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Chapter 1

Introduction

Recent data science applications using large datasets often need scalable opti-
mization methods with low per iteration cost and low memory requirements. This
has lead to a renewed interest in gradient descent methods, and on tailored variants
for problems where gradient descent is unpractical due, e.g., to non smoothness or
stochasticity of the optimization objective. Applications include deep neural net-
work training, adversarial attacks in machine learning, sparse signal recovery, cluster
detection in networks, etc.

In this thesis, we focus on the theoretical analysis of some of these variants, as well
as in the formulation and numerical testing of new variants with better complexity
guarantees than existing ones under suitable conditions. The problems we consider
have a continuous but sometimes constrained and not necessarily differentiable ob-
jective.

All the methods we are concerned with are characterized by the following iterative
scheme: at every iteration, a black box oracle is evaluated in the current point to
obtain certain local information about the optimization objective. Based on this
information, possibly combined with that obtained in previous iterations, the next
iterate is chosen. We remark that this is a classic scheme for nonlinear optimization
algorithms, used by many previous authors (see, e.g., [191] and references therein).
Another feature of the methods we are interested in is that they are all either first
or zeroth order methods. The distinction between these two classes is based on the
information that can be obtained with the black box oracle. In first order methods,
the information consists of the gradient and the value of the objective for the current
iterate; in zeroth order methods instead the only information available is the value
of the objective for the current iterate.

While each chapter of the thesis can be read independently with some minor over-



2 Introduction

lap in the definitions, broadly speaking our work deals with two specific classes of
methods:

» First order projection free methods for the optimization of a smooth objec-
tive constrained to a convex set. These are variants of the projected gradient
descent method, and are designed to avoid expensive projections on certain
classes of problems. The main application of our theoretical analysis is the
study of variants of the classic Frank Wolfe (FW) method, characterized by its
use of linear minimizations instead of projections and its sparse approximation
properties. For these methods, the original contributions of this thesis include
proving new support identification properties for a FW variant with quanti-
tative bounds, proposing a technique to provably speed up the convergence of
several FW variants for non convex objectives, and an application to a cluster
detection problem in networks.

o Direct search methods. These are zeroth order (often also referred to as deriva-
tive free) methods that, mimicking the basic idea behind the gradient descent
method, try to improve the objective by generating a new iterate moving from
the current one along a tentative descent direction with a suitable stepsize.
The resulting point is then accepted if some sufficient decrease condition is
satisfied. In this thesis, we extend the analysis of some direct search methods
to optimization problems with non smooth and stochastic objectives, as well
as to optimization problems defined on Riemannian manifolds.

1.1 Outline and main results

We now present an outline of the thesis and give pointers to the main results.
Chapter 2 is a survey about the Frank Wolfe method and some of its variants,
focusing on applications and recent developments in the theoretical analysis. The
method (Algorithm 2) is presented as an instance of a general scheme for first order
optimization methods (Algorithm 1), which includes also its main variants, intro-
duced in Section 2.6.3. Some fundamental convergence results are summarized in
Table 2.2. In Chapter 3, a unifying framework for the study of projection free
methods is described, with a technique to recycle gradient related information in
consecutive iterations (Algorithm 3), and linear convergence rate guarantees (The-
orem 3.4.13). The main assumptions in this chapter are an angle condition for the
descent directions selected by the method, given in Section 3.3 and with examples in
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Sections 3.3.1, 3.5.2, and a Kurdyka-Lojasiewicz property for the objective (Assump-
tion 3.1). In Chapter 4, some results are proven about the active set identification
property of the away step Frank-Wolfe method (Algorithm 6). In particular, a lo-
cal identification result for non convex objectives (Theorem 4.3.3) is used to prove
qualitative (Theorems 4.4.3 and 4.5.5) and quantitative (Corollary 4.4.5, Theorems
4.5.9 and 4.5.6) active set identification results.

In Chapter 5, a continuous cubic formulation of a cluster detection problem in
networks is proposed (problem (P)), together with a Frank-Wolfe variant (Algo-
rithm 8) that provably identifies a local solution of the formulation in finite time
(Theorem 5.4.2). Numerical results in Section 5.5 show that this approach is com-
petitive with a state of the art local solver. Chapter 6 consists of a brief survey
of direct search methods, focusing on directional direct search approaches. Some
popular methods of this kind are described in Section 6.3 as instances of the general
scheme 10. In Chapter 7, direct search schemes for smooth (Algorithms 13 and 14)
and non smooth (Algorithms 16 and 17) optimization over Riemannian manifolds
extending some of the methods discussed in Chapter 6 are presented. Convergence
results are given in Theorems 7.3.4, 7.3.6, 7.4.5 and 7.4.6. In Chapter 8, a direct
search method for stochastic unconstrained non smooth optimization is analyzed
(Algorithm 18), under power law tail bounds on the objective evaluation noise (As-
sumptions 8.1 and 8.2). Convergence of the method is proved (Theorem 8.3.3) with
a number of samples per iteration lower than the one used in other state of the art
derivative free methods (see Theorem 8.2.9 and Remark 8.2.10). Chapter 9, some
conclusions and potential future developments are discussed.

A detailed introduction can be found at the beginning of each chapter.

1.2 Notation

We denote as Ny the set of nonnegative integers, and for a, b € Z as [a : b] the
set of integers between a and b, extremes included. For a set S we denote as |S| and
25 the cardinality and the set of subsets of § respectively. For a sequence {xi}rer
we often omit the index set I when it is clear from the context. We denote with
e the vector with components all equal to 1, and with e; the i — th column of the
identity matrix, with dimensions depending from the context.

For p > 0 we denote with || - ||, the p—th norm: for x € R”,

el = §| ) bl (1.2.1)
i=0
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For ¢ € R" we denote with ¢ the normalized vector c/||c|| if ¢ # 0, and 0 otherwise.
We define then supp(x) as the support of x:

supp(x) ={i € [1:n] : x; # 0}, (1.2.2)
and use || - ||o for the cardinality of the support
lixllo == [supp(x)] . (1.2.3)

We say that a function f differentiable in Q ¢ R" has Lipschitz continuous gradient
with constant L if for every x,y in Q

IVf () = VDI < Lllx = yll.- (1.2.4)

The function f is instead said to be u—strongly convex in Q if for every x,y in Q
u
f(y) =z f(x) +Vf(X)T(y—X)+§IIx—y||2, (1.2.5)

and Q itself is said to be a—strongly convex if, for any x,y € Q, v € [0,1] and z
such that ||z|| = 1, it holds that

(04
YX+(1—7)y+7(1—y)§llx—yll2169- (1.2.6)

For a compact set Q C R” the linear minimization oracle is defined as the black box
oracle LMOgq(-) that given as input r € R" produces as output a minimizer in Q of
the scalar product with r:

LMOgq(r) € argminr'y. (1.2.7)
yeQ
For a bounded polytope P ¢ R" and r € R", we define as ¥, (r) the face of P exposed
by r:
Fo(r) = argmax{r'y | y € P}, (1.2.8)

where the polytope P will always be clear from the context. Since P is a bounded
polytope, hence in particular compact, the function y — r 'y constrained to P has
always a (finite) maximum, so that %, (r) is non empty, and uniquely defined as a
subset of P.

We denote with A,_; the standard simplex:

Apo1 ={xeR}:eTx=1} =conv{e; :i € [1:n]}.
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Finally, we use dist(-,-) for the standard Euclidean distance in R" either between
points, or between a point and a subset, or between subsets: that is, if A, X are
subsets of R", then

dist(A, X) =inf{||x —a|| | x € X, a € A}. (1.2.9)

An important exception to this notation is made in Chapter 7, where we use dist to
denote a Riemannian distance.
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Chapter 2

Projection-free optimization
methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-
Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a re-
markable revival, fuelled by the need of fast and reliable first-order opti-
mization methods in Data Science and other relevant application areas.
In this chapter, we explain the success of this approach by illustrating
versatility and applicability in a wide range of contexts, combined with
an account on recent progress in variants, both improving on the speed
and efficiency of this surprisingly simple principle of first-order optimiza-
tion. We will focus on variants and convergence results most relevant to
the contributions in Chapters 3-5. !

2.1 A short history

In their seminal work [101], Marguerite Straus-Frank and Philip Wolfe intro-
duced a first-order algorithm for the minimization of convex quadratic objectives
over polytopes, now known as Frank-Wolfe method. The main idea of the method is
simple: to generate a sequence of feasible iterates by moving at every step towards
a minimizer of a linearized objective, the so-called FW vertex. Subsequent works,
partly motivated by applications in optimal control theory (see [94] for references),
generalized the method to smooth (possibly non-convex) optimization over closed

IThis chapter is based on the article “Frank-Wolfe and friends: a journey into projection-free
first-order optimization methods” in 4JOR, wvol. 19, iss. 3, pp. 813-845, 2021 [48].

7
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subsets of Banach spaces admitting a linear minimization oracle (see [89,95]).

Furthermore, while the O(1/k) rate in the original article was proved to be op-
timal when the solution lies on the boundary of the feasible set [65], improved rates
were given in a variety of different settings. In [166] and [89], a linear convergence
rate was proved over strongly convex domains assuming a lower bound on the gra-
dient norm, a result then extended in [94] under more general gradient inequalities.
In [116], linear convergence of the method was proved for strongly convex objectives
with the minimum obtained in the relative interior of the feasible set.

The slow convergence behaviour for objectives with solution on the boundary
motivated the introduction of several variants, the most popular being Wolfe’s away
step [237]. Wolfe’s idea was to move away from bad vertices, in case a step of the
FW method moving towards good vertices did not lead to sufficient improvement
on the objective. This idea was successfully applied in several network equilibrium
problems, where linear minimization can be achieved by solving a min-cost flow
problem (see [105] and references therein). In [116], some ideas already sketched by
Wolfe were formalized to prove linear convergence of the Wolfe’s away step method
and identification of the face containing the solution in finite time, under some
suitable strict complementarity assumptions.

In recent years, the FW method has regained popularity thanks to its ability to
handle the structured constraints appearing in machine learning and data science
applications efficiently. Examples include LASSO, SVM training, matrix comple-
tion, minimum enclosing ball, density mixture estimation, cluster detection, to name
just a few (see Section 2.4 for further details).

2.2 Main features of the Frank-Wolfe method

One of the main features of the FW algorithm is its ability to naturally identify
sparse and structured (approximate) solutions. For instance, if the optimization
domain is the simplex, then after k steps the cardinality of the support of the last
iterate generated by the method is at most k + 1. Most importantly, in this setting
every vertex added to the support at every iteration must be the best possible in
some sense, a property that connects the method with many greedy optimization
schemes [78]. This makes the FW method pretty efficient on the abovementioned
problem class. Indeed, the combination of structured solutions with often noisy
data makes the sparse approximations found by the method possibly more desirable
than high precision solutions generated by a faster converging approach. In some
cases, like in cluster detection (see, e.g., [40]), finding the support of the solution is
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actually enough to solve the problem independently from the precision achieved.

Another important feature is that the linear minimization used in the method
is often cheaper than the projections required by projected-gradient methods. It is
important to notice that, even when these two operations have the same complexity,
constants defining the related bounds can differ significantly (see [80] for some ex-
amples and tests). When dealing with large scale problems, the FW method hence
has a much smaller per-iteration cost with respect to projected-gradient methods.
For this reason, FW methods fall into the category of projection-free methods [160].
Furthermore, the method can be used to approximately solve quadratic subprob-
lems in accelerated schemes, an approach usually referred to as conditional gradient
sliding (see, e.g., [66,161]).

Finally, recent numerical results suggest that in some sparse optimization prob-
lems Frank Wolfe variants might be competitive with projected gradient methods
even in iteration complexity [32], and thus without taking into account the advan-
tage given by the faster linear minimization oracle.

2.3 Problem and general scheme

We consider the following problem:

Hélgrzl f(x) (2.3.1)

where, unless specified otherwise, Q is a convex and compact (i.e. bounded and
closed) subset of R"” and f is a differentiable function having Lipschitz continuous
gradient with constant L > 0. This is a central property required in the analysis
of first-order methods. Such a property indeed implies (and for a convex function
is equivalent to) the so-called Descent Lemma (see, e.g., [31, Proposition 6.1.2]),
which provides a quadratic upper approximation to the function f. Throughout
this chapter, we denote by x* a (global) solution to (2.3.1) and use the symbol
f*:= f(x*) as a shorthand for the corresponding optimal value.

The general scheme of the first-order methods we consider for problem (2.3.1),
reported in Algorithm 1, is based upon a set A(x,g) of directions feasible at x
using first-order local information on f around x, in the smooth case g = =V f(x).
From this set, a particular d € A(x, g) is selected, with the maximal stepsize a™?*
possibly dependent from auxiliary information available to the method (at iteration

k, we thus write a}(nax), and not always equal to the maximal feasible stepsize.
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Algorithm 1 First-order method

1: Choose a point xg € Q

2: for k=0,...do

3:  if x; satisfies some specific condition then

4 STOP

5 end if

6:  Choose dy € A(xk, =V f(xx))

7 Set xp41 = X + aidy, with a; € (0, @,"**] a suitably chosen stepsize
8: end for

2.3.1 The classical Frank-Wolfe method

The classical FW method for minimization of a smooth objective f generates a
sequence of feasible points {x; } following the scheme of Algorithm 2. At the iteration
k it moves toward a vertex i.e., an extreme point, of the feasible set minimizing the
scalar product with the current gradient Vf(xg). It therefore makes use of a LMO
for the feasible set Q, defining the descent direction as

dp=d" = s —xk, sp € LMOq(Vf(xp)). (2.3.2)

In particular, the update at step 6 can be written as

Xkl = Xi + ak(sk - xk) = Sk + (1 — ak)xk (2.3.3)

Since a; € [0,1], by induction xp4+1 can be written as a convex combination of
elements in the set Sy := {x0} U {s;}o<i<k- When C = conv(A) for a set A of
points with some common property, usually called "elementary atoms', if xg € A
then x; can be written as a convex combination of k + 1 elements in A. Note that
due to Caratheodory’s theorem, we can even limit the number of occurring atoms
to min{k,n} + 1. In the rest of the paper the primal gap at iteration k is defined as

hic = f ) - £
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Algorithm 2 Frank-Wolfe method
1: Choose a point xg € Q
2: for k=0,...do
3:  if x; satisfies some specific condition then
4 STOP
5. end if
6:  Compute sy € LMOgq(Vf(xx))
7
8
9

d]fw = Sk — Xk
© o Set xp41 = xp + akd,fw, with a; € (0, 1] a suitably chosen stepsize
. end for

2.4 Examples

FW methods and variants are a natural choice for constrained optimization on
convex sets admitting a linear minimization oracle significantly faster than com-
puting a projection. We present here in particular the traffic assignment problem,
submodular optimization, LASSO problem, matrix completion, adversarial attacks,
minimum enclosing ball, SVM training, maximal clique search in graphs, sparse
optimization.

2.4.1 'Traffic assignment

Finding a traffic pattern satisfying the equilibrium conditions in a transportation
network is a classic problem in optimization that dates back to Wardrop’s paper
235]. Let G be a network with set of nodes [1:n]. Let {D(i, j)}iz; be demand
coefficients, modeling the amount of goods with destination j and origin i. For any
i,j with i # j let furthermore f;; : R — R be the non-linear (convex) cost functions,
and x? y be the flow on link (i, j) with destination s. The traffic assignment problem
can be modeled as the following non-linear multicommodity network problem [105]:

min {Z fij (foj) : Zx;i - ijf =D(C,s), all € #s, xisj > O} . (2.4.1)
Y s i 7

Then the linearized optimization subproblem necessary to compute the FW vertex
takes the form

min {Z Z c,-jxfj : sz. - ij.g =D((,s), €+, xisj > O} (2.4.2)
i J

5 0
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and can be split in n shortest paths subproblems, each of the form

min {Z cijxfj : szl. - ij'f =D((,s), € #s, xfj > O} (2.4.3)
i,J i J

for a fixed s € [1:n], with ¢;; the first-order derivative of fj; (see [105] for further
details). A number of FW variants were proposed in the literature for efficiently
handling this kind of problems (see, e.g., [31,105,164,185,236] and references therein
for further details). Some of those variants represent a good (if not the best) choice
when low or medium precision is required in the solution of the problem [202].

In the more recent work [142] a FW variant also solving a shortest path sub-
problem at each iteration was applied to image and video co-localization.

2.4.2 Submodular optimization

Given a finite set V, a function r : 2V — R is said to be submodular if for every
A, BcCcV

r(A)+r(B) 2r(AUB)+r(ANB). (2.4.4)

As is common practice in the optimization literature (see e.g. [21, Section 2.1}),
here we always assume s(0) = 0. A number of machine learning problems, includ-
ing image segmentation and sensor placement, can be cast as minimization of a
submodular function (see, e.g., [21,69] and references therein for further details):

inr(A). 2.4.5

Iglgl{/lr( ) ( )

Submodular optimization can also be seen as a more general way to relate combi-

natorial problems to convexity, for example for structured sparsity [21,136]. By a

theorem from [104], problem (2.4.5) can be in turn reduced to an minimum norm
point problem over the base polytope

B(G)={seR": Z sq <r(A)forall ACV, Z sa =r(V)}. (2.4.6)

acA aeV

For this polytope, linear optimization can be achieved with a simple greedy algo-
rithm. More precisely, consider the LP

max w's.
SEB(F)
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Then if the objective vector w has a negative component, the problem is clearly
unbounded. Otherwise, a solution to the LP can be obtained by ordering w in
decreasing manner as w;, > w;, > ... > w; , and setting

Sjp =r{Jts o Jk) = r{J1s o Jk-1}) s (2.4.7)

for k € [1:n]. We thus have a LMO with a O(nlogn) cost. This is the reason why
FW variants are widely used in the context of submodular optimization; further
details can be found in, e.g., [21,136].

2.4.3 LASSO problem

The LASSO, proposed by Tibshirani in 1996 [221], is a popular tool for sparse
linear regression. Given the training set

T={(ri,b;)) e R"xR:i€e[l:m]},

where r| are the rows of an m X n matrix A, the goal is finding a sparse linear

model (i.e., a model with a small number of non-zero parameters) describing the
data. This problem is strictly connected with the Basis Pursuit Denoising (BPD)
problem in signal analysis (see, e.g., [75]). In this case, given a discrete-time input
signal b, and a dictionary

{aj e R™ : je[l:n]}

of elementary discrete-time signals, usually called atoms (here a; are the columns
of a matrix A), the goal is finding a sparse linear combination of the atoms that
approximate the real signal. From a purely formal point of view, LASSO and BPD
problems are equivalent, and both can be formulated as follows:
min f(x) :=||Ax — b||g
xeRn?

(2.4.8)
st x| £ 7,

where the parameter 7 controls the amount of shrinkage that is applied to the model
(related to sparsity, i.e., the number of nonzero components in x). The feasible set
is

C={xeR":|x|ly £7}=conv{zxre; : i €[1:n]}.

Thus we have the following LMO in this case:

LMO¢(V f(xx)) = sign(=V;, f(xx)) - Tei,
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with iy € argmax |V, f(xx)|. It is easy to see that the FW per-iteration cost is

then O(n). The peculiar structure of the problem makes FW variants well-suited
for its solution. This is the reason why LASSO/BPD problems were considered in
a number of FW-related papers (see, e.g., [135,136,157,175]).

2.4.4 Matrix completion

Matrix completion is a widely studied problem that comes up in many areas of
science and engineering, including collaborative filtering, machine learning, control,
remote sensing, and computer vision (just to name a few; see also [64] and references
therein). The goal is to retrieve a low rank matrix X € R™*"2 from a sparse set of
observed matrix entries {U;;}(; jyes With J C [1:n1] X [1:n2]. Thus the problem can
be formulated as follows [103]:

X %Inilrinz f(X) = Z (Xij = Uyj)*
© (i.nel (2.4.9)
s.t. rank(X) < 6,

where the function f is given by the squared loss over the observed entries of the
matrix and ¢ > 0 is a parameter representing the assumed belief about the rank
of the reconstructed matrix we want to get in the end. In practice, the low rank
constraint is relaxed with a nuclear norm ball constraint, where we recall that the
nuclear norm || X]||, of a matrix X is equal the sum of its singular values. Thus we
get the following convex optimization problem:

min Z (Xij - Ul'j)2
XeRm2 - (hes (2.4.10)
s.t. I|X]|]. < 0.

The feasible set is the convex hull of rank-one matrices:

C {X e R |1 X]|l, < 6}

= conv{ouvT :u € R",y € R™2, |ju]| =||v||=1}.

If we indicate with A; the matrix that coincides with A on the indices J and is zero
otherwise, then we can write Vf(X) =2 (X —U),;. Thus we have the following LMO
in this case:

LMOc (V£ (X)) € arg min{tr(Vf(X)TX) : | XIl, < 6}, (2.4.11)
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which boils down to computing the gradient, and the rank-one matrix du;v{, with
ui, vy right and left singular vectors corresponding to the top singular value of
-V £(Xy). Consequently, the FW method at a given iteration approximately recon-
structs the target matrix as a sparse combination of rank-1 matrices. Furthermore,
as the gradient matrix is sparse (it only has |J| non-zero entries) storage and approx-
imate singular vector computations can be performed much more efficiently than

2

for dense matrices®. A number of FW variants has hence been proposed in the

literature for solving this problem (see, e.g., [103,135,136]).

2.4.5 Adversarial attacks in machine learning

Adversarial examples are maliciously perturbed inputs designed to mislead a
properly trained learning machine at test time. An adversarial attack hence consists
in taking a correctly classified data point x¢ and slightly modifying it to create a new
data point that leads the considered model to misclassification (see, e.g., [67,73,112]
for further details). A possible formulation of the problem (see, e.g., [72,112]) is
given by the so called mazimum allowable {,-norm attack that is,

min f(xg+x)
xeRn (2.4.12)
st |lxll, < e,

where f is a suitably chosen attack loss function, xy is a correctly classified data
point, x represents the additive noise/perturbation, € > 0 denotes the magnitude
of the attack, and p > 1. It is easy to see that the LMO has a cost O(n). If xg
is a feature vector of a dog image correctly classified by our learning machine, our
adversarial attack hence suitably perturbs the feature vector (using the noise vector
x), thus getting a new feature vector xg +x classified, e.g., as a cat. In case a target
adversarial class is specified by the attacker, we have a targeted attack. In some
scenarios, the goal may not be to push xg to a specific target class, but rather push
it away from its original class. In this case we have a so called untargeted attack.
The attack function f will hence be chosen depending on the kind of attack we aim
to perform over the considered model. Due to its specific structure, problem (2.4.12)
can be nicely handled by means of tailored FW variants. Some FW frameworks for
adversarial attacks were recently described in, e.g., [72,147,213].

2Details related to the LMO cost can be found in, e.g., [136].
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2.4.6 Minimum enclosing ball

Given a set of points P = {p1, ..., pn} € RY, the minimum enclosing ball problem
(MEB, see, e.g., [78,246]) consists in finding the smallest ball containing P. Such
a problem models numerous important applications in clustering, nearest neighbor
search, data classification, machine learning, facility location, collision detection,
and computer graphics, to name just a few. We refer the reader to [155] and the
references therein for further details. Denoting by ¢ € R? the center and by VY
(with y > 0) the radius of the ball, a convex quadratic formulation for this problem

1S

min 2.4.13
(c,y)efRdX[Ry ( )
st. |lpi—cl><y, allie[l:n]. (2.4.14)

This problem can be formulated via Lagrangian duality as a convex Standard Quadratic
Optimization Problem (StQP, see, e.g. [44])

min {xTATAx —bTx :x € A1} (2.4.15)

with A = [p1,...,ps] and bT = [p]{p1,...,papal. The feasible set is the standard
simplex A,_1, and the LMO is defined as follows:

LMOg,_, (Vf(xk)) = e,

with iy € argmin; V; f(xx). It is easy to see that cost per iteration is O(n). When
applied to (2.4.15), the FW method can find an e-cluster in O (%), where an e-cluster
is a subset P’ of P such that the MEB of P’ dilated by 1+ & contains P [78]. The
set P’ is given by the atoms in P selected by the LMO in the first O(%) iterations.
Further details related to the connections between FW methods and MEB problems
can be found in, e.g., [5,6,78] and references therein.

2.4.7 Training linear Support Vector Machines

Support Vector Machines (SVMs) represent a very important class of machine
learning tools (see, e.g., [226] for further details). Given a labeled set of data points,
usually called training set:

TS = {(pi,yi), pi €RY, yie {-1,1}, i=1,...,n},
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the linear SVM training problem consists in finding a linear classifier w € R? such
that the label y; can be deduced with the "highest possible confidence" from wTp;.
A convex quadratic formulation for this problem is the following [78]:
: llwll?
min + 5=
weR9, peR p 2
s.t. p+yiwTp; >0, allie[l:n],

(2.4.16)

where the slack variable p stands for the negative margin and we can have p < 0 if
and only if there exists an exact linear classifier, i.e. w such that wTp; = sign(y;).
The dual of (2.4.16) is again an StQP:

min {xTATAx : x € A1} (2.4.17)

with A = [y1p1, ..., yupn]. Notice that problem (2.4.17) is equivalent to an MNP
problem on conv{y;p; : i € [1:n]}, see Section 2.8.2 below. Some FW variants
(like, e.g., the Pairwise Frank-Wolfe) are closely related to classical working set
algorithms, such as the SMO algorithm used to train SVMs [157]. Further details
on FW methods for SVM training problems can be found in, e.g., [78,135].

2.4.8 Finding maximal cliques in graphs

In the context of network analysis the clique model refers to subsets with every
two elements in a direct relationship. Let G = (V, E) be a simple undirected graph
with V and E set of vertices and edges, respectively. A clique in G is a subset C C V
such that (i,j) € E for each (i,j) € C, with i # j. The goal in finding a clique
C such that |C| is maximal (i.e., it is not contained in any strictly larger clique).
This corresponds to find a local minimum for the following equivalent (this time
non-convex) StQP (see, e.g., [40,43,133] for further details):

1 2
max {xTAgx + §||x|| tx € Ay (2.4.18)

where Ag is the adjacency matrix of G. Due to the peculiar structure of the problem,
FW methods can be fruitfully used to find maximal cliques, (see, e.g., [133]). In
Chapter 5, the application of a FW variant to a generalization of (2.4.18) will be
discussed.

2.4.9 Finding sparse points in a set

Given a non-empty polyhedron P C R”, the goal is finding a sparse point x € P
(i.e., a point with as many zero components as possible). This sparse optimization
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problem can be used to model a number of real-world applications in fields like, e.g.,
machine learning, pattern recognition and signal processing (see [207] and references
therein). Ideally, what we would like to get is an optimal solution for the following
problem:

min {||x||o : x € P}. (2.4.19)

Since the zero norm is non-smooth, a standard procedure is to replace the original
formulation (2.4.19) with an equivalent concave optimization problem of the form:

min {Z o(yi):xeP, —y<x< y} , (2.4.20)
i=1

where ¢ : [0,+00[ — R is a suitably chosen smooth concave univariate function
bounded from below, like, e.g.,

p(1)=(1-e"),

with @ a large enough positive parameter (see, e.g., [181,207] for further details).
The LMO in this case gives a vertex solution for the linear programming problem:

min{c;y:xeP, —y <x <y},

with (cg); the first-order derivative of ¢ calculated in (yg);. Variants of the unit-
stepsize FW method have been proposed in the literature (see, e.g., [181,207]) to
tackle the smooth equivalent formulation (2.4.20).

2.5 Stepsizes

Popular rules for determining the stepsize are:

« unit stepsize:
ag =1,

mainly used when the problem has a concave objective function. Finite con-
vergence can be proved, under suitable assumptions, both for the unit-stepsize
FW and some of its variants described in the literature (see, e.g., [207] for fur-
ther details).

o diminishing stepsize:

2
T k+2°
mainly used for the classic FW (see, e.g., [102,136]).

ay (2.5.1)
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e exact line search:

a; = min argmin ¢(a) with ¢(a@) := f(xx +ady), (2.5.2)

a€[0,a;"%]
where we pick the smallest minimizer of the function ¢ for the sake of being

well-defined even in rare cases of ties (see, e.g., [47,157]).

o Armijo line search: the method iteratively shrinks the step size in order to
guarantee a sufficient reduction of the objective function. It represents a good
way to replace exact line search in cases when it gets too costly. In practice,
we fix parameters ¢ € (0,1) and y € (0, %), then try steps @ = 6"@;"** with
m € {0,1,2,...} until the sufficient decrease inequality

fxr+ady) < f(xp)+yaVf(xg)Tdy (2.5.3)

holds, and set ay = @ (see, e.g., [46] and references therein).

o Lipschitz constant dependent step size:

(2.5.4)

ayp = Q’k(L) = min {— M max} ,

,
Liidl? "
with L the Lipschitz constant of Vf (see, e.g., [47,201]).
The Lipschitz constant dependent step size can be seen as the minimizer of the
quadratic model my (-; L) overestimating f along the line x; + @ di:
La?
mi(e; L) = f i) + @ Vf () Tde + == Idell* > f(xk +ady), (2.5.5)

where the inequality follows by the standard Descent Lemma.

In case L is unknown, it is even possible to approximate L using a backtracking
line search (see, e.g., [150,201]).

We now report a lower bound for the improvement on the objective obtained
with the stepsize (2.5.4), often used in the convergence analysis.

Lemma 2.5.1. If ay is given by (2.5.4) and ay < a;"* then
1 ~
S (xeer) < f(xx) = i(vf(xk)Tdk)Q : (2.5.6)
Proof. We have
L 2
fOr+ardy) < fOu)+aV o) Tde + =55 [|dill?

Tdy)? -
= fl) - SR = F(n) - o (V) TdR)?,

where we used the standard Descent Lemma in the inequality. O

(2.5.7)
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2.6 Properties of the FW method and its variants

2.6.1 The FW gap

A key parameter often used as a measure of convergence is the FW gap
G(x) :mag,zX—Vf(x)T(s—x), (2.6.1)
NS

which is always nonnegative and equal to 0 only in first order stationary points.
This gap is, by definition, readily available during the algorithm. If f is convex,
using that Vf(x) is a subgradient we obtain

Gx)>-Vf(x)T(x"-x) > f(x)- [, (2.6.2)

so that G(x) is an upper bound on the optimality gap at x. Furthermore, G(x) is a
special case of the Fenchel duality gap [158].

If Q = A, is the simplex, then G is related to the Wolfe dual as defined in [78].
Indeed, this variant of Wolfe’s dual reads

max f(x)+A(eTx—1)—uTx
st. Vif(x)—u;+1=0, i€[l:n], (2.6.3)
(x,u,2) e R" xR xR

and for a fixed x € R*, the optimal values of (u, 1) are

Ac=-minV; f(x), u;j(x):=V;f(x) -minV;f(x) >0.
J J

Performing maximization in problem (2.6.3) iteratively, first for (u, 1) and then for
x, this implies that (2.6.3) is equivalent to

maxXyern [ f(x) + Ax(eTx — 1) —u(x)Tx]

(2.6.4)
= maxyepr [£(x) — max;(e; - 1) TV (x)] = maxyeps [£(x) ~ GW)] -

Furthermore, since Slater’s condition is satisfied, strong duality holds by Slater’s
theorem [57], resulting in G(x*) = 0 for every solution x* of the primal problem.

The FW gap is related to several other measures of convergence (see e.g. [160,
Section 7.5.1]). First, consider the projected gradient

8k = ma(xx — Vf(xg)) —xi. (2.6.5)
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with g the projection on a convex and closed subset B C R". We have ||gk|| = 0 if
and only if x; is stationary, with
I1gxll> = 278k < g [(xx = Vf(xp) — malxx = Vf(xx)] + 28] &k
= =g Vf(xx) = —(malxe = Vf(xe)) —x6) TV f (xe) (2.6.6)
< max—(y —x)TVf(xe) = Gxg),
yeQ

where we used [y—mq(x)]T[x—mq(x)] < 0in the first inequality, with x = x; =V f(xx)
and y = xy.
Let now Ng(x) denote the normal cone to Q at a point x € Q:

No(x) ={reR":rT(y—-x) <0 forall y e Q}. (2.6.7)
First-order stationarity conditions are equivalent to =V f(x) € Ng(x), or

dist(Na(x), =V f(x)) = || = Vf(x) = g0 (VS = 0.
The FW gap provides a lower bound on the distance from the normal cone
dist(Ng(x), -V f(x)), inflated by the diameter D > 0 of Q, as follows:
G(xx) = —(sk—xk)TVf(xp)
(s = X) T [N (e (=V f (%K) = (Ang o) (=Y F (1)) + V f (xk))]
sk = Xicll 17 ng ey (=Y f (x1)) + V f (x|
D dist(Na(xk), =V f(xk)) ,

(2.6.8)

IA

IA

where in the first inequality we used (sx —=xx) 7 [y (x,) (=V f (x1))] < 0 together with
the Cauchy-Schwarz inequality, and ||sx — xx|| < D in the second.

2.6.2 O(1/k) rate for convex objectives

If f is non-convex, it is possible to prove a O(1/Vk) rate for min;e1:4] G(x;)
(see, e.g., [156]). On the other hand, if f is convex, we have an O(1/k) rate on the
optimality gap (see, e.g., [101,166]) for all the stepsizes discussed in Section 2.5.
Here we include a proof for the Lipschitz constant dependent stepsize a; given by
(2.5.4).

Theorem 2.6.1. If f is conver and the stepsize is given by (2.5.4), then for every

k>1
2LD?

k+2°

flxx) = f7 < (2.6.9)
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Before proving the theorem we prove a lemma concerning the decrease of the
objective in the case of a full FW step, that is a step with dy = a’]fw and with ay
equal to 1, the maximal feasible stepsize.

Lemma 2.6.2. If oy =1 and dy = dlfW then

* 1 . *
k) = 7 < 5 min {Ldill?, f(xi) = £7} - (2.6.10)
Proof. If @y = 1 = ' then by Definitions (2.3.2) and (2.6.1)
G(xi) = =V f(xx)Tdy = L|d]?, (2.6.11)

the last inequality following by Definition (2.5.4) and the assumption that a; = 1.
By the standard Descent Lemma it also follows

* " . L
FOn) = 1= foe+di) = < fOa) = £+ V) Tdic+ 5 il (2.6.12)
Considering the definition of dy and convexity of f, we get
FO) = fF+ V) Tde < flxi) = fF+ V)T —xe) <0,

so that (2.6.12) entails f(xz+1) — f* < % ldi||>. To conclude, it suffices to apply to
the RHS of (2.6.12) the inequality

F) = £+ Vo) Tdi+ 5 ldil|® < f(xe) = £ = 3 Gre) < LML (26.13)

where we used (2.6.11) in the first inequality and G (xz) > f(xx) — f* in the second.

O

We can now proceed with the proof of the main result.

Theorem 2.6.1. For k =0 and @p = 1 then by Lemma 2.6.2

L||do|>  LD?
fx) = f7 < ol : (2.6.14)
2 2
If g < 1 then

f(x0) = f* < G(xp) < L||do||* < LD?. (2.6.15)

Therefore in both cases (2.5.6) holds for k£ = 0.
Reasoning by induction, if (2.6.9) holds for k with @y = 1, then the claim is clear
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by (2.6.10). On the other hand, if ay < @** =1 then by Lemma 2.5.1, we have

F) = 5 < Flu) = f* = 5 (V) Tdy)?
< ) - - S 2616
R
= (flu) - [ =Ly < 2LD2

where we used ||di|| < D in the second inequality, Vf(xx)Tdy = G(xx) = f(xx) — f*
in the third inequality; and the last inequality follows by induction hypothesis. O

As can be easily seen from above argument, the convergence rate of O(1/k) is true
also in more abstract normed spaces than R”, e.g. when Q is a convex and weakly
compact subset of a Banach space (see, e.g., [89,95]). A generalization for some
unbounded sets is given in [100]. The bound is tight due to a zigzagging behaviour
of the method near solutions on the boundary, leading to a rate of Q(1/k'*°) for
every 6 > 0 (see [65] for further details), when the objective is a strictly convex
quadratic function and the domain is a polytope.

Also the minimum FW gap min;eqo.x] G (x;) converges at a rate of O(1/k) (see [102,
136]). In [102], a broad class of stepsizes is examined, including @ = 7 and ax = @

In(k)
Tk

constant. For these stepsizes a convergence rate of O ( ) is proved.

2.6.3 Variants

We present here some active set FW variants. Such variants mostly aim to
improve over the O(1/k) rate and also ensure support identification in finite time.
They generate a sequence of active sets {Ay}, such that x; € conv(Ag), and define
alternative directions making use of these active sets (see Figure 2.1).

For the pairwise FW (PFW) and the AFW (see [78,157]) we have that Ay must
always be a subset of S, with x; a convex combination of the elements in Ax. The
away vertex vy is then defined by

vi €argmax Vf(xg)Ty. (2.6.17)
YEA

The AFW direction, introduced in [237], is hence given by

d]’?s =Xk — Vi

2.6.18
dp  €argmax{-Vf(xy)Td:d e {dS, d"}}, ( )
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while the PEW direction, as defined in [157] and inspired by the early work [184], is
A"V =afV +dl = s — vy, (2.6.19)

with sy defined in (2.3.2).

The FW method with in-face directions (FDFW) (see [103,116]), also known
as Decomposition invariant Conditional Gradient (DiCG) when applied to poly-
topes [24], is defined exactly as the AFW, but with the minimal face F(x;) of Q
containing x; as the active set. The extended FW (EFW) was introduced in [126]
and is also known as simplicial decomposition [231]. At every iteration the method
minimizes the objective in the current active set Axy1

Xp+1 € argmin  f(y), (2.6.20)

yeconv(Ags1)

where Agi1 C Ap U {si} (see, e.g., [78], Algorithm 4.2). A more general version of
the EFW, only approximately minimizing on the current active set, was introduced
in [157] under the name of fully corrective FW. In Table 2.1, we report the main
features of the classic FW and of the variants under analysis.

Variant Direction Active set

FW di = dfw =5 — Xk, Sk €argmax{Vf(xg)Tx:x e Q} -

AFW dy € argmax{-Vf(xx)7d :d € {xx — vk,d,fW}, Vi € A} | Ars1 C A U {s}

PFW dy = s — vk, Vi € argmax{Vf(xg)Tvy: vk € A} Aps1 € A U {s¢}
EFW di = yk —xk, Yk € argmin{f(y) :y € conv(Ag)} Aps1 © Ap U {s¢}
FDFW | dy € argmax{-Vf(x;)7d:d € {x; — vk,d]fw}, Vi € Ak} A = F (xx)

Table 2.1: FW method and variants covered in this chapter.

2.6.4 Sparse approximation properties

As discussed in the previous section, for the classic FW method and the AFW,
PFW, EFW variants x; can always be written as a convex combination of elements
in Ag C Sg, with |Ax| < k+1. Even for the FDFW we still have the weaker property
that x; must be an affine combination of elements in Ay C A with |Ax| < k+1. It
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turns out that the convergence rate of methods with this property is Q(%) in high
dimension. More precisely, if Q = conv(A) with A compact, the O(1/k) rate of the
classic FW method is worst case optimal given the sparsity constraint

xp € aff(Ag) with Ag C A, |Ag| < k+1. (2.6.21)

An example where the O(1/k) rate is tight was presented in [136]. Let Q = A,y
and f(x) = ||x — ,l,€||2- Clearly, f* = 0 with x* = %e. Then it is easy to see that
min{f(x) — f* : ||x|lp < k+1} > ﬁ —% for every k € N, so that in particular under

(2.6.21) with Ay = {e; : i € [1:n]}, the rate of any FW variant must be Q(%).

2.6.5 Affine invariance

The FW method and the AFW, PFW, EFW are affine invariant [136]. More
precisely, let P be a linear transformation, f be such that f (Px) = f(x) and Q=
P(Q). Then for every sequence {x;} generated by the methods applied to ( f, Q), the
sequence {yr} := {Pxx} can be generated by the FW method with the same stepsizes
applied to ( f , f)). As a corollary, considering the special case where P is the matrix
collecting the elements of A as columns, one can prove results on Q = Aj4-1 and
generalize them to Q := conv(A) by affine invariance.

An affine invariant convergence rate bound for convex objectives can be given
using the curvature constant

Kf.q 1= Sup {2f (ay+ (=) —f(9=aV/WTO=) . (¢ v} € Q, a € (0, 1]} . (2:6.22)

It is easy to prove that xrq < LD? if D is the diameter of Q. In the special
case where Q = A,_1 and f(x) = XTATAx + bTx, then kro < diam(AA,_1)? for
AT = [AT, b]; sce [78].

When the method uses the stepsize sequence (2.5.1), it is possible to give the

following affine invariant convergence rate bounds (see [102]):

" 2k ' Q

FOw) = f* < 0
o (2.6.23)

in G(x) < —L=

ok oS T2k

thus in particular slightly improving the rate we gave in Theorem 2.6.1 since we
have that ks < LD?.
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2.6.6 Inexact linear oracle

In many real-world applications, linear subproblems can only be solved approxi-
mately. This is the reason why the convergence of FW variants is often analyzed un-
der some error term for the linear minimization oracle (see, e.g., [58,59,102,136,154]).
A common assumption, relaxing the FW vertex exact minimization property, is to
have access to a point (usually a vertex) §; such that

Vi (xr)T(Sx —xx) < Isrélggl V) ({1, ..., —}xx) + 0k, (2.6.24)

for a sequence {0} of non negative approximation errors.
If the sequence {0y} is constant and equal to some ¢ > 0, then trivially the lowest
possible approximation error achieved by the FW method is 6. At the same time,
[102, Theorem 5.1] implies a rate of O(% + ) if the stepsize ay = % is used.

The O(1/k) rate can be instead retrieved by assuming that {d;} converges to 0
quickly enough, and in particular if

5Kfc
= : 2.6.25
T k2 ( )
for a constant 6 > 0. Under (2.6.25), in [136] a convergence rate of
X
- fr< —(1 2.6.2
fe)-f < 2040 (26.26)

was proved for the FW method with a; given by exact line search or equal to %,
as well as for the EF'W.

A linearly convergent variant making use of an approximated linear oracle re-
cycling previous solutions to the linear minimization subproblem is studied in [58].
In [102,125], the analysis of the classic FW method is extended to the case of inexact
gradient information. In particular in [102], assuming the availability of the (8, L)
oracle introduced in [90], a convergence rate of O(1/k + 6k) is proved.

2.7 Improved rates for strongly convex objectives

2.7.1 Linear convergence for FW variants

In the rest of this section we assume that f is u-strongly convex (1.2.5). We also
assume that the stepsize is given by exact line search or by (2.5.4).

Under this assumption, an asymptotic linear convergence rate for the FDFW
on polytopes was given in the early work [116]. Furthermore, in [109] a linearly
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Method | Objective Domain Assumptions Rate Article
FW NC Generic - O(1/Vk) | [156]
FW C Generic - O(1/k) [101]
FW SC Generic x* eri(Q) Linear [116]

Variants SC Polytope - Linear [157]
FW SC Strongly convex - O(1/k?) [108]
FW SC Strongly convex | min ||V f(x)|| > 0| Linear [89]

Table 2.2: Known convergence rates for the FW method and the variants covered in this
chapter. NC, C and SC stand for non-convex, convex and strongly convex respectively.

convergent variant was proposed, making use however of an additional local linear
minimization oracle.
Recent works obtain linear convergence rates by proving the condition

“VFG)Tdr > ———— V()T (k= x7)

2.7.1
T (27.1)

for some 7 > 0 and some x* € arg min,.~ f(x). As we shall see in the next lemma,
under (2.7.1) it is not difficult to prove linear convergence rates in the number of
good steps. These are FW steps with a; = 1 and steps in any descent direction with
ar < 1.

Lemma 2.7.1. If the step k is a good step and (2.7.1) holds, then
b < max {3,1- 52 iy (2.7.2)

Proof. If the step k is a full FW step then Lemma 2.6.2 entails Ay < % hi. In the
remaining case, first observe that by strong convexity

o= fO) 2 f) + V)T = xe) + Gl — 12

> min | f(x) +@VF (x0T =) + v =) (2.7.3)
= () = g [V ()T (i -7,
which means
[VF )T (e —x9)]? (2.7.4)

S ——
2palxe — x|l



28 Projection-free optimization methods

We can then proceed using the bound (2.5.6) from Lemma 2.5.1 in the following

way:
12
b = floen) =S < F00 =17 g [V
= g (9 )7 =) (27.5)
where we used (2.7.1) in the second inequality and (2.7.4) in the third one. O

As a corollary, under (2.7.1) we have the rate

Flu) = f=hy < max{§,1 - %} ho (2.7.6)

for any method with non increasing { f (xx)} and following Algorithm 1, with y(k) <
k an integer denoting the number of good steps until step k. It turns out that for
all the variants we introduced in this chapter we have y(k) > Tk for some constant
T > 0. When x* is in the relative interior of Q, the FW method satisfies (2.7.1) and
we have the following result (see [116,157]):

Theorem 2.7.2. If x* € ri(Q), then

1_H

fG) - f* < 7

(f (xo) = 7). (2.7.7)

dist(x*, 0Q)
Sl

Proof. We can assume for simplicity int(Q) # 0, since otherwise we can restrict
ourselves to the affine hull of Q. Let § = dist(x*,0Q) and g = =V f(xy). First, by
assumption we have x* + §g € Q. Therefore

gTd" 2 gT((x" +68) —x) = 6gTg+gT (¥ —x) 2 Sllgl + f(x) - f* = 6Sllgll, (2.7.8)

where we used x* + g € Q in the first inequality and convexity in the second. We
can conclude

dFW dFW 5 5 X — x*
k k k=X
g7 > g7 > —llgll = —&T7 (— ) 2.7.9
A IR A R e (279)
The thesis follows by Lemma 2.7.1, noticing that for 7 = w < % we have

_ 281
1TL>2. ]
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In [157], the authors proved that directions generated by the AFW and the PEW
on polytopes satisfy condition (2.7.1), with 7 = PWidth(A)/D and PWidth(A),
pyramidal width of A. While PWidth(A) was originally defined with a rather com-
plex minmax expression, in [200] it was then proved

PWidth(A) = min dist(F,conv(A\ F)). (2.7.10)
Fefaces(C)
This quantity can be explicitly computed in a few special cases. For A = {0, 1}"" we
have PWidth(A) = 1/+/n, while for A = {e;}c[1.n] (s0 that Q is the n—1 dimensional
simplex)

2 if n is even

PWidth(A) = { V", I (2.7.11)
\/m 1Irnis o .

Conditions like (2.7.1) with 7 dependent on the number of vertices used to represent

Xr as a convex combination were given in [24] and [27] for the FDFW and the
PFW respectively. In particular, in [27] a geometric constant Qg called vertex-facet
distance was defined as

Qg = min{dist(v,H) : v e V(Q),H e H(Q),v ¢ H}, (2.7.12)

with V(Q) the set of vertices of Q, and H(Q) the set of supporting hyperplanes of
Q (containing a facet of Q). Then condition (2.7.1) is satisfied for 7 = Qq/s, with
dy the PFW direction and s the number of points used in the active set Ay.

In [24], a geometric constant Hy was defined depending on the minimum number s
of vertices needed to represent the current point xg, as well as on the proper? in-
equalities ¢/x < b;, i € [1:m], appearing in a description of Q. For each of these
inequalities the second gap g; was defined as

. Ty d Ty, ie[l:m], 2.7.13
gi vrg‘l/z%é)qlv Ser(g‘l/(gIzr)laXC[lV i€[l:m] ( )

with the secondmax function giving the second largest value achieved by the argu-
ment. Then H is defined as

H, = max { 5 (z ﬂ)2 Se (“;’"])} . (2.7.14)

j=1 \ies &

1
2DVH,
FDFW direction and x; the convex combination of at most s vertices. We refer the

reader to [200] and [206] for additional results on these and related constants.

The arguments used in the paper imply that (2.7.1) holds with 7 = if dy is a

3i.e., those inequalities strictly satisfied for some x € Q.
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The linear convergence results for strongly convex objectives are extended to
compositions of strongly convex objectives with affine transformations in [27], [157],
[200]. In [117], the linear convergence results for the AFW and the FW method
with minimum in the interior are extended with respect to a generalized condition
number Ly op/urap, with D a distance function on Q.

For the AFW, the PFW and the FDFW, linear rates with no bad steps (y(k) = k)
are given in [209] (see Chapter 3) for non-convex objectives satisfying a Kurdyka-
Lojasiewicz inequality. In [208], condition (2.7.1) was proved for the FW direction
and orthographic retractions on some convex sets with smooth boundary. The
work [79] introduces a new FW variant using a subroutine to align the descent
direction with the projection on the tangent cone of the negative gradient, thus
implicitly maximizing 7 in (2.7.1).

2.7.2 Strongly convex domains

When Q is strongly convex we have a O(1/k?) rate (see, e.g., [108,149]) for the
classic FW method. Furthermore, when Q is Bg-strongly convex and ||V f(x)| >
¢ > 0, then we have the linear convergence rate (see [89,94, 150, 166])

his1 < max {%, 1- ﬁ} h . (2.7.15)

Finally, it is possible to interpolate between the O(1/k?) rate of the strongly convex
setting and the O(1/k) rate of the general convex one by relaxing strong convexity of
the objective with Holderian error bounds [243] and also by relaxing strong convexity
of the domain with uniform convexity [149].

2.8 Extensions

2.8.1 Block coordinate Frank-Wolfe method

The block coordinate FW (BCFW) was introduced in [158] for block product
domains of the form Q = QW x ... x QU ¢ Ru*+m and applied to structured
SVM training. The algorithm operates by selecting a random block and performing
a FW step in that block. Formally, for s € R™ let s®) € R” be the vector with all
blocks equal to 0 except for the i-th block equal to s. We can write the direction of
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the BCFW as _

dy = sl(cl) — Xk

si € argmin V f(x) Ts® (2.8.1)

seQ)
for a random index i € [1:n].
In [158], a convergence rate of
2Km
E -fr< 2.8.2
[f @] - 1 € = (28.2)

is proved, for K = hy + Kj?, with Kj? the product domain curvature constant, defined
as K? = ZK?’i where Kj?’i are the curvature constants of the objective fixing the

blocks outside Q:

: @@)y_ _ T4
Kj?” = sup {2f(x+ad ) f(cfg) VT g e -x,x€Q, ac€ (0, 1]} . (2.8.3)

An asynchronous and parallel generalization for this method was given in [234]. This
version assumes that a cloud oracle is available, modeling a set of worker nodes each
sending information to a server at different times. This information consists of an
index i and the following LMO on Q:

S(;) € arg min Vf(x%)Ts(i) : (2.8.4)

seQ)
The algorithm is called asynchronous because k can be smaller than , modeling a
delay in the information sent by the node. Once the server has collected a minibatch
S of 7 distinct indexes (overwriting repetitions), the descent direction is defined as

_ (@)
di = s, (2.8.5)
ieS
If the indices sent by the nodes are i.i.d., then under suitable assumptions on the
delay, a convergence rate of

2mK;
2k +2m

ELf(x0)] - f* < (2.8.6)

can be proved, where K, = I’I’lK?’T(l +08) + hg for § depending on the delay error, with
K?’T the average curvature constant in a minibatch keeping all the components not
in the minibatch fixed.

In [197], several improvements are proposed for the BCFW, including an adaptive
criterion to prioritize blocks based on their FW gap, and block coordinate versions

of the AFW and the PFW variants.
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In [214], a multi plane BCFW approach is proposed in the specific case of the
structured SVM, based on caching supporting planes in the primal, corresponding
to block linear minimizers in the dual. In [28], the duality for structured SVM
between BCFW and stochastic subgradient descent is exploited to define a learning
rate schedule for neural networks based only on one hyper parameter. The block
coordinate approach is extended to the generalized FW in [26], with coordinates
however picked in a cyclic order.

2.8.2 Variants for the min-norm point problem
Consider the min-norm point (MNP) problem

i 2.8.
min [lx]].., (2.8.7)

with Q a closed convex subset of R” and || -], a norm on R". In [238], a FW
variant is introduced to solve the problem when Q is a polytope and || - ||, is the
standard Euclidean norm || - ||. Similarly to the variants introduced in Section 2.6.3,
it generates a sequence of active sets {Ay} with s; € Agy1. At the step k the norm
is minimized on the affine hull aff(Ay) of the current active set Ay, that is

vy = argmin ||y|| . (2.8.8)
yeaff (Ax)

The descent direction dy is then defined as
dk =Vi — Xk, (2.8.9)

and the stepsize is given by a tailored line search that allows to remove some of
the atoms in the set Ap (see, e.g. [157,238]). Whenever x4 is in the relative
interior of conv(Ag), the FW vertex is added to the active set (that is, sy € Ag41).
Otherwise, at least one of the vertices not appearing in a convex representation of xj
is removed. This scheme converges linearly when applied to generic smooth strongly
convex objectives (see, e.g., [157]).

In [122], a FW variant is proposed for minimum norm problems of the form

min{||x||, : f(x) <0,x € K} (2.8.10)

with K a convex cone, f convex with L-Lipschitz gradient. In particular, the op-
timization domain is Q = {x € R" : f(x) < 0} N K. The technique proposed in the
article applies the standard FW method to the problems

min{ f(x) : [lx[[. < 6k, x € K},
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with {5z} an increasing sequence convergent to the optimal value & of the prob-
lem (2.8.10). Let Q(5) = {x e R" : ||x]|l, < 6} N K for § > 0, and let

LM(r) € argminrTx,
xeQ(1)

so that by homogeneity for every k the linear minimization oracle on C(dy) is given
by
LMOQ((gk)(F) = 6kLM(r) . (2.8.11)

For every k, applying the FW method with suitable stopping conditions an approx-
imate minimizer x; of f(x) over Q(dy) is generated, with an associated lower bound
on the objective, an affine function in y:

Je(¥) = fOa) + VI (x)T (v — xk) - (2.8.12)

Then the function
6 (6) = ylgg(rtls) Jie(y) = fi(6LM(gk))  with g =V f (xi) (2.8.13)
is decreasing and affine in ¢ and satisfies

((6) = min fi(y) < F(8) = min f(3). (2.8.14)

Therefore, for
£c(6) = max €(6) < F(9)
ie[1:k]

the quantity dx4+1 can be defined as min{é > 0 : £x(6) < 0}, hence F(Szs1) > 0.
A complexity bound of O(% ln(%)) was given to achieve precision € applying this
method, with O(1/¢) iterations per subproblem and length of the sequence {6} at
most O(In(1/g)) (see [122, Theorem 2] for details).

2.8.3 Variants for optimization over the trace norm ball

The FW method has found many applications for optimization problems over
the trace norm ball. In this case, as explained in Example 2.4.4, linear optimization
can be obtained by computing the top left and right singular vectors of the matrix
-V f(Xk), an operation referred to as 1-SVD (see [10]) .

In the work [103], the FDFW is applied to the matrix completion problem (2.4.9),
thus generating a sequence of matrices { Xz } with || Xy||, < ¢ for every k. The method
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can be implemented efficiently exploiting the fact that for X on the boundary of the
nuclear norm ball, there is a simple expression for the face F(X). For X € R™"
with rank(X) = k let UDVT be the thin SVD of X, so that D € R¥ is the diagonal
matrix of non zero singolar values for X, with corresponding left and right singular
vectors in the columns of U € R™%* and V € R™* respectively. If || X]|, = § then the
minimal face of the domain containing X is the set

F(X)={XeR™:X=UMVT for M =MT psd with ||M||, =6}, (2.8.15)

where psd stands for positive semidefinite.

It is not difficult to see that we have rank(Xy) < k + 1 for every k € N, as well.
Furthermore, the thin SVD of the current iterate X; can be updated efficiently both
after FW steps and after in face steps. The convergence rate of the FDFW in this
setting is still O(1/k).

In the recent work [232], an unbounded variant of the FW method is applied to
solve a generalized version of the trace norm ball optimization problem:

min {f(X) : [PXQ]|, < 6} (2.8.16)
Xe[Rmxn

with P, Q singular matrices. The main idea of the method is to decompose the
domain in the sum S+7 between the kernel T of the linear function ¢p o(X) = PXQ
and a bounded set § ¢ T+. Then gradient descent steps in the unbounded compo-
nent T are alternated to FW steps in the bounded component S. The authors apply
this approach to the generalized LASSO as well, using the AFW for the bounded
component.

In [10], a variant of the classic FW using k-SVD (computing the top k left and
right singular vectors for the SVD) is introduced, and it is proved that it converges
linearly for strongly convex objectives when the solution has rank at most k. In [189)],
the FW step is combined with a proximal gradient step for a quadratic problem on
the product of the nuclear norm ball with the £; ball. Approaches using an equivalent
formulation on the spectrahedron introduced in [137] are analyzed in [91,106].
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Figure 2.1: FW variants
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Chapter 3

A unifying framework for the
study of Frank-Wolfe variants

The study of Frank-Wolfe variants is often complicated by the presence
of different kinds of "good" and "bad" steps. In this chapter, we aim to
simplify the convergence analysis of specific variants by getting rid of
such a distinction between steps, and to improve existing rates by en-
suring a non-trivial bound at each iteration. In order to do this, we
define the Short Step Chain (SSC) procedure, which skips gradient com-
putations in consecutive short steps until proper conditions are satisfied.
This algorithmic tool allows us to give a unified analysis and conver-
gence rates in the general smooth non convex setting, as well as a linear
convergence rate under a Kurdyka-Lojasiewicz (KL) property. While the
KL setting has been widely studied for proximal gradient type methods,
to our knowledge, it has never been analyzed before for the Frank-Wolfe
variants considered in this chapter. An angle condition, ensuring that
the directions selected by the methods have the steepest slope possible up
to a constant, is used to carry out our analysis. We prove that such
a condition is satisfied, when considering minimization problems over a
polytope, by the away step Frank-Wolfe, the pairwise Frank-Wolfe, and
the Frank-Wolfe method with in face directions. !

IThis chapter is based on the article “Avoiding bad steps in Frank Wolfe variants” in Compu-
tational Optimization and Applications, 2022 [209].

37
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3.1 Motivation

In this chapter, we explain how to overcome an annoying issue affecting the
analysis of some FW variants, and provide a unifying framework for the study of
those methods. The issue we deal with is the presence of "bad iterations', i.e.,
iterations where we cannot show good progress. This happens when we are forced
to take a short step along the search direction to guarantee feasibility of the iterate.
The number of short steps typically needs to be upper bounded in the convergence
analysis with "ad hoc" arguments (see, e.g., [103] and [157]). The main idea behind
our method is to chain several short steps by skipping gradient updates until proper
conditions are met.

3.1.1 Related work

FW variants. As seen in Chapter 2, the main drawback of the classic FW
algorithm is its slow O(1/k) convergence rate for convex objectives, which has mo-
tivated the study of variants with faster rates, starting at least with the work of
Wolfe [237] (see [153] and [157] for recent references). For smooth strongly convex
objectives, the convergence rates of many of these "improved directions" FW vari-
ants is linear on polytopes (see Section 2.7.1). Furthermore, in [148] it was proved
that the convergence rate of an AFW variant is adaptive to Holderian error bound
conditions interpolating between the general convex case and the strongly convex
one.

In addition to considering new directions, the works [58] and [59] propose strategies
to skip the LMO computation from time to time by caching linear minimizers, while
the recent work [153] for optimization on polytopes applies recursively a FW variant
to smaller polytopes. However, to our knowledge, no strategy to avoid short steps
has been discussed in these previous works.

A different approach, adopted in the general smooth convex setting, is to use FW
variants to approximate projections. In particular, the conditional gradient slid-
ing method uses the FW method to approximate projections on the feasible set
within a projected gradient scheme (see, e.g., [124] and [161]). Another approach
introduced in [79] for smooth convex objectives implicitly uses the Non Negative
Matching Pursuit (NNMP) algorithm to compute an approximate projection of the
negative gradient on the tangent cone. To our knowledge, however, conditional gra-
dient sliding approaches always lead to a sublinear O(1/g) LMO complexity, and
the approach in [79] does not lead to any improvement on the O(1/g) worst case
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gradient complexity of the classic FW.

Outside the projection free setting, in [187] a procedure making multiple steps with-
out updating the gradient (in a fashion similar to our SSC) is defined.

In the non convex setting, for the classic FW algorithm a convergence rate of
O(1/Vk) was proved in [156] and then extended to other variants in [47] and [205].

KL property. The KL property (see, e.g., [12], [36] and [37]) has been ex-
tensively applied to compute the convergence rates of proximal subgradient type
methods (see, e.g., [12], [13], [38], [233] and [242]). Furthermore, for convex objec-
tives, it has been proved that Holderian error bound conditions are a particular case
of this property [38]. However, we are not aware of previous applications to the
Frank-Wolfe variants under study in this chapter.

Angle condition. The analysis of unconstrained descent methods often relies

on some version of an angle condition, imposing an upper bound on the angle
between the negative gradient and the descent direction selected by the method
(see, e.g., [2], [114] and [249]). However, due to the presence of short steps and full
FW steps, these analyses do not extend to our setting in a straightforward way.
In Section 3, we present an angle condition for optimization over a convex set.
While to our knowledge this extension is novel for first order optimization methods,
analogous conditions can be found in the context of direct search methods for linearly
constrained derivative free optimization (see, e.g., [152] and [168]), imposed on the
smallest angle between the negative gradient and a search direction. Finally, we
remark that a variant of our condition was somehow used, but not stated explicitly,
in [27] and [157] within the context of smooth strongly convex optimization over
polytopes.

3.1.2 Contributions

Our main contributions are twofold:

o We formulate an angle condition for projection free methods, and prove that
it leads to linear convergence in the number of "good steps" for non convex
objectives satisfying a KL inequality. We show that this condition applies
to the AFW, the PFW and the FDFW on polytopes. First, we give linear
rates for good steps in Proposition 3.3.6. Then, we give global asymptotical
rates under the assumption that the number of bad steps between two good
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steps is bounded in Proposition 3.3.7. We apply this result to FW variants in
Corollary 3.3.8.

o We define the SSC procedure, which can be applied to all the FW variants
listed in the first point, and show that it gets improvements on known rates
(see Table 1 in Section 3.4). In particular, we prove that it leads to global linear
convergence rates with no bad steps (see Lemma 3.4.11 and Corollary 3.4.15)
under a global KL inequality and the angle condition. We then prove that we
have local linear convergence rates and asymptotical linear convergence rates
under a local KL property as well (see Theorem 3.4.13 and Corollary 3.4.14).
This, to our knowledge, is the first (bad step free) linear convergence rate for
FW variants under the KL inequality. In the general smooth non convex case,
we further prove, under the angle condition, a O(1/Vk) convergence rate with
respect to a specific measure of non-stationarity for the iterates, that is the
projection of the negative gradient on the convex cone of feasible directions
(see Theorem 3.4.8, Corollary 3.4.9 and Remark 3.4.10).

While here we apply our framework only to the AFW, the PFW, and the FDFW on
polytopes, we remark that our results hold for projection free methods on generic
convex sets. In an extended version of this chapter [208] we show applications on
convex sets with smooth boundary for FW variants and methods using orthographic
retractions (see also [4], [22], [167] and references therein).

The reasons why eliminating bad steps truly makes a difference in our context are
the following:

« it rules out impractical convergence rates due to a large number of bad steps.
An interesting example is given by the rate guarantee reported in [157] for the
pairwise Frank-Wolfe (PFW) variant on the N — 1 dimensional simplex. This
guarantee is indeed more loose than for the other variants, because there is no
satisfactory bound on the number of such problematic steps (there is a best
known bound of 3N! bad steps for each good step);

o it eliminates the dependence of the convergence rates on the support of the
starting point (see, e.g., [139] and [153]). This dependence can significantly
affect the performance of FW variants on smooth non convex optimization
problems [84].

Finally, we mention that bad steps lead to a slow active set identification for the
AFW. This will be discussed more in depth in Chapter 4.
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The structure of the chapter is as follows. In Section 2, we define some notation
and state some preliminary results from convex analysis. In Section 3, we introduce
the angle condition for first-order projection free methods, show examples of FW
variants satisfying the condition and prove linear convergence in the number of
good steps. We define the SSC procedure in Section 4, where we also state the main
convergence results. Preliminary numerical results are reported in Section 3.6.

3.2 Tangent cones and the KL condition

We consider the following constrained optimization problem:
min {f(x) | x € Q} . (3.2.1)

In the rest of the chapter Q is a compact and convex set and f € CY(Q) with L-
Lipschitz gradient. We define D as the diameter of Q, and for a,b € R U {0}
we denote as [a < f(x) < b] the set {x € Q| f(x) € (a,b)}, with analogous
definitions for non strict inequalities. We define Bg(C) as the neighborhood {x €
R" | dist(C,x) < R} of C of radius R and in particular Bg(x) as the open euclidean
ball of radius R and center x, Bg(x) as its closure. When C is closed and convex
we define as 7 (C, ) the projection on C. If C is a cone then we denote with C* its
polar.

We now state some elementary properties related to the tangent and the normal
cones, where for x € Q we denote with To(x) and Ng(x) the tangent and the
normal cone to Q in x respectively. The next proposition (from [211], Theorem
6.9) characterizes these cones for closed convex subsets of R".

Proposition 3.2.1. Let Q be a closed convex set. For every point x € & we have

To(x) =cl{w | 31 > 0 with x + Aw € Q},
int(Ta(x)) ={w | 34 > 0 with x + Aw € int(Q)},
No(x) =To(x)"={veR"| (v,y—-x) <0V yeQ}.

We have the following formula connecting the supremum of a linear function
"slope" along feasible directions to the tangent and the normal cone:

Proposition 3.2.2. If Q is a closed convexr subset of R*, x € Q then for every
geR"

h—x .
max 10, sup (g, ) _ dist(Na(x), ) = II7(Ta(), Il
re@\xy \ A —x||
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Before giving the proof, we recall a useful well known result:

Proposition 3.2.3. Let C be a closed conver cone. For everyy € R"

dist(C*,y) =supé'y.
ceC

As stated in [60] this is an immediate consequence of the Moreau-Yosida decom-
position:
y=n(C,y)+n(C".y).

Proof of Proposition 3.2.2. First, by continuity of the scalar product we have

sup (g, h=x ): sup (g, h). (3.2.2)
he@/y \ 1A =xIl]  hergo\(0}
Since Ng(x) = To(x)* the first equality is exactly the one of Proposition 3.2.3 if
g € No(x), and it is trivial since both terms are clearly 0 if g € Ng(x).
It remains to prove

dist(Na(x), g) = ll7(Ta(x), &I, (3.2.3)

which is true by the Moreau - Yosida decomposition. O

On polytopes, a geometric interpretation of Proposition 3.2.2 is that the smallest
angle between g and a descent direction d feasible in x is achieved for d = n(Tg(x), g).
In the rest of the chapter to simplify notations we often use m,(g) as a shorthand
for ||m(Tq(x), g)||. Then, by Proposition 3.2.2, first order stationarity conditions in
x for the gradient —g become equivalent to m,(g) = 0.

In the computation of the convergence rates, we often make the following assump-
tion.

Assumption 3.1. Given a stationary point x* € Q, there exists n,6 > 0 such that
for every x € [f(x*) < f < f(x*) + 1] N Bs(x¥)

T (=V £ () 2 A2u(f(x) = F(x)7. (3.2.4)

We refer the reader to the extended version [208] of this chapter for a study
of convergence rates under a more general inequality, interpolating between (3.2.4)
and the generic non convex case. Let now ig be the indicator function of Q so that
ig(x) = 0 in Q and ig(x) = 400 otherwise. It can easily be seen that (3.2.4) is a
special case of the KL inequality (see, e.g., [12], [13] and [38]) with exponent %

dist (0, fa(x)) = V2u(fa(x) - fa(x)? (3.2.5)
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for fo = f +iq, using that
e (=Vf(x)) =dist(=V f(x), No(x)) = dist(0,d(f +iq)(x)), (3.2.6)

with the last equality following by Proposition 3.2.2. For convex objectives, con-
dition (3.2.4) is therefore implied by the Holderian error bound f(x) — f(x*) >
pdist(x, X*)?, for X* set of solutions of Problem (3.2.1) (see [38, Corollary 6]),
which in turn is implied by u— strong convexity (see, e.g., [146]). For non convex
objectives, Assumption 3.1 is implied by the Luo Tseng error bound [180] under
some mild separability conditions for stationary points (see [170, Theorem 4.1}).
This error bound is known to hold in a variety of convex and non convex settings
(see Section 3.5 and references in [170]).

We now show that under suitable assumptions our KL condition is implied by the
classic Polyak-Lojasiewicz (PL) inequality from [176] and [203]. We first recall the
PL property as it is used in [146]:

1 *
SIVFEON 2 u(f () = £7). (32.7)
with f* optimal value of f with non empty solution set X*.

Proposition 3.2.4. If f is convex, the optimal solution set X* of f is contained in
Q and (3.2.7) holds, then (3.2.4) holds for every x € Q.

Proof. By [146, Theorem 2] the PL property is equivalent, for convex objectives, to
the unconstrained quadratic growth condition:

fx)-f = gdist(x,)(*)2 (3.2.8)

In turn, given that by the assumption X* c Q the set X* is the solution set for
fa as well, (3.2.8) implies the global non smooth Holderian error bound condition

from [38] with ¢(f) = \/%, and by [38, Corollary 6] this is equivalent to the KL

property (3.2.4) holding globally on Q. O

Remark 3.2.5. We remark that without the assumption X* c Q the implication is
no longer true even for convex objectives, a counter example being Q equal to the
unitary ball and f((x,...,x™)) = (x(V) = 1)2. At the same time, the KL property
we used does not imply the PL property in general, since the latter only deals with
unconstrained minima.
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3.3 An angle condition

Let A be a first-order optimization method defined for smooth functions on a
closed subset Q of R”. We assume that given first-order information (xg, V f(xy))
the method always selects xr4+1 along a feasible descent direction, so that for (x, g) €
Q x R" we can define

Ax,8) cTa(x) N{y e R" | gy > 0} U {0}

as the possible descent directions selected by A when x = x;, g = -V f(xx) for
some k (see Algorithm 1). When x is first-order stationary, we set A(x, g) = {0},
otherwise we always assume 0 ¢ A(x, g) # 0.

We want to formulate an angle condition for the descent directions selected by ‘A,
with respect to the infimum of the angles achieved with feasible descent directions.
In order to do that, we define the directional slope lower bound as

DSBaA(Q,x,g) = inf _8d
deA(xg) mx(g)lld||
if 0 ¢ A(x, g). Otherwise x is stationary for —g, 7, (g) = 0 and we set DSB#(Q,x, g) =
1. Then with this definition it immediately follows DSB# (L, x,g) < 1 by Proposi-
tion 3.2.2. Notice also that when x € int(Q) then DSB#(Q, x, g) is simply a lower
bound on cos(fg,4) with 6 the angle between g and a descent direction d:

g'd
DSB#(Q,x,g) = inf
deA(xg) lIglllld]]

(3.3.1)

and thus imposing DSB# (€, x, g) > 7 we retrieve the angle condition [2, equation
(20)]. We remark that the RHS of (3.3.1) defining the unconstrained angle condition
is also considered in the constrained setting in [79] (referred to as alignment condi-
tion), as a tool to evaluate potential descent directions. However, without 7,(g) in
the denominator no uniform lower bound can be given for the RHS, and therefore
no worst case linear convergence rate (the rate given in [79, Corollary 3.6] is in fact
O(1/k)).

Given a subset P of Q we can finally define the slope lower bound

SBA(Q,P) = gien[an DSB4(Q,x,g) = inf DSBx(Q,x,g).

g:mx ()20
xeP xeP

For simplicity if P = Q we write SB#(Q) instead of SB#(, Q).
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We now show a few examples of Frank-Wolfe variants satisfying the following
angle condition
SB#(Q) =7 >0, (3.3.2)

i.e. cases where the slope lower bound is strictly greater than 0.

Figure 3.1: In red, cone of feasible descent directions satisfying the angle condition in x
for the negative gradient g when x is in the interior (left) and when x is on the boundary
(right).

3.3.1 Frank-Wolfe variants over polytopes and the angle
condition

We now consider the AFW, PFW and FDFW and show that the angle condition
is satisfied when Q is a polytope. The AFW and PFW depend on a set of "elementary
atoms" A such that Q = conv(A). Given A, for a base point x € Q we can define

Sy ={S C A | x is a proper convex combination of all the elements in S},

the family of possible active sets for x. In the rest of the chapter A is always clear
from the context and for simplicity we write PEW, AFW instead of PEW 4, AFW 4.
For x € Q, S € S, d*WV is a PFW direction with respect to the active set S and
gradient —g iff

d¥*W = 5 — ¢ with s € argmax sTg and ¢ € argming’ g . (3.3.3)

seQ qeS

Similarly, given x € Q, S € Sy, d**W is an AFW direction with respect to the active
set S and gradient —g iff

dAW e argmax{g"d | d € {d¥V, d*5}}, (3.3.4)
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where d¥W is a classic Frank-Wolfe direction

d*™W = 5 — x with s € argmaxs'g, (3.3.5)
s€Q
and d*3 is the away direction
d? =x — ¢ with g € argming'g. (3.3.6)
qges

The FDFW from [103], [116] (sometimes referred to as Decomposition invariant
Conditional Gradient (DiCG) when applied to polytopes [110], [24]) relies only on
the current point x and the current gradient —g to choose a descent direction and,
unlike the AFW and the PFW, does not need to keep track of the active set.

The in face direction is defined as

d¥ = x; —xp with xp € argmin{g"y | y € F(x)}

for ¥ (x) the minimal face of Q containing x. The selection criterion is then analogous
to the one used by the AFW:

d'P € argmax{gTd | d € {dF,d"™}}. (3.3.7)

We write SBrp, DSByp instead of SBrprw, DSBrprw in the rest of the chapter.
When Q is a polytope and |A| < oo, the angle condition holds for the directions and
the related FW variants we introduced. Before stating a lower bound for SB#(€) in
this setting we need to recall the pyramidal width constant PWidth(A) introduced
in [157]. We refer the reader to [206] and references therein for a discussion of
various properties of this and related parameters.

We use here a characterization of PWidth(A) proved in [200]:

PWidth(A) = min dist(F,conv(A \ F)), (3.3.8)
F epfaces(Q2)

with pfaces(Q) the set of proper faces of Q. We now introduce one key property of

PWidth(A) which relates it to the angle along the PFW direction. While we give a

self contained proof of the lemma relying only on (3.3.8), we remark that the lemma

can also be proved using [157, Theorem 3].

We first need this preliminary lemma relating maximal stepsize length with PWidth.

Fory e Q d € R", let a™**(y, d) the maximal feasible stepsize from y in the direction
d.



3.3 An angle condition 47

Lemma 3.3.1. Let x be a proper convexr combination of atoms in A’ C A, andd # 0
feasible direction in x. Then, for some y € conv(A’), we have

PWidth(A)

&maX(y, d) 2
|

(3.3.9)

Proof. Let y € argmax ccony(a) @ (2,d), and let A” c A’ be such that y is a
proper convex combination of elements in A”. Furthermore, let F, be the minimal
face containing the maximal feasible step point y := y + @™ (y,d). We claim that
FyNA” =0. In fact, for p € A” N F, we can consider an homothety of center p and
factor 1+ € mapping y in y. € conv(A”) and y in y. € ¥, with

Ve = Ve + (1 +€)a™™(y,d)d .

But then we would have @(ye,d) = (1 + €)a@(y, d), in contradiction with the maxi-
mality of @(y, d). Therefore

" (y,d) > dist(A”,Fy) =  min _ dist(F,conv(A \ ¥)) = PWidth(A),
F epfaces(Q)
(3.3.10)

where we used A” N F = 0 in the second inequality, and [200, Theorem 2] in the
equality. O

We can now prove the main Lemma.

Lemma 3.3.2. We have the following lower bound

gTdPFW
— 8 > PWidth(A).
I (Ta(x), 8|l

Proof. We use s,q and S as in (3.3.3). For z in Q and d feasible direction in

7z we define as @™*(z,d) the maximal feasible stepsize in the direction d. Let
p =n(Ta(x),g), and let y be a maximizer of a™**(y, p) for y € §. We have

§Td" Y =g (s =)+ (=) 287 (s = y) 2 8T ((y+ ™ (3. p)p) = ¥)
PWidth(A .
N ”p”( ) ¢Tp = PWidth(A)[p]l.

(3.3.11)
where we used Lemma 3.3.1 in the third inequality, and g7 p = ||p||? as it follows by
the Moreau-Yosida decomposition in the last equality. O
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In order to define an angle condition for the FDFW, we use the following upper
bound on PWidth(A), independent from the particular set A chosen to represent Q:
PFWidth(Q) = min dist(F1, 72) . (3.3.12)

F1,F2epfaces(Q)
F1NF2=0

Proposition 3.3.3. SBprw () > 7, := %M,SBAFW(Q) > %,SBFD(Q) >
7, ._ PFWidth(Q)

2 = 2D :

Proof. Let g be such that m,(g) # 0. We have

g TdPTW

DSBPFW(Q’X’ g) = lnf
dPFWePEW (x,0) ||dPFWV ||| (Ta(x), 2)||

__ gra™V _ PWidth(4)

~ Dln(Ta(x),9)Il ~ D ’
where we used Lemma 3.3.2 in the last inequality.
Hence SBprw (Q) > %ﬂl(m follows by taking the inf on the LHS for x € Q and g
such that m,(g) # 0 in (3.3.1). The inequality SBarpw(Q) > %&hm)
since

is a corollary
1
gT JAFW 2g'rdPFW ,

as it follows immediately from the definitions (see also [157, equation (6)]).

The angle condition for the FDFW can be proved analogously to the angle condition
for the AFW, where in Lemma 3.3.1 the RHS can be improved with PFWidth(Q)
instead of PWidth(A) using that the active set A” can be taken as the set of vertices
of a face. O

Remark 3.3.4. Results analogous to the ones in Proposition 3.3.3 can be proven
relatively to the vertex facial distance vf(Q) from [27]. More precisely, assuming A =
V(Q), for V(Q) set of vertices of Q, and that the AFW and the PE'W keep active sets
of size at most s, we have SBppw (Q) > vg(lgz) , SBarw (Q) > % as a consequence
of [27, Lemma 3.1]. Furthermore, for the FDFW we have SBrp (€, Q5) > M) it

25D
x € Q5 C Q iff there exists § € S, such that |S| < 5.

3.3.2 Linear convergence for good steps under the angle
condition

Consider now a method following the scheme described by Algorithm 1, and
with Lipschitz constant dependent stepsize as defined by (2.5.4):

@k = min (@, o)) , (3.3.13)
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with
_ V)T d

3.3.14
AL (3.3.14)

The following lemma shows that at every iteration a sufficient decrease condition is
satisfied, independently from the method A, when using stepsize (3.3.14).

Lemma 3.3.5. If oy < @i, thus in particular for the stepsize (3.3.13), we have:
L 2
f k) = fxre1) 2 Eka = Xk41ll” - (3.3.15)
Proof. By the standard descent lemma [31, Proposition 6.1.2],

F(an) = fxr+ ard) < f () + V() Tdy + a%glldeIQ , (3.3.16)

and in particular

L L L
FOe) = flxa) = —awV f(xe) Td = 0!;%§||dk||2 > 50113||dk||2 = 5 e —xl1?,
(3.3.17)
where we used a; < @ in the last inequality. This proves (3.3.15). m|

Assume now that the method A satisfies the angle condition (3.3.2). In the
following proposition, we prove a general linear convergence rate in the number of
good steps, (recall from Chapter 2 that these are the steps satisfying a; = @y or full
FW steps), under the assumption that the method A satisfies the angle condition
(3.3.2), and that the KL inequality (3.2.4) holds for the objective function f in
Problem (3.2.1).

Proposition 3.3.6. Let us assume that A satisfies the angle condition (3.3.2), and
the objective function f in Problem (3.2.1) satisfies condition (3.2.4) in x; and Xg41.

o If ay = ay then
FOae) = £ < (1= 57%) (P = £)) (3.3.18)
o If the step k is a full FW step then

o)~ 16 < (14 2) o - ren. @319)
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Proof. Let py = |[m(Ta(xk+1), =V f(xk+1)ll and px = ||7(Ta(xes1), =V f(xe)]l. We
have

Ik = Prl = llm(Ta(xke1), =V f k) | = llr (T (xkr1), =V f (X))l

(3.3.20)
< =Vfxre) + VIO < Lllxgsr = xell s
where we used the 1-Lipschitzianity of projections in the first inequality.
If o) = ay then
. L (VSO di ) 2,
fGrsr) =f e +ardy) < fxp) = =5 | ————| =< f(xx) — 5505
2L\ il 2L (3.3.21)

2
<fe0) = B (f () = £ ).

where we used (3.3.16) in the first inequality, SB;(Q) = 7 in the second one, and
condition (3.2.4) in the third one.

If the step k is a full FW step then py = 0 because xg41 € argmin,cq Vi) Ty ©
=V f(xx) € No(xk+1) © ||7(Ta(xk+1), =V f(xk))|| = 0, where the last equivalence is
true by Proposition 3.2.2. Then

2 N
P _ (Pi+ Lllxn - xil)? L2

fxe)—f(x") < 2 o =

eesr—xill® < %(f(xk)—f(mm)),

(3.3.22)
where we used (3.2.4) in the first inequality, (3.3.20) in the second, py = 0 and
(3.3.17) in the last inequality. Then (3.3.17) and (3.3.19) follow by rearranging
(3.3.21) and (3.3.22) respectively. O

We finally report an asymptotic rate under the additional assumption that bad
steps between two good steps are limited.

Proposition 3.3.7. Assume that the number of bad steps between two good steps is
limited and that A satisfies the angle condition (3.3.2). Then:

o {xx} converges to the set of stationary points, and f(xy) is decreasing and
convergent to f* € R;

o if Assumption 3.1 holds for every stationary point in the level set [ f(x) = f*],
we have the asymptotic convergence rate:

fla) = f(x*) < Mg, (3.3.23)
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for some M > 0, y4(k) number of good steps among the first k steps and

g = max ((1 + %)_1 (1- %72)) . (3.3.24)

Proof. Let k(j) be the subsequence of iterates associated to good steps, so that by
assumption k(j + 1) — k() is bounded, and define k(j) = k(j) — 1 if k() = Ak(j),
k(j) = k(j) otherwise. Notice that k(j + 1) — k(j) is also bounded. By (3.3.17)
we have that {f(xg)} is decreasing and thus convergent to f* € R, and also that
l[xx —xk+1|] = 0. With the notation used in Proposition 3.3.6 we now claim Pi) —
0. In fact if a(j) = ag(j) then

2L
P2y = Phoy < = (FO0) = f(n) >0, (3:3.25)
where we used (3.3.21) in the inequality, and if k(j) is a full FW step then

Pi) < Pk(j) < Pr(i) + Lllxkcyer = xk(py Il = Lllxeya = xepll = 0, (3.3.26)

where we used (3.3.20) in the first inequality and pg(;y = 0 in the equality.

We therefore have pg ;) — 0. Equivalently, thanks to (3.2.6) we have

dist (0, 6fg(x,;(j))) — 0, so if x* is a limit point of XE () by lower semicontinuity of
the subdifferential we must have 0 € d fo(x*), i.e., x* is stationary. In particular, by
compactness {x,z( j)} must converge to the set of stationary points. By the bound-
edness of ||xx4+1 —xi|| and k(j +1) — k(j) we also have that the set of limit points of
{xx} coincides with the set of limit points of {x,;( j)}, and in particular it is a subset
of stationary points contained in [f(x) = f*].

Let Q* C [f(x) = f*] be the set of limit points of {x;}. By compactness (see [39,
Lemma 6]), we have that for some fixed &,n > 0, the KL property holds for every
x* € QF with parameters € and n. Then for k large enough x; € Bs(x*) N [f(x*) <
f < f(x*) +n] for some x* € Q, and the asymptotic rates follow by Proposition
3.3.6. O

For the three FW variants described before we can now give an asymptotic linear
convergence rate in the number of good steps. We refer the reader to Table 1 for
bounds on this number.

Corollary 3.3.8. Let us assume that the objective function f satisfies Assumption
3.1 for every stationary point in the level set [f(x) = f*] and Q = conv(A) with
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|A| < +o0 in Problem (3.2.1). Then the AFW, the PEW and the FDFW converge
at a rate

flu) - F) < Mg, (3.3.27)
or some M > 0, with vy the number of good steps among the first k steps,
J h yg(k) th ber of good he first k
. pu (PWidth(A)\” e
Gos = max (1 - ( 5 : (1 + L) (3.3.28)
for the AFW,
_ 1 (PWidth(A) )
=1- L= 3.2
dg: I ( D (3.3.29)
for the PFW, and
L u (PFWidth(Q)\? )1
Ggs = Max (1 -7 (T , (1 + Z) (3.3.30)

for the FDF'W.

Proof. For the AFW and the FDFW the rates (3.3.28) and (3.3.30) for good steps
follow directly from (3.3.18) and (3.3.19) together with the bound on 7 given in
Proposition 3.3.3. Since the PFW never performs full FW steps, its rate (3.3.29)
for good steps follow directly from (3.3.18) together with the bound on 7 given in
Proposition 3.3.3. Finally, given that the number of bad steps between two good
steps is limited for all these methods (see [153,157]), we have all the assumptions
to apply Proposition 3.3.7. O

3.4 First order projection free methods with SSC
procedure

We introduce here the SSC procedure, and prove convergence rates both under
the KL inequality (3.2.4) and in the generic non convex case.

3.4.1 The SSC procedure

The SSC procedure chains consecutive short steps, thus skipping updates for the
gradient (and possibly for related information, like linear minimizers), until proper
stopping conditions are met. Such a procedure, whose detailed scheme is given in
Algorithm 4, can be easily embedded in a first-order approach (see Algorithm 3).
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Algorithm 3 First-order method with SSC

x0€Q, k=0.

while x; is not stationary do
g =-Vf(xp).
xk41 = SSC(xx, 8)-
k=k+1.

end while

Algorithm 4 SSC(x, g)

1:

10:
11:

12

Initialization. yg=x, j = 0.
Phase I
select dj € ﬂ(yj, g), a'r(rjlzlx € a’max(yj’ dj)
if d; =0 then
return y;
end if
Phase 11
compute f; with (3.4.2)
let a; = min(aé{ix,ﬁj)
Yi+1 =Y +a’jdj
if Clj = ﬁj then
return y;,
end if
. j=Jj+1, go to Step 2
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Given that the gradient —g is constant during the SSC, this procedure is an
application of A for the minimization of the linearized objective f,(z) = —g"(z -
X) + f(x) with particular stepsizes and stopping criterion. More specifically, after a
stationarity check (Phase I), the stepsize @; is computed by taking the minimum
between the maximal stepsize aé{éx (which we always assume to be greater than 0)
and an auxiliary stepsize ;. Here amax(y;,d;) denotes the set of possible maximal
stepsizes used by A from y; in the direction d;. The point y;,1 generated in Phase
IT is always feasible since a; < aﬁ{a)lx is always smaller than the maximal feasible
stepsize along the direction d;. Notice that if the method A used in the SSC
performs a FW step (see equation (3.3.5) for the definition of FW step), then the
SSC terminates, with a; = 8; or with y;,; global minimizer of f,.

The auxiliary step size B; is defined as the maximal feasible stepsize for the trust

region ¢
Qj = Blg2L (X + 57) N Byrg, 1 (X) (3.4.1)
when y; € Q;, otherwise the method stops returning y;. Summarizing,
0 ify, ¢ Q;,
B = N (3.4.2)
ﬁmaX(QJ’9yj,dj) 1fyj er’

where Bmax(Q;,y;,d;) = max{f € Ryo | y; + fd; € Q;} is the maximal feasible
stepsize in the direction d; starting from y; with respect to Q;. Since Q; is the
intersection of two balls there is a simple closed form expression for ;. In particular,
using that yg = x, if dgp # 0 we have

_ g'do
Llldoll’

Bo

which corresponds to (3.3.13) in the non maximal case, and where By > 0 since
do # 0 is by assumption a descent direction for —g.

Remark 3.4.1. When the Lipschitz constant L is not available, it can be ap-
proximated adaptively in the following way. At the step k we start with an esti-
mate L = Ly of the Lipschitz constant. Then, we compute x; with the procedure
SSC(xg, =V f(xr)), and repeat setting L := 2L until

F) = ) 2 50 (= x)) (3.4.3)

holds. When this happens, we set xi41 = x; and Liy1 = L. The linear convergence
results we will see later in this section can be extended in a straightforward way
when L is approximated with this adaptive scheme.
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Employing the trust region ; in the definition of §; guarantees the sufficient
decrease condition

£ < Fow) = 5 ek = 3,1 (34.4)

and monotonicity of the true objective f during the SSC.

To see why (3.4.4) holds, notice that the second ball B = B||g||/2L(xk:|- +) ap-
pearing in the definition of Q; does not depend on j, so that since yp € B we have
yj € B for every j € [0 : T], with T maximal iteration index of the SSC. This is
enough to obtain (3.4.4) because for every z € B we have

F@) < f@-gT -0+ sl < f@ - Sl -, (345)

where the first inequality is the standard descent lemma and the second follows from
the definition of B.
We prove that the true objective f is monotone decreasing in the next lemma.

Lemma 3.4.2. Let us assume y; € BgTJj/L(X)' Then for every B € [0, B;] we have

d
@f()’j +ﬁdj) <0,

and thus in particular f(y; +B;d;) < f(y;).

Proof. We have

I+ Bd) = 119 F oy + ) Td
=N I ((VF vy +Bd)) +8) = 8)7d; = ldjI|((VF (y; +Bdj) +r)Td; - g7d))
<d;lI(LIIx -y, - Bd,ll - g"d)) <0,
where we used g = —V f(x) and the Lipschitzianity of V f in the first inequality and
yj+pBd; € Bgrd}/L(f)
in the second. O

The next result illustrates how the sequence {x;} generated by Algorithm 3
satisfies certain descent conditions. This is an adaptation to our setting of the ones
used in the analysis of many proximal type gradient methods (see [12], [13], [38] and
references therein). A subtle difference is the introduction of an "hidden sequence"
{Xx} to control the projection of the negative gradient on the tangent cone.
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Proposition 3.4.3. Let us consider the sequence {x;} generated by Algorithm 3
and assume that

« the angle condition (3.3.2) holds;
o the SSC condition terminates in a finite number of steps.

Then

Fx) = i) 2 Sl —xeall?, (3.4.6)
I = xeatll = Klla(Ta ), -V £ G) (3.4.7)

for some % € {y;}i_ such that f(xxa) < f(Fx) < f(xx) = Lok = xll?, 1%k — xiell <
Ixk+1 — xkll and for K = 7/(L(1+1)).

Proof. Let B; = BchZj/L(xk) and let T be such that xz4+1 = yr.
Inequality (3.4.4) applied with j =T gives (3.4.6). Moreover, by taking X; = y; for
some T € [0 : T] the conditions

Flrwn) € £ < £ ) = 5l = 5l (343)

are satisfied by Lemma 3.4.2 and (3.4.4).

Let now p; = |[7(Ta(y;), =V f(y;))ll and p; = ||[7(Ta(y;), &I = 7 (Ta(y;), =V x|l
We have

lpj — Pl < Llly; = xll , (3.4.9)

reasoning as for (3.3.20). We now distinguish four cases according to how the SSC
terminates.

Case 1: T =0 or dyr = 0. Since there are no descent directions xz4+1 = yr must be
stationary for the gradient g. Equivalently, pr = ||7(Ta(xk+1), g)|| = 0. We can now
write

1 ~ pr
X —_ > — —_ = — > K s
” k+1 xk” = L(|PT PT|) I pPr

where we used (3.4.9) in the first inequality and pr = 0 in the equality. Finally, it
is clear that if T =0 then dy = 0, since yg must be stationary for —g.

Before examining the remaining cases we remark that if the SSC terminates in
Phase II then a7-; = Br-1 must be maximal w.r.t. the conditions y7 € By_; or
yr € B. If ar_1 = 0 then y7_; = yr, and in this case we cannot have yr_; € 9B,
otherwise the SSC would terminate in Phase II of the previous cycle. Therefore
necessarily yr = yr_1 € int(Br-1)¢ (Case 2). If Br_1 = ar—1 > 0 we must have



3.4 First order projection free methods with SSC procedure o7

yr-1 € Qr_1 = Br_1 N B, and yr € dBr_1 (case 3) or yr € OB (case 4) respectively.
Case 2: yp_1 = yr € int(By-1)¢. We can rewrite the condition as

g"dr_1 < Lllyr—1 — x¢ll = Lllyr — x|l - (3.4.10)

Thus
) 1. L
pr = pr-1 < pr—1+L[lyr—xi|| < =8 dr_1+L|lyr—xi|| < < + L] |lyr—xill, (3.4.11)

where in the equality we used yr = yr_1, the first inequality follows from (3.4.9) and
again yr = yr_1, the second from % > DSB4(Q,yr,g) = SB#(Q) = 7, and the
third from (3.4.10). Then X = xz4+1 = yr satisfies the desired conditions.

Case 3: YT = Y1-1 +ﬁT—1dT—1 and yr € BBT_l. Then from yYr-1 € Br_q it follows

Lilyr-1 = x¢ll < g7dr-1, (3.4.12)

and yr € dBy_1 implies
g'dr_1=Lllyr —xll. (3.4.13)

Combining (3.4.12) with (3.4.13) we obtain
Lllyr-1 = xill < Lllyr — x|l - (3.4.14)

Thus
) 1. L
pr-1 < pr—1+ L|lyr—1 — x| < =8 dr-1+ Ll[yr—1 — x| £ -+ L) llyr —xkll,

where we used (3.4.13), (3.4.14) in the last inequality and the rest follows reasoning
as for (3.4.11). In particular we can take Xy = yr_1, where [[Xx — x¢|| < ||xx+1 — Xk ||
by (3.4.14).

Case 4: VYT = Y71 +,BT_1dT_1 and VT € 6E

The condition x¢4+1 = yr € B can be rewritten as

Lipeesr = xell” = " (eker = x1) = 0. (3.4.15)

For every j € [0 : T] we have

T-1
et =3+ ) ad;. (3.4.16)
=
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We now want to prove that for every j € [0: T]
k1 = xell = [ly; — xkll - (3.4.17)

Indeed, we have

T-1
Lllxgsr —xil|? = &7 (eerr —xx) = g7 (v —xx) + Z @8 d;
i=j
> g (y; —xk) = Llly; —xcll?,

where we used (3.4.15) in the first equality, (3.4.16) in the second, g'd; > 0 for
every j in the first inequality and y; € B in the second inequality.
We also have

8" (Xk41 —xk) Z] —o @jd; > Z] —0 @;jd;
[IXk+1 — x| || J 20 ajd I j 20 oz]||d | (3.4.18)
£d; 4.
> min |O_]_T—1}.
{lld [
Thus forfeargmin{ﬁ |0<j ST—l}
J
5 T (Xke1 — Xk)
gTdy < ST i — el (3.4.19)

[lxk+1 — Xkl

where we used (3.4.18) in the first inequality and (3.4.15) in the second.
We finally have

i 1 .. L
pr < pp+ Llyp —xill < —g dp + Lllyp —xill < | = + L | e — xll

where we used (3.4.17), (3.4.19) in the last inequality and the rest follows reasoning
as for (3.4.11). In particular X; = y; satisfies the desired properties, where ||X; —
x|l < llxker — xkl| by (3.4.17). O

3.4.2 SSC for Frank-Wolfe variants

In this section, we show how to apply our results to the PFW, the AFW and the
FDFW on polytopes, i.e., we prove finite termination of the SSC procedure when
one of these methods is considered in Algorithm 3. We also give worst case and
average worst case bounds for the number of iterations of the SSC. We start by
proving a general termination criterion.
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Figure 3.2: Instance of SSC with FDFW. By = BgT{zz/L(i).

Lemma 3.4.4. Assume that the method A applied to any linear function Ly(x) =
—g"x on the feasible set Q and with every stepsize maximal always terminates in
at most T iterations with an optimal solution, i.e. generates a sequence {y;}je[0,1]
with T" < T and yr» € argmin,cq Lg(x). Then the SSC with the method A on the
feasible set Q always terminates in at most T iterations.

Proof. Assume by contradiction that the SSC does at least T +1 iterations, generat-
ing the sequence {y;}je[o.7+1] before terminating. Notice that in this case the SSC
must always do maximal steps for j € [0 : T], because it terminates at step 9 when
a; = B; and in particular if a; < ar(l{';x. Then for some 77 < T we must have that
Y1 € argmin,cq Lg(x), which gives a contradiction because in this case the method

can’t find a feasible descent direction in Phase I and terminates returning yz». O

Remark 3.4.5. Using the same line of reasoning, it is not difficult to prove that
the SSC always terminates if the method A applied to linear objectives and with
stepsizes always maximal generates a (possibly finite) sequence {y;} satisfying

liminfr, (g) =0. (3.4.20)

We now denote with {SU)} the sequence of active sets generated by the AFW
and the PEW method in the SSC, and with y; proper convex combination of the
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elements in ). Furthermore, for the FDFW we assume that the maximal stepsize
is given by feasibility conditions as in [103]:

Amax (X, d) = {a™™(x,d)}. (3.4.21)

Notice that after a maximal in face step from y; we have dim(F (y;+1)) < dim(F (y;))
because y ;41 lies on the boundary of F(y;).

Proposition 3.4.6. The SSC always terminates in at most:
o |A| iterations for the AFW,
o |A| -1 dterations for the PFW,
o dim(Q) + 1 iterations for the FDFW.

Proof. By Lemma 3.4.4 we just need to bound the maximum number of iterations
if the method performs always maximal steps for a linear objective L,(x). The
AFW can do at most |A| — 1 consecutive maximal away steps, since at every such
step the number of active atoms decreases by one. Analogously, the FDFW can
do at most dim(Q) consecutive maximal in face steps, since at every such steps
the dimension of the minimal face containing the current iterate decreases by one.
The respective bound follows Lemma 3.4.4 by noticing that in the linear case the
methods terminate after a full FW step. For the PEFW | the linearity of the objective
implies that only atoms in A := argmax,.4 g'x can be added to the support, and
only atoms in A \ A can be dropped from the support. In particular, once an atom
is dropped from the active set it cannot be added again, and since at every maximal
step the PFW drops an atom from the active set its maximal number of iterations
is [A\ A| < |A] - 1. O

We now define and give a bound on the worst case average number of SSC
iterations. Let T'(k) be the number of points generated by the SSC at the step k.
Then we define the worst case average number of SSC iterations as the supremum
of

k-1
.1 .
Jim ; (i) (3.4.22)

over all the possible realizations of Algorithm 3 (of course under specific assumptions
on A).

The proof of the following result uses analogous arguments to the ones in [157,
Theorem 8] to bound the number of bad steps.
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Proposition 3.4.7. Assume that the linear minimizer is not changed during the
SSC. Then, for an infinite sequence {xy}, the worst case average number of iterations
18

o 2 for the AFW and the PFW,

o A(Q)+1 for the FDFW.

Proof. Let T(k) be the number of iterates generated by the SSC at the step k in
Phase II. For the AFW and the PFW, reasoning as in the proof of Proposition
3.4.6 we obtain that if the SSC does T(k) iterations, the number of active vertices
decreases by at least T(k) — 2. Then on the one hand

ISP -850 > 1 - 5O, (3.4.23)
while on the other hand
k-1
[S© =151 = > (15D~ 15
i=0
. (3.4.24)
< 2%k — Z T(i) .
i=0
Combining (3.4.23) and (3.4.24) and rearranging, we obtain:
k=1
1 _ 1S -1

and the desired result follows by taking the limit for k — oo.

For the FDFW, notice that at every iteration the SSC performs a sequence of
maximal in face steps terminated either by a Frank Wolfe step, after which ¥ (y;)
can increase of at most A(€2), or by a non maximal in face step, after which ¥ (y;)
stays the same. In both cases, we have

dim(F (xk+1)) — dim(F (xx)) < A(Q) =T(k) + 1. (3.4.26)
Then,
dim F (xg) — dim F (xg) > —dim F (xq) , (3.4.27)
and o

dim F (x¢) = dim F (xo) = Y (dim(F (xis1) - dim(F (x;)))
=0 (3.4.28)

k-1
< kA(Q) +k - ZT(i) .
i=0

The conclusion follows as for the AFW and the PFW. O
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3.4.3 Convergence rates
Smooth non convex objectives

We first prove, in the generic smooth non convex case, convergence to the set of
stationary points with a rate of O(#) for || (Ta(X:), =V (X))l

Theorem 3.4.8. Let us consider the sequence {xi} generated by Algorithm 3 and
assume that

« the angle condition (3.3.2) holds;

o the SSC procedure always terminates in a finite number of steps.

Then {f(xx)} is decreasing, f(xx) — f* € R and the limit points of {x;} are sta-
tionary. Furthermore, for any sequence {Xy} satisfying the conditions of Proposition
3.4.3, we have ||Xr —x¢|| — 0, and

min Ir(Ta(), -V f () < in P20 IO g o)

0<i<k K ~\ K2L(k+1)
for K =1/(L(1+71)).

Proof. The sequence { f(x¢)} is decreasing by (3.4.6). Thus by compactness f(x;) —
f* € Rand in particular f(xx)—f(xxs1) — 0. So that by (3.4.6) also ||xg+1 —x|| — 0.
Let {xx;)} — X* be any convergent subsequence of {x;}. For {¥;} chosen as in the
proof of Proposition 3.4.3 we have ||X; — xx|| < ||xx+1 — xk|| because Xx = yr = x¢ in
case 1 and case 2, by (3.4.14) in case 3, and by (3.4.17) in case 4. Therefore

Xk i) — Xk Il < 1xkiy+1 = Xk@yll — 0.

Furthermore, |7 (To(Xk@)), =V f Gl < w — 0 again by Proposition
3.4.3, so that Xi;) — x* with [|7(Ta(Xki)), =V f(%k@)) |l — 0. Then

l7(Ta(x"), -VFE))I =0

and X* is stationary.
The first inequality in (3.4.29) follows directly from (3.4.7). As for the second,
we have
k+1
K2

k+1
K2

(Hl,in xie1 = x:])? = min a1 — x|
<i<k 0<

RN 2/ (x0) = f*)
K—;nx,—xmn LKQZ(ﬂ xin) = f () € =
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Algorithm Article LMO c.r. | Gradient c.r. Gap
1 1 :
NCGS 205] | o(w=) | O (ﬁ) ming<ik 7(x;)
= 1 1 .
AFW, FW [47), [156] | © (Tz) 0 (\—@) ming<i<x G (x;)
AFW, PFW, FDFW + SSC | Ours 0 (v%) 0 (\L@) ming<i<s [|7(Ta (%), =V £G))]|

Table 3.2: Comparison between convergence rates in the generic smooth non convex
case. See also Remark 3.4.10. n(x) = ||lx—x (Q,x - %(Lx)) I, G is the FW gap (see Section
2.6.1).

where we used (3.4.6) in the first inequality, { f(x;)} decreasing together with f(x;) —
f* in the second and the thesis follows by rearranging terms. O

We now give a corollary for Theorem 3.4.8 specialized to the FW variants de-
scribed in Section 3.3.1 (see also Table 3.2).

Corollary 3.4.9. Let us assume that Q = conv(A), with |A| < +oo in Problem
(3.2.1). Then the sequence {xy} generated by Algorithm 3 with AFW (PFW or
FDFW) in the SSC converges at a rate given by equation (3.4.29), with T = 1,/2
(Tp or 1,/2, respectively).

Proof. Finite termination of the SSC follows by Proposition 3.4.6, and the angle
condition is satisfied by Proposition 3.3.3. Thus we have all the assumptions to
apply Theorem 3.4.8. O

Remark 3.4.10. Notice that in Table 3.2 we use the Frank Wolfe gap (see Section
2.6.1) as a measure of convergence. By combining equation (3.2.3) with (2.6.8), we
obtain, for any y € Q

G(y) < Dlja(Ta(y). =VS)I - (3.4.30)

Taking into account equation (3.4.30), it is easy to see that our rate is an improve-
ment of the ones proved in [156] and [47] (see Table 3.2). Furthermore, we do
not need to start from a vertex to avoid dependence from the support of {xg} like
in [47, Theorem 5.1]. Finally, our method improves the conditional gradient sliding
rate (NCGS) not only in LMO but also in gradients, given that from Q—{y} c Ta(y)
it follows n(y) < [|[7(Ta(y), =V f(¥))||/2L for every y € Q.
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Objectives with KL property

As a consequence of Proposition 3.4.3, we have linear convergence rates for the
general algorithmic scheme reported in Algorithm 3 under the KL inequality (3.2.4),
the angle condition (3.3.2), and finite termination of the SSC procedure. In the next
results (Lemma 3.4.11, Theorem 3.4.13 and Corollary 3.4.14), we always assume the
following;:

« the angle condition (3.3.2) holds;
o the SSC procedure always terminates in a finite number of steps.

Lemma 3.4.11. Let us consider the sequence {xx} generated by Algorithm 3 and
assume that the objective function f satisfies condition (3.2.4), with f(x*) fized, in

2

every feasible point generated by the algorithm. Then, for g = (1 + %(1:—1)2)_ we
have f(xi) — f(x*), with

FO) = FO) < ¢ (F(xo) = F(6*), (3.4.31)

and xp — X* with

VZ=24(/ () = [(E)) ¢
VL(1 - vg) ’

for X* stationary point such that f(xX*) = f(x¥).

lloxx — & < (3.4.32)

In order to prove Lemma 3.4.11 we first need a technical Lemma based on Kara-
mata’s inequality ( [143], [144]) for concave functions. We now recall the inequality.
Given A, B € RV it is said that A majorizes B, written A > B, if

B; for j € [1: N],

If h is concave and A > B by Karamata’s inequality

N N
D h(A) < D h(By).
i=1 i=1

We can now state and prove the technical lemma.
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Lemma 3.4.12. Let {fi}ie[o:j] be a sequence of nonnegative numbers such that fiq <
qf,- for some g < 1. Then

$ o Vh(-g
ZO fi—finn < W . (3.4.33)

Proof. Let j =max{i >0 | f, < ¢' fo}, so that by (3.4.41) we have j > j. Define
w*, v e I]?j;)l by

v=fo-qford  fo-d' ford' fo - 7).

T A S0 (3.4.34)
w :(f()—fl,...,fj_l—fj,O,...,O).
Then for 0 < I < j we have
! i o I
Z vi=fo—q"" fo < fo— fuaimasrp = Z Wi, (3.4.35)
i=0 i=0

where we used ¢\ fy > fiq for I < j—1 and ¢"™*'fy > fj for j <1 < j in the
inequality. Furthermore, for [ = j we have

l 1
vi=fo-f = Z W (3.4.36)
i=0 i=0

Now if w is the permutation in descreasing order of w*, clearly thanks to (3.4.35),
and (3.4.36) we have w > v. Then

~
|
—_
~.

!

i+1 j+l j+1

[*_
w, =

+

Vvi
=0 =0 (3.4.37)

qi+1 VfO(l_CI)

i — Jiv1

w; <

1

T\
[en]
Il

o

8

1-vq

IA
o

qi_

I
o

i
where the first inequality follows from Karamata’s inequality. O

Proof of Lemma 3.4.11. If the sequence {x;} is finite, with x,, = X,, stationary for
some m > 0, we define x; = x,, for every k > m, so that we can always assume {x;}
infinite. Notice that with this convention the sufficient decrease condition (3.4.6)
is still satisfied for every k. Let fiy = f(xx) — f(x*). {fx} is monotone decreasing
by (3.4.6), and nonnegative since (3.2.4) holds for every xy.
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We want prove fri1 < qfr. This is clear if fyi1 = 0. Otherwise using the notation
of Proposition 3.4.3 we have

L LK? . _
i = fie1 2 §||xk —xp1l)? 2 TH”(TQ(Xk), =ViE)I, (3.4.38)

where we used (3.4.6) in the first inequality, (3.4.7) in the second. Since %y € {y; }JT‘=0
by Proposition 3.4.3, we can apply (3.2.4) in X; to obtain

2
o (Ta ), =V FGIP 2 LK (F (50 - FO) 2 LK fir. (3.4.39)

Concatenating (3.4.38), (3.4.39) and rearranging we obtain

fee1 < L+ uLK)  fe = qfe. (3.4.40)

Thus by induction for any i > 0

fesi <4 frs (3.4.41)

which implies in particular (3.4.31).
We can now bound the length of the tails of {x;}:

+00

+00 92
Z ||xk+i _xk+i+1|| < \[ 7 Z ka+i = frais1
i=0 L =0

- V2£(1-¢q) - \/Qfo(l—Q)qg
VL -9 VL -vg)

where we used (3.4.6) in the first inequality, Lemma 3.4.12 with {f;} = {fi+} and
for j — 400 in the second inequality, and (3.4.41) in the third. In particular x; — x*

(3.4.42)

with
+00 /2 1 _
e =% < ) lxkaj = Xeajeill = ng (3.4.43)
J J
=0 VL(1 - +/q)
by (3.4.42). o

The KL assumption of Lemma 3.4.11 is trivially true if (3.2.4) holds globally
for every x* in the set of solutions of Problem (3.2.1); an analogous assumption is
used in [146] for the PL property. By [38, Corollary 6], for convex objectives this
assumption is satisfied in particular under a global quadratic Holderian error bound,
thus, e.g., by strongly convex objectives.

Under mild assumptions on the stationary point x*, we can also apply Lemma 3.4.11
locally on non convex objectives, thus adapting to our projection free setting the
local results given in [13, Section 2.3] for proximal methods.
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Theorem 3.4.13. Let Assumption 3.1 hold at x*. Further assume that x; € Bs(x*) =
f(xps1) = f(x*). Then, for some é > 0, if xo € Bs(x*) the rates (3.4.31) and (3.4.32)
hold.

Proof. By continuity, for 6 — 0 and fy = f(xg) — f(x*) we have that

max 0— 0, 3.4.44
x0€Bs(x*)N[f2f(x*)] J ( )

so we can take 6 < ¢/2 small enough in such a way that

V2fo(1 —q) \/5 5
e i reen L -y TNV <3 (3.4.45)
Let now xo € Bz(x") N [f > f(x")], so that
5<g<6— 142(]?010(1_ \/7\/% (3.4.46)

where we use (3.4.45) in the second inequality. We now want to prove, by induction
on k, {x;}icjo:x] € Bs(x*) with f(xi11) < qf(x;) for every i € [0: k] and k € N. To

start with,
S [2 _V2h(-9)
1 1+ < i+ 3447
2. l1xi = Xiva | Z Vfi— fir < Via—vo) ( )

where we used (3.4.6) in the first inequahty, and Lemma 3.4.12 (which we can apply
thanks to the inductive assumption) in the second. But then

k-1
s ="l < llxg —x°]1 + (Z I —x,-+1||) N r—
=0
<§ Vi{f(l‘ [m (3.4.48)
e

where we used (3.4.47) together with (3.4.6) in the second inequality, the assumption
Xk € Bs(x*) = fiy1 = 0 in the third inequality, and (3.4.46) together with fy > fx
in the last inequality.
We now have
k=1
1%k = x|l < llxo — x7I| + (Z [lxi —xi+1||) + [l = Xl
i=0
1 (3.4.49)

< [lxo — " + (Z I —xmn) + i = x| <6,

i=0
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where we use ||X; —xi|| < ||xx+1 —xx]|| in the second inequality and the last inequality
follows as in (3.4.48). Thus x; € Bs(x*) as well, which is enough to prove (3.4.40)
and complete the induction. We have thus obtained {x;}, {xx} € Bs(x*), and the
conclusion follows exactly as in the proof of Lemma 3.4.11. O

It is not difficult to see that the assumption x; € Bs(x*) = f(xxs1) = f(x¥)
is true, e.g., if x* is a minimizer on its connected component of the sublevel set

[f < f(xo0)].

As a corollary of Theorem 3.4.13, we can apply Lemma 3.4.11 and derive the
following asymptotic rates.

Corollary 3.4.14. Let us consider the sequence {xy} generated by Algorithm 3. Let
Assumption 3.1 hold at every point of the limit set of {x;}. Then, for some positive
constants M and M, {xi} — x*, with the asymptotic rates:

foa) = f(x*) < Mg",
-k (3.4.50)
[k =x"|| < Mq= .
Proof. Let x* be a limit point of {x;}, and let § be as in Theorem 3.4.13. First,
for some k € N we must have x; € Bz(x*). Furthermore, for every k € N we
have f(xx) = f(x*) because f(xj) is non increasing and converges to f(x*). Thus
we have all the necessary assumptions to obtain the asymptotic rates by applying
Theorem 3.4.13 to {yx} = {xz,+}- O

Similarly to what we did for Theorem 3.4.8, here we give a corollary for Lemma 3.4.11
related to the FW variants described in Section 3.3.1.

Corollary 3.4.15. Let us assume that the objective function f satisfies condi-
tion (3.2.4) on every point generated by the algorithm, with f(x*) fized, and that
Q = conv(A) with |A| < +co in Problem (3.2.1). Then the sequence {x;} generated

by Algorithm 3 with AFW (PFW or FDFW) in the SSC converges at the rates given
by Lemma 3.4.11, with T = 1,/2 (1, or 7,/2, respectively).

Proof. Finite termination of the SSC follows by Proposition 3.4.6, and the angle
condition is satisfied by Proposition 3.3.3. Thus we have all the assumptions to
apply Lemma 3.4.11. O

For comparison, we now recall some well-known result related to global linear
convergence rates for the FW variants under analysis.
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Algorithm Article | Objective (k) I Ggs hi/ho upper bound Tavg
; 2 2\2
AFW [157] sC k/2 IS0l - 1 1-4% (1 -42)
-
PFW [157] SC | k/3lAlI+1) . 1-4q2 (1 - %T,%)*““ !
k
FDFW? [153] SC | k/(AQ) +1) | dim(F(xo)) 1-uex (1 - %{) S
AFW y " w7 u_ \*
FW +SSC | Ows | NC, KL k - (1+42n) | (1+4ms) 2
PFW + SSC | O NC, K u_ti )7 bt )
W+ urs » KL k - (1 t LTy ) (1 + Z(1+T,,)2) 2
2 -1 2 -k
FDFW + SSC | Ows | NC, KL k - (1+4mms) | (viamy) |a@+1

Table 1: Comparison between the rates of the standard and SSC version of some FW
variants for Q = conv(A) with |A| < co. SC = strongly convex, NC = non convex, KL, =
KL property. y(k): lower bound on the number of good steps after k steps, counting from
the first good step. I,: bound on the number of bad steps before the first good step. ggs:
rate in good steps. hi/hg upper bound: worst case rate assuming no initial bad steps,
equal to qgs(k) . A(Q) = maximum increase in face dimension F (xr41) — F (xx) after a FW
step. So = active set for xg. T4y, = worst case average iteration number of the SSC (see
Proposition 3.4.7)

Proposition 3.4.16. Let us assume that the objective function f is u—strongly
conver and Q = conv(A) with |A| < +oo in Problem (3.2.1). Let {x} be a sequence
generated by the AFW (PFW or FDFW), with stepsize given by exact line search. If
the initial active set is So = {xo} for the AFW (So = {xo} for the PFW, dim(¥ (xo)) =
0 for the FDFW), then

FO0) = £ < ai (fxo) = 1), (3.4.51)
for y(k) and qq5 given in Table 1.

Proof. For the AFW and the PFW the result follows directly from [157, Theorem
1], with the exception of the good steps rate for the PFW, which can be obtained
by applying the bound [157, Equation 10] in [157, Equation 5|. For the FDFW
the result follows from [153, Theorem 1] (where the method is referred to as DiCG),
with the bound uPWidth(V (Q)? on the geometric strong convexity constant implied
by [157, Theorem 6] improved to uPFWidth(Q)? as in Proposition 3.3.3. O

For all the examples where an upper bound on 7, = %thm) is known (see
[206], [200] and references therein) when dim(conv(A)) — oo then 7, — 0 and

our rates for the SSC converge to the rates without SSC for good steps in Table 1.
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While we are not able to prove this limit in general, for all polytopes with dimension
greater or equal to 2, except low dimensional simplices (see Example 3.4.17), we still
have 7, < % (because PdirW(A, g,x) + PdirW(A, —g,x) < D for x in the relative
interior of conv(A) and +g feasible and orthogonal to conv(S) for some S € S,).
Using this together with Example 3.4.17 for simplices, it is easy to check that
the rates in Corollary 3.4.15 (SSC based FW variants) are strict improvements on
the known worst case rates (standard FW variants) reported in Proposition 3.4.16,
with a limited number of exceptions. These are the trivial one dimensional case and
simplices with low dimension (< 4 for the PFW, and < 8 for the AFW using the
loose bounds in Example 3.4.17) combined with objectives having condition number
/L sufficiently close to 1.

Example 3.4.17. If W(conv(A)) is the width of conv(A) (see [157, Section 3]) then
it follows directly from the definition of PWidth that W(conv(A)) > PWidth(A),
with equality for A = {e1,...,e,} (see [157] and [200]). Let now A = {ay,...,an}

be a set of n affinely independent points in R*~'. We claim that, for r, = /1 — %

circumradius of the n — 1 dimensional unit simplex A,_;

-1 /1 for n even,

PWidth(A)/D < r;'W(Au) =4 " V!

2r;1‘/ﬁ for n odd.

To see this, assume without loss of generality D = 1 and 0 € int(Q) for Q = conv(A).
Then if Ag = {d,...,d,} we have W(conv(As)) > W(conv(A)). We can conclude

(3.4.52)

PWNA _ pwidih(4) < W(conv(4)) < W(conv(As)) < 77" W(Ay 1), (3.453)

where in the last inequality we used that regular simplices maximize the width
among simplices with fixed inradius (see, e.g., [9] and [115]).

Remark 3.4.18. The two main assumptions we make on the algorithm in this
section are the angle condition and finite termination of the SSC. When the angle
condition fails, like for the FW method when the solution is on the boundary, we
expect the method to exhibit the zigzagging behaviour mentioned in Section 2.6.2.
As for finite termination, given the very mild convergence properties necessary to
achieve it discussed in Remark 3.4.5, when it is violated the algorithm might not
converge at all even without SSC.
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3.5 Examples

We now discuss some examples of objectives satisfying the KL property and
sets where the angle condition can be satisfied with an explicit bound, relevant to
practical optimization problems.

3.5.1 KL property

The KL property of Assumption 3.1 is satisfied for Problem (3.2.1) in the fol-
lowing cases:

o f is composite strongly convex, i.e. f(x) = g(Bx) with g strongly convex, and
Q is a polytope [170, Proposition 4.1],

e f is composite strongly convex as in the previous point, Q is the [? ball for
p € [1,2], and infyeq f(x) > inf,crn g(Bx) [170, Proposition 4.2],

e fis (non convex) quadratic, i.e. f(x) =x"Qx+b"x+c, and Q is a polytope,
[170, Corollary 5.2],

e f is non convex quadratic and does not satisfy the degeneracy condition of
[138, equation (30)], and Q is the unit sphere [138, Theorem 3.13].

« f is a nonlinear least square objective with full row rank Jacobian, and x* is in
the interior of Q (see [82, Theorem 2] for a special case that easily generalizes
to the desired property).

3.5.2 Angle condition bounds
Bounds using PWidth

For the unit simplex and the unit cube explicit @(1/+/n) values were given in [200,
Example 1 and 2]. With analogous arguments it can be proved that the PWidth
of the Iy ball is 1/+/n. By Proposition (3.3.3), this implies that the angle condition
can be lower bounded with T = ®(1/4/n) for the unit simplex and the /; ball, and
with 7 = ®@(1/n) for the unit cube.
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Bounds using facial distance vf

For a polytope Q = {x € R" | Ax < b} with A € R™" the facial distance can be
defined as (see [27]):
bi — (aD)Ty
i _
VeV (Q) la®||
i:(a)Tv<b;

vi(Q) = (3.5.1)

It is the easy to bound vf(Q) on some specific class of polytopes and, consequently,
give an explicit bound for the angle condition (see also [24]). For instance, if the
matrix A is totally unimodular (i. e. all the vertices are integral for b integral), we
have the following properties.

Proposition 3.5.1. If the matriz A is totally unimodular and b is integral, then
for a = maxie1.m) llaill-

o for the AFW or the PFW, if the size of the active set stays bounded by s, then

1
. SBprw(Q) > ——: 3.5.2
9saD Prw(Q) = =7 (352)

SBarw () >

o for the FDFW,

1 1
2Da(dm(Q) +1) - 2Da(n+1)’

SBrp(Q) > (3.5.3)

Proof. If A is totally unimodular then for i € [1 : m], v € V such that b;—(a?)Tv > 0

we have .
b — (a') Ty oL

laill —  llall

(3.5.4)

since the numerator on the LHS must be at least one. By applying (3.5.4) to the
RHS of (3.5.1) we obtain

1 1
vi(Q) > nin " (3.5.5)
Then the thesis follows for the AFW and the PFW directly from the bounds of
Remark 3.3.4. For the FDFW, the second part of (3.5.3) is trivially true since
dim(Q) < n, and the first follows by the bound given in Remark 3.3.4, using that
by the Caratheodory theorem for every feasible point x there exists S € §, with
|S| < dim(Q) + 1. O



3.6 Numerical tests 73

The bound of Proposition 3.5.1 allows us to bound the angle condition for the
min cost flow polytope with integral capacities:

Q={xeR"|Ax<b, 0<x<c}, (3.5.6)
with b, ¢ integral and A incidence matrix of a directed graph G.

Corollary 3.5.2. Consider a directed graph G with incidence matriz A € R™" and

mazximum degree of a vertex d. Then if Q is given as in (3.5.6):
1
SBrp(Q) > (357)
2Vd(n +1)||c||

Proof. By the capacity constraints, the diameter of Q is at most ||c||. Then the

result follows easily from Proposition 3.5.1 by noticing that Q can be rewritten
as {x € R" | Ax < b} for A = (A;I;-I) totally unimodular (see, e.g., [223]) with
maximum norm of a row equal to Vd. O

Bounds on sets with smooth boundary

On convex sets with smooth boundary the angle condition can be satisfied with
constant arbitrarily close to 1 using orthographic retractions [208, Section 6.3]. Fur-
thermore, on sublevel sets of smooth and strongly convex functions the FDFW
satisfies the angle condition with constant equal to the condition number of the
function divided by 2 [208, Section 6.2].

3.5.3 Applications

There is a number of practical optimization problems with the feasible sets and
objectives discussed above. To start with, the LASSO problem, the minimum en-
closing ball problem, training linear support vector machines and finding maximal
cliques in graphs can all be formulated as convex quadratic optimization prob-
lems [48] on the /; ball or the simplex. The trust region subproblem is a non convex
quadratic problem on the unit sphere (see [138]). The min cost flow problem with a
quadratic objective is also of practical interest [220]. Many other examples can be
found in [170].

3.6 Numerical tests

We tested the SSC on the AFW and the PFW methods, applied to a quadratic
(non convex) relaxation of the maximum clique problem proposed in [40].
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More precisely, let A be the adjacency matrix of a graph G. In [40] it is proved
that there is a one to one correspondence between the maximal cliques of G and the
local minima of the function f : A,-1 — R defined by

f(x) = —xTAx — %||x||2. (3.6.1)

Therefore, we consider instances of Problem (3.2.1) with objective (3.6.1) and fea-

sible set the n — 1 dimensional unit simplex, that is Q = A,_;.

The graph instances we use are taken from the DIMACS benchmark [140]. To have

a fair comparison for both the AFW and the PFW we use the stepsize given by
max _ V.S (xi) Tdk

ap = min{a/k ,—W} (362)

with @;*** determined by boundary conditions. In this way the new point computed

by the methods coincides with the first point computed in the SSC procedure of their
multistep versions.

We reported in Tables 3, 4 the results for the most challenging instances, aggregated
on 100 runs starting from random points. The SSC clearly improves the CPU times
while keeping the solution quality. Indeed in these problems the SSC allows the
methods to identify the support of a local minimum in fewer iterations, so that the
slow initial convergence phase is skipped (see Figures 3.3, 3.4).

Remark 3.6.1. While discussing the optimization of the SSC for specific problems
is beyond the scope of this thesis, we remark that the method can still be useful
even when both gradient updates and LMO are very cheap, as it is often the case
with Frank Wolfe variants. For instance, in the case of quadratic problems on the
simplex we deal with in this section, if the SSC does s AFW steps, the resulting
point can be written as an affine combination of the starting point together with at
most s vertices. The gradient updates can then be performed in parallel at once, as a
matrix-vector multiplication where the vector has at most s+1 non zero components.
Without SSC, such updates must be performed sequentially. Beside this, without
SSC the objective value must be computed at every iteration rather than only at
the end of the SSC.
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Table 3: Max clique found, average clique size, standard deviation of clique sizes and
average CPU time for AFW and SSC + AFW on max clique instances from the DIMACS

benchmark.

AFW SSC + AFW
Instance Max Mean Std CPU time | Max Mean Std CPU time
C2000.5 14 11.7 0.89 2.800 14 11.6 1.00 0.082
C2000.9 67 60.2 2.20 3.135 65 60.0 2.05 0.200
C4000.5 16 12.8 0.94 23.487 16 12.5 0.92 0.429
MANN_ a81 | 1080 1080.0 0.00 31.156 1080 1080.0 0.00 25.047
keller6 45 38.4 241 13.713 43 37.8 2.22  0.413

Table 4: Max clique found, average clique size, standard deviation of clique sizes and
average CPU time for PFW and SSC + PFW on max clique instances from the DIMACS
benchmark.

PFW SSC + PFW
Instance Max Mean Std CPU time | Max Mean Std CPU time
C2000.5 14 11.8 0.86 2.811 14 12.1 0.86 0.077
C2000.9 67 62.3 1.83 3.031 68 62.0 1.77 0.150
C4000.5 15 12.7 0.92 23.423 16 13.4 0.95 0.379
MANN_ a1 | 1080 1080.0 0.00 19.867 1080 1080.0 0.00 15.442
keller6 44 37.3 2.68 13.515 45 35.6 2.83  0.258
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Figure 3.3: Iteration number and CPU time vs log(hy/hg) in the first and the second
column respectively for the instance keller6

Data availability. The data analysed during the current study are available in
the 2nd DIMACS implementation challenge repository,
http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
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AFW+SSC vs AFW - log(hk/h0) AFW+SSC vs AFW - log(hk/h0)
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Figure 3.4: Iteration number and CPU time vs log(hg/hg) in the first and the second
column respectively for the instance C4000.5
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Chapter 4

Active Set Identification
properties of the Away-Step
Frank—Wolfe Algorithm

In this chapter, we study active set identification results for the AFW
in different settings. We first prove a local identification property that
we apply, in combination with a convergence hypothesis, to get an active
set identification result. We then prove, in the nonconvez case, a novel
O(1/Vk) convergence rate result and active set identification for different
step sizes (under suitable assumptions on the set of stationary points).
By exploiting those results, we also give explicit active set complexity
bounds for both strongly convex and nonconvex objectives. While we
initially consider the probability simplex as feasible set, we subsequently
show how to adapt some of our results to generic polytopes. !

4.1 Active set identification and FW variants

Identifying a surface containing a solution (and/or the support of sparse so-
lutions) represents a relevant task in optimization, since it allows to reduce the
dimension of the problem at hand and to apply a more sophisticated method in the
end (see, e.g., [29,33,83,88,118-120]). This is the reason why, in the last decades,
identification properties of optimization methods have been the subject of extensive

!This chapter is based on “Active Set Complexity of the Away-Step Frank-Wolfe Algorithm”
in SIAM Journal on Optimization, vol. 30, iss. 3, pp. 2470-2500, 2020 [48].
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studies.

Beside its slow convergence rate discussed in Chapter 2, the classic FW approach
has another relevant drawback with respect to other algorithms: even when dealing
with the simplest polytopes, it cannot identify the active set in finite time (see,
e.g., [46]). Due to the renewed interest in the method, it has hence become a
relevant issue to determine whether some FW variants admit active set identification
properties similar to those of other first order methods. In this chapter we focus on
the AFW and analyze active set identification properties for problems of the form

min {f(x) | x € A1},

where the objective f is a differentiable function with Lipschitz regular gradient
and the feasible set is the probability simplex. When the algorithm converges to a
stationary point x* we say that it identifies the active set if it correctly determines
all the binding constraints. The active set complexity is then defined as the number
of iterations after which every sequence generated by the algorithm identifies this
subset of constraints. In the chapter, we extend this active set complexity definition
to include sequences convergent to certain subsets of stationary points. We also
extend some of the active set complexity results to general polytopes.

4.1.1 Contributions

It is a classic result that on polytopes and under strict complementarity condi-
tions the AFW with exact line search identifies the face containing the minimum
in finite time for strongly convex objectives [116]. More general active set iden-
tification properties for Frank-Wolfe variants have recently been analyzed in [46],
where the authors proved active set identification for sequences convergent to a sta-
tionary point, and AFW convergence to a stationary point for C? objectives with
a finite number of stationary points and satisfying a technical convexity-concavity
assumption (this assumption is essentially a generalization of a property related
to quadratic possibly indefinite functions). The main contributions of this chapter
with respect to [46] are twofold:

« First, we give quantitative local and global active set identification complexity
bounds under suitable assumptions on the objective. The key element in the
computation of those bounds is a quantity that we call "active set radius'.
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This radius determines a neighborhood of a stationary point for which the
AFW at each iteration identifies an active constraint (if there is any not yet
identified one). In particular, to get the active set complexity bound it is suf-
ficient to know how many iterations it takes for the AFW sequence to enter
this neighborhood.

» Second, we analyze the identification properties of AFW without the technical
convexity-concavity C? assumption used in [46] (we consider general noncon-
vex objectives with Lipschitz gradient instead). More specifically, we prove
active set identification under different conditions on the step size and some
additional hypotheses on the support of stationary points.

In order to prove our results, we consider step sizes dependent on the Lipschitz
constant of the gradient (see, e.g., [22], [134] and references therein). By exploiting
the affine invariance property of the AFW (see, e.g., [136]), we also extend some of
the results to generic polytopes. In our analysis we see how the AFW identification
properties are related to the value of Lagrangian multipliers on stationary points.
This, to the best of our knowledge, is the first time that some active set complexity
bounds are given for a variant of the FW algorithm.

The chapter is organized as follows: after presenting the AFW method for opti-
mization on the simplex and some preliminaries in Section 4.2, we study the local
behaviour of this algorithm regarding the active set in Section 4.3. In Section 4.4 we
provide active set identification results in a quite general context, and apply these
to the strongly convex case for obtaining complexity bounds. Section 4.5 treats the
nonconvex case, giving both global and local active set complexity bounds. Finally,
in Section 4.6 we extend some of our results to generic polytopes.

4.1.2 Related work

In [60] the authors proved that the projected gradient method and other con-
verging sequential quadratic programming methods identify quasi-polyhedral faces
under some nondegeneracy conditions. In [61] those results were extended to the
case of exposed faces in polyhedral sets without the nondegeneracy assumptions.
This extension is particularly relevant to our work since the identification of ex-
posed faces in polyhedral sets is the framework that we use in studying the AFW
on polytopes. In [240] the results of [60] were generalized to certain nonpolyhedral
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surfaces called "C? identifiable" contained in the boundary of convex sets. A key
insight in these early works was the openness of a generalized normal cone defined
for the identifiable surface containing a nondegenerate stationary point. This open-
ness guarantees that, in a neighborhood of the stationary point, the projection of
the gradient identifies the related surface. It turns out that for linearly constrained
sets the generalized normal cone is related to positive Lagrangian multipliers on the
stationary point.

A generalization of [60] to nonconvex sets was proved in [62], while an extension
to nonsmooth objectives was first proved in [123]. Active set identification results
have also been proved for a variety of projected gradient, proximal gradient and
stochastic gradient related methods (see for instance [218] and references therein).
Recently, explicit active set complexity bounds have been given for some of the
methods listed above. Bounds for proximal gradient and block coordinate descent
method were analyzed in [196] and [195] under strong convexity assumptions on
the objective. A more systematic analysis covering many gradient related proxi-
mal methods (like, e.g., accelerated gradient, quasi Newton and stochastic gradient
proximal methods) was carried out in [218].

As for FW-like methods, in addition to the results in [116] and [46] discussed ear-
lier, identification results have been proved in [78] for fully corrective variants on
the probability simplex. However, since fully corrective variants require computing
the minimum of the objective on a given face at each iteration, they are not suited
for nonconvex problems.

4.2 Preliminaries

In this chapter, f : A,-1 — R is a function with gradient having Lipschitz
constant L. The constant L is also used as Lipschitz constant for Vf with respect
to the norm || - ||;. This does not require any additional hypothesis on f since
- 1lv = [l - ]I, so that

IVFx) = VDI < Llx = yll < Lllx = yllx

for every x,y € A,—1. X* is the set of points satisfying first order optimality condi-
tions for the minimization of f on A,_1, that is Vf(x)"d > 0 for every d feasible
direction in x. We call X* the set of stationary points (see, e.g., [30]).

We define dist; in the same way of the Euclidean distance dist but with respect to
|- |l1 instead of ||-||. We now introduce the multiplier functions, which were recently
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used in [83] to define an active set strategy for minimization over the probability
simplex.
For every x € A,—1, i € [1 : n] the multiplier function 4; : A,—1 — R is defined as

Ai(x) = Vf(x)" (e; = x),

or in vector form
Ax) =Vf(x) —x"Vf(x)e .

For every x € X* these functions coincide with the Lagrangian multipliers of the
constraints x; > 0.
We define the the extended support in x € X* as

I(x)={i e [L:n] | Ai(x) =0},

and with I°(x) = {1,...n} \ I(x) the set of binding constraints in x. By first order
optimality conditions (for minimization) we have A;(x) > 0 for every i € [1 : n] and
therefore

Ai(x)>0Viel(x).

We use the notation ay — A for the convergence of a sequence {ax} to the set A
as equivalent to dist(ag, A) — 0.
Keeping in mind that

Ay—1=conv({e;, i=1,...,n}),

we can assume that LMO,, , (r) always returns a vertex of the probability simplex,
that is

LMO,, ,(r) =e;

with 7 € argmin r;.
i

4.2.1 FW and AFW on the probability simplex

Algorithm 1 is the classical FW method on the probability simplex. At each
iteration, this first order method generates a descent direction that points from the
current iterate x; to a vertex s; minimizing the scalar product with the gradient,
and then moves along this search direction of a suitable step size if stationarity
conditions are not satisfied.
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Algorithm 5 Frank-Wolfe method on the probability simplex

[N

: Initialize xp € A,_1, kK :=0
Set si = e;, with 7 € arg min V; f(xx) and dZmW = Sp — Xg
if x; is stationary thenl
STOP
end if
Choose the step size a; € (0, 1] with a suitable criterion

Update: xp41 :=xp + akdznw

Set k :=k+1. Go to Step 2

The away step variant for the unit simplex is instead reported in Algorithm 2.

When the AFW performs an away step, we have that either the support of the

cu

rrent iterate stays the same or decreases of one (we get rid of the component

whose index is associated to the away direction in case ax = @;"*). On the other

hand, when the algorithm performs a Frank Wolfe step, only the vertex given by the

LMO is eventually added to the support of the current iterate. These two properties
are fundamental for the active set identification of the AFW.

Algorithm 6 Away—step Frank—Wolfe on the probability simplex

1: xg € Ay_q, k=0

2: Set s = e;, with 7 € arg min V;f(xx) and d?:w = Sp — Xp

3: if xy is stationary then l

4:  STOP

5: end if

6: Let vy :=ej, with j € argrsrlaxvjf(xk), Sk ={Jj: (xx); >0} and a’kﬂ = Xp — Vi
JE3k

7. if —Vf(x)Td " > -V f(x)Td? then

8 dy = dfw, and @ :=1

9: else

10:  dy = dkﬂ, and @™ := (xg)i/(1 = (xx);i)

11: end if

12: Choose the step size a; € (0, ] with a suitable criterion

13: Update: xg41 := xp + ardy

14: k :=k+1. Go to step 2.
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4.2.2 Technical results related to step sizes

In order to obtain convergence results we of course need some lower bound on the
step size. In particular, we lower bound a; with the Lipschitz constant dependent
step size @; introduced in Section 2.5:

_ . =V f(xx) " di
@y = min |}, ———— ,
g L||dy I

(4.2.1)
We now prove several properties related to the step size given in (4.2.1). First, we
prove that it is always a lower bound on the step size obtained by the exact line
search. We then prove that

. Pk
ay > min(a}'™, ¢
g L||dg|I?

) for some ¢ > 0,

for the Armijo line search and if we impose the weak Wolfe conditions, setting
a; = ;"™ whenever they cannot be satisfied. When ¢ > 1 then (4.2.1) is of course
a lower bound for the step size @y, and when ¢ < 1 we can still recover (4.2.1) by
considering L = % instead of L as Lipschitz constant.

Lemma 4.2.1. Consider a sequence {x;} in A,_1 such that x4 = x; + ardy with
@i € Rso, dr € R". Let ay be defined as in (4.2.1), let px = =V f(xx) "dy and assume
pr > 0. Then:

1. If 0 < ax < 2pi/(ldilI’L), the sequence {x;} has the property (4.5.33).
2. If ay = @, then (4.5.3) is satisfied with p = % Additionally, we have

llxkr1 = xe||?

> (4.2.2)

J(xe) = f(xke1) 2 L
3. If ay is given by exact line search, then ay > ay and (4.5.3) is again satisfied
with p = %

If ax < @ the condition of point 1 implies 0 < @y < 2a;.
Proof. By the standard descent lemma [31, Proposition 6.1.2] we have

Ll|d;||?
2 Il .

> (4.2.3)

fxx) = f(xk +ady) > apy -

It is immediate to check

S LIdill®

aVf(xy) dy +a 5

0, (4.2.4)
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2
for every 0 < @ < —Pk_.
I PA e

2L il

L||d]?
apir — T /2 > Jenllind,1 0

(4.2.5)

for every 0 < @ < —£k_.
y = TP

1. For every x € conv(xg, xx+1) C {xk +ad, |0<a< T, ”2} we have

IIdeI

f(x) = flxx+ady) < flxp) +aVfx) T de +a < f(xx) s

where we used (4.2.3) in the first inequality and (4.2.4) in the second inequality.
2. We have

fxr) = frer) = ) = f O+ ardy) 2 arpi /2,

where we have the hypotheses to apply (4.2.5) since 0 < a; < ﬁ. Again by
(4.2.5)

22 L||d|® _ gl — xpa I

Fr) = fxrer) = fO) = fxx +apdy) 2 @ 5

3. If @y = @, then there is nothing to prove since @x < @**. Otherwise we have

0= ;iaf(Xk + a’dk)lazak = d;(Vf(xk + a/kdk)) (4.2.6)

and therefore

—d{Vf(xi) = =dg Vf(xp) + dg Vf (x + axdie) = =i (Vf (i) = Vf (xi + axdy)
< Llldillllxx = (xx + axdp)|l = ax Ll dil?

(4.2.7)
where we used (4.2.6) in the first equality and the Lipschitz condition in the in-
equality. From (4.2.7) it follows

~dVf(xp)

Ay 2 ——————— =
Ll|di|?

and this proves the first claim. As for the second,

£ = Floxe +and) > £ = Floxe +axdi) = Lpu

where the first inequality follows from the definition of exact line search and the
second by point 2 of the lemma. O



4.2 Preliminaries 87

Corollary 4.2.2. Under the hypotheses of Lemma 4.2.1, assume that f(xg) is
monotonically decreasing and assume that for some subsequence k(j) we have Xy (jy41 =
Xk(j) + @i(j)di(j)- Then

k(i) = Xk (py+1ll = 0.
Proof. By (4.2.2) we have

L
Fxriy) = fxryer) 2 §||xk(j) — xp(jyall?
and the conclusion follows by monotonicity and boundedness. O

We now briefly recall the Armijo line search and the Wolfe conditions with a
couple of adaptations to our setting. For the Armijo search we impose the usual
condition of sufficient decrease

J (i) = f (e + aidi) 2 crarpr (4.2.8)

and assume that the tentative step sizes are given by ,8(0) =™, By () - y,b’(] ) for
c1,y € (0,1).

Lemma 4.2.3. If ay is determined by the Armijo line search described above then

ay > min(a;™, 2y(1 - c1) ) = min{1,2y(1 —c1) }ay (4.2.9)

Llld 12

with ax = min(a,"**, Iid, ”2) asin (4.2.1), and (4.5.3) holds with p = ¢y min{1, 2y(1-
Cl)} < 1.

Proof. From the upper bound on f given in (4.2.3) it follows

f(xg) = f(xx +ady) = crapy  for a € [0,2(1 - cl)Llld ||2] (4.2.10)
and
ax > 2y(1- Cl)LHd &
Therefore
ay > min(a;"™, 2y(1 - 1)L||d ”2) > min{1, 2y(1 — c1) }ay, (4.2.11)
which proves (4.2.9). We also have
f(xk) = fxx + axdy) > cragpr = cpmin{1, 2y(1 - ¢1) }agpr, (4.2.12)

where we used the Armijo condition (4.2.8) in the ﬁrst inequality and (4.2.9) in the
second. Hence, by c¢1,y € (0,1) and ¢1(1 —¢1) < , we get that equation (4.5.3)
holds with p = ¢; min{1,2y(1 —c1)} < 1. O
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The weak Wolfe conditions [194] are (4.2.8) together with
—d];er(xk +apdy) < capk (4.2.13)

for some ¢y € (c1,1).

Lemma 4.2.4. Assume ay = min(a"™, @) with &, satisfying the weak Wolfe con-

ditions. Then
Pk

Lljd|l?

@ > min(a, ™, (1 - c2) ) > (1=co)ay (4.2.14)

and (4.5.3) holds with p = c1(1 — c2) < 1.

Proof. Case a): a; = a;"**. Then trivially ax > @; and by point 2 of Lemma 4.2.1,
equation (4.5.3) is satisfied with p = 3.
Case b): the second weak Wolfe condition holds. We have

capk 2 —dy Vf(xptardy) = df (=Y f (xi)+(Vf (x) =V f (xe+ardy))) > pr—arLlldil®
(4.2.15)
where we used (4.2.13) in the first inequality. Rearranging (4.2.15) we obtain

(1-c2)pk

4.2.16
AL (4.2.16)

ap >

As for part 1 we can now use the Armijo condition (4.2.8) to obtain (4.5.3) with
p=ci(l—ca):

S () = f O+ apdi) 2 crawpr > c1(1 = c2)apr, (4.2.17)

where we used (4.2.16) in the second inequality. To conclude, since }1 > c1(1 -

c1) > c1(1 —¢3) for 0 < ¢; < ¢cg < 1, the bound (4.5.3) holds in both cases with
p=ci(l-co). O

4.2.3 Elementary inequalities

In several proofs we need some elementary inequalities concerning the euclidean
norm || - || and the norm || - ||1.

Lemma 4.2.5. Given {x,y} C A,—1, i € [1: n] we have that
1. |le; — x|| < V2(e; — x); holds; that

2. (y=x); < |ly —x|l1/2 holds; and
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3. if {xx} is a sequence generated on the probability simplex by the AFW then
[xk+1 — Xkl < 2||xk41 — xk|| for every k.

Proof. 1. (e; —x)j = —xj for j #i, (¢; —x); =1 —x; = X ;,;x;. In particular

le = xll = (O 2+ (e = 0D)7 < (O x)? + (1= x)D)7 = V2D x;) = V2(ei - x);

J# J# J#

2. Since Y je[1:] Xj = Xje[1:a] ¥j S0 that 2i(x —y); =0 we have

(y=xi= ) (x=y);

J#

and as a consequence

ly=xllh = >, 1=x)l 2 =2+ Y (x=y); =20y —x); .

jellin] i

3. We have xp41—x; = apdy with dy = +(e;—xy) for somei € [1: n]. By homogeneity
it suffices to prove ||dg|| > %||dk||1- We have

ldell = 1= (i = 50 = i+ D) = Sl

J#

where in the first equality we used ¥i_; (x); = 1 (so that 1— (xg); = X ;2(xx);) and
in the second equality we used 0 < x; < 1. O

4.3 Local active set variables identification prop-
erty of the AFW

In this section we prove a rather technical proposition which is the key tool to
give quantitative estimates for the active set complexity. It states that when the
sequence is close enough to a fixed stationary point at every step the AFW identifies
one variable violating the complementarity conditions with respect to the multiplier
functions on this stationary point (if it exists), and it sets the variable to 0 with an
away step. The main difficulty is giving a tight estimate for how close the sequence
must be to a stationary point for this identifying away step to take place.

A lower bound on the size of the nonmaximal away steps is needed in the following
theorem, since otherwise for steps small enough the sequence can stay arbitrarily
close to the starting point.
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Let {xx} be the sequence of points generated by the AFW, and let x* be a fixed
point in X*. Since x* does not vary in this section, we write for simplicity I and I¢
instead of I(x*) and I¢(x*), respectively, in the rest of this section.
Note that by complementary slackness we have x;f =0 for all j € I¢.

Before proving the main theorem we need to prove the following lemma to bound
the Lipschitz constant of the multipliers on stationary points.

Lemma 4.3.1. Given h > 0, x; € A,_1 such that ||x;y —x*||1 < h let
Or={i€l]| (xx);i =0}
and assume that Oy # I°. Let 6x = maXie[1:n]\0, Ai(x*). For everyi € {1,...,n}:
[ (x") = Ai(xp)| < h(L + %k) . (4.3.1)

Proof. By considering the definition of A(x), we can write

i ) = () =1V o) = VA + V)T (" = xi0) + (Vf (") = Vf () x|

<V = V)i + (Vf () = V() T + V()T (" =)
(4.3.2)

By taking into account the fact that x; € A,-; and gradient of f is Lipschitz
continuous, we have

IVfCe)i = V)i + (V) = V() el = [(VF () = V()T (k= )
<IVAE) = V) lllx - eillo < Lh,
(4.3.3)
where the last inequality is justified by the Holder inequality with exponents 1, co.
We now bound the second term in the right-hand side of (4.3.2). Let

u; = max{0, (x* —x¢);}, {; = max{0, —(x" —xx);}.

We have 2 jef1.m] x; = Djert:)(xk)j = 1 since {x*, xx} C€ A1, so that
Z (x" —xp)j = Z (uj —1;) =0 and hence Z uj = Z l;.
Jjel1l:n] jell:n] jell:n] i€[1:n]

y def *
Moreover, B =2 Y jep1m) Uj = 2 Ljein) Lj = Ljepin i +1j = Zjein X7 — (3151 < A,

hence
W2 = Z uj = Z I} < h/2 .
]

je[l:n] je[lin
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We can finally bound the second piece of (4.3.2), using u; = {; = 0 for all j € Oy

(because (xi); = x;k. =0):

V()T (" = x|

V70 = VAT < (T = T G)

PV = V), (134)

IA

where V f(xi)y and Vf(x), are respectively the maximum and minimum compo-
nent of the gradient in [1 : n] \ Ok.
Now, considering inequalities (4.3.2), (4.3.3) and (4.3.4), we can write

A(x0) = )] < Lk + 2 (T (e = V).

By taking into account the definition of dx and the fact that A(x*); > 0 for all j, we
can write

Or=_ max (Vf(x");=Vf(x");) 2V f(x )y -V )n.
i,je[1:n]\O

We can finally write

. S
i 0xx) = ()] < A(L+ ),
thus concluding the proof. O

We now show a few simple but important results that connect the multipliers
and the directions selected by the AFW algorithm. For a fixed x; the multipliers
A;(xy) are the values of the linear function x — Vf(x)"x on the vertices of A,_;
(up to a constant), which in turn are the values considered in the AFW to select
the direction. This basic observation is essentially everything we need for the next
results.

Lemma 4.3.2. Using the notation introduced in Algorithm 2, we have:

(a) If max{A;(xg) | i € Sx} > max{-A;(xx) | i € [1: n]}, then the AFW performs
an away step with dy = dkﬂ = x; — e; for some i € argmax{A;(xg) | i € Sk}.

(b) For everyi € [1:n]\ Sk if A;(xx) >0 then (xg+1)i = (xx); = 0.

Proof. (a) By the definition of the away direction a’kﬂ it follows

df{ € argmax{-Vf(x)'d | d =x; —e;,i € Sk}
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which implies
dkﬂ = xi—e; for some i € argmax{-Vf(xy)  (xi—e;) |i € St} = argmax{A;(xz) |i € Sk} .
(4.3.5)

As a consequence of (4.3.5)

—Vf(xk)Tdkﬂ =max{-Vf(xy)'d|d=x;—e;,i€cSr}=max{A;(xy) |i€Si},
(4.3.6)
where the second equality follows from A;(xy) = =V f(xx) "d with d = x; — e;.
Analogously

—Vf(xk)Tdk(FW =max{-Vf(xx)'d | d=e; —xi,i€{l,..n}} (43.7)

=max{-A;(xx) | i € {1,...n}} . o
We can now prove that —Vf(xk)TdZ_(W < =V f(xx)Td, so that the away direction
is selected under assumption (a):

— V) Tdl ™Y = max{-A;(x¢) | i € {1,...n}}
< max{A;(x¢) | i € Sk} ==V f(xp)"dl,

where we used (4.3.6) and (4.3.7) for the first and the second equality respectively,
and the inequality is true by hypothesis.

(b) By considering the fact that (xx); = 0, we surely cannot choose the vertex e; to
define the away-step direction. Furthermore, since A(xy); = Vf(xx) (e; — xx) > 0,
direction d = e; —x; cannot be chosen as the Frank-Wolfe direction at step k as well.
This guarantees that (xg+1); = 0. O

We can now prove the main theorem. The strategy is to split [1 : n] in three

subsets I, Jp € I€ and O = I\ J; and use Lemma 4.3.1 to control the variation of
the multiplier functions on each of these three subsets. In the proof we examine two
possible cases under the assumption of being close enough to a stationary point.
If Jx = 0, which means that the current iteration of the AFW has identified the
support of the stationary point, then we show that the AFW chooses a direction
contained in the support, so that also Ji4+1 = 0.
If J # 0, we show that in the neighborhood claimed by the theorem the largest
multiplier in absolute value is always positive, with index in J, and big enough,
so that the corresponding away step is maximal. This means that the AFW at the
iteration k + 1 identifies a new active variable.
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Theorem 4.3.3. If I° is not the empty set, let us define
Omin = min{A;(x*) | i€ I} >0, Jr ={i€I°| (xx); >0} .

Assume that for every k such that dy = dkﬂ the step size ay is either maximal

with respect to the boundary condition (that is ay = @) or ap 2 %j’:ﬂ;d". If

6 .
lxx —x*||1 < 5T = T then

|[Jr+1] < max{0, |Jx| =1} . (4.3.8)
The latter relation also holds in case I° = 0 whence we put r, = +oo.

Proof. If I¢ = 0, or equivalently, if A(x*) = 0, then there is nothing to prove since
Ji CI¢° =0 = |Ji| = |Jgs1] = 0.

So assume I¢ # (. Recall that A;(x*) > 0 for every i € I¢, so that necessarily
5min > 0.

For every i € [1: n], by Lemma 4.3.1

i) = A7) = e =21 (L + )

(%) (439

Ok
> i(x") —r(L+—=) = 4,(x") -
() =L+ G = 4 - T

We now distinguish two cases.
Case 1: |Ji| = 0. Then 6, = 0 because Jy Ul = I and A;(x*) = 0 for every i € I.
Relation (4.3.9) becomes

6minL

Ai(xg) = 4 (x") - CY A
min

so that for every i € I¢, since A;(x*) > Omin, we have

6minL
A; >O0min———— >0. 4.3.10
(xi) 2L + Ommin (4.3.10)
This means that for every i € I we have (x;); = 0 by the Case 1 condition J; = 0
and A;(xg) > 0 by (4.3.10). We can then apply part (b) of Lemma 4.3.2 and conclude
(xk+1)i = 0 for every i € I°. Hence Ji4+1 = 0 = J; and Theorem 4.3.3 is proved in this
case.

Case 2. |Ji| > 0. For every i € argmax{4;(x*) | j € Ji}, we have

A;(x7) = r]nef}ic/lj(x ) = jrenj%lﬂj(x ),
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where we used the fact that A4;(x*) = 0 < A;(x*) for every j € I. Then by the
definition of &y, it follows

/l,-(x*) = 0.
Thus (4.3.9) implies
. iy Smin(L+ %) Oumin (L + F) (4.3.11)
i(xp) > ,(x)—m‘k_m’ N

where we used (4.3.9) in the inequality. But since §; > dmin and the function

. _ 6min 3 4 3
Omin F> —357 5o s decreasing in R-g we have

Smin(L+ %) - S(L+%F) &

6p — ——— 22 Kk 4.3.12
oL + 6uin k ( )

6 _
k oL + 6, 9

Concatenating (4.3.11) with (4.3.12), we finally obtain

)
i(xp) > Ek . (4.3.13)
We now show that dy = xx — e; with j € Ji.
For every j € I, since 4;(x*) = 0, again by Lemma 4.3.1, we have
|4 (o) | = 145 (i) = ()| < e =271 (L + 0¢/2)
Sunin (L + %k) (4.3.14)

<r:(L+06;/2) = < 6k/2,

2L + 5min
where we used ||xx — x*||1 < r«, which is true by definition, in the first inequality,
and rearranged (4.3.12) to get the last inequality. For every j € I¢, by (4.3.9), we
can write
(5min(L + %k) Ok

oL +0mm 2
Using this together with (4.3.14) and (4.3.11), we get —A;(xx) < 6x/2 < Aj(xx) for
every j € [1:n],h € argmax{A,(x*) | ¢ € Jx}. So the hypothesis of Lemma 4.3.2
is satisfied and dy = dkﬂ = xx — ej with j € argmax{4;(xz) | j € Sx}. We need to
show j € Jp. But Sy € 1UJi and by (4.3.14) if j € I then A;(xg) < 6x/2 < A;(xx)
for every j € argmax{A;(x*) | j € Ji}. If j € Ok then (x4); =0 and j ¢ Si. Hence

/lj(xk) > Omin —

we can conclude argmax{A;(xx) | j € Sx} € Jx and dy = x; — e; with j € J;. In
particular, by (4.3.13) we get

max{/lj(xk) | JE Jk} = /lf(xk) > % . (4.3.15)
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We now want to show that ay = ;™. Assume by contradiction @y < @max. Then

by the lower bound on the step size and (4.3.13)

_Vf(xk)Tdk _ /li(xk) > Omin
Llldi|? Llldi|> — 2L|\dk|1*”

@ > (4.3.16)

where in the last inequality we used (4.3.15) together with 6; > . Also, by
Lemma 4.2.5

(di); (di);

Ildill = llej = xill < V2(ej —xi); = —V2(di); = ——& < <-1/2
dill® ~ Jlde ]I V2
o S (4.3.17)
* Xk —X |1 I min
A= —_ ALl —_— —_= —
(a)j = (o =x) < 7= 2 " AL+ 26
Finally, combining (4.3.17) with (4.3.16)
re el e ldill®  Smin
N = ~+(di): < — — —
(xk+1)j = (xx); + (di) ja 5 5 WS SRETATAE

6min 6min
<0,

T AL+ 260 AL

where we used (4.3.16) to bound ay in the first inequality, (4.3.17) to bound (xx);
(di);
lldxll?

and Hence (x441); < 0, contradiction. O

4.4 Active set complexity bounds

Before giving the active set complexity bounds in several settings it is important
to clarify that by active set associated to a stationary point x* we do not mean the set
supp(x* )¢ ={i € [1:n] | (x*); =0}} but the set I°(x*) ={i € [1:n] | 4;(x*) > 0} of
binding constraints. In general I¢(x*) C supp(x*)¢ by complementarity conditions,
with

supp(x™)¢ = I°(x") © strict complementarity holds in x*. (4.4.1)
The face F of A,—1 defined by the constraints with indices in 1¢(x*) still has a nice
geometrical interpretation: it is the face of A,_1 exposed by =V f(x*).

It is at this point natural to require that the sequence {x;} converges to a subset A
of X* for which /¢ is constant. This motivates the following definition:

Definition 4.4.1. A compact subset A of X* is said to have the support identifica-
tion property (SIP) if there exists an index set 79 C [1 : n] such that

I°(x) =15 forallxeA.
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Xk

BRRRREEs. (OB
X Xk+1 —

Figure 4.1: Away step identifies one active constraint

In other words, A has the SIP if and only if the set of binding constraints I¢
is constant for x varying in A. The geometrical interpretation of Definition 4.4.1
is the following: for every point x in the subset A, the negative gradient —V f(x)
exposes the same face. This is trivially true if A is a singleton so that the notion of
subset with the SIP generalizes the one of stationary point. From the geometrical
interpretation it is clear that A has the SIP also if it is contained in the relative
interior of a face ¥ of A,_; and strict complementarity conditions hold for every
point in A. In this case the negative gradient of the points in A always exposes F.
As a pathological example, for f = 0 all the subsets of A,_; have the SIP because
every x € A,_1 is stationary with 7¢(x) = 0.

We further define

Omin(A) = min{;(x) | x € A, i € I} .

Notice that by the compactness of A we always have dpin(A) > 0 if A enjoys the
SIP. We can finally give a rigorous definition of what it means to solve the active
set problem:

Definition 4.4.2. Consider an algorithm generating a sequence {x;} converging to
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a subset A of X* enjoying the SIP. We say that this algorithm solves the active
set problem in M steps if (xx); = 0 for every i € I{, k > M. If, given a set of
conditions on (A, f, xg), M is the minimum number which has this property for every
sequence generated by the algorithm, then we say that the active set complexity of
the algorithm is M, under the given conditions.

We can now apply Theorem 4.3.3 to show that once a sequence is definitely close
enough to a set enjoying the SIP, the AFW identifies the active set in at most |/¢|
steps.

Theorem 4.4.3. Let {xi} be a sequence generated by the AFW, with step size
ay > ay. Let X* be the set of stationary points of a function f : Ay—1 — R with
Vf having Lipschitz constant L. Assume that there exists a compact subset A of X*
with the SIP such that x; — A. Then there exists M such that

(xk)i =0 for every k > M and alli € I} .

Proof. Let Jx = {i € I | (xx); > 0} and choose k such that distq (xz, A) < % =
r. for every k > k. Then for every k > k there exists y* € A with |lxx — y*||1 < 7s.
But since by hypothesis for every y* € A the support of the multiplier function is 7%
with dmin(A) < 4;(y*) for every i € I, we can apply Theorem 4.3.3 with y* as fixed
point and obtain that |Jr41| < max(0,|Jx| —1). This means that it takes at most
[Tzl < [I4] steps for all the variables with indices in 74 to be 0. Again by (4.3.8), we

conclude by induction |Ji| = 0 for every k > M =k + |751, since |J,;+|]2|| =0. O

The proof of Theorem 4.4.3 also gives a relatively simple upper bound for the
complexity of the active set problem:

Proposition 4.4.4. Under the assumptions of Theorem 4.4.3, the active set com-
plexity is at most

min{k € No | dist1(xg, A) < r.Vk > k} + 1751,

Omin (A)

where ry = m

We now report an explicit bound for the strongly convex case, and analyze in
depth the nonconvex case in Section 4.5. From strong convexity of f, it is easy to
see that the following inequality holds for every x on A,_;:

) = F) + k-1, (44.2)

with u; > 0.
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Corollary 4.4.5. Let {x;} be the sequence of points generated by AFW with aj >
ay. Assume that f is strongly convex and let

he < q*ho, (4.4.3)

with g < 1 and hy = f(xx)— f+, be the convergence rate related to the AFW (see [157],
Theorem 8). Then the active set complexity is

max (0, Fn(h0)1;<111;((1bl)17’3/2)b + I . (4.4.4)

Proof. Notice that by the linear convergence rate (4.4.3), and the fact that ¢ < 1,
the number of steps needed to reach the condition

hy < %rf (4.4.5)

is at most

k = max ( Fn(ho) - ln(ulrf/Q)D
- ’ In(1/q) '

We claim that if condition (4.4.5) holds then it takes at most |I¢| steps for the
sequence to be definitely in the active set.

Indeed, if gkhy < %rf then necessarily x; € Bi(x*,r.) by (4.4.2), and by mono-
tonicity of the bound (4.4.3) we then have xp4, € B1(x*,r,) for every h > 0. Once
the sequence is definitely in By (x*,r,) by (4.3.8) it takes at most |J;| < |I°] steps
for all the variables with indices in 7¢ to be 0. To conclude, again by (4.3.8) since

|J]}+|1c|| = 0 by induction |J,,| = 0 for every m > k + |1]. -

Remark 4.4.6. In Corollary 4.4.5, if we assume the linear rate (4.4.3) (which may
not hold in the nonconvex case), then the strong convexity of f can be replaced by
the condition (4.4.2).

4.5 Active set complexity for nonconvex objec-
tives

In this section, we focus on problems with nonconvex objectives. We first give
a more explicit convergence rate for AFW in the nonconvex case, then we prove a
general active set identification result for the method. Finally, we analyze both local
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and global active set complexity bounds related to AFW. A fundamental element
in our analysis is the FW gap function g : A,-; — R defined as

g(x) = irer[lﬁffl{—ﬂf(X)} :

We clearly have g(x) > 0 for every x € A,_1, with equality iff x is a stationary point.
The reason why this function is called FW gap is evident from the relation

g(xx) ==V f(x)Td] ™.

This is a standard quantity appearing in the analysis of FW variants (see, e.g., [136]
) and is computed for free at each iteration of a FW-like algorithm. In [156], the
author uses the gap to analyze the convergence rate of the classic FW algorithm in
the nonconvex case. More specifically, a convergence rate of 0(#) is proved for the
minimal FW gap up to iteration k:
8k =, Inin _g(x;).

The results extend in a nice and straightforward way the ones reported in [192] for
proving the convergence of gradient methods in the nonconvex case. Inspired by
the analysis of the AFW method for strongly convex objectives reported in [200],
we now study the AFW convergence rate in the nonconvex case with respect to the

sequence {g; }.

4.5.1 Global convergence

We start investigating the minimal FW gap, giving estimates of rates of con-
vergence. In the next theorem and in the subsequent Corollary 4.5.2 we assume
that the AFW starts from a vertex of the probability simplex. Thanks to the affine
invariance properties of the AFW this is not a restrictive assumption. For a generic
starting point one can indeed apply the same theorem to the AFW starting from
ens1 for f: A, — R satisfying

F() = f(yrer+ -+ ynen + ynr1X0), (4.5.1)

where xg € A,_; is the desired starting point (see also Corollary 4.5.3). Formally,
this leads to the computation of a sequence {y;} on A, which can be mapped to a
sequence {xi} on A,_1 by the affine transformation

p(y) =yie1+ -+ ypen+ ypi1Xo . (4.5.2)

In Section 4.6, we discuss the invariance of the AFW under affine transformations
in more detail.
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Theorem 4.5.1. Let f* = mineep, , f(x), and let {xi} be a sequence generated by
the AFW algorithm applied to f on Ay—1, with xo a vertex of A,—1. Assume that the
step size ay 1is larger or equal than ay (as defined in (4.2.1)), and that

Fex) = f Qo+ ardy) = pag (=Vf (xx) " di) (4.5.3)

for some fixed p > 0. Then for every T € N

¢ < max ( \/4L(f(XO)—f*) A - 1) (45.4)

oT ’ T
Proof. Let rp ==V f(xy) and g; = g(xx). We distinguish three cases.

A AACTINC
L|ldk|I?

max

Case 1. a; < . Then a; = and relation (4.5.3) becomes

P (T )2

fxx) = f(xk +ardy) 2 pc_xkr;dk = (g di
L|d|

and consequently

2
( T )2 P 2 > pgk (455)

— > d > s
S (xe) = f(xge1) 2 redd)” = sk 2 5p

_P
Llldi”

where we used 7] dy > gx in the second inequality and [|dx]| < V2 in the third one.
As for Si, by hypothesis we have either dy = dZNW so that dy = e; —xy or dy = dk‘ﬂ =
xx — e; for some i € {1,...,n}. In particular Sgy1 C Sp U {i} so that |Sgq1| < [Sk| + 1.
Case 2: ay = @ = o™ = 1,d; = dZnW. By the standard descent lemma [31,
Proposition 6.1.2] applied to f with center x; and a =1

F k) = oo+ d) < £ ) + 9 () g + Sl

=Vf (i) Tdi

AL 1) = a; = 1 we have

Since by the Case 2 condition min (

~V /() dy : .
— 21 = L|ldi||” >V d ,
e 2 Lo L 2 V()T dy

hence we can write

_M > lgk . (4.5.6)

FO) = f(par) =~V F(re) Ty - gndkn2 > ey ]
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Reasoning as in Case 1 we also have |Si41] < |Sk| + 1.
Case 3: ap =qa; = ;{nax di = dkﬂ. Then dy = x; — e; for i € S and
(xk41); = (L +ap) (xp)j — ax(e);,

with ax = @™ = % Therefore (xg4+1); = 0 for j € {1,...,n} \ Sx U {i} and

(xk41)j # 0 for j € S \ {i}. In particular [Sg41| = [Sk| = 1.

For i = 1,2,3 let now n;(T) be the number of Case i steps done in the first T
iterations of the AFW. We have by induction on the recurrence relation we proved
for |Sk|

1S7] = IS0l < n1(T) + no(T) — n3(T) , (4.5.7)

for every T € N.
Since n3(T) =T — ni(T) — no(T) from (4.5.7) we get
T + 87| = [Sol

ni(T) +no(T) > ——— Z

: 4.5.8
5 5 (4.5.8)

where we used |Sg| =1 < |S7|. Let now Cl.T be the set of iteration counters up to
T — 1 corresponding to Case i steps for i € {1, 2, 3}, which satisfies |Cl.T| =n;(T). We
have by summing (4.5.5) and (4.5.6) for the indices in C1 and CJ respectively

pgk 1

2, f@) —faw) + ) flan) = fa) = ) 5+ ) gek. (459)

kecT kecl kecT kecl

We now lower bound the right-hand side of (4.5.9) in terms of g7. as follows:

2
8k
Z2gk_|C1|m1n +|C2| C?
keCT kecT 2

*\2 * *\2 *
2(|C1T|+|C2T|)min(p(gT) g—T):[nl(T)+n2(T)]min(p(gT) %T) (4.5.10)

ng

2L 7 2 2L
)2 *
T (p(gT) g_T).

>— min ,
2 2L 2

Since the left-hand side of (4.5.9) can clearly be upper bounded by f(xg) — f* we

have

p(gr)® 81
2L 2|

fuw<ﬂz§mm(
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* *\2 %
. . . T
To finish, if %mln (%T %) = % we then have

_ A x0) — 1)

8r < T (4.5.11)
and otherwise
. 4L(f (x0) = f*)
< ) 4.5.12
8r = \/ oT ( 5 )

The claim follows by taking the max in the system formed by (4.5.11) and (4.5.12).
O

In Section 4.2.2, we prove that condition (4.5.3) is satisfied by exact line search
and Armijo line search as well. We also prove that it is satisfied if we impose the

weak Wolfe conditions and take @;"** whenever the conditions are incompatible with

the constraint @y < a;***.
When the step sizes coincide with the lower bounds a@; or are obtained using

exact line search, we have the following corollary:

Corollary 4.5.2. Under the assumptions of Theorem 4.5.1, if ay = ay or if ay is
selected by exact line search then for every T € N

¢t < max ( \/SL(f(XO) /9 W - (45.13)

T T

Proof. By points 2 and 3 of Lemma 4.2.1, relation (4.5.3) is satisfied with p = % for
both a; = a; and a; given by exact line search, and we also have a; > a@; in both
cases. The conclusion follows directly from Theorem 4.5.1. O

Applying the trick of adding the starting point as a vertex allows us to drop the
assumptions of starting from a vertex in Theorem 4.5.1.

Corollary 4.5.3. Let xg € Ay—1, and let {yr} be a sequence generated by the AFW
applied to the objective function f defined in (4.5.1) with yo = ens1. Let {x;} =
{pir)}. Then under the assumptions of Theorem 4.5.1 on ay and f, the bound
(4.5.4) and Corollary 4.5.2 still hold.

Proof. The multipliers are invariant by affine transformation (see Section 4.6 for
further details), and since the FW gap depends on the multipliers, it is also invariant
under affine transformation. Also adding the multiplier related to xg does not change
the FW gap, which is always realized in one of the vertices of the original simplex
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since it is the maximum of a linear function plus a constant. Therefore, the FW gap
is invariant with respect to p, so that the same arguments used for Theorem 4.5.1
and Corollary 4.5.2 can still be applied to {x¢} = {p(yk)}- O

Since adding a vertex alters the active set identification properties of the problem
(e.g., the active set radius), we cannot apply the above results directly in the rest
of this section. Instead we use some key intermediate results presented in the proof
of Theorem 4.5.1.

4.5.2 A general active set identification result

We can now give a general active set identification result in the nonconvex set-
ting. While we do not use strict complementarity when the step sizes are given by
(4.2.1), without this assumption we need strict complementarity.

If A C X* enjoys the SIP and if strict complementarity is satisfied for every x € A,
then as a direct consequence of (4.4.1) we have

supp(x) = [1:n] \ I°(x) = [1:n] \ I} (4.5.14)

for every x € A. In this case we can then define supp(A) as the (common) support
of the points in A.

For the result we need an observation on connectedness which seems to be folklore
in an optimization context. This property is needed, e.g. for the proof of [192,
Theorem 4.1.2] and similar results are discussed in [25]. However, we are not aware
of an explicit proof for this property, so for the readers’ convenience we provide a
short argument:

Lemma 4.5.4. Let {x;} be a bounded sequence in R" such that ||[xix — xr41]| — O.
Then the set of limit points of {xx} is connected.

Proof. Assume by contradiction that there are two open sets U; and Us separating
the limit points of {xx}. Then there must exist an infinite number of points from
{xx} both in Uy and Uz, and in particular a subsequence {xj(;)} of {xt} such that
Xk(j) € Ur and xg(jy+1 € Uy for every j € No. By the condition [|xk(j) — xk(jy+1ll = 0
we obtain

dist(xg(;), U7) = 0. (4.5.15)

Since {xg(j)} is bounded by hypothesis it has a non empty set of limit points. But
every limit point of {x(;} must be necessarily in U{ by (4.5.15) and also in the
closure of U; (because {xy(;)} € U;) and therefore not in Us, a contradiction. O
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We proceed with the announced result.

Theorem 4.5.5. Let {x;} be the sequence generated by the AFW method with step
sizes satisfying ay > @ and (4.5.3), where ay is given by (4.2.1). Let X* be the
subset of stationary points of f. We have:

(a) x; — X*.

(b) If ax = @y then {x;} converges to a connected component A of X*. If addi-
tionally A has the SIP then {xy} identifies 13 in finite time.

Assume now that X* = UiC:1 A; with A; compact for each i € [1:C], with distinct
supports and such that A; has the SIP for eachi € [1:C].

(c) If ar > ay and if strict complementarity holds for all points in X* then {xy}
converges to Ay for some l € [1: C] and identifies If‘l in finite time.

Proof. a) By the proof of Theorem 4.5.1 and the continuity of the multiplier function

we have
xk() — & H(0) = X*, (4.5.16)

where {k(j)} is the sequence of indexes corresponding to Case 1 or Case 2 steps.
Let k’(j) be the sequence of indexes corresponding to Case 3 steps. Since for such
steps @y (j) = @i ;) we can apply Corollary 4.2.2 to obtain

Xk (jy = xir ()1l = 0 . (4.5.17)

Combining (4.5.16), (4.5.17) and the fact that there can be at most n—1 consecutive
Case 3 steps, we get xx — X*.

b) By the boundedness of f and point 2 of Lemma 4.2.1 if a; = @y then ||xg41 —xg || —

0. Now Lemma 4.5.4 together with point a) ensures that the set of limit points must

be contained in a connected component A of X*. By Theorem 4.4.3 it follows that

if A has constant support {x;} identifies I4 in finite time.

c¢) Consider a disjoint family of subsets {U,~}I.C:1 of A1 with U; = {x € A,—1 | disti(x, A;) <
r;} where r; is small enough to ensure some conditions that we now specify. First,

we need
5min (Ai )

rp< —

"7 2L + Smin(A))
so that r; is smaller than the active set radius of every x € A; and in particular for
every x € U; there exists x* € A; such that

6min (x *)

_ 4.5.18
2L + 6min(x*) ( )

[l —x"[l1 <
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Second, we choose r; small enough so that {Ui}l.C:1 are disjoint and
supp(y) 2 supp(4;) Vy € U; , (4.5.19)

where these conditions can be always satisfied thanks to the compactness of A;.
Assume now by contradiction that the set S of limit points of {x;} intersects more
than one of the {Ai}iczl- Let in particular A; minimize |supp(A;)| among the sets
containing points of S. By point a) x; € Ul.Clei for k > M large enough and we
can define an infinite sequence {¢(j)} of exit times greater than M for U; so that
x:(j) € Ur and x4(j)+1 € Uierr:c1Ui. Up to considering a subsequence we can assume
Xi(j)+1 € Uy for a fixed m # [ for every j € No.

We now distinguish two cases as in the proof of Theorem 4.3.3, where by equation
(4.5.18) the hypotheses of Theorem 4.3.3 are satisfied for k = #(j) and some x* € A;.
Case 1. (x;;))n = 0 for every h € Iil. In the notation of Theorem 4.3.3 this
corresponds to the case |J;(j| = 0. Then by (4.3.10) we also have Aj(x,;)) > 0 for
every h € Igl. Thus (x/(jy+1)n = (x;(j))r = 0 for every h € Izl by Lemma 4.3.2, so
that we can write

supp(Am) C supp(x;(j+1) € [1:n] \ I}, = supp(A;), (4.5.20)

where the first inclusion is justified by (4.5.19) for i = m and the second by strict
complementarity (see also (4.5.14) and the related discussion). But since by hypoth-
esis supp(A,,) # supp(A;) the inclusion (4.5.20) is strict and so it is in contradiction
with the minimality of |supp(A;)|.

Case 2. |Jyjy| > 0. Then reasoning as in the proof of Theorem 4.3.3 we obtain
dy(j) = Xu(j) — e, for some h e Jijy C 121' Let x* € A;, and let d = a;(jydy(j). The
sum of the components of d is 0 with the only negative component being dj and
therefore

dy=- > dy=- ) |dil (4.5.21)
1\

he[1:n]\h he[1l:n]\h

We claim that [lx;(jj+1 — X*[l1 < llx¢j) — X*[[1. This is enough to finish because
since X* € A; is arbitrary then it follows distq(x;(j)+1,A;) < distq(x;(j), A;) so that
X;(j)+1 € Uj, a contradiction.
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We have
¥ =% pille = IF7 = xi) = @uiydacylln

=I5 = () —dil + D> 18— Gagy)n — dl

he[l:n]\h
=I5 = Cagal +dg+ D 1% = Cugy)n - dil

he[l:n]\h

<IG = il +di+ D (15, = Gugy)nl +1dal)
he[1l:n]\h

=l = Fll+dz+ > ldul =l -

he[1l:n]\h

where in the third equality we used 0 = JZZ < —d}; < (x4(j)); and in the last equality
we used (4.5.21).

Reasoning by contradiction we have proved that all the limit points of {x;} are in A;
for somel € [1,...,C]. The conclusion follows immediately from Theorem 4.4.3. O

4.5.3 Quantitative version of active set identification

Let g : Rs9g — Ng be such that f(xx) — f(xx+1) < € for every k > g(&). In this
section, we give global active set complexity bounds for non convex objectives as
a function of g, which measures how long it takes for yx = f(xx) — f(xx+1) to fall
definitely under a threshold value. We assume that the gap function g(x) satisfies
the Holderian error bound condition

g(x) > 0 disty (x, X*)? (4.5.22)

for some 6, p > 0. This condition is satisfied, e.g., if f(x) (and therefore Vf(x))
is a semialgebraic function. In this case then also g(x) is semialgebraic because
obtained by sums, products and maxima of semialgebraic functions, and (4.5.22)
holds by Lojasiewicz’ inequality (Corollary 2.6.7 in [35], see also [38] and references)
applied to g and disty (x, X™).

In the convex case, condition (4.5.22) on the FW gap g(x) is weaker than the
more common Hélderian error bound condition on the objective, see [38,148,243].
This follows trivially from the fact that the FW gap g(x) is always larger than the
objective gap f(x)— f* for convex f. The Holderian error bound assumption on the
gap allows us to give more explicit active set complexity bounds.

Theorem 4.5.6. Assume X* = Uep1.c] Ai where A; is compact and with the SIP
for everyi € [1:C] and 0 < dd:efmin{,-,j}c[lzc] dist1(A;, Aj). Let r. be the minimum
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active set radius of the sets {Ai}ic;l. Assume that g(x) satisfies (4.5.22). Assume
that the step sizes satisfy ay = ay, with ay given by (4.2.1). Then the active set
complexity is at most g(&) +n — 1 for & satisfying the following conditions

1 1
2VLe " oLe\” 2
e<L, ( 08) <r. and 2( 98) +2n,/fg <d. (4.5.23)

The proof is essentially a quantitative version of the argument used to prove
point b) of Theorem 4.5.5.

Proof. Fix k > q(&), so that
fOi) = fxen) < €. (4.5.24)

We refer to Case i steps for i € [1 : 3] following the definitions in Theorem 4.5.1. If
the step k is a Case 1 step, then by (4.5.5) with p = 1/2 we have

g (xx)?
4],

) = f(xean) 2
and this together with (4.5.24) implies

2VLE > 24/L(f (xx) — f(xps1)) = g(x) -

Analogously, if the step k is a Case 2 step, then by (4.5.6) we have

g(xx)
2

so that 2& > g(xx). By the leftmost condition in (4.5.23) we have &€ < L so that
2VLe > 2¢, and therefore for both Case 1 and Case 2 steps we have

S o) = fxpe1) 2

g(xx) < 2VLe . (4.5.25)

By inverting relation (4.2.2), we also have

g = x|l < \/Q(f(x") _Lf(x"”)) < \/% . (4.5.26)

Now let k > g(£) be such that step k is a Case 1 or Case 2 step. By the error bound
condition together with (4.5.25)

M)’” g (W) o (45.27)

disty (x7, X™) <
ist1(xg, X7) (9 7
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where we used (4.5.25) in the second inequality and the second condition of (4.5.23)

in the third inequality. In particular there exists / such that dist; (xg, A7) < (2VLe/6)'7.
We claim now that I/Ch is already identified at the step k.

First, we claim that for every Case 1 or Case 2 step with index 7 > k we have
dist (x7, A7) < (g(x7)/0)'/?. We reason by induction on the sequence {s(k’)} of Case

1 or Case 2 steps following k, so that in particular s(1) = k and disty (xg(1), A7) <
g(x5(1)) is true by (4.5.27). Since there can be at most n — 1 consecutive Case 3
steps, we have s(k’ + 1) — s(k") < n for every k" € Ny. Therefore

s(k'+1)=1 s(k'+1)=1
lxskry = Xskr+1)ll1 < Z lxi41 — xill1 < 2 Z [lxie1 — x|
i) i=s (k) (4.5.28)

<2[s(k’+1) - s(k')]\/% < Qn\/% )

where in the second inequality we used part 3 of Lemma 4.2.5 to bound each of the
summands of the left-hand side, and in the third inequality we used (4.5.26). As-
sume now by contradiction disty (xgxr+1), A1) > (g(xs(k/+1))/9)1/1’. Then by (4.5.27)
applied to s(k’ + 1) instead of k there must exists necessarily j # [ such that
dist (Xg(kr41), Aj) < (g(xs(k/+1))/9)1/p. In particular we have

X5 (kry = X5y lln = dist1(Ag, Aj) = disty (xgrr41), Aj) — disty (xgxry, Ar)
1 1 1
a\? (gCswen)\7? WIE\?  (4.5.29)
zd—(g( e(k)))”_(g( (9k+1)))” zd—Q( v s) ’

0

where we used (4.5.25) in the last inequality. But by the second condition of (4.5.23),
we have

= (4.5.30)

Concatenating (4.5.28), (4.5.30) and (4.5.29) we get a contradiction and the claim
is proved. Notice that an immediate consequence of this claim is disty(x;, A;) < r.
by (4.5.27) applied to 7 instead of k, where 7 > k is an index corresponding to a
Case 1 or Case 2 step.

To finish the proof, first we have that there exists an index k € [¢(&), (&) +n — 1]
corresponding to a Case 1 or Case 2 step, since there can be at most n—1 consecutive
Case 3 steps. Second, since by (4.5.27) we have dist;(xz, A;) < r. and k does not
correspond to a Case 3 step, by the local identification Theorem 4.3.3 necessarily
(xp)i=0Vie Ifxl' Moreover, by the claim every Case 1 and Case 2 step following
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step k happens for points inside Bj(Ay,r.) so it does not change the components
corresponding to If‘l by the local identification Theorem 4.3.3. At the same time,
Case 3 steps do not increase the support, so that (xz,;); = 0 for every i € If‘l, [ >0.
Thus active set identification happens in k < g(&) +n — 1 steps. O

Remark 4.5.7. When we have an explicit expression for the convergence rate g (&),
then we can get an active set complexity bound using Theorem 4.5.6. For instance,
we can compare this result with the one for strongly convex objectives, assuming
C=1p=2 60=u/2 and f(xx) — f(xrs1) < hog* for some g € (0,1). These
conditions are always satisfied by strongly convex objectives. Applying the theorem
we obtain the active set complexity bound

In(ho) — In(min(L, rlu?/ 16L))) (4.5.31)

In(1/q)

ge)+n—-1< [max (0,

which is always larger than the bound given in (4.4.4). This is expected, given the
weaker assumptions on the convergence of the objective and the weaker (at least in
the convex case) error bound.

Remark 4.5.8. Assume that the set of stationary points is finite, so that A; = {a;}
for every i € [1:C] with a; € A,—1. Let

L= mi i )i 4.5.32
Cinin ign[llzlg]j:(r%?io(al), ( )

be the minimal nonzero component of a stationary point. Then the method con-
verges to a point a; and identifies its support in at most g(&) + |I°(a;)| iterations,
where here £ has no explicit dependence on n:

e<L, r(e)+I1(e) <min(rs, cmin/2) ,

1
where r(g) = (27\/5) "and (&) = 2\/%. We do not discuss the proof since it roughly
follows the same lines of arguments leading to the proof of Theorem 4.5.6.

4.5.4 Local active set complexity bound

A key hypothesis to ensure local convergence to a strict local minimum is

x; € argmax{ f(x) | x € conv(xg,xr41)} - (4.5.33)
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which in particular holds when a; = @y as it is proved in Lemma 4.2.1. The property
(4.5.33) is obviously stronger than the usual monotonicity, and it ensures that the
sequence cannot escape from connected components of sublevel sets. When f is
convex it is immediate to check that (4.5.33) holds if and only if { f (x¢)} is monotone
non increasing.

Let x* be a stationary point which is also a strict local minimizer isolated from
the other stationary points and f = f(x*). Let then 8 be such that there exists a
connected component V- g of f “1((=00, B]) satisfying

Ve g N X" = {x*} = argmin f(x).
XEVX*,ﬁ

Theorem 4.5.9. Let xg € Vy» g, and let {xi} be the sequence generated by the AF'W
with step size ay = ay. Let

_ 5min(X*)

T 2L+ Sppin (x*)

Then x; — x* and the sequence identifies the support in at most

{mw(ﬂf@w—f@ﬂ)8Mf@w—f@ﬂuw+n

T 72

k

steps with
7 =min{g(x) | x € f71([m,+00)) N Vi 4},

where
m=min{f(x) | x € Ve \ B (x")}.

Proof. As in the proof of Corollary 4.5.2, the assumptions of Theorem 4.5.1 are
satisfied with p = % By point 1 of Lemma 4.2.1, the condition a; = @; on the step
sizes implies that {x;} satisfies (4.5.33). In particular, {x;} can not leave connected
components of level sets so that {x;} C V- g and

lim Q) > f)

By (4.5.7) and (4.5.9) it follows

. [ (ep)? &
f(xo) = f(x7) = [n1(T)+n2(T)]mm( 4TL % : (4.5.34)
Moreover applying (4.5.8) we obtain
T+|[S7|—1|S T - 1
ni(T) +no(T) 2 ul T2| Sl ;” (4.5.35)
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where the second inequality follows from |S7|—|Sp| = —n+1. Concatenating (4.5.34)
and (4.5.35) we get

)2 *
Flxo) = Fx) = 1= ¥ 1 i ((iTL) : %T) (4.5.36)
from which we have the following bound on g7:
g < max ( \/ BL(S ;X-O)n; Ji ) 4(f(;fo_) - ﬁx*))) (45.5T)

for T > n. It is now straightforward to check that if

P {max (4(f(x0) — f*) 8L(f(x0) — f*))

+n,
T 72

then
gz <T.

Since (4.5.34) is derived considering the gap g only in case 1 and case 2 indexes, we
have that there exists 7 < h case 1 or case 2 index such that g(xj) < 7. Therefore,
by the definition of 7, we get f(x;) < m. We claim that x, € B, (x*) for every h > h.
Indeed, since f(x;) < m and {x;} can not leave connected components of level sets
we have for every h > h

xp € Ve g N f_l((—oo,m)) C B, (x"),

where the inclusion follows directly from the definition of m. Since the index h
corresponds to a case 1 or a case 2 step done in the active set region B, (x*) by the
local identification Theorem 4.3.3 the method must have already done all the case
3 steps needed to identify I°(x*). Then we obtain the active set complexity bound

. > +n, (4.5.38)

as desired. O

4.6 AFW complexity for generic polytopes

It is well known as anticipated in the introduction that every application of the
AFW to a polytope can be seen as an application of the AFW to the probability
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simplex. Even though rewriting an optimization problem on the simplex can lead
to a dramatic increase in complexity, this equivalence is still useful because it al-
lows us to extend the properties we proved on the simplex to generic polytopes.
Furthermore, in practice the AFW only needs a linear minimization oracle and the
points appearing in the convex combination giving the current iterate [157], while
knowledge of the whole transformation between the polytope and the simplex is not
needed.
In this section we show the connection between the active set and the face of the
polytope exposed by =V f(y*), where y* is a stationary point for f. We then pro-
ceed to show with a couple of examples how the results proved for the probability
simplex can be adapted to general polytopes. In particular we generalize Theorem
4.4.3, thus proving that under a convergence assumption the AFW identifies the
face exposed by the gradients of some stationary points. An analogous result is al-
ready well known for the gradient projection algorithm, and was first proved in [61]
building on [60] which used an additional strict complementarity assumption but
worked in a more general setting than polytopes, that of convex compact sets with
a polyhedral optimal face.
Before stating the generalized theorem we need to introduce additional notation and
prove a few properties mostly concerning the generalization of the simplex multiplier
function A to polytopes.
Let P be a polytope and f : P — R" be a function with gradient having Lipschitz
constant L.
To define the AFW algorithm we need a finite set of atoms A such that conv(A) = P.
As for the probability simplex we can then define for every a € A the multiplier
function 4, : P — R by

)=V (a-y).

Finally, let A be a matrix having as columns the atoms in A, so that A is also a
linear transformation mapping Ajj-1 in P with Ae; = A" € A (but the same results
hold with the same proofs if we have an affine transformation e; — Ae; + b).

In order to apply Theorem 4.3.3 we need to check that the transformed problem

min{f(Ax) | x € Ajz-1}

still has all the necessary properties under the assumptions we made on f.

Let f(x) = f(Ax). First, it is easy to see that the gradient of f is still Lipschitz.
Also A is invariant under affine transformation, meaning that A4:(Ax) = A;(x) for
every i € [1:|Al], x € Ajz-1. Indeed,

41 (Ax) = VF(Ax)T(A — Ax) = VF(Ax) TA(e; —x) = VF(x) T (e; — x) = 2;(x) .
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Let Y* be the set of stationary points for f on P, so that by invariance of mul-
tipliers X* = A~1(Y*) is the set of stationary points for f. The invariance of the
identification property follows immediately from the invariance of A: if the support
of the multiplier functions for f restricted to B is {A'};cje, then the support of the
multiplier functions for f restricted to A~1(B) is I€.

We now show the connection between the face exposed by —V f and the support of
the multiplier function. Let y* = Ax™ € Y* and let

Pr(y)={yeP|VfO)Ty=Vf(y")"y}
= argmax{-Vf(y") "y |y € P} = F(-Vf(y"))

be the face of the polytope P exposed by —V f(y*). The complementarity conditions
for the generalized multiplier function A can be stated very simply in terms of
inclusion in P*(y*): since y* € P*(y*) we have A,(y*) = 0 for every a € P*(y*),
Aq(y*) > 0 for every a ¢ P*(y*). But P is the convex hull of the set of atoms in A
so that the previous relations mean that the face P*(y*) is the convex hull of the
set of atoms for which A,(y*) = 0:

P*(y*) = conv{a € A | 1,(y") =0}
or in other words since A4 (y*) =0 if and only ifi € I(x*) = {i € [1: n] | ;(x*) = 0}:
P*(y")=convia e A | a = Al i€ I(x)} . (4.6.1)

A consequence of (4.6.1) is that given any subset B of P with the SIP, we necessarily
get P*(w) = P*(z) for every w,z € B, since I(w) = I(z). For such a subset B we
can then define

P*(B) = P*(y") for any y* € B

where the definition does not depend on the specific y* € B considered. We can now
restate Theorem 4.4.3 in slightly different terms:

Theorem 4.6.1. Let {y;} be a sequence generated by the AFW on P and let {xy}
be the corresponding sequence of weights in Ayz-1 such that {yi} = {Axi}. Assume
that the step sizes satisfy ay > ay (using f instead of f in (4.2.1)). If there exists
a compact subset B of Y* with the SIP such that yy — B, then there exists M such
that

yi € P*(B) for every k > M.

Proof. Follows from Theorem 4.4.3 and the affine invariance properties discussed
above. O
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In Theorem 4.6.1, in order to compute @ the Lipschitz constant L of V f (defined
on the simplex) is necessary. When optimizing on a general polytope, the calculation
of an accurate estimate of L for f may be problematic. However, by Lemma 4.2.1
if the AFW uses exact line search, the step size @; (and in particular the constant
L) is not needed because the inequality ay > @, is automatically satisfied.

We now generalize the analysis of the strongly convex case. The technical problem
here is that strong convexity, which is used in Corollary 4.4.5, is not maintained
by affine transformations, so that instead we have to use a weaker error bound
condition. As a possible alternative, in [157] linear convergence of the AFW is
proved with dependence only on affine invariant parameters, so that any version of
Theorem 4.3.3 and Corollary 4.4.5 depending on those parameters instead of uy, L
would not need this additional analysis.

Let P={y e R* | Cy < b}, y* be the unique minimizer of f on P and u > 0 be such
that

FO) = F6N+ 3y =y

The function f inherits the error bound condition necessary for Corollary 4.4.5 from
the strong convexity of f: for every x € Ajg-1 by [27], Lemma 2.2 we have

dist (x, X*) < 0]|Ax — y*||

where 6 is the Hoffman constant related to [CT, [I;e;—e]”]". As a consequence if
f* is the minimum of f

Fx) = f* = f(AX) = F(O") 2 gqu — Y2 > %dist(x,x*ﬂ

and using that n|| - || > || - ||% we can finally retrieve an error bound condition with
respect to || - ||1:
~ ~ u
x)-f > disty (x, X*)2. 4.6.2
F) = 2 Sosdist (. X) (46.2)

Having proved this error bound condition for f we can now generalize (4.3.5):
Corollary 4.6.2. The sequence {yx} generated by the AFW is in P*(y*) for

In(ho) = In(upr;/2)
k > max (0, + |1€]
In(1/q)

where g € (0,1), is the constant related to the linear convergence rate f(yi)—f(y*) <
" (f(yo) = F(Y"), up = 5z, ru = Qf;‘z;;m with Smin = min{,(y*) | 4.(y*) > 0}.
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Proof. Let I = {i € [1:|A|] | 24 (y*) =0}, P* = P*(y*). Since P* = conv(A N P¥)
and by (4.6.1) conv(A N P*) = conv{A’ | i € I} the theorem is equivalent to prove
that for every k larger than the bound, we have y; € conv{A’ | i € I}. Let {x;} be
the sequence generate by the AFW on the probability simplex, so that y; = Axg.
We need to prove that, for every k larger than the bound, we have

xi €conv {e; |ie€l},

or in other words (x;); = 0 for every i € I°.

Reasoning as in Corollary 4.4.5 we get that dist;(xg, X*) < r, for every
S In(hg) — In(upr?/2)
- In(1/¢)

Let k be the minimum index such that (4.6.3) holds. For every k > k there exists
x* € X* with ||Jxx —x*||1 < r«. But 2;(x) = A4 (y*) for every x € X* by the invariance

(4.6.3)

of A, so that we can apply Theorem 4.3.3 with fixed point x* and obtain that if
Jr ={i € I°| (x¢); > 0} then Jir41 < max(0,J; —1). The conclusion follows exactly
as in Corollary 4.4.5. O
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Chapter 5

Fast Cluster Detection in
Networks with a FW variant

Cluster detection plays a fundamental role in the analysis of data. In
this chapter, we focus on the use of s-defective clique models for network-
based cluster detection and propose a nonlinear optimization approach
that efficiently handles those models in practice. In particular, we intro-
duce an equivalent continuous formulation for the problem under anal-
ysis, and we analyze some tailored variants of the F'W algorithm that
enable us to quickly find maximal s-defective cliques. The good practical
behavior of those algorithmic tools, which is closely connected to their
support identification properties, makes them very appealing in practical
applications. The reported numerical results clearly show the effective-
ness of the proposed approach.

5.1 A continuous optimization approach for max-
imum s-defective clique

In the context of network analysis the clique model, dating back at least to the
work of Luce and Perry [177] about social networks, refers to subsets with every two
elements in a direct relationship. The problem of finding maximal cliques has numer-
ous applications in domains including telecommunication networks, biochemistry,

IThis chapter is based on the article “Fast Cluster Detection in Networks by First Order
Optimization” in SIAM Journal on Mathematics of Data Science, vol. 4, iss. 1, pp. 285-305,
2022 [49].
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financial networks, and scheduling ( [43], [241]). From an optimization perspective,
this problem has been the subject of extensive studies stimulating new research direc-
tions in both continuous and discrete optimization (see, e.g., [41], [43], [45], [217]).
The Motzkin-Straus quadratic formulation [188] in particular has motivated sev-
eral algorithmic approaches (see [40], [133] and references therein) to the maximum
clique problem, beside being of independent interest for its connection with Turan’s
theorem [7].

Since the strict requirement that every two elements have a direct connection is
often not satisfied in practice, many relaxations of the clique model have been pro-
posed (see, e.g., [199] for a survey). We are here interested in s-defective cliques
( [76], [224], [247]), allowing up to s links to be missing, and introduced in [247]
for the analysis of protein interaction networks obtained with large scale techniques
subject to experimental errors.

In this chapter, we first define a regularized version of a cubic continuous formula-
tion for the maximum s-defective clique problem proposed in [217], and then apply
variants of the classic FW method [101] to this formulation.

The support identification properties of FW variants are especially suited for our
maximal s-defective clique formulation, since in this case the optimization process
can stop as soon as the support of a solution is identified.

5.1.1 Problem formulation

For a vector r € R?, the d-dimensional Euclidean space, and a set A c [1:d], we
denote with rg the components of r with indexes in A. Let G = (V, E) be a graph
with vertices V and and edges E, n = |V|, Ag the adjacency matrix of G, and let
G = (V, E) the complementary graph. Recall that the Motzkin-Strauss formulation
for the maximum clique problem is

max{x' Agx | x € Ay_1}. (MS)

We now introduce the cubic continuous formulation for the s—defective clique prob-
lem given in [217]. For s € N with s < |E| we define

Dy(G) ={y e {0.1}F | eTy < s},

representing the set of "fake edges" to be added to the graph in order to complete
an s-defective clique, and its continuous relaxation as

DiUG) ={y € [0,1]F | eTy < 5}.
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For y € D%(G) we define the induced adjacency matrix A(y) € R™" as

Yij if{i,j}EE,
0 if{i,j}¢E.

For y € Dy(G) in particular we define G(y) as the graph with adjacency matrix
Ag + A(y), that is the graph where we add to G the edge {i, j} whenever y;; = 1.
We also define E(i) and EY (i) as the neighbors of i in G and G(y) respectively.
Let Ps = Ap—1 X D(G). The objective of the s-defective clique relaxation defined
in [217] is

A(y)ij = {

J6(2) = fg(x,y) =xT[Ag + A(Y)]x, z=(x,y) € Py (5.1.1)

so that when A(y) = 0 one retrieves Motzkin-Straus quadratic objective. The cor-
responding formulation for the maximum s—defective clique problem is then

max{fg(z) | z € Ps}. (S)

5.1.2 Contributions

Our contributions can be summarized as follows:

o We solve the spurious solution problem for the maximum s-defective clique for-
mulation proposed in [217] by introducing a regularized version, for which we
prove equivalence between local maximizers and maximal s-defective cliques.
In particular, no postprocessing algorithms are needed to derive the desired
structure from a local solution. Our work develops along the lines of analo-
gous results proved for regularized versions of the Motzkin - Straus quadratic
formulation ( [43], [133]).

o We prove that the FDFW applied to our formulation identifies the support of
a maximal s-defective clique in a finite number of iterations.

o We propose a tailored Frank-Wolfe variant for the s-defective clique formu-
lation at hand exploiting its product domain structure. This method retains
the identification properties of the FDFW while significantly outperforming it
in numerical tests.

The codes of the methods described in the chapter, together with the tested in-
stances, are available at the following link: https://github.com/DamianoZeffiro/
s _defective fw.
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Figure 5.1: FDFW for an instance of problem (MS)

5.2 A regularized maximum s-defective clique for-

mulation
Here we consider the problem
max{hg(z) | z € Ps}, (P)

where hg : Py — R.q is a regularized version of fg:

hg(2) = hg(x,3) = o)+ Sl + Sl P

for some @ € (0,2) and § > 0. In particular, when y = 0 the objective hg
corresponds to the quadratic regularized maximal clique formulation introduced
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in [40]. As we shall see in Proposition 5.2.1, the main advantage of the regularized
objective hg is that, in sharp contrast to fg, it does not admit any spurious local
solutions, i.e., the support of the x component of every local maximizer p = (x,y)
of hg (i.e., a maximizer in a neighborhood U C P of p) is a maximal s-defective
clique.

For non-empty C C V let x(©) = ﬁ Y.icc €i be the characteristic vector in A,_; of
the clique C, and

A ={xeA,1|x;=0forallieV\C}

be the minimal face of A,_1 containing x(©) in its relative interior.

For p € Ps we define as Tp, (p) = {v—p : v € Py} as the cone of feasible directions at
p in Py, while for r € RIVHIE we define T¢0,v (p,r) as the intersection between Tp, (p)
and the plane orthogonal to r: A

13 (p.r) = {d € Tp,(p) | d"r = 0}.

We now prove that (i) every local maximizer of hg is strict and that (ii) there is a
one-to-one correspondence between (strict) local maximizers of hg and s-defective
cliques coupled together with s fake edges including the one missing on the clique.
Recall that in our polytope-constrained setting, (second order) sufficient conditions
for the local maximality of p € Ps are (see, e.g., [30])

Vhg(p)'d <0 for all d € Tp,(p) (5.2.1)

and
d"D*hg(p)d < 0 for all d € T}, (p,Vhg(p)). (5.2.2)

In the rest of the chapter we use M;(G) to denote the set of strict local maximizers
of hg.

Proposition 5.2.1 (characterization of local maxima for hg). The following are
equivalent:

(1) p € Ps is a local mazimizer for hg(x,y);
(it) p € Ms(G);

(iii) p = (x\O,yP)) where s = eTyP) € N, with C an s-defective clique in G which
is also a mazimal clique in G(yP), and yP) € D(G) such that yfjl.’) =1 for
every {i,j} € (g) NE.
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In either of these equivalent cases, we have
2-a B
hg(p) =1-

LB 5.2.3
TR (5:2.3)
Proof. Let p = (xP),yP)) € P, ¢ = Vhg(p), H = D*hg(p).

(ii) = (i) is trivial.

(i) = (iii). If s := eTy?) were fractional, then for some {i, j} € E we would have
yf;’ ) < 1. Furthermore

dhg(p) _ 2x PP 4 gy ) 5 dhg(p)
dyy TS gy,

Thus for &€ > 0 small enough we have hg(p+e¢e;;) > hg(p) with p+ee;; € P, which

=B>0. (5.2.4)

means that p is not a local maximizer. Hence s € N and obviously s < |E| as well
as y(7) € D}(G).

Assume now by contradiction that p is a local maximizer but y» ¢ Dy (G). Then
for two distinct edges {i, j}, {{,m} € E we must have yg.’),yl(z) € (0,1). Let d =
(0,e;; — eim). Since +d are both feasible directions and p is a local maximizer,
necessarily g"'d = 0. But we also have

Ohg(p)  Ohg(p) ., Ohg(p)
0%yij 02Yim 0Yij0yim
so that again for &€ > 0 small enough hg(p + ed) > hg(p) with p +ed € P, a

d"Hd =

=28>0. (5.2.5)

contradiction.

We proved that if p is a local maximizer, then s = eTy®?) e N and y») € D(G).
But x?) must be a local maximizer for the function x +» hg(x, y(P), which is (up
to a constant) a regularized maximal clique relaxation for the augmented graph
G(yP)). By the characterization of local maximizers for this function given in [133,
Proposition 2.2] (see also [40, Theorem 9]) we must have x = x(©) with C a maximal
clique in G(y'P)). In particular, since G(y?) is defined by adding s edges to G, C
must be an s-defective clique in G.

(iii) = (ii). For a fixed p = (x(©), y(P)) with C, yP) satisfying the conditions of point
(iii) let C =V \ C, S = supp(y?) and § = E \ S. We abbreviate E() (i) = E? (i) with
y =y For every i € V we have

C C
g = axl.( )+ Z 2x](. ) (5.2.6)
JEEW@) (i)
In particular for i € C
a (o) 1
gi=—+ 2x. 7 = —(a+2|C|-2) 5.2.7
IC| Z N (& (5:2.7)

JeC\{i}
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and for every i € C
) _ 2|C| -2
.= § R AR G — 5.2.8
§ x] |C| ( )

jeE®) (I))nC

where we used x;c) = 1/|C| for every j € C, x;.C)

For {i, j} € E we have

= 0 otherwise.

_ py(P) () (C)

=By;; +2x;x; (5.2.9)
and in particular g;; = 0 for {7, j} € S, while for {i,j} € S

=g+ 2 >0, (5.2.10)

where we used yl(j =1for {i,j} € S, 0 otherwise, and x(C) (C) =0for{i,j} e SCE.
Let d be a feasible direction from p, so that d = v — p Wlth v € Ps. Let og =

Z{i,j}eS 8ij, 0C = ZieC Vi

=1-3.cvi€[0,1], mz = max; ¢ g, so that by (5.2.8) we have ms < 2||C|| 2. Then
1
C C
g p :le.( )gi+le.( g+ Z v gij = Cl Zgz Z 8ij = ﬁ(a+2|C|—2)+o-5
ieC ieC (i,j)es ieC {i,j}€S

(5.2.11)

where we used (5.2.7) in the last equality. We also have

a+2|C| -2 a+2|C| -2

g‘jvv = ggVC + ggvé < TUC + (1 - O'C)m@ < T (5212)

where we used (5.2.7) together with the Holder inequality in the first inequality,

meg < 2||CC||_2 in the second inequality and o¢ < 1. Finally,

8FVE = 85VS+85Vs =85 Vs < Ts (5.2.13)

where we used gg = 0 in the second equality, and v; < 1 for every i € E in the
inequality. We can conclude

g'd=gyvw+gvg—g p<0 (5.2.14)

where we used (5.2.13), (5.2.11) and (5.2.12) in the inequality. We have equality
iff there is equality both in (5.2.12) and (5.2.13), and thus iff v = (x("), y()) with
supp(x™") = C and y) = yP). In particular p is a first order stationary point with

TgY(P,g) = {d S Tp?(p) | d=v — D, Ve = O,VE :pE} = {d e TPS(P) | dé — dE — O}
(5.2.15)
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Let He be the submatrix of H with indices in C. We have, for (i, j) € C? with i # j,
H;; = 1 since C is a clique in the augmented graph G(y,), while H;; = a for every
i € V and in particular for every i € C. This proves

Hc =2ee™ + (a —2)0. (5.2.16)
Now if ngs (p,g) 2d # 0 we have
d"Hd = d.Hcdc = dl.(2ee™ + (o = 2))dc = (@ - 2)||dc|]* < 0 (5.2.17)

where we used dz = d = 0 in the first equality, eTdc = eT(vy —py) =1-1=10
in the third one. This proves the claim, since we have sufficient conditions for local
optimality thanks to (5.2.14) and (5.2.17). O

As a corollary, the global optimum of hg is achieved on maximum s-defective
cliques.

Corollary 5.2.2. The global maximizers of hg(z) are all the points p of the form

p = (x,yP)) where C* is an s-defective clique of mazimum cardinality, and yP) €
D(G) such that eTyP) = .

Proof. Let p = (x(©, y(P)) a local maximizer for hg(z). Then its objective value is,

by (5.2.3), hg(p) =1- % +5 g, which is (globally) maximized when |C| is as large
as possible, because 2 — @ > 0 by assumption. O

Thanks to Proposition 5.2.1, for every p € My(G) we can define yP) € D(G)
and a maximal clique C of G(y?)) such that p = (x(©), y()).
We now prove that the face of Py exposed by the gradient in p € M;(G) is simply the
product between A©) and the singleton {y?}. This property, sometimes referred
to as strict complementarity, is of key importance to prove identification results for
Frank-Wolfe variants (see [46], [47], [107], and the discussion of external regularity
in [42, Section 5.3]). We use it to prove a local identification and convergence result
for the FDFW (see Theorem 5.3.1).

Lemma 5.2.3. Let p = (x'©,y(P)) € My(G). Then the face exposed by Vhg(p)
coincides with the minimal face F(p) of Ps containing p:

Fo(Vhg(p)) = F(p) = A9 x (P} (5.2.18)

Proof. To start with, the second equality follows from the fact that y(P) is a vertex of
D’ (@) and that A,(ﬁ)l is the minimal face of A,_; containing x(©). The first equality is
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then equivalent to proving that for every vertex a = (ay, ay) of Py with a € P\ F (p)
we have 4,(p) < 0. Given that stationarity conditions must hold in A,_; and D’ (G)
separately, 4,(p) < 0 if and only if

A5(p) =Vihg(p)(a, —x9) <0, (5.2.19a)
A5(p) =Vyhg(p) (ay - y?) <0, (5.2.19b)
and at least one of these relations must be strict. Since a is a vertex of Py, a, = ¢;

with [ € [1:n] and a, € D4(G), while a ¢ ¥ (p) implies [ ¢ C or a, # yP IfleC
then A} (p) = 0 by stationarity conditions, otherwise

2 —
Vihg(p)Tx'@ =2 T[A + A(YP) XD + @] x D> =2 - T (5.2.20)
and
9 |C N E@(])]
Vihg(p)Tay = —hg(p) = =2 <2 (5221

JeCNEP)(])

where we used a, = e; in the first equality, [ ¢ C together with x; = 1/|C| for every
Jj € C in the third equality, and the maximality of the clique C in the augmented
graph G(y'?)) in the inequality. Combining (5.2.20) and (5.2.21), we obtain

Vihg(p)T (ay — 2O < —% <0, (5.2.22)

which proves that (5.2.19a) holds with strict inequality if [ ¢ C, or else with equality
ifleC.
In a similar vain we proceed with (5.2.19b). If a, = y(») then (5.2.19b) holds with
equality but then [ € V '\ C and we are done. So suppose a, # y(P) and consider
the supports Sy = {{i.j} € E | (ay);; = 1} and S, = {{i.j} € E | y{"’ = 1}. Since
ay € Ds(G), we have |S,| < s and on the other hand, by Proposition 5.2.1(iii),
ISyl = 5. As S, and §, must be distinct, we conclude S, \ S, # 0. Furthermore,
by (5.2.4) for every {i,j} in A, we have

9
5—hg(p) 2 By = >0, (5.2.23)
Yij

while for every {i,j} in A, \ A, we have

0
3)’1'1'

hg(p) =0 (5.2.24)
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because y(‘.p ) =0 by definition of A, and xXOx O =9 since, again invoking Proposi-
ij p ! J

toin 5.2.1(iii), {i,j} € E '\ (g) So we can finally prove (5.2.19b) by observing

Vg (p) @y =y = Y hg(p) = Y S hg(p)

(e, 1 iirea, O
= > - Y She=- Y s hg(p) <0
fiiYeAy\a, YU LiYeAp\ay 7Y LiYeAp\ay 7Y
(5.2.25)
where we used (5.2.24) in the third equality and (5.2.23) together with A, \ Ay # 0
in the inequality. O

5.3 Frank-Wolfe method with in face directions

Let Q = conv(A) c R" with |A| < +co. In this section, we consider the FDFW
for the solution of the smooth constrained optimization problem

max{f(w) | w e Q}.

In particular, {wy} is always a sequence generated by the FDFW applied to the
polytope Q with objective f. For w € Q we denote with #(w) the minimal face
of Q containing w. The FDFW at every iteration chooses between the classic FW
direction dZWW calculated at Step 2 and the in face direction dZ:D calculated at Step
10 with the criterion in Step 12. When f = hg and Q = P, it is not difficult to see
that the main cost to compute v is finding the smallest s components of a vector
with size at most |E|. After the algorithm performs an in face step, we have that the
minimal face containing the current iterate either stays the same or its dimension
drops by one. The latter case occurs when the method performs a maximal feasible
in face step (i.e., a step with a; = " and dy = dkgc@), generating a point on the
boundary of the current minimal face. As we prove formally in Proposition 5.3.3,
this drop in dimension is what allows the method to quickly identify low dimensional
faces containing solutions.

We often require the following lower bound on the stepsizes:

Viwg)Td
g > @y = min(a}cnax,c—fl(ld kﬁz k
k

for some ¢ > 0. Furthermore, for some convergence results we need the following

) (S1)

sufficient increase condition for some constant p > 0:

fwi +ardi) — f(wi) = pag Vf(wi) " dy . (S2)
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Algorithm 7 Frank-Wolfe method with in face directions (FDFW) on a polytope

1: Initialize wo € Q, k :=0

2: Let s € argmax,cq Vf(wi) Ty and d;’j(w = Sk — Wk

3: if wy is stationary then

4. STOP

5. end if

6: Let v € argmingeg(,,) Vf (wi) Ty and dZD =W — Vk.
7 if VF(wi)Td] ™ > Vf(wi)Td] P then

8 dy=d W

9: else

10: dy = de)

11: end if

12: Choose the stepsize ay € (0, @;***] with a suitable criterion
13: Update: wiy1 = wy + ardy

14: Set k :=k +1. Go to step 2.

These conditions generalize properties of exact and Armijo line search, as a corollary
of the results in Section 4.2.2.

We now state a local convergence and identification result for the FDFW applied
to our maximal s-defective clique formulation (P).

Theorem 5.3.1 (FDFW local identification and convergence). Let p = (x(©), y(P)) €
M(G), let {zx} be a sequence generated by the FDEW. Then under (S1) there exists
a neighborhood U(p) of p such that if k := min{k € Ngy | zx € U(p)} we have the
following properties:

(a) if hg(zx) is monotonically increasing, then supp(zx) = C and y; = yP) for
every k > k + dim F(wi);
(b) if (S2) also holds then zj — p.

Before presenting the proof of Theorem 5.3.1, it is convenient to prove some
generic convergence results for the FDFW. To start with, it is useful to define the
multiplier functions A, for a € A, w € R" as

Aaw) =VFw) (a—-w). (5.3.1)

We adapt FW gap to the maximization case, thus obtaining the following measure
of stationarity

G(w) =maxVf(w) (w—y) =maxVf(w) (w—a) = max —-A,(w), (5.3.2)
yEQ acA acA
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as well as an "in face" gap

Gy (w) = max(G(w), be?r_p(z‘iv})cm Ap(w)). (5.3.3)

Using these definitions, we have

Vi(we) di = max(Vf(we) dl W, Vwe)Td] )

5.3.4
=max(G(wi). max Vf(wi) (wi = y)) = Gy (we) (5.3.4)
yeF (wk)
where in the second equality we used
Vfwi)Td W = max V.f (wi)" (5 = we) (5.3.5)
and in the third equality
A% TdTP = A% T(wg —b) = -1 : 5.3.6
flwe) d; pomax Swi) (wk —b) peAX b(Wi) (5.3.6)
From the definitions it also immediately follows
Gr(w)>G(w) >0 (5.3.7)

with equality iff w is a stationary point.

In order to obtain a local identification result, we need to prove that under certain
conditions the method does consecutive maximal in face steps, thus identifying a
low dimensional face containing a minimizer. First, in the following lemma we give
an upper bound for the maximal feasible stepsize.

Lemma 5.3.2. If wy is not stationary, then ay < G(wy)/GF(wg).

Proof. Notice that since wy is not stationary we have G(wy) > 0 and therefore also
ng:(wk) > 0. Now

VI wi) T (wi + ardy) < max Viw) Ty =Vfwe) (we+d] ™)
=Vi(wi) wi +G(wy),

where in the inequality we used wy + axdy € Q. Subtracting V f(wy) " wy on both
sides we obtain
aka(wk)Tdk < G(wy). (5.3.8)

and the thesis follows by applying (5.3.4) to the LHS. O
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We can now prove a local identification result.

Proposition 5.3.3. Let p be a stationary point for f defined on Q and assume that
(S1) holds. We have the following properties:

(a) there exists r*(p) > 0 such that if wi € By(p)(p) N Fe(Vf(p)) then wis €
Fe(Vf(p)):

(b) for any 6 > 0 there exists (5, p) < 6 such that if wi € By(s5,p)(p) then wiy; €
Fe(Vf(p)) N Bs(p) for some j < dim(F (wi)).

Proof. (a) Notice that by definition of exposed face and stationarity conditions
Aa(p) <0 (5.3.9)

for every a € A, with equality iff a € F.(Vf(p)). Then by continuity we can take
r*(p) small enough so that A,(w) < 0 for every a € A\ (AN F(Vf(p))). Under
this condition, if wy € B,+(,)(p) then the method cannot select a FW direction
pointing toward an atom outside the exposed face F.(Vf(p)), because all the atoms
maximizing the RHS of (5.3.2) must necessarily be in %, (Vf(p)). In particular
if wi € Brep)(p) N Fe(Vf(p)) then the method selects either an in face direction
or a FW direction pointing toward a vertex in ,(Vf(p)). In both cases, wiy1 €
Fe(Vf(p)).
(b) Let D be the diameter of Q. We now consider 7% (8, p) < min(é,r7*(p)) such
that, for every w € B, (5,,)(P)

max Aa(w) < beA\%(igf(p)) min(—A1;(w), é/lb(w)Q) . (5.3.10)
As we will see in the rest of the proof this upper bound together with Lemma 5.3.2
ensures in particular that the FDFW performs maximal in face steps in B, (s ,) (P)\
Fo(Vf(p)). Furthermore, (5.3.10) can always be satisfied thanks to (5.3.9) and by
the continuity of multipliers. We then define recursively for 1 < [ < n a sequence
r (s, p) < r=D(6, p) of radii small enough so that, for

M; = sup Gw)/GF(w), (5.3.11)
weB ) (pP)\Te(Vf(p))

with B(;)(p) := B,w s, (p) we have

rDs, p)+ DM; < r=Y (6, p) . (5.3.12)
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Again this sequence can always be defined thanks to the continuity of multipliers.
Finally, we define r(6, p) = r™ (s, p).

Given these definitions, when wy € B(;)(p) C B(p)(p) and wy is not in F(Vf(p))
an in face direction is selected, because

VEiw) a7V = max A (w) < min —Ap(w
Sf(wi) d aed a(w) beA\F.(Vf(p)) »() (5.3.13)
< max —Ap(wy) = Vf(xk)TdkTD ’

T beF (wr)NA
where we used (5.3.10) in the first inequality, wy ¢ F.(p) in the second, and (5.3.6)
in the second equality. We now want to prove that in this case @; is maximal
reasoning by contradiction. On the one hand, we have
Vf(xx) " dk
lld|I?
where we used the assumption (S1) in the first inequality, ||dk|| < D in the second

and Gg(wy) = Vf(xk)TdZ:D together with dy = de in the last one.
On the other hand,

c C
Qg = ¢ > ﬁVf(xk)Tdk = EGT(WI() (5.3.14)

(w)? < £ max Ap(w)?

C
G = A <
(wi) max a(wi) D2 plax

=~ min
D= beA\Fe(Vf(p)) (5.3.15)

=5 (Vf(w)Tdi)? = 25Gr (y)?

where we used (5.3.10) in the first inequality, wy € F.(Vf(p)) in the second, (5.3.6)
together with dy = a’fz} in the second equality, and (5.3.4) in the third equality.
The inequality (5.3.15) leads us to a contradiction with the lower bound on ay given
by (5.3.14), since it implies

G(wi)
Gy (wi)

where we applied Lemma 5.3.2 in the first inequality and (5.3.15) in the second.

C
i < < EGT(Wk) , (5.3.16)

Assume now wi € B, (p). We prove by induction that, for every j € [-1 :
dim(F (wg)) — 11, if {wisitozicj N Fe(Vf(p)) = O then wiyjs1 € Bn—j-1y(p). For
J = =1 we have wy € B, (p) by assumption. Now if {wiiito<i<i N Fe(Vf(p)) =0
we have

W1 = Pl < wiaj = pll+ IWkajat = wieas Il < 7776, p) + Wiajer = wis |
G (wy)

Gy (wi)

<r=(8, p) + DM,_; < r"I71(s, p),

=D (5, p) + axlldill < r"7 (6, p) + D

(5.3.17)
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where we used the inductive hypothesis wi,; € B(,—j)(p) in the second inequal-
ity, Lemma 5.3.2 in the third inequality, (5.3.11) in the fourth inequality and the
assumption (5.3.12) in the last one. In particular wiijs1 € B(y—j-1)(p) and the in-
duction is completed.

Since B(,—j)(p) € Bo)(p), if wirj € (Bu—j)(p) \ Fe(Vf(p)) then aps; must be
maximal and therefore dim(F (wiij1)) < dim(F (wis;)). But starting from the
index k the dimension of the current face can decrease at most dim(F (wg)) < n
times in consecutive steps, so there must exists j € [0,dim(F (wg))] such that
Wisj € Fe(Vf(p)). Taking the minimum j satisfying this condition we also obtain

Wi+j € B(o)(p) € Bs(p). m

A straightforward adaptation of results from [47] implies convergence to the set
of stationary points for the FDFW.

Proposition 5.3.4. If (S1) and (S2) hold, then all the limit points of the FDFW
are contained in the set of stationary points of f.

Proof. The proof presented in the special case of the simplex in [47], where the
FDFW coincides with the away-step Frank-Wolfe, extends to generic polytopes in
a straightforward way. O

In the next lemma we improve the FDFW local identification result given in
Proposition 5.3.3 under an additional strong concavity assumption for the face con-
taining the solution, satisfied in particular by hg.

Lemma 5.3.5. Let p be a local mazimizer for f restricted to Q. Assume that (S1)
holds and that f is strongly concave® in Fo(Vf(p)). Then, for a neighborhood U(p)

of p, if wo € U(p):

(a) if {f(wp)} is increasing, there exists k € [0:dim(F (wo))] such that wiy; €
Fe(Vf(p)) for everyi > 0;

(b) if in addition also (S2) holds, then {wg;}iso converges to p.

Proof. (a) Let u be the strong concavity constant of f restricted to F.(Vf(p)), so
that

S0 < F(p) = Fliw = pIP (5.3.18)
for every w € F.(Vf(p)). For e = L;”)Q, let L, be the superlevel of f for f(p) —e:
Le={yeQ]| f(y)> f(p)—¢}. (5.3.19)

2in fact, we only need strict concavity of f here.
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Let now 7 = r(6, p) defined as in Proposition 5.3.3, with § = r*(p). By (5.3.18) it
follows L:NFe(Vf(p)) C By(py(p). Assume now wg € U(p) with U(p) = Br(p)NL,.
By applying Proposition 5.3.3 we obtain that there exists k € [0:dim(F (wg))] such
that wy is in Fe(Vf(p)) N By+(p)(p). But since f(wi) > f(wo) > f(p) — & we have
the stronger condition wy € L. N F.(Vf(p)).To conclude, notice that the sequence
cannot escape from this set, because for i > 0 wyy; € L, implies that also w4 is
in L, and wiyi € Lo NFe(VF(p)) C Brpy(p) N Fe(Vf(p)) implies that also wisis1
is in F(V£(p)).

(b) By point (a) {wg4i}is0 is contained in F(Vf(p)). But by assumption f is
strongly concave in F,(Vf(p)) with p global maximum and the only stationary
point. To conclude it suffices to apply Proposition 5.3.4. O

Corollary 5.3.6. Let {wy} be a sequence generated by the FDFW algorithm. As-
sume that there are no saddle points in the limit set of {wy}, and that for every
local maximizer p the objective f is strongly concave in F.(Vf(p)). Then under the
conditions (S1) and (S2) on the stepsize, we have wi — p with p a local maximizer
satisfying wi € F.(Vf(p)) for k large enough.

Proof. Follows from (5.3.5) by observing that the sequence must be ultimately con-
tained in U(p) for some local maximizer p. O

Proof of Theorem 5.53.1. Let A(p) = Ag + A(y'P)). Then for x € A©

XTA(p)x = Y xA)ix; = Y 5 APx) = ) xi( Y. x)

(i,j)ev? ieC jeC ieC jeC\{i}
(5.3.20)
=D Y x =) = ()= YA
ieC jeC ieC ieC

where in the first equality we used supp(x) = C, in the second that C is a clique n

G(y'"), and Tiecxi = Djey xi = 1.
Observe now that the function x + hg(x, y(?)) is strongly concave in A(©). Indeed
for x € A©)

@ B
hg(x,y?) = xTA(p)x + S llxll” + S 1y P

2 2., ¢ 2 B 2 a 5 P 5
= x)? =% + Sl + Sy :1_(1—§)in By,

ieC ieC ieC

(5.3.21)

where in the second equality we used (5.3.20). The RHS of (5.3.21) is strongly
concave in x since @ € (0,2) so that —(1 — @/2) € (-1,0). This together with
Lemma 5.2.3 gives us the necessary assumptions to apply (5.3.5). O
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As a corollary, we have the following global convergence result under the mild
assumption that the set of limit points contains no saddle points.

Corollary 5.3.7 (FDFW global convergence). Let {zx} be a sequence generated by
the FDFW and assume that there are no saddle points in the limit set of {zx}. Then
under the conditions (S1) and (S2) on the stepsize we have zx — p = (x(©),y(P)) €
M (G), with supp(xx) € C and yx =y, for k large enough.

Proof. Follows from Corollary 5.3.6, where all the necessary assumptions are satis-
fied as for Proposition 5.3.1. O

5.4 FWdc: A Frank-Wolfe variant for s-defective

clique

As can be seen from numerical results, one drawback of the standard FDFW
applied to the s-defective clique formulation (P) is the slow convergence of the high
dimensional y component. Since this component is "tied" to the x component, it
is not possible to speed up the convergence by changing the regularization term
without compromising the quality of the solution. Motivated by this challenge,
we introduce a tailored Frank-Wolfe variant, namely FWdc, for the maximum s-
defective clique formulation (P), which exploits the product domain structure of
the problem at hand by employing separate updating rules for the two blocks.

In particular, at every iteration the method alternates a FDFW step on the x

Algorithm 8 FWdc: Frank-Wolfe variant for s-defective clique

1: Initialize zg := (xg, yo) € Ps, k :=0
2: if z; is stationary then

3:  STOP

4: end if

5:

Compute xi4+1 applying one iterate of Algorithm 7 with wg = x; and f(w) =
hg(w, k).

Let y+1 € argmaxyepr(g) Vyhg (Xes1, yi) -
7: Set k := k+ 1. Go to step 2.

&

variables (Step 5) with a full FW step on the y variable (Step 6), so that yj is
always chosen in the set of vertices Ds(G) of D}(G). Furthermore, as stated in the
next proposition, {yz} is ultimately constant. This allows us to obtain convergence
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results by applying the general properties of the FDFW proved in the previous
section to the x component.

Proposition 5.4.1. In Algorithm 8, if hg(xk+1,Yk) = hg(xk, yr) for every k € Ny,
then {yr} can change at most %—[%+s times, with C* s-defective clique of mazimal

cardinality.

Proof. Assume that y; and yg4; are distinct vertices of D (G), and let z; = (Xk+1> Vi)-
Then

hg(zken) = hg (&) = Vhg(e) (zksn = ) + Sllaas - <P
p

- >0
2

8 (5.4.1)
:Vth(ZDT(ka - yi) + §||)’k+1 - yk”2 >

where we used the f—strong convexity of y = hg(x, y) in the first inequality, z; —zx =
(0, Y& = yk+1) in the equality, yx+1 € arg maxyep, Vyhg(z;) "y and the fact that the
distance between vertices of D(G) is at least 1 in the second inequality.

Therefore y; can change at most

A 2(hg(2) — hg(z0)) < max 2hg(2) _ 1-1/|C*| + a/2|C*| + sB/2 _ z+ a—2
z€Ps B S zeps B B/2 B BICH

times, where we used hg > 0 in the first inequality, and Corollary (5.2.2) in the

+5

second inequality. O

Theorem 5.4.2. Let {z;} be a sequence generated by Algorithm 8, with requlariza-
tion coefficient @ = 1. If conditions (S1) and (S2) hold on the stepsizes, then {zx}
converges to a stationary point and identifies its support in finite time.

Proof. As a corollary of Proposition 5.4.1, an application of Algorithm 8 reduces,
after a finite number of changes for the variable y, to an application of the FDFW
on the simplex for the optimization of the quadratic objective

: @i B a By
) =xm A+ Sl + SI5IP = 5T Age + ISP, (54.2)

for a fixed y € Ds(G) and Agy) = A(y) + £1.

This is, up to a constant, a regularized Motzkin-Straus quadratic formulation for
the maximal clique problem associated to the graph G(y). For @ = 1, by the proof
of [50, Theorem 12] we have that all principal minors of Ag(y) do not vanish, and
consequently by [50, Theorem 8] there can be at most one stationary point in the
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relative interior of any face of the domain Ajy—;. Furthermore, by [182, Theorem
2.5], strict complementarity conditions hold in every stationary point.

By the above reasoning in particular we have that there is a finite number of sta-
tionary points, all satisfying strict complementarity conditions and with distinct
supports. After noticing that on the simplex the FDFW coincides with the AFW,
we have all the assumptions to conclude by [47, Theorem 4.5]. m|

Remark 5.4.3. While all local solutions correspond to cliques by Proposition 5.2.1,
both Corollary 5.3.7 and Theorem 5.4.2 do not rule out convergence to saddle points.
However, this is not an issue in practice. First, in our numerical tests the methods
always converged to a local solution, in line with studies showing that many first
order methods avoid saddle points with probability one (see, e.g., [50], [165]). Sec-
ond, while local solutions are attractive as proved in Theorem 5.3.1, a saddle point
by definition can never be attractive for any strictly monotone method. Lastly, for
our specific problem there are cheap strategies to escape saddle points even when
the starting point is "unlucky" (e.g. a saddle point itself). We now describe one
such strategy for Algorithm 8, to be applied e.g. if the FW gap (5.3.2) is below
a certain threshold and supp(xy) is not yet a clique in G(yx). The first step is to
select {i, j} C supp(xx) \ E, an operation which requires checking at most (Sum;(x"))
entries of the adjacency matrix. The second step, assuming without loss of general-
ity (-;%.hg(xk,}’k) < a%jhg(xk,yk), is to replace (xx); and (xg); with (1 - €)(xz); and
(xx);j + €(xx); respectively, for some fixed € € (0,1]. The resulting point can then
be used as a new starting point for Algorithm 8. It is not difficult to prove that if
(xk, yx) is close enough to a saddle point p, then the algorithm escapes from p after
restarting.

For a clique C of G(y) different from G we define m(C, G(y)) as

in |C|—-|EY(v)NC]|, 5.4.3
min [l =B () N C (5.4.3)

that is the minimum number of edges needed to increase by 1 the size of the clique.
We now give an explicit bound on how close the sequence {x;} generated by Algo-
rithm 8 must be to x(©) for the identification to happen.

Proposition 5.4.4. Let {zx} be a sequence generated by Algorithm 8, y € D*(G),
C be a clique in G(y), let Omax be the maximum eigenvalue of the adjacency matrix
A = Ag + A(y). Let k be a fized index in Ny, I¢ the components of supp(xg)
with index not in C and let L = 202 + @. Assume that Yisj = Y s constant for
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0 < j < |I¢, that (S1) holds for ¢ =1/L, and that
ma(c’ g(yE)) + 2|C|6max + |C|a
for ma(C, G (3p)) = m(C, G(3p) — 1+ /2. Then supp(xgyzep) = C-

Proof of Proposition 5.4.4. Since yj does not change for k € [k:k+|I¢|], Algorithm
8 corresponds to an application of the AFW to the simplex A,_1 on the variable x.
For 1 <i <nlet A;(x) = %hg(x, yi) be the multiplier functions associated to the

C
g —x Ol <

(5.4.4)

vertices of the simplex, and let

Auin = 1in —2;(x(), (5.4.5)

be the smallest negative multiplier with corresponding index not in C. Let L” be a
Lipschitz constant for Vi hg(x,y) with respect to the variable x. By [47, Theorem
3.3] if

/1 .
- xO, « L 5.4.6
llxz —x*]l1 FR—YY ( )

we have the desired identification result.
We now prove that we can take L’ equal to L in the following way:

IVihg (¥, yp) = Vahg (x, vl = 12A( =x) +@(x =)l < (26max+a@)|IX' =], (5.4.7)

where we used V. hg(x,y) = 2Ax + ax in the equality. As for the multipliers, for
i € V\ C we have the lower bound
=2|CNEY({)|+2|C| -2+
) = Vg (6, y) T () - AL OL A 22
> QmQ(C, g(Y}E))
- IC|

by combining (5.2.20) and (5.2.21) in the second equation. We can now bound Ampin

(5.4.8)

from below:

21CI-2ICNEX(D)] - 2+a _ 2ma(C.60p)

Amin = min —2;(x(“)) > min

ieV\C ieV\C |C] B |C| ’
(5.4.9)
where we applied (5.4.8) in the inequality. Finally, we have
Amin C, k
< ma(C.G(p)) (5.4.10)

Amin + 2L~ mo(C, G (yp)) + 2[Clomax + |Cla

where we applied (5.4.8) together with (5.4.9) in the inequality. The thesis follows
applying (5.4.10) to the RHS of (5.4.6). O
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Remark 5.4.5. It is a well known result that for any graph the maximal eigenvalue
Omax Of the adjacency matrix is less than or equal to dpax, the maximum degree of
a node (see, e.g., [87]). Then condition (5.4.4) can be replaced by

ma(c’ Q()’/E))
mq (C, Q()’;;)) +2|Cldyax + |Cla .

Il =x Yl < (5.4.11)

5.5 Numerical results

In this section we report on a numerical comparison of the methods. We remark
that, even though these methods only find maximal s-defective cliques, they can
still be applied as a heuristic to derive lower bounds on the maximum s-defective
clique within a global optimization scheme. With our tests, we aim to achieve the
followings:

« empirically verify the active set identification property of the proposed meth-
ods;

o prove that the proposed FW variant is faster than the FDFW on these regu-
larized problems, while mantaining the same solution quality;

e show that the proposed FW variant give better performances than a given
black-box solver (i.e., CONOPT) on these regularized problems both in terms
of CPU time and solution found;

o show that our approach, which is based on solving the regularized problem
(P) via the FWdc algorithm, finds solutions as good as the ones found by
the method described in [217], which consists in solving the Motzkin-Straus
problem

max{fg(z) | z € Ps}, (MS)

using the CONOPT solver combined with a tailored post processing routine.

In the tests, the regularization parameters were set to @ = 1 and 8 = 2/n?. An
intuitive motivation for this choice of 8 can be given by imposing that the missing
edges for an identified s-defective clique are always included in the support of the
FW vertex. Formally, if x; = x(©) with C an s-defective clique and (yg); ;=0 with
{i,j} € (g) we want to ensure that the FW vertex s; = (x®%), y(50)) is such that
yl(;k) = 1. Now for {I,m} ¢ (g) and assuming |C| < n (otherwise C = V and the
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problem is trivial) we have

0 2 2 0
— =—— > _ =8> — 0.1
hg (xk, yk) >5=h= o hg (xk, yk) (5.5.1)

dyij ICI2

where the first equality and the last inequality easily follow from (5.2.4). From
(5.5.1) it is then immediate to conclude that {i, j} must be in the support of y(*).
We used the stepsize ay = @, with @, given by (S1) for ¢ = 1, corresponding to an
estimate of 1 for the Lipschitz constant L of Vhg. The SSC was used to improve the
performance of the methods (see Chapter 3 for details). The code was written in
MATLAB and the tests were performed on an Intel Core i7-10750H CPU 2.60GHz,
16GB RAM.
The 50 graph instances we used in the tests are taken from the Second DIMACS Im-
plementation Challenge [140]. These graphs are a common benchmark to assess the
performance of algorithms for maximum (defective) clique problems (see references
in [217]), and the particular instances we selected coincide with the ones employed
in [217] in order to ensure a fair comparison at least for the quality of the solutions.
Following the rule adopted in [217], for each triple (G, s, A) with G a graph from
the 50 instances considered, s € [1:4], A the FDFW, the FWdc or the CONOPT
solver, we set a global time limit of 600 seconds and employed a simple restarting
scheme with up to 100 random starting points. For all the algorithms the x compo-
nent of the starting point was generated with MATLAB’s function rand and then
normalized dividing it by its sum. An analogous rule was applied to generate the
y component for the starting point of the FDFW and the CONOPT solver, while
for the FWdc algorithm the y component was simply initialized to 0. To improve
the performance of the FDFW, we exploit the quick reduction in the dimension of
the minimal face containing the current iterate for the y variable. This improve-
ment is possible using that the SSC with the FDFW method always operates on
the minimal face containing the iterate given as input, until at least the last step
(which can be a FW step and move the iterate away from the starting face). For
the stopping criterion of the FDFW and the FWdc, two conditions are required:
the current support of the x components coincides with an s-defective clique, and
the FW gap is less than or equal to & := 2% 1072, For the CONOPT solver there
are no identification guarantees, so the default stopping criterion was used. In the
experiments, both the FDFW and the FWdc always terminated having identified an
s-defective clique, thus providing an empirical verification of the results we proved
in this chapter.

In the boxplots, each series consists of 50 values corresponding to aggregate data
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Figure 5.2: Si-j is the box plot related to the maximum clique found for the instance by
strategy i for s = j, divided by the clique number/maximum clique cardinality known of
the instance.
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for the runs performed on the 50 instances. Here we list the strategies considered
in our experiments:

« Strategy 1 and Strategy 2 (abbreviated S1 and S2) consist in solving the
regularized problem (P) using, respectively, the FDFW and the FWdc algo-
rithm with the parameters reported above.

» Strategy 3 (abbreviated S3) consists in solving the regularized problem (P)
by means of the CONOPT solver.

« Strategy 4 (abbreviated S4) consists in solving the Motzkin-Straus prob-
lem (MS) by means of the CONOPT solver combined with a post processing
routine.
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The numerical results related to Strategy 4 are taken from [217], while the re-
sults for Strategy 3 were replicated on our machine using the CONOPT/MAT-
LAB integration provided by TOMLAB. We highlight that the results reported
for Strategy 4 are meant to give the reader a baseline for the quality of the solu-
tions found by our method. The red lines represent the median of the values in
each series, and the boxes extend from the 25th percentile g; of the observed data
to the 75th percentile g3. The whiskers cover all the other values in a range of
[qg1 — w(gs — q1),q3 + w(q3 — q1)], with the coefficient w equal to 2.7 times the
standard deviation of the values.

In Figure 5.2, the box plot Si-j represents the distribution of the maximum cardinal-
ity of the s-defective clique found by strategy i with s = j, divided by the maximum
clique cardinality known of the instance. Notice that some data points are greater
than 1, as expected since for s > 0 the cardinality of an s-defective clique can ex-
ceed the maximum clique cardinality. The solutions obtained using both FWdc anf
FDFW on the regularized problem (Strategy 1 and 2) are generally better than
the ones obtained using the CONOPT solver on the same problem (Strategy 3).
Furthermore, while the variance is higher for the solutions found by Strategy 4, no
significant difference can be seen in the median quality of the solutions found by
Strategy 1, Strategy 2 and Strategy 4.

In Figure 5.3, Si-j represents the distribution of average running times in seconds
(on a logarithmic scale, explaining the asymmetry of the box plots) of strategy i
for s = j. Here we can see that FWdc outperforms both FDFW and the CONOPT
on the regularized problem (MS). Indeed, FWdc is more efficient (as it requires a
much smaller median execution time) and more robust (as the variance of the CPU
time is remarkably smaller). Furthermore, we notice that the CPU times reported
for Strategy 2 are good if compared with the ones obtained by Strategy 4 in [217].
The results hence indicate that the proposed strategy is a viable alternative when
searching for s-defective maximal cliques. We refer the reader to the supplementary
material for detailed numerical results.



Chapter 6

Direct search methods

While there is no unique definition of direct search methods, these can be
characterized as derivative free methods that do not build, implicitly or
explicitly, a model of the gradient. Starting mostly as intuitive and easy
to implement heuristics in the 50, they have now become a diverse set
of algorithms with rigorous convergence analyses, global and local con-
vergence quarantees, and a wide range of applications. In this chapter,
we review some classic direct search methods and properties relevant for
the algorithms studied in Chapters 7 and 8.

6.1 A short history

Direct search methods are first of all zeroth order (or derivative free) methods,
requiring a black box oracle only for the objective value. However, beside this el-
ementary property there is no formal definition of what makes a method "direct
search". This term, in reference to a class optimization algorithms, was first used
in [127], for iterative methods with a strategy to select new trial points based on
previous function evaluations and in particular on the best solution obtained up
to that time. Today 'direct search" is used more broadly, with M. Wright’s [239]
application to any method that "does not in its heart develop an approximate gra-
dient" widely accepted (see, e.g., [151,163]). With respect to model based derivative
free methods, direct search approaches arguably require weaker assumptions on the
objective [16], being easily adaptable even to problems with discontinuities [53].
Moreover, many of these methods were originally developed as heuristics, and in
spite of an increasing number of works proving rigorous convergence properties with
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classic analysis arguments (see, e.g., [81,151]), direct search algorithms still include
steps whose effectiveness cannot be easily quantified (see also Section 6.3).

In their history of direct search methods in [169], the authors distinguish three
classes: simplex, pattern search, and adaptive sets of search directions methods.
Pattern search methods choose tentative points in a rational lattice, with a param-
eter to define the resolution of the lattice updated at every iteration based on the
function value of new trial points. The exploration strategies of these methods are
devised to visit enough points in a neighborhood of the current tentative solution
to guarantee stationarity at the limit. This class includes coordinate search, widely
recognized as the oldest direct search method and first described by E. Fermi and
N. Metropolis in [99], generalized pattern search (GPS, [222]), integrating heuristics
in between local exploration steps, and mesh adaptive direct search (MADS, [18]), a
further development considering a dense set of directions for local exploration steps
in order to deal with non smoothness and constraints. Simplex methods maintain a
simplex with the respective function values of the vertices, and modify this simplex
at every iteration in a way to adapt it to the features of the objective function. The
first instance of a simplex method appeared in [216], and was based on the single
operation of reflecting a vertex with respect to the baricenter of the opposite face.
The most popular algorithm in this class is instead the Nelder-Mead method [190],
relying on other operations called contractions and expansions beside reflections.
Finally, adaptive set of search directions methods at every iteration change the set
of poll directions, possibly to adapt it to information obtained about the objective.
The first method in this class was proposed by Rosenbrock in [212], motivated by
the inefficiency of coordinate search on certain objectives with minimizers in nar-
row valleys like the so called Rosenbrock’s "banana function'. The main idea of
Rosenbrock’s algorithm is to rotate the set of search directions at certain steps,
ensuring the inclusion of a direction derived chaining several previous steps. The
most known adaptive search method is Powell’s method [204], adapting conjugate
gradient to the derivative free case. More recent developments that can be included
in this class are variants with line search extrapolation (see, e.g., [179]), increasing
the stepsize along a poll direction until a decrease condition is no longer satisfied,
and randomized direct search variants (see, e.g., [113]), relying on a random set of
search directions and able to achieve optimal iteration complexity for smooth non-
convex objectives.

In this chapter, we focus on some pattern search and adaptive sets of search direc-
tions methods for unconstrained optimization. These will provide some context for
the extensions to the Riemannian and stochastic setting in chapter 7 and 8 respec-
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tively. A thorough description of the history and modern developments of direct
search methods is beyond the scope of this chapter. We refer the reader to [169]
for a detailed history until the 90; to [151] for a survey focusing on the theoretical
convergence properties of direct search methods both in the constrained and the un-
constrained case; to [16] for a survey including recent techniques and applications to
real world optimization problems; to [15,81,163] for books presenting direct search
methods within the context of derivative free optimization.

6.2 Clarke directional derivative and cosine mea-
sure

We consider the following global optimization problem:

min f(x) (6.2.1)
xeRn
where f is locally Lipschitz continuous. While there are plenty of works that deal
with the constrained case, in this survey we focus only on the unconstrained case,
given its relevance for Chapters 7 and 8.
We now introduce two important preliminaries. The first one is the Clarke direc-
tional derivative of f at x in the direction v € R", defined as

f°(x,v) =limsup fO+v) - f) .

t—0y—x t

(6.2.2)

A point x* is said to be Clarke stationary if all its directional derivatives are nonneg-
ative: f(x*,v) > 0 for every v € R". It is a well known result (see, e.g., [15, Theorem
6.9]) that if x* is a local minimizer then it is Clarke stationary, while as in the
differentiable case, the converse is not true.

The second important preliminary is the cosine measure. As we will see in Section
6.3, many direct search methods require sets of search directions with the special
property of being positive spanning sets, where a set D C R" is a positive spanning
set iff every element in R" can be written as a linear combination with nonnegative
coefficients of elements in D. This concept is strictly related to that of cosine mea-
sure. For a finite subset D c R" (with nonzero vectors) the cosine measure related
to a vector r € R" \ {0} is defined as the maximum cosine between a direction in D
and r:

(D.r) r'd
cm(D, r) = max )
dep ||d|[||7]|

(6.2.3)
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The cosine measure of D itself can then be defined as the minimum cosine measure
related to a vector r varying in R" \ {0}:

cm(D) = in cm(D,r). 6.2.4

m(D) = min cm(D.r) (6.2.4)

It is a well known property (see, e.g., [81, Section 2.2]) that D is a positive spanning
set iff cm(D) > 0.

6.3 Directional direct search methods

We will focus on a class of methods roughly following the basic scheme pre-
sented in Algorithm 10, which is a slight adaptation of [163, Algorithm 2]. As
in [163], we will call the algorithm "directional direct search method". It relies on
the testdescent subroutine (Algorithm 9), looking for some points in a set of ten-
tative points satisfying a predetermined decrease condition. At every iteration, it
performs a search step and a poll step. In the search step, a finite set of search
points is chosen and ordered to update x; using the testdescent subroutine. This
step is driven by heuristics and not crucial for convergence purposes. In the poll
step, another set of tentative points is generated by moving with stepsize a; along
each directions in the poll set Dg. With respect to [163, Algorithm 2], we do not
impose a specific rule for the decrease or increase of ay, since there can be strate-
gies different than the linear one considered in [163, Algorithm 2|, as we will se
for MADS in Section 6.3.2. Furthermore, we note that line search variants do not
strictly adhere to this scheme, since the stepsize @y can depend from the tentative
direction d € Dy (see Section 6.3.5). We finally remark that the scheme in Algo-
rithm 10 covers pattern search and adaptive set of search directions methods but
does not cover simplex methods.

Algorithm 9 testdescent(f,x, P)
1: Set x* =x
2: for p € P do
3:  Evaluate f(p)
if f(p) — f(x) acceptable then

4
5 xt=p

6: optional break
7. end if

8: end for




6.3 Directional direct search methods 145

Algorithm 10 Directional direct search method

1: Input: xg € R", ag >0
2: for k=0,... do
3:  Choose and order a finite set Y, ¢ R”

4:  Set x} = testdescent(f,xi, Yx) {search step}
5. if x] = x; then

6: Choose and order poll directions D; c R"

7 Set x; = testdescent(f, xi, {xx + axd; : d; € Dy}) {poll step}
8 end if

9: if x = x; then

10: decrease ay

11:  else

12: increase ay

13:  end if

14: Xk+l1 = xz

15: end for

The most used acceptance tests for the decrease of f are the simple decrease
condition

f(p) < f(x), (6.3.1)
and the sufficient decrease condition
f(p) < f(x) - pla), (6.3.2)

with a stepsize and some p : R.g — Rg non decreasing and such that

lim& =

lim === 0. (6.3.3)

6.3.1 Coordinate search

For coordinate search, Y; is empty (there is no search step), and Dy = D is the
set of coordinate directions:

D={+e; |i€{l,...,n}}. (6.3.4)

The stepsize ay is always increased or decreased by a fixed rational constant 7.
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6.3.2 Mesh based methods

Before illustrating the next two methods, that is GPS and MADS, we report the
definition of mesh as given in [15, Part 3|. For a positive spanning set D, a center
x and a mesh size parameter 6 > 0, the related mesh is defined as

M={x+6Dy|yeN}, (6.3.5)

where with a slight abuse of notation we use D also for the matrix D € R™? with
columns corresponding to the elements of D.

Generalized pattern search

Given G € R™" invertible and Z € Z"™? with columns forming a positive span-
ning set, GPS uses the mesh M with size parameter ay, positive spanning set given
by the columns of D = GZ and center x. The method then follows the scheme pre-
sented in Algorithm 10 with search set Yy € My, and poll set Dy positive spanning
subset of the columns of D. In order for the method to show some convergence
properties, the stepsize must always be increased or decreased by a predetermined
constant 7 € Q. Finally, the decrease condition used by GPS is simple decrease. We
have the following convergence property (see, e.g., [15, Theorem 7.7]).

Theorem 6.3.1. If the level subsets of f are bounded, then there exists a subse-
quence {x;trex of {xr} convergent to a point x* and such that:

(i) if d appears infinitely often in {Dy}rek, then f°(x*,d) > 0.

(ii) if f € Ct, then Vf(x*) =0

Mesh adaptive direct search

One key issue with GPS is that the set of poll directions is finite. Hence, as for
coordinate search, even when the generated sequence converges there is no guarantee
that the limit point is Clarke stationary (see [151] for a counterexample). Moreover,
for constrained optimization problems GPS gets stuck in points where the cone
of feasible descent directions does not include elements of D. This motivated the
introduction of MADS. Beside the mesh M defined exactly as for GPS, MADS
makes use of the frame Fj of extent determined by the frame size parameter Ag,
defined as

Fr={x e My | ||x —x|lo £ Arb}, (6.3.6)
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for b = max{||d|| | d € D}. A popular rule relating the frame size parameter with
the mesh size parameter is a; = min(Ak,Az). In MADS, the search set is a finite
subset of My like for GPS, while the poll set D; must be a positive spanning set
such that xx + axDy C Fr N My. The acceptance criterion is still simple descent.
For MADS, we have the following convergence property (see [15, Chapter 8| for a
reference and more convergence results).

Theorem 6.3.2. If the level subsets of f are bounded, then there exists a subse-
quence {xitrex of {xx} convergent to a point x* and such that:

(i) if d is a limit point of {dy}xex with dx € Dy for every k € Ny, then f°(x*,d) >
0.

(ii) if f € C' and ci(Dy) > Kmin for every k € Ng and for a constant ki > 0
independent from k, then V f(x*) = 0.

A result analogous to Theorem 6.3.1 holds for MADS, with f°(x*,d) > 0 for
any d limit of a sequence of directions used in the poll steps of the convergence
subsequence with index set K. A lower bound on the cosine measure of Dy is
needed to ensure Vf(x*) =0

6.3.3 Generating set search

The generating set search approach (GSS) is another variant of Algorithm 10.
For this method, there is no search step and no mesh. The only conditions on the
set of poll directions Dy is that it must contain a positive spanning set Gy with
cm(Gy) = Kkmin for some constant kpi, > 0, and elements with uniformly lower
and upper bounded norm. The following convergence result holds (see, e.g., [151,
Theorem 3.11]) when the method uses the sufficient decrease condition (6.3.2).

Theorem 6.3.3. Assume that f is differentiable with Vf Lipschitz continuous, and
that [f < f(xo)] is compact. Then

lim inf |7/ (x| = 0. (6.3.7)
—+400

Notice therefore how we have a result analogous to point (ii) of Theorem 6.3.1,
replacing the use of a mesh with the sufficient decrease condition.
Another important result for this method is the 0(’:—2) function evaluation complex-
ity proved in [228] in the case where p(a) = ya? for some y > 0.
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6.3.4 Direct search based on probabilistic descent

The use of random directions in the poll set has been a popular choice for several
direct search methods including MADS. A suitable choice of random directions in
MADS implies in fact convergence to Clarke stationary points (see [15, Chapter 8]).
Direct search methods based on probabilistic descent take this idea one step further,
relaxing the requirement that Dy must be a positive spanning set to a probabilistic
assumption. More precisely, the version introduced in [113] assumes that all the
directions in Dy are in the unit sphere and that with some probability p > 0, for a
constant xkyin > 0:

P(cm(Dy, =V f(xx)) > &min | Do, ..., Dx-1) > p . (6.3.8)

In other words, D must have positive cosine measure with respect to =V f(x;) with
positive probability and in a uniform way.

The two main features of direct search based on probabilistic descent are the fol-
lowing:

 the condition (6.3.8) can be achieved by sampling any number of directions
uniformly at random in the unit sphere;

« for continuously differentiable functions it has a function evaluation complex-
ity of O(%), for m number of directions sampled at every iteration, thus

improving on the O(Z—z) GSS complexity and achieving for m constant the
same complexity of zeroth order methods (see, e.g., [111]), which is state of
the art for smooth non convex problems.

6.3.5 Direct search methods with line search extrapolation

Direct search methods with line search aim to combine the benefits of line search,
which exploits knowledge of good descent directions, together with those of pattern
search, which obtains local information about the objective. We report here a
special case of [179, Algorithm 2], one of the first algorithms proposed with this
approach, rewriting it in a way that underlines its resemblance to the general scheme
10, without altering its main properties. The main innovations with respect to
Algorithm 10 consists in the subroutine 12 and in the introduction of a tailored
stepsize for each direction. Instead of testing all the directions in the poll set with a
fixed stepsize, the method increases the tailored stepsize related to a direction p € P
(Step 3 of Algorithm 12) until a sufficient decrease condition is no longer satisfied
(Step 2 of Algorithm 12).
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Algorithm 11 Direct search method with LS

1: Input: xy € R", (a/é)je[LK] € [Rfo, v > 0, 8§ € (0,1), positive spanning set
P = {pj}je[lzl(]-

2: Set jo=0

3: for k=0,1,... do
4: fori=1,..,K do
5 Set Xi41, a/;'(+1 = testacceptanceL.S(x, a/;;,p", 0,v)
6 end for
7: end for

Algorithm 12 testacceptancelS(x,a, p,0,7y)

1. if f(x+ap) < f(x) - ya? then
2. while f(x+ap) < f(x) —ya? do
3 Set @ = a/6
4:  end while

5. Set x =x+6ap
6: end if

7. Set a = O«

8: Return (x, @)

We have the following convergence result, which can be proved along the lines
of [179, Proposition 5.2].

Proposition 6.3.4. If [ f < f(xo)] is compact, and f is continuously differentiable,

klim Vf(xk)=0. (6.3.9)

6.4 Applications

While it is well understood that direct search methods are a poor choice for
optimization problems where the gradient is available (see, e.g. [81]), there are a
number of cases where these methods should be considered. First, direct search
methods can be a good choice when the gradient of the objective is discontinuous at
a solution, or when the gradient has many discontinuities with no special structure
(see [151, Section 6]). Second, they can be useful for simulation based optimiza-
tion problems where applying automatic differentiation is not possible because of
a proprietary or legacy code too expensive to rewrite. Third, they can be useful
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when objective evaluations are costly, so that computing gradient estimates is too
expensive, or when objective evaluations are noisy, so that computing an accurate
estimate of the gradient might not be possible at all.

We now report practical examples, some taken from [81, Section 1] or [15, Section
6], together with more recent ones. We refer the reader to those works for a more
detailed description as well as for a more extensive list. Several examples use NO-
MAD, the open source implementations of MADS (see, e.g., [1]).

The first example is hyperparameter tuning, i.e. finding the choice of parameters
optimizing the performance of an algorithm (see, e.g., [132] for a survey on the
subject). Examples of applications of direct search include [19], where NOMAD
was used to optimize the performance of trust region methods on a standard set
of problems; [227], where direct search methods were used to fine tune regression
parameters for data streams; [159], where NOMAD was used to tune both learn-
ing and structural parameters of a deep neural network; [245], where MADS was
used to tune some parameters in a generative adversarial network for text-based
CAPTCHAs.

The second and perhaps most known example is engineering design. In [51] for in-
stance direct search methods were used to optimize the design of an helicopter rotor
blaze with respect to the vibration trasmitted to the hub. In [63] a computer aided
material selection tool to support design of aircraft structure was developed using
the Direct multi-search (DMS) solver from [86]. In [145] aerodynamic optimization
of airfoils was performed with MADS.

The third example is molecular design, where computer aided simulation is a key
tool to obtain structures with desirable properties, partly replacing inefficient trial-
and-error experiments. Applications of direct search methods to these problems can
be found in [8,183,219].

Lastly, direct search methods can be used in drug design and testing. When a math-
ematical model of the impact of a certain drug is available, optimization methods
can be used to tune several parameters. As an example, in [70,71] MADS was used
to optimize drug distribution in a nanoparticle-mediated drug delivery treatment for
cancer. In [141] NOMAD was used in the study of a key antimalarian substance.



Chapter 7

Retraction based Direct Search
Methods for Riemannian
Optimization

In this chapter, we explore the application of direct search methods to
Riemannian optimization, wherein minimization is to be performed with
respect to variables restricted to lie on a manifold. More specifically, we
consider classic and line search extrapolation variants of direct search,
and, by making use of retractions, we devise tailored strategies for the
minimization of both smooth and nonsmooth functions. As such we ana-
lyze, for the first time in the literature, a class of direct search algorithms
for minimizing nonsmooth objectives on a Riemannian manifold without
having access to (sub)derivatives. Along with convergence quarantees we
provide a set of numerical performance illustrations on a standard set of

problems.

7.1 Derivative free optimization on Riemannian

manifolds

Riemannian optimization, or solving minimization problems wherein the deci-
sion variable is constrained to lie on a Riemannian manifold, is an active area of
research considering the numerous problems in data science, robotics, and other set-
tings wherein there is an important geometric structure characterizing the allowable
inputs.

151
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To the best of our knowledge, thorough studies of derivative free optimization
(DFO) on Riemannian manifolds have only been carried out recently in the lit-
erature. In [171], the authors focus on a model based method using a two point
function approximation for the gradient. The paper [244] presents a specialized
Polak-Ribiéere-Polyak procedure for finding a zero of a tangent vector field on a
Riemannian manifold. In [92], it is claimed that the convergence analysis of MADS
for unconstrained objectives can be extended to the case of embedded Rieman-
nian manifolds using the exponential map. In the subsequent work [93], the author
focuses on a specific class of manifolds (reductive homogeneous spaces, including
several matrix manifolds), discussing more in detail how thanks to the properties
of exponential maps, a straightforward extension of MADS is possible at least for
that class. Some DFO methods and nonsmooth problems on Riemannian manifolds
without convergence analysis can be found in [130] and references therein.

7.1.1 Contributions

This chapter presents the introduction of a classic set of direct search algo-
rithms to the case of Riemannian optimization, as well as the first analysis of re-
traction based direct search strategies on Riemannian manifolds. In particular, we
first adapt, thanks to the use of retractions, a classic direct search scheme (see,
e.g., [81,151]) and a line search based scheme (see, e.g., [85,174,178,179] for further
details on this class of methods) to deal with the minimization of a given smooth
function over a manifold. Then, inspired by the ideas in [98], we extend the two
proposed strategies to the nonsmooth case. The introduction of the manifold con-
straint presents significant challenges: namely the stable structure of the Euclidean
vector space makes it natural for a fixed set of coordinate-like directions to consis-
tently approximate desired directions by spanning the space in a uniform way. The
fact that this geometric structure can change necessitates that we carefully adjust
the poll directions corresponding to the change in this structure, and do so with
minimal computational expense. The associated convergence theory presents some
novel results that could be of independent interest.

The codes relevant to the numerical tests are available at the following link:
https://github.com/DamianoZeffiro/riemannian-ds.
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7.2 Preliminaries

We now introduce some notation for the formalism we use in this chapter. We
refer the reader to, e.g., [3,55,56] for an overview of the relevant background.
Let M be a smooth manifold. We are interested here in the problem

)ICIGI}\I/(I f(x) (7.2.1)

with f continuous and bounded below. We consider both the case of f(x) being
continuously differentiable, as well as a more general nonsmooth case. For x € M, let
T: M be the tangent vector space at x and T M be the tangent bundle U,cp(T: M. We
assume that M is a compact and connected Riemannian manifold, but all our results
can be extended to geodesically complete Riemannian manifolds in a straightforward
way. For x in M, we have a scalar product (-, )y : TMXTyM — R and a norm || - ||
on T, M smoothly depending on x. Let dist(-, -) be the distance induced by the scalar
product, so that for x,y € M we have that dist(x, y) is the length of the shortest
geodesic connecting x and y. Furthermore, let Vy( be the Levi-Civita connection
for M (see [55, Theorem 5.5 for a precise definition), and I' : TM x M — TM
be a parallel transport with respect to Vy along distance minimizing geodesics,
with Iy (v) € TyM transport of the vector v € Ty M to one in TyM along a distance
minimizing geodesic connecting x and y. Any nonuniqueness in the definition of I’
is either explicitly accounted for or inconsequential without loss of generality in the
context.

When M is embedded in R", we define P, as the orthogonal projection from R"
to TeM, and S(x,r) C R" as the sphere centered at x and with radius r.
We write {ax} as a shorthand for {aj}re; when the index set I is clear from
the context. We also use the shorthand notations Ty M, Pr, (-, Y, | - |k, Fl.j for
T M, Py, o x| - Mk, and F;CIJ When there is no ambiguity on the value of x, we
use simply || - || instead of || - ||x.
We define the distance dist® between vectors in different tangent spaces in a stan-
dard way using parallel transport (see for instance [20]): for x,y € M, v € T, M and
weTyM,

dist™(v,w) = [[v = [Ywl|[ = [lw - v, (7.2.2)

and for a sequence {(yg,vi)} in TM we write vy — v if y — y in M and
dist*(vk,v) — 0. By compactness, for dist(x,y) small enough the minimizing
geodesic is uniquely defined, and consequently the parallel transport I' and the
distance dist™ also are, as we will use in several proofs. Furthermore, by compact-
ness and connectedness, a geodesic connecting x and y always exists and dist” is
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always well defined.
As it is common in the Riemannian optimization literature (see, e.g., [4]), to define
our tentative descent directions we use a retraction R : TM — M. We assume
R € CH{T M, M), with

dist(R(x,d),x) < L,||d||, (7.2.3)

(true in any compact subset of T M given the C! regularity of R, without any further
assumptions)

For a scalar-valued function f : M — R, let the gradient grad f(x) be defined as
the unique element of T, M such that for all v € M, it holds that,

Df(x)[v] = (v.gradf(x))x .

When M is embedded in R”, the (Riemannian) gradient is a simple projection onto
M, ie., gradf(x) = P,(Vf(x)).

7.3 Smooth optimization problems

In this section, we consider solving (7.2.1) with the objective satisfying f €
C'(M), indicating that the gradient gradf(x) is continuous on M as a function of
x. We now formally present the Lipschitz continuous gradient assumption.

Assumption 7.1. There exists Ly > 0 such that for all x,y € M

dist*(grad f (x), grad f(y)) = [Ty grad f(x) — grad f(y)|| < Ly dist(x,y). (7.3.1)

Consider this descent Lemma type decrease property,

FRG, ) < £+ (arad f (o), d) + 5 (732)

Like in the unconstrained case, the Lipschitz gradient property implies the standard
descent property.

Proposition 7.3.1. Assume that M is compact and R is a C? retraction. If condi-
tion (7.3.1) holds, then the decrease property (7.3.2) holds for some constant L > 0.

Proof. Let (¢) be a chart defined in a neighborhood U of x € M. We can take
the neighborhood small enough so that for y, z varying in U the parallel transport
IS depends smoothly on y, z and is uniquely defined. We use the notation (x, d) =
(p(x),dp(x)d) for (x,d) € TM. We pushforward the manifold and the related
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structure with the chart ¢, i.e. for @ = ¢~' we define f = fo@, U = o),
R(3.d) = R(y.d), for d.q € TM we define g(d. §) = (d.q)x, l[d=qlz = ld~gll., and
I;;(cf) =TI (d). With slight abuse of notation we use dist(%, ¥) to denote dist(x, y).
We also define as gradf the gradient of f with respect to the scalar product g, so
that g(gradf(%),d) = (Vf(x),d) for any d € R”. Importantly, by the equivalence
of norms in R” we can use O(||d||y) and O(]|d||) interchangeably.

We first prove (7.3.2) in x for some constant L > 0 and any d with ||d|| < B for
some B > 0. Equivalently, we want to prove

FORG, ) < F5) + g(arad f (), d) + S 2 (733)

for d s.t. ||d|| < B.

By compactness we can choose (¢,U) and B > 0 in such a way that, for every
y € Uy c U and d with ||ci||y < B we have R(3,d) € Uy c U, with U, compact and
B > 0 independent from %, , d.

First, since R is in particular C! regular

R(x, d)=x+0(|d|5), (7.3.4)
and by smoothness of the parallel transport
G =G+0(E-7]). (7.3.5)
Furthermore,
gradf (X + §) = gradf(x) + O(dist(x,x+¢q)) , (7.3.6)

by the Lipschitz continuity assumption (7.3.1), and consequently

grad f(R(%, ) = R<x Derad f(%) + O(dist(%, R(, §)))

(7.3.7)
FRED grad £(3) + 0 (1G]

where we used (7.2.3) in the last equality.
Finally, since, %Ié (x,td) is C! regular, we also have

d - d ~ = -
—R(x, 1) |i=n = —R(x, tq)|i=0 + O(llhqll)

=G+ O(h|gl) = R<”q>~+0(||R<xhq)—x||)+0<h||q||> R<’“hq)~+0<h||(q||>)
7.3.8
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where we used (7.3.5) in the third equality, and (7.2.3) in the last one. Again by
compactness, for y € Uy, t < 1, |G|, ]ld]] < B the implicit constants can be taken
with no dependence from the variables.

Now for d s.t. d < B define § = Bd/||d||, so that d = 1G for 7 = ||d||/B. Then we
obtain (7.3.3) reasoning as follows:

f(?(f, d) - f(R(%,0)) = f(ﬁ(f, tq)) = f(R(%,0))

=/ %f(lé(x”q))dt:/Otg(gradf(lé(x,tq)),%Ié(i,td))dt

! R(%,t4 73 ~R(%td) 5 -
= /O g(CREDgrad £ (%) + 011141, TR Dd + 0(11g)) dt (7.3.9)

-/ (e FF D grad ), FXD d) + 0e gl ) s
0
=g(grad (), d) + O(F4l}) = g (grad f (), d) + O(IdII"),

where we used (7.3.7) and (7.3.8) in the fourth inequality. To conclude, notice that
the above argument does not depend from the choice of ¥ € Uy, so that it can be
extended to every ¥ € U; and then by compactness to every y € M. O

We remark that Proposition 7.3.1 is a key tool to extend convergence properties
from the unconstrained case to the Riemannian case. To the best of our knowledge,
this result is new to the literature. Under the stronger assumption that f has
Lipschitz gradient as a function in R”, the standard descent property was proved for
retractions in [56]. For f twice differentiable, a local version of (7.3.2) was proved
in [55, Lemma 10.58].

Another assumption we make in this context is that the gradient norm is globally
bounded.

Assumption 7.2. There exists My > 0 such that
lgrad f(x)[| < My, (7.3.10)

for every x € M.

For each of the algorithms in this section, we further assume that, at each iter-
ation k, we have a positive spanning basis {pi}je[uq of the tangent space T, M of
the iterate x; (further details on how to get a positive spanning basis can be found,
e.g., in [81]). More specifically, we assume that the basis stays bounded and does
not become degenerate during the algorithm, that is,
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Assumption 7.3. There exists B > 0 such that

/Il < B, 7.3.11
Jnax, Pl < ( )

for every k € N. Furthermore there is a constant 7 > 0 such that

. phy =i, 7.3.12
jg[lﬁ)é](r pp) = 7lrll ( )

for every k € N and r € T, M.

Notice how given the boundedness of the basis vectors (7.3.12) is equivalent to
imposing that the cosine measure of {p{(} as a positive spanning basis of Ty M is
uniformly lower bounded for k € N.

7.3.1 Direct search algorithm

We present here our Riemannian Direct Search method based on Spanning Bases
(RDS-SB) for smooth objectives as Algorithm 13.

Algorithm 13 RDS-SB

1: Input: xg e M, y1 € (0,1), y2>1,a90>0,p >0
2: for k=0,1,... do

3:  Compute a positive spanning basis { p{;} j=1:x of It M
4 for j=1,...,K do

5 Let xi = R(xy, Cl/kpi)

6: if f(xi) < f(xx) —pa/]% .then

7 k41 = V2, Xjy1 = xi

8 Declare the step k successful

9: Break

10: end if

11:  end for

12 if f(xi) > f(xx) —pai for j € [1: K] then

13: Ak+1 = Y1k, Xkl = Xk
14: Declare the step k unsuccessful
15:  end if

16: end for
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This procedure resembles the standard direct search algorithm for unconstrained
derivative free optimization (see, e.g., [81,151]) with two significant modifications.
First, at every iteration a positive spanning basis is computed for the current tangent
vector space Ty M. As this space is expected to change at every iteration, it is not
possible to use the same standard positive spanning sets appearing in the classic
algorithms. Second, the candidate point xi is computed by retracting the step ay pi
from the current tangent space Txi M to the manifold, ensuring satisfaction of the
geometric constraint.

7.3.2 Convergence analysis

Now we show convergence of the method, under the assumption that M is
compact. We will first prove that the gradient, in unsuccessful iterates, must be
bounded by a constant proportional to the stepsize (Lemma 7.3.3). This is a well
known bound in the unconstrained case (see, e.g. [228, Theorem 1)), and we are able
to extend it to the Riemannian case thanks to Proposition 7.3.1. Given that the
stepsize converges to zero, the bound implies that the gradient converges to zero for
unsuccessful steps. We then prove, using the Lipschitz continuity of the gradient,
that the gradient converges to zero for successful steps as well. This is a novel result
also for the unconstrained case, where only subsequential convergence guarantees are
typically given for the gradient norm (see, e.g., [228] for some complexity bounds).

The first lemma states a bound on the scalar product between the gradient and
the descent direction for an unsuccessful iteration.

Lemma 7.3.2. If f(R(xk,akp{;)) > f(xg) —paz, then
ax(LB* + p) > —(grad f (xi), pl) . (7.3.13)
Proof. To start with, we have
fxx) = pag < F(R(x, aupy)) < fxe) + au(gradf (xi), pp) + Lag | pl ]
<f(xe) + ax(grad f (xe), p) + Lay B,

where we used (7.3.2) in the second inequality, and (7.3.11) in the third one. The
above inequality can be rewritten as

(7.3.14)

ag{grad f(xy), pi) + a/z(LB2 +p) > 0. (7.3.15)
Given that a; > 0, the above is true iff

{gradf (), pp)
(LB%+ p)

a > (7.3.16)
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which rearranged gives the thesis. O
From this we can infer a bound on the gradient with respect to the stepsize.

Lemma 7.3.3. If iteration k is unsuccessful, then

ay(2LB? + p)

lgrad f (xe) |l < (7.3.17)

Proof. 1f iteration k is unsuccessful, equation (7.3.13) must hold for every j € [1 :
K]. We obtain the thesis by applying the positive spanning property (7.3.12) in the
RHS:

(LB +p) > max ~(gradf (x0). p}) = llgradf (xo)ll. (7.3.18)
O

Finally, we are able to show convergence of the gradient norm using the lemmas
above and appropriate arguments regarding the step sizes.

Theorem 7.3.4. For the sequence {x;} generated by Algorithm 13 we have
klim llgradf (xx)|| = 0. (7.3.19)

Proof. To start with, it holds that @y — 0 since the objective is bounded below,
{f(xx)} is non increasing with f(xg+1) < f(xx) —paz if the step k is successful, and
so there can be a finite number of successful steps with a; > € for any € > 0.

For a fixed & > 0, let k such that a; < & for every k > k. We now show that, for
every € > 0 and k > k large enough, we have

2LB% +
llgradf(xp)|| < & (T—p) + LfL,B?/;/i 7 (7.3.20)

which implies the thesis given that & is arbitrary.
First, (7.3.20) is satisfied for k > k if the step k is unsuccessful by Lemma 7.3.3:

ax(2LB? + p) < e(2LB? + p)

. (7.3.21)

lgrad f (x|l <

using ay < € in the second inequality.
If the step k is successful, then let j be the minimum positive index such that the
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step k + j is unsuccessful. We have that apy = aky; for i € [0 : j — 1], and since
@k+j-1 < € by induction we get a4 < sylz_] *1 Therefore

-1 -1 o
' i—j+1 —-h _ V2
;akﬂ < ;syz < 8;))/2 —872_1 ) (7.3.22)
Then
j-1 j-1 . .
dist (xg, Xg+j) < Z dist (Xk4i, Xkaie1) = Z dist (Xg+i, R(Xp4is ak+ipf<$+l)))
o =0 =0 (7.3.23)
<Y LiaB < LBe—2—.
i=0 v2—1

where we used (7.2.3) together with (7.3.11) in the second inequality, and (7.3.22)
in the third one.
In turn,

llgrad f (xx)|| < dist™(gradf (x), gradf (xe+;)) + llgrad f (xe+;) |l
2L.B? 2LB? 7.3.24
POLE ) (2B 20y 522, (7.3.24)

<Ly dist(xk,xk+j) +
T Y2 —

where we used (7.3.1) and (7.3.21) with k + j instead of k for the first and second
summand respectively in the second inequality, and (7.3.23) in the last one. O

7.3.3 Incorporating line search extrapolation

The works [178,179] (see also Section 6.3.5) introduced the use of an extrapo-
lating line search that tests the objective on variable inputs farther away from the
current iterate than the tentative point obtained by direct search on a given direc-
tion (i.e., an element of the positive spanning set). Such a thorough exploration of
the search directions ultimately yields better performances in practice. We found
that the same technique can be applied in the Riemannian setting to good effect.
We present here our Riemannian Direct Search with Extrapolation method based
on Spanning Bases (RDSE-SB) for smooth objectives. The scheme is presented in
detail as Algorithm 14, which can be viewed as a Riemannian version of [179, Algo-
rithm 2]. As we can easily see, the method uses a specific stepsize for each direction
in the positive spanning basis, so that instead of @y we have a set of stepsizes
{ozi} jeq:k) for every k € Ng. Furthermore a retraction based line search procedure
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(see Algorithm 15) is used to better explore a given direction in case a sufficient
decrease of the objective is obtained.

When analyzing the RDSE-SB method, due to the changes in the tangent space,
we cannot keep the same basis for different iterates as is done in the unconstrained
case (see [179, Algorithm 2, Step 2 and 3|). We therefore introduce, using the
distance dist® to compare vectors in different tangent spaces, a novel condition
ensuring some continuity in the choice of the basis.

Assumption 7.4. For every [,m € N, j € [1 : K], there exists a constant Lp > 0
such that
dist*(py, pp) < Lr dist(xz, %) . (7.3.25)

By compactness, condition (7.3.25) always holds globally if it holds when dist(x;, x,,)
is small enough. In turn, when M is embedded in R" it is easy to see that this is
true if {pi}je[lzK] is the projection of a spanning basis of R" (independent from k)
into Ty M, using that Ty M varies smoothly with x.

Algorithm 14 RDSE-SB

1: Input: xg € R", {&)}jecpik), ¥ > 0,71 € (0,1), 79 > 1.
2: for k=0,1,... do
3:  Compute a positive spanning basis {pi}je[l:K] of TH M

4 Set j(k) = mod (k,n), @} =& and &, , =d forie [1:K]\{j(k)}.

5 Compute aé(k), &iikli Wi.tlfl Linesearchprocedure(@i(k)’xk,pi(k)’%yl,yz)
6: Set Xk+1 = R(xk,a)/(( )p]/(( ))

7. end for

Algorithm 15 Linesearchprocedure(x, @, d,y,v1, y2)

1: if f(R(xy,ad)) > f(x) — ye? then

2:  Return (0, ya)

3: end if

4: while f(R(xy,ad)) < f(x) —ya? do
5

6

7

Set a = ysa
. end while
: Return (a/y2, a/y2)

We now proceed to prove convergence of this method.
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Lemma 7.3.5. We have, at every iteration k, that the following inequality holds:

—(grad f (xx), p](k)> < ~i(+kl) 72 (2LB2 + 7). (7.3.26)

Proof. 1t is immediate to check that we must always have

F(RGxi Aep ™) > fxe) = vA, (7.3.27)
for Ay = a/kikl) if the Linesearchprocedure terminates at the second line, and
A = ’)/QQ'J ( ) if the Linesearchprocedure terminates in the last line. Then in both
cases

~ Y2
—(grad f (xp), pi My < AL2LB? +y) < ;{g;) (2LB? +y), (7.3.28)
where we used Lemma 7.3.2 in the first inequality. O

The assumption 7.4 allows us to extend [179, Proposition 5.2] to the Riemannian
case.

Theorem 7.3.6. For {x;} generated by Algorithm 1/, we have

klim llgradf (xz)|| — O. (7.3.29)

ﬁkl), so that ax — 0 since a; ®) _, 0, reasoning as in
the proof of Theorem 7.3.4. As a consequence of Lemma 7.3.5 we have

Proof. Let @y = maxje[1.x] @

~(grad f (xi), pI) < @er, (7.3.30)

for the constant ¢y = 72 (2LB2 + ) independent from j(k).
It remains to bound (grad f(xk), p k) for i # j. To start with, we have the following
bound:

— (gradf(xk), p) < —(gradf (xk+n), Pryp) + [<grad f (Xken), pyyp) — (gradf(xk), pi)l
<c1@en + Kerad f (vean), plyy) — (grad f (), P
(7.3.31)
for h < K such that k+h = j(i), and where in the second inequality we used (7.3.30)
with k + h instead of k. For the second summand appearing in the RHS of (7.3.31),
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we can write the following bound

[(grad f (xesn)s Py — (grad f(xi), pi)l

= [grad f (veen), Play) = (Tf Mgrad f (o), T i)
<Kgradf (xxn) = T grad f (xa), pla)| + KO grad £ (x0), Pl = T PO
+(grad f (xx+n) = D grad f (xi), pies, = T i)
<Ly dist (g, Xgen) | Pipp |l + Lrllgrad f () || dist (xgen, x¢) + Ly Lr dist(xg, Xgen)”
S(LfB + Ler + LfLr dist (xXgen, xx)) dist (Xgan, Xk) ,

(7.3.32)
where in the second inequality we used the Cauchy-Schwartz inequality together
with the Assumptions on the Lipschitz property of the iterates (7.3.1) and (7.3.25),
while in the third inequality we used conditions (7.3.11) and (7.3.10).

We can now bound dist(xg, x¢+;) as follows

h-1
dist(Xgrn, Xx) < Z dist (Xg4141, Xk41)
1=0
h-1 h-1
. _ [ (k+l _ j(k+l
= dlSt(Xk+l,R(Xk+l,ak+lpi£,,+ ) < Z Lra’k+l||p{€5_l+ il
1=0 1=0 (7.3.33)
h—1
<BL, Ay < hBL, max @iy
120 1€[0:h—1]

<KBL, max a4,
1€[0:K]

where we used (7.2.3) in the second inequality, (7.3.11) in the third one, and h < K
in the last one.

Now let Ax = maxje[o:x] @k+, S0 that in particular Ay — 0. We apply (7.3.33) to
the RHS of (7.3.32) and obtain

[(grad f (Xesn), Py — (grad f (xx), pi)| < (LyB+ LrMy + LyLrcaAg)caAe — 0,
(7.3.34)
for k — oo and ¢ = KBL,. Finally, for every i € [1: K]

—<gradf(xk),p’}€) < c1@ep+ (LB + LrMy + LiLrcoAg)coAy — 0, (7.3.35)
and the thesis follows after observing that, by (7.3.12),

1 .
d < - —(grad D 0, 7.3.36
lgrad (xoll < — max. ~(grad f(xe). pi) — (7.3.30)

where the convergence of the gradient norm to zero is a consequence of (7.3.35). O
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7.4 Nonsmooth objectives

Now we proceed to present and study direct search methods in the context where
f is Lipschitz continuous, and bounded from below, but not necessarily continuously
differentiable. The algorithms we devise are built around the ideas given in [98],
where the authors consider direct search methods for nonsmooth objectives in Eu-
clidean space.

7.4.1 Clarke stationarity for nonsmooth functions on Rie-
mannian manifolds

In order to perform our analysis, we first need to define the Clarke directional
derivative for a point x € M. The standard approach is to write the function in
coordinate charts and take the standard Clarke derivative in an Euclidean space
(see, e.g., [129] and [131]). Formally, given a chart (¢,U) at x € M and v € TyM,
we define

fo0v) = fo(e(x), dp(x)v) (7.4.1)

for f(y) = f(¢~'(y)). The following lemma shows the relationship between defini-
tion (7.4.1) and a directional derivative like object defined with retractions. This
nontrivial result is the key tool allowing us to extend the analysis of direct search
methods on R" to the Riemannian setting.

Lemma 7.4.1. If (yi,qx) — (x,d) and ty — 0,

£(x.d) > limsup f(R(Yk,tkét]k)) = f(ye) ‘
k—o00 k

(7.4.2)

In order to prove the above result we first need the following lemma.

Lemma 7.4.2. For a Lipschitz continuous function h : R" — R, y,v € R", if
Yk =Y, Vi = v and ty — 0 then

k— o0 k

(7.4.3)

Proof. We have

|h(Fk + txVk) — h(Fk + 1xV)| < ti L[V — Vi|l = o(2k) (7.4.4)
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with Lj; the Lipschitz constant of h. Then
hGx+ Vi) = (k) _

b h(Yr + V) + o(tx) — h(Fx)

lim sup " lim su .
k— 00 k k—o0 k
- - - (7.4.5)
h +1v)—h
~ Jim sup (Vk ktV) (k) < 1°G.¥).
k— o0 k

where we used (7.4.4) in the first equality, and with the inequality true by definition
of the Clarke derivative. O

Proof of Lemma 7.4.1. With the notation introduced in the proof of Proposition
7.3.1, without loss of generality we assume that U is bounded and that ¢ can be
extended to a neighborhood containing the closure of U.
First, since pushforward R of a C? retraction on R is a C? retraction itself of TR™
on R™ we have the Taylor expansion

R(3,7) =3 +7+0(0]°), (7.4.6)
with the implicit constant uniform for ¥ varying in U and ¥ chosen in R”.
Second, for any fixed constant B > 0, by continuity we have

TG - gll < 0 (IF - %) (7.4.7)

for k — o0, g € R™ with ||g|| < B, and with a uniform implicit constant.
Therefore

i = dll < g = Td)| + IF#d - di| < 0 (ldi = (@) le) + O (1% - &)
= 0 (ldx = T(@)l) + O (15 — &ll) = 0(1),

(7.4.8)

where in the second inequality we used (7.4.7), and in the last equality we used
dy — d together with x; — X.
Let now vy = (R(%x, tedy) — %) /tx. Then

I LU L, -
Vi —dIl = EHR(kakdk) - X —tid|| < E(”R(xk’tkdk) — Xk — tedi|| + trlldi — dill)

:%m(r,%ndku?) +1e0(1)) = o(1),

(7.4.9)
where we used (7.4.6) and (7.4.8) for the first and the second summand in the second

equality. In other words, vz — d. To conclude,
. F(R(y,trdr)) = f(yr) . F(RGrtedr)) — f (k)
lim sup = lim sup
k—o0 Ik k—o0 Ik
.f(yk-'-lkﬁk)_.f(yk) £Oo/~ T o
p > f7(x,d) = f7(x,d),

(7.4.10)

=limsu
k—oo 153
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where in the inequality we were able to apply (7.4.2) because ¥, — d by (7.4.9). O

7.4.2 Refining subsequences

We now adapt the definition of refining subsequence used in the analysis of
direct search methods (see, e.g., [17,98]) to the Riemannian setting. Let (xx, dy) be
a sequence in T M.

Definition 7.4.3. We say that the subsequence {x;()} is refining if x;x) — x, and
if for every d € Ty M with ||d||x = 1 there is a further subsequence {j(i(k))} such
that

kh_r)r;o diSt*(dj(i(k)), d)=0. (7.4.11)

We now give a sufficient condition for a sequence to be refining, assuming that
the manifold is embedded in R" and that the directions are obtained projecting from
the unit sphere to the tangent spaces.

Proposition 7.4.4. If x;x) — x*, dix) is dense in the unit sphere, and di) =
Pk(czl-(k))/||Pk(d_l-(k))||k for Pk(cfi(k)) # 0 and d;y = 0 otherwise, then it holds that
the subsequence {xjx)} s refining.

Proof. Fix d € Te- M, with ||d||y = 1, and let d = d/||d||. By density, we have that
Jj(i(k)) — d for a proper choice of the subsequence {j(i(k))}. Then

Pi(d; P (d d
ko0 k= |[Pe(djio) e IPe (Dl ldllie
where in the second equality we used the continuity of P, and of the norm || - ||,

and in the third equality we used Py (d) = d since d € Te- M by construction. O

7.4.3 Direct search for nonsmooth objectives

We present here our Riemannian Direct Search method based on Dense Direc-
tions (RDS-DD) for nonsmooth objectives. The scheme is presented in detail as
Algorithm 16. The algorithm performs three simple steps at an iteration k. First,
a search direction is selected randomly in the current tangent space. Then a ten-
tative point is generated by retracting the step axdy from the tangent space to the
manifold. Such a point is then eventually accepted as the new iterate if a suffi-
cient decrease condition of the objective function is satisfied (and the stepsize is
expanded), otherwise the iterate stays the same (and the stepsize is reduced).
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Algorithm 16 RDS-DD

1: Input: xg e R*, @9 >0,y >0,y € (0,1),y2 > 1
2: for k=0,1,...do

3:  Sample d; randomly in {d € TH M | ||d|| = 1}
4 if f(R(xg,axdy)) < f(x) _7’“1% then
5 X1 = R(xp, ardy), aie = yoi

6: else
7

8

9:

Xk+1 = Xk; Qk+1 = Y1k
end if
end for

Thanks to the theoretical tools previously introduced, and in particular to the re-
lation between retractions and the Clarke directional derivative proved in Lemma 7.4.1,
we can easily show that a suitable subsequence of unsuccessful iterations of the RDS-
DD method converges to a Clarke stationary point.

Theorem 7.4.5. Let {x} be generated by Algorithm 16. If {x;x)} is refining, with
Xi(ky — x*, and i(k) is an unsuccessful iteration for every k € NU {0}, x* is Clarke
stationary.

Proof. By the same assumptions as in the smooth case @y — 0 and in particular
@;(ky — 0. Since by assumption i(k) is an unsuccessful step, we have, for every i(k)

(R (xi(kys @iy diqry)) = f (Xigry) > —ya?(k) . (7.4.13)

Let {j(i(k))} be such that djiy — d,and let yi = x;ik)), gk = djik)), tk = @j(i(k))-
We have

R _
lim sup SRk 141)) = F 1) > lim sup —ya;x) =0, (7.4.14)

k—so00 tk k—o0

thanks to (7.4.13), and by applying Lemma 7.4.1 we get
SRk tkqi)) = f ()
p >0

f°(x*,d) > limsu , (7.4.15)
k—o0 Ik
which implies the thesis since d is arbitrary. O

7.4.4 Direct search with line search extrapolation for nons-
mooth objectives

We present here our Riemannian Direct Search method with line search Extrap-
olation based on Dense Directions (RDSE-DD) for nonsmooth objectives. It can be



168 Retraction based Direct Search Methods

seen as an extension to the Riemannian setting of the DEFNy;y . algorithm intro-
duced in [98] for the bound constrained setting. The detailed scheme is given in
Algorithm 17. As we can easily see, the algorithm performs just two simple steps at
an iteration k. First, a given search direction is suitably projected on the current
tangent space. Then a line search is performed using Algorithm 15 to hopefully
obtain a new point that guarantees a sufficient decrease.

Algorithm 17 RDSE-DD

1: Input: xo € R", a9 > 0,y > 0,91 € (0,1),y2 > 1, {di} dense in S(0, 1).
2: for k=0,1,... do

3:  Sample dy randomly in {d € Tx M | ||d|| = 1}

4:  Compute @i, @+ with Linesearchprocedure(ay, xi, di, v, y1,v2)
5: Set xr41 = R(xg, ardy)

6: end for

Once again, by exploiting the theoretical tools previously introduced, we can
straightforwardly prove that a suitable subsequence of the RDSE-DD iterations
converges to a Clarke stationary point. It is interesting to notice that, thanks to
the use of the line search strategy, we are not restricted to considering unsuccessful
iterations this time.

Theorem 7.4.6. Let {xi} be generated by Algorithm 17. If {x;x)} is refining, with
Xi(ky — X, then x* is Clarke stationary.

Proof. Let By = ai/vy2 if the line search procedure exits before the loop, and B; =
v1@r+1 otherwise. Clearly Br — 0, and by definition of the line search procedure,
for every k

F(R(xx, Brdr)) = f(xi) > =yPs - (7.4.16)

The rest of the proof is analogous to that of Theorem 7.4.5. O

7.5 Numerical results

We now report the results of some numerical experiments of the algorithms
described in this chapter on a set of simple but illustrative example problems. The
comparison among the algorithms is carried out by using data and performance
profiles [186]. Specifically, let S be a set of algorithms and P a set of problems. For
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each s € § and p € P, let 1, be the number of function evaluations required by
algorithm s on problem p to satisfy the condition

Jxe) < fr+7(f(xo) = /o), (7.5.1)

where 0 < 7 < 1 and f7 is the best objective function value achieved by any solver
on problem p. Then, the performance and data profiles of solver s are defined,
respectively, by the following functions

(@ = —|lpeP <
a b . (07 )
ps | P p min{z, ¢ : s’ € S} ~
1
ds(k) meEP:tp,s SK(np+1)}| ,

where n,, is the dimension of problem p.

We used a budget of 100(n, + 1) function evaluations in all cases and two dif-
ferent precisions for the condition (7.5.1), that is 7 € {107!,1073}. We consider
randomly generated instances of well-known optimization problems over manifolds
from [3,55,130]. The size of the ambient space for the instances varies from 2 to 200.
For all the problems, the manifold structure we used was the one available in the
MANOPT library [54]. After a basic tuning phase, we set the algorithm parameters
as follows: we used y; = 0.61, yo = 1 and y = 0.77 for Algorithm 13, y; = 0.81,
v2 = 3.12 and y = 0.11 for Algorithm 14, and the stepsize 1.64/n (recall that n is
the dimension of the ambient space) for the ZO-RGD method.

For the nonsmooth strategies RDS-DD+ and RDSE-DD+-, we considered the same
parameters of the smooth case for RDS-SB and RDSE-SB, setting a. = 107, and
for both RDS-DD and RDSE-DD used y; = 0.95, y2 =2, and y = 1. When dealing
with the nonsmooth case, the stepsize used for ZO-RGD was the same as the one
considered in the smooth case.

The positive spanning basis was obtained both in Algorithm 13 and Algorithm 14 by
projecting the positive spanning basis (eq, ..., e,, —€1, ..., —€,) of the ambient space
R" on the tangent space. The initial stepsize was set to 1 for all the direct search
methods, with no fine tuning.

We generated the starting point and the parameters related to the instances either
with MATLAB rand function or by using the random element generators imple-
mented in the MANOPT library.

7.5.1 Smooth problems

We describe here the 8 smooth instances of problem (7.2.1) from [3,55].
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Largest eigenvalue, singular value, and top singular values problem

In the largest eigenvalue problem [55, Section 2.3|, given a symmetric matrix
AeS(nn) ={AeR™ | A=AT}, we are interested in computing

max x' Ax. (7.5.2)

xeGn-1

The largest singular value problem [55, Section 2.3] can be formulated generaliz-
ing (7.5.2): given A € R™" we are interested in

max  x'Ay. (7.5.3)

xeGm-1 yeSh-1

Notice how the domain in (7.5.2) and (7.5.3) are a sphere and the product of two
spheres respectively.

Finally, to compute the sum of the top r singular values, as explained in [55, Section
2.5] it suffices to solve

max XTAY, (7.5.4)
XeS(m,r),YeS(h,r)

for S(a, b) the Stiefel manifold with dimensions (a, b).

Dictionary learning

The dictionary learning problem [55, Section 2.4] can be formulated as

min ||Y — DC|| + 1||C|l1,

7.5.5
st. DeR™ CeR™ |Di||=...=||Dyl|=1, ( )

for a fixed Y € R A >0, || - |l; the ¢;— norm, and Dy, ..., D;, the columns of D.
In our implementation we smooth the objective by using a smoothed version || - ||1 ¢
of |- [l

IClle = )| JC2 +22. (7.5.6)
i.J

In our tests, we generated the solution C using MATLAB sprand function, with a
density of 0.3, set the regularization parameter A to 0.01 and & to 0.001.

Synchronization of rotations

Let SO(d) be the special orthogonal group:

SO(d) = {R e R | RTR = I; and det(R) = 1}. (7.5.7)
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In the synchronization of rotations problem [55, Section 2.6], we need to find rota-
tions Ry, ..., Ry € SO(d) from noisy measurements H;; of RiRjTl, for every (i, j) € E,

a subset of (g) (the set of couples of distinct elements in [1 : h]). The objective is
then

min Z ||1éi—HijIéj||2. (758)
J)EE

In our tests, we considered the case h = 2 for simplicity.

Low-rank matrix completion

The low rank matrix completion problem [55, Section 2.7] can be written, for a
fixed matrix M € R™"  as

min - Y hea(Xij — Mij)?,

sit. X € R™ rank(X) =r, (7.5.9)

given a positive integer r > 0 and a subset of indices Q c [1: m] x [1: h]. It can be
proven that the optimization domain, that is the matrices in R™*" with fixed rank
r, can be given a Riemannian manifold structure (see, e.g., [225]).

Gaussian mixture models

In the Gaussian mixture model problem [55, Section 2.8], we are interested in
computing a maximum likelihood estimation for a given set of observations x1, ..., xj:

1 o) T o)
~max Zlog Zwk—e 2 , (7.5.10)

weAK-1
where Sym(d)* is the manifold of positive definite matrices
Sym(d)t={X e R™ | X =XT, X > 0} (7.5.11)

and AK=! is the subset of strictly positive elements of the simplex AKX~ which can
be given a manifold structure. In our tests, we considered the case K = 2 and
the reformulation proposed in [128], which does not use the unconstrained variables

(i1, ..., iig).
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Procrustes problem

The Procrustes problem [3] is the following linear regression problem, for fixed
A € R*" and B € R™*P:
min ||[AX - B||%, (7.5.12)
xeM

In our tests, we assumed the variable X € R™” to be in the Stiefel manifold St(n, p),
a choice leading to the so called unbalanced orthogonal Procrustes problem.

Results

In Figure 7.1, we include the results related to the 8 smooth instances of problem

(7.2.1) discussed above, each with 15 different problem dimensions (from 2 to 200),
for a total number of 60 tested instances. We compared our methods, that is RDS-SB
and RDSE-SB, with the zeroth order gradient descent (ZO-RGD, [171, Algorithm
1]).
The results clearly show that RDSE-SB performs better than RDS-SB and ZO-RGD
both in efficiency and reliability for both levels of precision. By taking a look at
the detailed results in Section 7.5.4, we can also see how the gap between RDSE-SB
and the other two algorithms gets larger as the problem dimension grows.

——z0RaD || o
--=--~RDS-SB
-+-RDsE-sB|] *'

(a) Data p., 7 = 107! (b) Perf. p., 7 = 107! (c) Data p., 7 = 1072 (d) Perf. p., 7 = 1073

Figure 7.1: Smooth case: results for all the instances

7.5.2 Nonsmooth problems

We report two nonsmooth problems taken from [130].

Sparsest vector in a subspace

Given an orthonormal matrix Q € R™", the problem of finding the sparsest
vector in the subspace generated by the columns of Q can be relaxed as

min_||Qx|[1 . (7.5.13)
xegn-1
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Nonsmooth low-rank matrix completion

In the nonsmooth version of the low rank matrix completion problem (7.5.9) the
Euclidean norm is replaced with the /; norm, so that in the objective we have a sum

of absolute values:

min X hea |Xij — Mijl,
i 7.5.14
s.it. X € R™" rank(X)=r. ( )

7.5.3 Results

We report here a preliminary comparison between a direct search strategy, a line
search strategy and ZO-RGD on the two nonsmooth instances of (7.2.1) presented
above, each with 15 different problem sizes (from 2 to 200), thus getting a total
number of 30 tested instances. We remark that while in the unconstrained setting
the performance of zeroth order (sub)gradient descent methods on nonsmooth ob-
jectives have been analyzed (see, e.g., [193]), there are, to the best of our knowledge,
no convergence guarantees in the Riemannian setting.

In the direct search strategy (RDS-DD+), we apply the RDS-SB method until
a1 < e, at which point we switch to the nonsmooth version RDS-DD. Analo-
gously, in the line search strategy (RDSE-DD+), we apply the RDSE-SB method
until max;e[q.x] d/i .1 < @, at which point we switch to the nonsmooth version
RDSE-DD. Both strategies use a threshold parameter a. > 0 to switch from the
smooth to the nonsmooth DFO algorithm. We refer the reader to [98] and references
therein for other direct search strategies combining coordinate and dense directions.
We report, in Figure 7.2, the comparison between the considered strategies. As in
the smooth case, the line search based strategy outperforms both the simple direct
search and the zeroth order one. By taking a look at the detailed results in Section
7.5.4, we can once again see how the gap between the algorithms gets larger as the

problem dimension gets large enough.

,,,,,,,,,,,,,,,,,,,,,

ffffffff

(a) Data p., 7 = 107! (b) Perf. p., 7 =107! (c) Data p., 7 = 1073 (d) Perf. p., 7 = 1073

Figure 7.2: Nonsmooth case: results for all the instances
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7.5.4 Data and performance profiles by ambient space di-

mension

We report here further detailed numerical results, splitting the problems by
ambient space dimension: between 2 and 15 for small instances, between 16 and 50
for medium instances, and between 51 and 200 for large instances.

' P — -
08 g8

1 1

0s

08

07

08

05

|—=—Z0-RGD
-=-RDS-SB
-4 -RDSE-SB

o 10 20 30 4 50 10 15 20 0 1 20 3 4 5 6 70 8 9% 100 2 6 8 0 12 16 16 1B 20

(a) Data p., 7 = 107! (b) Perf. p., 7 = 107! (c) Data p., 7 = 1072 (d) Perf. p., 7 = 1073
‘ — g ,

1

09 . g ¥ f
0s; FH e '

: et
3

07

08
05
048 & 04

03 03

02 0z

01 01

0 2 4 S e 7 & s 10 15 20 25 a0

(e) Data p., 7 = 107! (f) Perf. p., 7 =101 (g) Data p., 7 = 1072 (h) Perf. p., 7 = 1073

& 09 §7~ 03 Qe
] I s
gt os 5%
£ ;
0 a2 0
pe

N = =2
10 20 a0 a0 50 @ 0 10 2 3 4 5 6 70 8 % 100 1 2 3 4 5 B 7 s

(i) Data p., 7 =10"% (j) Perf. p., 7=10"1 (k) Data p., 7 = 1072 (1) Perf. p., 7 =1073

Figure 7.3: From top to bottom: results for small, medium and large instances in the
smooth case.
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Chapter 8

Convergence of direct search
under a tail bound condition on
the black box error

In this chapter, we use tail bounds to define a tailored probabilistic
condition for function estimation that eases the theoretical analysis of a
stochastic direct search method. In particular, we focus on the uncon-
strained minimization of a potentially non-smooth function, whose values
can only be estimated via stochastic observations, and give a simplified
convergence proof for a basic direct search scheme. We also study the
trade-off between algorithm parameters, assumptions on the noise, and
number of samples needed at every iteration for convergence.

8.1 Derivative free optimization with stochastic
oracles

We consider the following unconstrained optimization problem
min f(x), (8.1.1)
xeRn

with f locally Lipschitz continuous and possibly non-smooth function such that
inf f = f* € R. We assume that the original function f(x) is not computable, and
the only information available on f is given by a stochastic oracle producing an
estimate f(x) for any x € R”. In some contexts, we can assume that the estimate is

177
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a random variable parameterized by x, that is

f(x) = F(x,6),

with the black-box oracle given by sampling on the £ space. When dealing with, e.g.,
statistical learning problems, the function F(x, &) evaluates the loss of the decision
rule parametrized by x on a data point & (see, e.g., [160] for further details). In
simulation-based engineering applications, the function F(x,¢) is simply related to
some noisy computable version of the original function. In this case & represents the
random variable that induces the noise (a classic example is given by Monte Carlo
simulations). A detailed overview is given in, e.g., [11].

When this random variable is exact in expected value, problem (8.1.1) turns out
to be the expected loss formulation

min B¢ [F(x, )], (8.1.2)

a case addressed in recent literature, see, e.g., [162,215], for further details.

Although the role of derivative-free optimization is particularly important when
the black-box representing the function is somehow noisy or, in general, of a stochas-
tic type, traditional DFO methods have been developed primarily for determinis-
tic functions, and only recently adapted to deal with stochastic observations (see,
e.g., [74] for a detailed discussion on this matter). We give here a brief overview of
the main results available in the literature by first focusing on trust region strategies
and then moving to direct search approaches.

In [162], the authors describe a trust-region algorithm to handle noisy objectives
and prove convergence when f is sufficiently smooth (i.e., with Lipschitz continuous
gradient) and the noise is drawn independently from a distribution with zero mean
and finite variance, that is they aim at solving a smooth version of problem (8.1.2),
when ¢ is additive noise. In the same line of research, the authors in [215] de-
veloped a class of derivative-free trust-region algorithms, called ASTRO-DF, for
unconstrained optimization problems whose objective function has Lipschitz con-
tinuous gradient and can only be implicitly expressed via a Monte Carlo oracle.
The authors consider again an objective with noise drawn independently from a dis-
tribution with zero mean, finite variance and a bound on the 4v-th moment (with
v > 2), and prove the almost sure convergence of their method when using stochastic
polynomial interpolation models. Another relevant reference in this context is given
by [74], where the authors analyze a trust-region model-based algorithm for solving
unconstrained stochastic optimization problems. They consider random models of



8.1 Derivative free optimization with stochastic oracles 179

a smooth objective function, obtained from stochastic observations of the function
or its gradient. Convergence rates for this class of methods are reported in [34, 68].
The frameworks analyzed in [34,68,74] extend the trust region DFO method based
on probabilistic models described in [23]. Tt is important to notice that the random-
ness in the models described in [23] comes from the way sample points are chosen,
rather than from noise in the function evaluations.

All the above-mentioned model-based approaches consider functions with a cer-
tain degree of smoothness (e.g., with Lipschitz continuous gradient) and assume
that a probabilistically accurate gradient estimate (e.g., some kind of probabilisti-
cally fully-linear model) can be generated, while of course such an estimate is not
available when dealing with non-smooth functions.

A detailed convergence rate analysis of stochastic direct search variants is re-
ported in [96] for the smooth case, i.e., for an objective function with Lipschitz con-
tinuous gradient. A stochastic mesh adaptive direct search for black-box nonsmooth
optimization is proposed in [14]. The authors prove convergence with probability
one to a Clarke stationary point (see [77]) of the objective function by assuming
that stochastic observations are sufficiently accurate and satisfy a variance condi-
tion. The analysis adapts to the considered gradient-free framework the theoretical
analysis given in [198] for a class of stochastic gradient-based methods. It is extended
in [97] to the constrained case.

8.1.1 Contributions

The main goal of this chapter is to analyze some tail-bound probabilistic condi-

tions for the error of a black box used within a general direct search scheme. We
show how they can be used to obtain convergence and define a trade-off between
noise, algorithm parameters, and number of samples.
Our algorithmic scheme is a simple direct search strategy obtained by replacing the
function values with their estimates in the acceptance test of the deterministic coun-
terpart. The scheme works as follows: it chooses a direction over the unit sphere;
generates the new iterate by moving along the direction, and finally it uses a suitable
acceptance test to decide if the new point can be accepted (successful iteration) or
not. Convergence of the method is then carried out by simply assuming that our
tail-bounds hold. The analysis has two main steps. In the first one, we show a
result that implies convergence of the stepsize to zero almost surely. In the second
one, we focus on the random sequence of the unsuccessful iterations and prove, by
exploiting the first result, Clarke stationarity at limit points.
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We will see how:

« our conditions are implied by the variance conditions considered in [14] and by
the probabilistically accurate function estimate assumption used in [14,74,198];

o one of our conditions is implied by a tail bound used in [162];

o the finite variance oracle usually considered in the literature (see, e.g., [162,
215]) can be replaced by a finite moment oracle (see Section 8.2.5 for further
details) when constructing estimates satisfying our conditions.

o we can compute the number of samples needed for convergence as a function
of the stepsize exponent used in the acceptance test and the moments of the
noise. One of our results is that if all the moments are finite like in the case
of gaussian noise we only need O(AZQ_'S) samples with € > 0 for a suitable
choice of the stepsize exponent, instead of the 0(A;4) samples required in
previous works on stochastic trust region (see, e.g., [34,74,215]) and direct
search (see [14,96,97]) methods, where Ay is the stepsize at the step k (see
Remark 8.2.10).

8.2 A weak tail-bound probabilistic condition for
function estimation

In order to give convergence results for our algorithm, we first need some proba-
bilistic assumptions on the accuracy of the oracle. In this section, we hence describe
our tail-bound conditions and compare them with other existing conditions from
the literature. The stochastic quantities defined hereafter lie in a probability space
(Q, F,P), with probability measure P and o-algebra ¥ containing subsets of Q,
that is the space of the realizations of the algorithms under analysis. Any single
outcome of the sample space Q will be denoted by w. For a random variable X
defined in Q we use the shorthand {X € A} to denote {w | X(w) € A}.

Our algorithm generates a random process with the following random variables and
corresponding realizations. The search direction and the stepsize are denoted with
Ag and Gy, with realizations §; and gj respectively. The function values f(x;) and
f(xx + ArGy) are denoted with F; and F?, with realizations f; and f,f respectively.
We define F;_; as the o—algebra of events up to the choice of Gy (so that in par-
ticular Gy is measurable with respect to F¢_1). More explicitly, we define F_; as
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the o-algebra generated by (F;, F f );:& and (G J');?:O . Finally, we use E to denote
expectation and conditional expectation, and a.s. as a shorthand for "almost surely".

8.2.1 The weak tail-bound probabilistic condition

We now introduce our tail bound assumptions.

Assumption 8.1. For every @ > 0 and some &7 > 0,¢g > 1 (independent of @, k),
a.s.:

P(IFe = Ff = (£(n) = £+ G| = @A [Fia) < =L (A1)

Assumption 8.2. For every @ > 0 and some g, > 0,p > 1,4 > 1 (independent
of @, k), a.s.:

P(IFc = Ff = (F0) = FO + MG = a7 i) < =2 (A2)

Notice that we are only assuming error bounds for the estimate of the difference
f(xr) = f(xx + ArGy) and not for the estimates of f(x;) and f(xx + ArGy) taken
individually; we basically want to bound the probability that the error in that
estimate is large, as such an estimation plays a crucial role in the acceptance tests
of our algorithm. If p = ¢ = 2, condition (A2) implies (Al) for £y = max(1,¢&,), as
it can be seen using that the LHS are the same while the RHS are O(%) and O(é)
respectively.

In our convergence arguments we will need Assumptions 8.1 and 8.2 with a F_1
measurable random variable A rather than a real number @. This is justified by the
following lemma.

Lemma 8.2.1. Let A be a positive Fr—1 measurable random variable. If (A1) holds,
then it holds also with A instead of a, and an analogous result is true for (A2).

Proof. We prove the result in the case where A is a discrete random variable with
a countable set of possible realizations {a;};en, which is sufficient since the general
case then follows by approximation.

Let X = |Fy - F,f - (f(xx) = flxp + Aka))l/AZ. By the definition of conditional
probability, (A1) holds with A instead of « iff, for every F € F¢_1:

E
E[1rLxen)] < E[Lr—]. (8:2.1)
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Indeed we have
E[1rlix<ayl = Z E[1rlix<aylia=a}] = Z E[Lrnia=aL{x<ai}]
ieN ieN

E E E
< Z [E[]lFm{Aza,-}—f] = Z [E[]lF]l{A:a,-}_f] = [E[]lFKf]
ieN di ieN i

(8.2.2)

as desired, where we used that F N {A = a;} is measurable w.r.t. F;_; together with
(A1) for @ = a; in the inequality.
This proves the Lemma for (A1), and an analogous argument holds for (A2). O

8.2.2 Conditional Chebycheff’s inequality

We briefly recall here for completeness the conditional Chebycheft’s inequality,
which will be a key tool to relate our assumptions with other used in previous works.
Thanks to the properties of conditional expectations, this inequality can be proved
in the same way as the standard Chebycheft’s inequality.

Proposition 8.2.2. Given random variables X, € defined on R" with € > 0 measur-
able with respect to a sub o-field F, we have

P12 7 < LT

Proof. We have
eP(IX] 2 € | F) = eL[Ljx)ze | F]
= Elelix;ze | F1 < E[IX] | #],
where we used that € is ¥ measurable in the second equality and the monotonicity

of the conditional expectation together with €1,x>¢ < |X| in the inequality. O

Remark 8.2.3. Alternative proofs to Lemma 8.2.1 without approximation argu-
ments and to Proposition 8.2.2 can be given using [52, Theorem 3.1.1] in a straight-
forward way (see, e.g., [52, Corollary 3.1.1]).

8.2.3 Comparison with the existing conditions

Our conditions are weaker than the ones imposed in [14]. More precisely, they
are implied by [14, Equation (2)], rewritten in our notation as
ELF — f(xx + MG | Faa] < k7A;

8.2.3
E[|Fx = f(x)|* | Fia] < kFAL, S
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for a constant ky > 0. The ky-variance condition in (8.2.3) is a gradient free
version of [198, Assumption 2.4, (iii)], and more precisely can be obtained from
the latter by removing the gradient related terms in the right hand side. However,
in [198] as well as in other works on smooth stochastic derivative free optimization
(see, e.g., [74,162,215] and references therein), a probabilistically accurate gradient
estimate is also used, while of course such an estimate is not available in a possibly
non-smooth setting.

Proposition 8.2.4. Condition (8.2.3) implies Assumption 8.1 and Assumption 8.2
forer=2ky and g4 = 4k12¢,p = 2 respectively, and q = 2.

Proof. First, notice that

E[|Fe — Ff = (f(xx) = f(xx + Ak G | Frt]
< 2(E[|F ~ f Ok + MG | Faor] + E[Fr = fxo) P | Faea]) (8.2.4)
4
< dk3AL,
where we used (a + b)? < 2(a? + b?) for a,b € R in the first inequality, and (8.2.3)
in the second.
We now prove (A1l). In order to do so, we only need a bound on the first moment

E[|Fx — F,f = (f(xx) = f(xk + AkGr))| | Fr-1], implied by the bound on the second
moment (8.2.4) thanks to conditional Jensen’s inequality:

E[lFe = F} = (f (xie) = f O+ AcGi))| | Fei]

) (8.2.5)
< VELF = F = (f(x) = f (i + MG 2 | Fia] < 2k A7
We can now conclude by noticing
P(1Fx = F§ = (f(xk) = f (o + AxGr))| > A7 |Fir)
- E(|Fx — F{ = (f(xx) = f(xx + MG )| [Fi-1) o 2ky (8.2.6)

b

2
a/Ak a

where we used the conditional Chebyshev’s inequality in the first inequality, and
(8.2.5) in the second inequality. In particular, (8.2.3) implies (A1) for £ = 2ky.
As for (A2), we have

PIFk — F{ = (f(xx) = f(xk + AkGp))| = A7 | Fioi]
= P[|1Fe = F{ = (f(x0) = f(xx + MG )P 2 @®AL | Fiea
_ ElFc— Ff = (F) = f+ MG | Fial 45

— —_— b
a/QA% a?
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where we used the conditional Chebyshev’s inequality in the first inequality, and (8.2.4)
in the second inequality. By setting ¢, = 4k? in the above equation we obtain

£
P[IFx = F§ = (f (xk) = f (e + AGi))| = @A} | Fia] < a—’; : (8.2.7)
as desired. O

Remark 8.2.5. In the direct search algorithm proposed in [14] the search direction
at iteration k is chosen before the function estimates to be used in the acceptance
test are computed. Thus our analysis can be extended also to that algorithm.

Remark 8.2.6. As a corollary of Proposition 8.2.4, our assumptions can always be
satisfied if the variance of the oracle is finite (see Section 8.2.4 in for details). In
Section 8.2.5 this is proved for finite moment oracles as well.

We now describe the relation between our assumptions and the S-probabilistically
accurate function estimate assumption

P({IFk = fx)| < 1AL N {IF = floe+ MGl < TR} | Faer) 2 B, (8.2.8)

used in [14,74,198] in combination with other assumptions. In particular, con-
ditions (8.2.3) are used in [14] and [198] (as discussed above), and a probabilistic
assumption on the accuracy of random models for the objective is considered in [74].

We show that if (8.2.8) is satisfied for every B in a certain interval, with 7y
depending on an accuracy parameter &, then also our assumptions are satisfied with
gr,&4 dependent on . Note that the parameter 77 is upper bounded by a function
of B, arbitrarily large for B close to 1, but the result holds for any positive 7y within
the prescribed interval.

Proposition 8.2.7. Let ¢ > 0 and p € (0,1). Assume that (8.2.8) holds for every
Bell-p,1).

o Ifty < 2(+—ﬁ)7 then Assumption 8.1 holds with &7 =
e Ifty< % ﬁ, then Assumption 8.2 holds with e, = \/g and p =q =2.
Proof. First observe that by the triangular inequality

|Fi = i) + | F = f o+ AG)| 2 |Fr = Ff = (f (i) = f (ke + AG))| -
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Let @ > &7 be arbitrary. Then, for any 7y < g,

{IFx = F§ = (f(x) = f Ok + AGr)| < aA}}

, . ) (8.2.9)
DAlFk = fx)| S 7eA Y O AIF, = f i + AkGr)| < TpAL}

Therefore, for =1 - %f D,

P(I1Fx = F§ = (f(xk) = f(xx + AGp))| = @A} |Fr1)
= (1=P(|Fx = F{ = (f(xx) = f(xx + AkG )| < @A |Fr-1))
< (1=P{[Fx = f(x0)] < Tr(BATY N{IF = flxx + MG o)l < Tr(BALY | Fre1))

where we were able to apply (8.2.9) in the first inequality since by assumption
Tr(B) < 2(%!3) = 5, and the second inequality follows from (8.2.8). Given that
« > &y is arbitrary, this proves the first point of the thesis, and an analogous
reasoning holds for the second. O

We now show how the tail bound [162, Condition 2] is stronger than (a slight
modification of) Assumption 8.1 for ¢ = 2. We remark that in [162] this tail bound
is combined with a probabilistically accurate difference estimate assumption and
fully linear local model in order to prove convergence. We first recall the tail bound
assumption [162, Condition 2]:

LR IESaY

P(Fr = F§ = (f(xx) = f(xx + AkGy)) > (B + &) min{A, AL} [Fier) < =, (8.2.10)

for every € > 0, k > k, and some B,n,60 > 0. We now introduce the following
modification of Assumption 8.1 for g = 2, essentially equivalent for our purposes:

P(Fi - FS = (f(xi) — f(xi + A Gr)) > a2 |Fay) < %f (8.2.11)

for every a > ey. It is straightforward to check that all of our results still hold if
we replace (A1) with (8.2.11).

Proposition 8.2.8. If (8.2.10) holds with
0+ By < &5, (8.2.12)

then (8.2.11) holds.
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Proof. First, for every @ > £ we have

<L (8.2.13)

under (8.2.12), since

6
0 < 0 Ef

T—nBla = 1-upjes er—up -0

where we used @ > &y in the first inequality and (8.2.12) in the last inequality.
Now, for every a > &;:

P(Fi = F{ = (f(xi) = f(xx + AeGr)) > @AY |Fi1)
= P(Fy = F§ = (f(xx) = f(xx + AcGr)) > (B + (@ = nB)AT |Fi-1)
< P(Fr — Ff = (f(xi) = f(xx + AcGr)) > (B + (@ —1B)) min{Ay, A7} [Fio1)

0 Ef
< < —,
a-np  «
(8.2.14)
where we used (8.2.10) with € = @ — nf in the first inequality and (8.2.13) in the
last inequality. O

8.2.4 Finite variance oracle

A common assumption in stochastic derivative-free optimization is that the
stochastic oracle is exact in expected value and with bounded variance [162,215]:

f(x) = Ee[F(x, 6],
Varg[F(x,6)] <V < +o0. (8.2.15)

In other words, the objective is assumed to be the expected value of a random
variable F(x,¢&) parametrized by x, with the black-box oracle given by sampling
on the & space. The estimate F; can then be computed by averaging on py i.i.d.
samples {& ;i }7% of &:

Fi=— > Fxiéei) (8.2.16)
Pk =
8
and analogously F ,f can be computed by averaging on pi random samples {ff i}ip=k1'

Denoting with [-] the upper integer approximation, we have that [V/ (k?A%)‘l
samples are enough to satisfy (8.2.3) and therefore in particular our conditions
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for ey = 2ky, g, = 4](307 and p = g = 2 thanks to Proposition 8.2.4. Indeed for

Pk = fV/(k?Ai)] we have

Pk 2
E[|F - fe)l | Fia] =E (pik " F (ks i) - f(xk>) | Faa
i=1

Pk
:i[E = Z(F(Xk,fk,i) — fx)? | 7:k—1]
Pe | pe S

1 14
=—Var[F(x, €)] < — < kAL,
Pk Pk

where we used the F;_1 measurability of p; in the second equality, that {fk,l-}f  are
i.i.d. and also independent of F_; in the third equality, and the assumption (8.2.15).
The inequality for F' ,f can be proved analogously when pi >[V/ (k}%Ai)'l.

8.2.5 Finite moment oracle

We now describe the more general case where instead of having finite variance
we have finite r—th moment for some r > 1:

f(x) = Ee[F(x,6)],
Ee[|F(x,&) = £(X)"] < M, < +co. (8.2.17)

Recall that finite r—th moment implies finite ’—th moment for any r’ € (1,r]. Thus
for r < 2 assumption (8.2.17) is weaker than (8.2.15), while for r > 2 (8.2.17) is
stronger than (8.2.15). The next result describes the number of samples needed
asymptotically to satisfy our tail bound conditions as a function of r, g.

Theorem 8.2.9. If r € (1,2], then Assumptions 8.1 and 8.2 for p = r can be
satisfied with

min(—%,—%
o (a; ) (8.2.18)
samples, while if r € [2 + o), they can be satisfied with
min(— _2(r+q)
%) (Ak (2075 )) (8.2.19)

samples.

We start with a lemma derived from classic results on the convergence rate for
the law of large numbers from [229,230].
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Proof. Let Fi, = F, — f(xx) and F]‘f = F,f — f(xr + ardy), for Fy and F,f average of
pr samples as in Section 8.2.4.

We start with the case r € (1,2]. By the conditional version of [229, Theorem 2],
we have

E[Xel" | Fr-1] < 2M,p;~" (8.2.20)
for X = Fk,ﬁ:,f. Let now X = Fj — F]f. We have
E[1Xk|" | Fr1] < 27 'E[|Fel” +|FE) | Faer] < 2°Mepy" s (8.2.21)

where we used ||a| + |b||” < 2771 (|a|]” + |b|") for a,b € R in the first inequality,
and (8.2.20) in the second. Now by Jensen’s inequality

1;'«
E[Xi| | Fr1] < VE[X] | Faoal < 28M,p,7 (8.2.22)

We can finally obtain our first tail bound:

1-r

E[]X _
P(IXk| = @A] | Fi-1) =< Lf“] < 2{/M,p"—q (8.2.23)
a/Ak a/Ak

where we used the conditional Chebycheff 1nequal1ty in the first inequality, and (8.2.22)

in the second inequality. For py = O(A - 1) in particular the RHS of (8.2.23) is
O(1/a@), implying Assumption 8.1 as desired. As for Assumption 8.2, reasoning as
for (8.2.23) and applying (8.2.21) we obtain

1+4 - r
P(IXk| 2 @A, | Fict) = POXel™ 2 @A | Ficr)
r L=r 8.2.24
EUXel | Fictl _ oy, P (8.2.24)

+ r +qg °
a’AZq a’AZq

_arr

where for py = O(A, ") the RHS of (8.2.24) is O(1/a”) and Assumption 8.2 follows.
In the case r € (2,+00), by the conditional version of the first moment bound
in [230, Section 5], we have

r

E[IXk|" | Fx-1] < Kp,” (8.2.25)

for some constant K dependent from the distribution of the error, and for X =
Fy, Ff. Then reasoning as for the case r € (1,2], we obtain, analogously to (8.2.23):

E[1Xk] | Fa-
P(X| > 0! | Fiy) < L Tic)
A,

(8.2.26)

_1
_ EIX T Fiol _ VKp,”

= q = q
aAk aAk

2
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so that in particular for p; = O(A;zq) we retrieve Assumption 8.1. We then obtain,
analogously to (8.2.24):

1 4 r ralt
P(IXk] > @A, | Fic1) = P(IXl” 2 oA | Faca)
r Kp? (8.2.27)
< E[[Xk]" | Fr-1] < APy

r r+q - r r+q *
@ Ak a Ak

—2(r+q)

so that in particular for px = O(A, " ) we retrieve Assumption 8.2. The result
then follows immediately taking the worst case of the bounds proved above for

Pk- U

Remark 8.2.10. Let & > 0. Applying (8.2.19) with r, = max(2, 2_gq) and go = 1+%
we can conclude that O(Af‘g) samples are sufficient to satisfy assumptions 8.1 and
8.2 for p =r. and g = g, under the finite moment assumption (8.2.17) for r = r,.

8.3 Direct search for stochastic non-smooth func-

tions

In this section, we first describe a simple stochastic direct search algorithm for
the unconstrained minimization problem given in (8.1.1), where f is possibly non-
smooth, and then analyze its convergence.

8.3.1 A simple stochastic direct search scheme

A detailed description of our stochastic direct search method is given in Al-
gorithm 18. At each iteration, we generate a direction g; in the unitary sphere
(independently of the estimates of the objective function generated so far; see Step
3), and perform a step along the direction g; with stepsize &x. Then, at Step 4,
we compute the estimate values f]‘f and f; of the function at the resulting trial
point x; + 0xgr and also at x;. We then accept or reject the trial point based on a
sufficient decrease condition, imposing that the improvement on the objective esti-
mate at the trial point is at least 962. If the sufficient decrease condition is satisfied,
we have a successful iteration. We hence update our iterate xi4+1 by setting it equal
to the trial point and expand or keep the same stepsize at Step 5. Otherwise, the
iteration is unsuccessful, so we do not move (i.e., xg41 = xx) and shrink the stepsize
(see Step 6).
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Algorithm 18 Stochastic direct search

1 Imitialization. Choose a point xg, Ag,0 >0, 7€ (0,1), 7€ [1,1+7], g > 1.
2 For k=0,1...

3 Select a direction gx in the unitary sphere.

4 Compute estimates f; and f,f for f in x; and x; + Orgk.

5 If f —f]f > 952, Then set SUCCESS = true, Xr+1 = Xg + 08k, Ak+1 = TOk.
6 Else set SUCCESS = false, xx+1 = Xk, Agr1 = (1 — 7).
7 End if
8 End for

e e 2 2 2 2 @

In order for the method to convergence to Clarke stationary points, the sequence
{gr} must be dense in the unit sphere on certain subsequences (see Theorem 8.3.3).
We remark that a dense sequence on the unit sphere can be generated using a
suitable quasirandom sequence (see, e.g., [121,172]).

8.3.2 Convergence analysis under the tail-bound probabilis-
tic condition

The following theorem, which implies that the stepsize sequence {Ax} converges
to zero almost surely, is a key result in the convergence analysis. By taking a look
at the proof, we can see how the use of the tail-bound probabilistic condition (A1)
allows us to give a unified argument for unsuccessful and successful steps.

We define now for convenience the positive constants 7 = (1+7)4-1, 7, = 1-(1-1)7,
and T,;A) = T;' +17,. To obtain our result we need the following lower bound on the
parameter 6 defining the sufficient decrease condition, dependent on the stepsize

update parameter 7 and the tail bound parameter &:

SfT(A)
6> 1. (8.3.1)
Tq
Notice that since 7 € (0,1) we must always have § > 0. The bound (8.3.1) allows

us to relate stepsize expansions to improvements of the objective.

Theorem 8.3.1. Under Assumption 8.1, if (8.3.1) holds then

Z E[AY] < oo (8.3.2)

kE[NQ
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a.s. in Q.

Proof. Let @k = f(xx) — f* +nA?, with n = &, and
Tq

7,0
E=—&r+ m >0,
Tq
where the inequality follows by (8.3.1).
We will prove, for every k > 0, that
E[®Dy — Prs1 | Fr-1] = SAZ. (8.3.3)

The thesis then follows as in [14, Theorem 1] (or directly by Robbins-Siegmund
theorem [210]).

It remains to prove (8.3.3). Let p; be the random variable such that f(xz) —
fxx +ArGy) = (8- pr)A?, and let J; be the event that the step k is successful. We
have

E[(®r — Piy1)|Fr-1] = E[(Pr — Ppy1) (1y, + (1 = L5))|F1]
= (f(xx) = fxxer) +(A] = AL, D)E[Ly | Fr1]
+ (f (xx) = f(xpen) + (A7 = AT, D)E[ 1= 15, |Fr-1]
= (f(xp) = fxx + AGr) +n(A] — AT, )E[L5,|Fi-1]
+n(A] = A, DE[1 = 15, |F%-1]
> (((8 = pi) = ) E[Ly, | Fao1] +n7, E[1 = 15| Fra DAL,

(8.3.4)

where we used x; = xp4+1 for unsuccessful steps in the second equality, and Agy =
TAr < (1 +71)A; for successful steps in the inequality. In turn,

(((8 = pr) = 1T E[Ly, | Facr] + 7, E[L = Ly, |Fir 1A
= ((6 - px = " E[Ly, [Fror] + 17, )AL (8.3.5)
= —pR ALE[1 | Fr1] + 17, AL

where we used E[1 -1, |Fx-1] =1 - E[1,|Fr-1] in the first equality, and 6 = UT(;A)
in the second one. By combining (8.3.4) and (8.3.5) we can therefore conclude

E[(®k — Pps1)|Fa-1] = —px ATE[1y, | Fr-1] + 17, AL (8.3.6)
Notice that if the step is successful then f; — f]f > HAZ, which implies

fio = £ = (f ) = fxx + Ak Gr)) = 0A] — (6 — pr) A = prAy .
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In particular

Ji € {|Fx = F{ = (f(xi) = f o + MGl = prA}

and we can write

E[1,|F%-1] = P(JelFri-1) < P(1Fx = F{ = (f(xx) = f(xx + MG )| = prAL | Fi-1) -
(8.3.7)
We now have

—pkE[Ly [ Fio1l = —prP(1Fi = F} = (f(x1) = f(xk + MG )| 2 prA]|Fio1) = —£

(8.3.8)

where we applied (8.3.7) in the first inequality, the last inequality is a direct conse-
quence of (A1) for @ = p. Hence,

—prATE[Ly | Faoa] + 07, AL 2 (=85 +7,)A] = A}, (8.3.9)

where we used (8.3.8) in the inequality.
Claim (8.3.3) can finally be obtained by concatenating (8.3.6) and (8.3.9). O

The lemma we now state will be useful for the proof of the optimality result
of Theorem 8.3.3 which is based on the Clarke generalized directional derivative.
We notice that Assumption 8.2 plays a key role in this result, allowing us to upper

bound the error of the reduction estimate by a quantity that depends on the stepsize
Ak.

Lemma 8.3.2. Let K be the set of indices of unsuccessful iterations (notice that K
is random). Then under Assumptions 8.1-8.2 and (8.3.1) we have a.s. in Q

[+ MG) = fx) 0.

klellr(nklgfm A (8.3.10)
Proof. Clearly it suffices to show that, for any given m € N and a.s.,
A - 1
lim inf LG =) 1 (8.3.11)
keK, k—oo Ay m

&

“p
To start with, by applying (A2) with @ = AkT we have

A
P(IFc~ Ff = (f () = f G+ AcGi))| 2 = | i) < mP Ay
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and therefore taking expectations on both sides

A
P(Fk— Ff = (£(n) = £+ MGu)| = =5) < mPE[A ]z, (8.3.12)
We can now deduce

S BUF~ F = (F) ~ e+ MGl 2 ) < 3 mPE[A]e, < oo, (3:3.13)
keNg keNo

where we applied Theorem 8.3.1 in the last inequality. In particular, by the Borel-
Cantelli’s First Lemma

P ({le = fi = (f () = flax + AGr))| = %} i-O-) =0,

2

where “i.0.” stands for infinitely often. Hence, we have a.s.

A
|F) — F]f —(f(xx) = f(xr + AGr))| < Ek for k large enough. (8.3.14)

From this we can infer that a.s., for every k € K large enough

fC+ MG = frn) F} = Fy = |Fi = F§ = (f(xp) = f(xx + ArGy))|

A]i A (8.3.15)
> —0A;, — —,
m

where we used (8.3.14) combined with the unsuccessful step condition of Algo-
rithm 18 in the second inequality. Finally, (8.3.11) follows passing to the liminf for
k — oo in (8.3.15). O

We now report the main convergence result for our stochastic direct search
scheme.

Theorem 8.3.3. Assume that f is Lipschitz continuous with constant L; around
any limit point of the sequence of iterates {xi}. Let K be the set of indices of
unsuccessful iterations. Under Assumptions 8.1-8.2, the following property holds
a.s. in Q: if L ¢ K (notice that L,K are random) is such that {Gy}rer is dense in
the unit sphere and

lim x; =x",
kel, k—oo

then the point x* is Clarke stationary.
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Proof. Let d be a direction in the unitary sphere, and for w € Q let S(w) C L(w)

be such that

lim Gry=d.
keS(w), k—oo

By definition of Clarke stationarity, we just need to prove that a.s. (for an event
independent of d)

. [+ Axd) — f(xx)
lim sup >0.
keS(w), k—oo Ax
Then on V’ we can write

, flox + AGr) = f(xx) fxx + AcGyr) — f(xx)
im sup >
keS(w), k—oo Ak keK (w), k—co Ay

> liminf

0,

(8.3.16)
where the last inequality follows by (8.3.10).
Now using the Lipschitz property of f we can write, for k € S(w) large enough,

SO+ Ad) = fx)  fxx + AeGy) — f(xx) N S (xx + Agd) — f(xx + AGy)
Ak B Ak Ak
SO+ MGr) = fx)
> 2k kAk" E - L3G - d|.

Passing to the limsup for k € S(w) c L(w) we get

: J (e + Axd) = f (xi) : f (ke + Ay Gy) = f(xg)
lim sup > limsup >0
keS(w), k—oo Ay keS(w), k—oo Ak

b

for every w € V', where we used ||G —d|| — 0 by construction in the first inequality
and (8.3.16) in the second. O



Chapter 9

Conclusion

In this thesis, several convergence results were given for first order projection
free and direct search methods. A recurring theme was the use of relatively "cheap"
local search directions relaxing some properties of the (projected) negative gradient
and still achieving comparable convergence results. For instance, in Chapter 3 a
framework to obtain linear convergence for constrained smooth optimization prob-
lems using directions satisfying the angle condition (3.3.2) was employed to improve
several FW variants. In Chapters 4 and 5 it was proved that using the FW direction
combined with away or in face steps one can obtain local identification properties
analogous to those of the projected gradient method. In Chapter 7 qualitative
convergence results on Riemannian manifolds were given for methods applying re-
tractions to tentative descent directions chosen from a poll set with positive cosine
measure on the tangent space of the current iterate. Finally, the direct search
method in Chapter 8 allows the directions to be taken uniformly at random in the
unit sphere, while still showing convergence properties to Clarke stationary points
for stochastic objectives.

We now discuss some possible future works. First, concerning the framework intro-
duced in Chapter 3 for projection free optimization, a possible extension consists in
its adaptation to problems on product domains, i.e. of the form

min fx). (9.0.1)
xeQM)x.. . xQ(m)

As explained in Section 2.8, a block coordinate version of the classic FW method
for problem (9.0.1) was given in [158]. With respect to that work, an adaptation
of our framework to problem (9.0.1) would also cover FW variants, and different
block selection strategies from the randomized one like parallel and Gauss-Southwell
block selection (see, e.g., [195]). The main idea here is that by applying the SSC

195
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separately to each of the blocks one can retrieve descent properties analogous to
those proved in the single block case in Chapter 3. For instance, for the parallel

update
2 =8SC, ~V () D) forie [1:m] (9.0.2)
it is possible to prove a property analogous to (3.4.7), that is
2
k1 — xell* > m”ﬂ(m(fk% ~VFEI®, (9.0.3)

for a suitably chosen Xi.

For direct search methods, a possible future work consists in combining the method
analyzed in Chapter 8 with the nonmonotone linesearch technique. This technique,
introduced in [114] for Newton’s method and analyzed in [248] for gradient descent,
consists in considering an upper bound E; on f(x;) instead of f(xy) itself in suffi-
cient decrease conditions, thus enabling more aggressive exploration strategies. It
has been extended to direct search methods in the recent work [173], but only for
deterministic objectives. A promising approach for the stochastic case appears to
be considering E; as an exponential moving average of the past function estimates,
adapting an idea introduced in [248] for deterministic gradient descent. One impor-
tant obstacle is that in the stochastic case we cannot ensure that Ej is an upper
bound on f(x;). A possible solution is to prove instead

P(Ex — f(xi) < —aA2 | Fiy) < % (9.0.4)

for every @ > 0 and some g > 0, that is a tail bound condition along the lines of
those introduced in Chapter 8.

Another possible development concerning the tail bound conditions 8.1 and 8.2 is
their extensions to model based derivative free optimization methods. A suitable
setting for such an extension appears to be the trust region method proposed in [172].
The sufficient decrease condition f(xx)— f(xr+sk) = 716||sk||? used in [172], with sy
solution of the trust region subproblem and n; > 0 constant, can be easily extended
to the stochastic setting using function estimates f; and f;’ in place of exact function
values. Then 8.1 and 8.2 can be adapted by using ||s¢|| and §; in place of A; and
gr respectively. However, it is still unclear to the authors if these conditions can be
extended, beside to the function estimates used in the sufficient decrease condition,
to the trust region model itself.

Other future works include the extension of the methods studied in Chapters 3, 4
and 7 to the stochastic case, as well as more numerical tests on real world data
science problems.



Bibliography

[1]

[10]

Mark A Abramson, Charles Audet, G Couture, John E Dennis Jr, Sébastien Le Di-
gabel, and C Tribes. The nomad project. Software available at hitp://www. gerad.
ca/nomad, 115, 2011.

P-A Absil, Robert Mahony, and Benjamin Andrews. Convergence of the iterates
of descent methods for analytic cost functions. SIAM Journal on Optimization,
16(2):531-547, 2005.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on
matriz manifolds. Princeton University Press, Princeton, 2009.

P-A Absil and Jéréme Malick. Projection-like retractions on matrix manifolds.
SIAM Journal on Optimization, 22(1):135-158, 2012.

Selin Damla Ahipagsaoglu, Peng Sun, and Michael J Todd. Linear convergence of
a modified Frank—Wolfe algorithm for computing minimum-volume enclosing ellip-
soids. Optimisation Methods and Software, 23(1):5-19, 2008.

Selin Damla Ahipasaoglu and Michael J Todd. A modified Frank—Wolfe algorithm
for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms.
Computational Geometry, 46(5):494-519, 2013.

Martin Aigner, Ginter M Ziegler, Karl H Hofmann, and Paul Erdds. Proofs from
the Book, volume 274. Springer, 2010.

Pedro Alberto, Fernando Nogueira, Humberto Rocha, and Luis N Vicente. Pat-
tern search methods for user-provided points: Application to molecular geometry
problems. SIAM Journal on Optimization, 14(4):1216-1236, 2004.

Ralph Alexander. The width and diameter of a simplex. Geometriae Dedicata,
6(1):87-94, 1977.

Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence of a
Frank-Wolfe type algorithm over trace-norm balls. Advances in Neural Information
Processing Systems, 2017:6192-6201, 2017.

197



[11]

[12]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

198 BIBLIOGRAPHY

S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury. Simulation optimization: a
review of algorithms and applications. Ann. Oper. Res., 240:351-380, 2016.

Hédy Attouch, Jéréme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal
alternating minimization and projection methods for nonconvex problems: An ap-
proach based on the kurdyka-tojasiewicz inequality. Mathematics of Operations
Research, 35(2):438-457, 2010.

Hedy Attouch, Jérdme Bolte, and Benar Fux Svaiter. Convergence of descent meth-
ods for semi-algebraic and tame problems: proximal algorithms, forward—backward
splitting, and regularized gauss—seidel methods. Mathematical Programming, 137(1-
2):91-129, 2013.

C. Audet, K. J. Dzahini, M. Kokkolaras, and S. Le Digabel. Stochastic mesh adaptive
direct search for blackbox optimization using probabilistic estimates. 79:1-34, 2021.

C. Audet and W. Hare. Derivative-Free and Blackboxr Optimization, volume 2 of
Springer Series in Operations Research and Financial Engineering. Springer, Cham,
Switzerland, 2017.

Charles Audet. A survey on direct search methods for blackbox optimization and
their applications. Mathematics without boundaries, pages 31-56, 2014.

Charles Audet and John E Dennis Jr. Analysis of generalized pattern searches.
SIAM J. Optim., 13(3):889-903, 2002.

Charles Audet and John E Dennis Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM J. Optim., 17(1):188-217, 2006.

Charles Audet and Dominique Orban. Finding optimal algorithmic parameters using
derivative-free optimization. SIAM Journal on Optimization, 17(3):642-664, 2006.

Daniel Azagra, Juan Ferrera, and Fernando Lépez-Mesas. Nonsmooth analysis and
hamilton—jacobi equations on riemannian manifolds. J. Funct. Anal., 220(2):304—
361, 2005.

Francis Bach et al. Learning with submodular functions: A convex optimization
perspective. Foundations and Trends® in Machine Learning, 6(2-3):145-373, 2013.

Maxim Balashov, Boris Polyak, and Andrey Tremba. Gradient projection and con-
ditional gradient methods for constrained nonconvex minimization. arXiv preprint
arXiv:1906.11580, 41(7):822-849, 2019.

A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region
methods based on probabilistic models. 24:1238-1264, 2014.



BIBLIOGRAPHY 199

[24]

[25]

[26]

[27]

[28]

[34]

[35]

[36]

Mohammad Ali Bashiri and Xinhua Zhang. Decomposition-invariant conditional
gradient for general polytopes with line search. In Advances in Neural Information
Processing Systems, pages 2690-2700, 2017.

Leonard E Baum and George Sell. Growth transformations for functions on mani-
folds. Pacific Journal of Mathematics, 27(2):211-227, 1968.

Amir Beck, Edouard Pauwels, and Shoham Sabach. The cyclic block conditional
gradient method for convex optimization problems. SIAM Journal on Optimization,
25(4):2024-2049, 2015.

Amir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient
for non-strongly convex functions. Mathematical Programming, 164(1-2):1-27, 2017.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Deep Frank-Wolfe for
neural network optimization. In International Conference on Learning Representa-
tions, 2018.

Dimitri P Bertsekas. Projected newton methods for optimization problems with
simple constraints. SIAM J. Control Optim., 20(2):221-246, 1982.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334-334, 1997.

Dimitri P Bertsekas. Convex optimization algorithms. Athena Scientific, Nashua,
2015.

Mathieu Besangon, Alejandro Carderera, and Sebastian Pokutta. Frankwolfe. jl: A
high-performance and flexible toolbox for frank—wolfe algorithms and conditional
gradients. INFORMS Journal on Computing, 2022.

Ernesto G Birgin and José Mario Martinez. Large-scale active-set box-constrained
optimization method with spectral projected gradients. Comput. Optim. Appl.,
23(1):101-125, 2002.

J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis
of a stochastic trust-region method via supermartingales. INFORMS J. Optim.,
1:92-119, 2019.

Jacek Bochnak, Michel Coste, and Marie-Frangoise Roy. Real algebraic geometry,
volume 36. Springer Science & Business Media, 2013.

Jérome Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota. Clarke sub-
gradients of stratifiable functions. SIAM Journal on Optimization, 18(2):556-572,
2007.



37]

[38]

[40]

[41]

[42]

[44]

[45]

200 BIBLIOGRAPHY

Jérome Bolte, Aris Daniilidis, Olivier Ley, and Laurent Mazet. Characterizations of
Y.ojasiewicz inequalities: subgradient flows, talweg, convexity. Transactions of the
American Mathematical Society, 362(6):3319-3363, 2010.

Jérome Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W Suter. From
error bounds to the complexity of first-order descent methods for convex functions.
Mathematical Programming, 165(2):471-507, 2017.

Jérome Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Programming,
146(1):459-494, 2014.

Immanuel M Bomze. Evolution towards the maximum clique. Journal of Global
Optimization, 10(2):143-164, 1997.

Immanuel M Bomze. On standard quadratic optimization problems. J. Global
Optim., 13(4):369-387, 1998.

Immanuel M. Bomze. Regularity versus degeneracy in dynamics, games, and op-
timization: a unified approach to different aspects. SIAM Review, 44(3):394-414,
2002.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The
maximum clique problem. In Handbook of Combinatorial Optimization, pages 1-74.
Springer, 1999.

Immanuel M. Bomze and Etienne de Klerk. Solving standard quadratic optimization
problems via linear, semidefinite and copositive programming. Journal of Global
Optimization, 24(2):163-185, 2002.

Immanuel M Bomze, Mirjam Diir, Etienne De Klerk, Cornelis Roos, Arie J Quist,
and Tamas Terlaky. On copositive programming and standard quadratic optimiza-
tion problems. J. Global Optim., 18(4):301-320, 2000.

Immanuel M Bomze, Francesco Rinaldi, and Samuel Rota Bulo. First-order methods
for the impatient: Support identification in finite time with convergent Frank-Wolfe
variants. SIAM Journal on Optimization, 29(3):2211-2226, 2019.

Immanuel M Bomze, Francesco Rinaldi, and Damiano Zeffiro. Active set com-
plexity of the away-step Frank—Wolfe algorithm. SIAM Journal on Optimization,
30(3):2470-2500, 2020.

Immanuel M Bomze, Francesco Rinaldi, and Damiano Zeffiro. Frank—wolfe and
friends: a journey into projection-free first-order optimization methods. 4JOR,
19(3):313-345, 2021.



BIBLIOGRAPHY 201

[49]

[50]

[51]

[57]

[58]

Immanuel M Bomze, Francesco Rinaldi, and Damiano Zeffiro. Fast cluster detection
in networks by first order optimization. SIAM Journal on Mathematics of Data
Science, 4(1):285-305, 2022.

Immanuel M Bomze and Volker Stix. Genetic engineering via negative fitness: Evo-
lutionary dynamics for global optimization. Ann. Oper. Res., 89:297-318, 1999.

Andrew J Booker, JE Dennis, Paul D Frank, David B Serafini, and Virginia Tor-
czon. Optimization using surrogate objectives on a helicopter test example. In
Computational Methods for Optimal Design and Control, pages 49-58. Springer,
1998.

V. S. Borkar. Probability Theory: An Advanced Course. Springer Science & Business
Media, New York, 2012.

Fani Boukouvala, Ruth Misener, and Christodoulos A Floudas. Global optimiza-
tion advances in mixed-integer nonlinear programming, minlp, and constrained

derivative-free optimization, cdfo. FEuropean Journal of Operational Research,
252(3):701-727, 2016.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox
for optimization on manifolds. Journal of Machine Learning Research, 15(42):1455—
1459, 2014.

Nicolas Boumal. An introduction to optimization on smooth manifolds, 2022.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of conver-
gence for nonconvex optimization on manifolds. IMA J. Numer. Anal., 39(1):1-33,
2019.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convezr optimization.
Cambridge university press, 2004.

Gabor Braun, Sebastian Pokutta, Dan Tu, and Stephen Wright. Blended conditonal
gradients. In International Conference on Machine Learning, pages 735-743. PMLR,
2019.

Gébor Braun, Sebastian Pokutta, and Daniel Zink. Lazifying conditional gradient
algorithms. In ICML, pages 566-575, 2017.

James V Burke and Jorge J Moré. On the identification of active constraints. STAM
Journal on Numerical Analysis, 25(5):1197-1211, 1988.

James V Burke and Jorge J Moré. Exposing constraints. SIAM Journal on Opti-
mization, 4(3):573-595, 1994.



[62]

[63]

[64]

[65]

202 BIBLIOGRAPHY

Jim Burke. On the identification of active constraints II: The nonconvex case. SIAM
Journal on Numerical Analysis, 27(4):1081-1102, 1990.

Elcin Aleixo Calado, Marco Leite, and Arlindo Silva. Selecting composite materials
considering cost and environmental impact in the early phases of aircraft structure
design. Journal of Cleaner Production, 186:113-122, 2018.

Emmanuel J Candés and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717-772, 20009.

Michael D Canon and Clifton D Cullum. A tight upper bound on the rate of
convergence of Frank-Wolfe algorithm. SIAM Journal on Control, 6(4):509-516,
1968.

Alejandro Carderera and Sebastian Pokutta. Second-order conditional gradient slid-
ing. arXiv preprint arXiv:2002.08907, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE symposium on security and privacy (sp), pages 39-57.
IEEE, 2017.

Coralia Cartis and Katya Scheinberg. Global convergence rate analysis of uncon-
strained optimization methods based on probabilistic models. Mathematical Pro-
gramming, 169(2):337-375, 2018.

Deeparnab Chakrabarty, Prateek Jain, and Pravesh Kothari. Provable submodular
minimization using Wolfe’s algorithm. Advances in Neural Information Processing
Systems, 27:802-809, 2014.

Ibrahim M Chamseddine, Hermann B Frieboes, and Michael Kokkolaras. Design
optimization of tumor vasculature-bound nanoparticles. Scientific Reports, 8(1):1-
15, 2018.

Ibrahim M Chamseddine and Michael Kokkolaras. A dual nanoparticle delivery
strategy for enhancing drug distribution in cancerous tissue. Journal of Biomechan-
ical Engineering, 142(12), 2020.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A Frank-Wolfe frame-
work for efficient and effective adversarial attacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 3486—-3494, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO:
Zeroth order optimization based black-box attacks to deep neural networks without
training substitute models. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 15-26, 2017.



BIBLIOGRAPHY 203

[74]

[75]

[82]

[83]

R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-
region method and random models. 169(2):447-487, 2018.

Scott Shaobing Chen, David L. Donoho, and Michael A Saunders. Atomic decom-
position by basis pursuit. SIAM Review, 43(1):129-159, 2001.

Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and Mingyu Xiao. Computing maximum
k-defective cliques in massive graphs. Comput. Oper. Res., 127:105131, 2021.

F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New
York, 1983. Reissued by SIAM, Philadelphia, 1990.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe
algorithm. ACM Transactions on Algorithms, 6(4):1-30, 2010.

Cyrille Combettes and Sebastian Pokutta. Boosting frank-wolfe by chasing gradi-
ents. In International Conference on Machine Learning, pages 2111-2121. PMLR,
2020.

Cyrille W Combettes and Sebastian Pokutta. Complexity of linear minimization
and projection on some sets. arXiv preprint arXiw:2101.10040, 2021.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimization. MPS-SIAM Series on Optimization. STAM, Philadelphia, 2009.

Rixon Crane and Fred Roosta. Invexifying regularization of non-linear least-squares
problems. arXiv preprint arXiw:2111.11027, 2021.

Andrea Cristofari, Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi. An
active-set algorithmic framework for non-convex optimization problems over the
simplex. arXiv preprint arXi:1703.07761v2, 2018.

Andrea Cristofari, Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi. An
active-set algorithmic framework for non-convex optimization problems over the
simplex. Computational Optimization and Applications, 77:57-89, 2020.

Andrea Cristofari and Francesco Rinaldi. A derivative-free method for structured
optimization problems. SIAM J. Optim., 31(2):1079-1107, 2021.

Ana Luisa Custddio, JE Aguilar Madeira, A Ismael F Vaz, and Luis Nunes Vicente.
Direct multisearch for multiobjective optimization. SIAM Journal on Optimization,
21(3):1109-1140, 2011.

Dragisa Cvetkovié¢ and Peter Rowlinson. The largest eigenvalue of a graph: A survey.
Linear Multilinear Algebra, 28(1-2):3-33, 1990.



[38]

[89]

[90]

[91]

[92]

[93]

[95]

[96]

[97]

204 BIBLIOGRAPHY

Marianna De Santis, Gianni Di Pillo, and Stefano Lucidi. An active set feasible
method for large-scale minimization problems with bound constraints. Computa-
tional Optimization and Applications, 53(2):395-423, 2012.

Vladimir Fedorovich Demyanov and Aleksandr Moiseevich Rubinov. Approximate
methods in optimization problems, volume 32. American Elsevier, 1970.

Olivier Devolder, Frangois Glineur, and Yurii Nesterov. First-order methods of
smooth convex optimization with inexact oracle. Mathematical Programming,
146(1):37-75, 2014.

Lijun Ding, Yingjie Fei, Qiantong Xu, and Chengrun Yang. Spectral Frank-Wolfe
algorithm: Strict complementarity and linear convergence. In International Confer-
ence on Machine Learning, pages 2535-2544. PMLR, 2020.

David W Dreisigmeyer. Equality constraints, riemannian manifolds and direct search
methods. https: //optimization-online. org/ ?p=9135/, 2006.

David W Dreisigmeyer. Direct search methods on reductive homogeneous spaces.
J. Optim. Theory Appl., 176(3):585-604, 2018.

Joseph C Dunn. Rates of convergence for conditional gradient algorithms near
singular and nonsingular extremals. SIAM Journal on Control and Optimization,
17(2):187-211, 1979.

Joseph C Dunn and S Harshbarger. Conditional gradient algorithms with open loop
step size rules. Journal of Mathematical Analysis and Applications, 62(2):432-444,
1978.

K. J. Dzahini. Expected complexity analysis of stochastic direct-search. 81:179-200,
2022.

Kwassi Joseph Dzahini, Michael Kokkolaras, and Sébastien Le Digabel. Constrained
stochastic blackbox optimization using a progressive barrier and probabilistic esti-
mates. Mathematical Programming, pages 1-58, 2022.

Giovanni Fasano, Giampaolo Liuzzi, Stefano Lucidi, and Francesco Rinaldi. A
linesearch-based derivative-free approach for nonsmooth constrained optimization.
SIAM J. Optim., 24(3):959-992, 2014.

E Fermi and N Metropolis. Los alamos unclassified report 1s-1492. Rapport tech-
nique, Los Alamos National Laboratory, Los Alamos, New Mezico, 1952.

OP Ferreira and WS Sosa. On the Frank—Wolfe algorithm for non-compact con-
strained optimization problems. Optimization, pages 1-15, 2021.



BIBLIOGRAPHY 205

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110, 1956.

Robert M Freund and Paul Grigas. New analysis and results for the Frank—Wolfe
method. Mathematical Programming, 155(1-2):199-230, 2016.

Robert M Freund, Paul Grigas, and Rahul Mazumder. An extended Frank—Wolfe
method with in-face directions, and its application to low-rank matrix completion.
SIAM Journal on Optimization, 27(1):319-346, 2017.

Satoru Fujishige. Lexicographically optimal base of a polymatroid with respect to
a weight vector. Mathematics of Operations Research, 5(2):186-196, 1980.

Masao Fukushima. A modified Frank-Wolfe algorithm for solving the traffic as-
signment problem. Transportation Research Part B: Methodological, 18(2):169-177,
1984.

Dan Garber. Linear convergence of Frank-Wolfe for rank-one matrix recovery with-
out strong convexity. arXiv preprint arXiv:1912.01467, 2019.

Dan Garber. Revisiting frank-wolfe for polytopes: Strict complementarity and spar-
sity. Advances in Neural Information Processing Systems, 33:18883—-18893, 2020.

Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-
convex sets. In ICML, volume 15 of ICML’15, pages 541-549. JMLR.org, 2015.

Dan Garber and Elad Hazan. A linearly convergent variant of the conditional gra-
dient algorithm under strong convexity, with applications to online and stochastic
optimization. STAM Journal on Optimization, 26(3):1493-1528, 2016.

Dan Garber and Ofer Meshi. Linear-memory and decomposition-invariant linearly
convergent conditional gradient algorithm for structured polytopes. Advances in
neural information processing systems, 29, 2016.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341—
2368, 2013.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672-2680, 2014.

Serge Gratton, Clément W Royer, Luis Nunes Vicente, and Zaikun Zhang. Direct
search based on probabilistic descent. STAM J. Optim., 25(3):1515-1541, 2015.



[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

206 BIBLIOGRAPHY

Luigi Grippo, Francesco Lampariello, and Stephano Lucidi. A nonmonotone line
search technique for newton’s method. SIAM Journal on Numerical Analysis,
23(4):707-716, 1986.

Peter Gritzmann and Marek Lassak. Estimates for the minimal width of polytopes
inscribed in convex bodies. Discrete & Computational Geometry, 4(6):627-635, 1989.

Jacques Guelat and Patrice Marcotte. Some comments on Wolfe’s away step. Math-
ematical Programming, 35(1):110-119, 1986.

David H Gutman and Javier F Pena. The condition number of a function relative
to a set. Mathematical Programming, pages 1-40, 2020.

William W Hager, Dzung T Phan, and Hongchao Zhang. Gradient-based methods
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):146-165, 2011.

William W Hager and Hongchao Zhang. A new active set algorithm for box con-
strained optimization. SIAM J. Optim., 17(2):526-557, 2006.

William W Hager and Hongchao Zhang. An active set algorithm for nonlinear
optimization with polyhedral constraints. Science China Mathematics, 59(8):1525—
1542, 2016.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numer. Math., 2:84-90, 1960.

Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient
algorithms for norm-regularized smooth convex optimization. Mathematical Pro-
gramming, 152(1):75-112, 2015.

Warren L. Hare and Adrian S Lewis. Identifying active constraints via partial
smoothness and prox-regularity. Journal of Convex Analysis, 11(2):251-266, 2004.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic op-
timization. In International Conference on Machine Learning, pages 1263-1271,
2016.

William W Hogan. Convergence results for some extensions of the Frank-Wolfe
method. Technical report, CALTFORNIA UNIV LOS ANGELES WESTERN MAN-
AGEMENT SCIENCE INST, 1971.

Charles A Holloway. An extension of the Frank and Wolfe method of feasible
directions. Mathematical Programming, 6(1):14-27, 1974.



BIBLIOGRAPHY 207

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

136

[137]

[138]

[139]

[140]

Robert Hooke and Terry A Jeeves. “direct search”solution of numerical and statis-
tical problems. Journal of the ACM (JACM), 8(2):212-229, 1961.

Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian mix-
tures. Advances in Neural Information Processing Systems, 28:910-918, 2015.

S Hosseini and MR, Pouryayevali. Nonsmooth optimization techniques on riemannian
manifolds. J. Optim. Theory Appl., 158(2):328-342, 2013.

Seyedehsomayeh Hosseini, Boris Sholimovich Mordukhovich, and André Uschma-
jew. Nonsmooth optimization and its applications. International Series of Numerical
Mathematics. Springer International Publishing, 2019.

Seyedehsomayeh Hosseini and André Uschmajew. A riemannian gradient sampling
algorithm for nonsmooth optimization on manifolds. SIAM J. Optim., 27:173-189,
2017.

Changwu Huang, Yuanxiang Li, and Xin Yao. A survey of automatic parameter
tuning methods for metaheuristics. IEEFE transactions on evolutionary computation,
24(2):201-216, 2019.

James T Hungerford and Francesco Rinaldi. A general regularized continuous for-
mulation for the maximum clique problem. Mathematics of Operations Research,
44(4):1161-1173, 2019.

Alfredo N Tusem. On the convergence properties of the projected gradient method
for convex optimization. Computational & Applied Mathematics, 22(1):37-52, 2003.

Martin Jaggi. Sparse convex optimization methods for machine learning. PhD thesis,
ETH Zurich, 2011.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
In ICML (1), pages 427-435, 2013.

Martin Jaggi and Marek Sulovsky. A simple algorithm for nuclear norm regularized
problems. In ICML, pages 471-478, 2010.

Rujun Jiang and Xudong Li. Holderian error bounds and kurdyka-lojasiewicz in-
equality for the trust region subproblem. Mathematics of Operations Research, 2022.

Carl Johnell and Morteza Haghir Chehreghani. Frank-Wolfe optimization for dom-
inant set clustering. arXiv preprint arXiv:2007.11652, 2020.

David S Johnson. Cliques, coloring, and satisfiability: second dimacs implementa-
tion challenge. DIMACS series in discrete mathematics and theoretical computer
science, 26:11-13, 1993.



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

208 BIBLIOGRAPHY

Hikaru G Jolliffe, Samir Diab, and Dimitrios I Gerogiorgis. Nonlinear optimiza-
tion via explicit nrtl model solubility prediction for antisolvent mixture selection in
artemisinin crystallization. Organic Process Research & Development, 22(1):40-53,
2018.

Armand Joulin, Kevin Tang, and Li Fei-Fei. Efficient image and video co-localization
with Frank-Wolfe algorithm. In Furopean Conference on Computer Vision, pages
253-268. Springer, 2014.

Zoran Kadelburg, Dusan Dukic, Milivoje Lukic, and Ivan Matic. Inequalities of
Karamata, Schur and Muirhead, and some applications. The Teaching of Mathe-
matics, 8(1):31-45, 2005.

Jovan Karamata. Sur une inégalité relative aux fonctions convexes. Publications de
UInstitut Mathématique, 1(1):145-147, 1932.

Hamid R Karbasian and Brian C Vermeire. Gradient-free aerodynamic shape opti-
mization using large eddy simulation. Computers & Fluids, 232:105185, 2022.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient
and proximal-gradient methods under the Polyak-f.ojasiewicz condition. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 795-811. Springer, 2016.

Ehsan Kazemi, Thomas Kerdreux, and Liquang Wang. Generating structured ad-
versarial attacks using Frank-Wolfe method. arXiv preprint arXiv:2102.07360, 2021.

Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Restarting
Frank-Wolfe. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1275-1283. PMLR, 2019.

Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Projection-free
optimization on uniformly convex sets. In International Conference on Artificial
Intelligence and Statistics, pages 19-27. PMLR, 2021.

Thomas Kerdreux, Lewis Liu, Simon Lacoste-Julien, and Damien Scieur. Affine
invariant analysis of frank-wolfe on strongly convex sets. In International Conference
on Machine Learning, pages 5398-5408. PMLR, 2021.

T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. 45(3):385-482, 2003.

Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. Stationarity results
for generating set search for linearly constrained optimization. SIAM Journal on
Optimization, 17(4):943-968, 2007.



BIBLIOGRAPHY 209

[153]

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

163

[164]

Vladimir Kolmogorov. Practical Frank-Wolfe algorithms. arXiv preprint
arXiv:2010.0956°7, 2020.

IV Konnov. Simplified versions of the conditional gradient method. Optimization,
67(12):2275-2290, 2018.

Piyush Kumar, Joseph SB Mitchell, and E Alper Yildirim. Approximate minimum
enclosing balls in high dimensions using core-sets. Journal of Experimental Algo-
rithmics, 8:1-1, 2003.

Simon Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives.
arXiv preprint arXiv:1607.003845, 2016.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-
Wolfe optimization variants. In Advances in Neural Information Processing Systems,
volume 28, pages 496-504, 2015.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate Frank-Wolfe optimization for structural SVMs. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
53-61, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR.

Dounia Lakhmiri, Sébastien Le Digabel, and Christophe Tribes. Hypernomad:
Hyperparameter optimization of deep neural networks using mesh adaptive direct
search. ACM Transactions on Mathematical Software (TOMS), 47(3):1-27, 2021.

Guanghui Lan. First-order and Stochastic Optimization Methods for Machine Learn-
ing. Data Sciences. Springer, Switzerland, 2020.

Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization.
SIAM Journal on Optimization, 26(2):1379-1409, 2016.

J. Larson and S. C. Billups. Stochastic derivative-free optimization using a trust
region framework. 64:619-645, 2016.

Jeffrey Larson, Matt Menickelly, and Stefan M Wild. Derivative-free optimization
methods. Acta Numer., 28:287-404, 2019.

Larry J LeBlanc, Edward K Morlok, and William P Pierskalla. An efficient approach
to solving the road network equilibrium traffic assignment problem. Transportation
Research, 9(5):309-318, 1975.



[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

210 BIBLIOGRAPHY

Jason D Lee, loannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I
Jordan, and Benjamin Recht. First-order methods almost always avoid strict saddle
points. Math. Program., 176(1):311-337, 2019.

Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR
Computational Mathematics and Mathematical Physics, 6(5):1-50, 1966.

Kfir Levy and Andreas Krause. Projection free online learning over smooth sets. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages
1458-1466, 2019.

Robert Michael Lewis, Anne Shepherd, and Virginia Torczon. Implementing gener-
ating set search methods for linearly constrained minimization. SIAM Journal on
Scientific Computing, 29(6):2507-2530, 2007.

Robert Michael Lewis, Virginia Torczon, and Michael W Trosset. Direct search
methods: then and now. Journal of computational and Applied Mathematics, 124(1-
2):191-207, 2000.

Guoyin Li and Ting Kei Pong. Calculus of the exponent of Kurdyka-Fojasiewicz
inequality and its applications to linear convergence of first-order methods. Foun-
dations of computational mathematics, 18(5):1199-1232, 2018.

Jiaxiang Li, Krishnakumar Balasubramanian, and Shigian Ma. Zeroth-order opti-

mization on riemannian manifolds. 2020.

G. Liuzzi, S. Lucidi, F. Rinaldi, and L. N. Vicente. Trust-region methods for the
derivative-free optimization of nonsmooth black-box functions. 29:3012-3035, 2019.

Giampaolo Liuzzi, Stefano Lucidi, and Francesco Rinaldi. An algorithmic frame-
work based on primitive directions and nonmonotone line searches for black-box
optimization problems with integer variables. Mathematical Programming Compu-
tation, 12(4):673-702, 2020.

Giampaolo Liuzzi, Stefano Lucidi, and Marco Sciandrone. Sequential penalty
derivative-free methods for nonlinear constrained optimization. SIAM J. Optim.,
20(5):2614-2635, 2010.

Francesco Locatello, Rajiv Khanna, Michael Tschannen, and Martin Jaggi. A unified
optimization view on generalized matching pursuit and frank-wolfe. In Artificial
Intelligence and Statistics, pages 860-868. PMLR, 2017.

Stanislaw Lojasiewicz. Une propriété topologique des sous-ensembles analytiques
réels. Les équations aux dérivées partielles, 117:87-89, 1963.



BIBLIOGRAPHY 211

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

187

[188]

[189]

R Duncan Luce and Albert D Perry. A method of matrix analysis of group structure.
Psychometrika, 14(2):95-116, 1949.

Stefano Lucidi and Marco Sciandrone. A derivative-free algorithm for bound con-
strained optimization. Comput. Optim. Appl., 21(2):119-142, 2002.

Stefano Lucidi and Marco Sciandrone. On the global convergence of derivative-free
methods for unconstrained optimization. SIAM J. Optim., 13:97-116, 2002.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible
descent methods: a general approach. Annals of Operations Research, 46(1):157—
178, 1993.

OL Mangasarian. Machine learning via polyhedral concave minimization. In Applied
Mathematics and Parallel Computing, pages 175-188. Springer, 1996.

Alessio Massaro, Marcello Pelillo, and Immanuel M Bomze. A complementary piv-
oting approach to the maximum weight clique problem. SIAM J. Optim, 12(4):928—
948, 2002.

Juan C. Meza and Monica L. Martinez. Direct search methods for the molecular
conformation problem. Journal of Computational Chemistry, 15(6):627-632, 1994.

BF Mitchell, Vladimir Fedorovich Demyanov, and VN Malozemov. Finding the
point of a polyhedron closest to the origin. SIAM Journal on Control, 12(1):19-26,
1974.

Maria Mitradjieva and Per Olov Lindberg. The stiff is moving-conjugate direction
frank-wolfe methods with applications to traffic assignment. Transportation Science,
47(2):280-293, 2013.

Jorge J Moré and Stefan M Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM J. Optim., 20(1):172-191, 20009.

Hassan Mortagy, Swati Gupta, and Sebastian Pokutta. Walking in the shadow: A
new perspective on descent directions for constrained minimization. Advances in
Neural Information Processing Systems, 33, 2020.

Theodore S Motzkin and Ernst G Straus. Maxima for graphs and a new proof of a
theorem of Turdn. Canad. J. Math., 17:533-540, 1965.

Cun Mu, Yugian Zhang, John Wright, and Donald Goldfarb. Scalable robust ma-
trix recovery: Frank—Wolfe meets proximal methods. SIAM Journal on Scientific
Computing, 38(5):A3291-A3317, 2016.



[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

200]

[201]

[202]

212 BIBLIOGRAPHY

John A Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308-313, 1965.

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic
course. Lecture notes, 1998.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of con-
vex functions. Found. Comput. Math., 17(2):527-566, 2017.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science &
Business Media, 2006.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent
go fast: Faster greedy rules, message-passing, active-set complexity, and superlinear
convergence. arXiv preprint arXiw:1712.08859, 2017.

Julie Nutini, Mark Schmidt, and Warren Hare. "active-set complexity" of proximal
gradient: How long does it take to find the sparsity pattern? Optimization Letters,
13(4):645-655, 2019.

Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Dokania, and
Simon Lacoste-Julien. Minding the gaps for block Frank-Wolfe optimization of
structured svms. In International Conference on Machine Learning, pages 593-602.
PMLR, 2016.

C. Paquette and K. Scheinberg. A stochastic line search method with expected
complexity analysis. 30:349-376, 2020.

Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models
in network analysis. European Journal of Operational Research, 226(1):9-18, 2013.

Javier Pena and Daniel Rodriguez. Polytope conditioning and linear convergence
of the Frank-Wolfe algorithm. Mathematics of Operartions Research, 44(1):1-18,
2018.

Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and Martin Jaggi. Linearly con-
vergent Frank-Wolfe with backtracking line-search. In International Conference on
Artificial Intelligence and Statistics, pages 1-10. PMLR, 2020.

Olga Perederieieva, Matthias Ehrgott, Andrea Raith, and Judith YT Wang. A
framework for and empirical study of algorithms for traffic assignment. Computers
& Operations Research, 54:90-107, 2015.



BIBLIOGRAPHY 213

203

[204]

205

206]

207]

208]

209

[210]

[211]

[212]

[213]

214]

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR
Computational Mathematics and Mathematical Physics, 3(4):864-878, 1963.

Michael JD Powell. An efficient method for finding the minimum of a function of
several variables without calculating derivatives. The computer journal, 7(2):155—
162, 1964.

Chao Qu, Yan Li, and Huan Xu. Non-convex conditional gradient sliding. In
International Conference on Machine Learning, pages 4208-4217. PMLR, 2018.

Luis Rademacher and Chang Shu. The smoothed complexity of Frank-Wolfe
methods via conditioning of random matrices and polytopes. arXiv preprint
arXiv:2009.12685, 2020.

Francesco Rinaldi, Fabio Schoen, and Marco Sciandrone. Concave programming for
minimizing the zero-norm over polyhedral sets. Computational Optimization and
Applications, 46(3):467-486, 2010.

Francesco Rinaldi and Damiano Zeffiro. A unifying framework for the analysis of
projection-free first-order methods under a sufficient slope condition. arXiv preprint
arXiv:2008.09781, 2020.

Francesco Rinaldi and Damiano Zeffiro. Avoiding bad steps in Frank Wolfe variants.
Computational Optimization and Applications, 2022.

Herbert Robbins and David Siegmund. A convergence theorem for non negative
almost supermartingales and some applications. In Optimizing methods in statistics,
pages 233-257. Elsevier, 1971.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.
Springer Science & Business Media, Berlin, 2009.

HoHo Rosenbrock. An automatic method for finding the greatest or least value of
a function. The computer journal, 3(3):175-184, 1960.

Anit Kumar Sahu and Soummya Kar. Decentralized zeroth-order constrained
stochastic optimization algorithms: Frank—Wolfe and variants with applications
to black-box adversarial attacks. Proceedings of the IEEE, 108(11):1890-1905, 2020.

Neel Shah, Vladimir Kolmogorov, and Christoph H Lampert. A multi-plane block-
coordinate Frank-Wolfe algorithm for training structural svms with a costly max-
oracle. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2737-2745, 2015.



[215]

[216]

[217]

[218]

219]

[220]

221]

[222]

[223]

[224]

[225]

[226]

[227]

214 BIBLIOGRAPHY

S. Shashaani, F. S. Hashemi, and R. Pasupathy. ASTRO-DF: A class of adap-
tive sampling trust-region algorithms for derivative-free stochastic optimization.
28:3145-3176, 2018.

WGRFR Spendley, George R Hext, and Francis R Himsworth. Sequential applica-
tion of simplex designs in optimisation and evolutionary operation. Technometrics,
4(4):441-461, 1962.

Vladimir Stozhkov, Austin Buchanan, Sergiy Butenko, and Vladimir Boginski. Con-
tinuous cubic formulations for cluster detection problems in networks. Math. Pro-
gram., online, 2020.

Yifan Sun, Halyun Jeong, Julie Nutini, and Mark Schmidt. Are we there yet? man-
ifold identification of gradient-related proximal methods. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1110-1119, 2019.

Yijia Sun, Nikolaos V Sahinidis, Anantha Sundaram, and Myun-Seok Cheon.
Derivative-free optimization for chemical product design. Current Opinion in Chem-
ical Engineering, 27:98-106, 2020.

Arie Tamir. A strongly polynomial algorithm for minimum convex separable
quadratic cost flow problems on two-terminal series-parallel networks. Math. Pro-
gram., 59:117-132, 1993.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267-288, 1996.

Virginia Torczon. On the convergence of pattern search algorithms. SIAM Journal
on optimization, 7(1):1-25, 1997.

Klaus Truemper. Unimodular matrices of flow problems with additional constraints.
Networks, 7(4):343-358, 1977.

Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Balasundaram, and
Sergiy Butenko. Algorithms for detecting optimal hereditary structures in graphs,
with application to clique relaxations. Comput. Optim. Appl., 56(1):113-130, 2013.

Bart Vandereycken. Riemannian and multilevel optimization for rank-constrained
matrix problems. PhD thesis, Department of Computer Science, KU Leuven, 2010.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 2013.

Bruno Veloso, Joao Gama, and Benedita Malheiro. Self hyper-parameter tuning for
data streams. In International Conference on Discovery Science, pages 241-255.
Springer, 2018.



BIBLIOGRAPHY 215

[228]

[229]

[230]

[231]

[232]

233

[234]

[235]

[236]

237]

[238]

[239]

[240]

[241]

Luis Nunes Vicente. Worst case complexity of direct search. FURO J. Comput.
Optim., 1(1):143-153, 2013.

B. von Bahr and C.-G. Esseen. Inequalities for the rth absolute moment of a sum
of random variables, 1 < r < 2. The Annals of Mathematical Statistics, 36:299-303,
1965.

Bengt Von Bahr. On the convergence of moments in the central limit theorem. The
Annals of Mathematical Statistics, pages 808818, 1965.

Balder Von Hohenbalken. Simplicial decomposition in nonlinear programming algo-
rithms. Mathematical Programming, 13(1):49-68, 1977.

Haoyue Wang, Haihao Lu, and Rahul Mazumder. Frank-Wolfe methods with an
unbounded feasible region and applications to structured learning. arXiv preprint
arXiv:2012.15361, 2020.

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex
nonsmooth optimization. Journal of Scientific Computing, 78(1):29-63, 2019.

Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai, Willie Neiswanger, Suvrit Sra,
and Eric Xing. Parallel and distributed block-coordinate Frank-Wolfe algorithms.
In International Conference on Machine Learning, pages 1548-1557. PMLR, 2016.

John Glen Wardrop. Road paper. some theoretical aspects of road traffic research.
Proceedings of the Institution of Civil Engineers, 1(3):325-362, 1952.

Andrés Weintraub, Carmen Ortiz, and Jaime Gonzalez. Accelerating convergence
of the Frank-Wolfe algorithm. Transportation Research Part B: Methodological,
19(2):113-122, 1985.

Philip Wolfe. Convergence theory in nonlinear programming. In J. Abadie, editor,
Integer and nonlinear programming, pages 1-36. North Holland, 1970.

Philip Wolfe. Finding the nearest point in a polytope. Mathematical Programming,
11(1):128-149, 1976.

Margaret H Wright. Direct search methods: Once scorned, now respectable. Pitman
Research Notes in Mathematics Series, pages 191-208, 1996.

Stephen J Wright. Identifiable surfaces in constrained optimization. SIAM Journal
on Control and Optimization, 31(4):1063-1079, 1993.

Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique prob-
lems. European Journal of Operational Research, 242(3):693-709, 2015.



[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

216 BIBLIOGRAPHY

Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factorization and
completion. SIAM Journal on imaging sciences, 6(3):1758-1789, 2013.

Yi Xu and Tianbao Yang. Frank-Wolfe method is automatically adaptive to error
bound condition. arXiv preprint arXiv:1810.04765, 2018.

Teng-Teng Yao, Zhi Zhao, Zheng-Jian Bai, and Xiao-Qing Jin. A riemannian
derivative-free polak-ribiére—polyak method for tangent vector field. Numerical Al-
gorithms, 86(1):325-355, 2021.

Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu,
Xiaojiang Chen, and Zheng Wang. Yet another text captcha solver: A generative

adversarial network based approach. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 332-348, 2018.

E Alper Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM
Journal on Optimization, 19(3):1368-1391, 2008.

Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. Predicting
interactions in protein networks by completing defective cliques. Bioinformatics,
22(7):823-829, 2006.

Hongchao Zhang and William W Hager. A nonmonotone line search technique
and its application to unconstrained optimization. SIAM journal on Optimization,
14(4):1043-1056, 2004.

Li Zhang, Weijun Zhou, and Dong-Hui Li. A descent modified Polak-Ribiere-Polyak
conjugate gradient method and its global convergence. IMA Journal of Numerical
Analysis, 26(4):629-640, 2006.



	Contents
	Introduction
	Outline and main results
	Notation

	Projection-free optimization methods
	A short history
	Main features of the Frank-Wolfe method
	Problem and general scheme
	The classical Frank-Wolfe method

	Examples
	Traffic assignment
	Submodular optimization
	LASSO problem
	Matrix completion
	Adversarial attacks in machine learning
	Minimum enclosing ball
	Training linear Support Vector Machines
	Finding maximal cliques in graphs
	Finding sparse points in a set

	Stepsizes
	Properties of the FW method and its variants
	The FW gap
	O(1/k) rate for convex objectives
	Variants
	Sparse approximation properties
	Affine invariance
	Inexact linear oracle

	Improved rates for strongly convex objectives
	Linear convergence for FW variants
	Strongly convex domains

	Extensions
	Block coordinate Frank-Wolfe method
	Variants for the min-norm point problem
	Variants for optimization over the trace norm ball


	A unifying framework for the study of Frank-Wolfe variants
	Motivation
	Related work
	Contributions

	Tangent cones and the KL condition
	An angle condition
	Frank-Wolfe variants over polytopes and the angle condition
	Linear convergence for good steps under the angle condition

	First order projection free methods with SSC procedure
	The SSC procedure
	SSC for Frank-Wolfe variants
	Convergence rates

	Examples
	KL property
	Angle condition bounds
	Applications

	Numerical tests

	Active Set Identification properties of the Away-Step Frank–Wolfe Algorithm
	Active set identification and FW variants
	Contributions
	Related work

	Preliminaries
	FW and AFW on the probability simplex
	Technical results related to step sizes
	Elementary inequalities

	Local active set variables identification property of the AFW
	Active set complexity bounds
	Active set complexity for nonconvex objectives
	Global convergence
	A general active set identification result
	Quantitative version of active set identification
	Local active set complexity bound

	AFW complexity for generic polytopes

	Fast Cluster Detection in Networks with a FW variant
	A continuous optimization approach for maximum s-defective clique
	Problem formulation
	Contributions

	A regularized maximum s-defective clique formulation
	Frank-Wolfe method with in face directions
	FWdc: A Frank-Wolfe variant for s-defective clique
	Numerical results

	Direct search methods
	A short history
	Clarke directional derivative and cosine measure
	Directional direct search methods
	Coordinate search
	Mesh based methods
	Generating set search
	Direct search based on probabilistic descent
	Direct search methods with line search extrapolation

	Applications

	Retraction based Direct Search Methods for Riemannian Optimization
	Derivative free optimization on Riemannian manifolds
	Contributions

	Preliminaries
	Smooth optimization problems
	Direct search algorithm
	Convergence analysis
	Incorporating line search extrapolation

	Nonsmooth objectives
	Clarke stationarity for nonsmooth functions on Riemannian manifolds
	Refining subsequences
	Direct search for nonsmooth objectives
	Direct search with line search extrapolation for nonsmooth objectives

	Numerical results
	Smooth problems
	Nonsmooth problems
	Results
	Data and performance profiles by ambient space dimension


	Convergence of direct search under a tail bound condition on the black box error
	Derivative free optimization with stochastic oracles
	Contributions

	A weak tail-bound probabilistic condition for function estimation
	The weak tail-bound probabilistic condition
	Conditional Chebycheff's inequality
	Comparison with the existing conditions
	Finite variance oracle
	Finite moment oracle

	Direct search for stochastic non-smooth functions
	A simple stochastic direct search scheme
	Convergence analysis under the tail-bound probabilistic condition


	Conclusion
	Bibliography

