω as in (1.7) and we assume that

the Nth eigenvalue λN (Ω) for the Dirichlet-Laplacian is simple

and uN is a L2(Ω)-normalized eigenfunction related to λN (Ω).
(6.1)

In order to study λN (Ω \ (εω)) as ε → 0, by (1.6) we need to consider the behavior of CapΩ(εω, uN ). By
elliptic regularity theory (see for instance [23], Thm. 1.2, p. 205), uN is analytic in a neighborhood of 0. Next
we note that by (5.4) we have

CapΩ(εω, uN ) =−
(
uN (0)

)2
limt→∞Hi

0(t)−Ho
0 (0) + (2π)−1 log |ε|

+ ε

( ∞∑
n=1

εn−1
n+1∑
l=0

c(n,l)

(limt→∞Hi
0(t)−Ho

0 (0) + (2π)−1 log |ε|)l

)
as ε→ 0 ,

where {c(n,l)}(n,l)∈N2

l≤n+1

as in Theorem 5.2 and Hi
0 and Ho

0 are as in Remark 5.3.

Then by formula (1.6) we immediately deduce the validity of the following well-known result.

Theorem 6.1. Let assumption (6.1) hold.Then

λN (Ω \ (εω))

= λN (Ω)−
(
uN (0)

)2
(2π)−1 log ε

+ o
( 1

log ε

)
as ε→ 0+ .

(6.2)

Clearly, formula (6.2) of Theorem 6.1 in case

uN (0) = 0 (6.3)

reduces to

λN (Ω \ (εω)) = λN (Ω) + o
( 1

log ε

)
as ε→ 0+ .

Therefore, if (6.3) holds, we would like to obtain a more accurate asymptotic expansion of λN (Ω \ (εω)). We
now assume that

there exists k ∈ N \ {0} such that DγuN (0) = 0 ∀|γ| < k

and that DβuN (0) 6= 0 for some β ∈ N2 with |β| = k .
(6.4)

and we set

uN,#,k(t) ≡
∑

(h,j)∈N2

h+j=k

∂h1 ∂
j
2uN (0)

h!j!
th1 t

j
2 ∀t ∈ R2 , (6.5)
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Moreover, we denote by uN,k the unique solution in C1,α
loc (R2 \ ω) of


∆uN,k = 0 in R2 \ ω ,
uN,k(t) = uN,#,k(t) for all t ∈ ∂ω ,
supt∈R2\ω |uN,k(t)| < +∞ .

(6.6)

Then by (5.20) we have

CapΩ(εω, uN ) = ε2k

(∫
R2\ω

|∇uN,k|
2 dt+

∫
ω

|∇uN,#,k|
2 dt

)
+ o(ε2k) as ε→ 0 .

Then, again, by formula (1.6) of Theorem 1.1 we deduce the validity of the following result (from which we
deduce Theorem 1.3).

Theorem 6.2. Let assumptions (6.1), (6.4) hold. Let uN,#,k be as in (6.5). Let uN,k be the unique solution in

C1,α
loc (R2 \ ω) of (6.6). Then

λN (Ω \ (εω))

= λN (Ω) + ε2k

(∫
R2\ω

|∇uN,k|
2 dt+

∫
ω

|∇uN,#,k|
2 dt

)
+ o(ε2k) as ε→ 0+ .

(6.7)

Remark 6.3. We note that in formula (6.7) the term(∫
R2\ω

|∇uN,k|
2 dt+

∫
ω

|∇uN,#,k|
2 dt

)
(6.8)

depends both on the behavior near 0 of the eigenfunction uN and on the geometry ω of the perforation. We
emphasize that the way the term in (6.8) depends on Ω is only through the eigenfunction uN .

7. Optimal location of small holes

Let us now use the above results to discuss how to place a hole in a domain in order to maximize or minimize
an eigenvalue. Let Ω and ω satisfy the hypotheses (1.7) for a given α ∈]0, 1[. Moreover, let us assume that the
integer N ≥ 1 is such that λN (Ω) is simple. The small holes we are considering are sets of the form p + εω,
where p ∈ Ω and ε > 0 are such that p+ εω ⊆ Ω. For a fixed ε > 0 small, we may look for points that maximize
or minimize λN (Ω \ (p+ εω)) among those points p such that p+ εω ⊆ Ω. These problems are studied in more
detail, when N = 1, in Section 3.5 of [25], whereas in this section, we discuss a sort of asymptotic versions. More
specifically, we would like to find, under the same assumptions, two points pM and pm in Ω, if they exist, such
that:

(M) For each p ∈ Ω, there exists εMp > 0 such that

λN (Ω \ (pM + εω)) ≥ λN (Ω \ (p+ εω)) ∀ε ∈]0, εMp [ ;

(m) For each p ∈ Ω, there exists εmp > 0 such that

λN (Ω \ (pm + εω)) ≤ λN (Ω \ (p+ εω)) ∀ε ∈]0, εmp [ .
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Although we do not have a complete solution of these problems, we wish to present some remarks.
Let us first consider Problem (M). As before, we denote by uN a normalized eigenfunction associated with

λN (Ω). If the function |uN |2 has a unique point of maximum p∗ in Ω, then p∗ is the unique solution of Problem
(M) (cf. Thm. 6.1). If |uN |2 has more that one point of maximum, a solution of Problem (M), if it exists, must
be one of them. In order to be more precise, we would have to look at higher order terms in the expansions.

Problem (m) seems more difficult. Indeed, we can sometimes prove that it has no solution. In the case N = 1,
there exists a (unique) positive and normalized eigenfunction associated with λ1(Ω), which we denote by u1.
Since u1 is continuous on Ω and vanishes on ∂Ω, for any p ∈ Ω, there exists q ∈ Ω such that 0 < u1(q) < u1(p).
Using again Theorem 6.1, it follows that p is not a solution of (m), showing that the problem has no solution.
In the case N ≥ 2, any eigenfunction associated with λN (Ω) is orthogonal to u1 and therefore has a non-empty
nodal set. Nevertheless, it is still possible that (m) has no solution. For instance, let us consider the case where
the nodal set of uN consists of a single simple curve γ connecting two points p1 and p2 of ∂Ω. If p belongs to
γ, by Theorem 6.2,

λN (Ω \ (p+ εω))

= λN (Ω) + ε2

(∫
R2\ω

|∇upN,1|
2 dt+

∫
ω

|∇upN,#,1|
2 dt

)
+ o(ε2) as ε→ 0+ ,

(7.1)

where upN,#,1 and upN,1 are defined by (6.5) and (6.6), after a translation sending p to 0. In other words,

upN,#,1(t) ≡ ∂1u(p)t1 + ∂1u(p)t2 ∀t ∈ R2 , (7.2)

and upN,1 is the unique solution in C1,α
loc (R2 \ ω) of


∆upN,1 = 0 in R2 \ ω ,
upN,1(t) = upN,#,1(t) for all t ∈ ∂ω ,
supt∈R2\ω |u

p
N,1(t)| < +∞ .

(7.3)

From this and Theorem 6.1, it follows that whenever q ∈ Ω \ γ and ε > 0 small enough,

λN (Ω \ (p+ εω)) < λN (Ω \ (q + εω)).

On the other hand, since ∇uN vanishes at p1 and p2, we have that upN,#,1 and upN,1 converge to 0 as p moves on

γ towards p1 or p2. Accordingly, the coefficient following ε2 in formula (7.1) goes to 0 as p moves on γ towards
p1 or p2 (cf. (7.2) and (7.3)). It follows that for any fixed p ∈ γ ∩Ω such that the coefficient is non-zero, we can
find p′ ∈ γ ∩ Ω such that

λN (Ω \ (p′ + εω)) < λN (Ω \ (p+ εω))

for all ε > 0 small enough. As a result, Problem (m) has no solution in this case, assuming that ω is such that
the coefficient never vanishes. We will see in Section 9 that this last condition is satisfied when ω is the interior
of an ellipse, in particular when ω is a disk.

If instead uN has an order of vanishing greater than one at some points inside Ω, that is to say if at least two
nodal lines meet at some points, Problem (m) may have a solution. As a first step to find it, we need to look
for the set N of those points p ∈ Ω where the largest number of nodal lines intersect. We denote this number
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by k. Again by Theorem 6.2, we know that for each p ∈ N we have

λN (Ω \ (p+ εω))

= λN (Ω) + ε2k

(∫
R2\ω

|∇up
N,k
|2 dt+

∫
ω

|∇up
N,#,k

|2 dt

)
+ o(ε2k) as ε→ 0+ .

Here above,

up
N,#,k

(t) ≡
∑

(h,j)∈N2

h+j=k

∂h1 ∂
j
2u(p)

h!j!
th1 t

j
2 ∀t ∈ R2 ,

and up
N,k

is the unique solution in C1,α
loc (R2 \ ω) of


∆up

N,k
= 0 in R2 \ ω ,

up
N,k

(t) = up
N,#,k

(t) for all t ∈ ∂ω ,
supt∈R2\ω |u

p

N,k
(t)| < +∞ .

If N contains a single point, this point is the unique solution of (m). If not, we have to move to a second step:

we need to minimize the coefficient in front of ε2k. If there exists a point p∗ ∈ N such that(∫
R2\ω

|∇up
∗

N,k
|2 dt+

∫
ω

|∇up
∗

N,#,k
|2 dt

)
<

(∫
R2\ω

|∇up
N,k
|2 dt+

∫
ω

|∇up
N,#,k

|2 dt

)
∀p ∈ N \ {p∗} ,

then this point is the unique solution of Problem (m). If not, we cannot conclude that a solution exists without
looking at higher order terms in the expansions.

8. Numerical simulations

In this section, we present some numerical simulations on the asymptotic behavior of the eigenvalues in a
domain with a small hole. The numerical results have been obtained with the Finite Element Library Mélina
[35]. The computation reduces to the determination of eigenfunctions of the Dirichlet Laplacian in polygonal
domains. We make use of a standard Lagrangian nodal elements coupled with a subspace iteration method.
By Theorem 6.2, we know that the behavior of the eigenvalue λN (Ω \ (εω)) in the perforated domain Ω \ (εω)
depends both on the behavior near 0 of the eigenfunction uN and on the geometry ω of the perforation. In
this section, we wish to investigate numerically how the geometry of ω affects the asymptotic behavior of
λN (Ω \ (εω)). We do so by choosing as ω ellipses with different orientation. More precisely, both the domains
Ω and ω will have elliptic shapes, but we will consider different rotations of the small hole in order to show the
dependence of the asymptotic behavior of the eigenvalues on the geometry of the hole εω and on the relation of
its orientation with respect to the nodal lines of a suitably normalized eigenfunction in the unperturbed domain
Ω. We will see different behaviors as the orientation of the small ellipse changes, thus confirming the dependence
of the asymptotics of λN (Ω \ (εω)) on the geometry of the perforation.

We take a, b > 0 and we consider the ellipse E0(a, b) parametrized by

E0(a, b) =

{
(x, y) ∈ R2,

x2

a2
+
y2

b2
< 1

}
. (8.1)
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Figure 1. Nodal lines of the first 16 eigenfunctions in the ellipse.

We denote by Rθ the rotation of angle θ ∈ [0, π/2]. For ε > 0 small enough, we define the perforated domain
Eε,θ(a, b) by setting

Eε,θ(a, b) = E0(a, b) \ εRθE0(
a

4
,
b

4
).

In other words, we set

Ω ≡ E0(a, b) , ω ≡ RθE0(
a

4
,
b

4
) ,

so that

Ω \ (εω) = Eε,θ(a, b) .

In the sequel, we fix a = 3, b = 2 and we omit these parameters in the notation. Namely,

E ≡ E0(3, 2) , E(ε, θ) ≡ Eε,θ(3, 2) .

As discretization of the parameters, we choose

ε ∈ {1.5−k, 0 ≤ k ≤ 20} and θ ∈
{
j

10

π

2
, 0 ≤ j ≤ 10

}
.

We denote by λN and λN (ε, θ) the Nth eigenvalue of the Laplacian with Dirichlet boundary condition in the
(unperturbed) ellipse E and in the perforated domain E(ε, θ), respectively.

We first note that the first 16 eigenvalues of the Dirichlet Laplacian in the ellipse E are the following:

λ1 = 1.04 λ2 = 2.13 λ3 = 3.14 λ4 = 3.69 λ5 = 4.71 λ6 = 5.74 λ7 = 6.52 λ8 = 6.69
λ9 = 8.26 λ10 = 8.65 λ11 = 9.09 λ12 = 11.12 λ13 = 11.21 λ14 = 11.25 λ15 = 11.92 λ16 = 13.82

As we can see, all the eigenvalues λ1, . . . , λ16 are simple. Then in Figure 1 we trace the nodal line of the
corresponding eigenfunctions.

Figure 1 shows that the origin 0 (which is the point where the hole collapses when ε = 0) belongs to a nodal
line of an eigenfunction associated to the eigenvalue λN for N ∈ {2, 3, 5, 6, 8, 10, 11, 12, 14, 15, 16}.

In particular, we note that for N ∈ {2, 3, 6, 8, 10, 12, 14, 15} there is only one nodal line passing through 0,
whereas for N ∈ {5, 11, 16} there are two nodal lines. As a consequence, in view of the results of Section 6, we
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Figure 2. In blue, the plot of log ε 7→ log(λN (ε, 0)− λN ), θ = 0; in red, for N = 2, 3 the plot
of log ε 7→ log ε2 and for N = 5, 11 the plot of log ε 7→ log ε4.

Figure 3. In blue, the plot of log ε 7→ log(λN (ε, θ)− λN ), θ = π
10 ; in red, for N = 2, 3 the plot

of log ε 7→ log ε2 and for N = 5, 11 the plot of log ε 7→ log ε4.

expect that

λN (ε, θ)− λN ∼ −
cN (θ)

log ε
if N ∈ {1, 4, 7, 9, 13} ,

λN (ε, θ)− λN ∼ cN (θ)ε2 if N ∈ {2, 3, 6, 8, 10, 12, 14, 15} ,
λN (ε, θ)− λN ∼ cN (θ)ε4 if N ∈ {5, 11, 16} ,

as ε→ 0+, for some constant cN (θ) > 0 which depends on N and θ.
We now consider the behavior of the functions λN (ε, θ) − λN as ε approaches 0, for different values of the

angle θ (namely for θ ∈ {0, π10 ,
π
4 ,

7π
20 ,

π
2 }) and for N ∈ {2, 3, 5, 11}. As already mentioned, in view of Section 6,

we expect

λN (ε, θ)− λN ∼ cN (θ)ε2 for N ∈ {2, 3} ,
λN (ε, θ)− λN ∼ cN (θ)ε4 for N ∈ {5, 11} ,

as ε→ 0+, for some constant cN (θ) > 0 which depends on N and θ.
Figures 2–6 show in a log–log plot a good fitting with the expected behavior. To compute the eigenmodes, we

use a finite element method of degree P4 with at least 2800 triangular elements. We work in a simple precision, so
computations are relevant when the gap log(λN (ε, 0)−λN ) is larger than 10−8. It is the reason the computations
for N = 5, 11 and ε ≤ 10−2 are irrelevant. Moreover, for ε fixed, they show a decreasing behavior in θ ∈ [0, π/2]
for N = 2, in contrast with an increasing behavior in θ ∈ [0, π/2] for N = 3. Instead, for N = 5 and ε is fixed
and small, the quantity λN (ε, θ)− λN is first increasing and then decreasing.



ASYMPTOTIC BEHAVIOR OF U-CAPACITIES AND SINGULAR PERTURBATIONS 33

Figure 4. In blue, the plot of log ε 7→ log(λN (ε, θ)− λN ), θ = π
4 ; in red, for N = 2, 3 the plot

of log ε 7→ log ε2 and for N = 5, 11 the plot of log ε 7→ log ε4.

Figure 5. In blue, the plot of log ε 7→ log(λN (ε, θ)− λN ), θ = 7π
20 ; in red, for N = 2, 3 the plot

of log ε 7→ log ε2 and for N = 5, 11 the plot of log ε 7→ log ε4.

Figure 6. In blue the plot of log ε 7→ log(λN (ε, θ)− λN ), θ = π
2 ; in red, for N = 2, 3 the plot

of log ε 7→ log ε2 and for N = 5, 11 the plot of log ε 7→ log ε4.

Finally, we study the limiting behavior as a function of the angle θ. To do so, we set

µN (ε, θ) =
1

εαN
(λN (ε, θ)− λN ) ,

where αN is the order of the second term in the asymptotic expansion, i.e.:

α2 = α3 = 2, α5 = α11 = 4.
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Figure 7. θ 7→ µN (1.5−k, θ), N = 2, 3, k = 14, 16.

Figure 8. θ 7→ µN (1.5−k, θ), N = 5, 11, k = 7, 8.

We plot the curve

θ 7→ µN (ε, θ),

with ε = 1.5−k and k = 14 or 16 when N = 2, 3 (in this case, we have a convergence at order 2) and k = 7 or 8
when N = 5, 11. This choice is done to ensure that αNk is constant in both cases.

Figure 7 confirms that for ε fixed the function [0, π2 ] 3 θ 7→ µN (ε, θ) is decreasing for N = 2 and increasing
for N = 3. Instead, for N = 5, 11, Figure 8 shows that the function [0, π2 ] 3 θ 7→ µN (ε, θ) is first increasing and
then decreasing.

9. Theoretical analysis of the simulations

In this last section we are going to prove analytically what we have seen in Section 8, that is the dependence
of simple eigenvalues’ behavior on the angle between x1-axis and the small ellipse’s major axis.

If we consider the ellipse E0 in (8.1) with a > b > 0, it can be written as

E0(a, b) =
{

(x1, x2) ∈ R2 :
x2

1

b2 + c2
+
x2

2

b2
< 1
}
,

where c is the distance between the two foci, which satisfies c2 = a2 − b2. Up to replacing ε/4 with ε, we can
think

E(ε, θ) = E0(a, b) \ εRθE0(a, b),



ASYMPTOTIC BEHAVIOR OF U-CAPACITIES AND SINGULAR PERTURBATIONS 35

being Rθ the rotation of angle θ ∈ [0, π/2], as in Section 8.
In view of Theorem 6.2, we aim at computing the quantity

E
(
ω, uN,#,k

)
:=

∫
R2\ω

|∇uN,k|
2 dt+

∫
ω

|∇uN,#,k|
2 dt (9.1)

which is indeed the coefficient of the leading term of the eigenvalues’ difference expansion. We remark that in
this case

ω = RθE0(a, b), (9.2)

depending on θ, so that even (9.1) is in fact depending on θ. An explicit computation of it will show how it
depends on this angle.

As seen in Section 6, the eigenfunction uN is analytic in a neighborhood of 0. In this Section, we assume
uN (0) = 0 (cf. assumption (6.4)). Accordingly, there exist k ∈ N \ {0} and Pk, a homogeneous polynomial of

degree k in two variables, such that

uN (x) = Pk(x) +O
(
|x|k+1

)
.

It follows, from differentiating the series expansion of uN at 0, that

∆uN (x) = ∆Pk(x) +O
(
|x|k−1

)
,

and since (∆ + λN )uN = 0, we obtain ∆Pk = 0, that is to say the polynomial Pk is harmonic. Therefore, there
exist β ∈ R \ {0} and α ∈]− π

2 ,
π
2 ] such that,

r−kuN (r cos t, r sin t)→ β sin(kt+ α) as r → 0 in C1,τ ([0, 2π]) (9.3)

for any τ ∈]0, 1[.
Moreover, as noted in [2], β is directly linked to the norm of the kth differential of uN at 0. More precisely,

if we consider

‖dju(x)‖2 :=

2∑
i1,...,ij=1

∣∣∣∣ ∂ju

∂xi1 . . . ∂xij
(x)

∣∣∣∣2 ,
then

β2 =
‖dkuN (0)‖2

(k!)2 2k−1
.

For the sake of simplicity and without loss of generality, we perform a change of variables by rotating the
domain, in such a way that

(i) in the new domain, the major axis of the small elliptic hole is lying along the x1-axis, so that equation
(9.2) reads

ω = E0(a, b); (9.4)
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(ii) Equation (9.3) now reads

r−kuN (r cos t, r sin t)→ β sin(kt+ kϕ) as r → 0 in C1,τ ([0, 2π]), (9.5)

with ϕ ∈]− π/2k, π/2k].

Remark 9.1. Given the above condition, ϕ is unique and −ϕ is, in absolute value, the smallest angle at the
origin between the major axis of RθE0(a, b) and a nodal line of the eigenfunction uN . We denote this unique
angle ϕ by ϕ(uN , θ).

In order to compute explicitly the quantity in (9.1) under assumptions (9.4) and (9.5), we define the elliptic
coordinates (ξ, η) (see for instance [52] or [1, 2]) by

{
x1 = c cosh(ξ) cos(η),

x2 = c sinh(ξ) sin(η),
ξ ∈ [0,+∞[, η ∈ [0, 2π[. (9.6)

The boundary ∂ω = ∂E0(a, b) has equation ξ = ξ̄, where ξ̄ is defined by the relation c sinh(ξ̄) = b, that is

ξ̄ = log

(
b
c +

√
1 + b2

c2

)
.

More precisely, we are considering the function F : (ξ, η) 7→ (x1, x2) defined by (9.6). It is a C∞ diffeomor-
phism from D := [0,+∞[×[0, 2π[ onto R2. F is actually a conformal map, as noted in ([2], Sect. 3.2). Let
us denote D1,2(R2) the functions space which is the closure of C∞c (R2) with respect to the L2 norm of the
gradient. For any function u ∈ D1,2(R2), let us define U := u ◦ F . Since F is conformal, |∇U | ∈ L2(D) with∫
D
|∇U |2 dξdη =

∫
R2 |∇u|2 dx1 dx2 and U is harmonic in D̃ ⊆ D if and only if u is harmonic in F (D̃).

Let us now denote

ψϕ
k

(r cos t, r sin t) := β rk sin(kt+ kϕ) for r > 0, t ∈ [0, 2π[

and define the complex variables z := x1 + ix2 and ζ := ξ + iη. Then we have

ψϕ
k

(x1, x2) = Im(βeikϕzk);

since z = F (ξ, η) = c cosh(ζ) and taking into account the Binomial Theorem we obtain

Ψϕ

k
(ξ, η) :=

(
ψϕ
k
◦ F
)
(ξ, η) = Im(βeikϕ(c cosh ζ)k) = Im

βckeikϕ
2k

k∑
j=0

(
k
j

)
e(k−2j)ζ


=
βck

2k

k∑
j=0

(
k
j

)
e(k−2j)ξ sin

(
(k − 2j)η + kϕ

)

In this way, the first contribution in (9.1) is precisely

∫
R2\ω

|∇uN,k|
2 dt =

∫
]ξ̄,+∞[×]0,2π[

|∇WN,k|
2 dξdη
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where WN,k is the unique solution in C1,α
loc

(
]ξ̄,+∞[×[0, 2π[

)
to the problem

−∆WN,k = 0, in ]ξ̄,+∞[×[0, 2π[,

WN,k(ξ, η) = Ψϕ

k
(ξ̄, η), on ξ = ξ̄,

sup
(ξ,η)∈]ξ̄,+∞[×[0,2π[

|WN,k(ξ, η)| < +∞

W (ξ, 0) = W (ξ, 2π), for all ξ ∈]ξ̄,+∞[.

(9.7)

which is the analogous of problem (6.6) in elliptic coordinates, that is WN,k = uN,k ◦ F .
As well, the second contribution in (9.1) is∫

ω

|∇uN,#,k|
2 dt =

∫
]0,ξ̄[×]0,2π[

|∇Ψϕ

k
|2 dξdη,

that is Ψϕ

k
= uN,#,k ◦ F , since uN,#,k = ψϕ

k
in view of (6.5).

9.1. Computation of the first contribution

In order to compute the first contribution, we need to compute explicitely the potential WN,k solution to
(9.7). Let us consider the Fourier expansion of W in elliptic coordinates:

WN,k(ξ, η) =
a0(ξ)

2
+
∑
j≥1

(aj(ξ) cos(jη) + bj(ξ) sin(jη))

where

aj(ξ) =
1

π

∫ 2π

0

WN,k(ξ, η) cos(jη) dη for j ∈ N,

bj(ξ) =
1

π

∫ 2π

0

WN,k(ξ, η) sin(jη) dη for j ∈ N \ {0}.

Therefore we have

0 = −∆(ξ,η)WN,k =
a′′0(ξ)

2
+
∑
j≥1

(
(a′′j (ξ)− j2aj(ξ)) cos(jη) + (b′′j (ξ)− j2bj(ξ)) sin(jη)

)
.

Imposing the boundary conditions for ξ ∈]ξ̄,+∞[, the latter equation implies
a′′j (ξ)− j2aj(ξ) = 0 for ξ ≥ ξ̄
aj(ξ̄) = 1

π

∫ 2π

0
Ψϕ

k
(ξ̄, η) cos(jη) dη

supξ≥ξ̄ |aj(ξ)| < +∞
and


b′′j (ξ)− j2bj(ξ) = 0 for ξ ≥ ξ̄
bj(ξ̄) = 1

π

∫ 2π

0
Ψϕ

k
(ξ̄, η) sin(jη) dη

supξ≥ξ̄ |bj(ξ)| < +∞

for any j ∈ N and any j ∈ N \ {0}, respectively. We solve the latter problems by

a0(ξ) ≡ a0(ξ̄) for ξ ≥ ξ̄;

aj(ξ) = aj(ξ̄) e
−j(ξ−ξ̄) for ξ ≥ ξ̄, for j ≥ 1;

bj(ξ) = bj(ξ̄) e
−j(ξ−ξ̄) for ξ ≥ ξ̄, for j ≥ 1.
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By rewriting formula (5.17) in the elliptic coordinates (ξ, η), we obtain∫
]ξ̄,+∞[×]0,2π[

|∇WN,k|
2 dξdη =

∫ 2π

0

−
∂WN,k

∂ξ
(ξ̄, η)WN,k(ξ̄, η) dη

=

∫ 2π

0

∑
j,l≥1

j
(
aj(ξ̄) cos(jη) + bj(ξ̄) sin(jη)

) (
al(ξ̄) cos(lη) + bl(ξ̄) sin(lη)

)
dη

= π
∑
j≥1

j
(
a2
j (ξ̄) + b2j (ξ̄)

)
.

In order to conclude the analysis on this first contribution, let us compute the quantities a2
j (ξ̄) and b2j (ξ̄). By

definition, for any j ≥ 1

aj(ξ̄) =
1

π

∫ 2π

0

WN,k(ξ̄, η) cos(jη) dη

=
βck

2kπ

k∑
l=0

(
k
l

)
e(k−2l)ξ̄

∫ 2π

0

sin
(
(k − 2l)η + kϕ

)
cos(jη) dη

=
βck

2kπ
sin(kϕ)

k∑
l=0

(
k
l

)
e(k−2l)ξ̄

∫ 2π

0

cos
(
(k − 2l)η

)
cos(jη) dη, (9.8)

where the last equality follows the addition formula for the sine and the mutual orthogonality of trigonometric
functions. As well,

bj(ξ̄) =
βck

2kπ
cos(kϕ)

k∑
l=0

(
k
l

)
e(k−2l)ξ̄

∫ 2π

0

sin
(
(k − 2l)η

)
sin(jη) dη, (9.9)

the computation being similar to the previous one. We note that the terms in the sums in the right-hand side
of (9.8) and (9.9) are nontrivial only if k − 2l = ±j, and obtain the values of the coefficients:

aj(ξ̄) =


0 if k + j odd;

βck

2k−1
sin(kϕ)

(
k
k+j

2

)
cosh jξ̄ if k + j even,

and

bj(ξ̄) =


0 if k + j odd;

βck

2k−1
cos(kϕ)

(
k
k+j

2

)
sinh kξ̄ if k + j even.

Finally,

∫
R2\ω

|∇uN,k|
2 dt =

∑
1 ≤ j ≤ k
k + j even

πβ2c2k

4k−1
j

(
k
k+j

2

)2 (
sin2 kϕ cosh2 jξ̄ + cos2 kϕ sinh2 jξ̄

)
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=
∑

1 ≤ j ≤ k
k + j even

πβ2c2k

22k−1
j

(
k
k+j

2

)2 (
cosh 2jξ̄ − cos 2kϕ

)
.

The latter sum can be rewritten to give

∫
R2\ω

|∇uN,k|
2 dt =

πβ2c2k

22k

k∑
j=0

∣∣k − 2j
∣∣ ( k

j

)2 (
e2(k−2j)ξ̄ − cos 2kϕ

)
.

In accordance with [1, 2], we use the notation

Ck :=
1

22k−1

k∑
j=0

∣∣k − 2j
∣∣ ( k

j

)2

=
1

4k−1

⌊
k−1
2

⌋∑
j=0

(
k − 2j

) ( k
j

)2

.

Furthermore, we define

Dk(ξ̄) :=
1

22k

k∑
j=0

∣∣k − 2j
∣∣ ( k

j

)2

e2(k−2j)ξ̄.

We summarize the analysis of this subsection in the following statement.

Proposition 9.2. Let uN,k be the unique C1,α
loc (R2 \ ω) solution to problem (6.6). Then

∫
R2\ω

|∇uN,k|
2 dt = −πβ

2c2k

2
Ck cos 2kϕ(uN , θ) + πβ2c2kDk(ξ̄)

for any θ ∈ [0, π/2], with ϕ(uN , θ) defined in Remark 9.1.

9.2. Computation of the second contribution

We recall that uN,#,k is a harmonic homogeneous polynomial. We perform an integration by parts, pass to
elliptic coordinates, apply the addition formula for sines and thanks to the mutual orthogonality of trigonometric
functions we obtain∫

ω

|∇uN,#,k|
2 dt =

∫
∂ω

∂uN,#,k
∂νω

uN,#,k dt =

∫ 2π

0

∂Ψϕ

k

∂ξ
(ξ̄, η) Ψϕ

k
(ξ̄, η) dη

=
β2c2k

22k

k∑
j,l=0

(
k
j

)(
k
l

)
(k − 2j)e(k−2j)ξ̄+(k−2l)ξ̄

∫ 2π

0

sin
(
(k − 2j)η + kϕ

)
sin
(
(k − 2l)η + kϕ

)
dη

=
β2c2k

22k

k∑
j,l=0

(
k
j

)(
k
l

)
(k − 2j)e(k−2j)ξ̄+(k−2l)ξ̄

{
cos2(kϕ)

∫ 2π

0

sin
(
(k − 2j)η

)
sin
(
(k − 2l)η

)
dη

+ sin2(kϕ)

∫ 2π

0

cos
(
(k − 2j)η

)
cos
(
(k − 2l)η

)
dη

}
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=
πβ2c2k

22k

k∑
j=0

(
k
j

)2

(k − 2j) e2(k−2j)ξ̄ − π

22k

k∑
j=0

(
k
j

)(
k

k − j

)
(k − 2j) cos(2kϕ)

=
πβ2c2k

22k

k∑
j=0

(
k
j

)2

(k − 2j) e2(k−2j)ξ̄ (9.10)

where the second to last equality follows from the fact that every term of the sum in the third line is zero except

when l = j or l = k − j. Moreover, the last equality follows easily recalling that

(
k
j

)
=

(
k

k − j

)
.

9.3. Comparison with the numerical simulations

According to Theorem 6.2, we have

λN (ε, θ)− λN ∼ ε2kE
(
RθE(a, b), uN,#,k

)
as ε→ 0,

where E
(
RθE(a, b), uN,#,k

)
is the quantity defined in equation (9.1). Summing up the contributions in

Proposition 9.2 and equation (9.10), we find

E
(
RθE(a, b), uN,#,k

)
= −πβ

2c2k

2
Ck cos 2kϕ(uN , θ) + πβ2c2kEk(ξ̄), (9.11)

where

Ek(ξ̄) =
1

22k

k∑
j=0

(∣∣k − 2j
∣∣+ (k − 2j)

) ( k
j

)2

e2(k−2j)ξ̄

=
1

22k−1

⌊
k−1
2

⌋∑
j=0

(k − 2j)

(
k
j

)2

e2(k−2j)ξ̄

and ϕ(uN , θ) is defined in Remark 9.1. Let us note that the second term in the right-hand side of equation
(9.11) can be written as a polynomial in a and b. Indeed, we have

ξ̄ = log

(
b

c
+

√
1 +

b2

c2

)
,

so that, for any non-negative integer m,

emξ̄ =

(
b

c
+

√
1 +

b2

c2

)m
=

(
b

c
+

√
c2 + b2

c2

)m
=

(
a+ b

c

)m
.

Using the above identity, we get

E
(
RθE(a, b), uN,#,k

)
= −πβ

2c2k

2
Ck cos 2kϕ(uN , θ) + πβ2Qk(a, b), (9.12)
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with

Qk(a, b) = c2kEk(ξ̄) =
1

22k−1

⌊
k−1
2

⌋∑
j=0

(k − 2j)

(
k
j

)2

c4j (a+ b)2(k−2j)

=
1

22k−1

⌊
k−1
2

⌋∑
j=0

(k − 2j)

(
k
j

)2

(a2 − b2)2j (a+ b)2(k−2j).

Formula (9.12) confirms the simulations on Figure 7, which correspond to a vanishing order k = 1, where
ϕ(u2, θ) = θ − π/2 for θ ∈]0, π/2], ϕ(u2, 0) = π/2 and ϕ(u3, θ) = θ. It also confirms the simulations on
Figure 8, corresponding to a vanishing order k = 2; there, for N = 11 and N = 15, ϕ(uN , θ) = θ when
θ ∈ [0, π/4] and ϕ(uN , θ) = θ − π/2 when θ ∈]π/4, π/2]. We have thus explained the variations of the functions
θ 7→ λN (ε, θ)− λN .

Remark 9.3. As it appears from [1, 2], a first order expansion is available for the u-capacity when the open set
ω is replaced by a segment. The interested reader can find the result in Theorem 1.9 of [1] (see also [1], Lem. 2.3)
together with Proposition A.3 of [2]. In particular, the latter result ([2], Prop. A.3) provides the explicit value
of the constant appearing in [1], Theorem 1.9. We stress that [1], Theorem 1.9 provides exact asymptotics for
the u-capacity as soon as the gradient at the limit point does not vanish along the segment direction, i.e. the
nodal line is not tangent to the removed segment. Otherwise, higher order expansions would be needed, but
the techniques presented in this paper do not apply immediately to this case, since they require ω to be open,
bounded and connected. Moreover, starting from formula (9.12), we can recover the u-capacity of a disk and
that of a segment, given respectively in Theorems 1.13 and 1.9 of [1]. We achieve this by letting either b go to
a or b go to 0 and by a suitable scaling. On this topic, we refer the interested reader even to [8].
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