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Abstract

On a scheme S over a base scheme B we study the category of locally constant BT groups i.e.
groups over S that are twists, in the flat topology, of BT groups defined over B. These groups
generalize p-adic local systems and can be interpreted as integral p-adic representations of
the fundamental group scheme of S/B (classifying finite flat torsors on the base scheme)
when such a group exists. We generalize to these coefficients the Katz correspondence for
p-adic local systems and show that they are closely related to the maximal nilpotent quotient
of the fundamental group scheme.

1 Introduction

It is a classical result in analytic geometry (e.g. [5] chapter I) that when S is a complex
manifold there are natural equivalences of categories between: (i) complex representations of
the fundamental group π1(S); (ii) local systems of C-vector spaces on S and (iii) complex vector
bundles on S with an integrable analytic connection.

When S is a scheme of characteristic p, the fundamental group should be replaced by the
étale fundamental group in the sense of [SGA1]. It is a profinite group, hence a compact totally
disconnected topological group. We should therefore look for continuous representations and
the interesting (finite dimensional) ones are those with -adic coefficients. In the present paper,
we are concerned with integral representations, i.e. representations on free finitely generated
modules over complete (discrete) valuation rings. We still have an equivalence between -adic
representations of π1(S) and -adic local systems on S, but, when  = p, there is no “de Rham”
side of the correspondence.

By contrast, when  = p, we have the Katz correspondence between p-adic representations
of the fundamental group and the category of unit root F -crystals ([14], proposition 4.1.1).
However, there are “too few” p-adic representations of π1(S). There are several reasons for this
discrepancy, the most obvious one being the fact that in positive characteristic one should also
take into account inseparable morphisms.

When S is a reduced scheme over a field k and b is a fixed k-valued point, Nori [18] defined
the fundamental group scheme π(S/k; b) generalizing Grothendieck’s étale fundamental group:
it is a profinite k-group scheme which classifies pointed torsors over S under finite group schemes.
For instance, when S = A is an abelian variety, π(A/k; 0) = lim← kernAt , where At denotes the

dual abelian variety. Glimpses of this “true” fundamental group already appear in [SGA1], e.g.
exposé X, remarque 2.5.

Strictly speaking π(S/k; b), as a group scheme over k, is only entitled to have representa-
tions into k-vector spaces. However, we can define integral p-adic representations of π(S/k; b)
by taking a suitable generalization of the notion of p-adic local system on S. Of the many gen-
eralizations of this concept, the oldest and most immediate is that of p-divisible or, as we shall
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say, Barsotti-Tate group (BT group for short): a BT group X over S is an inductive system
of finite locally free commutative group schemes X(n) over S such that, denoting by pX the
multiplication by p, X(n) = ker pnX (so X is p-torsion) and pX : X → X is an epimorphism (so X
is p-divisible). The datum of the inductive system is in fact equivalent to the projective system
{pX : X(n + 1) → X(n)}n and from this second description we see that BT groups generalize
p-adic local systems, which correspond to the case when all the X(n)’s are étale group schemes.

The fibres of a general BT group over S can vary a lot; we are going to focus on those with
isotrivial variation. We will say that a BT group X is locally constant if X(n) becomes constant
over a flat cover of the base for every n. It turns out then (proposition 3 below) that X(n) in
fact trivializes over a torsor under a finite group scheme over S, thereby defining a morphism

π(S/k; b) → Aut(Xb).

Hence a locally constant BT truly is a p-adic representation of the fundamental group scheme.
The notion of locally constant BT group makes sense over any scheme S over a base B

while, so far, fundamental group schemes are defined only for reduced flat schemes over a field
(Nori [18]) or a Dedekind scheme (Gasbarri [7]). We have therefore chosen to formulate our
results for locally constant BT groups (typically B will be a field or a dvr, but very little will
be assumed on S) while the applications to the fundamental group scheme are only given in the
last section of the paper. However, the philosophy of fundamental groups was very much the
source of inspiration for this work.

Our first main result is a generalization of the aforementioned Katz correspondence between
p-adic local systems and unit root F -crystals. First, as already noticed by Berthelot and Messing
([2], p. 175), the Katz correspondence can be interpreted in terms of the Dieudonné functor D.
Given a p-adic representation ρ : π1(S) → GLn(Zp), let X be the p-adic local system associated
to the dual representation, viewed as an étale BT group on S. Then the unit-root F -crystal
corresponding to ρ is precisely D(X).

Recall that a Dieudonné crystal is a locally free F -crystal M equipped with a Verschiebung
operator V such that FV = V F = p. We shall say that a locally free crystal M is locally cloven
if M/pn becomes constant over a flat cover of the base for every n.

Theorem 3 Let k be a field of positive characteristic, S a k-scheme over which the Dieudonné
functor D is fully faithful. Then D establishes an anti-equivalence of categories between locally
constant BT groups over S and locally cloven Dieudonné crystals on S.

The main limitation of our approach is that the category of locally constant BT groups does
not have tensor products, as a decent category of representations should. Indeed the tensor
product of BT groups (as sheaves of Zp-modules) is not representable. The obvious way around
this problem would be to take locally cloven F -crystals as the category of coefficients, but it
does not seem clear that such crystals bear a relationship with the fundamental group scheme
e.g. that their reduction mod pn would trivialize over a torsor under a finite flat group scheme.
We hope to be able to address this question in the future.

Our second main result concerns the quotient πBT+(S/k; b) of the fundamental group scheme
acting on locally constant BT groups:

Theorem 5 The connected component of πBT+(S/k; b) is nilpotent and torsion-free.

When S is proper and smooth over a perfect field k, Nori [19] has given a second construction
of the fundamental group scheme as the tannakian fundamental group of a suitable category
of vector bundles on S. Using this approach, we can show that πBT+(S/B; b) is “close” to
the maximal nilpotent quotient of the fundamental group scheme: see Theorem 6 for a precise
statement.
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Let us now review in more detail the structure of the paper.
In §2 we study the category of locally constant Barsotti-Tate groups. We show (proposition

3) that, on a scheme over a field or a mixed discrete valuation ring, the pn kernels of a locally
constant BT trivialize over a torsor under a finite flat group scheme. In the process, we show
(proposition 2) that if H and H ′ are BT groups over a field, the fppf sheaf HomBT(H,H ′) is
representable by the Tate module of a BT group, a result that may be of independent interest.

When S is a scheme over a perfect field of positive characteristic, we relate the property
for a BT group of being locally constant with that of being completely slope divisible, a notion
introduced by Zink [24] which plays an important role in Oort’s foliation structure on a Newton
polygon stratum in the moduli space of abelian varieties [20]. Specifically, we show (theorem 1)
that a BT group is completely slope divisible if and only if it is locally constant with completely
slope divisible fibre.

Zink [24] (resp. Oort and Zink [21]) show that over a regular (resp. normal) base scheme
S a BT group with constant Newton polygon is isogenous to a completely slope divisible BT
group. In theorem 2 we show that, over any scheme over a perfect field, a locally constant BT
admits an isogeny with locally constant kernel to a completely slope divisible BT.

In §3 we specialize to our situation the crystalline Dieudonné functor of Berthelot, Breen
and Messing [1]. For locally constant BT groups, we give an alternative description of D as
a Hom into Witt covectors (rather than as an Ext1) which allows us to construct (without
assumptions on the base) an explicit inverse functor. We conclude this section by giving, over a
proper smooth S, a crystalline version of the universal extension for vector bundles.

Finally, in §4 we define and study a quotient πBT+(S/B; b) of the fundamental group scheme
corresponding to locally constant BT groups.

It is a pleasure to thank Fabrizio Andreatta, Alain Genestier and Frans Oort for many
interesting conversations and helpful suggestions.

2 Locally constant Barsotti-Tate groups

Notation: B will denote a base scheme and S will be a B-scheme. If X is a Barsotti-Tate group,
we will write X(n) = ker[ pn : X → X].

Definition 1 A BT group X over S is locally constant if there exists a BT group H over B
such that for all n there is an fppf covering fn : Sn → S and an isomorphism X(n) ×S Sn

∼=
H(n)×B Sn.

Remark 1 It will be convenient to say that such an X is locally constant of type H although
the latter group is not uniquely defined (it could be replaced by a twist). In applications to
the fundamental group scheme, we will have a marked point b ∈ S(B) and we can rigidify the
situation by taking H = Xb.

Example 1 Étale or multiplicative BT groups are locally constant, even in the étale topology.
Over a proper smooth scheme over a perfect field of characteristic p, we will construct later
(Example 3) a canonical locally constant group, extension of the BT group of the Picard variety
by Ĝm.

Example 2 Let E be the Tate curve over k[[q]], where k is a perfect field of characteristic p
and put K = k((q)). The associated BT group X = E(p∞) over S = SpecK is an extension of
an étale by a multiplicative group. A splitting of the extension X(n) is given by a point of exact
order pn of EK . By Tate’s uniformization theorem E(K̄) = K̄∗/qZ, hence X(n) splits over the
µpn-torsor defined by the equation T pn = q.
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Definition 2 Let BT(S) be the category of Barsotti-Tate groups over S. We define the category
LCBT(S/B) of locally constant Barsotti-Tate groups over S as the full subcategory of BT(S)
whose objects are locally constant BT groups in the sense of definition 1.

We are going to show that when B is the spectrum of a field or a mixed discrete valuation
ring, the trivializing maps fn : Sn → S of definition 1 can be chosen to be finite and syntomic.
For this we need some representability results. The first proposition gathers some well-known
facts, which we quote for ease of reference:

Proposition 1 (1) ([SGA3] XI.3.12(b)) Let B be a scheme, H a finite locally free B-group
scheme, G an affine B-group scheme. The sheaf Hom(H,G) (group-homomorphisms) is repre-
sentable by an affine B-group scheme denoted HomB(H,G). If G is of finite type (resp. finite
presentation), so is HomB(H,G).

(2) ([17], chap. III thm. 4.3) Let G be an affine group scheme flat of finite presentation
over B. Any fppf sheaf that is a G-torsor is representable.

Remark 2 When both H and G are sheaves of Z/pnZ-modules, the subgroup
HomZ/pnZ−modules(H,G) of Homgroups(H,G) is also representable, as this condition can be ex-
pressed by a diagram involving finitely many fibred products. In order to lighten the notation,
when no confusion is possible, we still denote by HomB(H,G) the group of homomorphisms as
Z/pnZ-modules.

The following result generalizes a well-known fact when H = Qp/Zp or H ′ = Ĝm.

Proposition 2 Let k be a field and H, H ′ BT groups over k. The sheaf HomBT(H,H ′) is
representable by a profinite group scheme Homk(H,H ′) which is the projective limit of the pn-
kernels of a BT group.

Proof. First notice that, for a given integer n, Hom(H(n), H ′) = Hom(H(n), H ′(n)) is repre-
sentable by a group scheme Homk(H(n), H ′) by proposition 1. For a fixed n ∈ N put

Γ(n) =
⋂

m≥0

im
[
Homk(H(n+m), H ′) → Homk(H(n), H ′)

]
,

where the maps are restrictions and images are taken in the abelian category of commutative
group schemes over k. Clearly HomBT(H,H ′) = lim← Homk(H(n), H ′) = lim← Γ(n).

For fixed n and m, if i′n,m : H ′(n) → H ′(n +m) (resp. jn,m : H(n +m) → H(n)) denotes the
canonical injection (resp. projection), we define a map

γn,m : Homk(H(n), H ′) −→ Homk(H(n+m), H ′) f → i′n,m ◦ f ◦ jn,m.

For any k-algebra A and f ∈ HomA(H(n + m), H ′), one checks immediately that pmf =
γn,m(f |H(n)): we are going to show that the system {Γ(n), γn,1} defines a BT group.
It follows from the definitions that γn,m identifies Homk(H(n), H ′) with the kernel of multipli-
cation by pn in Homk(H(n+m), H ′). Therefore the sequence

0 −−−−→ Γ(n)
γn,m−−−−→ Γ(n+m) restr.−−−−→ Γ(m) −−−−→ 0

is exact to the left and it is exact to the right by the definition of the Γ(i)’s; exactness in the
middle follows by inspection of the diagram

0 −−−−→ Homk(H(n+ 1), H ′)
γn+1,m−−−−→ Homk(H(n+m+ 1), H ′) restr.−−−−→ Homk(H(m), H ′)

restr.

 restr.


∥∥∥

0 −−−−→ Homk(H(n), H ′)
γn,m−−−−→ Homk(H(n+m), H ′) restr.−−−−→ Homk(H(m), H ′).
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It remains to show that Γ(n) is a finite group scheme. For this we borrow an idea of F.
Oort ([20], lemma 1.5). We can assume that k is algebraically closed. By Dieudonné theory,
HomBT(H,H ′)(k) = HomBT(k)(H,H ′) is a free Zp-module of finite rank. For all n the image
of HomBT(k)(H,H ′) in Homk(H(n), H ′)(k) is a finite subgroup. Denoting by Γn,m the image of
Homk(H(n+m), H ′) in Homk(H(n), H ′) (a closed subgroup scheme), we get a sequence

Homk(H(n), H ′)(k) ⊇ Γn,1(k) ⊇ . . .Γn,m(k) ⊇ · · · ⊇ HomBT(k)(H,H ′)/pn.

It follows from prop. 1 that Homk(H(n), H ′) is noetherian, hence the topological space
Homk(H(n), H ′)(k) is noetherian and the sequence stabilizes: Γn,m(k) is finite for large m.
So Γn,m is the spectrum of a semi-local ring which is a finitely generated k-algebra, and must
therefore be an Artin ring. 

Corollary 1 Let k be a field and H a BT group over k. The sheaf AutBT(H) is representable
by a profinite group scheme denoted Autk(H).

Proof. Put Gn = Autk(H(n)) and En = Endk(H(n)). For fixed n and all m ≥ 0, we have
a morphism Gn+m → Gn whose image is representable by the group scheme Gn,m of units
in En,m = im [En+m → En]. As seen in the proof of proposition 2, there is an m such that
En,m = En,m+1 = . . . is finite. Hence Ḡn := Gn,m = Gn,m+1 = . . . is finite and clearly
AutBT(H) is prorepresented by lim← Ḡn. Since the transition maps Ḡn+1 → Ḡn are finite, by

[EGA] IV 8.2.3 the projective limit lim← Ḡn is an affine scheme. 

Proposition 3 Let k be a field and H a BT group over k. Let X be a locally constant BT group
of type H on a k-scheme S. Then for all n, X(n) becomes isomorphic to H(n) over a scheme
Sn which is a torsor under a finite k-group scheme.

Proof. Put Gn = Autk(H(n)). As X(n) is a twisted form of H(n), it is trivialized by the
fppf Gn-torsor S′

n = IsomS(H(n)S , X(n)). If k is of characteristic zero, Gn is finite, so assume
char k = p.

As in the proof of corollary 1, for fixed n and all m ≥ 0, let Gn,m be the image of Gn+m in
Gn. For all m we have:

S′
n
∼= Gn ∧Gn+m S′

n+m
∼= Gn ∧Gn,m


Gn,m ∧Gn+m S′

n+m


.

As seen in the proof of corollary 1, for large m, Ḡn = Gn,m is finite and independent on m. Fix
such an m and put Sn = Ḡn ∧Gn+m S′

n+m. It is a Ḡn-torsor, hence finite and a local complete
intersection. Moreover, X(n) trivializes over Sn:

X(n) ∼= H(n) ∧Gn S′
n
∼= H(n) ∧Ḡn Sn.



Remark 3 In [20], Oort introduces the notion of geometrically fibrewise constant BT group
and shows that (under suitable assumptions on S), if X is such a BT, for all n > 0 there is a
finite surjective morphism Tn → S such that X(n) ×S Tn is constant. While it is obvious that
a locally constant BT is geometrically fibrewise constant, proposition 3 does not follow from
Oort’s theorem because the map Tn → S above is not necessarily flat if S is not regular.

Proposition 4 Let B be the spectrum of a discrete valuation ring R with mixed characteristic
and H a BT group over B. Let X be a locally constant BT group of type H on a flat B-scheme
S. Then for all n, X(n) becomes isomorphic to H(n) over a torsor under a finite flat B-group
scheme.
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Proof. Recall that an R-algebra is flat iff it is torsion-free. Again, put Gn = AutB(H(n)). Let
An be its Hopf algebra, Tn its torsion submodule, which is an ideal, and A′

n = An/Tn, thus a
flat R-algebra. Let K be the fraction field of R: since

Gn ×R K = Spec (An ⊗K) = AutK(H(n)×R K)

is a finite group scheme and An ⊗ K = A′
n ⊗ K we have that A′

n is a finite flat R-algebra;
put G′

n = SpecA′
n. The restriction to G′

n of the multiplication in Gn is given by a map An →
A′

n ⊗R A′
n which must factor through A′

n, hence G′
n is a subgroup scheme. Moreover, if Λ is a

flat R-algebra, Gn(Λ) = G′
n(Λ).

Let U be a flat S-scheme, hence flat over R and let g ∈ Gn,S(U); by compostion it defines a
U -valued point of Gn, which by the above remark factors through a point of G′

n: by the universal
property of fibred products, g : U → Gn,S must factor through G′

n,S . Hence any Čech 1-cocycle
for the fppf sheaf Gn,S comes from a Čech 1-cocycle for the fppf sheaf G′

n,S .
As X(n) is a twisted form of H(n), it is trivialized by an fppf Gn-torsor hence by an fppf
G′

n-torsor. 
Before discussing in more detail the structure of locally constant BTs over a field, we prove

a the following rigidity result.

Proposition 5 Let B = SpecR be the spectrum of a complete noetherian local ring with perfect
residue field k, S a formal R-scheme and S0 its special fibre. The functor LCBT(S/R) →
LCBT(S0/k) taking a locally constant formal BT group X to its special fibre is faithful; if S = Ŝ
is the formal completion of a proper R-scheme S, the same holds for the functor LCBT(S/R) →
LCBT(S0/k).

Proof. The second claim follows from the first and the formal GAGA theorems of [EGA] III 5.
Let A be an R-algebra, J a square-zero ideal, Ao = A/J and let i : SpecAo ↪→ SpecA. It suffices
to show that, given locally constant BT groups H and H ′ over A with reductions Ho and H ′

o, the
natural map of fppf sheaves HomA(H,H ′) → i∗HomAo

(Ho, H
′
o) is injective. This is a standard

rigidity argument that can be deduced from the Grothendieck-Illusie [10] deformation theory.


In the remaining part of this section, we assume that B is is the spectrum of a perfect field
k of characteristic p > 0. In this case the simple-minded notion of locally constant BT group
turns out to be related to a subtler one introduced by Zink ([24], definition 10, [21], def. 1.2).

Definition 3 Let s ≥ r1 > r2 > · · · > rm ≥ 0 be integers. A BT group X over S is completely
slope divisible (csd) with slopes λ1 = r1

s , . . . ,λm = rm
s , if it admits a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

by BT subgroups such that

1. p−riF s : Xi → X
(ps)
i is an isogeny for i = 1, . . . ,m.

2. The induced maps p−riF s : Xi/Xi−1 → (Xi/Xi−1)
(ps) are isomorphisms.

When there is only one slope, X is said to be isoclinic slope divisible.

Let H be a BT group over the spectrum of a perfect field k. Trivially, H is locally constant.
On the other hand, by [21] proposition 1.4, over an algebraically closed field, H is completely
slope divisible iff it is a direct sum of isoclinic BT groups defined over a finite field. We combine
this arithmetic information with the geometric data of def.1.
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Definition 4 A BT group X over S is locally finite if it is locally constant of type H where H
is a completely slope divisible BT group.

Let X be a locally finite BT group over S and let λ1 > · · · > λm be the slopes of H . In
general, Φm = p−rmF s : X → X(ps) is only a quasi-isogeny, i.e. there is an integer n ≥ 0 such
that pnΦm is an isogeny. Φm is an isogeny if and only if pnΦm : X(n) → X(ps)(n) is the zero
morphism, a property that can be checked after the base change Sn → S. If there is only one
slope, Φm is even an isomorphism i.e. X is isoclinic slope divisible. If X has more than one
slope, we can apply [21] Corollary 1.9: there is an exact sequence of p-divisible groups

0 −→ XΦm-nil −→ X −→ XΦm −→ 0

such that Φm is an isomorphism on the Φm-étale part XΦm and is nilpotent on Xm−1 := XΦm-nil.
The formation of XΦm commutes with base change, hence Xm−1 is locally finite with slopes
λ1, . . . ,λm−1. Repeating the argument above for Xm−1 we conclude that a locally finite BT
group is completely slope divisible.

Theorem 1 A BT group X over S is locally finite iff it is completely slope divisible.

Proof. We have already seen the if part. Let X be an isoclinic slope divisible of slope λ = r/s.
We may assume that Fps ⊆ k. By [21], Corollary 1.10, for all n there is an affine étale S-scheme
Sn, a BTn group H(n) over Fps and an isomorphism X(n) ×S Sn

∼= H(n) ×Fps
Sn. In other

words, X(n) is an fpqc twist of H(n)× S, so it is trivialized by an Autk(H(n))-torsor, which is
of finite presentation by proposition 1. Hence X is locally finite (even for the étale topology).
The claim follows then from the following lemma by induction on the number of slopes. 

Lemma 1 Let E be BT group which is divisible by λ = r/s (i.e. Φ = p−rF s : E → E(ps) is an
isogeny). If the Φ-nilpotent part X = EΦ-nil is locally constant, then E is locally constant.

Proof. The Φ-étale part Y of E is isoclinic slope divisible of slope λ. It suffices to show that for
all n there is an fppf Sn → S such that the sequence

0 −→ X(n) −→ E(n) −→ Y (n) −→ 0 (1)

splits when pulled back to Sn. First, notice that a splitting exist locally in the fppf topology.
This is a standard argument: we follow [24], p. 84, from which we borrow the notation. Write
E(n) = SpecM and Y (n) = SpecL. As an OS-module, L has a basis fixed by Φ and let m ≥ 1
be such that Φm is zero on the finitely generated M/L. The sequence splits if kerΦm → M/L
is surjective. Take x ∈ M lifting a generator x̄ of M/L and put a = Φm(x) ∈ L. The equation
Φm(y) = a can be solved in L after adjunction of a finite number of psm-th roots to OS and
x − y ∈ kerΦm lifts x̄. Incidentally, this also shows that we really need inseparable covers to
trivialize non-isoclinc locally finite BT groups.
A splitting of extension (1) is a section of the fppf sheaf HomS(Y (n), E(n)) lifting the identity of
EndS(Y (n)). The set of such sections is then a torsor under the fppf sheaf HomS(Y (n), X(n)).
By proposition 1, this sheaf is representable. Moreover, its formation commutes with flat base
change. By induction, there is an fppf scheme S ′

n → S and BTn groups H(n) and G(n) over k
such that Y (n)×S S′

n
∼= H(n)×k S

′
n and X(n)×S S′

n
∼= G(n)×k S

′
n, hence

HomS(Y (n), X(n))×S S′
n
∼= Homk(H(n), G(n))×k S

′
n.

Therefore HomS(Y (n), X(n)) is also flat over S and, by proposition 1.(2), any torsor under it
is representable. 
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When S is a regular scheme, Zink [24] has shown that any X ∈ BT(S) with constant Newton
polygon is isogenous to a completely slope divisible BT group; Oort and Zink [21], theorem 2.1
have relaxed the hypothesis to S normal noetherian. We conclude this section by adapting
the arguments of [24] to show that, for a perfect field k, a locally constant BT group over any
k-scheme S is isogenous to a completely slope divisible BT group by an isogeny whose kernel is
locally constant (i.e. becomes a constant group scheme after a finite flat base change). We call
such an isogeny locally constant.

Lemma 2 Let k be a perfect field and X a locally constant BT group over a k-scheme S. Let
λ be the smallest slope of X. Then there exists a locally constant BT group Y over S which is
divisible by λ and a locally constant isogeny Y → X over S.

Proof. For X a BT group we denote by X t its Serre dual and by D(X) its crystalline Dieudonné
module in the sense of [1] (see also §4). Notice that by [1] theorem 4.2.14, if H ∈ BT(k), with
classical (contravariant) Dieudonné module M and T is any k-scheme, D(HT ) = Mσ ⊗W (k)

OT/W (k), where Mσ is M with σ-twisted W (k)-structure.
Let H be a BT group over k of height h and let λ = r/s be the smallest slope of H . Define a
BT group Ξ over k by the relation:

D(Ξt) =
h−1∑

i=0

p(s−r)iF s(h−i−1)D(H t). (2)

This is the group constructed in [24] after lemma 9 (where the covariant Dieudonné module is
used, whence the duality and twist). It follows from the construction that Ξ is λ-divisible.
If T is a k-scheme, any automorphism f : HT → HT induces an automorphism of D(HT ) sending
(because of equation (2)) the subcrystal D(ΞT ) to itself, hence an automorphism of D(ΞT ). If
T is a local complete intersection over k, by [12], theorem 3.1 the Dieudonné functor is fully
faithful, so f induces an automorphism of ΞT .
We therefore get a map AutBT(H) → AutBT(Ξ) of sheaves on the small syntomic site Syn(k).
By corollary 1, these sheaves are prorepresentable in Syn(k), whence a group homomorphism

Autk(H) → Autk(Ξ) (3)

which is in fact injective, because there are no homomorphisms from the p-divisible group Ξ to
the finite group ker[Ξ → H ].
Let X ∈ BT(S) be locally constant of type H . If Autk(H) = lim← Ḡn, by proposition 3 for all n

there is a Ḡn-torsor Sn such that X(n) ∼= H(n)∧Ḡn Sn. It suffices to take Y (n) ∼= Ξ(n)∧Ḡn Sn,
where Ḡn acts on Ξ(n) via (3). 

Theorem 2 Let k be a perfect field and X a locally constant BT group over a k-scheme S.
Then there exists a completely slope divisible BT group X ′ over S which is isogenous to X by a
locally constant isogeny.

Proof. We argue by induction on the number of slopes of X. Let λ be the smallest slope of X;
by lemma 2 there is a λ-divisible Y ∈ LCBT(S/k) and a locally constant isogeny Y → X. If
X is isoclinic, we are done by theorem 1. Otherwise, there is an exact sequence

0 −→ Y Φλ-nil −→ Y −→ Y Φλ −→ 0 (4)

where Φλ = p−rF s if λ = r/s. By lemma 1, Y Φλ-nil is locally constant with one slope less than
X and Y : by induction, there is a locally constant isogeny Y Φλ-nil → Z with Z completely slope
divisible. We take X ′ to be the pushout of extension (4) by this isogeny:

0 −→ Z −→ X ′ −→ Y Φλ −→ 0.
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Now Z is slope divisible with respect to slopes which are > λ, it is also λ-divisible and so is
Y Φλ-nil because Y is. From of the exact sequence

0 −→ Y Φλ-nil −→ Y × Z −→ X ′ −→ 0

we conclude that also X ′ is completely slope divisible. 

3 The Dieudonné functor

In this section, S is a scheme over a perfect field k of characteristic p > 0. We will specialize
to LCBT(S/k) the Dieudonné theory developed by Berthelot, Breen and Messing in [1]. Let
Σ = SpecW (k) with Frobenius σ. With the canonical divided power structure on Σ, we work
with the big crystalline site Cris(S/Σ) of S endowed with the fppf topology and let iS/Σ :
Sfppf → (S/Σ)Cris be the canonical immersion of topoi.

Let X be a BT group over S: its Dieudonné crystal

D(X) = Ext1S/Σ(iS/Σ∗X,OS/Σ)

is a locally free crystal inOS/Σ-modules equipped with a Frobenius and Verschiebung morphisms.
To study the restriction to LCBT(S/k) of the Dieudonné functor, we use an alternative

description via a Dieudonné module à la Barsotti-Fontaine (cf. Berthelot-Messing [2] §2 for the
étale and multiplicative cases).

As usual, denote by Dk = W (k)[F, V ]/(FV = V F = p) the Dieudonné ring. Recall from
[1] §4.1 that on Cris(S/Σ) we have a sheaf of Dk-modules CW σ

S/Σ, the sheaf of Witt covectors,
and a canonical extension

0 −→ OS/Σ −→ ES/Σ −→ CW σ
S/Σ −→ 0 (5)

whose construction commutes with arbitrary base change.

Definition 5 The Dieudonné module of a locally constant BT group X is the crystalline sheaf
of Dk-modules M(X) = HomS/Σ(iS/Σ∗X,CW σ

S/Σ).

Proposition 6 Let X be a locally constant BT group over S. The boundary map ∂ : M(X) →
D(X) obtained by applying the functor HomS/Σ(iS/Σ∗X,−) to the extension (3) is an isomor-
phism of Dk-modules.

Proof. Let us first remark (cf. [1] proof of proposition 2.4.5) that

M(X) = lim← HomS/Σ(iS/Σ∗X(n), CW σ
S/Σ) and D(X) = lim← Ext1S/Σ(iS/Σ∗X(n),OS/Σ),

so it suffices to prove the statement forX(n) for all n. Let fn : Sn → S be such thatX(n)×SSn
∼=

H(n)×k Sn Because of [1] 1.1.11, fn,Cris is a localization functor, so f ∗
n,Cris is exact and we only

need to check that f ∗
n,Cris(∂) is an isomorphism. Recalling that the extension (3) commutes

with base change, we have f ∗
n,CrisCW σ

S/Σ = CW σ
Sn/Σ

. Let πn : Sn → Spec k be the stucture
morphism. Applying [1] 1.3.3 twice we get

f∗
n,CrisHomS/Σ(iS/Σ∗X(n), CW σ

S/Σ)
∂−−−−→ f∗

n,CrisExt1S/Σ(iS/Σ∗X(n),OS/Σ)

∼=


∼=

HomSn/Σ(iSn/Σ∗ (H(n)× Sn) , CW σ
Sn/Σ

) ∂−−−−→ Ext1Sn/Σ
(iSn/Σ∗ (H(n)× Sn) ,OSn/Σ)

∼=


∼=

π∗
n,CrisM(H(n))

∼=−−−−→ π∗
n,CrisD(H(n))
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the bottom isomorphism being the comparison between classical and crystalline Dieudonné
theory over a perfect field ([1] theorem 4.2.14). Notice that, ifM(-) is the classical (controvariant)
Dieudonné module, M(H(n)) = M(H(n))⊗σ W (k). 

Definition 6 Let M be a finitely presented, locally free, non-degenerate F -crystal and put
Mn = M/pnM. We say that M is a locally cloven1 F -crystal if there exists a non-degenerate
F -crystal M over k such that for all n there is an fppf covering fn : Sn → S, and an isomor-
phism of OSn/Σ[F, V ]-modules f ∗

n,CrisMn
∼= Mn ⊗OSn/Σ. If FV = V F = p on M, we will call

it a locally cloven Dieudonné crystal.
As in [2] 2.4, let C(S) be the category of finitely presented OS/Σ-modules with Frobenius

and Veschiebung operators. We define the category LCC(S) (resp. LCD(S)) of locally cloven
F - (resp. Dieudonné) crystals over S as the full subcategory of C(S) whose objects are locally
cloven F - (resp. Dieudonné) crystals.

Clearly, if X is a locally constant Barsotti-Tate group, M(X) (with OS/Σ-module structure
defined by the isomorphism of proposition 6) is a locally cloven Dieudonné module, whence a
contravariant functor

M : LCBT(S/k)◦ −→ LCD(S)

Following the original idea of Grothendieck [8] II.6 we are going to construct an explicit
inverse functor, namely

E(M) = lim→ i∗S/ΣHomS/Σ,Dk
(Mn, CW σ

S/Σ), (6)

where HomS/Σ,Dk
is the sheaf of homomorphisms as Dk-modules. For this to make sense, we

need a representability result:

Lemma 3 The fppf sheaf E(Mn) = i∗S/ΣHomS/Σ,Dk
(Mn, CW σ

S/Σ) is representable by a locally
constant BTn group.

Proof. Let fn : Sn → S be as in def. 6, with πn : Sn → Spec k. Then

f∗
n i

∗
S/ΣHomS/Σ,Dk

(Mn, CW σ
S/Σ)

∼= i∗Sn/Σ
HomSn/Σ,Dk

(f∗
n,Cris (Mn) , CW σ

Sn/Σ
)

∼= i∗Sn/Σ
HomSn/Σ,Dk

(Mn ⊗OSn/Σ, CW σ
Sn/Σ

)
∼= π∗

n E(Mn).

Hence E(Mn) is a twisted form of E(Mn)× S and therefore representable by proposition 1. 

Theorem 3 Over an arbitrary k-scheme S the functor E is a quasi-inverse of M. In particular,
if S is such that the Dieudonné functor is fully faithful, its restriction is an anti-equivalence
M : LCBT(S/k)◦ → LCD(S).

Proof. It suffices to prove the statement for pn kernels (resp. cokernels). Recall from [1] 1.1.4.3
that the canonical map i∗S/ΣiS/Σ∗X(n) → X(n) is an isomorphism. Composing i∗S/Σ with the
evaluation map we get a canonical morphism

X(n) ∼= i∗S/Σ iS/Σ∗X(n) → i∗S/ΣHomS/Σ,Dk

(
HomSn/Σ(iS/Σ∗X(n), CW σ

S/Σ), CW σ
S/Σ

)
= E(M(X(n)))

and both are twists of the same constant BTn, so this map is an isomorphism. Conversely, start
with an Mn and take fn : Sn → S such that f∗

n,CrisMn
∼= Mn ⊗ OSn/Σ. Recall that fn,Cris

is a localization map and that f ∗
n,Cris ◦ iS/Σ∗ = iSn/Σ∗ ◦ f∗

n (cf. [1] 1.1.17.1). Applying f ∗
n,Cris

1In mineralogy, cleavage is defined as the property for a crystal to split along a symmetry axis or plane.
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to the adjoint map HomS/Σ,Dk
(Mn, CW σ

S/Σ) → iS/Σ∗E(Mn), we see that it is an isomorphism.
Composition with evaluation yields a morphism:

Mn → HomS/Σ

(
HomS/Σ,Dk

(Mn, CW σ
S/Σ), CW σ

S/Σ

) ∼=← M(E(Mn))

which we again check to be an isomorphism by taking f ∗
n,Cris. 

Remark 4 For étale or multiplicative BT groups, this result was proved by Berthelot-
Messing [2], Corollary 2.4.10. In the general case, because of torsion in PD envelopes, some
assumption on the base scheme S is necessary for the Dieudonné functor to be fully faith-
ful. Berthelot and Ogus [3], appendix, give an example of a constant BT group X over
S = Spec k[x, y]/(x2, xy, y2) such that EndBT(S)(X)  EndC(S)(D(X)). We refer to de Jong’s
ICM talk [11] for a summary of current knowledge about the faithfulness of the Dieudonné
functor.

We now give a recipe to construct locally cloven F -crystals on a proper smooth scheme
mimicking the universal extension for vector bundles.

Example 3 Let S be a proper, smooth scheme over k. Denote by a superscript ∨ the linear
dual of a crystal in OS/Σ-modules. For m ≥ 0, let OS/Σ(−m) be the F -crystal whose Frobenius
is multiplication by pm. If M is an F -crystal of level  (i.e. if FV = V F = p on M), denote by
M(−m) = M⊗OS/Σ(−m) (an F -crystal of level +m) and by M∨(−) the F -crystal of level 
with underlying crystal M∨ and Frobenius V t

M. To lighten the notation, a constant (F -)crystal
M ⊗W (k) OS/Σ is simply written M .

Step 1. LetM be an F -crystal of level  on S and assume that the first crystalline cohomology
group H1(S/Σ,M∨(−)) is free over W (k). Then H1(S/Σ,M∨(−)) can be endowed with a
F -crystal structure of level +1 with Frobenius and Verschiebung induced by those of M∨(−).
Thus N = H1(S/Σ,M∨(−))∨(−− 1) is an F -crystal of level + 1 over k.

Step 2. Let U(M) be the locally free crystal corresponding to the identity in

EndW (k)


H1(S/Σ,M∨(−))


= H1


S/Σ,M∨(−)⊗W (k) H

1(S/Σ,M∨(−))∨


∼= H1(S/Σ,HomOS/Σ
(M(−1), N))

= Ext1OS/Σ
(M(−1), N).

U(M) is universal among locally free crystals which are extensions of M(−1) by a free crystal:

0 −−−−→ N −−−−→ U(M) u−−−−→ M(−1) −−−−→ 0

∂




∥∥∥
0 −−−−→ Λ −−−−→ E −−−−→ M(−1) −−−−→ 0

∂ being the dual of the map ∂∨ : Λ∨ → N∨ induced by the cohomology sequence of E∨.

Step 3. From the universal property and the fact that the Frobenius of H 1(S/Σ,M∨(−)) is
induced by that of M∨(−), it follows that F ∗U(M) = U(F ∗M) and that U(M) is an F -crystal
of level + 1, with Frobenius structure compatible with the extension.

Step 4. Because of the universal property, the canonical map

H1(S/Σ,M∨(−)) → H1(S/Σ,U(M)∨(−− 1))

taking an extension to its pullback by u, is zero, hence H1(S/Σ,U(M)∨(− − 1)) injects into
the free W (k)-module H1(S/Σ, N∨(−− 1)) and is therefore free. Hence U(M) is an F -crystal
whose dual has a free H1, so we can restart the procedure.
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Step 5. Assume now that M is locally cloven. To show that U(M) is locally cloven it suffices
to prove that for all n ≥ 1 there is a finite flat cover gn : Sn → S such that the induced map
H1(S/Σn,M∨(−)n) → H1(Sn/Σn, g

∗
n,CrisM∨(−)n) is zero. Indeed, if h1, . . . hr is a basis for

H1(S/Σ,M∨(−)) and h∨
1 , . . . h

∨
r is the dual basis, the class of the extension U(M) is given by

hi ⊗ h∨i , hence the class of g∗n,CrisU(M) is


g∗n(hi)⊗ h∨i .
First, since S is proper and smooth, by [9] II 3.11, H1(S/Σ,OS/Σ) is the Dieudonné module of
the BT group of the Albanese variety A of S; hence, if S ′

n → S is the cover of S corresponding
to the isogeny pn of A,

H1(S/Σn,OS/Σn
) = D(A(n))

pn−−−−→ D(A(n)) → H1(S′
n/Σn,OS′

n/Σn
)

is the zero map. So, if M is constant, this cover splits U(M)/pn. If M is locally cloven, by
definition there is a finite flat cover fn : S′′

n → Sn such that f∗
n,CrisMn

∼= Mn ⊗OS′′
n/Σn

. Taking
Sn = S′ ×S S′′

n we get:

H1(S/Σn,M∨(−)n) → H1(S′′
n/Σn,M

∨(−)n)
pn−−−−→ H1(Sn/Σn,M

∨(−)n).

Hence U(M) is a locally cloven F -crystal if M is.

In particular, ifH1(S,OS) = 0, starting from the trivial crystal OS/Σ we can construct an infinite
sequence of locally cloven F -crystals U(OS/Σ), U(U(OS/Σ)), . . . , each time increasing the level by
1. By theorem 3, U(OS/Σ) is the Dieudonné crystal of a locally constant BT group, a nontrivial
extension of the BT of the Picard variety of S, whose Dieudonné module is H 1(OS/Σ)∨(−1), by
Ĝm.

Remark 5 We have shown in step 4 above that the F -crystal H1(S/Σ,U(M)∨(−−1)) injects
into H1(S/Σ, N∨(− − 1)) = H1(S/Σ,OS/Σ) ⊗H1(S/Σ,M∨(−)). It therefore belongs to the
⊗-subcategory of the category of F -crystals over k generated by the last two.
In particular, the constant F -crystals associated to the higher extensions U i(OS/Σ) are sub-
quotients of the ⊗-category generated by the Dieudonné modules of Pic0red(S) and Ĝm.

Remark 6 We can recover from U(M) the universal extension U(V) of the vector bundle V =
i∗S/ΣM: in view of the definitions of both universal extensions, it is immediate to check that the
class of the extension i∗S/ΣU(M) inH1(S,HomOS

(V , H1
dR(V∨)∨)) = H1(S,V∨)⊗H1

dR(V∨)∨ is the
image of the class [U(V)] = id ∈ End(H1(S,V∨)) by the canonical mapH1

dR(S,V∨) → H1(S,V∨).

4 p-adic representations of the fundamental group scheme

Let S a reduced, connected, flat scheme over a base scheme B and b ∈ S(B) a fixed B-valued
point. Nori [18], chap. 2 (when B the spectrum of a field) and Gasbarri [7] (when B is a Dedekind
scheme) have defined the fundamental group scheme π(S/B; b): it is a profinite B-group scheme
which classifies torsors over S under finite, flat B-group schemes with a fixed B-valued point over
b. When B is the spectrum of an algebraically closed field and S is complete, π(S/B; b) coincides
with the fundamental group of the tannakian category of essentially finite vector bundles on S
(Nori [19] chap. 1, reproduced in [18]).

π(S/B; b) thus generalizes the étale fundamental group of S in the sense of [SGA1], which can
be recovered as the maximal étale quotient of π(S/B; b), up to a point. Indeed, Grothendieck’s
fundamental group is constructed using geometric base points. So let η̄ be the spectrum of an
algebraic closure of the fraction field of B; the choice of b ∈ S(B) defines a retraction β of the
canonical surjection π1(S, η̄) → π1(B, η̄) and the maximal étale quotient of π(S/B; b) is then
the quotient of π1(S, η̄) by the normal subgroup generated by im β.



BT groups and representations of the fundamental group scheme 13

Some of the classical properties of the étale fundamental group proved in [SGA1] carry over
to the fundamental group scheme while others fail. The following theorem, a generalization of
the specialization theorem [SGA1] corollaire 2.3 under the assumption that S is normal, is a good
illustration of the subtleties arising in the torsor context. Notice that the stronger corollaire 2.4
cannot at present be generalized because, over a field, the fundamental group scheme does not
commute with extensions of the ground field, as shown by Mehta and Subramanian [15].

Theorem 4 Let S be a normal scheme, proper and flat over the spectrum B of a dis-
crete valuation ring with fraction field K and let b ∈ S(B). Then the canonical morphism
π(SK/K; bK) → π(S/B; b)×B K is an epimorphism.

Proof. We may assume that S is connected. Let T → S be a torsor under a finite flat B-group
scheme G such that π(S/B; b) → G is an epimorphism; we have to show that π(SK/K; bK) →
GK is also epimorphic. The point is that this is not guaranteed by the connectedness of TK .
So let G′

K be the image of π(SK/K; bK) in GK . The scheme-theoretic closure G′ of G′
K in G is a

finite flat group scheme over B by [22] 2.1 (arguments of this type are the reason why Gasbarri [7]
has to stick to Dedekind bases in his construction of the fundamental group scheme). Consider
the S-scheme T ′ = T ∧G (G/G′): according to [6], chap. III, §4 prop. 4.6, the class of T is in the
image of H1(S,G′) → H1(S,G) if and only if T ′ → S has a section. By assumption, we have
a section sK : SK → T ′

K ; let S′ be the scheme-theoretic closure of the image of sK : it is finite
and birational over S. Since S is normal, we must have S ′ ∼= S. Whence the contradiction that
T → S admits a reduction of the structure group. 

Let B be the spectrum of a field k (resp. of a mixed discrete valuation ring R) and let X be
a locally constant BT group on S. By proposition 3 (resp. 4) for all n, X(n) trivializes over a
torsor under a finite flat B-group scheme. If we choose the type of X to be H = Xb, this torsor
is also pointed at b, hence corresponds to a finite quotient of π(S/B; b).

Recall that, if π1(S) is the fundamental group of S in the sense of [SGA1] (based at some
geometric point of S), there is an equivalence of categories between p-adic local systems on
S and representations of π1(S) into finite free Zp-modules (e.g. [23], chap. VI, §1). We will
regard locally constant BT groups on S as integral p-adic representations of the fundamental
group scheme π(S/B; b). In this respect, theorem 3 can be viewed as a generalization of the
classical Katz correspondence between p-adic representations of π1(S) and unit-root F -crystals
on S (conf. [14], proposition 4.1.1, [23], proposition 3.1.2.1 and [4] theorem 2.2, actually only
stated for a smooth S but valid in general as remarked in [2], Corollary 2.4.10). From this point
of view, it is impossible not to mention de Jong and Oort’s purity theorems [13] generalizing to
BT groups Zariski-Nagata’s purity theorem for étale covers ([SGA1], exposé X, théorème 3.1),
although it should be mentioned that the purity theorem for the fundamental group scheme had
already been proved by Nori ([18], chap. II, proposition 7).

π(S/B; b) is the limit of the filtered inverse system of its finite quotients ([7] §2). If X1 and
X2 are locally constant BTs of type H1 and H2, they correspond to two “representations” of
π(S/B; b) into AutB(Hi) = lim← AutB(Hi(n)): they are dominated by the representation into

AutB(H1⊕H1) associated to the locally constant BT group X1⊕X2 (we will find it convenient
to denote by ⊕ the product of BT groups).

Definition 7 The (weak) BT quotient πBT+(S/B; b) of the fundamental group scheme is the
limit of the filtered inverse system of quotients of π(S/B; b) associated to locally constant BT
groups.

Remark 7 The qualification of weak quotient and the + in the notation are meant to remind
that for BT groups we can only take direct sums. The “right” BT quotient should correspond
to a suitable ⊗-subcategory of the category of locally cloven F -crystals equipped with an action
of π(S/B; b). We hope to investigate this question in the future.
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From now on we assume that B is the spectrum of a perfect field k of characteristic p > 0. By
theorem 2 then, πBT+(S/k; b) is the limit of the filtered inverse system of quotients of π(S/B; b)
associated to completely slope divisible BT groups.

Theorem 5 If B = Spec k, the connected component π0
BT+

(S/k; b) of πBT+(S/k; b) is nilpotent
and torsion-free.

Proof. Let X be a completely slope divisible BT group over S: by definition 3 it has a slope
filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

with slopes 1 ≥ λ1 > λ2 > · · · > λm ≥ 0. Let H = Xb and recall that, this being a csd BT
group over a perfect field, H =

m
i=1Hλi

, where Hλi
is an isoclinic slope divisible BT group.

Let G be the quotient of π(S/B; b) acting on H i.e. a projective limit of subgroups Gn ⊂
Autk (H(n)) such that there exists a finite flat Gn-torsor Sn over which X(n)Sn  H(n)Sn .
Notice that Xi is locally constant of type Hi =

i
j=1 Hλj

and that an isomorphism XT  HT

over some flat B-scheme T induces an isomorphism Xi,T  Hi,T because Xi (resp. Hi) is the
Φi-nilpotent part of X (resp. H). Hence G stabilizes Hi.
Assume moreover that G is connected. Then it acts trivially onHλi

= Hi/Hi−1 becauseXi/Xi−1

is isoclinic slope divisible, hence trivializes over an étale torsor. Define, for 0 ≤ i ≤ m a subgroup
scheme Gi of G by setting, for all k-algebra Λ,

Gi(Λ) = {g ∈ G(Λ)| (g − 1)(Hi,Λ) ⊆ Hj−i,Λ, j = 1, . . . ,m}

(where Hl = 0 for l < 0). By the above remark, G1 = G. Moreover, one checks immediately
that Gi = 1 for i ≥ m and

[
Gi, Gj

]
⊆ Gi+j . Hence G is nilpotent. The fact that it is torsion-free

follows from the following remark. 

Remark 8 With notations as in the proof, the subgroup Gi stabilizes Hi+1 (as G does) and
acts trivially on Hi. Hence Gi/Gi+1 acts on Hi+1, with trivial action on both Hi and Hi/Hi+1 =
Hλi+1

whence a representation

Gi/Gi+1 −→ Homk(Hλi+1
, Hi) =

i⊕

j=1

Homk(Hλi+1
, Hλj

).

We can therefore visualize the action of G on the “flag”H as given by unitriangular matrices
with entries ai,j ∈ Homk(Hλj

, Hλi
) for i < j (hence λi > λj). Being the Tate modules of BT

groups (proposition 2), these groups are torsion-free. Notice however that G is not necessarily
unipotent, for Homk(Qp/Zp, Ĝm) = lim← µpn .

To understand how far π0
BT+

(S/k; b) is from the connected component of the nilpotent fun-
damental group scheme πnil(S/k; b) (i.e. the quotient of π(S/k; b) classifying pointed torsors
over S under finite nilpotent group schemes), consider the case when S is proper and smooth.
Then, according to Nori [18], chap. IV, prop. 6, the abelian quotient of the fundamental group
scheme is

πab(S/k; b) = lim← Alb(S)(n)

where Alb(S) is the Albanese variety of S (here n is not necessarily a p-power). By example 3,
there is a locally constant BT group X, defined by D(X) = U(OS/Σ), such that X(n) trivializes
over the cover of S defined by the isogeny pn of Alb(S). Hence π(S/k; b) → πab,p(S/k; b)
(maximal pro-p-quotient) factors through πBT+(S/k; b)
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Example 3 suggest that, in order to study non abelian quotients, we should take into account
not only BT groups but locally cloven crystals as well. However, it is not clear that (the
reductions mod pn of) such crystals trivialize over finite torsors. Still, when S is proper and
smooth, we can use Nori’s interpretation [19] of π(S/k; b) as the Tannaka fundamental group of
the category EF(S, b) of essentially finite vector bundles on S. The functor i∗S/Σ : (S/Σ)Cris →
Sfppf , defined by i∗S/Σ(F)(U) = F(U,U) induces a functor

i∗S/Σ : LCC(S) −→ EF(S, b)

because the vector bundle i∗S/Σ(F) trivializes over a finite flat cover. By composition we get a
functor

LCBT(S/k)◦ M−−−−→ LCC(S)
i∗
S/Σ−−−−→ EF(S, b) ∼= Repk (π(S/k; b)) .

Recall that a vector bundle is called unipotent if it is a successive extension of trivial bundles
(beware that Nori [18], chap. IV calls them nilpotent).

Theorem 6 Let S be a proper smooth scheme over k. The tannakian subcategory of EF(S, b)
generated by the image of i∗S/Σ ◦M contains the category Repk (πun(S/k; b)) of unipotent vector
bundles.

Proof. Let Un = U (. . .U(OS)) be the n-th universal extension of OS : it is a unipotent vector
bundle trivializing over a torsor under a finite unipotent group scheme Nn. According to [18],
chap. IV, lemma 7,

πun(S/k; b) = lim← Nn.

The claim now follows from example 3 and remark 6. 
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