
Journal of Hydrology 615 (2022) 128687

Available online 9 November 2022
0022-1694/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research papers 

A new framework for flood damage assessment considering the 
within-event time evolution of hazard, exposure, and vulnerability 

Tommaso Lazzarin a,*, Daniele P. Viero a, Daniela Molinari b, Francesco Ballio b, Andrea Defina a 

a Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy 
b Department of Civil and Environmental Engineering, Politecnico di Milano, Italy   

A R T I C L E  I N F O   

Editor: Yuefei Huang 
Associate Editor: Chunhui Lu  

Keywords: 
Damage 
Flood 
Exposure 
Hazard 
Vulnerability 
Flood risk 

A B S T R A C T   

Commonly adopted procedures for flood damage assessment are based on functions of the hazard that depend on 
the item under investigation (e.g., an area, a building), and on the vulnerability of exposed items. Available flood 
damage models make use of summary indicators, usually correspondent to the worst conditions expected during 
the flood event (e.g., the maximum flooded area, the envelop of maximum water depths, the maximum presence 
of people in the area, etc.), which cannot properly describe the time evolution of hazard and exposure during the 
flood event. This is an important limitation, as the flood damage also depends on how the involved processes 
evolve in time. In the present work, we propose a new framework for the assessment of flood damage that 
considers how damage evolves in time within a single flood event. The goal is achieved by computing flood 
damage by integrating over time the rate at which damage progresses, which in turn depends on time-varying 
hydraulic conditions and exposure. Application to schematic, yet realistic, examples shows the effectiveness of 
the method and its potential in flood risk assessment and management.   

1. Introduction 

With the shift from “hazard control” to “integrated risk manage
ment”, the estimation of flood damage has gained increased importance 
in the last decades, as the base for the evaluation of costs and benefits of 
risk mitigation actions, both in the peace time and during the emer
gency. At the same time, flood damage modelling capability increased as 
well. Starting from the simple concept of “depth-damage curve” intro
duced in the fifties for the estimation of flood damage to residential 
buildings (White, 1945, 1964), flood damage models have progressively 
improved resulting in the current availability of more comprehensive 
and complex estimation tools. On the one hand, research on flood 
damage expanded to include the main typologies of exposed assets: 
flood damage models are now available for assessing damage to people 
(e.g., Arrighi et al., 2017; Cox et al., 2010; Milanesi et al., 2015; 
Ramsbottom et al., 2006), vehicles (e.g., Arrighi et al., 2015; Bocanegra 
et al., 2020; Martínez-Gomariz et al., 2018; Milanesi and Pilotti, 2019; 
Shand et al., 2011), crops (e.g., Dutta et al., 2003; Molinari et al., 2019; 
Shrestha et al., 2016), commercial/industrial premises (e.g., Gissing and 
Blong, 2004; Kreibich et al., 2010), infrastructures (e.g., Gallazzi et al., 
2021; Kramer et al., 2016; Pregnolato et al., 2017), and cultural heritage 

(e.g., Arrighi et al., 2018; Figueiredo et al., 2021). On the other hand, 
complexity of models increased, although in an unbalanced way for the 
different exposed assets (with the residential sector being the most 
investigated one). Multi-variable models have been developed, allowing 
to consider the role of several hazard and vulnerability variables in 
shaping damage, besides the one played by water depth. With respect to 
the hazard, models are now available to consider the combined effect of 
water depth, water velocity, water contamination, and flood duration 
(Brémond et al., 2013; Chen et al., 2016; de Moel and Aerts, 2011; Merz 
et al., 2010; Pita et al., 2021). Likewise, most of existing damage models 
allow including at least one significant vulnerability variable, with the 
number and typology of them strongly depending on the asset under 
investigation (see Gerl et al., 2016 for an overview). Literature on flood 
damage modelling is unambiguous in evaluating multi-variable models 
as outperforming simple uni-variable tools, such as depth-damage 
functions (Carisi et al., 2018; Schröter et al., 2014; Wagenaar et al., 
2017). Still, the calibration and implementation of multi-variable 
models are often hampered by the paucity of reliable data. For 
example, it is not always straightforward to evaluate hazard variables 
such as flood duration and contamination, or to acquire sufficiently 
accurate information, e.g., on vulnerability of the ground floor of 
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buildings, on physical characteristics of exposed people, on types of 
crops, etc. The increased availability of ex-post damage data and inno
vative modelling techniques like Bayesian frameworks, machine 
learning algorithms, etc., promoted then the development of advanced 
probabilistic approaches that allow to consider uncertainty of both input 
data and damage mechanisms (Carisi et al., 2018; Kreibich et al., 2017; 
Lüdtke et al., 2019; Sairam et al., 2020). 

Despite the strong heterogeneity of current flood damage models, in 
terms of investigated assets, number of input variables, and modelling 
approaches, available models all disregard the time-evolution of the 
damaging processes within the flood event. They estimate the damage as 
a function of fixed values of the input variables (being them related to 
hazard, exposure, or vulnerability), usually corresponding to the worst 
conditions expected during a flood (the maximum water depth and ve
locity, the maximum exposure, etc.). In other words, a time-dependent 
problem is reduced to the estimation of the final state of damage as a 
function of some summary indicators that briefly describe the hazard 
and exposure associated to a flood event. Here we question the general 
validity of this paradigm, as neglecting the time evolution of the mul
tiple and complex processes that produce the flood damage is likely 
oversimplified. Estimating the damage by considering the time evolu
tion of the flood characteristics, and hence of the hazard variables, as 
well as how exposure and vulnerability change during the flood event, is 
more adherent to reality, and likely more appropriate and effective than 
the standard approach. This is the reason why we propose a model for 
direct damage assessment that explicitly considers the temporal evolu
tion of the flooding characteristics, as well as those of exposure and 
vulnerability scenarios. 

While entailing an increased number of parameters with associated 
uncertainties, the new framework paves the way to a wealth of prom
ising applications. For example, it may allow i) to estimate flood damage 
more accurately in cases of markedly time-varying hazard and/or time- 
dependent exposure and vulnerability scenarios, ii) to estimate the 
effectiveness of disaster countermeasures and civil protection activities 
that can be undertaken in the course of a flood event in order to rescue 
and protect human lives and properties, and iii) to explicitly evaluate the 
advantages related to the availability and reliability of real-time flood 
forecasts. 

The proposed model is described in Section 2. Section 3 presents and 
discusses some examples of model application aiming at providing in
formation about the model capability in predicting the damage pro
duced by flood events, rather than supporting a validation of the model 
for the selected assets. Some additional remarks and a set of conclusions 
close the paper. 

2. The mathematical model 

The model aims at describing the time-evolution of damage within a 
single flood event, as driven by the time-varying flood hazard, which is 
the independent variable of the problem. The model is spatially 
distributed in its nature and is meant to estimate the local damage as the 
sum of damage suffered by homogeneous categories of items exposed to 
flooding. This means that the overall damage is obtained by summation 
on the exposed item categories and by spatial integration on the flooded 
area. Hereinafter, the model structure is explained with reference to a 
single item category and to a generic point x = (x, y) within the flooded 
area (i.e., the dependence of variables on position x and on the specific 
item category is implicitly assumed). 

The basic idea is that items exposed to flooding are progressively 
“eroded” by the flood. This can be the case of the many categories of 
assets for which damage progresses gradually (e.g., buildings). Howev
er, this damage mechanism can be extended also to the case of objects 
that can be either safe or fully damaged (hereinafter denoted as on/off 
objects) when they are hit by floodwaters, by considering the damaging 
process from a statistical point of view. In case of on/off items, the 
vulnerability of the object is the probability of being fully damaged 

when stressed by a constant hydrodynamic forcing (Lazzarin et al., 
2022). This probability typically increases with the time the object is 
exposed to the flow; therefore, we may also consider on/off objects as 
gradually eroded by the flood. A representative category of on/off ob
jects is that of people; the probability of being swept away by flood
waters depends on the duration of the flooding because, i) the longer a 
person remains in floodwaters, the smaller is his resistance, and ii) the 
probability of being hit by large scale, energetic turbulent flow events, 
not resolved by the hydrodynamic model, or, e.g., by floating debris, 
increases with time. 

2.1. The model variables 

In the model, the intensity of the hydrodynamic forcing (i.e., the 
hazard) at a given location, as it varies in time, is measured using a 
single parameter, W = W(t). For instance, a basic choice would be 
assuming W equal to the water depth. Here we choose the W parameter 
proposed by Lazzarin et al. (2022), which stems from a combination of 
flow mechanical energy per unit weight, and momentum per unit width 
and specific weight. It is written as 

W =

(
Y

YW

)α(
1+ βF2) with YW > 0, α ≥ 1, β ≥ 0 (1)  

in which F = U(gY)− 1/2 is the Froude number (with Y the water depth 
and U the flow velocity), YW is a reference depth introduced to scale the 
water depth, and α and β are two calibration factors that measure the 
relative importance of static versus dynamic energy/force component. It 
is worth noting that W can recover the water depth, Y (Yw = 1, α = 1 and 
β = 0), the flow energy per unit weight, H (Yw = 1, α = 1 and β = 0.5), 
and the momentum per unit width and specific weight, M (Yw =

̅̅̅
2

√
, α =

2 and β = 2) by suitably choosing the reference depth and the two 
calibration factors (Lazzarin et al., 2022). 

We denote with E0 the quantity, or the value, of potentially exposed 
items, belonging to a single homogeneous category, present in a unit 
area at the initial time t0. For instance, E0 may be the number of exposed 
people or the economic value of exposed buildings. Such quantity/value 
can reduce in time due to countermeasures and rescue activities per
formed in the course of the flood event and is denoted by E = E(t). We 
then introduce the following non-dimensional, time-dependent, “spe
cific” variables that range in the interval [0,1]:  

− the damage, D = D(t), which is the damaged fraction of E at time t;  
− the vulnerability, V(W), which is here defined to be the fraction of E 

that can be damaged if subject to constant hydrodynamic forcing, W, 
lasting for a reasonably long period of time. Since W depends on 
time, vulnerability depends on/changes in time as well. V(W) can be 
interpreted as the potential damage associated to the given hazard 
degree;  

− the rescue function, R = R(t), which is the fraction of E0 that has been 
rescued. 

The meaning of these variables is clarified in the schematics of Fig. 1. 
We stress that all variables actually depend on the position, x, and 
provide the spatial distribution of hazard, exposure, vulnerability, 
outcome of rescue activities, and damage. 

2.2. The model equations 

The model is built upon a basic conservation principle applied to 
items exposed to flooding. The quantity (or the value) of potentially 
exposed items, as it decreases in time depending on the rescue function, 
is expressed as 

E = E0[1 − R] (2) 

Given that damaged items cannot be rescued any more, R in Eq. (2) 
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must satisfy the constraint R ≤ 1 − D • E/E0, possibly limiting the 
rescue. The rescue function, R, depends on several factors: the kind of 
asset under investigation, the hydrodynamic forcing, and external fac
tors such as the availability and efficiency of rescue services (Kienzler 
et al., 2015; Thieken et al., 2007). The key dependence of R on external 
factors makes it extremely case-dependent, thus unsuitable for a general, 
theoretical assessment. 

The core of the model is predicting the growth of damage in time, D 
(t), as a function of the hydrodynamic forcing, i.e., of the hazard degree 
W(t). Typically, for a generic object affected by flooding, the early stage 
of damaging starts slowly, then develops faster and faster. This is 
because an exposed item has an initial resistance that progressively re
duces; in fact, with the damaging process progressing, exposed objects 
weaken and hence become more susceptible to being damaged. On the 
contrary, at the later stage of the process, damaging slows down and the 
maximum damage is reached gradually (Breaden, 1971); at this stage, 
the damaging rate becomes nearly proportional to the undamaged 
fraction of the objects effectively exposed to the action of floodwaters, V 
– D (Fig. 1), scaled by the relative potential damage, V. Mathematically, 
this behaviour can be described by the following equation 

d
dt
(DE) = cDE

(

1 −
D
V

)

(3)  

with c a damage rate factor that controls the speed at which the damage 
progresses. Reasonably, the damage rate factor increases with the haz
ard increasing, making c = c(W) a monotone increasing function. 

The above equation belongs to the family of the so-called logistic 
equations, with the damaged items D • E corresponding to a growing 
population, and the maximum quantity of damageable items, V • E, 
corresponding to the so-called carrying capacity (i.e., the maximum 
population size compatible with external constraints; Chapman and 
Byron, 2018). 

As the flood evolves in times, particularly during the receding phase 
when W(t) becomes gradually smaller, the fraction of potentially dam
ageable items, V(W), may reduce to values smaller than the current 
damage, D(t), whereas Eq. (3) is strictly valid when V ≥ D. To account 
for this, and to extend the adaptability of the proposed equation to a 
wider range of cases, we rewrite Eq. (3) in the more general form 

d
dt
(DE) = E • cD1− γ

(

1 −
D

max(V,D)

)1+γ

(4)  

with γ a calibration parameter in the range 0 ≤ γ ≤ 1. When γ = 0, the 
solution to Eq. (4) is the well-known logistic function. As γ increases, the 
duration of the initial stage of fast damaging reduces (see Sect. 2.3.1). As 

a first approximation, γ is here assumed to be constant for a given 
category of exposed assets, as the initial delay at which damage begins to 
develop mainly depends on the characteristics of assets rather than on 
hazard intensity. 

The logistic equation in the differential form, Eq. (4), along with Eq. 
(2), allows predicting the evolution of D. Once the model parameters 
have been assessed, Eq. (4) can be integrated, at each point x within the 
flooded area, with any simple numerical approach (e.g., finite differ
ence) using the results Y(x, t) and U(x, t), and hence W(x, t), provided by 
suitable hydrodynamic models. Specific damage times the potential 
exposure, D(x, t) • E(x, t), gives the spatial distribution of the damage per 
unit area. Integration over the flooded area yields the time-evolution of 
the damage and, at the end of the flood event, the total damage. 

Hereinafter, for a general assessment of the model, we assume that 
the rescue function is identically zero, so that the potential exposure is 
constant in time, i.e., E(t) = E0. The logistic equation then reduces to 

dD
dt

= cD1− γ
(

1 −
D

max(V,D)

)1+γ

(5)  

which has a close form analytical solution if V is constant in time, which 
corresponds to assuming a constant hazard degree, W. 

2.3. Assessment of model parameters and functions 

To estimate the time evolution of the damage, D(t), for each asset 
category, the parameters and variables appearing in Eq. (5) need to be 
evaluated by calibration using available experimental data, information, 
and/or phenomenological models. Considering that γ can be taken as a 
constant parameter, whereas c and V actually depend on the impact 
parameter, W, calibrating the model means determining one parameter, 
γ, and two univariate functions, c = c(W) and V = V(W). 

As the procedure to calibrate the model parameters is different for 
the categories of gradually damaging assets and on/off objects, they are 
dealt with separately in the next sections. 

2.3.1. The case of gradually damaging assets 
In order to determine γ, c, and V for a given asset category, we use the 

solution of Eq. (5) when W is constant in time, so that c(W) and V(W) 
turn out to be constant as well. By prescribing D = 0 when t = 0, the 
solution of Eq. (5) reads 

D(t) =
V

1 + V • (cγ t)− 1/γ (6) 

Assuming a constant value of W is convenient because available in
formation and data on gradually damaging assets typically refer to 
constant hydraulic forcing, which means knowing the damage produced 
by constant values of W for different flood durations, τ. Yet, in this case 
the time t coincides with the flood duration, τ, and hence D(t) ≡ D(τ). 

Close inspection of Eq. (6) shows that c controls the speed at which 
the damage progresses. Fig. 2a shows that, during the early stage of the 
damaging process, dD/dt increases with c increasing. For a given value of 
c, γ controls the delay with which damage starts increasing, that is, the 
smaller is γ, the more delayed is the damaging process (Fig. 2b). These 
behaviors can be of help in calibrating c and γ. 

The calibration procedure is outlined as follows:  

1. the first preliminary step is assessing the structure of the impact 
parameter W to describe the hydrodynamic forcing by means of a 
single parameter (Lazzarin et al., 2022);  

2. a set of damage values, D, at different times, t, and for different 
values of W, is extracted from available data; 

3. for each value of W, the best fit of Eq. (6) to the (D, t) couples pro
vides a set of (c, W) and (V, W) couples, as well as an estimate of the 
parameter γ; 

Fig. 1. Schematic representation of items, mimicked by skittles, exposed to 
floodwaters (pale blue) and of the relevant model parameters and functions. 
The skittles marked with “S” are strong enough to resist to the current hazard 
degree. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4. finally, the functions c(W) and V(W) can be obtained by interpolating 
the set of (c, W) and (V, W) couples, respectively. 

The above procedure is applied in the two examples of Sections 3.1 
and 3.2, for the sake of illustration. 

2.3.2. The case of on/off damaging objects 
For on/off objects, V(W) is actually the probability of occurrence of 

an off-event. For example, for the category of people, vulnerability is the 
probability of being swept away by floodwaters of given depth and ve
locity, hence W; this probability depends on many factors such as 
weight, height, sex, age, clothes, physical condition, as well as on 
ground topography and, why not, on fate (Arrighi et al., 2017; Jonkman 
and Penning-Rowsell, 2008; Lind et al., 2004). Accordingly, V(W) can be 
assessed using a statistical approach based on a significant set of off- 
event data and the corresponding W values; V(W) is then given by the 
cumulative distribution function (CDF) of W associated to the off-events. 
A more detailed description of this procedure is given by Lazzarin et al. 
(2022). 

Finding a suitable relationship for the damaging rate factor, c(W), is 
not straightforward, as it is affected by manifold aspects. Off events in 
floodwaters can be triggered by strong macroturbulent events, as well as 
by floating and suspended debris; hence, the probability of occurrence of 
an off-event (i.e., the damage) increases as time passes. In addition, for 
some on/off objects, like people or animals, fatigue plays a role as well. 
Anyway, the damaging process for on/off objects is typically fast 
compared to the flooding time scale, so that approximations affecting 
the estimation of c(W) have a minor impact on the accuracy of model 
predictions (see Section 3). 

For on/off damaging objects, the procedure to calibrate the model is 
summarized as follows:  

1. the first preliminary step is assessing the structure of the impact 
parameter W (Lazzarin et al., 2022);  

2. then, available data are used to provide a statistically significant set 
of W values corresponding to off-events. The cumulative distribution 
of W values provides the vulnerability function V(W);  

3. the damage rate factor c(W) can be inferred by a best fit of Eq. (6) to 
available experimental data; in the absence of experimental data or 
theoretical evaluations, a possible, reasonable function c(W) should 
be assumed. 

The above procedure is applied in the example of Section 3.3 for the 
sake of illustration. 

3. Model applications 

Of the three illustrative applications shown in this section, the first 
two examples consider crops and buildings as gradually damaging as
sets; the third example, that considers the category of people, shows how 

the procedure is extended to an on/off object category. 
The purpose of the examples discussed in this section is to exemplify 

the above calibration procedure and to show the model ability in 
describing the time-evolution of damage as determined by the time- 
varying flow conditions that occur in the course of a synthetic flood 
event. The present model applications also suggest the importance of 
considering the evolution of the damaging process for an improved 
assessment of flood risk. The application to a real flood event, with in
clusion of the rescue function, is beyond the scope of the present 
methodological study. 

In real-case modelling applications, the results from a hydrodynamic 
model provide the spatial distribution of water depth and velocity 
within the flooded area as they vary in time during the flood event. Such 
data allows computing the spatial and temporal distribution of the 
impact parameter, W, for each investigated category of exposed assets, 
by means of Eq. (1). How to assess the W parameter to actually represent 
the hazard degree for different object categories is described in Lazzarin 
et al. (2022). Here, for the sake of the exercise, we consider a generic 
spatial position within the flooded area, and we introduce some syn
thetic hydrographs describing the local time variation of W. The selected 
hydrographs, shown in Fig. 3, have different shapes but the same peak 
value. 

3.1. Flood damage to crops 

Flood duration is one of the key explicative variable of flood damage 
to crops (Berning et al., 2000; Forster et al., 2008; Mao et al., 2016; Merz 
et al., 2010; Scawthorn et al., 2006; Vozinaki et al., 2015) as plants resist 
differently to ponding water persisting few hours rather than several 
days. In fact, most of the existing models for estimating flood damage to 
agriculture consider flood duration as an important explicative variable 
complementing the maximum flow depth (e.g., Agenais et al., 2013; 

Fig. 2. Time evolution of the specific damage, D(t), according to Eq. (6), for V = 1 and: a) for different values of the damaging rate, c (with γ = 0.5); b) for different 
values of γ (with c = 1). 

Fig. 3. Synthetic hydrographs describing the time variation of W used in the 
present model application examples; labels 1 to 4 denote the different shape of 
hydrographs; Wmax is the peak value of W and tmax the time to peak. 
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Brémond et al., 2013; Dutta et al., 2003; Molinari et al., 2019). Never
theless, the dynamics of flood damage mechanisms is not considered by 
the models; with the proposed approach, the temporal evolution of the 
flood is instead implicitly accounted for, as demonstrated by the 
following examples. 

Among crops, we choose rice as its damaging is perhaps the most 
well documented (e.g., Khairul et al., 2022; Nguyen et al., 2021; 
Samantaray et al., 2015; Singh et al., 2011; Zhang et al., 2015). In 
particular, we use the data and damage functions for rice at maturity 
stage, as given by Shrestha et al. (2016). Given that the damage is given 
as a function of water depth in this model, we assume α = 1, β = 0, and 
YW = 1.0 m in Eq. (1), so that W exactly corresponds to the water depth. 
According to the model by Shrestha et al. (2016), the damage attains the 
maximum value when W > 1.2 (Fig. 4a), and it strongly depends on the 
duration of the flood. 

The model calibration, which means determining γ, c(W), and V(W), 
is based on the use of Eq. (6), which holds when the impact parameter W 
(t) is constant in time. Accordingly, we extract from the data of Fig. 4a all 
the couples (D, τ) for some constant values of W. These set of iso-W data 
(dots in Fig. 4b) is fitted with Eq. (6) (lines in Fig. 4b) to find γ = 0.6 and 
the values of vulnerability and damage rate factor reported in Table 1. 

The next step is obtaining suitable expressions for V(W) and c(W). 
Valid possibilities are interpolating the data of Table 1 with a piecewise 
linear function, or using a higher order polynomial approximation. An 
effective solution is using suitable algebraic expressions containing few 
calibration factors, as those reported in the following equations: 

V(W) =
1

1 + (a/W )
b (7)  

c(W) = pWq (8)  

where a, b, p, and q are calibration coefficients. 
For rice during the maturity stage (data in Table 1), the vulnerability 

function V(W) is well described by a = 0.85 and b = 7 (Fig. 5a), and the 
damage rate factor c(W) by p = 0.4 d− 1 and q = 1.5 (Fig. 5b). 

Once calibrated, the model is used to predict the damage produced 
by the synthetic flood events of Fig. 3, by integrating Eq. (5). The results, 
obtained by assuming tmax = 1 d, are shown in Fig. 6a for Wmax = 1.5, 
and in Fig. 6b for Wmax = 1.0. We recall that, in this specific application, 
the W parameter represents the water depth expressed in meters. 

Both in the case of Wmax = 1.5 and Wmax = 1.0, in the rising phase of 
the flood, the damage increases slowly, with a temporal evolution that is 
almost the same for the different hydrographs. For the longest flood 
(labelled as 4) and Wmax = 1.5, the damage is smaller than 20% at the 
flood peak. In the receding phase (i.e., for t > 1 day), in the steeper 
hydrograph (labelled as 1), water levels decrease fast and, after 
approximatively t = 2 days, damage does not increase anymore, 

reaching D = 0.32 and D = 0.11 for Wmax = 1.5 and of Wmax = 1.0 
respectively. For the longest hydrograph (labelled as 4), relatively high 
water depths last for several days after the peak, and damage continues 
to increase until t = 5 days for Wmax = 1.5 (where D = 0.63) and t = 3 
days for Wmax = 1.0 (where D = 0.27). Hence, the hydrograph n. 4 
produces a final damage approximately two times higher than hydro
graph n. 1, due to the longer persistence of high water levels. 

Model parameters are also evaluated for the three growing stages of 
rice: vegetative (i.e., after newly planted), reproductive, and maturity 
stage. We followed the same calibration procedure outlined for the 
maturity stage, using data of Shrestha et al. (2016). Interestingly, while 
vulnerability shows a marked dependence on the growing stage 
(Fig. 7a), the damage rate factor, c(W), is approximately the same for the 
three stages (Fig. 7b). 

Finally, we use the model of Agenais et al. (2013) to consider other 
crops. Specifically, we consider grapevine and maize, both at the 
maturity stage, and compare the time evolution of the specific damage, 
D(t), with those obtained for rice using the hydrograph 4 of Fig. 3 with 
tmax = 1 day and Wmax = 1.5. The damaging of grapevine and maize 
shows a different temporal evolution compared to rice (Fig. 8): the 
initial stage of the damaging process is delayed; however, damage 
progresses faster in time and the final value is higher, particularly for 
grapevine crops, which is characterized by a lower value of γ and a 

Fig. 4. Damage to rice during the maturity stage, expressed as relative yield loss, a) as a function of the impact parameter W, for different flood durations τ (adapted 
from Shrestha et al., 2016), and (b) as a function of the flood duration, τ, for different values of W; dots denote the discrete values extracted from the curves plotted in 
(a). The iso-W curves in (b) are computed with equation Eq. (6) with t = τ. 

Table 1 
Model parameters V and c obtained from data in Shrestha et al. (2016) for some 
values of the impact parameter W.  

W 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

V 0.16 0.30 0.44 0.58 0.72 0.86 0.99 
c [d− 1] 0.14 0.23 0.30 0.37 0.42 0.48 0.53  

Fig. 5. Vulnerability, V(W), and damage rate, c(W), according to Eqs. (7) with 
a = 0.85, b = 7, and to Eq. (8) with p = 0.4 d− 1, q = 1.5, respectively. White 
dots denote the (V, W) and (c, W) couples of Table 1. 
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higher value of p (not reported here). Again, the persistence of flood 
plays a major role in determining the growth of damage. 

3.2. Flood damage to residential buildings 

Flood duration is one of the most important factors, together with 
water depth and flow velocity, also in assessing damage to residential 
buildings (Carisi et al., 2018; Chen et al., 2016; Grahn and Nyberg, 
2014; Kellermann et al., 2020; Kelman and Spence, 2004; Martínez- 

Gomariz et al., 2020; Merz et al., 2013). Indeed, both structures and 
contents are typically made of porous materials; therefore, the longer is 
the flood duration, the more is the water absorbed, and the greater is the 
damage (Marvi, 2020; Nofal et al., 2020; Soetanto and Proverbs, 2004). 

In this example, we use relative damage data provided by the ‘what 
if’ synthetic damage model INSYDE (Dottori et al., 2016; Molinari and 
Scorzini, 2017) forced by a set of couples (U, Y) lasting different dura
tions, τ. In this case, the use of a ‘what-if’ model is appropriate, since we 
need values of damage for the same building but for different flood 
durations, and these values are not directly available from experimental 
data. 

Differently from the previous example, in this case the structure of 
the impact parameter W is not known and must be assessed. Since the 
energy head, as well as the flow depth, are suitable flood impact pa
rameters for reliable forecasting of damage to residential buildings 
(Kreibich et al., 2009; Lazzarin et al., 2022), we assume α = 1 in Eq. (1) 
and chose YW = 3.5 m (i.e., approximately the typical inter-floor height) 
as reference depth, so that β remains the only calibration factor. 

The vulnerability V(W) is here defined as the damage produced by a 
constant hydrodynamic forcing, W, lasting for a sufficiently long time; in 
other words, V(W) is the asymptotic value of the specific damage D(t) 
considering the flood-event time scale. Accordingly, to calibrate β, we 
use a sub-set of the damage values provided by the INSYDE model; in 
particular, we consider the damage produced by velocity and flow depth 
couples lasting τ ≈ 60 h so that D(W) ≈ V(W). Since iso-V lines in the 
U–Y plane are also iso-W lines, we find β through a best-fit procedure, 
such that the shape of iso-W lines matches the shape of iso-V lines as well 
as possible. This procedure is detailed in Lazzarin et al. (2022). 

Once the parameter W is assessed, we use the full set of data to 
construct a series of couples (W, D) for each duration τ. Hereafter, the 
procedure is the same as that described in the previous application (Sect. 
3.1). 

As an example, we consider a concrete 2-storey building with a 
footprint area of 100 m2. In this case, we find β = 0.3 and the (W, D) 
couples plotted in Fig. 9a. For each duration τ, we then draw a contin
uous damage curve D(W) from the set of couples (W, D). The large 
scatter of computed damage around the curves are mainly because 
INSYDE considers a stepwise effect of flood duration; in particular, the 
flood duration starts affecting the damage at τ = 30 h and reaches its 
maximum effect at τ = 42 h; this is the reason why the damage predicted 
by the model is constant when the duration is in the ranges τ ≤ 30 h and 
τ ≥ 42 h (Fig. 9b). 

We use the curves of Fig. 9a to extract a set of points D(τ, W) for some 
values of the impact parameter, W (0 ≤ W ≤ 1 at a constant step ΔW =
0.2) and for durations τ ≤ 60 h, at a constant step of 6 h (Fig. 9b). These 
points are then fitted by Eq. (6) to give γ = 1.0 and the values of 
vulnerability and damage rate factor reported in Table 2 and plotted in 
Fig. 9. 

Fig. 6. Specific damage growth for rice, D(t), (solid lines) subject to the different flood hydrographs W(t) shown in Fig. 3 (dashed lines), with tmax = 1 day and a) 
Wmax = 1.5, b) Wmax = 1.0. 

Fig. 7. Vulnerability V(W) given by Eq. (7) and b) damage rate factor c(W) 
given by Eq. (8) for rice at different growing stages: vegetative (blue), repro
ductive (red), and maturity stage (green). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Time evolution of the specific damage, D(t), (solid lines) for rice (blue), 
grapevine (red), and maize (black), at the maturity stage, subject to the flood 
hydrograph n. 4 of Fig. 3 with tmax = 1 day and Wmax = 1.5 (grey dashed line). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Here too, the large scatter of computed values/data around the 
interpolating iso-W curves of Fig. 9b is mainly ascribable to the stepped 
impact of the flood duration considered in the INSYDE model. 

Vulnerability and damage rate factor values given in Table 2 could be 
interpolated using Eqs. (7) and (8), respectively. However, when the 
upper limit of vulnerability, V = 100% in Eq. (7), is far from being 
reached, as in the present case, a simpler power law like Eq. (9) can be 
used to interpolate the data (Fig. 10). 

V(W) = bWa (9) 

For the present case, we find a = 0.8, b = 0.22 and p = 0.04 h− 1, q =
1.3. 

The calibrated model is used to estimate the damage produced by the 
flood hydrographs of Fig. 3, with tmax = 1 h and Wmax = 1. Numerical 
integration of Eq. (5), with boundary condition D = 0 at t = 0, yields the 
results shown in Fig. 11a. Even though the peak value of the impact 
parameter is the same for the four scenarios, the damage at the end of 
the flood event varies with the hydrograph shape significantly. With the 
hydrograph n. 4, which is characterized by the longer duration, the final 
damage is roughly doubled if compared with results obtained using the 
shortest hydrograph n. 1. This confirms the importance of considering 
the time evolution of the flood. 

The above calibration procedure is applied also to the cases of con
crete 1-storey and masonry 1- and 2- storey buildings; Fig. 11b-d shows 
the results of the model application. For each building, the damage 

evolution depends on the hydrograph shape only slightly up to t = 2 h; 
however, after the flood peak, the damage is strongly affected by the 
shape of the hydrograph. Again, the final damage for hydrograph n. 4 is 
approximatively two times the final damage for hydrograph n. 1. 

Fig. 11 also shows that, for equivalent hydrodynamic forcing, the 
specific damage D(t) is larger for 1-storey buildings (panels b and d) then 
for 2-storey buildings (panels a and c). This is because the vulnerability 
V(W), which in turn depends on the number of floors and the building 
structure (e.g., masonry 1-floor buildings are more vulnerable than 
concrete 2-floors building), is higher for 1-storey buildings. 

3.3. Flood damage to people 

A significant category in the class of on/off objects is that of people. 
Many experimental data are available to calibrate the model, in the form 
of (U, Y) couples associated to off events. As a preliminarily step, the 
structure of the impact parameter is assessed by imposing that the iso-W 
line in the U–Y plane, corresponding to W = 1, well envelops 95% of the 
off events (i.e., 95% of off events have W ≤ 1). We find α = 2, β = 4, and 
Yw = 1.25 m (additional details can be found in Lazzarin et al., 2022). 

For classes of on/off objects, vulnerability is the probability of hav
ing an off event (Lazzarin et al., 2022); accordingly, V(W) is given by the 
cumulative distribution function (CDF) of W associated to the off-events. 
In practical applications, it is often convenient to interpolate the (W, V) 
couples of discrete CDFs with an analytical function; to this purpose, Eq. 
(7) turns out to be simple and effective for different kind of on/off ob
jects. In the example at hand, for the coefficients of Eq. (7), we find a =
0.6 and b = 5.0 (Fig. 12a). 

As regards the damage rate factor, c(W), it has to be admitted that 
suitable data and theoretical models are unavailable to describe the time 
dependence of the probability that a person is swept away by flood
waters for given hydrodynamic forcing. Accordingly, c(W) must be 
assumed sensibly. However, the damaging process for people is typically 
fast compared to the flooding time scale, so that approximations 
affecting the estimating of c(W) have a minor impact on the accuracy of 
model predictions. To show this, we assume that c(W) is given by Eq. (8) 
with q = 2, and consider some values of the parameter p that, to a 
reasonable extent, represent different rates at which damage progresses. 
Fig. 12b shows the time course of the probability of occurrence of an off- 
event conditional to a constant W = 1 hydrodynamic forcing, and p =
10, 25, 50 h− 1. In other words, Fig. 12b, shows how long floodwaters, 
characterized by W = 1, take to sweep away 95% of exposed adults, or 
how long an adult can roughly cope with floodwaters characterized by 
W = 1 before being swept away. According to the equation chosen for c 
(W), this time is approximately 10 min, 30 min, and 1 h for p = 50, 25, 
10 h− 1, respectively. We then apply the model considering the steepest 
hydrograph of Fig. 3 (i.e., n. 1) and assume Wmax = 1 and tmax = 1 h. 
Fig. 12c compares the vulnerability V(t) with the damage D(t) for the 
three values of p; the final damage, that exactly corresponds to the point 

Fig. 9. Damage curves D(W) for a concrete 2-storey building for different flood duration τ. b) Damage as a function of flood duration for different constant values of 
W; dots denote discrete values of D(τ, W) extracted from the curves plotted in panel a), whereas the curves are given by Eq. (6) with t = τ. 

Table 2 
Model parameters V and c for a 2-storey concrete building for different values of 
the impact parameter W.  

W 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

V 0.053 0.100 0.143 0.182 0.217 0.258 0.289 
c [h− 1] 0.004 0.010 0.022 0.032 0.038 0.050 0.059  

Fig. 10. Vulnerability V(W) and damage rate factor c(W) according to Eqs. (7) 
and (8), respectively, with a = 0.8, b = 0.22, and p = 0.04 h− 1, q = 1.3. White 
dots denote the (V, W) and (c, W) couples of Table 2. 
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of intersection between V(t) and D(t), is not much smaller than the 
maximum possible damage, Dmax = Vmax = V(Wmax). This holds even in 
the very improbable case of p = 10 h − 1, in which a person exposed to a 
very hazardous hydrodynamic condition (i.e., W = 1) would resist for 
more than one hour before being swept away. This behaviour confirms 
that an accurate assessing of c(W) for the category of people and, 
possibly, for most of on/off categories, is important but not crucial in 
determining the accuracy of the model. 

3.4. Additional remarks 

To apply the proposed model, the key point is the calibration of γ and 
the estimation of the vulnerability function, V, and damage growth rate 
factor, c. In the present formulation of the model, both V and c only 
depend on the intensity of the hydrodynamic forcing, W. The vulnera
bility, V(W), which is here defined as the potential damage produced in a 
sufficiently long period by a given hazard degree, is very similar to the 
specific damage estimated by classical models. In the present time- 
dependent approach, V(W) modulates in time the damage growth. The 
damage rate factor, c(W), expresses in mathematical form the idea that 
the flood damage develops at a rate that increases with the hazard. The 
previous model applications showed that a significant amount of data is 
needed to assess c(W). For on/off items such as people exposed to 
floodwaters, available data is almost useless to determine c(W); none
theless, the model application suggests that, when the damaging process 
is fast compared to the flooding time scale (as it is for people), even large 
uncertainties on c(W) have a minor impact on the accuracy of model 
prediction. In other words, for item category subject to fast damaging, 
the present model remains useful to track the time-evolution of damage, 
which is essentially driven by the time variation of hazard, and to 
consider the effect of countermeasures and rescue activities undertaken 
during the course of the flood event. 

For items subject to progressive damaging, the schematic applica
tions shown above suggest that considering the real time evolution of 
the flood event is key for reliable damage estimation. In the model ap
plications to crops and buildings (Figs. 6, 8, and 11), the specific damage 
is still very low at the time of the flood peak, and mainly develops during 
the receding phase of the flood. The peak flood condition alone, as well 
as long-standing shallow water depths, can play a minor role in deter
mining the final damage. This means that the successful application of 
the classic approach for damage estimation requires defining and esti
mating hazard indicators (i.e., an effective equivalent water depth, and 
an effective equivalent flood duration) that are truly representative of 

Fig. 11. Time evolution of the specific damage, D(t), (solid lines) caused by the flood hydrographs W(t) of Fig. 3 (dashed lines) with tmax = 1 h and Wmax = 1, for a) 
concrete 2-storey building, b) concrete 1-storey building, c) masonry 2-storey building, d) masonry 1-storey building. 

Fig. 12. a) Cumulative frequency distribution of off-events, V(W), for the case 
of people in floodwaters; dots denote the available experimental data, the curve 
is given by Eq. (7) with a = 0.6 and b = 5.0 (adapted from Lazzarin et al., 2022). 
b) Specific damage as a function of time for constant forcing W = 1 and for q =
2, and three different values for p in Eq. (8). c) Damage as a function of time 
when the forcing is given by the hydrograph n. 1 in Fig. 3, and with the damage 
rate factor given by Eq. (8) with q = 2, and different values for p; the dashed 
curve is the corresponding vulnerability V(t). 
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the time-varying flood conditions. This is not straightforward, and can 
be especially challenging when the shape of the flood hydrograph is very 
irregular as, e.g., in the case of multi-peak hydrographs. This issue is 
overcome in the time-dependent framework here proposed, which 
naturally accounts for the time evolution of damage during the flood, 
thus retaining the full information of the damaging states contained in a 
flood hydrograph. 

The effectiveness of the method is intimately related to the use of 
numerical flood models, typically based on the shallow water equations, 
which are now consolidated tools in supporting flood damage and flood 
risk analyses (Costabile et al., 2020; Ernst et al., 2010; Ferrari et al., 
2019, Ferrari and Viero, 2020; Jamali et al., 2018; Sanders and Schu
bert, 2019; Teng et al., 2017; Viero et al., 2019). These models provide 
water depth and velocity at each time-step and at each point of the 
flooded area, and hence the time course and spatial distribution of the 
impact parameter W. At each computational grid point, time integration 
of Eq. (5) can advance simultaneously with the hydrodynamic model to 
provide the spatial distribution of the damage D(x, t)•E(x, t). The latter, 
once the flood receded, gives the spatial distribution of the flood 
damage. 

4. Conclusions 

The present work introduces a new framework for flood damage 
assessment, which considers the time evolution of the entire damaging 
process within a single flood event. This is a new perspective, since the 
many models for flood damage assessment developed up to now, either 
physics- or data-based, uni- or multi-variate, deterministic or probabi
listic, correlate the damage produced by a flood event to some summary 
indicators of hazard and exposure, thus disregarding the time course of 
the flood event and of the processes that lead to flood damage. 

A logistic-type equation is here chosen to predict, at each point 
within the flooded area, the time evolution of damage driven by the 
time-varying features of the flood event, accounting for the fractions of 
damaged, exposed, vulnerable, and possibly rescued items. The total 
damage is then obtained through spatial integration over the flooded 
area. 

Model applications to crops, residential buildings, and people 
exposed to floodwaters are used to show how to assess the model pa
rameters and functions based on available data, and to demonstrate 
some of the advantage of the proposed approach. Specifically, the model 
allows to assess flood damage of different asset categories, yet retaining 
a common structure; i.e., the different damage processes are described 
by the same equations and just different values of the calibration pa
rameters. The duration of the flood event is accounted for implicitly and 
effectively, and the strong hypothesis that the final damage may be 
completely described by a limited set of characteristic parameters, such 
as the maximum water depth and flow velocity, is relaxed. Importantly, 
the main model components have a precise physical meaning, which is 
of help to the modelers in case data or synthetic models are scarce or 
unavailable. 

Although further research is definitely needed to obtain a reliable 
model applicable to real-world general cases, the proposed framework 
suggests a different point of view in flood risk assessment, closer to the 
damaging processes that actually occur during a flood, and paves the 
way to a set of innovative applications towards a more effective flood 
risk assessment and management. 

The proposed approach also allows to account for the impact of 
countermeasures and of rescue activities that may be undertaken during 
the flood event, aimed at reducing the exposed items. This aspect is not 
analyzed in the paper mainly because of the many diverse factors on 
which rescue activities depend on, including the availability and effi
ciency of rescue services, the quantity of items to be rescued, and the 
hydrodynamic forcing as well. Accounting for the mutual feedbacks 
between the emergency rescue activities and the dynamics of hazard and 
damage, requires the coupling of the damage and hydrodynamic 

models. This occurrence suggests the opportunity of coupling of the 
present model for time-dependent flood damage with available or 
advanced versions of agent-based models (e.g., Dawson et al., 2011; 
Zhuo and Han, 2020), which can provide effective estimates of the 
rescue function, R, for on/off, fast damaging item categories like people 
and cattle. Rescue activities are expected to play a key role also for long 
and slowly varying flood events, for which the quantity of exposed assets 
can decrease because of rescue activities performed by civil protection 
actors or citizens (like evacuating people and cattle, moving vulnerable 
contents at upper level, etc.). Disregarding the fraction of assets that can 
actually be rescued or moved during such flood events, may lead to 
significant overestimations of damage. 

As for further future activities, model application to significant real 
cases, having sufficiently accurate data of both the hydrodynamic and 
damaging processes of a few categories, is needed to more clearly 
demonstrate the efficacy of the proposed approach. Furthermore, the 
general time-dependent framework here proposed could be useful for 
modelling other time-dependent flood-related processes (e.g., soil 
alteration, biological degradation, indirect damages, business interrup
tion, etc.), possibly including additional or different damage de
terminants (e.g., pollutants). 
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Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., Merz, B., 2014. How 
useful are complex flood damage models? Water Resour. Res. 50, 3378–3395. 
https://doi.org/10.1002/2013WR014396. 

T. Lazzarin et al.                                                                                                                                                                                                                                

https://doi.org/10.1111/jfr3.12551
https://doi.org/10.13023/kwrri.rr.32
https://doi.org/10.5194/nhess-13-2493-2013
https://doi.org/10.5194/nhess-18-2057-2018
https://doi.org/10.5194/nhess-18-2057-2018
https://doi.org/10.1016/j.gecco.2017.e00365
https://doi.org/10.1016/j.gecco.2017.e00365
https://doi.org/10.1007/s11069-016-2223-2
https://doi.org/10.1016/j.jhydrol.2019.124231
https://doi.org/10.1016/j.jhydrol.2019.124231
https://doi.org/10.1038/103447b0
https://doi.org/10.1038/103447b0
https://doi.org/10.1007/s11069-011-9745-4
https://doi.org/10.1007/s11069-011-9745-4
https://doi.org/10.5194/nhess-16-2577-2016
https://doi.org/10.5194/nhess-16-2577-2016
https://doi.org/10.1016/S0022-1694(03)00084-2
https://doi.org/10.1007/s11069-010-9520-y
https://doi.org/10.1007/s11069-010-9520-y
https://doi.org/10.1016/j.jhydrol.2020.125193
https://doi.org/10.1016/j.advwatres.2019.01.010
https://doi.org/10.1016/j.advwatres.2019.01.010
https://doi.org/10.1016/j.ijdrr.2021.102323
https://doi.org/10.5194/nhess-8-311-2008
https://doi.org/10.5194/nhess-8-311-2008
https://doi.org/10.3311/FloodRisk2020.6.2
https://doi.org/10.3311/FloodRisk2020.6.2
https://doi.org/10.1371/journal.pone.0159791
https://doi.org/10.1080/0004918042000249511
https://doi.org/10.1080/0004918042000249511
https://doi.org/10.1016/j.ijdrr.2014.10.003
https://doi.org/10.1016/j.jhydrol.2018.07.064
https://doi.org/10.1111/j.1752-1688.2008.00217.x
https://doi.org/10.1111/j.1752-1688.2008.00217.x
https://doi.org/10.5194/nhess-20-2503-2020
https://doi.org/10.1016/j.enggeo.2004.01.010
https://doi.org/10.3390/w14030369
https://doi.org/10.5194/nhess-15-505-2015
https://doi.org/10.1016/j.ijdrr.2016.04.003
https://doi.org/10.1016/j.ijdrr.2016.04.003
https://doi.org/10.5194/nhess-9-1679-2009
https://doi.org/10.5194/nhess-9-1679-2009
https://doi.org/10.1080/02626667.2010.529815
https://doi.org/10.1111/risa.12650
https://doi.org/10.1111/risa.12650
https://doi.org/10.1016/j.jhydrol.2022.127485
https://doi.org/10.1016/j.jhydrol.2022.127485
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0185
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0185
https://doi.org/10.1029/2019WR026213
https://doi.org/10.1051/e3sconf/20160705003
https://doi.org/10.1111/jfr3.12262
https://doi.org/10.3390/su12072666
https://doi.org/10.1007/s11069-020-03941-w
https://doi.org/10.1007/s11069-020-03941-w
https://doi.org/10.5194/nhess-10-1697-2010
https://doi.org/10.5194/nhess-10-1697-2010
https://doi.org/10.5194/nhess-13-53-2013
https://doi.org/10.5194/nhess-13-53-2013
https://doi.org/10.1080/00221686.2019.1647887
https://doi.org/10.1080/00221686.2019.1647887
https://doi.org/10.1002/2014WR016172
https://doi.org/10.1007/s11069-010-9675-6
https://doi.org/10.1007/s11069-010-9675-6
https://doi.org/10.3390/w9090688
https://doi.org/10.3390/w9090688
https://doi.org/10.5194/nhess-19-2565-2019
https://doi.org/10.5194/nhess-19-2565-2019
https://doi.org/10.1016/j.ijdrr.2021.102208
https://doi.org/10.1016/j.ijdrr.2021.102208
https://doi.org/10.1016/j.ress.2020.106971
https://doi.org/10.1016/j.jhydrol.2021.126982
https://doi.org/10.1016/j.jhydrol.2021.126982
https://doi.org/10.1016/j.trd.2017.06.020
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0270
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0270
https://doi.org/10.1016/j.envsoft.2020.104798
https://doi.org/10.1007/s11069-014-1493-9
https://doi.org/10.1016/j.advwatres.2019.02.007
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72)
https://doi.org/10.1002/2013WR014396


Journal of Hydrology 615 (2022) 128687

11

Shand, T.D., Cox, R.J., Blacka, M.J., Smith, G.P., 2011. Australian rainfall and runoff 
(AR&R). Revision project 10: appropriate safety criteria for vehicles. Rep. Number 
P10S2020.  

Shrestha, B.B., Okazumi, T., Miyamoto, M., Sawano, H., 2016. Flood damage assessment 
in the Pampanga river basin of the Philippines. J. Flood Risk Manag. 9, 355–369. 
https://doi.org/10.1111/jfr3.12174. 

Singh, S., Mackill, D.J., Ismail, A.M., 2011. Tolerance of longer-term partial stagnant 
flooding is independent of the SUB1 locus in rice. Field Crops Res. 121, 311–323. 
https://doi.org/10.1016/j.fcr.2010.12.021. 

Soetanto, R., Proverbs, D.G., 2004. Impact of flood characteristics on damage caused to 
UK domestic properties: the perceptions of building surveyors. Struct. Surv. 22, 
95–104. https://doi.org/10.1108/02630800410538622. 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S., 2017. Flood 
inundation modelling: a review of methods, recent advances and uncertainty 
analysis. Environ. Model. Softw. 90, 201–216. https://doi.org/10.1016/j. 
envsoft.2017.01.006. 

Thieken, A.H., Kreibich, H., Müller, M., Merz, B., 2007. Coping with floods: 
preparedness, response and recovery of flood-affected residents in Germany in 2002. 
Hydrol. Sci. J. 52, 1016–1037. https://doi.org/10.1623/hysj.52.5.1016. 

Viero, D.P., Roder, G., Matticchio, B., Defina, A., Tarolli, P., 2019. Floods, landscape 
modifications and population dynamics in anthropogenic coastal lowlands: the 

Polesine (northern Italy) case study. Sci. Total Environ. 651, 1435–1450. https:// 
doi.org/10.1016/j.scitotenv.2018.09.1214. 

Vozinaki, A.-E.K., Karatzas, G.P., Sibetheros, I.A., Varouchakis, E.A., 2015. An 
agricultural flash flood loss estimation methodology: the case study of the Koiliaris 
basin (Greece), February 2003 flood. Nat. Hazards 79, 899–920. https://doi.org/ 
10.1007/s11069-015-1882-8. 

Wagenaar, D., de Jong, J., Bouwer, L.M., 2017. Multi-variable flood damage modelling 
with limited data using supervised learning approaches. Nat. Hazards Earth Syst. Sci. 
17, 1683–1696. https://doi.org/10.5194/nhess-17-1683-2017. 

White, G.F., 1945. Human Adjustment to Floods: A Geographical Approach to the Flood 
Problem in the United States. Univ. Chic. Dept Geogr. Research Paper No.29. 

White, G.F., 1964. Choice of adjustment to floods. Univ. Chic. Dept Geogr. Research 
Paper No.93.  

Zhang, Y., Wang, Z., Li, L., Zhou, Q., Xiao, Y., Wei, X., Zhou, M., 2015. Short-term 
complete submergence of Rice at the Tillering stage increases yield. PLoS One 10, 
e0127982. https://doi.org/10.1371/journal.pone.0127982. 

Zhuo, L., Han, D., 2020. Agent-based modelling and flood risk management: a 
compendious literature review. J. Hydrol. 591, 125600 https://doi.org/10.1016/j. 
jhydrol.2020.125600. 

T. Lazzarin et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0300
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0300
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0300
https://doi.org/10.1111/jfr3.12174
https://doi.org/10.1016/j.fcr.2010.12.021
https://doi.org/10.1108/02630800410538622
https://doi.org/10.1016/j.envsoft.2017.01.006
https://doi.org/10.1016/j.envsoft.2017.01.006
https://doi.org/10.1623/hysj.52.5.1016
https://doi.org/10.1016/j.scitotenv.2018.09.1214
https://doi.org/10.1016/j.scitotenv.2018.09.1214
https://doi.org/10.1007/s11069-015-1882-8
https://doi.org/10.1007/s11069-015-1882-8
https://doi.org/10.5194/nhess-17-1683-2017
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0345
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0345
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0350
http://refhub.elsevier.com/S0022-1694(22)01257-4/rf0350
https://doi.org/10.1371/journal.pone.0127982
https://doi.org/10.1016/j.jhydrol.2020.125600
https://doi.org/10.1016/j.jhydrol.2020.125600

	A new framework for flood damage assessment considering the within-event time evolution of hazard, exposure, and vulnerability
	1 Introduction
	2 The mathematical model
	2.1 The model variables
	2.2 The model equations
	2.3 Assessment of model parameters and functions
	2.3.1 The case of gradually damaging assets
	2.3.2 The case of on/off damaging objects


	3 Model applications
	3.1 Flood damage to crops
	3.2 Flood damage to residential buildings
	3.3 Flood damage to people
	3.4 Additional remarks

	4 Conclusions
	Funding
	Data statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


