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Abstract

Objectives: Patient-based real-time quality control
(PBRTQC) has gained attention as an alternative/integrative
tool for internal quality control (iQC). However, it is still
doubted for its performance and its application in real
clinical settings. We aim to generate a newly and easy-to-
access patient-based real-time QC bymachine learning (ML)
traceable to standard referencedatawith assigned values by
National Institute of Metrology of China (NIM), and to
compare it with PBRTQC for clinical validity evaluation.
Methods: For five representative biochemistry analytes,
1,195 000 patient testing results each were collected. After
data processing, independent training and test sets
were divided. Machine learning internal quality control

(MLiQC) was set up by Random Forest in ML and was
validated by way of both metrology algorithm traceability
and 4 PBRTQC methods recommended by IFCC analytical
working group.
Results: MLiQC were established. As an example of albu-
min (ALB) at the critical bias, the uncertainty of MLiQCwas
0.14%, which was evaluated by standard reference data
produced by NIM. Compared with four optimal PBRTQC
methods at critical bias, the average of the number of
patient samples from a bias introduced until detected
(ANPed) of MLiQC averagely decreased from 600 to 20. The
median and 95 quantiles of NPeds (MNPed and 95NPed) of
MLiQC were superior to all optimal PBRTQCs above 90%
for all test items.
Conclusions: MLiQC is highly superior to PBRTQC and
well-suited in real settings. The validation of the model
from two aspects of algorithm traceability and clinical
effectiveness confirms its satisfactory performance.

Keywords: algorithm traceability; laboratory; patient data;
real-time quality control; supervised machine learning.

Introduction

Patient-based real-time quality control (PBRTQC) is used as
an internal quality control tool in laboratory practice [1, 2].
Through half a century, PBRTQC continues to be improved
with the development of statistical methodology and in-
formation technology, and becomes an alternative/inte-
grative tool with respect to the traditional internal quality
controls (iQC) [3–5]. In 2020, a study on PBRTQC was
reported by the Committee on Analytical Quality of the
International Federation of Clinical Chemistry and Labo-
ratory Medicine (IFCC) [6]. However, limited by inadequate
accuracy and complex algorithms, PBRTQC is still difficult
to be widely adopted by medical laboratories [7, 8].

Machine learning (ML), since was put forward by
Arthur Samuel in 1959, is defined as a subfield of artificial
intelligence (AI) [9]. ML is good at dealing with classifica-
tion or regression problems with highly accuracy, thus has
inspired the development of AI-based algorithms as diag-
nostic or prognosis tools in healthcare areas [10–13]. As to a
QC issue, our goal is to identify biased data from unbiased
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data, which is belongs to ML classification issue. In the
study, a novel patient-based real-time machine learning
internal quality control (MLiQC) method was generated; for
an example of ALB at the critical allowable bias which
represented a hard-to-detect bias, MLiQC was traceable to
standard reference data with assigned value by NIM to
qualitatively evaluate the accuracy of the model; as a while,
for examples of albumin (ALB), alanine transaminase (ALT),
aspartate transaminase (AST), glucose (GLU) and total
protein (TP), MLiQC method was compared with 4 PBRTQC
methods recommended by IFCC to validate clinical effec-
tiveness and utility [6]. These measurands were selected
because theywere themost frequently requested laboratory
tests, and because they represent different distributions
commonly encountered in laboratory medicine.

Highlights

(1) A newly patient-based real-time Quality Control using
machine learning (ML) is generated.

(2) MLiQC algorithm is firstly traceable to standard refer-
ence data produced by National Institute of Metrology
of China (NIM), to verify the accuracy of the model.

(3) Compared with PBRTQC recommended by IFCC,
especially at critical bias, the performance of MLiQC
improved by above 90% for all test items.

Materials and methods

Patient data collection

In the period between October 2018 and July 2020, 1,195 000 patient
results of five representative biochemistry test items, ALB, ALT, AST,
GLU and TP were measured on Siemens Advia 2,400 were exported
through Laboratory Information System (LIS) of Laboratory Depart-
ment of Beijing Chao-yang Hospital, which has passed ISO15189
accreditation. Other patients-related information included age and
sex were recorded. The hospital ethics board of Beijing Chao-yang
Hospital approved this study (2021-D-51).

Data simulation

As shown inFigure 1, all 1,195000dataof each test itemwaskept in their
original order, the first 9,56,000 data as training dataset and the rest
2,39,000data as test dataset (the ratio of training/test datasets = 8/2) for
4 PBRTQCs/MLiQC methods. Unbiased and biased data sets were dealt
with in the same way. The original data collected represented unbiased
data, and then corresponding biased data was produced by introducing
a bias of different sizes according to the formula (1):

x′ = x × (1 + P)(P = −50%,−48%, − 46%, ...., 46%, 48%, 50% ) (1)

where x’ represents the data after the bias introduced, x is the orig-
inal data, and P represents the specific relative bias value introduced
in a range from −50% to 50% in the step of 2%. Therefore, 50 biased
data sets of different sizes are generated for each test item based
on unbiased data, covering commonly visible biases in the real
laboratory settings. Due to different quality specifications for each
test item, two additional critical allowable biases in positive and
negative directions for each test item were introduced in order to
evaluate the detection ability for hard-to-detect bias. The critical
allowable bias value was calculated as the Formula (2) according to
the intra-individual variation coefficient (CVi) and the inter-
individual variation coefficient (CVg). The values of CVi and CVg

for the five test items were listed (AST: 11.9%, 17.9%; ALT: 24.3%,
41.6%; GLU: 6.5%, 7.7%; TP: 2.7%, 4.0%; ALB: 3.1%, 4.2%) derived
from German quality assurance plan [14].

Biascritical  = 0.25 ×
̅̅̅̅̅̅̅̅̅
CV2

i + CV2
g

√
(2)

In order to reproduce the process of bias detection in real labo-
ratory setting in a short time interval, the test dataset was divided into
200 virtual days, and 1,150 data were allocated every day. The first 150
data were unbiased data, and corresponding bias of each size was
introduced at 151 data site daily. Therefore, the last 1,000 data rep-
resented biased data, of which the unbiased data was set to 150
according to the maximum PBRTQC block size.

PBRTQC

PBRTQC belonged to a statistical integrated algorithm combining
multiple parameters, such as truncation limits, block sizes and
algorithms. The basic principle was as follows: for each test item,
9,56,000 unbiased data includedwere dealt with by data truncation,
data transformation and mean calculation. There were four algo-
rithms used for mean calculation, as shown in Formulas (4)ormu-
las –Formulas (7). Then the control limit for each test item was
calculated by using the unbiased data as a criterion for judging
in-control or out-of-control status. In our study, optimal PBRTQC
was used as a comparative method of MLiQC.

Data processing for PBRTQC

Combined with the data characteristics of 9,56,000 unbiased data for
each test item, firstly, a certain amount of extreme values were
removed. Then the data left were dealt with by data transformation,
two modes of data were obtained for each test item: without trans-
formation and with Box-Cox transformation. Here Box-Cox trans-
formation as shown in Formula (3), is a commonly used method of
data transformation in statistics, adopting for continuous response
variables which do not obey normal distribution, so as to improve the
normality, symmetry and variance equality of data. It can reduce the
correlation between unobservable error and prediction variables to a
certain extent.

x″ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′, neat

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′λ − 1

λ
, λ ≠ 0

ln x′, λ = 0

, box – cox
(3)
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Where x’ is the data before conversion, x’’ is the data after conversion,
and neat represents the data without conversion, that is, the data
remained unchanged. λ is a transformation parameter, which affects
the normal performance after conversion. The optimal value can be
obtained directly by programming tools. The algorithms were expo-
nentially (weighted) moving average (EMA), moving average
(MAmean), and moving median (MMmedian). EMA and HD50 (15) were
calculated on neat and Box-Cox transformed test results, as shown in
Formula (4)ormula –Formula (7).

EWMAt = α ⋅MAt + (1 − α) ⋅MAt−1 (4)

MAt = mean(xt−N∼xt) (5)
MMt = median(xt−N∼xt) (6)

HD50t = HD50(xt−N∼xt) = ∑
N

i=1
ω50

i:Nx( i) (7)

Where t refers to batch numbers of four PBRTQCs; x represents data
amount in the current batch, and its quantity is equal to a predefined
block size (n); α and ω all belong to the PBRTQC coefficient within
different algorithms. These four PBRTQCs showed different perfor-
mance on different clinical characteristic data, so our experiment
included four PBRTQC algorithms.

Control limits for PBRTQC

All control limits (CLs)were calculatedon the trainingdataset of each test
item and for each PBRTQC method before adding any bias. Three ap-
proaches forCLs calculationwere evaluated for their tendency toproduce
false alarms on an intended 200 days. A relatively high but still realistic
false positive alarm rate (FPR) of 5% of days was chosen. The three CLs
were calculated as followed: 1) Upper and lower limits of “symmetric” CL
hadanequaldistance to themeanofPBRTQC results, equivalent to 2SD2)
For “overall percentiles” CLs percentiles of all PBRTQC results were
employed. Upper and lower limits of “overall percentiles” CLs were 0.5
and 99.5 percentiles. 3) For the “percentiles of daily extremes”, the daily
minimum and maximum of PBRTQC results were determined. The fifth
and 95th percentiles (FPR/2) the distribution of these daily minimums
and maximums defined as lower and upper CLs [6].

MLiQC

MLiQC was aimed to separated biased data of different size from un-
biased data. The steps were as followed:

Figure 1: Flowchart of the experimental frame.
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Data standardization was done starting model training to guar-
antee data comparability. For a ML algorithm, significant data
difference among testing results each test item leads to exaggerate the
contribution of higher values and to weaken that of lower values.
Therefore, the data of each test item is standardized according to the
following formula:

x∗ = x − μ
σ

(8)

Here μ is the mean of all the data of a test item, σ is the standard
deviation of all the data of a test item. Because of strong randomness
and indefinite characteristic attribute of the data, Random Forest (RF)
as a high-performance binary classification algorithm, with strong
adaptability to the data, not prone to be robust to outliers, and not
overdue dependent on feature selection was employed. A detailed
description of RF algorithmwas given in the Supplementary Materials
and Methods. Accuracy (ACC), true positive rate (TPR), false positive
rate (FPR), true negative rate (TNR), false negative rate (FNR), etc.were
used for evaluating the quality of our model.

In addition, Algorithm traceability, a method for quantitative
evaluation accuracy ofMLiQCwas introduced.MLiQCwas traceable to
standard reference data which was assigned value by National Insti-
tution of Metrology of China (NIM). The uncertainty of our model was
evaluated according to GUM principle. An example of ALB algorithm
traceability and its formula of uncertainty calculation were shown in
the Supplementary Materials and Methods.

Comparison between MLiQC and PBRTQC

The MLiQC was validated by comparing with optimal PBRTQC in
2,39,000 test dataset which were divided into 200 virtual days with
1,150 measurements daily. when FPR <5%, the number of patient
samples from a bias introduced until detected was defined as NPed
according to IFCC’s method. Otherwise if a bias was not detected up to
the end of the 1,150 Figure one day, then 1,100 value of NPedwas given
to programming, signaling the bias not detected [6]. In order to
illustrate comprehensive clinical performance, the average, the me-
dian and 95 quantiles of NPeds (ANPed,MNPed and 95NPed) of all 200
virtual days in test dataset each test item calculated. Theways to select
optimal PBRTQCmethodswere assessed on the training dataset of five
test items. Based on the overall MNPed, the PBRTQC method with the
lowest sum of MNPeds (∑MNPed) over all biases was selected. Simi-
larly, the method with the lowest sum of 95NPeds (95NPed) was
selected.

Results

Data distribution

For all five test items, 1,195,000 patient results were
retrieved each (missingness 0%), in a timewindow of three
years. The distribution of TP and ALB had a negative
skewness (−0.82, −1.02). GLU, AST and ALT had a positive
skewness (3.19, 3.21 and 2.34). The five test items examined
showed skewed distributionwith kurtosis from 1.07 to 7.18.

Analytical performance of MLiQC

When false alarm rates for all five test items were less than
5% in the test dataset, the accuracy, AUC, sensitivity and
specificity of MLiQC were shown in (Table 1 and Figure 2).
In addition, by using reference standard data with
assigned value by NIM, the uncertainty of MLiQC was only
0.14% as small as possible. It also proved the outstanding
analytical performance of ML iQC from the third party. The
critical bias values for the five test items were as follows:
AST: 5.4%; ALT: 12%; GLU: 2.5%; TP: 1.2%; ALB: 1.3%.

Clinical performance of MLiQC

The four optimal PBRTQCs and MLiQC for all biases and
for all test items are shown in Figure 3. As an example,
Figure3A shows the error detection curves for AST andALT.
In the error detection curve, if the value of the point on the
curve was larger indicated that the corresponding bias
detection ability was worse. The horizontal line on the top
of error detection curve indicated that the bias was not
detected because the bias was as small as possible, beyond
the error detection ability. The wider the horizontal line on
the top was, the detectable range was narrower. Two key
evaluation parameters NPed and MNPed were used,
respectively representing the number of patient samples
from a bias introduced until detected daily and the median
of NPeds of all 200 virtual days in test dataset each test
item.We found that for all test items and all algorithms, the
size of MNPedwas obviously linear with the size of the bias
introduced. It meant that with the increase of bias, the
MNPed was prone to smaller. It proved the bias can be
detected quicker, then the number of affecting patient re-
sults reduced.

Table : Prediction results of MLiQC at critical bias for each test
item.

Test item FPR, % AUC ACC Sensitivity Specificity

ALT . . . . .
AST . . . . .
GLU . . . . .
ALB . . . . .
TP . . . . .

FPR, false positive rate; AUC, area under the receiver operating curve;
ACC, accuracy; ALT, alanine transaminase; AST, aspartate
transaminase; GLU, glucose (GLU); ALB, albumin; TP, total protein. The
critical bias values for the five test items were as follows: AST: .%;
ALT: %; GLU: .%; TP: .%; ALB: .%.
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Figure 2: Receiver operating characteristic curves of MLiQC at critical bias for each test item.
The critical bias values for the five test items were as follows: AST: 5.4%; ALT: 12%; GLU: 2.5%; TP: 1.2%; ALB: 1.3%.

Figure 3: Clinical performance evaluation by comparing MLiQC with four PBRTQCs.
(A) Take ALT and AST as examples, colored lines depicted MNPed for each bias, colored area the associated 95NPed. Parameters were
displayed in the top corner (BS, block size; T, truncation limit; BC, with Box–Cox transformation). Black vertical lines represented critical
allowable bias each test item. (B) Histogram at the bottom represented ANPed, which represented the undetected errors for MLiQC/PBRTQCs
for all test items at critical biases. Colored pillars depicted ANPed of MLiQC/ PBRTQCs for all test items at critical biases.
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Discussion

ML has gained a place in medicine and has captured the
interest of medical researchers and practitioners within
this subfield of computer science [15]. The enormous
technological potential developed over the last years is
increasingly influencing life sciences and driving changes
toward personalized medicine and value-based healthcare
[16, 17]. In previous studies, ML applications in laboratory
medicine focused on the establishment of reference in-
tervals, diagnostic prognostic models, epidemiological
investigation, and analysis of sources of variations in
analytes [18–20]. To our knowledge, seldom studies have
been reported aiming to develop a quality control
approach in laboratory medicine. We aimed to generate a
novel quality control approach by using supervised ML for
analytical error detection in real settings, with consider-
ation to cost, appropriateness, easy access, and repro-
ducibility of measurements. In our study, 50 biases of
different sizes were stimulated and 200 visual days were
divided in test sets based on statistical principles, in order
to reproduce different clinical scenes within a short time
interval.

Compared with IFCC’s PBRTQC in Figure 3, we found
that the smaller the bias was, the larger the MNPed was.
MLiQC was more sensitive and stable to four optimal
PBRTQCs for all biases and all test items in the parameters
of MNPed, 95NPed Figure 3A and ANPed Figure 3B. In each
curve, ANPed、MNPed、95NPed showed definite cutoff
for all algorithms. The cutoffs of four PBRTQCs for all test
items were between 20 and 25% in absolute value. Then
with the shrinking of bias introducedwhichwas lower than
20% in absolute value, MNPed of four PBRTQCs increased
exponentially. However, the cutoff of MLiQC was close to
2% in absolute value. MLiQC could detect all biases more
than 2% in absolute value, and its MNPed was stable,
below 20 for all test items. 95NPed and had the similar
change trend like MNPed in two types of methods. Asym-
metrical error detection curves could be observed in ALT
and AST for biases in both directions for four PBRTQCs, but
MLiQC did not show significant difference for all test items.
Especially for hard-to-detect critical bias each test item,
MNPed of PBRTQC fell into the positive and negative cutoff
range, that indicted MNPed was unable. Otherwise, the
MNPed ofMLiQCwas low and stable in Figure 3A. ANPed of
MLiQC in the histogram in Figure 3B. performed similar
trend as MNPed and 95NPed, it averagely decreased from
600 to 20, improving by above 90% than four PBRTQCs for
all test items. Take for an example of ALT representing
extreme data disturbance, Figure 3. showed that whenever

the systematic error changed, the MLiQC outperformed the
four PBRTQCs.

It was also the first time in our study to put forward to
metrological traceability to validate the accuracy ofMLiQC.
In the point of view ofmetrology,measurement traceability
is the property of ameasurement whereby the result can be
related to a reference through a documented unbroken
chain of calibrations, each contributing to the measure-
ment uncertainty [21]. MLiQC was traceable to standard
reference data which is the data related to a property of a
phenomenon, body or substance, or to a system of com-
ponents of known composition or structure, obtained from
an identified source, critically evaluated and verified for
accuracy, and issued by national authority [21]. The stan-
dard reference data of MLiQC was produced and assigned
value by NIM in accordance with the Metrology Law of the
People’s Republic of China and Standard Reference Data
Act of the United States [22]. It offers higher hierarchy
method for quantitative evaluation of the MLiQC. Conse-
quently, it can ensure the accuracy and reliability of the
MLiQC in real testings.

The interpretability of MLiQC should be taken into
consideration. In 2018, the Department of Information In-
dustry under the United States Food and Drug Adminis-
tration (FDA) proposed at the regulatory level that the
market access criteria for the development of ML products
using medical data should be evaluated from three aspects
[23]: algorithm program effectiveness, clinical effective-
ness and clinical applicability. Of all 1,195,000 patient re-
sults in the period of October 2018 and July 2020, retrieved
each test item (missingness 0%) kept in their original or-
der, the first 9,56,000 data was as training dataset and the
rest 2,39,000 data as test dataset. By comparing with
clinical recognized four PBRTQCs in test dataset, clinical
effectiveness of MLiQC was evaluated in comparison with
IFCC’s PBRTQC method. Furthermore, the results of profi-
ciency testing organized by Beijing Center for Clinical
Laboratory last year didn’t show significant difference
among peer groups for the five test items. It is also proved
MLiQC is suitable to clinical applicability from clinical
testing result compatibility. In addition, initially intro-
duced, algorithm traceability adopts third party standard
reference data generated by NIM for further validating the
reliability of MLiQC. The limitation of our study, we just
comparedMLiQC to four PBRTQCs by artificial error data to
validate our model. If available, they are likely to be
implemented in laboratory information systems for further
validation in the context, finally offering an easy-to-access
software and helping to the improve the quality of labo-
ratory test results.
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Conclusions

MLiQC is highly accurate and fast for analytical error
detection of various sizes occurred in real laboratory set-
tings. We provide a new thinking for ML applications for
unreliable patient results prediction.

Research funding: This work was supported by two funding
programs: the National Clinical Key Specialty Construction
Projects and High-tech industry major innovation support
projects (CYGX2112) for “Development a new quality control
platform based on artificial intelligence using routine
laboratory test data”.
Author contributions:All authors have accepted responsibility
for the entire content of this manuscript and approved its
submission.
Competing interests: Authors state no conflict of interest.
Informed consent: Not applicable.
Ethical approval: Not applicable.

References

1. Hoffmann RG, Waid ME. The “AVERAGE OF NORMALS” method of
quality control. Am J Clin Pathol 1965;43:134–41.

2. Bull BS, Elashoff RM, Heilbron DC, Couperus J. A study of various
estimators for the derivation of quality control procedures from
patient erythrocyte indices. Am J Clin Pathol 1974;61:473–81.

3. Badrick T, Bietenbeck A, Cervinski MA, Katayev A,
Van Rossum HH, Loh TP. International federation of clinical
chemistry, and laboratory medicine committee on analytical
quality. Patient-based real-time quality control: review and
recommendations. Clin Chem 2019;65:962–71.

4. Westgard JO, Bayat H, Westgard SA. Planning risk-based SQC
schedules for bracketed operation of continuous production
analyzers. Clin Chem 2018;64:289–96.

5. Rossum HHV, Kemperman H. Implementation and application of
moving average as continuous analytical quality control
instrument demonstrated for 24 routine chemistry assays. Clin
Chem Lab Med 2017;55:1142–51.

6. Bietenbeck A, Cervinski MA, Katayev A, Loh TP, van Rossum HH,
Badrick T. Understanding patient-based real-time quality control
using simulation modeling. Clin Chem 2020;66:1072–83.

7. Cembrowski GS, Chandler EP, Westgard JO. Assessment of
“Average of Normals” quality control procedures and guidelines
for implementation. Am J Clin Pathol 1984;81:492–9.

8. van Rossum HH. Moving average quality control: principles,
practical application and future perspectives. Clin Chem LabMed
2019;57:773–82.

9. Samuel AL. Some studies in machine learning using the game of
checkers. IBM J Res Dev 1959;3:210–29.

10. Bennie M, Malcolm W, McTaggart S, Mueller T. Improving
prescribing through big data approaches-Ten years of the
Scottish Prescribing Information System. Br J Clin Pharmacol
2020;86:250–7.

11. Ma C, Wang X, Wu J, Cheng X, Xia L, Xue F, et al. Real-world big-
data studies in laboratory medicine: current status, application,
and future considerations. Clin Biochem 2020;84:21–30.

12. Beam AL, Kohane IS. Big data and machine learning in health
care. JAMA 2018;319:1317–8.

13. Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J,
Carvalhais N, et al. Deep learning and process understanding for
data-driven Earth system science. Nature 2019;566:195–204.

14. German Medical Association. Revision of the “guideline of the
German medical association on quality assurance in medical
laboratory examinations–rilibaek”. J Lab Med 2015;39:26–69.

15. Cabitza F, Banfi G. Machine learning in laboratory medicine:
waiting for the flood? Clin Chem Lab Med 2018;56:516–24.

16. Ng D, Polito FA, Cervinski MA. Optimization of a moving
averages program using a simulated annealing algorithm: the
goal is to monitor the process not the patients. Clin Chem 2016;
62:1361–71.

17. van Rossum HH, Kemperman H. Moving average for continuous
quality control: time to move to implementation in daily practice?
[Letter]. Clin Chem 2017;63:1041–3.

18. Duan X, Wang B, Zhu J, Zhang C, Jiang W, Zhou J, et al.
Regression-adjusted real-time quality control. Clin Chem 2021;
67:1342–50.

19. U.S. Food and Drug Administration. Use of real-world evidence to
support regulatory decisions-making for medical devices:
guidance for industry and Food and Drug Administration staff;
2017. Available from: https://www.fda.gov/media/99447/
download.

20. Price W, Cohen IJNM. Privacy in the age of medical big data. Nat
Med 2019;25:37–43.

21. International vocabulary of metrology. Basic and general
concepts and associated terms (VIM), ISO/IEC GUIDE 99. Sèvres:
Joint Committee for Guides in Metrology; 2012.

22. Standard Reference Data Act. Public law 90-396. United States
Congress; 1968. Available from: https://www.nist.gov/system/
files/documents/srd/SRDAct-2.pdf.

23. Khoury MJ, Ioannidis JP. Medicine. big data meets public health.
Science 2014;346:1054–5.

Supplementary Material: The online version of this article offers
supplementary material (https://doi.org/10.1515/cclm-2022-0548).

Zhou et al.: Traceable machine learning real-time quality control based on patient data 7

https://www.fda.gov/media/99447/download
https://www.fda.gov/media/99447/download
https://www.nist.gov/system/files/documents/srd/SRDAct-2.pdf
https://www.nist.gov/system/files/documents/srd/SRDAct-2.pdf
https://doi.org/10.1515/cclm-2022-0548

	Traceable machine learning real-time quality control based on patient data
	Introduction
	Highlights

	Materials and methods
	Patient data collection
	Data simulation
	PBRTQC
	Data processing for PBRTQC
	Control limits for PBRTQC
	MLiQC
	Comparison between MLiQC and PBRTQC

	Results
	Data distribution
	Analytical performance of MLiQC
	Clinical performance of MLiQC

	Discussion
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


