
ar
X

iv
:2

11
0.

11
06

9v
1

 [
cs

.P
L

]
 2

1
O

ct
 2

02
1

Pacta sunt servanda: legal contracts in Stipula

Silvia Crafa1, Cosimo Laneve2, and Giovanni Sartor3

1 University of Padova
2 University of Bologna – Inria FOCUS

3 University of Bologna – European University Institute

Abstract. There is a growing interest in running legal contracts on digital systems, at the same
time, it is important to understand to what extent software contracts may capture legal content.
We then undertake a foundational study of legal contracts and we distill four main features:
agreement, permissions, violations and obligations. We therefore design Stipula, a domain specific
language that assists lawyers in programming legal contracts through specific patterns. The
language is based on a small set of abstractions that correspond to common patterns in legal
contracts, and that are amenable to be executed either on centralized or on distributed systems.
Stipula comes with a formal semantics and an observational equivalence, that provide for a clear
account of the contracts’ behaviour. The expressive power of the language is illustrated by a set
of examples that correspond to template contracts that are often used in practice.

1 Introduction

A legal contract is “an agreement which is intended to give rise to a binding legal relationship
or to have some other legal effect” [23]. The parties are in principle free to determine the
content of their contracts (party autonomy/freedom of contract): the law recognizes their
intention to achieve the agreed outcomes and secures the enforcement of such outcomes (legally
binding effect). A contract produces the intended effects, declared by the parties, only if it is
legally valid: the law may deny validity to certain clauses (e.g. excessive interests rate) and/or
may establish additional effects that were not stated by the parties (e.g. consumer’s power
to withdraw from an online sale, warranties, etc.). The intervention of the law is particularly
significant when the contractor (usually the weaker party, such as the worker in an employment
contract or the consumer in an online purchase) agrees without having awareness of all clauses
in the contract, nor having the ability to negotiate them, due to the existing unbalance of
power.

The assimilation of software contracts to legally binding contracts, or rather the dou-
ble nature of digital contracts as computational mechanisms and as legal contracts, raises
both legal and technological issues. Blockchain-based smart contracts have been advocated
for digitally encoding legal contracts, so that the execution and enforcement of contractual
conditions may occur automatically, without human intervention. However, we will mostly
refer to software contracts as “digital legal contracts”, stressing the fact that most of the
benefits of digitally encoding legal contracts come from the precise definition and automatic
execution of a piece of programmable software, not necessarily operating over a blockchain.

In this paper, after discussing the main issues raised by the literature, we propose a technol-
ogy that may contribute to addressing them. The overall aim is to facilitate the transparency of
software contracts, as well as the mapping of computational operations into legal-institutional
outcomes, thus limiting or mitigating the problems concerning the implementation of software
contracts and preventing disputes between the parties.

Specifically, we put forward Stipula, a new domain specific language for the creation of
software legal contracts. Stipula is pivoted on a small number of abstractions that are useful

http://arxiv.org/abs/2110.11069v1

to capture the distinctive elements of legal contracts, that is permissions, prohibitions, obliga-
tions, fungible and non fungible assets exchanges, risk (viz. alea), escrows and securities. All
these normative elements are expressed by a strictly regimented behaviour in legal contracts:
permissions and empowerments correspond to the possibility of performing an action at a
certain stage, prohibitions correspond to the interdiction of doing an action, while obligations
are recast into commitments that are checked at a specific time limit. Moreover, the set of
normative elements changes over time according to the actions have been done (or not). To
model these changes, Stipula commits to a state-aware programming style, inspired by the
state machine pattern widely used in the programming language practice. This technique
allows one to enforce the intended behaviour by prohibiting, for instance, the invocation of a
function before another specific function is called.

A second distinctive feature of Stipula is the event primitive, a programming abstraction
that is used to issue an obligation and schedule a future statement that automatically executes
a corresponding penalty, if the obligation is not met. This allows one to implement legal
obligations and commitments in terms of the future execution of a (state-aware) computation
at a specific point in time.

A third peculiarity of Stipula is the agreement operator, which marks that the contract’s
parties have reached a consensus on the contractual arrangement they want to create. In legal
contracts, this phase corresponds to the subscription of the contract, where there are parties
that are going to set the contractual conditions and others that accept them. Technically, the
operation is a multiparty synchronization, which may be implemented by ad-hoc protocols in
many kinds of distributed systems.

The fourth key feature regards assets, which are first-class linear concepts in Stipula.
In particular, Stipula has an explicit, and thus conscious, management of linear resources,
such as currency-like values and tokens. The transfer of such resources must preserve the
total supply: the sender of the asset must always relinquish the control of the transferred
asset. These assets are necessary in legal contracts: currency is required for payment but also
for escrows, and tokens, both fungible and non-fungible, are useful to model securities and
provide a digital handle on a physical good (possibly equipped with and IoT mechanism).
The design choice of explicitly marking asset movements with an ad hoc syntax in Stipula

promotes a safer, asset-aware, programming discipline that reduces the risk of the so-called
double spending, the accidental loss or the locked-in assets. This is particularly useful for legal
contracts running over a blockchain, where many kinds of assets and tokens are pervasive in
the most successful blockchain applications and their induced economy. Therefore, Stipula uses
a simple and powerful core of primitives that support the writing of digital legal contracts
even by non ICT experts.

In Section 2 we give an interdisciplinary discussion about smart legal contracts, focusing
on the interlace between the digital and legal elements required by the digitalization of ju-
ridical acts. The syntax of Stipula is formally defined in Section 3 where a simple example –
the Bike-Rental contract – is used to describe the concepts. Stipula semantics is defined in
Section 4, sticking to an operational approach that specifies the runtime behaviour of legal
contracts by means of transitions. In Section 5, following a standard technique in concurrency
theory [20], we develop an observational equivalence that provides for an equational theory
of smart legal contracts. The equivalence is based on a notion of bisimulation that equates
contracts differing for hidden elements, such as names of states, and singles out conditions for
identifying contracts that send two assets in different order. The study of the implementa-
tion of the distinctive elements of Stipula, namely agreements, assets and events, either on a

blockchain system, using a Solidity-like target language, or not, is undertaken in Section 6. The
specification in Stipula of a set of archetypal acts, ranging from renting to (digital) licenses
and to bets, is reported in Section 7

We end our contribution by discussing the related work in Section 8 and delivering our
final remarks in Section 9.

2 Smart Legal contracts

A substantial debate has taken place on whether the parties’ decision to execute a smart
contract having certain computational effects may count as legal contract establishing cor-
responding legal effect, e.g. [13,17,19,21]. A simple answer to this question comes from the
principle of “freedom of form” in contracts, which is shared by modern legal systems: par-
ties are free to express their agreement using the language and medium they prefer, including
a programming language. Therefore, by this principle, smart contracts may count as legal
contracts.

However, the problem is whether smart contracts preserve the essential elements of legal
ones. In this respect, a legal contract is meant to bring about the institutional effects intended
by the parties, that is establishing new obligations, rights, powers and liabilities between
them or to transfer rights (such as rights to property) from one party to the other. These
institutional effects are guaranteed by the possibility of activating judicial enforcements. That
is, each party may start a lawsuit if he believes that the other party has failed to comply with
the contract. In this case, the judge will have to interpret the contract, ascertain the facts of
the case, and determine whether there has indeed been a contractual violation. Accordingly,
the defaulting party may be enjoined to comply or pay damages. Whether and to what extent
we may consider that a smart contract produces judicially enforceable legal effects is more
debatable, given that smart contract modify especially in absence of international technical
standards and transnational legal frameworks.

We recognise that no easy and comprehensive solution is yet at hand for the issue we have
just mentioned. However, we believe that it can be at least mitigated if a strict, and under-
standable mapping is established between executable instructions and institutional-normative
effects. To this aim, we observe that the lifecycle of a legal contract goes through a number
of phases: (a) formation and negotiation, (b) contract storage/notarizing, (c) performance,
enforcement and monitoring, (d) possible modification (e) dispute resolution, and (f) termi-
nation. Software-based solutions can be valuable in all these phases, additionally, the specific
features of blockchain-based implementations make them convenient in some of them. For
example, the negotiation of contractual conditions could benefit from software-mediated in-
teractions, but might require a degree of privacy that conflicts with that of a public blockchain,
which naturally runs on transnational infrastructures, thus crossing several, possibly differ-
ent, legal systems and jurisdictions (c.f. General Data Protection Regulation is valid only in
Europe). Similarly the dispute resolution can take advantage of online services with flexible in-
terfaces, since it can hardly be fully programmed nor ported on-chain. Exceptional behaviors,
such as mutual or unilateral dissent, contract termination or contract modifications matching
a change in the parties’ will, are also very problematic and require a flexible programming
style that admits suitable patterns to amend the behaviour of a running software.

On the other hand, software-based solutions, possibly based on the blockchain, are per-
fectly suited to phases (b) and (c). Both the content of the legal contract and the expression of

F ::“ _ | @Q A : f(z)[y] (B){ S W } ñ @Q1 F

S ::“ _ | E Ñ x S | E ⊸ h,h1 S | E Ñ A S | E ⊸ h,A S | (B){ S } S

W ::“ _ | E " @Q { S } ñ @Q1 W

E ::“ now | Real | String | B | X | E op E

B ::“ true | false | E rop E | B NN B | B || B | ~B

Table 1. Syntax of Stipula.

agreement of the parties can be digitally notarized, and code can be used to express the con-
tractual clauses and automatically enforce them through the runtime execution. Additionally,
encoding legal contracts as software has the advantage of enabling the usage of verification
(formal) methods to ensure the correctness of the software execution.

Nevertheless, if smart contracts are legally binding, then it is necessary to ensure that
the parties are fully aware of the computational effects of their code. Only in this case,
there may be a genuine agreement over the content of the contract. Thus transparency and
some degree of readability by contractors that have no or little computer expertise becomes
a key requirement. Relating to this point, we acknowledge that similar problems also exist
in natural language contracts, which are usually signed without the parties being aware of
all of their clauses and judicial enforcement being too costly or complex to be practicable.
Usually, when concluding online purchases of goods or services, most consumers just click the
“accept” button, without even trying to read the clauses (which are often lengthy and full of
legal jargon).

We believe that Stipula provides some important advantages as a language for specifying
smart legal contracts. Its primitives are concise and abstract enough to be easily accessible
to lawyers. Its formal operational semantics promises that the execution of contracts does
not lead to unexpected behaviours and is amenable to automatic verification. To mention a
distinctive feature of Stipula, the agreement primitive helps to deal with some legal issues,
since it clearly identifies the moment when (some) legal effects are triggered and the parties
who are involved. For instance, the set of parties involved in the agreement might include an
Authority that is charged to monitor contextual constraints, such as obligations of diligent
storage and care, or the obligations of using goods only as intended, taking care of litigations
and dispute resolution. Moreover, untrusted players involved in a bet contract can rely on the
agreement to explicitly define the data source providing the outcome of the aleatory value
associated to the bet.

3 The Stipula language

Stipula features a minimal set of primitives that are primary in legal contracts, such
as agreements, field updates, conditional behaviour, timed events, value and asset transfer,
functions and states like Finite State Machines (FSMs).

We use countable sets of: contract names, ranged over by C, C1, ¨ ¨ ¨ ; names of externally
owned accounts, called parties, ranged over by A, A1, ¨ ¨ ¨ ; function names ranged over f, g,
¨ ¨ ¨ . Parties represent the users involved in the contract, i.e. authenticated users in centralized
systems (or addresses in blockchain systems). Assets and generic contract’s fields are syntac-
tically set apart since they have different semantics. Then we assume a countable set of asset
names, ranged over by h, h1, ¨ ¨ ¨ , and a set of field names, ranged over x, x1, ¨ ¨ ¨ . We reserve z,

z1, y, y1, for function parameters and A, A1, ¨ ¨ ¨ for parameters that are parties. Finally, we will
use Q, Q1, ¨ ¨ ¨ , to range over contract states. To simplify the syntax, we often use the vector
notation x to denote possibly empty sequences of elements. A smart legal contract in Stipula

is written

stipula C {

assets h

fields x

agreement (A)(x1){ // x1 Ď x

A1 : x1
¨ ¨ ¨

An : xn //
Ť

iP1..n Ai Ď A
Ť

iP1..n xi Ď x1
Ş

iP1..n xi “ ∅

} ñ @Q

F

}

where C identifies the contract; its body contains assets and fields (without any typed infor-
mation: Stipula is type-free), the agreement code, where

Ť

iP1..n xi is a partition of x1 while
the sequences of parties Ai are subsets of the full list A of parties involved in the contract C.
Finally, F is a sequence of functions, written according to the syntax given in Table 1.

The definition of who is going to participate to the contract and what are the terms of the
contract in an explicit abstraction – the agreement – is another distinctive feature of Stipula.
Technically, the agreement is the constructor of the contract, that specifies the parameters x1,
i.e., the terms of the contract, and the set A of involved parties. Moreover, the code specifies
who must agree on the initial value of contract’s fields and the initial state of the contract.
Observe that no asset can be set during the agreement. It is assumed that fields, assets and
parties’ names do not contain duplicates.

The dichotomy between assets and fields is a key design choice of Stipula. Indeed, the
relevance of first-class resources, i.e. linear values that cannot be copied nor dismissed, is
widely acknowledged in several programming languages (such as Rust or the smart contract
languages Move [12] and Nomos [11]) to support a safer asset-aware contract programming.
Legal contracts also manage assets, such as money and tokens granting a digital access to
(possibly physical) goods or services. Henceforth the decision to syntactically highlight the
differences between operations on values and on assets.

Functions F and their bodies are written according to the syntax in Table 1. The function’s
syntax highlights the constraint that only the party A can invoke the function f, and only
when the contract is in state Q. Function’s parameters are split in two lists: the formal param-
eters z in brackets and the asset parameters y in square brackets. The precondition (B) is a
predicate on parameters of the functions and fields and assets of the contract that constrains
the execution of the body of f. Finally the body {S W}ñ @Q1 specifies the statement part S,
the event part W, and the state Q1 of the contract when the function execution terminates.
Function’s parameters are assumed without duplicates, and empty lists of (asset) parameters
are shortened by omitting empty parenthesis. Additionally we assume that function param-
eters z and y do not occur in W to enforce that it is correctly executed outside the scope of
the function.

Statements S include the empty statement -- and different types of assignments, followed by
a continuation. Assignments use the two symbols ⊸ and Ñ to differentiate updates of assets
and of fields, respectively. The syntax of the two operators is taken from [11]. Assignments can

be either local, that is referring to local fields or local assets, denoted by E Ñ x and E ⊸ h,h1,
respectively, or they can be remote, denoted by E Ñ A and E ⊸ h,A, defining the sending of
a value and an asset, respectively, to the address A. Asset assignments are ternary operations:
the meaning of E ⊸ h,h1 is that the value of E is subtracted to the asset h and added to the
asset h1 – resources stored in assets can be moved but cannot be destroyed. The operational
semantics will ensure that asset assignments can at most drain an asset, preventing assets
with negative values. In the rest of the paper we will always abbreviate assignments such as
h ⊸ h,h1 and h ⊸ h,A1 (which are very usual, indeed) into h ⊸ h1 and h ⊸ A1, respectively.
Statements also include conditionals (B){ S } S1 that executes S if the predicate B is true and
continues as S1.

Events W are sequences of timed continuations that schedule some code for future execu-
tion. More precisely, the term E " @Q {S}ñ @Q1 schedules an execution that is triggered at a
time t that is the value of E. When triggered, the continuation S will be executed only if the
contract’s state is Q. At the end of the execution of S, the contract transits to Q1. That is,
in Stipula, the programming abstractions of FSMs are used to schedule the future execution
of a (state-aware) computation at a specific point in time. We will show that this notion of
events is pivotal in the encoding of legal obligations and commitments.

Expressions E can be Real (written with the fixed-point notation), String (written be-
tween “"”), names of assets, fields and parameters, generically ranged over by X. Expressions
also include boolean values and boolean expressions B. The keyword now, expressed as a real,
stores the present time (when the code is executed). We will range over constant values with
the names u, v, ¨ ¨ ¨ ; they also include asset constants like tokens. We will be a little liberal
with values and operations, generically denoted by E op E: they include standard arithmetic
operations and operations on tokens, e.g. use once(token) generates a usage-code providing
a single access to the service or the good associated to the token asset. The operation t + n

sums n seconds to the time value t. Boolean expressions B are the standard ones, where the
operations rop are the relational operations (==, >=, etc.) The set of names occurring in E

will be noted by fvpEq.
A Stipula program P is a sequence of smart legal contracts definitions. The contracts

are inactive as long as no group of addresses has interest to run them, by invoking the
agreement code. We remark that in Stipula the code of a contract cannot invoke another
contract: we postpone to future work the study of language extensions allowing cross references
between legal contracts using inheritance and composition. Therefore, at the moment, since
legal contracts are independent, there is no loss of generality in considering a program to be
composed by a single smart legal contract definition.

Example Consider the following simple contract for renting bikes:

1 stipula Bike_Rental {

2 assets wallet

3 fields cost , rent_time , use_code

4

5 agreement (Lender , Borrower)(cost , rent_time) {

6 Lender , Borrower : cost , rent_time

7 } ñ @Inactive

8

9 @Inactive Lender : offer (z) {

10 z Ñ use_code

11 } ñ @Proposal

12

13 @Proposal Borrower : accept [y]

14 (y == cost) {

15 y ⊸ wallet

16 use_code Ñ Borrower

17 now + rent_time "
18 @Using { //end -of -time usage

19 "End_Reached " Ñ Borrower

20 wallet ⊸ Lender

21 } ñ @End

22 } ñ @Using

23

24 @Using Borrower : end {

25 wallet ⊸ Lender

26 } ñ @End

27 }

Listing 1.1. The rent for free contract

The agreement code specifies that there are two parties – the Lender and Borrower – and
that the Lender sets the values for the time of usage (rent time) and the cost, while the
Borrower has to agree on such values. Then Lender sends a use-code that is stored in the
contract (in the use code field) and is not accessible to Borrower till he pays for the usage.
The transition from Inactive to Proposal at the end of the offer function enables the
Borrower to pay for the usage – function accept – that takes in input an asset y and moves
it into wallet with y ⊸ wallet at line 15 (this is a shortening for wallet ⊸ wallet,

Borrower). Then the contract sends the use-code to the borrower (line 16), which now can
use the bike till the time limit. This constraint is expressed by the event in lines 17-21. We
have two remarks: first, the payment is not made to Lender but the asset is stored in the
contract (in wallet); second, the event will be triggered when the time expires. In this case a
message to Borrower is sent, the payment is transferred to Lender, which will change bike’s
use code so that the bike will be locked at the next Borrower’s stop. The function end can be
invoked by Borrower to terminate the renting before time expires. The legal issues involved
in a rent contract will be discussed in Section 7.

4 Semantics

The meaning of Stipula primitives is defined in an operational way by means of a transition
relation. Let CpΦ , ℓ , Σ , Ψq be a runtime contract where

– C is the contract name;

– Φ is the current state of the contract: it is either -- (for no state) or a contract state Q;

– ℓ is a mapping from fields and assets to values;

– Σ is a possible residual of a function body or of an event handler, i.e. Σ is either -- or a
term S W ñ @Q;

– Ψ is a (possibly empty) multiset of pending events that have been already scheduled for
future execution but not yet triggered. We let Ψ be -- when there are no pending events,
otherwise Ψ “ W1 | . . . | Wn such that each Wi is a single event expression (not a sequence),
and its time guard is an expression that has already been evaluated into a time value ti.

Runtime contracts are ranged over by C, C1, ¨ ¨ ¨ . A configuration, ranged over by S, S1, ¨ ¨ ¨ , is a
pair C,t, where t is a global clock. As anticipated, there is no loss of generality in considering

[Agree]

agreement(A)(x){ A1 : x1 ¨ ¨ ¨ An : xn u ñ @Q P C

Cp-- , H , -- , --q , t
pA,Ai:vi

i“1...nq
ÝÑ CpQ , rA ÞÑ A, xi ÞÑ vi

i“1...ns , -- , --q , t

[Function]

@Q A : f(z)[y] (B) { S W } ñ @Q1 P C

Ψ , t Û
ℓpAq “ A ℓ1 “ ℓrz ÞÑ u, y ÞÑ vs JBKℓ1 “ true

CpQ , ℓ , -- , Ψq , t
A:fpuqrvs

ÝÑ CpQ; ℓ1 , S W ñ @Q1 , Ψq , t

[State Change]

JWtt{nowuKℓ “ Ψ 1

CpQ , ℓ , -- W ñ @Q1 , Ψq , t ÝÑ CpQ1 , ℓ , -- , Ψ 1 | Ψq , t

[Event Match]

Ψ “ t " @Q t S u ñ @Q1 | Ψ 1

CpQ , ℓ , -- , Ψq , t ÝÑ CpQ , ℓ , S ñ @Q1 , Ψ 1q , t

[Tick]

Ψ , t Û

CpQ , ℓ , -- , Ψq , t ÝÑ CpQ , ℓ , -- , Ψq , t ` 1

[Value Send]

JEKℓ “ v ℓpAq “ A

CpQ , ℓ , E Ñ A Σ , Ψq
vÑA
ÝÑ CpQ , ℓ , Σ , Ψq

[Asset Send]

JEKℓ “ v ℓphq ě v ℓpAq “ A

CpQ , ℓ , E ⊸ h,A Σ , Ψq
v⊸A
ÝÑ CpQ , ℓrh ÞÑ ℓphq ´ vs , Σ , Ψq

[Field Update]

JEKℓ “ v

CpQ , ℓ , E Ñ x Σ , Ψq ÝÑ CpQ , ℓrx ÞÑ vs , Σ , Ψq

[Asset Update]

JEKℓ “ v ℓphq ě v

CpQ , ℓ , E ⊸ h,h1 Σ , Ψq
ÝÑ CpQ , ℓrh ÞÑ ℓphq ´ v, h1 ÞÑ ℓph1q ` vs , Σ , Ψq

[Cond true]

JBKℓ “ true

CpQ , pBqtSu Σ , Ψq ÝÑ CpQ , ℓ , S Σ , Ψq

[Cond false]

JBKℓ “ false

CpQ , pBqtSu Σ , Ψq ÝÑ CpQ , ℓ , Σ , Ψq

Table 2. The transition relation of Stipula

programs made of a single running contract; a remark about the extension to configurations
containing several contracts is reported at the end of the section.

The transition relation of a Stipula program P is S
µ

ÝÑP S1, where

µ ::“ | pA, A1 : v1, ¨ ¨ ¨ , An : vnq | A : fpuqrvs | v Ñ A | v ⊸ A

that is the label µ is either empty, or denotes an initial agreement, or a function call, or a
value send, or an asset transfer. In the following we will always omit the index P because it is
considered implicit. The formal definition of S

µ
ÝÑ S1 is given in Table 2, using the following

auxiliary predicates and functions:

– JEKℓ is a function that returns the value of E in the memory ℓ. We omit the definition.

– JWKℓ is the multiset of scheduled events obtained from the sequence W by replacing every
time expression by its value in the time guards. That is J--Kℓ “ -- and JE " @QtSu ñ
@Q1 W1Kℓ “ JEKℓ " @QtSu ñ @Q1 | JW1Kℓ.

– Let Ψ be a multiset of pending events, and t a time value, then the predicate Ψ , t Û
is true whenever Ψ “ t1 " @Q1tS1u ñ @Q1

1 | ¨ ¨ ¨ | tn " @QntS1u ñ @Q1

n and, for every
1 ď i ď n, ti ‰ t, false otherwise.

Rule [Agree] in Table 2 establishes the agreement of the parties involved in the contract.
This operation is a multiparty synchronization, where some parties, namely Ai, agree on the
initial values vi of the contract’s fields xi, for i P 1, ..n. The resulting configuration moves

the contract to the initial state Q and initializes the values of the parties parameters A and
the contract’s fields x. We recall the syntactic conditions of the agreement term, given in
the previous section: piq the sequence x is a subset of the contract’s fields, piiq

Ť

iP1..n xi is a
partition of x and piiiq the sequences of parties Ai are subsets of the full list A.

Rule [Function] defines function invocations; the label specifies the address A performing
the invocation and the function name f with the actual parameters. The transition may
occur provided (i) the contract is the state Q that admits invocations of f from A and (ii) the
contract is idle, i.e. the contract has no statement to execute – c.f. the left-hand side runtime
contract – (iii) the precondition B is satisfied, and no event can be triggered – c.f. the premise
Ψ , t Û. In particular, this last constraint expresses that events have precedence on possible
function invocations. For example, if a payment deadline is reached and, at the same time,
the payment arrives, it will be refused in favour of the event managing the deadline.

Rule [State Change] says that a contract changes state when the statements execution
terminates and the sequence of events W is added to the multiset of pending events, up to the
evaluations of their time expressions, i.e. the occurrences of the identifier now are replaced by
the current value of the clock.

Rule [Event Match] specifies that event handlers may run provided there is no statement
to perform in the runtime contract, and the time guard of the event has exactly the value of
the global clock t. Observe that the timeouts of the events are evaluated in an eager way when
the event is scheduled – c.f. rule [State Change] – not when the event handler is triggered.
Moreover, the state change performed at the end of the execution of the event handler is
carried over again by the rule [State Change], with an empty sequence W.

Rule [Tick] models the elapsing of time. This happens when the contract has no statement
to perform and no event can be triggered. Intuitively, the implementation of Stipula on top
of a blockchain will bind the global clock to the timestamp of the current block. Therefore a
sequence of semantic transitions performed in the same unit of time will correspond to a set
of transactions inserted into the same block to be appended to the blockchain.

It is worth to notice that the foregoing rules imply that the complete execution of a
function call does not affect the global time. This admits the paradoxical phenomenon that
an endless sequence of function invocations does not make time elapse. While this is possible
in theory, it is not in practice, since blocks can only include a finite number of transactions.
Additionally, all the legal contracts we have analyzed are finite state, each state admits a
single function invocation, and function invocations update the state in a noncircular way,
thus preventing infinite sequence of function calls. An alternative choice would be to adjust
the semantics so to increment the clock every time a maximal number of functions has been
evaluated, thus forcing each block to contain at most a limited number of function invocations.
We have preferred to stick to the simpler semantics.

Table 2 defines transitions due to the execution of statements. All these transitions are
local to the runtime contract and time does not change. Therefore, for simplicity, we always
omit the clock. We only discuss [Asset Send] and [Asset Update] because the other rules are
standard. Rule [Asset Send] returns part of an asset h to the party A. This part, named v,
is removed from the asset, c.f. the memory of the right-hand side runtime contract in the
conclusion. In a similar way, [Asset Update] moves a part v of an asset h to an asset h1. For
this reason, the final memory becomes ℓrh ÞÑ ℓphq ´ v, h1 ÞÑ ℓph1q ` vs. We observe that assets,
representing physical entities (coins, houses, goods, etc.) are never destroyed. The condition
ℓphq ě v in the premises ensures that assets can never become negative.

Bike Rentalp-- , H , -- , --q , 0

µ0ÝÑ Bike RentalpInactive , ℓ , -- , --q , 0 [Agree]
ÝÑ Bike RentalpInactive , ℓ , -- , --q , 1 [Tick]

Alice:offer(123)
ÝÑ Bike RentalpInactive , ℓrz ÞÑ 123s , z Ñ use code ñ @Proposal , --q , 1 [Function]
ÝÑ Bike RentalpInactive , ℓ1 , -- ñ @Proposal , --q , 1 [Field Update]
ÝÑ Bike RentalpProposal , ℓ1 , -- , --q , 1 [State Change]
ÝÑ Bike RentalpProposal , ℓ1 , -- , --q , 2 [Tick]
ÝÑ Bike RentalpProposal , ℓ1 , -- , --q , 3 [Tick]

Bob:accept[2]
ÝÑ Bike RentalpProposal , ℓ1ry ÞÑ 2s , S W ñ @End , --q , 3 [Function]

Table 3. Initial transitions of Bike Rental

The semantics of Stipula does not consider runtime errors, for instance an attempt to drain
too much value from an asset results in a stuck configuration. We postpone to future work a
precise account of runtime failures and contract errors, since it requires a deep interdisciplinary
analysis of the legal issues involved in the execution of the exceptional cases.

The initial configuration of a Stipula program P made of a single contract C is Cp-- , ∅ ,

-- , --q , t. The contract is inactive as long as no group of addresses has interest to run it,
c.f. rule [Agree]. The global clock can be any value, because it corresponds to the absolute
time, defined by the timestamp of the current block in the blockchain system.

Example Possible initial transitions of the Bike Rental contract in Example 3 are reported
in Table 3. We assume that the actual names of parties are the same as the formal names
(therefore we omit the mappings in the memories). Let be µ0 “ ppAlice,Bobq, pAlice,Bobq :
p36000, 2qq, i.e. Alice and Bob agree about renting a bike for 2 euro for 1 hour – the
time is measured in seconds. Let also be ℓ “ rLender ÞÑ Alice, Borrower ÞÑ Bob, cost ÞÑ
2, time limit ÞÑ 3600s, and ℓ1 “ ℓrz ÞÑ 123, use code ÞÑ 123s and S W be the body of the
function accept.

To sum up, a legal contract behaves as follows:

1. the first action is always an agreement, which moves the contract to an idle state;

2. in an idle state, fire any ready event with a matching state. If there is one, execute its
handler until the end, which is an idle state;

3. if there is no event to be triggered in an idle state, either tick or call any permitted
function (i.e. with matching state and preconditions). A function invocation amounts to
execute its body until the end, which is again an idle state.

Therefore, we observe that Stipula has three sources of nondeterminism: (i) the order of
the execution of ready event handlers, (ii) the order of the calls of permitted functions, and
(iii) the delay of permitted function calls to a later time (thus, possibly, after other event
handlers). For example, the contract C with two functions @Q A:f{--}ñ@Q and @Q A1:g{--}ñ@Q

behaves as either
A:f
ÝÑÝÑn

A1:g
ÝÑ or

A1:g
ÝÑÝÑn

A:f
ÝÑ, where ÝÑn are transitions that make the time

elapse (rule [Tick]). As another example, consider a contract C1 with a function @Q A:f {--
now " @Q1{ "hello"ÑA}ñ@Q1 }ñ@Q and a function @Q A1:g {--}ñ@Q1. Then it may behave

as either
A:f
ÝÑ

A1:g
ÝÑ

’’hello’’ÑA
ÝÑ or as

A:f
ÝÑÝÑn

A1:g
ÝÑ, after which the action

’’hello’’ÑA
ÝÑ is disabled,

or as
A1:g
ÝÑ, which precludes the call of f.

Remark. The semantics of Stipula may be easily extended to configurations with several
smart legal contracts. It is sufficient to consider configurations as consisting of sets of runtime
contracts and to change the rule [Tick]. To illustrate the general case, let C “ C1pΦ1 , ℓ1 ,

Σ1 , Ψ1q, ¨ ¨ ¨ , CnpΦn , ℓn , Σn , Ψnq. We define EventspCq
def

“ Ψ1 | ¨ ¨ ¨ | Ψn. The new rule [Tick]

becomes
[Tick+]

EventspCq , t Û

C , t ÝÑ C , t ` 1

5 Stipula laws and Equational Theory

The operational semantics of Tables 2 and 2 is too intensional because it defines the behaviour
of a legal contract without showing any evidence of the differences between contracts. Never-
theless, it is the base for defining a more appropriate, extensional semantics using a standard
technique based on observations [20]. According to this technique, two contracts cannot be
separated if a party using them cannot distinguish one from the other. Said otherwise, a
party can differentiate two contracts if he can observe different interactions. It turns out that
defining the observations is a critical point of the overall technique, because it allows to fine-
tune the discriminating power of the extensional semantics. The appropriate observations for
smart legal contracts match the design principles of Stipula: let A be a party, then

– A should observe the agreement that he is going to sign, because stipulating a different
agreement may be unsatisfactory; therefore we envisage the observation pA : vq, that
observes the exact set of values v the party A agreed about.

– A should also observe the permission or the prohibition to invoke a functionality at a
given time t, i.e. whether A : fpvqrws is possible at t or not;

– A should finally observe whether at t he can receive a value or an asset, i.e. whether
v Ñ A or v ⊸ A are possible at t or not.

The ordering of invocations and receives can be safely overlooked, as long as they belong to
the same block of transactions, that is they are executed at the same global time. Notice also
that the above observations allow a party to observe contract’s obligations. Indeed, by shifting
the observation at a specific point in time, one can observe the effects of executing the event
that encodes a legal commitment, such as the issue of a sanction or the impossibility to do
further actions. On the other hand, the foregoing notion of observations abstracts away from
the names of the contract’s assets and internal states.

We will use the following notations:

– Let be α1 “ pA, A1:v1 ¨ ¨ ¨An:vnq and α2 “ pB, B1:w1 ¨ ¨ ¨Bn:wnq then we write α1 „ α2

if A and B are equal up to reordering of sequences, and similarly for Ai : vi and Bj : vi.

– Let be
µ

ùñ
def

“ ùñ
µ

ÝÑùñ, where ùñ stands for any number of ÝÑ transitions, possibly
zero.

The following definition of legal contract equivalence compares the observable behavior of
contracts. It is defined over configurations, so to appropriately shift the time of the contract’s
observations. The equivalence is defined as a suitable bisimulation game that is consistent with
the idea that in blockchain systems the interactions are batched in blocks of transactions.

Definition 1 (Legal Bisimulation). A symmetric relation R is a legal bisimulation between
two configurations at time t, written C1,t R C2,t, whenever

1. if C1,t
α

ùñ C1

1,t then C2,t
α1

ùñ C1

2,t for some α1 such that α „ α1 and C1

1,t R C1

2, t;

2. if C1,t
µ1

ùñ ¨ ¨ ¨
µn

ùñ C1

1, t ÝÑ C1

1, t ` 1 then there exist µ1

1 ¨ ¨ ¨µ1

n that is a permutation of

µ1 ¨ ¨ ¨µn such that C2,t
µ1
1

ùñ ¨ ¨ ¨
µ1
n

ùñ C1

2,t ÝÑ C1

2,t ` 1 and C1

1,t ` 1 R C1

2,t ` 1.

Let » be the largest legal bisimulation, called bisimilarity. When the initial configurations of
contracts C and C1 are bisimilar, we simply write C » C1.

Being a symmetric relation, a legal bisimulation compares both contracts’ permissions and
prohibitions: if C permits an action (i.e. exhibits an observation), then C1 must permit the
same action, and if C prohibits an action (i.e. does not exhibit a function call or an external
communication), then also C1 must not exhibit the corresponding observation. Moreover, the
bisimulation game enforces a transfer property, that is it shifts the time of observation to the
future, so to capture and compare the changes of permissions/prohibitions and the (future)
obligations. Observe that the equivalence abstracts away the ordering of the observations
within the same time clock, since in a blockchain there is no strong notion of ordering between
the transactions contained in the same block. Nevertheless, specific orderings of function
invocations are important in Stipula contracts and the equivalence cannot overlook essential
precedence constraints. For instance, the requirement that a function delivering a service can
only be invoked after another specific function, say a payment. This is indeed the case for the
legal bisimulation. To explain, consider the contract C with two functions @Q A:f{--}ñ@Q and
@Q A1:g{--}ñ@Q and the contract C1 with two functions @Q A:f{--}ñ@Q1 and @Q1 A1:g{--}ñ@Q.
In C the functions can be called in any order, while in C1 the function g can be invoked only
after f. Accordingly, C fi C1 since there is a runtime configuration of C that exhibits the

observation
A1:g
ùñ, while it is not the case for the contract C1, since at any time it can only

exhibit
A:f

ùñ
A1:g
ùñ.

The following theorem highlights the property that the internal state of the contract is
abstracted away by the extensional semantics, which only observes the external contract’s
behavior. The proof is omitted because it is standard.

Theorem 1 (Internal refactoring). Let C and C1 be two contracts that are equal up-to a
bijective renaming of states. Then C » C1. Similarly, for bijective renaming of assets, fields
and contract names.

The theorem could be extended to contracts equal up-to the number of contract’s fields
and assets, as long as their external behavior is the same. We keep for future work a precise
formalization of the internal refactoring allowed by the observational equivalence.

Bisimilarity is also independent from future clock values. This allows us to garbage-collect
events that cannot be triggered anymore because the time for their scheduling is already
elapsed.

Theorem 2 (Time shift).

1. If C,t » C1,t and t ď t1, then C,t1 » C1,t1.
2. If t ă t1 then CpQ , ℓ , Σ , Ψ | t " @Q t S u ñ @Q1q , t1 » CpQ , ℓ , Σ , Ψq , t1.

We finally put forward a set of algebraic laws that formalize the fact that the ordering
of remote communications can be safely overlooked, as long as they belong to the same
transaction. The laws are defined over statements, therefore, let Cr s be a context, that is a

contract that contains an hole where a statement may occur. We write S » S1 if, for every
context Cr s, CrSs » CrS1s.

Theorem 3. The following non-interference laws hold in Stipula (whenever they are appli-
cable, we assume x R fvpE1q and x1 R fvpEq and h R fvpE1q and h1 R fvpE1q and h2 R fvpEq and
h3 R fvpEq):

E Ñ A E1 Ñ A1 » E1 Ñ A1 E Ñ A

E Ñ x E1 Ñ A » E1 Ñ A E Ñ x

E Ñ x E1 Ñ x1 » E1 Ñ x1 E Ñ x

E ⊸ h, A E1 Ñ A1 » E1 Ñ A1 E ⊸ h, A

E ⊸ h, A E1 Ñ x1 » E1 Ñ x1 E ⊸ h, A

E ⊸ h, h1 E1 Ñ A » E1 Ñ A E ⊸ h, h1

E ⊸ h, h1 E1 Ñ x1 » E1 Ñ x1 E ⊸ h, h1

E ⊸ h, A E1
⊸ h2, A1 » E1

⊸ h2, A1 E ⊸ h, A

E ⊸ h, A E1
⊸ h2, h3 » E1

⊸ h2, h3 E ⊸ h, A

E ⊸ h, h1 E1
⊸ h2, h3 » E1

⊸ h2, h3 E ⊸ h, h1

Proof. We prove the first equality. Let be S1 “ E Ñ A E1 Ñ A1 and S2 “ E1 Ñ A1 E Ñ A, and
let be C1 “ CrS1s and C2 “ CrS2s, then we need to prove that C1p--,∅, --, --q,t » C2p--,∅, --, --q,t.
Let also Ci “ CipΦ, ℓ, --, Ψ rSisq, with i “ 1, 2, be the runtime contract where the statement
Si occurs within a number of handlers of future events. We demonstrate that the symmetric
closure of the following relation is a legal bisimulation:

t
`

C1p--,∅, --, --q,t , C2p--,∅, --, --q,t
˘

u

Y t
`

C1pQ, ℓ, --, Ψ rS1sq,t1 , C2pQ, ℓ, --, Ψ rS2sq,t1
˘

| for every Q, ℓ, Ψ r s, t1 u

Indeed, notice that the statement E Ñ A E1 Ñ A1 can only contribute to the behavior of C
with a couple of transitions during the evaluation of the body of a function or the evaluation
of an event handler. Therefore the statement must be completely executed with the same
time clock, possibly a number k of times due to the multiple function calls and event handlers
that are executed during the same time clock.

Formally, if C1, t
1

µ1
ùñ ¨ ¨ ¨

µn
ùñ C1

1, t
1 ÝÑ C1

1, t
1 ` 1, then the sequence µ1 ¨ ¨ ¨µn contains

k occurrences of the pair v Ñ A, v1 Ñ A1. Similarly, there exist µ1

1 ¨ ¨ ¨µ1

n and a configuration

C1

2, t
1 such that C2, t

1
µ1
1

ùñ ¨ ¨ ¨
µ1
n

ùñ C1

2, t
1 ÝÑ C1

2, t
1 `1, where the sequence µ1

1 ¨ ¨ ¨µ1

n is identical
to µ1 ¨ ¨ ¨µn but for the k occurrences of the pair v Ñ A, v1 Ñ A1 that has been swapped into
v1 Ñ A1, v Ñ A. The argument also holds in the converse direction.

6 Towards a distributed implementation

The definition of Stipula is implementation-agnostic, that is it can be either executed as a
centralized application or it can be run on top of a distributed system, such as a blockchain.
Implementing Stipula in terms of smart contracts, e.g. Solidity, would bring in the advantages
of a public and decentralized blockchain platform. These include the benefits coming form the
fact that several governments have recently recognised that smart contracts and, more gener-
ally, programs operating over distributed ledgers, have legal value [6,4,2]. However, Stipula’s
contracts are more general and encompass smart contracts: they provide benefits in terms
of automatic execution and enforcement of contractual conditions, traceability, and outcome

certainty even without using a blockchain. In particular, running a legal contract over a se-
cured centralized system allows for more efficiency, energy save, additional privacy. Moreover,
a controlled level of intermediation can better monitor the contract enforcement, dealing with
disputes between contract’s parties and carring out judicial enforcements. Finally, the intrin-
sic open nature of legal contracts is another challenge for smart contracts, that can hardly
deal with the off-chain world: external data enter the blockchain only through oracles, which
are problematic in many senses, and the dynamic change of behaviours conflicts with the
rigidity of smart contracts definition. Time is another big issue in blockchains.

While we are currently prototyping Stipula on a centralized system, we think that a dis-
tributed implementation on a blockchain system is interesting. Below we discuss the issues
of prototyping Stipula, either on top of a centralized system or a distributed system like a
(public) blockchain.

Functions and States. Stipula contracts are very close to class definitions, therefore sticking
to an object-oriented target language as Java or Solidity would ease the prototyping effort. In
this context, the state-aware programming is also well developed. In particular, several smart
contract languages widely use the state machine pattern (c.f. Solidity [1] and Obsidian [3]).

Parties. The implementation of Stipula must carefully handle digital identities, ensuring that
a contract’s function is actually invoked by the correct caller. In blockchain implementation
this corresponds to the externally owned accounts, but the pseudoanonimity provided by
public blockchains might be a limitation, since legal contract’s parties must have a trusted
identity, especially in the case of authorities, which must be bound to parties that are trusted
intermediaries.

Agreements. The agreement code is technically a join synchronization that expresses a con-
sensus between the parties to start the contract with particular values of the (non-linear)
fields. This construct can be implemented by resorting to a barrier-like protocol, where each
party Ai may call, in whatever order, a specific function to propose the values he agrees on,
and the barrier eventually checks the consistency of the proposed values before moving the
contract to the initial state. The following snippet of Solidity-like code (a similar code can
be written also in Java RMI) corresponds to the agreement code (see Section 3), where we
assume that the fields of the contract are x1, ¨ ¨ ¨ , xk with types T1,¨ ¨ ¨ ,Tk, respectively. We
also assume that Ai : xi is defined as Ai

1, ¨ ¨ ¨ , Ai
s i : xi

1, ¨ ¨ ¨ , xi
s i1

.

address A1, ... , An ;

T1 x1; ... ; Tk xk ;

enum State {Nothing , Q}

State state = State.Nothing ;

int counter = 1 ;

Ti
1 auxi xi

1;...; Ti
r i1

auxi xi
r i1

; // 1 ď i ď n

bool use once i = true ; // 1 ď i ď n

function set oki(Ti
1 zi

1 ,...,Ti
r i zi

r i,Ti
r i`1 zi

r i`1 ,...,Ti
r i`r i1

zi
r i`r i1

){ // 1 ď i ď n

if (sender == Ai NN use once i){

use once i = false ;

xi
1 = zi

1 ; ... ; xi
r i = zi

r i ;

auxi x1 = zi
r i`1;...; aux i xr1

i
= zi

r i`r i1

;

if (counter == n){

if (
Ź

1ďiďn(auxi xi
1==xi

1 NN...NN aux i xi
r i1

==xi
r i1

))

state = State.Q ;

else throw error;

} else counter = counter + 1 ;

} else throw error;

}

Each function set oki can be called only once by the party Ai, with two lists of parameters:
the first ri values are used to set the contract’s fields xi

1, ¨ ¨ ¨ , xi
r i. The last r1

i values are
recorded into the auxiliary fields auxi xi

r i`1, ¨ ¨ ¨ , auxi xi
r i`r i1

, to express that Ai agrees
with anyone setting the contract’s fields xi

r i`1, ¨ ¨ ¨ , xi
r i`r i1

. When all the parties have done
the agreement, i.e. counter is equal to n, a check on the consistency of auxi xi

j is performed
and, in case it succeeds, the contract becomes active moving to the state Q. The snippet also
shows that contract’s states can be easily mapped to enumerations, as usual in the Solidity

State Machine pattern.
There is a discrepancy between the above code and the semantics of the agreement in

Table 2. While the agreement has a transactional nature (it may occur as a whole or not),
the above Solidity protocol takes time, i.e. it is performed in several blocks and, in any block,
a failure may occur. In this case, there is a backtrack to the initial state of the block and
not to the initial state of the protocol, as it happens in Stipula. This means that the error
management should take care of removing partial values stored in the fields of the contract.
Nevertheless, another source of discrepancy seems more awkward: the gas consumption. In
fact, the successful termination of the agreement as well as the failed one have a cost in
Ethereum, while it is not the case. To bridge this gap, we should design agreements with fees
payed by parties that are used for the consensus. We have not yet studied these details, which
are postponed to future work.

Assets. Assets are linear resources that cannot be duplicated or leaked: when a resource
value is assigned, the location previously holding the value is emptied. Modern programming
languages, e.g., Rust and Move, have already recognized the relevance of having linear re-
sources as first-class entities, because they can significantly simplify programming and the
effort required for verification. Stipula features a simple abstraction to manage assets, which
is used to represent both currency and indivisible tokens. To implement these assets on top of
a blockchain, we can resort to the popular token standards on Ethereum (ERC-20 for virtual
currency and ERC-721 for non fungible tokens[14]). Alternatively, we can rely on the Move

language, whose designers have featured programmable linear resources by constraining them
to adhere to ad-hoc rules specified by its declaring module [8,12]. Using a pseudo-code in-
spired to Move, we might define (divisible) assets h and h1 as resources of type H, so that the
operations E ⊸ h, h1 and E ⊸ h, A may be encoded by h.move(E,h1) and h.withdraw(E,A),
according to the definitions below:

resource H {

T amount ;

function move(T x, H h) {

(x <= amount){ h = h + x ; amount = amount - x ; }

}

function withdraw(T x, address A) {

(x <= amount){ A.send(x) ; amount = amount - x ; }

}

constructor(T x){ amount = x ; }

}

Events. Events correspond to scheduling a computation for future execution. While this is a
common feature of concurrent programming (many mainstream languages provide primitives
for futures and callbacks), it is more difficult to implement events in the context of blockchain.
There are two reasons:

1. in blockchains, the time flows according to the block insertion. Therefore, if the event
should be scheduled in one minute and the next block is inserted in ten minutes, there is
a delay that must be pondered;

2. blockchains do not admit the record of statements that have to be performed afterwards
in a future transaction.

As regards the second issue, the standard technique adopted in Ethereum to circumvent this
limitation is based on the Solidity’s event construct and off-chain oracle services. To explain,
the Stipula event E" @Q { S }ñ @Q1 emitted by a function foo can be mapped to the
Solidity code:

event R(uint time , address lc) ;

function call_back_R () external {

if (state == State.Q) { S ; state = State.Q’; }

}

function foo(T1 u1 ,..., Tn un){

...

emit R(E,address (this)) ;

}

The Solidity function foo emits an event named R carrying the time E and the address of
the issuing contract. Moreover, an external DApp service – an oracle – scans the blockchain
looking for R events and calls the call back R function of the contract at the appropriate
time E. Other more complex and safer protocols can be used. However a code external to
the Ethereum blockchain is always necessary in order to trigger the scheduled event handler.
A more satisfactory implementation of the Stipula events might adopt ideas taken from the
implementation of timeouts in the Marlowe on top of the Cardano blockchain, as discussed in
Section 8.

To conclude the section, notice that, in this paper, we are overlooking issues regarding
errors and backtracks.

7 Expressivity of Stipula

Stipula has been devised for writing legal contracts in a formal and intelligible (to lawyers)
way. In this section we analyze the expressivity of Stipula by writing the contracts for a
set of archetypal acts, ranging from renting to (digital) licenses and to bets. We conclude
this analysis with a table that summarizes the legal elements of the archetypal acts and the
programming abstractions that we have used to express them in Stipula.

7.1 The free rent contract

The free rent is the simplest kind of legal contract. It involves two parties, the lender and
the borrower, which initially agree about what good is rented, what use should be made of it,

1 stipula Free_Rent {

2

3 assets token

4 fields numBox , t_start , t_limit

5

6 agreement (Lender , Borrower)(t_start , t_limit) {

7 Lender , Borrower : t_start , t_limit

8 } ñ @Inactive

9

10 @Inactive Lender : boxProposal (n)[t] {

11 t ⊸ token

12 n Ñ numBox

13 now + t_start " @Proposal {

14 token ⊸ Lender } ñ @End

15 } ñ @Proposal

16

17 @Proposal Borrower : boxUse {

18 (uses (token), numBox) Ñ Borrower

19 now + t_limit " @Using {

20 "Time_Limit_Reached " Ñ Borrower

21 token ⊸ Lender

22 } ñ @End

23 } ñ @Using

24

25 @Using Borrower : returnBox {

26 token ⊸ Lender

27 } ñ @End

28 }

Listing 1.2. The rent for free contract

the time limit (or in which case it must be returned), the estimated of value and any defects
in the good. Upon agreement, the delivery of the good triggers the legal bond, that is the
borrower has the permission to use the good and the lender has the prohibition of preventing
him from doing so. Note that there is no transfer of ownership, but only the right to use the
good. The contract terminates either when the borrower returns the good, or when the time
limit is reached. Litigations could arise when the borrower violates the obligations of diligent
storage and care, the obligations of using the good only as intended, and not granting the
use to a third party without the lender’s consent. In these cases the lender may demand the
immediate return of the object, in addition to compensation for the damage. On the other
hand, the borrower is entitled to compensation if the good has defects that were known to
the lender but that he did not initially disclose.

The free rent contract puts forward the following points:

– When a legal contract refers to a physical good, the smart contract needs a digital handle
(an avatar) for that good. Many technological solutions, such as smart locks of IoT devices,
are actually available. In Stipula we abstract from the specific nature of such a digital
handle, and we simply represent it as an asset, which intuitively corresponds to a non
fungible token associated to the physical good.

– The rent legal contract grants just the usage of a good without the transfer of own-
ership. Accordingly, while the communication of the token provides full control of the
associated physical good, we assume an operation uses(token) (resp. use once(token)

or uses(token,A)) that generates a usage-code providing access to the object associated
to the token (resp. a usage-code only valid (once) for the party A).

– In a legal rent contract it is important to acknowledge the delivery of the good, since
this is the action that triggers the legal bonds. We rely on assets and their semantics to
implement this feature.

The Stipula code for the free rent of a locker is written in Listing 1.2. The two parties
agrees on the time limit for the locker usage (time limit) and the time limit to start the
usage (time start). Contract’s states allow one sequence of actions: first Lender sends the
number n of the locker and the token t associated to n by calling box proposal (line 10). This
action moves the contract to the temporary state Proposal and schedule the event in line 13.
This event is essential to prevent the unique token associated to the locker to be indefinitely
locked-in in the smart contract when the borrower never calls the boxUse function to finalize
the delivery of the good. If Borrower calls the function boxUse (line 16) within the timeout
time start, then the number of the rented locker and the access code are returned. At the
same time, a second timeout is installed to check the time limit for the locker usage, and the
final state change to Using (line 21) vanishes the timeout installed in line 13. This second
event is needed to prevent a never ending use of the locker. If time limit is reached and
the contract’s state is still Using, then (lines 18-19) a message is sent to Borrower and the
token is sent back to Lender, which becomes again in full control of the locker and can thus
invalidate the access code held by the borrower. Otherwise, the rent contract can terminate
because the borrower explicitly returns the good before the time limit. This is represented by
a call of the function returnBox (line 23).
The smart legal contract of Listing 1.2 does not consider the compensations that would be
needed to deal with the disputes due to breaches of the contract, such as the borrower’s
diligent care during the locker’s usage. These violations require off-chain monitoring and a
dispute resolution mechanism. The next example illustrates how this off-chain monitoring and
enforcement can be combined with the on-chain code.

7.2 The Digital Licensee contract

Let us consider a contract corresponding to a licence to access a digital service, like a
software or an ebook: the digital service can be freely accessed for a while, and can be per-
manently bought with an explicit communication within the evaluation period (for a similar
example, see [17]). The licensing contractual clauses can be described as follows:

Article 1. Licensor grants Licensee for a licence to evaluate the Product and fixes (i) the
evaluation period and (ii) the cost of the Product if Licensee will bought it.

Article 2. Licensee will pay the Product in advance; he will be reimbursed if the Product
will not be bought with an explicit communication within the evaluation period. The
refund will be the 90% of the cost because the 10% is payed to the Authority (see Article
3).

Article 3. Licensee must not publish the results of the evaluation during the evaluation
period and Licensor must reply within 10 hours to the queries of Licensee related to the
Product; this is supervised by Authority that may interrupt the licence and reimburse
either Licensor or Licensee according to whom breaches this agreement.

Article 4. This license will terminate automatically at the end of the evaluation period, if
the licensee does not buy the product.

1 stipula Licence {

2 assets token , balance

3 fields cost , t_start , t_limit

4

5 agreement (Licensor ,Licensee ,Authority)(cost , t_start , t_limit) {

6 Licensor , Licensee : cost , t_start , t_limit

7 } ñ @Inactive

8

9 @Inactive Licensor : offerLicence [t] {

10 t ⊸ token

11 now + t_start " @Proposal {

12 token ⊸ Licensor } ñ @End

13 } ñ @Proposal

14

15 @Proposal Licensee : activateLicence [b]

16 (b == cost){

17 b ⊸ balance

18 balance *0,1 ⊸ balance , Authority

19 uses (token ,Licensee) Ñ Licensee

20 now + t_limit " @Trial {

21 balance ⊸ Licensee

22 token ⊸ Licensor

23 } ñ @End

24 } ñ @Trial

25

26 @Trial Licensee : buy {

27 balance ⊸ Licensor

28 token ⊸ Licensee

29 } ñ @End

30

31 @Trial Authority : compensateLicensor {

32 balance ⊸ Licensor

33 token ⊸ Licensor

34 } ñ@End

35

36 @Trial Authority : compensateLicensee {

37 balance ⊸ Licensee

38 token ⊸ Licensor ;

39 } ñ @End

40 }

Listing 1.3. The contract for a digital licence

Compared to the previous example, this contract involves payment and refund: an amount
of currency is escrowed, and two parts of it will be sent to different parties, the Authority

and either the Licensor or the Licensee. Stipula provides the general asset abstraction,
together with a general operation to move just a (positive) subset of the asset to a different
owner. This is exactly what is needed to deal with currency, therefore the Stipula licence
contract holds two different assets: an indivisible token providing an handle to the digital
service, and a balance that is a divisible asset corresponding to the amount of currency kept
in custody inside the smart contract.

A further important feature of the contract is Article 3 that defines specific constraints
about the off-chain behaviour of Licensor and Licensee. This exemplifies the very general
situations where contract’s violations cannot be fully monitored by the on-chain software,
such as the publication of a post in a social network, or the leakage of a secret password, or
the violation of the obligation of diligent storage and care. In all these cases, it is required a
trusted third party, say an Authority, to supervise the disputes occurring from the off-chain
monitoring and to provide a trusted dispute resolution mechanism. The code in Listing 1.3
illustrates the encoding of the off-chain monitoring and enforcement mechanism with the
on-chain smart contract code in Stipula.

The agreement of Listing 1.3 involves three parties: Licensor, which fixes the parameters
of the contract, according to Article 1., Licensee, which explicitly agrees, and Authority,
which does not need to agree upon the contracts’ parameters (i.e. the emptyset agreement
noted --), but it is important that it is involved in the agreement synchronization, because
it plays the role of the trusted third party that is entitled to call the functions compen-
sateLicensor and compensateLicensee.

In activateLicence, the caller, i.e. the Licensee, is required to send an amount of assets
equal to the fixed cost of the license. Notice the difference between line 18 and line 19: the
first one is the move of a fraction of asset towards the authority, while the second is the simple
communication to Licensee of a personal usage code associated to the token. Once entered
in the Trial state, the contract can terminate in three ways: (i) the licensee expresses its
willingness to buy the licence by calling the function call which grants him the full token, or
(ii) the time limit for the free evaluation period is reached, thus the scheduled event refunds
the licensee and gives the token back to the licensor, or (iii) during the evaluation period a
violation to Article 3 is identified and the authority pre-empts the license by calling either
the function compensateLicensor or compensateLicensee. Observe that it is important that
the code guarantees that, in all the possible cases, the assets, both the token and the balance,
are not indefinitely locked-in the contract.

7.3 A bet contract

The bet contract is a simple example of a legal contract that contains an element of random-
ness (alea), i.e. where the existence of the performances or their extent depends on an event
which is entirely independent of the will of the parties. The main element of the contract is a
future, aleatory event, such as the winner of a football match, the delay of a flight, the future
value of a company’s stock.

A digital encoding of a bet contract requires that the parties explicitly agree on the source
of data that will determine the final value of the aleatory event (the Data Provider), that
is a specific online service, an accredited institution, or any trusted third party. It is also
important that the digital contract provides precise time limits for accepting payments and

for providing the actual value of the aleatory event. Indeed there can be a number of issues:
the aleatory event does not happen, e.g. the football match is cancelled, or the data provider
fails to provide the required value, e.g. the online service is down.

1 stipula Alea {

2 assets bet1 , bet2

3 fields alea_fact , val1 , val2 , data_source ,

4 fee , amount , t_before , t_after

5

6 agreement (Better1 ,Better2 ,DataProvider)

7 (fee , data_source , t_before , t_after , alea_fact , amount){

8

9 DataProvider , Better1 , Better2 : fee , data_source , t_after , alea_fact

10 Better1 , Better2 : amount , t_before

11 } ñ @Init

12

13 @Init Better1 : place_bet (x)[y]

14 (y == amount){

15 y ⊸ bet1

16 x Ñ val1

17 t_before " @First { bet1 ⊸ Better1 } ñ @Fail

18 } ñ @First

19

20 @First Better2: place_bet (x)[y]

21 (y == amount){

22 y ⊸ bet2

23 x Ñ val2

24 t_after " @Run {

25 bet1 ⊸ Better1

26 bet2 ⊸ Better2 } ñ @Fail

27 } ñ @Run

28

29 @Run DataProvider : data (x,z)[]

30 (x== alea_fact){

31 (z== val1){ // The winner is Better1

32 fee ⊸ bet2 , DataProvider

33 bet2 ⊸ Better1

34 bet1 ⊸ Better1

35 }

36 (z== val2){ // The winner is Better2

37 fee ⊸ bet1 , DataProvider

38 bet1 ⊸ Better2

39 bet2 ⊸ Better2

40 }

41 (z != val1 NN z != val2){ //No winner

42 bet1 ⊸ DataProvider

43 bet2 ⊸ DataProvider

44 }

45 } ñ @End

46 }

Listing 1.4. The contract for a bet

The Stipula code in Listing 1.4 corresponds to the case where Better1, respectively
Better2, places val1, respectively val2, a bet corresponding to the agreed amount of cur-

rency, stored in the contract’s assets bet1 and bet2 respectively4. Observe that both bets
must be placed within an (agreed) time limit t before (line 17), to ensure that the legal bond
is established before the occurrence of the aleatory event. The second timeout, scheduled in
line 24, is used to ensure the contract termination even if the DataProvider fails to provide
the expected data, through the call of the function data.

Compared to the Digital Licence in Listing 1.3, the role of the DataProvider here is
less pivotal than that of the Authority. While it is expected that Authority will play its
part, DataProvider is much less than a peer of the contract. It is sufficient that it is an
independent party that is entitled to call the contract’s function to supply the expected
external data. The crucial point of trust here is the data source, not the DataProvider.
In other terms, since the parties involved in the agreement need not to trust each other, it
might happen that DataProvider supplies an incorrect value through the function data. In
this case, the betters can appeal against the data provider since they agreed upon the data
emitted by the data source. As usual, any dispute that might render the contract voidable
or invalid, e.g. one better knew the result of the match in advance, can be handled by adding
to the code of an authority party, according to the pattern illustrated in the Digital Licence
example.

7.4 Specification patterns in Stipula

The clauses of the foregoing legal acts have been specified in Stipula by means of patterns
that, in our view, are common from the juridical point of view. This is summarized in Table 4.

Example Legal clauses Smart Encoding in Stipula

Free rent Permission and Prohibition
States of the contract to allow or prevent the call
of a function

Obligation to return the good Event: timeout that triggers a repercussion

Access to a physical good without
transfer of ownership

(non fungible) Token: transfer only a usage code associ-
ated to the Token, i.e. operation uses(token,L)Ñ L

Prohibition of preventing the usage Token held in custody in the smart contract

Digital License
Permission, Prohibition, and Obli-
gation

States and Events

Currency and escrow (divisible) Asset

Usage and purchase
Token: either transfer only an associated, and
personal, usage code, or transfer the token, i.e.
uses(token,L)Ñ L and token⊸ L

Off-chain constraints and Authority
for dispute resolution

Implicitly trusted party included in agreement

Bet Commitment and Obligation Event

Aleatory value Event: timeout to decide the effective value

Authority that decides the value Explicitly trusted party included in agreement

Table 4. Legal clauses of the archetypal legal acts and their encodings in Stipula

4 For simplicity, this code requires Better1 to place its bet before Better2, however it is easy to add similar
function to let the two bets be placed in any order.

8 Related works

A number of projects have put forward legal markup languages, to wrap logic and other
contextual information around traditional legal prose, and providing templates for common
contracts. OpenLaw [24] also allows to reference Ethereum-based smart contracts into legal
agreements, and automatically trigger them once the agreement is digitally signed by all par-
ties. Signatures by all relevant parties are stored on IPFS (the Inter-Planetary File System)
and the Ethereum blockchain. The Accord project [22] provides an open, standardized for-
mat for smart legal contracts, consisting of natural language and computable components.
These contracts can then be interpreted by machines and they do not necessarily operate on
blockchains. These projects come with sets of templates for standard legal contracts, that can
be customized by setting template’s parameters with appropriate values. In Stipula, rather
than software templates, it is possible to define specific programming patterns that can be
used to encode the building blocks of legal contracts. (see the Table 4). Lexon [15] uses con-
text free grammars to define a programming language syntax that is at the same time human
readable and automatically translated into, e.g. Solidity. Even if the high level Lexon code is
very close to natural language, there is no real control over the code that is actually run: the
semantics of the high level language is not defined, thus the actual behaviour of the contract
is that of the automatically generated Solidity code, which might be much more subtle than
that of the (much simpler and more abstract) Lexon source. Compared to the Solidity code of
the Lexon examples in [16], the Stipula version of the same contracts is much clearer, thanks
to primitives like agreement and asset movements. Thus, directly coding in Stipula appears
to be safer than relying on the Lexon-Solidity pair. Nevertheless, it should be not difficult to
design an automatic translation from Lexon to Stipula so to not bind Lexon contracts to any
specific implementation.

Our work aims at conducing a foundational study of legal contracts, in order to elicit
a precisely defined set of building blocks that can be used to describe, analyse and execute
(thus enforce) legal agreements. This is similar to what has been done in [18], which puts
forward a set of combinators expressing financial and insurance contracts, together with a
denotational semantics and algebraic properties that says what such contracts are worth.
These ideas have been implemented by the Marlowe and Findel languages [5,7], which are
(small) domain specific language featuring constructs like participants, tokens, currency and
timeouts to wait until a certain condition becomes true (similarly to Stipula).

In Marlowe the control logic is fully embedded in the contract, that can always progress
(and close) even without the participation of a non collaborative party. In particular, to ensure
progress, urgency and default refund mechanism, Marlowe always impose timeouts, even for
money commitments and money retrieval authorizations. However, this pull mechanism makes
the interaction logic indirect and complex, whereas in Stipula it is always clear who is the
subject of each action and where the assets flow. Setting the correct timeouts in Marlowe
may also become difficult, while in Stipula timeouts are optional (using events) and default
mechanisms can be programmed as escape clauses that can be triggered by the Authority
calling corresponding functions. Otherwise, in Stipula, the finite lifetime of a contract may
be easily programmed by arranging its value during the agreement phase, and issuing a
corresponding event in the initial state.

Marlowe semantics is written in Haskell and is executed on the Cardano blockchain, where
the lifetime of a contract and timeouts are computed in terms of slot numbers, that are
measured by (Cardano’s) block number. Then the language interpreter takes as additional

input the current slot interval, and the contract will continue as the timeout-continuation
as soon as any valid transaction is issued after the timeout’s slot number is reached. Thus,
the execution of a contract will involve multiple blocks, with multiple steps in each block.
Moreover, the time limit T used as timeouts must be intended as rT ´ ∆,T ` ∆s, where ∆

is a parameter of the implementation. Similar ideas can be exploited to implement Stipula’s
events on top of blockchains.

Overall, we remark that legal contracts are more general and more expressive than financial
contracts. Accordingly, DSLs like Marlowe and Findel are built around a fixed set of contract’s
combinators, that can be combined according to suitable (algebraic) laws. Then they can be
implemented using an interpreter, that is a single program that handles any financial contract
by evaluating its (most external) combinator. The case of Stipula is more complex: agreement,
assets, events, named states and named functions are programming primitives rather than
combinators. Therefore each Stipula contract must be implemented, actually compiled, into
a suitable running software, e.g. a Java application or a Ethereum smart contract, and the
parties must collaborate by invoking the contract’s functions to make the contract progress.

Finally, the class-based programming style of Stipula is similar to that of Solidity, but
there are many differences between the two. Actually, Stipula is much similar to Obsidian [10],
which is based on state-oriented programming and explicit management of linear assets, whose
usability has been experimentally assessed [9]. Obsidian has a type system that ensures the
correct manipulations of objects according to their current states and that linearly typed
assets are not accidentally lost. On the contrary, Stipula is untyped: the introduction of a
type discipline is orthogonal and is postponed to a later stage where we plan to investigate
static analysis techniques specifically suitable to the legal setting. As a cons, Obsidian has no
agreement nor event primitives, therefore the consensus about the contract’s terms and the
enforcing of legal obligations must be implemented in a much more indirect way.

9 Conclusions

This paper presents a domain-specific language for defining legal contracts that can be autom-
atized on a blockchain system. Stipula features a distilled number of operations that enable
the formalisation of the main elements of juridical acts, such as permissions, prohibitions, and
obligations. Stipula is formal and we are proud of its semantics – the legal bisimulation – that
allows one to equate contracts that differ for clauses (events) that can never be triggered or
for the order of non-interfering communications. Furthermore, the Stipula semantics has also
been used for sketching an implementation on top of the Ethereum blockchain.

We believe that a range of legal arrangements can be adequately translated into Stipula,
using simple patterns for the key elements of legal contracts (see the archetypal examples
in the Appendix). Nevertheless we acknowledge that legal contracts cannot be fully replaced
by Stipula contracts, since the formers thoroughly use the flexibility and generality of natu-
ral languages, may appeal to complex and undetermined social-normative concepts (such as
fairness or good faith), may need to be revised as circumstances change, may need intelligent
enforcements in case on non-compliance, etc. It is matter of (our) future research to deeply
investigate these interdisciplinary aspects and provide at lest partial solutions.

From the computer science point of view, a number of issues deserve to be investigated in
full detail: the extension of the language with operations for failures, devising linear type sys-
tems that enforce the partial correctness of Stipula codes, the implementation of the language,

the definition of a (formal) translation in Stipula of a high level language, such as Lexon or
part of it, in order to relieve lawyers from understanding computer science jargons.

Overall, we are optimistic that future research on Stipula can satisfactorily address the
above issues because its model is simple and rigorous, which are, in our opinion, fundamental
criteria for reasoning about legal contracts and for understanding their basic principles. In
our mind, Stipula is the backbone of a framework where addressing and studying other, more
complex features that are drawn from juridical acts.

Acknowledgements

Giovanni Sartor has been supported by the H2020 European Research Council (ERC) Project
“CompuLaw” (G.A. 833647). Cosimo Laneve has been partly supported by the H2020-MSCA-
RISE project ID 778233 “Behavioural Application Program Interfaces (BEHAPI)”. Silvia
Crafa dedicates this work to Università di Padova and its 800th academic year. We are
grateful to the law student Alessandro Parenti for his help in constructing the legal examples
in Section 7.

References

1. Solidity Documentation: State Machine Common Pattern. https://docs.soliditylang.org/en/v0.8.0/common-patterns.html#state-machine .

2. Malta MDIA Act. At https://mdia.gov.mt/wp-content/uploads/2018/10/MDIA.pdf, 2018.

3. Obsidian: A safer blockchain programming language. Language Site at http://obsidian-lang.com/,
2018.

4. Smart contract legislation and enforceability in Italy. Gazzetta Ufficiale, Law of 11 febbraio 2019, n. 12,
Art. 8 ter, at https://www.gazzettaufficiale.it/eli/id/2019/02/12/19G00017/sg, 2019.

5. Cardano Documentation. https://docs.cardano.org/, 2020.
6. Wyoming Regulation Act. At https://www.wyoleg.gov/Legislation/2021/SF0038, 2021.

7. Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure derivative contracts for
ethereum. In Financial Cryptography and Data Security - FC 2017, volume 10323 of Lecture Notes in
Computer Science, pages 453–467. Springer, 2017.

8. Sam Blackshear, David L. Dill, Shaz Qadeer, Clark W. Barrett, John C. Mitchell, Oded Padon, and Yoni
Zohar. Resources: A safe language abstraction for money. CoRR, 2020.

9. Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. Can advanced type systems
be usable? an empirical study of ownership, assets, and typestate in obsidian. Proc. ACM Program. Lang.,
4(OOPSLA):132:1–132:28, 2020.

10. Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A.
Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian: Typestate and assets for safer blockchain
programming. ACM Trans. Program. Lang. Syst., 42(3):14:1–14:82, 2020.

11. A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar. Resource-aware session types for digital
contracts. In 2021 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 111–126,
Los Alamitos, CA, USA, jun 2021. IEEE Computer Society.

12. Sam Blackshear et al. Move: A language with programmable resources.
https://developers.diem.com/main/docs/move-paper , 2021.

13. Giusella Finocchiaro and Chantal Bomprezzi. A legal analysis of the use of blockchain technology for the
formation of smart legal contracts. MediaLaws, July 2020.

14. Ethereum Foundation. Token Standards. https://ethereum.org/en/developers/docs/standards/tokens/ ,
2015-21.

15. Lexon Foundation. Lexon Home Page. http://www.lexon.tech, 2019.

16. Lexon Foundation. Lexon Demo Editor. http://demo.lexon.tech/apps/editor/ , 2020.

17. Guido Governatori, Florian Idelberger, Zoran Milosevic, Regis Riveret, Giovanni Sartor, and Xiwei Xu. On
legal contracts, imperative and declarative smart contracts, and blockchain systems. Artificial Intelligence
and Law, 26:377–409, 2018.

https://docs.soliditylang.org/en/v0.8.0/common-patterns.html#state-machine
https://mdia.gov.mt/wp-content/uploads/2018/10/MDIA.pdf
http://obsidian-lang.com/
https://www.gazzettaufficiale.it/eli/id/2019/02/12/19G00017/sg
https://docs.cardano.org/
https://www.wyoleg.gov/Legislation/2021/SF0038
https://developers.diem.com/main/docs/move-paper
https://ethereum.org/en/developers/docs/standards/tokens/
http://www.lexon.tech
http://demo.lexon.tech/apps/editor/

18. Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an adventure in finan-
cial engineering, functional pearl. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, pages 280–292. ACM,
2000.

19. Giuliano Lemme. Blockchain, smart contracts, privacy, o del nuovo manifestarsi della volontà contrattuale.
In Giuffrè Francis Lefebvre, editor, Privacy digitale, pages 293–323. Italy, 2019.

20. Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall, 1989.
21. Margaret Jane Radin. The deformation of contract in the information society. Oxford Journal of Legal

Studies, 37, 2017.
22. Open Source Contributors. The Accord Project. https://accordproject.org, 2018.
23. Research Group on EC Private Law (Acquis Group) Study Group on a European Civil Code. Princi-

ples, Definitions and Model Rules of European Private Law: Draft Common Frame of Reference (DCFR),
Outline Edition. Sellier, 2009.

24. Aaron Wright, David Roon, and ConsenSys AG. OpenLaw Web Site. https://www.openlaw.io, 2019.

https://accordproject.org
https://www.openlaw.io

	Pacta sunt servanda: legal contracts in Stipula

