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Chapter 1

Introduction

Recent data science applications using large datasets often need scalable opti-

mization methods with low per iteration cost and low memory requirements. This

has lead to a renewed interest in gradient descent methods, and on tailored variants

for problems where gradient descent is unpractical due, e.g., to non smoothness or

stochasticity of the optimization objective. Applications include deep neural net-

work training, adversarial attacks in machine learning, sparse signal recovery, cluster

detection in networks, etc.

In this thesis, we focus on the theoretical analysis of some of these variants, as well

as in the formulation and numerical testing of new variants with better complexity

guarantees than existing ones under suitable conditions. The problems we consider

have a continuous but sometimes constrained and not necessarily differentiable ob-

jective.

All the methods we are concerned with are characterized by the following iterative

scheme: at every iteration, a black box oracle is evaluated in the current point to

obtain certain local information about the optimization objective. Based on this

information, possibly combined with that obtained in previous iterations, the next

iterate is chosen. We remark that this is a classic scheme for nonlinear optimization

algorithms, used by many previous authors (see, e.g., [191] and references therein).

Another feature of the methods we are interested in is that they are all either first

or zeroth order methods. The distinction between these two classes is based on the

information that can be obtained with the black box oracle. In first order methods,

the information consists of the gradient and the value of the objective for the current

iterate; in zeroth order methods instead the only information available is the value

of the objective for the current iterate.

While each chapter of the thesis can be read independently with some minor over-
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2 Introduction

lap in the definitions, broadly speaking our work deals with two specific classes of

methods:

• First order projection free methods for the optimization of a smooth objec-

tive constrained to a convex set. These are variants of the projected gradient

descent method, and are designed to avoid expensive projections on certain

classes of problems. The main application of our theoretical analysis is the

study of variants of the classic Frank Wolfe (FW) method, characterized by its

use of linear minimizations instead of projections and its sparse approximation

properties. For these methods, the original contributions of this thesis include

proving new support identification properties for a FW variant with quanti-

tative bounds, proposing a technique to provably speed up the convergence of

several FW variants for non convex objectives, and an application to a cluster

detection problem in networks.

• Direct search methods. These are zeroth order (often also referred to as deriva-

tive free) methods that, mimicking the basic idea behind the gradient descent

method, try to improve the objective by generating a new iterate moving from

the current one along a tentative descent direction with a suitable stepsize.

The resulting point is then accepted if some sufficient decrease condition is

satisfied. In this thesis, we extend the analysis of some direct search methods

to optimization problems with non smooth and stochastic objectives, as well

as to optimization problems defined on Riemannian manifolds.

1.1 Outline and main results

We now present an outline of the thesis and give pointers to the main results.

Chapter 2 is a survey about the Frank Wolfe method and some of its variants,

focusing on applications and recent developments in the theoretical analysis. The

method (Algorithm 2) is presented as an instance of a general scheme for first order

optimization methods (Algorithm 1), which includes also its main variants, intro-

duced in Section 2.6.3. Some fundamental convergence results are summarized in

Table 2.2. In Chapter 3, a unifying framework for the study of projection free

methods is described, with a technique to recycle gradient related information in

consecutive iterations (Algorithm 3), and linear convergence rate guarantees (The-

orem 3.4.13). The main assumptions in this chapter are an angle condition for the

descent directions selected by the method, given in Section 3.3 and with examples in
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Sections 3.3.1, 3.5.2, and a Kurdyka-Lojasiewicz property for the objective (Assump-

tion 3.1). In Chapter 4, some results are proven about the active set identification

property of the away step Frank-Wolfe method (Algorithm 6). In particular, a lo-

cal identification result for non convex objectives (Theorem 4.3.3) is used to prove

qualitative (Theorems 4.4.3 and 4.5.5) and quantitative (Corollary 4.4.5, Theorems

4.5.9 and 4.5.6) active set identification results.

In Chapter 5, a continuous cubic formulation of a cluster detection problem in

networks is proposed (problem (P)), together with a Frank-Wolfe variant (Algo-

rithm 8) that provably identifies a local solution of the formulation in finite time

(Theorem 5.4.2). Numerical results in Section 5.5 show that this approach is com-

petitive with a state of the art local solver. Chapter 6 consists of a brief survey

of direct search methods, focusing on directional direct search approaches. Some

popular methods of this kind are described in Section 6.3 as instances of the general

scheme 10. In Chapter 7, direct search schemes for smooth (Algorithms 13 and 14)

and non smooth (Algorithms 16 and 17) optimization over Riemannian manifolds

extending some of the methods discussed in Chapter 6 are presented. Convergence

results are given in Theorems 7.3.4, 7.3.6, 7.4.5 and 7.4.6. In Chapter 8, a direct

search method for stochastic unconstrained non smooth optimization is analyzed

(Algorithm 18), under power law tail bounds on the objective evaluation noise (As-

sumptions 8.1 and 8.2). Convergence of the method is proved (Theorem 8.3.3) with

a number of samples per iteration lower than the one used in other state of the art

derivative free methods (see Theorem 8.2.9 and Remark 8.2.10). Chapter 9, some

conclusions and potential future developments are discussed.

A detailed introduction can be found at the beginning of each chapter.

1.2 Notation

We denote as ◆0 the set of nonnegative integers, and for 𝑎, 𝑏 ∈ ❩ as [𝑎 : 𝑏] the

set of integers between 𝑎 and 𝑏, extremes included. For a set 𝑆 we denote as |𝑆 | and

2𝑆 the cardinality and the set of subsets of 𝑆 respectively. For a sequence {𝑥𝑘 }𝑘∈𝐼
we often omit the index set 𝐼 when it is clear from the context. We denote with

𝑒 the vector with components all equal to 1, and with 𝑒𝑖 the 𝑖 − 𝑡ℎ column of the

identity matrix, with dimensions depending from the context.

For 𝑝 ≥ 0 we denote with ∥ · ∥𝑝 the 𝑝−th norm: for 𝑥 ∈ ❘𝑛,

∥𝑥∥𝑝 = 𝑝

√√
𝑛∑︁

𝑖=0

|𝑥𝑖 |𝑝 . (1.2.1)
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For 𝑐 ∈ ❘𝑛 we denote with 𝑐 the normalized vector 𝑐/∥𝑐∥ if 𝑐 ≠ 0, and 0 otherwise.

We define then supp(𝑥) as the support of 𝑥:

supp(𝑥) = {𝑖 ∈ [1:𝑛] : 𝑥𝑖 ≠ 0} , (1.2.2)

and use ∥ · ∥0 for the cardinality of the support

∥𝑥∥0 := |supp(𝑥) | . (1.2.3)

We say that a function 𝑓 differentiable in Ω ⊂ ❘𝑛 has Lipschitz continuous gradient

with constant 𝐿 if for every 𝑥, 𝑦 in Ω

∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ . (1.2.4)

The function 𝑓 is instead said to be 𝜇−strongly convex in Ω if for every 𝑥, 𝑦 in Ω

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥)⊤(𝑦 − 𝑥) + 𝜇
2
∥𝑥 − 𝑦∥2 , (1.2.5)

and Ω itself is said to be 𝛼−strongly convex if, for any 𝑥, 𝑦 ∈ Ω, 𝛾 ∈ [0, 1] and 𝑧

such that ∥𝑧∥ = 1, it holds that

𝛾𝑥 + (1 − 𝛾)𝑦 + 𝛾(1 − 𝛾)𝛼
2
∥𝑥 − 𝑦∥2𝑧 ∈ Ω . (1.2.6)

For a compact set Ω ⊂ ❘𝑛 the linear minimization oracle is defined as the black box

oracle LMOΩ(·) that given as input 𝑟 ∈ ❘𝑛 produces as output a minimizer in Ω of

the scalar product with 𝑟:

LMOΩ(𝑟) ∈ arg min
𝑦∈Ω

𝑟⊤𝑦 . (1.2.7)

For a bounded polytope 𝑃 ⊂ ❘𝑛 and 𝑟 ∈ ❘𝑛, we define as F𝑒 (𝑟) the face of 𝑃 exposed

by 𝑟:

F𝑒 (𝑟) = arg max{𝑟⊤𝑦 | 𝑦 ∈ 𝑃} , (1.2.8)

where the polytope 𝑃 will always be clear from the context. Since 𝑃 is a bounded

polytope, hence in particular compact, the function 𝑦 → 𝑟⊤𝑦 constrained to 𝑃 has

always a (finite) maximum, so that F𝑒 (𝑟) is non empty, and uniquely defined as a

subset of 𝑃.

We denote with Δ𝑛−1 the standard simplex:

Δ𝑛−1 := {𝑥 ∈ ❘𝑛+ : 𝑒⊺𝑥 = 1} = conv{𝑒𝑖 : 𝑖 ∈ [1:𝑛]} .
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Finally, we use dist(·, ·) for the standard Euclidean distance in ❘𝑛 either between

points, or between a point and a subset, or between subsets: that is, if 𝐴, 𝑋 are

subsets of ❘𝑛, then

dist(𝐴, 𝑋) = inf{∥𝑥 − 𝑎∥ | 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴} . (1.2.9)

An important exception to this notation is made in Chapter 7, where we use dist to

denote a Riemannian distance.
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Chapter 2

Projection-free optimization

methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-

Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a re-

markable revival, fuelled by the need of fast and reliable first-order opti-

mization methods in Data Science and other relevant application areas.

In this chapter, we explain the success of this approach by illustrating

versatility and applicability in a wide range of contexts, combined with

an account on recent progress in variants, both improving on the speed

and efficiency of this surprisingly simple principle of first-order optimiza-

tion. We will focus on variants and convergence results most relevant to

the contributions in Chapters 3-5. 1

2.1 A short history

In their seminal work [101], Marguerite Straus-Frank and Philip Wolfe intro-

duced a first-order algorithm for the minimization of convex quadratic objectives

over polytopes, now known as Frank-Wolfe method. The main idea of the method is

simple: to generate a sequence of feasible iterates by moving at every step towards

a minimizer of a linearized objective, the so-called FW vertex. Subsequent works,

partly motivated by applications in optimal control theory (see [94] for references),

generalized the method to smooth (possibly non-convex) optimization over closed

1This chapter is based on the article ŞFrank-Wolfe and friends: a journey into projection-free

Ąrst-order optimization methodsŤ in 4OR, vol. 19, iss. 3, pp. 313-345, 2021 [48].

7



8 Projection-free optimization methods

subsets of Banach spaces admitting a linear minimization oracle (see [89,95]).

Furthermore, while the O(1/𝑘) rate in the original article was proved to be op-

timal when the solution lies on the boundary of the feasible set [65], improved rates

were given in a variety of different settings. In [166] and [89], a linear convergence

rate was proved over strongly convex domains assuming a lower bound on the gra-

dient norm, a result then extended in [94] under more general gradient inequalities.

In [116], linear convergence of the method was proved for strongly convex objectives

with the minimum obtained in the relative interior of the feasible set.

The slow convergence behaviour for objectives with solution on the boundary

motivated the introduction of several variants, the most popular being Wolfe’s away

step [237]. Wolfe’s idea was to move away from bad vertices, in case a step of the

FW method moving towards good vertices did not lead to sufficient improvement

on the objective. This idea was successfully applied in several network equilibrium

problems, where linear minimization can be achieved by solving a min-cost flow

problem (see [105] and references therein). In [116], some ideas already sketched by

Wolfe were formalized to prove linear convergence of the Wolfe’s away step method

and identification of the face containing the solution in finite time, under some

suitable strict complementarity assumptions.

In recent years, the FW method has regained popularity thanks to its ability to

handle the structured constraints appearing in machine learning and data science

applications efficiently. Examples include LASSO, SVM training, matrix comple-

tion, minimum enclosing ball, density mixture estimation, cluster detection, to name

just a few (see Section 2.4 for further details).

2.2 Main features of the Frank-Wolfe method

One of the main features of the FW algorithm is its ability to naturally identify

sparse and structured (approximate) solutions. For instance, if the optimization

domain is the simplex, then after 𝑘 steps the cardinality of the support of the last

iterate generated by the method is at most 𝑘 + 1. Most importantly, in this setting

every vertex added to the support at every iteration must be the best possible in

some sense, a property that connects the method with many greedy optimization

schemes [78]. This makes the FW method pretty efficient on the abovementioned

problem class. Indeed, the combination of structured solutions with often noisy

data makes the sparse approximations found by the method possibly more desirable

than high precision solutions generated by a faster converging approach. In some

cases, like in cluster detection (see, e.g., [40]), finding the support of the solution is
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actually enough to solve the problem independently from the precision achieved.

Another important feature is that the linear minimization used in the method

is often cheaper than the projections required by projected-gradient methods. It is

important to notice that, even when these two operations have the same complexity,

constants defining the related bounds can differ significantly (see [80] for some ex-

amples and tests). When dealing with large scale problems, the FW method hence

has a much smaller per-iteration cost with respect to projected-gradient methods.

For this reason, FW methods fall into the category of projection-free methods [160].

Furthermore, the method can be used to approximately solve quadratic subprob-

lems in accelerated schemes, an approach usually referred to as conditional gradient

sliding (see, e.g., [66, 161]).

Finally, recent numerical results suggest that in some sparse optimization prob-

lems Frank Wolfe variants might be competitive with projected gradient methods

even in iteration complexity [32], and thus without taking into account the advan-

tage given by the faster linear minimization oracle.

2.3 Problem and general scheme

We consider the following problem:

min
𝑥∈Ω

𝑓 (𝑥) (2.3.1)

where, unless specified otherwise, Ω is a convex and compact (i.e. bounded and

closed) subset of ❘𝑛 and 𝑓 is a differentiable function having Lipschitz continuous

gradient with constant 𝐿 > 0. This is a central property required in the analysis

of first-order methods. Such a property indeed implies (and for a convex function

is equivalent to) the so-called Descent Lemma (see, e.g., [31, Proposition 6.1.2]),

which provides a quadratic upper approximation to the function 𝑓 . Throughout

this chapter, we denote by 𝑥∗ a (global) solution to (2.3.1) and use the symbol

𝑓 ∗ := 𝑓 (𝑥∗) as a shorthand for the corresponding optimal value.

The general scheme of the first-order methods we consider for problem (2.3.1),

reported in Algorithm 1, is based upon a set A(𝑥, 𝑔) of directions feasible at 𝑥

using first-order local information on 𝑓 around 𝑥, in the smooth case 𝑔 = −∇ 𝑓 (𝑥).
From this set, a particular 𝑑 ∈ A(𝑥, 𝑔) is selected, with the maximal stepsize 𝛼max

possibly dependent from auxiliary information available to the method (at iteration

𝑘, we thus write 𝛼max

𝑘
), and not always equal to the maximal feasible stepsize.
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Algorithm 1 First-order method

1: Choose a point 𝑥0 ∈ Ω

2: for 𝑘 = 0, . . . do

3: if 𝑥𝑘 satisfies some specific condition then

4: STOP

5: end if

6: Choose 𝑑𝑘 ∈ A(𝑥𝑘 ,−∇ 𝑓 (𝑥𝑘 ))
7: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , with 𝛼𝑘 ∈ (0, 𝛼max

𝑘
] a suitably chosen stepsize

8: end for

2.3.1 The classical Frank-Wolfe method

The classical FW method for minimization of a smooth objective 𝑓 generates a

sequence of feasible points {𝑥𝑘 } following the scheme of Algorithm 2. At the iteration

𝑘 it moves toward a vertex i.e., an extreme point, of the feasible set minimizing the

scalar product with the current gradient ∇ 𝑓 (𝑥𝑘 ). It therefore makes use of a LMO

for the feasible set Ω, defining the descent direction as

𝑑𝑘 = 𝑑
𝐹𝑊
𝑘 := 𝑠𝑘 − 𝑥𝑘 , 𝑠𝑘 ∈ LMOΩ(∇ 𝑓 (𝑥𝑘 )) . (2.3.2)

In particular, the update at step 6 can be written as

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 (𝑠𝑘 − 𝑥𝑘 ) = 𝛼𝑘 𝑠𝑘 + (1 − 𝛼𝑘 )𝑥𝑘 (2.3.3)

Since 𝛼𝑘 ∈ [0, 1], by induction 𝑥𝑘+1 can be written as a convex combination of

elements in the set 𝑆𝑘+1 := {𝑥0} ∪ {𝑠𝑖}0≤𝑖≤𝑘 . When 𝐶 = conv(𝐴) for a set 𝐴 of

points with some common property, usually called "elementary atoms", if 𝑥0 ∈ 𝐴

then 𝑥𝑘 can be written as a convex combination of 𝑘 + 1 elements in 𝐴. Note that

due to Caratheodory’s theorem, we can even limit the number of occurring atoms

to min{𝑘, 𝑛} + 1. In the rest of the paper the primal gap at iteration 𝑘 is defined as

ℎ𝑘 = 𝑓 (𝑥𝑘 ) − 𝑓 ∗.
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Algorithm 2 Frank-Wolfe method

1: Choose a point 𝑥0 ∈ Ω

2: for 𝑘 = 0, . . . do

3: if 𝑥𝑘 satisfies some specific condition then

4: STOP

5: end if

6: Compute 𝑠𝑘 ∈ LMOΩ(∇ 𝑓 (𝑥𝑘 ))
7: 𝑑𝐹𝑊

𝑘
= 𝑠𝑘 − 𝑥𝑘

8: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝐹𝑊𝑘 , with 𝛼𝑘 ∈ (0, 1] a suitably chosen stepsize

9: end for

2.4 Examples

FW methods and variants are a natural choice for constrained optimization on

convex sets admitting a linear minimization oracle significantly faster than com-

puting a projection. We present here in particular the traffic assignment problem,

submodular optimization, LASSO problem, matrix completion, adversarial attacks,

minimum enclosing ball, SVM training, maximal clique search in graphs, sparse

optimization.

2.4.1 Traffic assignment

Finding a traffic pattern satisfying the equilibrium conditions in a transportation

network is a classic problem in optimization that dates back to Wardrop’s paper

[235]. Let G be a network with set of nodes [1 : 𝑛]. Let {𝐷 (𝑖, 𝑗)}𝑖≠ 𝑗 be demand

coefficients, modeling the amount of goods with destination 𝑗 and origin 𝑖. For any

𝑖, 𝑗 with 𝑖 ≠ 𝑗 let furthermore 𝑓𝑖 𝑗 : ❘→ ❘ be the non-linear (convex) cost functions,

and 𝑥𝑠
𝑖 𝑗

be the flow on link (𝑖, 𝑗) with destination 𝑠. The traffic assignment problem

can be modeled as the following non-linear multicommodity network problem [105]:

min

{∑︁

𝑖, 𝑗

𝑓𝑖 𝑗

(∑︁

𝑠

𝑥𝑠𝑖 𝑗

)
:
∑︁

𝑖

𝑥𝑠ℓ𝑖 −
∑︁

𝑗

𝑥𝑠𝑗ℓ = 𝐷 (ℓ, 𝑠) , all ℓ ≠ 𝑠, 𝑥𝑠𝑖 𝑗 ≥ 0

}
. (2.4.1)

Then the linearized optimization subproblem necessary to compute the FW vertex

takes the form

min

{∑︁

𝑠

∑︁

𝑖, 𝑗

𝑐𝑖 𝑗𝑥
𝑠
𝑖 𝑗 :

∑︁

𝑖

𝑥𝑠ℓ𝑖 −
∑︁

𝑗

𝑥𝑠𝑗ℓ = 𝐷 (ℓ, 𝑠), ℓ ≠ 𝑠, 𝑥𝑠𝑖 𝑗 ≥ 0

}
(2.4.2)
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and can be split in 𝑛 shortest paths subproblems, each of the form

min

{∑︁

𝑖, 𝑗

𝑐𝑖 𝑗𝑥
𝑠
𝑖 𝑗 :

∑︁

𝑖

𝑥𝑠ℓ𝑖 −
∑︁

𝑗

𝑥𝑠𝑗ℓ = 𝐷 (ℓ, 𝑠), ℓ ≠ 𝑠, 𝑥𝑠𝑖 𝑗 ≥ 0

}
(2.4.3)

for a fixed 𝑠 ∈ [1 : 𝑛], with 𝑐𝑖 𝑗 the first-order derivative of 𝑓𝑖 𝑗 (see [105] for further

details). A number of FW variants were proposed in the literature for efficiently

handling this kind of problems (see, e.g., [31,105,164,185,236] and references therein

for further details). Some of those variants represent a good (if not the best) choice

when low or medium precision is required in the solution of the problem [202].

In the more recent work [142] a FW variant also solving a shortest path sub-

problem at each iteration was applied to image and video co-localization.

2.4.2 Submodular optimization

Given a finite set 𝑉 , a function 𝑟 : 2𝑉 → ❘ is said to be submodular if for every

𝐴, 𝐵 ⊂ 𝑉
𝑟 (𝐴) + 𝑟 (𝐵) ≥ 𝑟 (𝐴 ∪ 𝐵) + 𝑟 (𝐴 ∩ 𝐵) . (2.4.4)

As is common practice in the optimization literature (see e.g. [21, Section 2.1]),

here we always assume 𝑠(∅) = 0. A number of machine learning problems, includ-

ing image segmentation and sensor placement, can be cast as minimization of a

submodular function (see, e.g., [21, 69] and references therein for further details):

min
𝐴⊆𝑉

𝑟 (𝐴) . (2.4.5)

Submodular optimization can also be seen as a more general way to relate combi-

natorial problems to convexity, for example for structured sparsity [21, 136]. By a

theorem from [104], problem (2.4.5) can be in turn reduced to an minimum norm

point problem over the base polytope

𝐵(𝐺) = {𝑠 ∈ ❘𝑉 :
∑︁

𝑎∈𝐴
𝑠𝑎 ≤ 𝑟 (𝐴) for all 𝐴 ⊆ 𝑉 ,

∑︁

𝑎∈𝑉
𝑠𝑎 = 𝑟 (𝑉)} . (2.4.6)

For this polytope, linear optimization can be achieved with a simple greedy algo-

rithm. More precisely, consider the LP

max
𝑠∈𝐵(𝐹)

𝑤⊺𝑠 .
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Then if the objective vector 𝑤 has a negative component, the problem is clearly

unbounded. Otherwise, a solution to the LP can be obtained by ordering 𝑤 in

decreasing manner as 𝑤 𝑗1 ≥ 𝑤 𝑗2 ≥ ... ≥ 𝑤 𝑗𝑛 , and setting

𝑠 𝑗𝑘 := 𝑟 ({ 𝑗1, ..., 𝑗𝑘 }) − 𝑟 ({ 𝑗1, ..., 𝑗𝑘−1}) , (2.4.7)

for 𝑘 ∈ [1 :𝑛]. We thus have a LMO with a O(𝑛 log 𝑛) cost. This is the reason why

FW variants are widely used in the context of submodular optimization; further

details can be found in, e.g., [21, 136].

2.4.3 LASSO problem

The LASSO, proposed by Tibshirani in 1996 [221], is a popular tool for sparse

linear regression. Given the training set

𝑇 = {(𝑟𝑖, 𝑏𝑖) ∈ ❘𝑛 × ❘ : 𝑖 ∈ [1:𝑚]} ,

where 𝑟
⊺

𝑖
are the rows of an 𝑚 × 𝑛 matrix 𝐴, the goal is finding a sparse linear

model (i.e., a model with a small number of non-zero parameters) describing the

data. This problem is strictly connected with the Basis Pursuit Denoising (BPD)

problem in signal analysis (see, e.g., [75]). In this case, given a discrete-time input

signal 𝑏, and a dictionary

{𝑎 𝑗 ∈ ❘𝑚 : 𝑗 ∈ [1:𝑛]}

of elementary discrete-time signals, usually called atoms (here 𝑎 𝑗 are the columns

of a matrix 𝐴), the goal is finding a sparse linear combination of the atoms that

approximate the real signal. From a purely formal point of view, LASSO and BPD

problems are equivalent, and both can be formulated as follows:

min
𝑥∈❘𝑛

𝑓 (𝑥) := ∥𝐴𝑥 − 𝑏∥2

2

𝑠.𝑡. ∥𝑥∥1 ≤ 𝜏 ,
(2.4.8)

where the parameter 𝜏 controls the amount of shrinkage that is applied to the model

(related to sparsity, i.e., the number of nonzero components in 𝑥). The feasible set

is

𝐶 = {𝑥 ∈ ❘𝑛 : ∥𝑥∥1 ≤ 𝜏} = conv{±𝜏𝑒𝑖 : 𝑖 ∈ [1:𝑛]} .

Thus we have the following LMO in this case:

LMO𝐶 (∇ 𝑓 (𝑥𝑘 )) = sign(−∇𝑖𝑘 𝑓 (𝑥𝑘 )) · 𝜏𝑒𝑖𝑘 ,
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with 𝑖𝑘 ∈ arg max
𝑖

|∇𝑖 𝑓 (𝑥𝑘 ) |. It is easy to see that the FW per-iteration cost is

then O(𝑛). The peculiar structure of the problem makes FW variants well-suited

for its solution. This is the reason why LASSO/BPD problems were considered in

a number of FW-related papers (see, e.g., [135,136,157,175]).

2.4.4 Matrix completion

Matrix completion is a widely studied problem that comes up in many areas of

science and engineering, including collaborative filtering, machine learning, control,

remote sensing, and computer vision (just to name a few; see also [64] and references

therein). The goal is to retrieve a low rank matrix 𝑋 ∈ ❘𝑛1×𝑛2 from a sparse set of

observed matrix entries {𝑈𝑖 𝑗 }(𝑖, 𝑗)∈𝐽 with 𝐽 ⊂ [1:𝑛1] × [1:𝑛2]. Thus the problem can

be formulated as follows [103]:

min
𝑋∈❘𝑛1×𝑛2

𝑓 (𝑋) :=
∑︁

(𝑖, 𝑗)∈𝐽
(𝑋𝑖 𝑗 −𝑈𝑖 𝑗 )2

𝑠.𝑡. rank(𝑋) ≤ 𝛿,
(2.4.9)

where the function 𝑓 is given by the squared loss over the observed entries of the

matrix and 𝛿 > 0 is a parameter representing the assumed belief about the rank

of the reconstructed matrix we want to get in the end. In practice, the low rank

constraint is relaxed with a nuclear norm ball constraint, where we recall that the

nuclear norm ∥𝑋 ∥∗ of a matrix 𝑋 is equal the sum of its singular values. Thus we

get the following convex optimization problem:

min
𝑋∈❘𝑛1×𝑛2

∑︁

(𝑖, 𝑗)∈𝐽
(𝑋𝑖 𝑗 −𝑈𝑖 𝑗 )2

𝑠.𝑡. ∥𝑋 ∥∗ ≤ 𝛿 .
(2.4.10)

The feasible set is the convex hull of rank-one matrices:

𝐶 = {𝑋 ∈ ❘𝑛1×𝑛2 : ∥𝑋 ∥∗ ≤ 𝛿}
= conv{𝛿𝑢𝑣⊺ : 𝑢 ∈ ❘𝑛1 , 𝑣 ∈ ❘𝑛2 , ∥𝑢∥ = ∥𝑣∥ = 1} .

If we indicate with 𝐴𝐽 the matrix that coincides with 𝐴 on the indices 𝐽 and is zero

otherwise, then we can write ∇ 𝑓 (𝑋) = 2 (𝑋 −𝑈)𝐽 . Thus we have the following LMO

in this case:

LMO𝐶 (∇ 𝑓 (𝑋𝑘 )) ∈ arg min{tr(∇ 𝑓 (𝑋𝑘 )⊺𝑋) : ∥𝑋 ∥∗ ≤ 𝛿} , (2.4.11)
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which boils down to computing the gradient, and the rank-one matrix 𝛿𝑢1𝑣
⊺

1
, with

𝑢1, 𝑣1 right and left singular vectors corresponding to the top singular value of

−∇ 𝑓 (𝑋𝑘 ). Consequently, the FW method at a given iteration approximately recon-

structs the target matrix as a sparse combination of rank-1 matrices. Furthermore,

as the gradient matrix is sparse (it only has |𝐽 | non-zero entries) storage and approx-

imate singular vector computations can be performed much more efficiently than

for dense matrices2. A number of FW variants has hence been proposed in the

literature for solving this problem (see, e.g., [103,135,136]).

2.4.5 Adversarial attacks in machine learning

Adversarial examples are maliciously perturbed inputs designed to mislead a

properly trained learning machine at test time. An adversarial attack hence consists

in taking a correctly classified data point 𝑥0 and slightly modifying it to create a new

data point that leads the considered model to misclassification (see, e.g., [67,73,112]

for further details). A possible formulation of the problem (see, e.g., [72, 112]) is

given by the so called maximum allowable ℓ𝑝-norm attack that is,

min
𝑥∈❘𝑛

𝑓 (𝑥0 + 𝑥)

𝑠.𝑡. ∥𝑥∥𝑝 ≤ 𝜀 ,
(2.4.12)

where 𝑓 is a suitably chosen attack loss function, 𝑥0 is a correctly classified data

point, 𝑥 represents the additive noise/perturbation, 𝜀 > 0 denotes the magnitude

of the attack, and 𝑝 ≥ 1. It is easy to see that the LMO has a cost O(𝑛). If 𝑥0

is a feature vector of a dog image correctly classified by our learning machine, our

adversarial attack hence suitably perturbs the feature vector (using the noise vector

𝑥), thus getting a new feature vector 𝑥0 + 𝑥 classified, e.g., as a cat. In case a target

adversarial class is specified by the attacker, we have a targeted attack. In some

scenarios, the goal may not be to push 𝑥0 to a specific target class, but rather push

it away from its original class. In this case we have a so called untargeted attack.

The attack function 𝑓 will hence be chosen depending on the kind of attack we aim

to perform over the considered model. Due to its specific structure, problem (2.4.12)

can be nicely handled by means of tailored FW variants. Some FW frameworks for

adversarial attacks were recently described in, e.g., [72, 147,213].

2Details related to the LMO cost can be found in, e.g., [136].
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2.4.6 Minimum enclosing ball

Given a set of points 𝑃 = {𝑝1, . . . , 𝑝𝑛} ⊂ ❘𝑑, the minimum enclosing ball problem

(MEB, see, e.g., [78, 246]) consists in finding the smallest ball containing 𝑃. Such

a problem models numerous important applications in clustering, nearest neighbor

search, data classification, machine learning, facility location, collision detection,

and computer graphics, to name just a few. We refer the reader to [155] and the

references therein for further details. Denoting by 𝑐 ∈ ❘𝑑 the center and by
√
𝛾

(with 𝛾 ≥ 0) the radius of the ball, a convex quadratic formulation for this problem

is

min
(𝑐,𝛾)∈❘𝑑×❘

𝛾 (2.4.13)

𝑠.𝑡. ∥𝑝𝑖 − 𝑐∥2 ≤ 𝛾 , all 𝑖 ∈ [1:𝑛] . (2.4.14)

This problem can be formulated via Lagrangian duality as a convex Standard Quadratic

Optimization Problem (StQP, see, e.g. [44])

min {𝑥⊺𝐴⊺𝐴𝑥 − 𝑏⊺𝑥 : 𝑥 ∈ Δ𝑛−1} (2.4.15)

with 𝐴 = [𝑝1, ..., 𝑝𝑛] and 𝑏⊺ = [𝑝⊺
1
𝑝1, . . . , 𝑝

⊺

𝑛 𝑝𝑛]. The feasible set is the standard

simplex Δ𝑛−1, and the LMO is defined as follows:

LMOΔ𝑛−1
(∇ 𝑓 (𝑥𝑘 )) = 𝑒𝑖𝑘 ,

with 𝑖𝑘 ∈ arg min𝑖 ∇𝑖 𝑓 (𝑥𝑘 ). It is easy to see that cost per iteration is O(𝑛). When

applied to (2.4.15), the FW method can find an 𝜀-cluster in O( 1

𝜀
), where an 𝜀-cluster

is a subset 𝑃′ of 𝑃 such that the MEB of 𝑃′ dilated by 1 + 𝜀 contains 𝑃 [78]. The

set 𝑃′ is given by the atoms in 𝑃 selected by the LMO in the first O( 1

𝜀
) iterations.

Further details related to the connections between FW methods and MEB problems

can be found in, e.g., [5, 6, 78] and references therein.

2.4.7 Training linear Support Vector Machines

Support Vector Machines (SVMs) represent a very important class of machine

learning tools (see, e.g., [226] for further details). Given a labeled set of data points,

usually called training set:

𝑇𝑆 = {(𝑝𝑖, 𝑦𝑖), 𝑝𝑖 ∈ ❘𝑑 , 𝑦𝑖 ∈ {−1, 1}, 𝑖 = 1, . . . , 𝑛},
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the linear SVM training problem consists in finding a linear classifier 𝑤 ∈ ❘𝑑 such

that the label 𝑦𝑖 can be deduced with the "highest possible confidence" from 𝑤⊺𝑝𝑖.

A convex quadratic formulation for this problem is the following [78]:

min
𝑤∈❘𝑑 ,𝜌∈❘

𝜌 + ∥𝑤∥2

2

𝑠.𝑡. 𝜌 + 𝑦𝑖 𝑤⊺𝑝𝑖 ≥ 0 , all 𝑖 ∈ [1:𝑛] ,
(2.4.16)

where the slack variable 𝜌 stands for the negative margin and we can have 𝜌 < 0 if

and only if there exists an exact linear classifier, i.e. 𝑤 such that 𝑤⊺𝑝𝑖 = sign(𝑦𝑖).
The dual of (2.4.16) is again an StQP:

min {𝑥⊺𝐴⊺𝐴𝑥 : 𝑥 ∈ Δ𝑛−1} (2.4.17)

with 𝐴 = [𝑦1𝑝1, ..., 𝑦𝑛𝑝𝑛]. Notice that problem (2.4.17) is equivalent to an MNP

problem on conv{𝑦𝑖𝑝𝑖 : 𝑖 ∈ [1 : 𝑛]}, see Section 2.8.2 below. Some FW variants

(like, e.g., the Pairwise Frank-Wolfe) are closely related to classical working set

algorithms, such as the SMO algorithm used to train SVMs [157]. Further details

on FW methods for SVM training problems can be found in, e.g., [78, 135].

2.4.8 Finding maximal cliques in graphs

In the context of network analysis the clique model refers to subsets with every

two elements in a direct relationship. Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph

with 𝑉 and 𝐸 set of vertices and edges, respectively. A clique in 𝐺 is a subset 𝐶 ⊆ 𝑉
such that (𝑖, 𝑗) ∈ 𝐸 for each (𝑖, 𝑗) ∈ 𝐶, with 𝑖 ≠ 𝑗 . The goal in finding a clique

𝐶 such that |𝐶 | is maximal (i.e., it is not contained in any strictly larger clique).

This corresponds to find a local minimum for the following equivalent (this time

non-convex) StQP (see, e.g., [40, 43,133] for further details):

max

{
𝑥⊺𝐴𝐺𝑥 +

1

2
∥𝑥∥2 : 𝑥 ∈ Δ𝑛−1

}
(2.4.18)

where 𝐴𝐺 is the adjacency matrix of 𝐺. Due to the peculiar structure of the problem,

FW methods can be fruitfully used to find maximal cliques, (see, e.g., [133]). In

Chapter 5, the application of a FW variant to a generalization of (2.4.18) will be

discussed.

2.4.9 Finding sparse points in a set

Given a non-empty polyhedron 𝑃 ⊂ ❘𝑛, the goal is finding a sparse point 𝑥 ∈ 𝑃
(i.e., a point with as many zero components as possible). This sparse optimization
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problem can be used to model a number of real-world applications in fields like, e.g.,

machine learning, pattern recognition and signal processing (see [207] and references

therein). Ideally, what we would like to get is an optimal solution for the following

problem:

min {∥𝑥∥0 : 𝑥 ∈ 𝑃} . (2.4.19)

Since the zero norm is non-smooth, a standard procedure is to replace the original

formulation (2.4.19) with an equivalent concave optimization problem of the form:

min

{
𝑛∑︁

𝑖=1

𝜙(𝑦𝑖) : 𝑥 ∈ 𝑃, −𝑦 ≤ 𝑥 ≤ 𝑦

}
, (2.4.20)

where 𝜙 : [0 , +∞ [ → ❘ is a suitably chosen smooth concave univariate function

bounded from below, like, e.g.,

𝜙(𝑡) = (1 − 𝑒−𝛼𝑡) ,

with 𝛼 a large enough positive parameter (see, e.g., [181, 207] for further details).

The LMO in this case gives a vertex solution for the linear programming problem:

min
{
𝑐
⊺

𝑘
𝑦 : 𝑥 ∈ 𝑃, −𝑦 ≤ 𝑥 ≤ 𝑦

}
,

with (𝑐𝑘 )𝑖 the first-order derivative of 𝜙 calculated in (𝑦𝑘 )𝑖. Variants of the unit-

stepsize FW method have been proposed in the literature (see, e.g., [181, 207]) to

tackle the smooth equivalent formulation (2.4.20).

2.5 Stepsizes

Popular rules for determining the stepsize are:

• unit stepsize:

𝛼𝑘 = 1,

mainly used when the problem has a concave objective function. Finite con-

vergence can be proved, under suitable assumptions, both for the unit-stepsize

FW and some of its variants described in the literature (see, e.g., [207] for fur-

ther details).

• diminishing stepsize:

𝛼𝑘 =
2

𝑘 + 2
, (2.5.1)

mainly used for the classic FW (see, e.g., [102,136]).
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• exact line search:

𝛼𝑘 = min arg min
𝛼∈[0,𝛼max

𝑘
]
𝜑(𝛼) with 𝜑(𝛼) := 𝑓 (𝑥𝑘 + 𝛼 𝑑𝑘 ) , (2.5.2)

where we pick the smallest minimizer of the function 𝜑 for the sake of being

well-defined even in rare cases of ties (see, e.g., [47, 157]).

• Armijo line search: the method iteratively shrinks the step size in order to

guarantee a sufficient reduction of the objective function. It represents a good

way to replace exact line search in cases when it gets too costly. In practice,

we fix parameters 𝛿 ∈ (0, 1) and 𝛾 ∈ (0, 1

2
), then try steps 𝛼 = 𝛿𝑚𝛼max

𝑘
with

𝑚 ∈ {0, 1, 2, . . . } until the sufficient decrease inequality

𝑓 (𝑥𝑘 + 𝛼 𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝛾𝛼 ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 (2.5.3)

holds, and set 𝛼𝑘 = 𝛼 (see, e.g., [46] and references therein).

• Lipschitz constant dependent step size:

𝛼𝑘 = 𝛼𝑘 (𝐿) := min

{
− ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘

𝐿∥𝑑𝑘 ∥2
, 𝛼𝑚𝑎𝑥𝑘

}
, (2.5.4)

with 𝐿 the Lipschitz constant of ∇ 𝑓 (see, e.g., [47, 201]).

The Lipschitz constant dependent step size can be seen as the minimizer of the

quadratic model 𝑚𝑘 (·; 𝐿) overestimating 𝑓 along the line 𝑥𝑘 + 𝛼 𝑑𝑘 :

𝑚𝑘 (𝛼; 𝐿) = 𝑓 (𝑥𝑘 ) + 𝛼 ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 +
𝐿𝛼2

2
∥𝑑𝑘 ∥2 ≥ 𝑓 (𝑥𝑘 + 𝛼 𝑑𝑘 ) , (2.5.5)

where the inequality follows by the standard Descent Lemma.

In case 𝐿 is unknown, it is even possible to approximate 𝐿 using a backtracking

line search (see, e.g., [150,201]).

We now report a lower bound for the improvement on the objective obtained

with the stepsize (2.5.4), often used in the convergence analysis.

Lemma 2.5.1. If 𝛼𝑘 is given by (2.5.4) and 𝛼𝑘 < 𝛼
max

𝑘
then

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) −
1

2𝐿
(∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 )2 . (2.5.6)

Proof. We have

𝑓 (𝑥𝑘 + 𝛼𝑘 𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝛼𝑘∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 +
𝐿𝛼2

𝑘

2
∥𝑑𝑘 ∥2

= 𝑓 (𝑥𝑘 ) − (∇ 𝑓 (𝑥𝑘)⊺𝑑𝑘)2
2𝐿∥𝑑𝑘 ∥2 = 𝑓 (𝑥𝑘 ) − 1

2𝐿
(∇ 𝑓 (𝑥𝑘 )⊺ �̂�𝑘 )2 ,

(2.5.7)

where we used the standard Descent Lemma in the inequality. □
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2.6 Properties of the FW method and its variants

2.6.1 The FW gap

A key parameter often used as a measure of convergence is the FW gap

𝐺 (𝑥) = max
𝑠∈Ω

−∇ 𝑓 (𝑥)⊺ (𝑠 − 𝑥) , (2.6.1)

which is always nonnegative and equal to 0 only in first order stationary points.

This gap is, by definition, readily available during the algorithm. If 𝑓 is convex,

using that ∇ 𝑓 (𝑥) is a subgradient we obtain

𝐺 (𝑥) ≥ −∇ 𝑓 (𝑥)⊺ (𝑥∗ − 𝑥) ≥ 𝑓 (𝑥) − 𝑓 ∗ , (2.6.2)

so that 𝐺 (𝑥) is an upper bound on the optimality gap at 𝑥. Furthermore, 𝐺 (𝑥) is a

special case of the Fenchel duality gap [158].

If Ω = Δ𝑛−1 is the simplex, then 𝐺 is related to the Wolfe dual as defined in [78].

Indeed, this variant of Wolfe’s dual reads

max 𝑓 (𝑥) + 𝜆(𝑒⊺𝑥 − 1) − 𝑢⊺𝑥
s.t. ∇𝑖 𝑓 (𝑥) − 𝑢𝑖 + 𝜆 = 0 , 𝑖 ∈ [1:𝑛] ,

(𝑥, 𝑢, 𝜆) ∈ ❘𝑛 × ❘𝑛+ × ❘
(2.6.3)

and for a fixed 𝑥 ∈ ❘𝑛, the optimal values of (𝑢, 𝜆) are

𝜆𝑥 = −min
𝑗

∇ 𝑗 𝑓 (𝑥) , 𝑢𝑖 (𝑥) := ∇𝑖 𝑓 (𝑥) − min
𝑗

∇ 𝑗 𝑓 (𝑥) ≥ 0 .

Performing maximization in problem (2.6.3) iteratively, first for (𝑢, 𝜆) and then for

𝑥, this implies that (2.6.3) is equivalent to

max𝑥∈❘𝑛 [ 𝑓 (𝑥) + 𝜆𝑥 (𝑒⊺𝑥 − 1) − 𝑢(𝑥)⊺𝑥]
= max𝑥∈❘𝑛

[
𝑓 (𝑥) − max 𝑗 (𝑒 𝑗 − 𝑥)⊺∇ 𝑓 (𝑥)

]
= max𝑥∈❘𝑛 [ 𝑓 (𝑥) − 𝐺 (𝑥)] .

(2.6.4)

Furthermore, since Slater’s condition is satisfied, strong duality holds by Slater’s

theorem [57], resulting in 𝐺 (𝑥∗) = 0 for every solution 𝑥∗ of the primal problem.

The FW gap is related to several other measures of convergence (see e.g. [160,

Section 7.5.1]). First, consider the projected gradient

�̃�𝑘 := 𝜋Ω(𝑥𝑘 − ∇ 𝑓 (𝑥𝑘 )) − 𝑥𝑘 . (2.6.5)
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with 𝜋𝐵 the projection on a convex and closed subset 𝐵 ⊆ ❘𝑛. We have ∥�̃�𝑘 ∥ = 0 if

and only if 𝑥𝑘 is stationary, with

∥�̃�𝑘 ∥2 = �̃�
⊺

𝑘
�̃�𝑘 ≤ �̃�

⊺

𝑘
[(𝑥𝑘 − ∇ 𝑓 (𝑥𝑘 )) − 𝜋Ω(𝑥𝑘 − ∇ 𝑓 (𝑥𝑘 ))] + �̃�⊺𝑘 �̃�𝑘

= −�̃�⊺
𝑘
∇ 𝑓 (𝑥𝑘 ) = −(𝜋Ω(𝑥𝑘 − ∇ 𝑓 (𝑥𝑘 )) − 𝑥𝑘 )⊺∇ 𝑓 (𝑥𝑘 )

≤ max
𝑦∈Ω

−(𝑦 − 𝑥𝑘 )⊺∇ 𝑓 (𝑥𝑘 ) = 𝐺 (𝑥𝑘 ) ,
(2.6.6)

where we used [𝑦−𝜋Ω(𝑥)]⊺ [𝑥−𝜋Ω(𝑥)] ≤ 0 in the first inequality, with 𝑥 = 𝑥𝑘−∇ 𝑓 (𝑥𝑘 )
and 𝑦 = 𝑥𝑘 .

Let now 𝑁Ω(𝑥) denote the normal cone to Ω at a point 𝑥 ∈ Ω:

𝑁Ω(𝑥) := {𝑟 ∈ ❘𝑛 : 𝑟⊺ (𝑦 − 𝑥) ≤ 0 for all 𝑦 ∈ Ω} . (2.6.7)

First-order stationarity conditions are equivalent to −∇ 𝑓 (𝑥) ∈ 𝑁Ω(𝑥), or

dist(𝑁Ω(𝑥),−∇ 𝑓 (𝑥)) = ∥ − ∇ 𝑓 (𝑥) − 𝜋𝑁Ω (𝑥) (−∇ 𝑓 (𝑥))∥ = 0 .

The FW gap provides a lower bound on the distance from the normal cone

dist(𝑁Ω(𝑥),−∇ 𝑓 (𝑥)), inflated by the diameter 𝐷 > 0 of Ω, as follows:

𝐺 (𝑥𝑘 ) = −(𝑠𝑘 − 𝑥𝑘 )⊺∇ 𝑓 (𝑥𝑘 )
= (𝑠𝑘 − 𝑥𝑘 )⊺ [𝜋𝑁Ω (𝑥𝑘) (−∇ 𝑓 (𝑥𝑘 )) − (𝜋𝑁Ω (𝑥𝑘) (−∇ 𝑓 (𝑥𝑘 )) + ∇ 𝑓 (𝑥𝑘 ))]
≤ ∥𝑠𝑘 − 𝑥𝑘 ∥ ∥𝜋𝑁Ω (𝑥𝑘) (−∇ 𝑓 (𝑥𝑘 )) + ∇ 𝑓 (𝑥𝑘 )∥
≤ 𝐷 dist(𝑁Ω(𝑥𝑘 ),−∇ 𝑓 (𝑥𝑘 )) ,

(2.6.8)

where in the first inequality we used (𝑠𝑘 −𝑥𝑘 )⊺ [𝜋𝑁Ω (𝑥𝑘) (−∇ 𝑓 (𝑥𝑘 ))] ≤ 0 together with

the Cauchy-Schwarz inequality, and ∥𝑠𝑘 − 𝑥𝑘 ∥ ≤ 𝐷 in the second.

2.6.2 O(1/𝑘) rate for convex objectives

If 𝑓 is non-convex, it is possible to prove a O(1/
√
𝑘) rate for min𝑖∈[1:𝑘] 𝐺 (𝑥𝑖)

(see, e.g., [156]). On the other hand, if 𝑓 is convex, we have an O(1/𝑘) rate on the

optimality gap (see, e.g., [101, 166]) for all the stepsizes discussed in Section 2.5.

Here we include a proof for the Lipschitz constant dependent stepsize 𝛼𝑘 given by

(2.5.4).

Theorem 2.6.1. If 𝑓 is convex and the stepsize is given by (2.5.4), then for every

𝑘 ≥ 1

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤ 2𝐿𝐷2

𝑘 + 2
. (2.6.9)
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Before proving the theorem we prove a lemma concerning the decrease of the

objective in the case of a full FW step, that is a step with 𝑑𝑘 = 𝑑𝐹𝑊
𝑘

and with 𝛼𝑘

equal to 1, the maximal feasible stepsize.

Lemma 2.6.2. If 𝛼𝑘 = 1 and 𝑑𝑘 = 𝑑
𝐹𝑊
𝑘

then

𝑓 (𝑥𝑘+1) − 𝑓 ∗ ≤ 1

2
min

{
𝐿∥𝑑𝑘 ∥2, 𝑓 (𝑥𝑘 ) − 𝑓 ∗

}
. (2.6.10)

Proof. If 𝛼𝑘 = 1 = 𝛼max

𝑘
then by Definitions (2.3.2) and (2.6.1)

𝐺 (𝑥𝑘 ) = −∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 ≥ 𝐿∥𝑑𝑘 ∥2 , (2.6.11)

the last inequality following by Definition (2.5.4) and the assumption that 𝛼𝑘 = 1.

By the standard Descent Lemma it also follows

𝑓 (𝑥𝑘+1) − 𝑓 ∗ = 𝑓 (𝑥𝑘 + 𝑑𝑘 ) − 𝑓 ∗ ≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ + ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 +
𝐿

2
∥𝑑𝑘 ∥2 . (2.6.12)

Considering the definition of 𝑑𝑘 and convexity of 𝑓 , we get

𝑓 (𝑥𝑘 ) − 𝑓 ∗ + ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 ≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ + ∇ 𝑓 (𝑥𝑘 )⊺ (𝑥∗ − 𝑥𝑘 ) ≤ 0 ,

so that (2.6.12) entails 𝑓 (𝑥𝑘+1) − 𝑓 ∗ ≤ 𝐿
2
∥𝑑𝑘 ∥2. To conclude, it suffices to apply to

the RHS of (2.6.12) the inequality

𝑓 (𝑥𝑘 ) − 𝑓 ∗ + ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 + 𝐿
2
∥𝑑𝑘 ∥2 ≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ − 1

2
𝐺 (𝑥𝑘 ) ≤ 𝑓 (𝑥𝑘)− 𝑓 ∗

2
(2.6.13)

where we used (2.6.11) in the first inequality and 𝐺 (𝑥𝑘 ) ≥ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ in the second.

□

We can now proceed with the proof of the main result.

Theorem 2.6.1. For 𝑘 = 0 and 𝛼0 = 1 then by Lemma 2.6.2

𝑓 (𝑥1) − 𝑓 ∗ ≤ 𝐿∥𝑑0∥2

2
≤ 𝐿𝐷2

2
. (2.6.14)

If 𝛼0 < 1 then

𝑓 (𝑥0) − 𝑓 ∗ ≤ 𝐺 (𝑥0) < 𝐿∥𝑑0∥2 ≤ 𝐿𝐷2 . (2.6.15)

Therefore in both cases (2.5.6) holds for 𝑘 = 0.

Reasoning by induction, if (2.6.9) holds for 𝑘 with 𝛼𝑘 = 1, then the claim is clear
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by (2.6.10). On the other hand, if 𝛼𝑘 < 𝛼
max

𝑘
= 1 then by Lemma 2.5.1, we have

𝑓 (𝑥𝑘+1) − 𝑓 ∗ ≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ − 1

2𝐿
(∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 )2

≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ − (∇ 𝑓 (𝑥𝑘)⊺𝑑𝑘)2
2𝐿𝐷2

≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ − ( 𝑓 (𝑥𝑘)− 𝑓 ∗)2
2𝐿𝐷2

= ( 𝑓 (𝑥𝑘 ) − 𝑓 ∗) (1 − 𝑓 (𝑥𝑘)− 𝑓 ∗
2𝐿𝐷2 ) ≤ 2𝐿𝐷2

𝑘+3
,

(2.6.16)

where we used ∥𝑑𝑘 ∥ ≤ 𝐷 in the second inequality, ∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 = 𝐺 (𝑥𝑘 ) ≥ 𝑓 (𝑥𝑘 ) − 𝑓 ∗

in the third inequality; and the last inequality follows by induction hypothesis. □

As can be easily seen from above argument, the convergence rate of O(1/𝑘) is true

also in more abstract normed spaces than ❘𝑛, e.g. when Ω is a convex and weakly

compact subset of a Banach space (see, e.g., [89, 95]). A generalization for some

unbounded sets is given in [100]. The bound is tight due to a zigzagging behaviour

of the method near solutions on the boundary, leading to a rate of Ω(1/𝑘1+𝛿) for

every 𝛿 > 0 (see [65] for further details), when the objective is a strictly convex

quadratic function and the domain is a polytope.

Also the minimum FW gap min𝑖∈[0:𝑘] 𝐺 (𝑥𝑖) converges at a rate of O(1/𝑘) (see [102,

136]). In [102], a broad class of stepsizes is examined, including 𝛼𝑘 =
1

𝑘+1
and 𝛼𝑘 = �̄�

constant. For these stepsizes a convergence rate of O
(

ln(𝑘)
𝑘

)
is proved.

2.6.3 Variants

We present here some active set FW variants. Such variants mostly aim to

improve over the O(1/𝑘) rate and also ensure support identification in finite time.

They generate a sequence of active sets {𝐴𝑘 }, such that 𝑥𝑘 ∈ conv(𝐴𝑘 ), and define

alternative directions making use of these active sets (see Figure 2.1).

For the pairwise FW (PFW) and the AFW (see [78,157]) we have that 𝐴𝑘 must

always be a subset of 𝑆𝑘 , with 𝑥𝑘 a convex combination of the elements in 𝐴𝑘 . The

away vertex 𝑣𝑘 is then defined by

𝑣𝑘 ∈ arg max
𝑦∈𝐴𝑘

∇ 𝑓 (𝑥𝑘 )⊺𝑦 . (2.6.17)

The AFW direction, introduced in [237], is hence given by

𝑑𝐴𝑆
𝑘

= 𝑥𝑘 − 𝑣𝑘
𝑑𝑘 ∈ arg max{−∇ 𝑓 (𝑥𝑘 )⊺𝑑 : 𝑑 ∈ {𝑑𝐴𝑆

𝑘
, 𝑑𝐹𝑊

𝑘
}} , (2.6.18)
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while the PFW direction, as defined in [157] and inspired by the early work [184], is

𝑑𝑃𝐹𝑊𝑘 = 𝑑𝐹𝑊𝑘 + 𝑑𝐴𝑆𝑘 = 𝑠𝑘 − 𝑣𝑘 , (2.6.19)

with 𝑠𝑘 defined in (2.3.2).

The FW method with in-face directions (FDFW) (see [103, 116]), also known

as Decomposition invariant Conditional Gradient (DiCG) when applied to poly-

topes [24], is defined exactly as the AFW, but with the minimal face F (𝑥𝑘 ) of Ω

containing 𝑥𝑘 as the active set. The extended FW (EFW) was introduced in [126]

and is also known as simplicial decomposition [231]. At every iteration the method

minimizes the objective in the current active set 𝐴𝑘+1

𝑥𝑘+1 ∈ arg min
𝑦∈conv(𝐴𝑘+1)

𝑓 (𝑦) , (2.6.20)

where 𝐴𝑘+1 ⊆ 𝐴𝑘 ∪ {𝑠𝑘 } (see, e.g., [78], Algorithm 4.2). A more general version of

the EFW, only approximately minimizing on the current active set, was introduced

in [157] under the name of fully corrective FW. In Table 2.1, we report the main

features of the classic FW and of the variants under analysis.

Variant Direction Active set

FW 𝑑𝑘 = 𝑑
𝐹𝑊
𝑘

= 𝑠𝑘 − 𝑥𝑘 , 𝑠𝑘 ∈ arg max{∇ 𝑓 (𝑥𝑘)⊺𝑥 : 𝑥 ∈ Ω} -

AFW 𝑑𝑘 ∈ arg max{−∇ 𝑓 (𝑥𝑘)⊺𝑑 : 𝑑 ∈ {𝑥𝑘 − 𝑣𝑘 , 𝑑𝐹𝑊𝑘 }, 𝑣𝑘 ∈ 𝐴𝑘} 𝐴𝑘+1 ⊆ 𝐴𝑘 ∪ {𝑠𝑘}

PFW 𝑑𝑘 = 𝑠𝑘 − 𝑣𝑘 , 𝑣𝑘 ∈ arg max{∇ 𝑓 (𝑥𝑘)⊺𝑣𝑘 : 𝑣𝑘 ∈ 𝐴𝑘} 𝐴𝑘+1 ⊆ 𝐴𝑘 ∪ {𝑠𝑘}

EFW 𝑑𝑘 = 𝑦𝑘 − 𝑥𝑘 , 𝑦𝑘 ∈ arg min{ 𝑓 (𝑦) : 𝑦 ∈ conv(𝐴𝑘)} 𝐴𝑘+1 ⊆ 𝐴𝑘 ∪ {𝑠𝑘}

FDFW 𝑑𝑘 ∈ arg max{−∇ 𝑓 (𝑥𝑘)⊺𝑑 : 𝑑 ∈ {𝑥𝑘 − 𝑣𝑘 , 𝑑𝐹𝑊𝑘 }, 𝑣𝑘 ∈ 𝐴𝑘} 𝐴𝑘 = F (𝑥𝑘)

Table 2.1: FW method and variants covered in this chapter.

2.6.4 Sparse approximation properties

As discussed in the previous section, for the classic FW method and the AFW,

PFW, EFW variants 𝑥𝑘 can always be written as a convex combination of elements

in 𝐴𝑘 ⊂ 𝑆𝑘 , with |𝐴𝑘 | ≤ 𝑘 +1. Even for the FDFW we still have the weaker property

that 𝑥𝑘 must be an affine combination of elements in 𝐴𝑘 ⊂ 𝐴 with |𝐴𝑘 | ≤ 𝑘 + 1. It
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turns out that the convergence rate of methods with this property is Ω( 1

𝑘
) in high

dimension. More precisely, if Ω = conv(𝐴) with 𝐴 compact, the O(1/𝑘) rate of the

classic FW method is worst case optimal given the sparsity constraint

𝑥𝑘 ∈ aff (𝐴𝑘 ) with 𝐴𝑘 ⊂ 𝐴, |𝐴𝑘 | ≤ 𝑘 + 1 . (2.6.21)

An example where the O(1/𝑘) rate is tight was presented in [136]. Let Ω = Δ𝑛−1

and 𝑓 (𝑥) = ∥𝑥 − 1

𝑛
𝑒∥2. Clearly, 𝑓 ∗ = 0 with 𝑥∗ =

1

𝑛
𝑒. Then it is easy to see that

min{ 𝑓 (𝑥) − 𝑓 ∗ : ∥𝑥∥0 ≤ 𝑘 + 1} ≥ 1

𝑘+1
− 1

𝑛
for every 𝑘 ∈ ◆, so that in particular under

(2.6.21) with 𝐴𝑘 = {𝑒𝑖 : 𝑖 ∈ [1:𝑛]}, the rate of any FW variant must be Ω( 1

𝑘
).

2.6.5 Affine invariance

The FW method and the AFW, PFW, EFW are affine invariant [136]. More

precisely, let P be a linear transformation, 𝑓 be such that 𝑓 (P𝑥) = 𝑓 (𝑥) and Ω̂ =

P(Ω). Then for every sequence {𝑥𝑘 } generated by the methods applied to ( 𝑓 ,Ω), the

sequence {𝑦𝑘 } := {P𝑥𝑘 } can be generated by the FW method with the same stepsizes

applied to ( 𝑓 , Ω̂). As a corollary, considering the special case where P is the matrix

collecting the elements of 𝐴 as columns, one can prove results on Ω = Δ|𝐴|−1 and

generalize them to Ω̂ := conv(𝐴) by affine invariance.

An affine invariant convergence rate bound for convex objectives can be given

using the curvature constant

𝜅 𝑓 ,Ω := sup
{
2
𝑓 (𝛼𝑦+(1−𝛼)𝑥)− 𝑓 (𝑥)−𝛼∇ 𝑓 (𝑥)⊺ (𝑦−𝑥)

𝛼2 : {𝑥, 𝑦} ⊂ Ω, 𝛼 ∈ (0, 1]
}
. (2.6.22)

It is easy to prove that 𝜅 𝑓 ,Ω ≤ 𝐿𝐷2 if 𝐷 is the diameter of Ω. In the special

case where Ω = Δ𝑛−1 and 𝑓 (𝑥) = 𝑥⊺𝐴⊺𝐴𝑥 + 𝑏⊺𝑥, then 𝜅 𝑓 ,Ω ≤ diam(𝐴Δ𝑛−1)2 for

𝐴⊺ = [𝐴⊺, 𝑏]; see [78].

When the method uses the stepsize sequence (2.5.1), it is possible to give the

following affine invariant convergence rate bounds (see [102]):

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤
2𝜅 𝑓 ,Ω

𝑘 + 4
,

min
𝑖∈]0:𝑘]

𝐺 (𝑥𝑖) ≤
9𝜅 𝑓 ,Ω

2𝑘
,

(2.6.23)

thus in particular slightly improving the rate we gave in Theorem 2.6.1 since we

have that 𝜅 𝑓 ,Ω ≤ 𝐿𝐷2.
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2.6.6 Inexact linear oracle

In many real-world applications, linear subproblems can only be solved approxi-

mately. This is the reason why the convergence of FW variants is often analyzed un-

der some error term for the linear minimization oracle (see, e.g., [58,59,102,136,154]).

A common assumption, relaxing the FW vertex exact minimization property, is to

have access to a point (usually a vertex) �̃�𝑘 such that

∇ 𝑓 (𝑥𝑘 )⊺ ( �̃�𝑘 − 𝑥𝑘 ) ≤ min
𝑠∈Ω

∇ 𝑓 (𝑥𝑘 )⊺ ({1, ...,−}𝑥𝑘 ) + 𝛿𝑘 , (2.6.24)

for a sequence {𝛿𝑘 } of non negative approximation errors.

If the sequence {𝛿𝑘 } is constant and equal to some 𝛿 > 0, then trivially the lowest

possible approximation error achieved by the FW method is 𝛿. At the same time,

[102, Theorem 5.1] implies a rate of O( 1

𝑘
+ 𝛿) if the stepsize 𝛼𝑘 =

2

𝑘+2
is used.

The O(1/𝑘) rate can be instead retrieved by assuming that {𝛿𝑘 } converges to 0

quickly enough, and in particular if

𝛿𝑘 =
𝛿𝜅 𝑓 ,𝐶

𝑘 + 2
(2.6.25)

for a constant 𝛿 > 0. Under (2.6.25), in [136] a convergence rate of

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤
2𝜅 𝑓 ,Ω

𝑘 + 2
(1 + 𝛿) (2.6.26)

was proved for the FW method with 𝛼𝑘 given by exact line search or equal to 2

𝑘+2
,

as well as for the EFW.

A linearly convergent variant making use of an approximated linear oracle re-

cycling previous solutions to the linear minimization subproblem is studied in [58].

In [102,125], the analysis of the classic FW method is extended to the case of inexact

gradient information. In particular in [102], assuming the availability of the (𝛿, 𝐿)
oracle introduced in [90], a convergence rate of O(1/𝑘 + 𝛿𝑘) is proved.

2.7 Improved rates for strongly convex objectives

2.7.1 Linear convergence for FW variants

In the rest of this section we assume that 𝑓 is 𝜇-strongly convex (1.2.5). We also

assume that the stepsize is given by exact line search or by (2.5.4).

Under this assumption, an asymptotic linear convergence rate for the FDFW

on polytopes was given in the early work [116]. Furthermore, in [109] a linearly
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Method Objective Domain Assumptions Rate Article

FW NC Generic - O(1/
√
𝑘) [156]

FW C Generic - O(1/𝑘) [101]

FW SC Generic 𝑥∗ ∈ ri(Ω) Linear [116]

Variants SC Polytope - Linear [157]

FW SC Strongly convex - O(1/𝑘2) [108]

FW SC Strongly convex min ∥∇ 𝑓 (𝑥)∥ > 0 Linear [89]

Table 2.2: Known convergence rates for the FW method and the variants covered in this

chapter. NC, C and SC stand for non-convex, convex and strongly convex respectively.

convergent variant was proposed, making use however of an additional local linear

minimization oracle.

Recent works obtain linear convergence rates by proving the condition

−∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘 ≥
𝜏

∥𝑥𝑘 − 𝑥∗∥
∇ 𝑓 (𝑥𝑘 )⊺ (𝑥𝑘 − 𝑥∗) (2.7.1)

for some 𝜏 > 0 and some 𝑥∗ ∈ arg min𝑥∈𝐶 𝑓 (𝑥). As we shall see in the next lemma,

under (2.7.1) it is not difficult to prove linear convergence rates in the number of

good steps. These are FW steps with 𝛼𝑘 = 1 and steps in any descent direction with

𝛼𝑘 < 1.

Lemma 2.7.1. If the step 𝑘 is a good step and (2.7.1) holds, then

ℎ𝑘+1 ≤ max
{

1

2
, 1 − 𝜏2𝜇

𝐿

}
ℎ𝑘 . (2.7.2)

Proof. If the step 𝑘 is a full FW step then Lemma 2.6.2 entails ℎ𝑘+1 ≤ 1

2
ℎ𝑘 . In the

remaining case, first observe that by strong convexity

𝑓 ∗ = 𝑓 (𝑥∗) ≥ 𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 )⊺ (𝑥∗ − 𝑥𝑘 ) + 𝜇

2
∥𝑥𝑘 − 𝑥∗∥2

≥ min
𝛼∈❘

[
𝑓 (𝑥𝑘 ) + 𝛼∇ 𝑓 (𝑥𝑘 )⊺ (𝑥∗ − 𝑥𝑘 ) + 𝛼2𝜇

2
∥𝑥𝑘 − 𝑥∗∥2

]

= 𝑓 (𝑥𝑘 ) − 1

2𝜇∥𝑥𝑘−𝑥∗∥2 [∇ 𝑓 (𝑥𝑘 )⊺ (𝑥𝑘 − 𝑥∗)]2 ,

(2.7.3)

which means

ℎ𝑘 ≤
1

2𝜇∥𝑥𝑘 − 𝑥∗∥2
[∇ 𝑓 (𝑥𝑘 )⊺ (𝑥𝑘 − 𝑥∗)]2

. (2.7.4)
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We can then proceed using the bound (2.5.6) from Lemma 2.5.1 in the following

way:

ℎ𝑘+1 = 𝑓 (𝑥𝑘+1) − 𝑓 ∗ ≤ 𝑓 (𝑥𝑘 ) − 𝑓 ∗ − 1

2𝐿

[
∇ 𝑓 (𝑥𝑘 )⊺𝑑𝑘

]2

≤ ℎ𝑘 − 𝜏2

2𝐿∥𝑥𝑘−𝑥∗∥2 [∇ 𝑓 (𝑥𝑘 )⊺ (𝑥𝑘 − 𝑥∗)]2

≤ ℎ𝑘

(
1 − 𝜏2𝜇

𝐿

)
,

(2.7.5)

where we used (2.7.1) in the second inequality and (2.7.4) in the third one. □

As a corollary, under (2.7.1) we have the rate

𝑓 (𝑥𝑘 ) − 𝑓 ∗= ℎ𝑘 ≤ max
{

1

2
, 1 − 𝜏2𝜇

𝐿

}𝛾(𝑘)
ℎ0 (2.7.6)

for any method with non increasing { 𝑓 (𝑥𝑘 )} and following Algorithm 1, with 𝛾(𝑘) ≤
𝑘 an integer denoting the number of good steps until step 𝑘. It turns out that for

all the variants we introduced in this chapter we have 𝛾(𝑘) ≥ 𝑇𝑘 for some constant

𝑇 > 0. When 𝑥∗ is in the relative interior of Ω, the FW method satisfies (2.7.1) and

we have the following result (see [116,157]):

Theorem 2.7.2. If 𝑥∗ ∈ ri(Ω), then

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤
[
1 − 𝜇

𝐿

(
dist(𝑥∗, 𝜕Ω)

𝐷

)2
] 𝑘

( 𝑓 (𝑥0) − 𝑓 ∗) . (2.7.7)

Proof. We can assume for simplicity int(Ω) ≠ ∅, since otherwise we can restrict

ourselves to the affine hull of Ω. Let 𝛿 = dist(𝑥∗, 𝜕Ω) and 𝑔 = −∇ 𝑓 (𝑥𝑘 ). First, by

assumption we have 𝑥∗ + 𝛿�̂� ∈ Ω. Therefore

𝑔⊺𝑑𝐹𝑊𝑘 ≥ 𝑔⊺ ((𝑥∗ + 𝛿�̂�) − 𝑥) = 𝛿𝑔⊺�̂� + 𝑔⊺ (𝑥∗ − 𝑥) ≥ 𝛿∥𝑔∥ + 𝑓 (𝑥) − 𝑓 ∗ ≥ 𝛿∥𝑔∥ , (2.7.8)

where we used 𝑥∗ + 𝛿�̂� ∈ Ω in the first inequality and convexity in the second. We

can conclude

𝑔⊺
𝑑𝐹𝑊
𝑘

∥𝑑𝐹𝑊
𝑘

∥
≥ 𝑔⊺

𝑑𝐹𝑊
𝑘

𝐷
≥ 𝛿

𝐷
∥𝑔∥ ≥ 𝛿

𝐷
𝑔⊺

(
𝑥𝑘 − 𝑥∗
∥𝑥𝑘 − 𝑥∗∥

)
. (2.7.9)

The thesis follows by Lemma 2.7.1, noticing that for 𝜏 =
dist(𝑥∗,𝜕Ω)

𝐷
≤ 1

2
we have

1 − 𝜏2 𝜇

𝐿
> 1

2
. □
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In [157], the authors proved that directions generated by the AFW and the PFW

on polytopes satisfy condition (2.7.1), with 𝜏 = PWidth(𝐴)/𝐷 and PWidth(𝐴),
pyramidal width of 𝐴. While PWidth(𝐴) was originally defined with a rather com-

plex minmax expression, in [200] it was then proved

PWidth(𝐴) = min
𝐹∈faces(𝐶)

dist(𝐹, conv(𝐴 \ 𝐹)) . (2.7.10)

This quantity can be explicitly computed in a few special cases. For 𝐴 = {0, 1}𝑛 we

have PWidth(𝐴) = 1/√𝑛, while for 𝐴 = {𝑒𝑖}𝑖∈[1:𝑛] (so that Ω is the 𝑛−1 dimensional

simplex)

PWidth(𝐴) =



2√
𝑛

if 𝑛 is even

2√
𝑛−1/𝑛

if 𝑛 is odd.
(2.7.11)

Conditions like (2.7.1) with 𝜏 dependent on the number of vertices used to represent

𝑥𝑘 as a convex combination were given in [24] and [27] for the FDFW and the

PFW respectively. In particular, in [27] a geometric constant ΩΩ called vertex-facet

distance was defined as

ΩΩ = min{dist(𝑣, 𝐻) : 𝑣 ∈ 𝑉 (Ω) , 𝐻 ∈ H (Ω), 𝑣 ∉ 𝐻} , (2.7.12)

with 𝑉 (Ω) the set of vertices of Ω, and H(Ω) the set of supporting hyperplanes of

Ω (containing a facet of Ω). Then condition (2.7.1) is satisfied for 𝜏 = ΩΩ/𝑠, with

𝑑𝑘 the PFW direction and 𝑠 the number of points used in the active set 𝐴𝑘 .

In [24], a geometric constant 𝐻𝑠 was defined depending on the minimum number 𝑠

of vertices needed to represent the current point 𝑥𝑘 , as well as on the proper3 in-

equalities 𝑞
⊺

𝑖
𝑥 ≤ 𝑏𝑖, 𝑖 ∈ [1 :𝑚], appearing in a description of Ω. For each of these

inequalities the second gap 𝑔𝑖 was defined as

𝑔𝑖 = max
𝑣∈𝑉 (Ω)

𝑞
⊺

𝑖
𝑣 − secondmax

𝑣∈𝑉 (Ω)
𝑞
⊺

𝑖
𝑣 , 𝑖 ∈ [1:𝑚] , (2.7.13)

with the secondmax function giving the second largest value achieved by the argu-

ment. Then 𝐻𝑠 is defined as

𝐻𝑠 := max

{
𝑛∑
𝑗=1

(∑
𝑖∈𝑆

𝑎𝑖 𝑗
𝑔𝑖

)2

: 𝑆 ∈
([1:𝑚]

𝑠

)
}
. (2.7.14)

The arguments used in the paper imply that (2.7.1) holds with 𝜏 = 1

2𝐷
√
𝐻𝑠

if 𝑑𝑘 is a

FDFW direction and 𝑥𝑘 the convex combination of at most 𝑠 vertices. We refer the

reader to [200] and [206] for additional results on these and related constants.

3i.e., those inequalities strictly satisĄed for some 𝑥 ∈ Ω.



30 Projection-free optimization methods

The linear convergence results for strongly convex objectives are extended to

compositions of strongly convex objectives with affine transformations in [27], [157],

[200]. In [117], the linear convergence results for the AFW and the FW method

with minimum in the interior are extended with respect to a generalized condition

number 𝐿 𝑓 ,Ω,𝐷/𝜇 𝑓 ,Ω,𝐷 , with 𝐷 a distance function on Ω.

For the AFW, the PFW and the FDFW, linear rates with no bad steps (𝛾(𝑘) = 𝑘)

are given in [209] (see Chapter 3) for non-convex objectives satisfying a Kurdyka-

Łojasiewicz inequality. In [208], condition (2.7.1) was proved for the FW direction

and orthographic retractions on some convex sets with smooth boundary. The

work [79] introduces a new FW variant using a subroutine to align the descent

direction with the projection on the tangent cone of the negative gradient, thus

implicitly maximizing 𝜏 in (2.7.1).

2.7.2 Strongly convex domains

When Ω is strongly convex we have a O(1/𝑘2) rate (see, e.g., [108,149]) for the

classic FW method. Furthermore, when Ω is 𝛽Ω-strongly convex and ∥∇ 𝑓 (𝑥)∥ ≥
𝑐 > 0, then we have the linear convergence rate (see [89,94,150,166])

ℎ𝑘+1 ≤ max
{

1

2
, 1 − 𝐿

2𝑐𝛽Ω

}
ℎ𝑘 . (2.7.15)

Finally, it is possible to interpolate between the O(1/𝑘2) rate of the strongly convex

setting and the O(1/𝑘) rate of the general convex one by relaxing strong convexity of

the objective with Hölderian error bounds [243] and also by relaxing strong convexity

of the domain with uniform convexity [149].

2.8 Extensions

2.8.1 Block coordinate Frank-Wolfe method

The block coordinate FW (BCFW) was introduced in [158] for block product

domains of the form Ω = Ω(1) × ... × Ω(𝑚) ⊆ ❘𝑛1+...+𝑛𝑚 , and applied to structured

SVM training. The algorithm operates by selecting a random block and performing

a FW step in that block. Formally, for 𝑠 ∈ ❘𝑚𝑖 let 𝑠(𝑖) ∈ ❘𝑛 be the vector with all

blocks equal to 0 except for the 𝑖-th block equal to 𝑠. We can write the direction of
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the BCFW as
𝑑𝑘 = 𝑠

(𝑖)
𝑘

− 𝑥𝑘
𝑠𝑘 ∈ arg min

𝑠∈Ω(𝑖)
∇ 𝑓 (𝑥𝑘 )⊺𝑠(𝑖) (2.8.1)

for a random index 𝑖 ∈ [1:𝑛].
In [158], a convergence rate of

❊[ 𝑓 (𝑥𝑘 )] − 𝑓 ∗ ≤ 2𝐾𝑚

𝑘 + 2𝑚
(2.8.2)

is proved, for 𝐾 = ℎ0 + 𝜅⊗𝑓 , with 𝜅⊗
𝑓

the product domain curvature constant, defined

as 𝜅⊗
𝑓
=

∑
𝜅
⊗,𝑖
𝑓

where 𝜅⊗,𝑖
𝑓

are the curvature constants of the objective fixing the

blocks outside Ω(𝑖):

𝜅
⊗,𝑖
𝑓

:= sup
{
2
𝑓 (𝑥+𝛼𝑑 (𝑖) )− 𝑓 (𝑥)−𝛼∇ 𝑓 (𝑥)⊺𝑑 (𝑖)

𝛼2 : 𝑑 ∈ Ω − 𝑥, 𝑥 ∈ Ω, 𝛼 ∈ (0, 1]
}
. (2.8.3)

An asynchronous and parallel generalization for this method was given in [234]. This

version assumes that a cloud oracle is available, modeling a set of worker nodes each

sending information to a server at different times. This information consists of an

index 𝑖 and the following LMO on Ω(𝑖):

𝑠(𝑖) ∈ arg min
𝑠∈Ω(𝑖)

∇ 𝑓 (𝑥
�̃�
)⊺𝑠(𝑖) . (2.8.4)

The algorithm is called asynchronous because �̃� can be smaller than 𝑘, modeling a

delay in the information sent by the node. Once the server has collected a minibatch

𝑆 of 𝜏 distinct indexes (overwriting repetitions), the descent direction is defined as

𝑑𝑘 =
∑︁

𝑖∈𝑆
𝑠
(𝑖)
(𝑖) , (2.8.5)

If the indices sent by the nodes are i.i.d., then under suitable assumptions on the

delay, a convergence rate of

❊[ 𝑓 (𝑥𝑘 )] − 𝑓 ∗ ≤ 2𝑚𝐾𝜏

𝜏2𝑘 + 2𝑚
(2.8.6)

can be proved, where 𝐾𝜏 = 𝑚𝜅
⊗
𝑓 ,𝜏
(1+ 𝛿) + ℎ0 for 𝛿 depending on the delay error, with

𝜅⊗
𝑓 ,𝜏

the average curvature constant in a minibatch keeping all the components not

in the minibatch fixed.

In [197], several improvements are proposed for the BCFW, including an adaptive

criterion to prioritize blocks based on their FW gap, and block coordinate versions

of the AFW and the PFW variants.



32 Projection-free optimization methods

In [214], a multi plane BCFW approach is proposed in the specific case of the

structured SVM, based on caching supporting planes in the primal, corresponding

to block linear minimizers in the dual. In [28], the duality for structured SVM

between BCFW and stochastic subgradient descent is exploited to define a learning

rate schedule for neural networks based only on one hyper parameter. The block

coordinate approach is extended to the generalized FW in [26], with coordinates

however picked in a cyclic order.

2.8.2 Variants for the min-norm point problem

Consider the min-norm point (MNP) problem

min
𝑥∈Ω

∥𝑥∥∗ , (2.8.7)

with Ω a closed convex subset of ❘𝑛 and ∥ · ∥∗ a norm on ❘𝑛. In [238], a FW

variant is introduced to solve the problem when Ω is a polytope and ∥ · ∥∗ is the

standard Euclidean norm ∥ · ∥. Similarly to the variants introduced in Section 2.6.3,

it generates a sequence of active sets {𝐴𝑘 } with 𝑠𝑘 ∈ 𝐴𝑘+1. At the step 𝑘 the norm

is minimized on the affine hull aff (𝐴𝑘 ) of the current active set 𝐴𝑘 , that is

𝑣𝑘 = arg min
𝑦∈aff (𝐴𝑘)

∥𝑦∥ . (2.8.8)

The descent direction 𝑑𝑘 is then defined as

𝑑𝑘 = 𝑣𝑘 − 𝑥𝑘 , (2.8.9)

and the stepsize is given by a tailored line search that allows to remove some of

the atoms in the set 𝐴𝑘 (see, e.g. [157, 238]). Whenever 𝑥𝑘+1 is in the relative

interior of conv(𝐴𝑘 ), the FW vertex is added to the active set (that is, 𝑠𝑘 ∈ 𝐴𝑘+1).

Otherwise, at least one of the vertices not appearing in a convex representation of 𝑥𝑘
is removed. This scheme converges linearly when applied to generic smooth strongly

convex objectives (see, e.g., [157]).

In [122], a FW variant is proposed for minimum norm problems of the form

min{∥𝑥∥∗ : 𝑓 (𝑥) ≤ 0, 𝑥 ∈ 𝐾} (2.8.10)

with 𝐾 a convex cone, 𝑓 convex with 𝐿-Lipschitz gradient. In particular, the op-

timization domain is Ω = {𝑥 ∈ ❘𝑛 : 𝑓 (𝑥) ≤ 0} ∩ 𝐾. The technique proposed in the

article applies the standard FW method to the problems

min{ 𝑓 (𝑥) : ∥𝑥∥∗ ≤ 𝛿𝑘 , 𝑥 ∈ 𝐾} ,
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with {𝛿𝑘 } an increasing sequence convergent to the optimal value 𝛿 of the prob-

lem (2.8.10). Let Ω(𝛿) = {𝑥 ∈ ❘𝑛 : ∥𝑥∥∗ ≤ 𝛿} ∩ 𝐾 for 𝛿 ≥ 0, and let

LM(𝑟) ∈ arg min
𝑥∈Ω(1)

𝑟⊺𝑥 ,

so that by homogeneity for every 𝑘 the linear minimization oracle on 𝐶 (𝛿𝑘 ) is given

by

LMOΩ(𝛿𝑘) (𝑟) = 𝛿𝑘LM(𝑟) . (2.8.11)

For every 𝑘, applying the FW method with suitable stopping conditions an approx-

imate minimizer 𝑥𝑘 of 𝑓 (𝑥) over Ω(𝛿𝑘 ) is generated, with an associated lower bound

on the objective, an affine function in 𝑦:

𝑓𝑘 (𝑦) := 𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 )⊺ (𝑦 − 𝑥𝑘 ) . (2.8.12)

Then the function

ℓ𝑘 (𝛿) := min
𝑦∈Ω(𝛿)

𝑓𝑘 (𝑦) = 𝑓𝑘 (𝛿LM(𝑔𝑘 )) with 𝑔𝑘 = ∇ 𝑓 (𝑥𝑘 ) (2.8.13)

is decreasing and affine in 𝛿 and satisfies

ℓ𝑘 (𝛿) = min
𝑦∈Ω(𝛿)

𝑓𝑘 (𝑦) ≤ 𝐹 (𝛿) := min
𝑦∈Ω(𝛿)

𝑓 (𝑦) . (2.8.14)

Therefore, for

ℓ̄𝑘 (𝛿) = max
𝑖∈[1:𝑘]

ℓ𝑖 (𝛿) ≤ 𝐹 (𝛿)

the quantity 𝛿𝑘+1 can be defined as min{𝛿 ≥ 0 : ℓ̄𝑘 (𝛿) ≤ 0}, hence 𝐹 (𝛿𝑘+1) ≥ 0.

A complexity bound of O( 1

𝜀
ln( 1

𝜀
)) was given to achieve precision 𝜀 applying this

method, with O(1/𝜀) iterations per subproblem and length of the sequence {𝛿𝑘 } at

most O(ln(1/𝜀)) (see [122, Theorem 2] for details).

2.8.3 Variants for optimization over the trace norm ball

The FW method has found many applications for optimization problems over

the trace norm ball. In this case, as explained in Example 2.4.4, linear optimization

can be obtained by computing the top left and right singular vectors of the matrix

−∇ 𝑓 (𝑋𝑘 ), an operation referred to as 1-SVD (see [10]) .

In the work [103], the FDFW is applied to the matrix completion problem (2.4.9),

thus generating a sequence of matrices {𝑋𝑘 } with ∥𝑋𝑘 ∥∗ ≤ 𝛿 for every 𝑘. The method
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can be implemented efficiently exploiting the fact that for 𝑋 on the boundary of the

nuclear norm ball, there is a simple expression for the face F (𝑋). For 𝑋 ∈ ❘𝑚×𝑛

with rank(𝑋) = 𝑘 let 𝑈𝐷𝑉⊺ be the thin SVD of 𝑋, so that 𝐷 ∈ ❘𝑘×𝑘 is the diagonal

matrix of non zero singolar values for 𝑋, with corresponding left and right singular

vectors in the columns of 𝑈 ∈ ❘𝑚×𝑘 and 𝑉 ∈ ❘𝑛×𝑘 respectively. If ∥𝑋 ∥∗ = 𝛿 then the

minimal face of the domain containing 𝑋 is the set

F (𝑋) = {𝑋 ∈ ❘𝑚×𝑛 : 𝑋 = 𝑈𝑀𝑉⊺ for 𝑀 = 𝑀⊺ psd with ∥𝑀 ∥∗ = 𝛿} , (2.8.15)

where psd stands for positive semidefinite.

It is not difficult to see that we have rank(𝑋𝑘 ) ≤ 𝑘 + 1 for every 𝑘 ∈ ◆, as well.

Furthermore, the thin SVD of the current iterate 𝑋𝑘 can be updated efficiently both

after FW steps and after in face steps. The convergence rate of the FDFW in this

setting is still O(1/𝑘).
In the recent work [232], an unbounded variant of the FW method is applied to

solve a generalized version of the trace norm ball optimization problem:

min
𝑋∈❘𝑚×𝑛

{ 𝑓 (𝑋) : ∥P𝑋𝑄∥∗ ≤ 𝛿} (2.8.16)

with P, 𝑄 singular matrices. The main idea of the method is to decompose the

domain in the sum 𝑆+𝑇 between the kernel 𝑇 of the linear function 𝜑P,𝑄 (𝑋) = P𝑋𝑄
and a bounded set 𝑆 ⊂ 𝑇⊥. Then gradient descent steps in the unbounded compo-

nent 𝑇 are alternated to FW steps in the bounded component 𝑆. The authors apply

this approach to the generalized LASSO as well, using the AFW for the bounded

component.

In [10], a variant of the classic FW using 𝑘-SVD (computing the top 𝑘 left and

right singular vectors for the SVD) is introduced, and it is proved that it converges

linearly for strongly convex objectives when the solution has rank at most 𝑘. In [189],

the FW step is combined with a proximal gradient step for a quadratic problem on

the product of the nuclear norm ball with the ℓ1 ball. Approaches using an equivalent

formulation on the spectrahedron introduced in [137] are analyzed in [91,106].
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Chapter 3

A unifying framework for the

study of Frank-Wolfe variants

The study of Frank-Wolfe variants is often complicated by the presence

of different kinds of "good" and "bad" steps. In this chapter, we aim to

simplify the convergence analysis of specific variants by getting rid of

such a distinction between steps, and to improve existing rates by en-

suring a non-trivial bound at each iteration. In order to do this, we

define the Short Step Chain (SSC) procedure, which skips gradient com-

putations in consecutive short steps until proper conditions are satisfied.

This algorithmic tool allows us to give a unified analysis and conver-

gence rates in the general smooth non convex setting, as well as a linear

convergence rate under a Kurdyka-Lojasiewicz (KL) property. While the

KL setting has been widely studied for proximal gradient type methods,

to our knowledge, it has never been analyzed before for the Frank-Wolfe

variants considered in this chapter. An angle condition, ensuring that

the directions selected by the methods have the steepest slope possible up

to a constant, is used to carry out our analysis. We prove that such

a condition is satisfied, when considering minimization problems over a

polytope, by the away step Frank-Wolfe, the pairwise Frank-Wolfe, and

the Frank-Wolfe method with in face directions. 1

1This chapter is based on the article ŞAvoiding bad steps in Frank Wolfe variantsŤ in Compu-

tational Optimization and Applications, 2022 [209].
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3.1 Motivation

In this chapter, we explain how to overcome an annoying issue affecting the

analysis of some FW variants, and provide a unifying framework for the study of

those methods. The issue we deal with is the presence of "bad iterations", i.e.,

iterations where we cannot show good progress. This happens when we are forced

to take a short step along the search direction to guarantee feasibility of the iterate.

The number of short steps typically needs to be upper bounded in the convergence

analysis with "ad hoc" arguments (see, e.g., [103] and [157]). The main idea behind

our method is to chain several short steps by skipping gradient updates until proper

conditions are met.

3.1.1 Related work

FW variants. As seen in Chapter 2, the main drawback of the classic FW

algorithm is its slow 𝑂 (1/𝑘) convergence rate for convex objectives, which has mo-

tivated the study of variants with faster rates, starting at least with the work of

Wolfe [237] (see [153] and [157] for recent references). For smooth strongly convex

objectives, the convergence rates of many of these "improved directions" FW vari-

ants is linear on polytopes (see Section 2.7.1). Furthermore, in [148] it was proved

that the convergence rate of an AFW variant is adaptive to Hölderian error bound

conditions interpolating between the general convex case and the strongly convex

one.

In addition to considering new directions, the works [58] and [59] propose strategies

to skip the LMO computation from time to time by caching linear minimizers, while

the recent work [153] for optimization on polytopes applies recursively a FW variant

to smaller polytopes. However, to our knowledge, no strategy to avoid short steps

has been discussed in these previous works.

A different approach, adopted in the general smooth convex setting, is to use FW

variants to approximate projections. In particular, the conditional gradient slid-

ing method uses the FW method to approximate projections on the feasible set

within a projected gradient scheme (see, e.g., [124] and [161]). Another approach

introduced in [79] for smooth convex objectives implicitly uses the Non Negative

Matching Pursuit (NNMP) algorithm to compute an approximate projection of the

negative gradient on the tangent cone. To our knowledge, however, conditional gra-

dient sliding approaches always lead to a sublinear 𝑂 (1/𝜀) LMO complexity, and

the approach in [79] does not lead to any improvement on the 𝑂 (1/𝜀) worst case
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gradient complexity of the classic FW.

Outside the projection free setting, in [187] a procedure making multiple steps with-

out updating the gradient (in a fashion similar to our SSC) is defined.

In the non convex setting, for the classic FW algorithm a convergence rate of

𝑂 (1/
√
𝑘) was proved in [156] and then extended to other variants in [47] and [205].

KL property. The KL property (see, e.g., [12], [36] and [37]) has been ex-

tensively applied to compute the convergence rates of proximal subgradient type

methods (see, e.g., [12], [13], [38], [233] and [242]). Furthermore, for convex objec-

tives, it has been proved that Hölderian error bound conditions are a particular case

of this property [38]. However, we are not aware of previous applications to the

Frank-Wolfe variants under study in this chapter.

Angle condition. The analysis of unconstrained descent methods often relies

on some version of an angle condition, imposing an upper bound on the angle

between the negative gradient and the descent direction selected by the method

(see, e.g., [2], [114] and [249]). However, due to the presence of short steps and full

FW steps, these analyses do not extend to our setting in a straightforward way.

In Section 3, we present an angle condition for optimization over a convex set.

While to our knowledge this extension is novel for first order optimization methods,

analogous conditions can be found in the context of direct search methods for linearly

constrained derivative free optimization (see, e.g., [152] and [168]), imposed on the

smallest angle between the negative gradient and a search direction. Finally, we

remark that a variant of our condition was somehow used, but not stated explicitly,

in [27] and [157] within the context of smooth strongly convex optimization over

polytopes.

3.1.2 Contributions

Our main contributions are twofold:

• We formulate an angle condition for projection free methods, and prove that

it leads to linear convergence in the number of "good steps" for non convex

objectives satisfying a KL inequality. We show that this condition applies

to the AFW, the PFW and the FDFW on polytopes. First, we give linear

rates for good steps in Proposition 3.3.6. Then, we give global asymptotical

rates under the assumption that the number of bad steps between two good
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steps is bounded in Proposition 3.3.7. We apply this result to FW variants in

Corollary 3.3.8.

• We define the SSC procedure, which can be applied to all the FW variants

listed in the first point, and show that it gets improvements on known rates

(see Table 1 in Section 3.4). In particular, we prove that it leads to global linear

convergence rates with no bad steps (see Lemma 3.4.11 and Corollary 3.4.15)

under a global KL inequality and the angle condition. We then prove that we

have local linear convergence rates and asymptotical linear convergence rates

under a local KL property as well (see Theorem 3.4.13 and Corollary 3.4.14).

This, to our knowledge, is the first (bad step free) linear convergence rate for

FW variants under the KL inequality. In the general smooth non convex case,

we further prove, under the angle condition, a 𝑂 (1/
√
𝑘) convergence rate with

respect to a specific measure of non-stationarity for the iterates, that is the

projection of the negative gradient on the convex cone of feasible directions

(see Theorem 3.4.8, Corollary 3.4.9 and Remark 3.4.10).

While here we apply our framework only to the AFW, the PFW, and the FDFW on

polytopes, we remark that our results hold for projection free methods on generic

convex sets. In an extended version of this chapter [208] we show applications on

convex sets with smooth boundary for FW variants and methods using orthographic

retractions (see also [4], [22], [167] and references therein).

The reasons why eliminating bad steps truly makes a difference in our context are

the following:

• it rules out impractical convergence rates due to a large number of bad steps.

An interesting example is given by the rate guarantee reported in [157] for the

pairwise Frank-Wolfe (PFW) variant on the 𝑁 − 1 dimensional simplex. This

guarantee is indeed more loose than for the other variants, because there is no

satisfactory bound on the number of such problematic steps (there is a best

known bound of 3𝑁! bad steps for each good step);

• it eliminates the dependence of the convergence rates on the support of the

starting point (see, e.g., [139] and [153]). This dependence can significantly

affect the performance of FW variants on smooth non convex optimization

problems [84].

Finally, we mention that bad steps lead to a slow active set identification for the

AFW. This will be discussed more in depth in Chapter 4.
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The structure of the chapter is as follows. In Section 2, we define some notation

and state some preliminary results from convex analysis. In Section 3, we introduce

the angle condition for first-order projection free methods, show examples of FW

variants satisfying the condition and prove linear convergence in the number of

good steps. We define the SSC procedure in Section 4, where we also state the main

convergence results. Preliminary numerical results are reported in Section 3.6.

3.2 Tangent cones and the KL condition

We consider the following constrained optimization problem:

min { 𝑓 (𝑥) | 𝑥 ∈ Ω} . (3.2.1)

In the rest of the chapter Ω is a compact and convex set and 𝑓 ∈ 𝐶1(Ω) with 𝐿-

Lipschitz gradient. We define 𝐷 as the diameter of Ω, and for 𝑎, 𝑏 ∈ ❘ ∪ {±∞}
we denote as [𝑎 < 𝑓 (𝑥) < 𝑏] the set {𝑥 ∈ Ω | 𝑓 (𝑥) ∈ (𝑎, 𝑏)}, with analogous

definitions for non strict inequalities. We define 𝐵𝑅 (𝐶) as the neighborhood {𝑥 ∈
❘𝑛 | dist(𝐶, 𝑥) < 𝑅} of 𝐶 of radius 𝑅 and in particular 𝐵𝑅 (𝑥) as the open euclidean

ball of radius 𝑅 and center 𝑥, 𝐵𝑅 (𝑥) as its closure. When 𝐶 is closed and convex

we define as 𝜋(𝐶, ·) the projection on 𝐶. If 𝐶 is a cone then we denote with 𝐶∗ its

polar.

We now state some elementary properties related to the tangent and the normal

cones, where for 𝑥 ∈ Ω we denote with 𝑇Ω(𝑥) and 𝑁Ω(𝑥) the tangent and the

normal cone to Ω in 𝑥 respectively. The next proposition (from [211], Theorem

6.9) characterizes these cones for closed convex subsets of ❘𝑛.

Proposition 3.2.1. Let Ω be a closed convex set. For every point 𝑥 ∈ Ω we have

𝑇Ω(𝑥) = cl{𝑤 | ∃𝜆 > 0 with 𝑥 + 𝜆𝑤 ∈ Ω} ,
int(𝑇Ω(𝑥)) = {𝑤 | ∃𝜆 > 0 with 𝑥 + 𝜆𝑤 ∈ int(Ω)} ,
𝑁Ω(𝑥) = 𝑇Ω(𝑥)∗ = {𝑣 ∈ ❘𝑛 | (𝑣, 𝑦 − 𝑥) ≤ 0 ∀ 𝑦 ∈ Ω} .

We have the following formula connecting the supremum of a linear function

"slope" along feasible directions to the tangent and the normal cone:

Proposition 3.2.2. If Ω is a closed convex subset of ❘𝑛, 𝑥 ∈ Ω then for every

𝑔 ∈ ❘𝑛

max

{
0, sup
ℎ∈Ω\{𝑥}

(
𝑔,

ℎ − 𝑥
∥ℎ − 𝑥∥

)}
= dist(𝑁Ω(𝑥), 𝑔) = ∥𝜋(𝑇Ω(𝑥), 𝑔)∥ .
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Before giving the proof, we recall a useful well known result:

Proposition 3.2.3. Let 𝐶 be a closed convex cone. For every 𝑦 ∈ ❘𝑛

dist(𝐶∗, 𝑦) = sup
𝑐∈𝐶

𝑐⊤𝑦 .

As stated in [60] this is an immediate consequence of the Moreau-Yosida decom-

position:

𝑦 = 𝜋(𝐶, 𝑦) + 𝜋(𝐶∗, 𝑦) .

Proof of Proposition 3.2.2. First, by continuity of the scalar product we have

sup
ℎ∈Ω/{𝑥}

(
𝑔,

ℎ − 𝑥
∥ℎ − 𝑥∥

)
= sup
ℎ∈𝑇Ω (𝑥)\{0}

(𝑔, ℎ̂) . (3.2.2)

Since 𝑁Ω(𝑥) = 𝑇Ω(𝑥)∗ the first equality is exactly the one of Proposition 3.2.3 if

𝑔 ∉ 𝑁Ω(𝑥), and it is trivial since both terms are clearly 0 if 𝑔 ∈ 𝑁Ω(𝑥).
It remains to prove

dist(𝑁Ω(𝑥), 𝑔) = ∥𝜋(𝑇Ω(𝑥), 𝑔)∥ , (3.2.3)

which is true by the Moreau - Yosida decomposition. □

On polytopes, a geometric interpretation of Proposition 3.2.2 is that the smallest

angle between 𝑔 and a descent direction 𝑑 feasible in 𝑥 is achieved for 𝑑 = 𝜋(𝑇Ω(𝑥), 𝑔).
In the rest of the chapter to simplify notations we often use 𝜋𝑥 (𝑔) as a shorthand

for ∥𝜋(𝑇Ω(𝑥), 𝑔)∥. Then, by Proposition 3.2.2, first order stationarity conditions in

𝑥 for the gradient −𝑔 become equivalent to 𝜋𝑥 (𝑔) = 0.

In the computation of the convergence rates, we often make the following assump-

tion.

Assumption 3.1. Given a stationary point 𝑥∗ ∈ Ω, there exists 𝜂, 𝛿 > 0 such that

for every 𝑥 ∈ [ 𝑓 (𝑥∗) < 𝑓 < 𝑓 (𝑥∗) + 𝜂] ∩ 𝐵𝛿 (𝑥∗)

𝜋𝑥 (−∇ 𝑓 (𝑥)) ≥
√︁

2𝜇( 𝑓 (𝑥) − 𝑓 (𝑥∗)) 1

2 . (3.2.4)

We refer the reader to the extended version [208] of this chapter for a study

of convergence rates under a more general inequality, interpolating between (3.2.4)

and the generic non convex case. Let now 𝑖Ω be the indicator function of Ω so that

𝑖Ω(𝑥) = 0 in Ω and 𝑖Ω(𝑥) = +∞ otherwise. It can easily be seen that (3.2.4) is a

special case of the KL inequality (see, e.g., [12], [13] and [38]) with exponent 1

2

dist(0, 𝜕 𝑓Ω(𝑥)) ≥
√︁

2𝜇( 𝑓Ω(𝑥) − 𝑓Ω(𝑥∗))
1

2 (3.2.5)
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for 𝑓Ω = 𝑓 + 𝑖Ω, using that

𝜋𝑥 (−∇ 𝑓 (𝑥)) = dist(−∇ 𝑓 (𝑥), 𝑁Ω(𝑥)) = dist(0, 𝜕 ( 𝑓 + 𝑖Ω) (𝑥)) , (3.2.6)

with the last equality following by Proposition 3.2.2. For convex objectives, con-

dition (3.2.4) is therefore implied by the Holderian error bound 𝑓 (𝑥) − 𝑓 (𝑥∗) ≥
𝜌 dist(𝑥,X∗)2, for X∗ set of solutions of Problem (3.2.1) (see [38, Corollary 6]),

which in turn is implied by 𝜇− strong convexity (see, e.g., [146]). For non convex

objectives, Assumption 3.1 is implied by the Luo Tseng error bound [180] under

some mild separability conditions for stationary points (see [170, Theorem 4.1]).

This error bound is known to hold in a variety of convex and non convex settings

(see Section 3.5 and references in [170]).

We now show that under suitable assumptions our KL condition is implied by the

classic Polyak-Lojasiewicz (PL) inequality from [176] and [203]. We first recall the

PL property as it is used in [146]:

1

2
∥∇ 𝑓 (𝑥)∥2 ≥ 𝜇( 𝑓 (𝑥) − 𝑓 ∗) . (3.2.7)

with 𝑓 ∗ optimal value of 𝑓 with non empty solution set X∗.

Proposition 3.2.4. If 𝑓 is convex, the optimal solution set X∗ of 𝑓 is contained in

Ω and (3.2.7) holds, then (3.2.4) holds for every 𝑥 ∈ Ω.

Proof. By [146, Theorem 2] the PL property is equivalent, for convex objectives, to

the unconstrained quadratic growth condition:

𝑓 (𝑥) − 𝑓 ∗ ≥ 𝜇

2
dist(𝑥,X∗)2 (3.2.8)

In turn, given that by the assumption X∗ ⊂ Ω the set X∗ is the solution set for

𝑓Ω as well, (3.2.8) implies the global non smooth Holderian error bound condition

from [38] with 𝜑(𝑡) =

√︃
2𝑡
𝜇

, and by [38, Corollary 6] this is equivalent to the KL

property (3.2.4) holding globally on Ω. □

Remark 3.2.5. We remark that without the assumption X∗ ⊂ Ω the implication is

no longer true even for convex objectives, a counter example being Ω equal to the

unitary ball and 𝑓 ((𝑥 (1) , ..., 𝑥 (𝑛))) = (𝑥 (1) − 1)2. At the same time, the KL property

we used does not imply the PL property in general, since the latter only deals with

unconstrained minima.
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3.3 An angle condition

Let A be a first-order optimization method defined for smooth functions on a

closed subset Ω of ❘𝑛. We assume that given first-order information (𝑥𝑘 ,∇ 𝑓 (𝑥𝑘 ))
the method always selects 𝑥𝑘+1 along a feasible descent direction, so that for (𝑥, 𝑔) ∈
Ω × ❘𝑛 we can define

A(𝑥, 𝑔) ⊂ 𝑇Ω(𝑥) ∩ {𝑦 ∈ ❘𝑛 | 𝑔⊤𝑦 > 0} ∪ {0}

as the possible descent directions selected by A when 𝑥 = 𝑥𝑘 , 𝑔 = −∇ 𝑓 (𝑥𝑘 ) for

some 𝑘 (see Algorithm 1). When 𝑥 is first-order stationary, we set A(𝑥, 𝑔) = {0},
otherwise we always assume 0 ∉ A(𝑥, 𝑔) ≠ ∅.

We want to formulate an angle condition for the descent directions selected by A,

with respect to the infimum of the angles achieved with feasible descent directions.

In order to do that, we define the directional slope lower bound as

DSBA (Ω, 𝑥, 𝑔) = inf
𝑑∈A(𝑥,𝑔)

𝑔⊤𝑑

𝜋𝑥 (𝑔)∥𝑑∥

if 0 ∉ A(𝑥, 𝑔). Otherwise 𝑥 is stationary for −𝑔, 𝜋𝑥 (𝑔) = 0 and we set DSBA (Ω, 𝑥, 𝑔) =
1. Then with this definition it immediately follows DSBA (Ω, 𝑥, 𝑔) ≤ 1 by Proposi-

tion 3.2.2. Notice also that when 𝑥 ∈ int(Ω) then DSBA (Ω, 𝑥, 𝑔) is simply a lower

bound on cos(𝜃𝑔,𝑑) with 𝜃 the angle between 𝑔 and a descent direction 𝑑:

DSBA (Ω, 𝑥, 𝑔) = inf
𝑑∈A(𝑥,𝑔)

𝑔⊤𝑑

∥𝑔∥∥𝑑∥ (3.3.1)

and thus imposing DSBA (Ω, 𝑥, 𝑔) ≥ 𝜏 we retrieve the angle condition [2, equation

(20)]. We remark that the RHS of (3.3.1) defining the unconstrained angle condition

is also considered in the constrained setting in [79] (referred to as alignment condi-

tion), as a tool to evaluate potential descent directions. However, without 𝜋𝑥 (𝑔) in

the denominator no uniform lower bound can be given for the RHS, and therefore

no worst case linear convergence rate (the rate given in [79, Corollary 3.6] is in fact

𝑂 (1/𝑘)).
Given a subset 𝑃 of Ω we can finally define the slope lower bound

SBA (Ω, 𝑃) = inf
𝑔∈❘𝑛
𝑥∈𝑃

DSBA (Ω, 𝑥, 𝑔) = inf
𝑔:𝜋𝑥 (𝑔)≠0

𝑥∈𝑃

DSBA (Ω, 𝑥, 𝑔) .

For simplicity if 𝑃 = Ω we write SBA (Ω) instead of SBA (Ω,Ω).
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where 𝑑FW is a classic Frank-Wolfe direction

𝑑FW
= 𝑠 − 𝑥 with 𝑠 ∈ arg max

𝑠∈Ω
𝑠⊤𝑔 , (3.3.5)

and 𝑑AS is the away direction

𝑑AS
= 𝑥 − 𝑞 with 𝑞 ∈ arg min

𝑞∈𝑆
𝑞⊤𝑔 . (3.3.6)

The FDFW from [103], [116] (sometimes referred to as Decomposition invariant

Conditional Gradient (DiCG) when applied to polytopes [110], [24]) relies only on

the current point 𝑥 and the current gradient −𝑔 to choose a descent direction and,

unlike the AFW and the PFW, does not need to keep track of the active set.

The in face direction is defined as

𝑑𝐹 = 𝑥𝑘 − 𝑥𝐹 with 𝑥𝐹 ∈ arg min{𝑔⊤𝑦 | 𝑦 ∈ F (𝑥)}

for F (𝑥) the minimal face of Ω containing 𝑥. The selection criterion is then analogous

to the one used by the AFW:

𝑑FD ∈ argmax{𝑔⊤𝑑 | 𝑑 ∈ {𝑑𝐹 , 𝑑FW}} . (3.3.7)

We write SBFD,DSBFD instead of SBFDFW,DSBFDFW in the rest of the chapter.

When Ω is a polytope and |𝐴| < ∞, the angle condition holds for the directions and

the related FW variants we introduced. Before stating a lower bound for SBA (Ω) in

this setting we need to recall the pyramidal width constant PWidth(𝐴) introduced

in [157]. We refer the reader to [206] and references therein for a discussion of

various properties of this and related parameters.

We use here a characterization of PWidth(𝐴) proved in [200]:

PWidth(𝐴) = min
F ∈pfaces(Ω)

dist(F , conv(𝐴 \ F )) , (3.3.8)

with pfaces(Ω) the set of proper faces of Ω. We now introduce one key property of

PWidth(𝐴) which relates it to the angle along the PFW direction. While we give a

self contained proof of the lemma relying only on (3.3.8), we remark that the lemma

can also be proved using [157, Theorem 3].

We first need this preliminary lemma relating maximal stepsize length with PWidth.

For 𝑦 ∈ Ω, 𝑑 ∈ ❘𝑛, let 𝛼max (𝑦, 𝑑) the maximal feasible stepsize from 𝑦 in the direction

𝑑.
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Lemma 3.3.1. Let 𝑥 be a proper convex combination of atoms in 𝐴′ ⊂ 𝐴, and 𝑑 ≠ 0

feasible direction in 𝑥. Then, for some 𝑦 ∈ conv(𝐴′), we have

�̂�max (𝑦, 𝑑) ≥ PWidth(𝐴)
∥𝑑∥ . (3.3.9)

Proof. Let 𝑦 ∈ arg max𝑧∈conv(𝐴′) �̂�
max (𝑧, 𝑑), and let 𝐴′′ ⊂ 𝐴′ be such that 𝑦 is a

proper convex combination of elements in 𝐴′′. Furthermore, let F𝑦 be the minimal

face containing the maximal feasible step point 𝑦 := 𝑦 + �̂�max (𝑦, 𝑑). We claim that

F𝑦 ∩ 𝐴′′ = ∅. In fact, for 𝑝 ∈ 𝐴′′ ∩ F𝑦 we can consider an homothety of center 𝑝 and

factor 1 + 𝜖 mapping 𝑦 in 𝑦𝜖 ∈ conv(𝐴′′) and 𝑦 in 𝑦𝜖 ∈ F𝑦 with

𝑦𝜖 = 𝑦𝜖 + (1 + 𝜖)�̂�max (𝑦, 𝑑)𝑑 .

But then we would have �̂�(𝑦𝜖 , 𝑑) ≥ (1 + 𝜖)�̂�(𝑦, 𝑑), in contradiction with the maxi-

mality of �̂�(𝑦, 𝑑). Therefore

�̂�max (𝑦, 𝑑) ≥ dist(𝐴′′, F𝑦) ≥ min
F ∈pfaces(Ω)

dist(F , conv(𝐴 \ F )) = PWidth(𝐴) ,
(3.3.10)

where we used 𝐴′′ ∩ F = ∅ in the second inequality, and [200, Theorem 2] in the

equality. □

We can now prove the main Lemma.

Lemma 3.3.2. We have the following lower bound

𝑔⊤𝑑PFW

∥𝜋(𝑇Ω(𝑥), 𝑔)∥
≥ PWidth(𝐴) .

Proof. We use 𝑠, 𝑞 and 𝑆 as in (3.3.3). For 𝑧 in Ω and 𝑑 feasible direction in

𝑧 we define as �̂�max (𝑧, 𝑑) the maximal feasible stepsize in the direction 𝑑. Let

𝑝 = 𝜋(𝑇Ω(𝑥), 𝑔), and let 𝑦 be a maximizer of �̂�max (𝑦, 𝑝) for 𝑦 ∈ 𝑆. We have

𝑔⊤𝑑PFW
= 𝑔⊤((𝑠 − 𝑦) + (𝑦 − 𝑞)) ≥ 𝑔⊤(𝑠 − 𝑦) ≥ 𝑔⊤((𝑦 + �̂�max (𝑦, 𝑝)𝑝) − 𝑦)

≥PWidth(𝐴)
∥𝑝∥ 𝑔⊤𝑝 = PWidth(𝐴)∥𝑝∥ ,

(3.3.11)

where we used Lemma 3.3.1 in the third inequality, and 𝑔⊤𝑝 = ∥𝑝∥2 as it follows by

the Moreau-Yosida decomposition in the last equality. □
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In order to define an angle condition for the FDFW, we use the following upper

bound on PWidth(𝐴), independent from the particular set 𝐴 chosen to represent Ω:

PFWidth(Ω) = min
F1,F2∈pfaces(Ω)

F1∩F2=∅

dist(F1, F2) . (3.3.12)

Proposition 3.3.3. SBPFW(Ω) ≥ 𝜏𝑝 :=
PWidth(𝐴)

𝐷
, SBAFW(Ω) ≥ 𝜏𝑝

2
, SBFD(Ω) ≥

𝜏𝑣
2

:=
PFWidth(Ω)

2𝐷
.

Proof. Let 𝑔 be such that 𝜋𝑥 (𝑔) ≠ 0. We have

DSBPFW(Ω, 𝑥, 𝑔) = inf
𝑑PFW∈PFW(𝑥,𝑔)

𝑔⊤𝑑PFW

∥𝑑PFW∥∥𝜋(𝑇Ω(𝑥), 𝑔)∥

≥ 𝑔⊤𝑑PFW

𝐷∥𝜋(𝑇Ω(𝑥), 𝑔)∥
≥ PWidth(𝐴)

𝐷
,

where we used Lemma 3.3.2 in the last inequality.

Hence SBPFW(Ω) ≥ PWidth(𝐴)
𝐷

follows by taking the inf on the LHS for 𝑥 ∈ Ω and 𝑔

such that 𝜋𝑥 (𝑔) ≠ 0 in (3.3.1). The inequality SBAFW(Ω) ≥ PWidth(𝐴)
2𝐷

is a corollary

since

𝑔⊤𝑑AFW ≥ 1

2
𝑔⊤𝑑PFW ,

as it follows immediately from the definitions (see also [157, equation (6)]).

The angle condition for the FDFW can be proved analogously to the angle condition

for the AFW, where in Lemma 3.3.1 the RHS can be improved with PFWidth(Ω)
instead of PWidth(𝐴) using that the active set 𝐴′ can be taken as the set of vertices

of a face. □

Remark 3.3.4. Results analogous to the ones in Proposition 3.3.3 can be proven

relatively to the vertex facial distance vf(Ω) from [27]. More precisely, assuming 𝐴 =

𝑉 (Ω), for 𝑉 (Ω) set of vertices of Ω, and that the AFW and the PFW keep active sets

of size at most �̄�, we have SBPFW(Ω) ≥ vf(Ω)
�̄�𝐷

, SBAFW(Ω) ≥ vf(Ω)
2�̄�𝐷

as a consequence

of [27, Lemma 3.1]. Furthermore, for the FDFW we have SBFD(Ω,Ω�̄�) ≥ vf(Ω)
2�̄�𝐷

, with

𝑥 ∈ Ω�̄� ⊂ Ω iff there exists 𝑆 ∈ 𝑆𝑥 such that |𝑆 | ≤ �̄�.

3.3.2 Linear convergence for good steps under the angle

condition

Consider now a method following the scheme described by Algorithm 1, and

with Lipschitz constant dependent stepsize as defined by (2.5.4):

𝛼𝑘 = min
(
�̄�𝑘 , 𝛼

max

𝑘

)
, (3.3.13)
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with

�̄�𝑘 =
−∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘
𝐿∥𝑑𝑘 ∥2

. (3.3.14)

The following lemma shows that at every iteration a sufficient decrease condition is

satisfied, independently from the method A, when using stepsize (3.3.14).

Lemma 3.3.5. If 𝛼𝑘 ≤ �̄�𝑘 , thus in particular for the stepsize (3.3.13), we have:

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥
𝐿

2
∥𝑥𝑘 − 𝑥𝑘+1∥2 . (3.3.15)

Proof. By the standard descent lemma [31, Proposition 6.1.2],

𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝛼𝑘∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 + 𝛼2

𝑘

𝐿

2
∥𝑑𝑘 ∥2 , (3.3.16)

and in particular

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥ −𝛼𝑘∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 − 𝛼2

𝑘

𝐿

2
∥𝑑𝑘 ∥2 ≥ 𝐿

2
𝛼2

𝑘 ∥𝑑𝑘 ∥2
=
𝐿

2
∥𝑥𝑘+1 − 𝑥𝑘 ∥2 ,

(3.3.17)

where we used 𝛼𝑘 ≤ �̄�𝑘 in the last inequality. This proves (3.3.15). □

Assume now that the method A satisfies the angle condition (3.3.2). In the

following proposition, we prove a general linear convergence rate in the number of

good steps, (recall from Chapter 2 that these are the steps satisfying 𝛼𝑘 = �̄�𝑘 or full

FW steps), under the assumption that the method A satisfies the angle condition

(3.3.2), and that the KL inequality (3.2.4) holds for the objective function 𝑓 in

Problem (3.2.1).

Proposition 3.3.6. Let us assume that A satisfies the angle condition (3.3.2), and

the objective function 𝑓 in Problem (3.2.1) satisfies condition (3.2.4) in 𝑥𝑘 and 𝑥𝑘+1.

• If 𝛼𝑘 = �̄�𝑘 then

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥∗) ≤
(
1 − 𝜇

𝐿
𝜏2

)
( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗)) . (3.3.18)

• If the step 𝑘 is a full FW step then

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥∗) ≤
(
1 + 𝜇

𝐿

)−1

( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗)) . (3.3.19)
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Proof. Let 𝑝𝑘 = ∥𝜋(𝑇Ω(𝑥𝑘+1),−∇ 𝑓 (𝑥𝑘+1))∥ and 𝑝𝑘 = ∥𝜋(𝑇Ω(𝑥𝑘+1),−∇ 𝑓 (𝑥𝑘 ))∥. We

have

|𝑝𝑘 − 𝑝𝑘 | = | ∥𝜋(𝑇Ω(𝑥𝑘+1),−∇ 𝑓 (𝑥𝑘+1))∥ − ∥𝜋(𝑇Ω(𝑥𝑘+1),−∇ 𝑓 (𝑥𝑘 ))∥ |
≤ ∥ − ∇ 𝑓 (𝑥𝑘+1) + ∇ 𝑓 (𝑥𝑘 )∥ ≤ 𝐿∥𝑥𝑘+1 − 𝑥𝑘 ∥ ,

(3.3.20)

where we used the 1-Lipschitzianity of projections in the first inequality.

If 𝛼𝑘 = �̄�𝑘 then

𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 + �̄�𝑘𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) −
1

2𝐿

(
∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘

∥𝑑𝑘 ∥

)2

≤ 𝑓 (𝑥𝑘 ) −
𝜏2

2𝐿
𝑝2

𝑘−1

≤ 𝑓 (𝑥𝑘 ) −
𝜇𝜏2

𝐿
( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗)) ,

(3.3.21)

where we used (3.3.16) in the first inequality, SB
𝑓

A (Ω) = 𝜏 in the second one, and

condition (3.2.4) in the third one.

If the step 𝑘 is a full FW step then 𝑝𝑘 = 0 because 𝑥𝑘+1 ∈ arg min𝑦∈Ω ∇ 𝑓 (𝑥𝑘 )⊤𝑦 ⇔
−∇ 𝑓 (𝑥𝑘 ) ∈ 𝑁Ω(𝑥𝑘+1) ⇔ ∥𝜋(𝑇Ω(𝑥𝑘+1),−∇ 𝑓 (𝑥𝑘 ))∥ = 0, where the last equivalence is

true by Proposition 3.2.2. Then

𝑓 (𝑥𝑘+1)− 𝑓 (𝑥∗) ≤
𝑝2

𝑘

2𝜇
≤ (𝑝𝑘 + 𝐿∥𝑥𝑘+1 − 𝑥𝑘 ∥)2

2𝜇
=
𝐿2

2𝜇
∥𝑥𝑘+1−𝑥𝑘 ∥2 ≤ 𝐿

𝜇
( 𝑓 (𝑥𝑘 )− 𝑓 (𝑥𝑘+1)) ,

(3.3.22)

where we used (3.2.4) in the first inequality, (3.3.20) in the second, 𝑝𝑘 = 0 and

(3.3.17) in the last inequality. Then (3.3.17) and (3.3.19) follow by rearranging

(3.3.21) and (3.3.22) respectively. □

We finally report an asymptotic rate under the additional assumption that bad

steps between two good steps are limited.

Proposition 3.3.7. Assume that the number of bad steps between two good steps is

limited and that A satisfies the angle condition (3.3.2). Then:

• {𝑥𝑘 } converges to the set of stationary points, and 𝑓 (𝑥𝑘 ) is decreasing and

convergent to 𝑓 ∗ ∈ ❘;

• if Assumption 3.1 holds for every stationary point in the level set [ 𝑓 (𝑥) = 𝑓 ∗],
we have the asymptotic convergence rate:

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑀𝑞𝛾𝑔 (𝑘) , (3.3.23)
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for some 𝑀 > 0, 𝛾𝑔 (𝑘) number of good steps among the first 𝑘 steps and

𝑞 = max

((
1 + 𝜇

𝐿

)−1

,
(
1 − 𝜇

𝐿
𝜏2

))
. (3.3.24)

Proof. Let 𝑘 ( 𝑗) be the subsequence of iterates associated to good steps, so that by

assumption 𝑘 ( 𝑗 + 1) − 𝑘 ( 𝑗) is bounded, and define 𝑘 ( 𝑗) = 𝑘 ( 𝑗) − 1 if 𝛼𝑘 ( 𝑗) = �̄�𝑘 ( 𝑗),

𝑘 ( 𝑗) = 𝑘 ( 𝑗) otherwise. Notice that 𝑘 ( 𝑗 + 1) − 𝑘 ( 𝑗) is also bounded. By (3.3.17)

we have that { 𝑓 (𝑥𝑘 )} is decreasing and thus convergent to 𝑓 ∗ ∈ ❘, and also that

∥𝑥𝑘 − 𝑥𝑘+1∥ → 0. With the notation used in Proposition 3.3.6 we now claim 𝑝𝑘 ( 𝑗) →
0. In fact if 𝛼𝑘 ( 𝑗) = �̄�𝑘 ( 𝑗) then

𝑝2

𝑘 ( 𝑗) = 𝑝
2

𝑘−1
≤ 2𝐿

𝜏2
( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1)) → 0 , (3.3.25)

where we used (3.3.21) in the inequality, and if 𝑘 ( 𝑗) is a full FW step then

𝑝𝑘 ( 𝑗) ≤ 𝑝𝑘 ( 𝑗) ≤ 𝑝𝑘 ( 𝑗) + 𝐿∥𝑥𝑘 ( 𝑗)+1 − 𝑥𝑘 ( 𝑗) ∥ = 𝐿∥𝑥𝑘 ( 𝑗)+1 − 𝑥𝑘 ( 𝑗) ∥ → 0 , (3.3.26)

where we used (3.3.20) in the first inequality and 𝑝𝑘 ( 𝑗) = 0 in the equality.

We therefore have 𝑝𝑘 ( 𝑗) → 0. Equivalently, thanks to (3.2.6) we have

dist(0, 𝜕 𝑓Ω(𝑥𝑘 ( 𝑗))) → 0, so if 𝑥∗ is a limit point of 𝑥𝑘 ( 𝑗) by lower semicontinuity of

the subdifferential we must have 0 ∈ 𝜕 𝑓Ω(𝑥∗), i.e., 𝑥∗ is stationary. In particular, by

compactness {𝑥𝑘 ( 𝑗)} must converge to the set of stationary points. By the bound-

edness of ∥𝑥𝑘+1 − 𝑥𝑘 ∥ and 𝑘 ( 𝑗 + 1) − 𝑘 ( 𝑗) we also have that the set of limit points of

{𝑥𝑘 } coincides with the set of limit points of {𝑥𝑘 ( 𝑗)}, and in particular it is a subset

of stationary points contained in [ 𝑓 (𝑥) = 𝑓 ∗].
Let Ω∗ ⊂ [ 𝑓 (𝑥) = 𝑓 ∗] be the set of limit points of {𝑥𝑘 }. By compactness (see [39,

Lemma 6]), we have that for some fixed 𝜀, 𝜂 > 0, the KL property holds for every

𝑥∗ ∈ Ω∗ with parameters 𝜀 and 𝜂. Then for 𝑘 large enough 𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗) ∩ [ 𝑓 (𝑥∗) <
𝑓 < 𝑓 (𝑥∗) + 𝜂] for some 𝑥∗ ∈ Ω, and the asymptotic rates follow by Proposition

3.3.6. □

For the three FW variants described before we can now give an asymptotic linear

convergence rate in the number of good steps. We refer the reader to Table 1 for

bounds on this number.

Corollary 3.3.8. Let us assume that the objective function 𝑓 satisfies Assumption

3.1 for every stationary point in the level set [ 𝑓 (𝑥) = 𝑓 ∗] and Ω = conv(𝐴) with
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|𝐴| < +∞ in Problem (3.2.1). Then the AFW, the PFW and the FDFW converge

at a rate

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑀𝑞
𝛾𝑔 (𝑘)
𝑔𝑠 , (3.3.27)

for some 𝑀 > 0, with 𝛾𝑔 (𝑘) the number of good steps among the first 𝑘 steps,

𝑞𝑔𝑠 = max

(
1 − 𝜇

𝐿

(
PWidth(𝐴)

2𝐷

)2

,
(
1 + 𝜇

𝐿

)−1

)
(3.3.28)

for the AFW,

𝑞𝑔𝑠 = 1 − 𝜇

𝐿

(
PWidth(𝐴)

𝐷

)2

(3.3.29)

for the PFW, and

𝑞𝑔𝑠 = max

(
1 − 𝜇

𝐿

(
PFWidth(Ω)

2𝐷

)2

,
(
1 + 𝜇

𝐿

)−1

)
(3.3.30)

for the FDFW.

Proof. For the AFW and the FDFW the rates (3.3.28) and (3.3.30) for good steps

follow directly from (3.3.18) and (3.3.19) together with the bound on 𝜏 given in

Proposition 3.3.3. Since the PFW never performs full FW steps, its rate (3.3.29)

for good steps follow directly from (3.3.18) together with the bound on 𝜏 given in

Proposition 3.3.3. Finally, given that the number of bad steps between two good

steps is limited for all these methods (see [153, 157]), we have all the assumptions

to apply Proposition 3.3.7. □

3.4 First order projection free methods with SSC

procedure

We introduce here the SSC procedure, and prove convergence rates both under

the KL inequality (3.2.4) and in the generic non convex case.

3.4.1 The SSC procedure

The SSC procedure chains consecutive short steps, thus skipping updates for the

gradient (and possibly for related information, like linear minimizers), until proper

stopping conditions are met. Such a procedure, whose detailed scheme is given in

Algorithm 4, can be easily embedded in a first-order approach (see Algorithm 3).
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Algorithm 3 First-order method with SSC

1: 𝑥0 ∈ Ω, 𝑘 = 0.

2: while 𝑥𝑘 is not stationary do

3: 𝑔 = −∇ 𝑓 (𝑥𝑘 ).
4: 𝑥𝑘+1 = SSC(𝑥𝑘 , 𝑔).
5: 𝑘 = 𝑘 + 1.

6: end while

Algorithm 4 SSC(𝑥, 𝑔)
1: Initialization. 𝑦0 = 𝑥, 𝑗 = 0.

Phase I

2: select 𝑑 𝑗 ∈ A(𝑦 𝑗 , 𝑔), 𝛼( 𝑗)
max ∈ 𝛼max (𝑦 𝑗 , 𝑑 𝑗 )

3: if 𝑑 𝑗 = 0 then

4: return 𝑦 𝑗

5: end if

Phase II

6: compute 𝛽 𝑗 with (3.4.2)

7: let 𝛼 𝑗 = min(𝛼( 𝑗)
max, 𝛽 𝑗 )

8: 𝑦 𝑗+1 = 𝑦 𝑗 + 𝛼 𝑗𝑑 𝑗
9: if 𝛼 𝑗 = 𝛽 𝑗 then

10: return 𝑦 𝑗+1

11: end if

12: 𝑗 = 𝑗 + 1, go to Step 2
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Given that the gradient −𝑔 is constant during the SSC, this procedure is an

application of A for the minimization of the linearized objective 𝑓𝑔 (𝑧) = −𝑔⊤(𝑧 −
𝑥) + 𝑓 (𝑥) with particular stepsizes and stopping criterion. More specifically, after a

stationarity check (Phase I), the stepsize 𝛼 𝑗 is computed by taking the minimum

between the maximal stepsize 𝛼
( 𝑗)
max (which we always assume to be greater than 0)

and an auxiliary stepsize 𝛽 𝑗 . Here 𝛼max (𝑦 𝑗 , 𝑑 𝑗 ) denotes the set of possible maximal

stepsizes used by A from 𝑦 𝑗 in the direction 𝑑 𝑗 . The point 𝑦 𝑗+1 generated in Phase

II is always feasible since 𝛼 𝑗 ≤ 𝛼
( 𝑗)
max is always smaller than the maximal feasible

stepsize along the direction 𝑑 𝑗 . Notice that if the method A used in the SSC

performs a FW step (see equation (3.3.5) for the definition of FW step), then the

SSC terminates, with 𝛼 𝑗 = 𝛽 𝑗 or with 𝑦 𝑗+1 global minimizer of 𝑓𝑔.

The auxiliary step size 𝛽 𝑗 is defined as the maximal feasible stepsize for the trust

region

Ω 𝑗 = 𝐵∥𝑔∥/2𝐿 (𝑥 +
𝑔

2𝐿
) ∩ 𝐵

𝑔⊤𝑑 𝑗/𝐿 (𝑥) (3.4.1)

when 𝑦 𝑗 ∈ Ω 𝑗 , otherwise the method stops returning 𝑦 𝑗 . Summarizing,

𝛽 𝑗 =

{
0 if 𝑦 𝑗 ∉ Ω 𝑗 ,

𝛽max(Ω 𝑗 , 𝑦 𝑗 , 𝑑 𝑗 ) if 𝑦 𝑗 ∈ Ω 𝑗 ,
(3.4.2)

where 𝛽max (Ω 𝑗 , 𝑦 𝑗 , 𝑑 𝑗 ) = max{𝛽 ∈ ❘≥0 | 𝑦 𝑗 + 𝛽𝑑 𝑗 ∈ Ω 𝑗 } is the maximal feasible

stepsize in the direction 𝑑 𝑗 starting from 𝑦 𝑗 with respect to Ω 𝑗 . Since Ω 𝑗 is the

intersection of two balls there is a simple closed form expression for 𝛽 𝑗 . In particular,

using that 𝑦0 = 𝑥, if 𝑑0 ≠ 0 we have

𝛽0 =
𝑔⊤𝑑0

𝐿∥𝑑0∥
,

which corresponds to (3.3.13) in the non maximal case, and where 𝛽0 > 0 since

𝑑0 ≠ 0 is by assumption a descent direction for −𝑔.

Remark 3.4.1. When the Lipschitz constant 𝐿 is not available, it can be ap-

proximated adaptively in the following way. At the step 𝑘 we start with an esti-

mate �̃� = 𝐿𝑘 of the Lipschitz constant. Then, we compute 𝑥+
𝑘

with the procedure

SSC(𝑥𝑘 ,−∇ 𝑓 (𝑥𝑘 )), and repeat setting �̃� := 2�̃� until

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥+𝑘 ) ≥
1

2
∇ 𝑓 (𝑥𝑘 )⊤(𝑥𝑘 − 𝑥+𝑘 ) (3.4.3)

holds. When this happens, we set 𝑥𝑘+1 = 𝑥+
𝑘

and 𝐿𝑘+1 = �̃�. The linear convergence

results we will see later in this section can be extended in a straightforward way

when 𝐿 is approximated with this adaptive scheme.
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Employing the trust region Ω 𝑗 in the definition of 𝛽 𝑗 guarantees the sufficient

decrease condition

𝑓 (𝑦 𝑗 ) ≤ 𝑓 (𝑥𝑘 ) −
𝐿

2
∥𝑥𝑘 − 𝑦 𝑗 ∥2 (3.4.4)

and monotonicity of the true objective 𝑓 during the SSC.

To see why (3.4.4) holds, notice that the second ball 𝐵 = 𝐵∥𝑔∥/2𝐿 (𝑥𝑘 + 𝑔

2𝐿
) ap-

pearing in the definition of Ω 𝑗 does not depend on 𝑗 , so that since 𝑦0 ∈ 𝐵 we have

𝑦 𝑗 ∈ 𝐵 for every 𝑗 ∈ [0 : 𝑇], with 𝑇 maximal iteration index of the SSC. This is

enough to obtain (3.4.4) because for every 𝑧 ∈ 𝐵 we have

𝑓 (𝑧) ≤ 𝑓 (𝑥) − 𝑔⊤(𝑧 − 𝑥) + 𝐿
2
∥𝑧 − 𝑥∥2 ≤ 𝑓 (𝑥) − 𝐿

2
∥𝑥 − 𝑧∥2 , (3.4.5)

where the first inequality is the standard descent lemma and the second follows from

the definition of 𝐵.

We prove that the true objective 𝑓 is monotone decreasing in the next lemma.

Lemma 3.4.2. Let us assume 𝑦 𝑗 ∈ 𝐵𝑔⊤𝑑 𝑗/𝐿 (𝑥). Then for every 𝛽 ∈ [0, 𝛽 𝑗 ] we have

𝑑

𝑑𝛽
𝑓 (𝑦 𝑗 + 𝛽𝑑 𝑗 ) ≤ 0 ,

and thus in particular 𝑓 (𝑦 𝑗 + 𝛽 𝑗𝑑 𝑗 ) ≤ 𝑓 (𝑦 𝑗 ).

Proof. We have

𝑑

𝑑𝛽
𝑓 (𝑦 𝑗 + 𝛽𝑑 𝑗 ) = ∥𝑑 𝑗 ∥∇ 𝑓 (𝑦 𝑗 + 𝛽𝑑 𝑗 )⊤𝑑 𝑗

=∥𝑑 𝑗 ∥((∇ 𝑓 (𝑦 𝑗 + 𝛽𝑑 𝑗 ) + 𝑔) − 𝑔)⊤𝑑 𝑗 = ∥𝑑 𝑗 ∥((∇ 𝑓 (𝑦 𝑗 + 𝛽𝑑 𝑗 ) + 𝑟)⊤𝑑 𝑗 − 𝑔⊤𝑑 𝑗 )
≤∥𝑑 𝑗 ∥(𝐿∥𝑥 − 𝑦 𝑗 − 𝛽𝑑 𝑗 ∥ − 𝑔⊤𝑑 𝑗 ) ≤ 0 ,

where we used 𝑔 = −∇ 𝑓 (𝑥) and the Lipschitzianity of ∇ 𝑓 in the first inequality and

𝑦 𝑗 + 𝛽𝑑 𝑗 ∈ 𝐵𝑔⊤𝑑 𝑗/𝐿 (𝑥)

in the second. □

The next result illustrates how the sequence {𝑥𝑘 } generated by Algorithm 3

satisfies certain descent conditions. This is an adaptation to our setting of the ones

used in the analysis of many proximal type gradient methods (see [12], [13], [38] and

references therein). A subtle difference is the introduction of an "hidden sequence"

{𝑥𝑘 } to control the projection of the negative gradient on the tangent cone.
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Proposition 3.4.3. Let us consider the sequence {𝑥𝑘 } generated by Algorithm 3

and assume that

• the angle condition (3.3.2) holds;

• the SSC condition terminates in a finite number of steps.

Then

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥
𝐿

2
∥𝑥𝑘 − 𝑥𝑘+1∥2 , (3.4.6)

∥𝑥𝑘 − 𝑥𝑘+1∥ ≥ 𝐾 ∥𝜋(𝑇Ω(𝑥𝑘 ),−∇ 𝑓 (𝑥𝑘 ))∥ (3.4.7)

for some 𝑥𝑘 ∈ {𝑦 𝑗 }𝑇𝑗=0
such that 𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) ≤ 𝑓 (𝑥𝑘 ) − 𝐿

2
∥𝑥𝑘 − 𝑥𝑘 ∥2, ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤

∥𝑥𝑘+1 − 𝑥𝑘 ∥ and for 𝐾 = 𝜏/(𝐿 (1 + 𝜏)).

Proof. Let 𝐵 𝑗 = 𝐵𝑔⊤𝑑 𝑗/𝐿 (𝑥𝑘 ) and let 𝑇 be such that 𝑥𝑘+1 = 𝑦𝑇 .

Inequality (3.4.4) applied with 𝑗 = 𝑇 gives (3.4.6). Moreover, by taking 𝑥𝑘 = 𝑦𝑇 for

some 𝑇 ∈ [0 : 𝑇] the conditions

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) ≤ 𝑓 (𝑥𝑘 ) −
𝐿

2
∥𝑥𝑘 − 𝑥𝑘 ∥2 (3.4.8)

are satisfied by Lemma 3.4.2 and (3.4.4).

Let now 𝑝 𝑗 = ∥𝜋(𝑇Ω(𝑦 𝑗 ),−∇ 𝑓 (𝑦 𝑗 ))∥ and 𝑝 𝑗 = ∥𝜋(𝑇Ω(𝑦 𝑗 ), 𝑔)∥ = ∥𝜋(𝑇Ω(𝑦 𝑗 ),−∇ 𝑓 (𝑥𝑘 ))∥.
We have

|𝑝 𝑗 − 𝑝 𝑗 | ≤ 𝐿∥𝑦 𝑗 − 𝑥𝑘 ∥ , (3.4.9)

reasoning as for (3.3.20). We now distinguish four cases according to how the SSC

terminates.

Case 1: 𝑇 = 0 or 𝑑𝑇 = 0. Since there are no descent directions 𝑥𝑘+1 = 𝑦𝑇 must be

stationary for the gradient 𝑔. Equivalently, 𝑝𝑇 = ∥𝜋(𝑇Ω(𝑥𝑘+1), 𝑔)∥ = 0. We can now

write

∥𝑥𝑘+1 − 𝑥𝑘 ∥ ≥ 1

𝐿
( |𝑝𝑇 − 𝑝𝑇 |) =

𝑝𝑇

𝐿
> 𝐾𝑝𝑇 ,

where we used (3.4.9) in the first inequality and 𝑝𝑇 = 0 in the equality. Finally, it

is clear that if 𝑇 = 0 then 𝑑0 = 0, since 𝑦0 must be stationary for −𝑔.

Before examining the remaining cases we remark that if the SSC terminates in

Phase II then 𝛼𝑇−1 = 𝛽𝑇−1 must be maximal w.r.t. the conditions 𝑦𝑇 ∈ 𝐵𝑇−1 or

𝑦𝑇 ∈ 𝐵. If 𝛼𝑇−1 = 0 then 𝑦𝑇−1 = 𝑦𝑇 , and in this case we cannot have 𝑦𝑇−1 ∈ 𝜕𝐵,

otherwise the SSC would terminate in Phase II of the previous cycle. Therefore

necessarily 𝑦𝑇 = 𝑦𝑇−1 ∈ int(𝐵𝑇−1)𝑐 (Case 2). If 𝛽𝑇−1 = 𝛼𝑇−1 > 0 we must have
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𝑦𝑇−1 ∈ Ω𝑇−1 = 𝐵𝑇−1 ∩ 𝐵, and 𝑦𝑇 ∈ 𝜕𝐵𝑇−1 (case 3) or 𝑦𝑇 ∈ 𝜕𝐵 (case 4) respectively.

Case 2: 𝑦𝑇−1 = 𝑦𝑇 ∈ int(𝐵𝑇−1)𝑐. We can rewrite the condition as

𝑔⊤𝑑𝑇−1 ≤ 𝐿∥𝑦𝑇−1 − 𝑥𝑘 ∥ = 𝐿∥𝑦𝑇 − 𝑥𝑘 ∥ . (3.4.10)

Thus

𝑝𝑇 = 𝑝𝑇−1 ≤ 𝑝𝑇−1+𝐿∥𝑦𝑇−𝑥𝑘 ∥ ≤ 1

𝜏
𝑔⊤𝑑𝑇−1+𝐿∥𝑦𝑇−𝑥𝑘 ∥ ≤

(
𝐿

𝜏
+ 𝐿

)
∥𝑦𝑇−𝑥𝑘 ∥ , (3.4.11)

where in the equality we used 𝑦𝑇 = 𝑦𝑇−1, the first inequality follows from (3.4.9) and

again 𝑦𝑇 = 𝑦𝑇−1, the second from 𝑔⊤𝑑𝑇
𝑝𝑇

≥ DSBA (Ω, 𝑦𝑇 , 𝑔) ≥ SBA (Ω) = 𝜏, and the

third from (3.4.10). Then 𝑥𝑘 = 𝑥𝑘+1 = 𝑦𝑇 satisfies the desired conditions.

Case 3: 𝑦𝑇 = 𝑦𝑇−1 + 𝛽𝑇−1𝑑𝑇−1 and 𝑦𝑇 ∈ 𝜕𝐵𝑇−1. Then from 𝑦𝑇−1 ∈ 𝐵𝑇−1 it follows

𝐿∥𝑦𝑇−1 − 𝑥𝑘 ∥ ≤ 𝑔⊤𝑑𝑇−1 , (3.4.12)

and 𝑦𝑇 ∈ 𝜕𝐵𝑇−1 implies

𝑔⊤𝑑𝑇−1 = 𝐿∥𝑦𝑇 − 𝑥𝑘 ∥ . (3.4.13)

Combining (3.4.12) with (3.4.13) we obtain

𝐿∥𝑦𝑇−1 − 𝑥𝑘 ∥ ≤ 𝐿∥𝑦𝑇 − 𝑥𝑘 ∥ . (3.4.14)

Thus

𝑝𝑇−1 ≤ 𝑝𝑇−1 + 𝐿∥𝑦𝑇−1 − 𝑥𝑘 ∥ ≤ 1

𝜏
𝑔⊤𝑑𝑇−1 + 𝐿∥𝑦𝑇−1 − 𝑥𝑘 ∥ ≤

(
𝐿

𝜏
+ 𝐿

)
∥𝑦𝑇 − 𝑥𝑘 ∥ ,

where we used (3.4.13), (3.4.14) in the last inequality and the rest follows reasoning

as for (3.4.11). In particular we can take 𝑥𝑘 = 𝑦𝑇−1, where ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥
by (3.4.14).

Case 4: 𝑦𝑇 = 𝑦𝑇−1 + 𝛽𝑇−1𝑑𝑇−1 and 𝑦𝑇 ∈ 𝜕𝐵.

The condition 𝑥𝑘+1 = 𝑦𝑇 ∈ 𝐵 can be rewritten as

𝐿∥𝑥𝑘+1 − 𝑥𝑘 ∥2 − 𝑔⊤(𝑥𝑘+1 − 𝑥𝑘 ) = 0 . (3.4.15)

For every 𝑗 ∈ [0 : 𝑇] we have

𝑥𝑘+1 = 𝑦 𝑗 +
𝑇−1∑︁

𝑖= 𝑗

𝛼𝑖𝑑𝑖 . (3.4.16)
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We now want to prove that for every 𝑗 ∈ [0 : 𝑇]

∥𝑥𝑘+1 − 𝑥𝑘 ∥ ≥ ∥𝑦 𝑗 − 𝑥𝑘 ∥ . (3.4.17)

Indeed, we have

𝐿∥𝑥𝑘+1 − 𝑥𝑘 ∥2
= 𝑔⊤(𝑥𝑘+1 − 𝑥𝑘 ) = 𝑔⊤(𝑦 𝑗 − 𝑥𝑘 ) +

𝑇−1∑︁

𝑖= 𝑗

𝛼𝑖𝑔
⊤𝑑𝑖

≥ 𝑔⊤(𝑦 𝑗 − 𝑥𝑘 ) ≥ 𝐿∥𝑦 𝑗 − 𝑥𝑘 ∥2 ,

where we used (3.4.15) in the first equality, (3.4.16) in the second, 𝑔⊤𝑑 𝑗 ≥ 0 for

every 𝑗 in the first inequality and 𝑦 𝑗 ∈ 𝐵 in the second inequality.

We also have
𝑔⊤(𝑥𝑘+1 − 𝑥𝑘 )
∥𝑥𝑘+1 − 𝑥𝑘 ∥

=
𝑔⊤

∑𝑇−1

𝑗=0
𝛼 𝑗𝑑 𝑗

∥∑𝑇−1

𝑗=0
𝛼 𝑗𝑑 𝑗 ∥

≥
𝑔⊤

∑𝑇−1

𝑗=0
𝛼 𝑗𝑑 𝑗

∑𝑇−1

𝑗=0
𝛼 𝑗 ∥𝑑 𝑗 ∥

≥ min

{
𝑔⊤𝑑 𝑗
∥𝑑 𝑗 ∥

| 0 ≤ 𝑗 ≤ 𝑇 − 1

}
.

(3.4.18)

Thus for 𝑇 ∈ arg min
{
𝑔⊤𝑑 𝑗
∥𝑑 𝑗 ∥ | 0 ≤ 𝑗 ≤ 𝑇 − 1

}

𝑔⊤𝑑𝑇 ≤ 𝑔⊤(𝑥𝑘+1 − 𝑥𝑘 )
∥𝑥𝑘+1 − 𝑥𝑘 ∥

= 𝐿∥𝑥𝑘+1 − 𝑥𝑘 ∥ , (3.4.19)

where we used (3.4.18) in the first inequality and (3.4.15) in the second.

We finally have

𝑝𝑇 ≤ 𝑝𝑇 + 𝐿∥𝑦𝑇 − 𝑥𝑘 ∥ ≤ 1

𝜏
𝑔⊤𝑑𝑇 + 𝐿∥𝑦𝑇 − 𝑥𝑘 ∥ ≤

(
𝐿

𝜏
+ 𝐿

)
∥𝑥𝑘+1 − 𝑥𝑘 ∥ ,

where we used (3.4.17), (3.4.19) in the last inequality and the rest follows reasoning

as for (3.4.11). In particular 𝑥𝑘 = 𝑦𝑇 satisfies the desired properties, where ∥𝑥𝑘 −
𝑥𝑘 ∥ ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥ by (3.4.17). □

3.4.2 SSC for Frank-Wolfe variants

In this section, we show how to apply our results to the PFW, the AFW and the

FDFW on polytopes, i.e., we prove finite termination of the SSC procedure when

one of these methods is considered in Algorithm 3. We also give worst case and

average worst case bounds for the number of iterations of the SSC. We start by

proving a general termination criterion.
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elements in 𝑆( 𝑗). Furthermore, for the FDFW we assume that the maximal stepsize

is given by feasibility conditions as in [103]:

𝛼max (𝑥, 𝑑) = {𝛼max (𝑥, 𝑑)} . (3.4.21)

Notice that after a maximal in face step from 𝑦 𝑗 we have dim(F (𝑦 𝑗+1)) < dim(F (𝑦 𝑗 ))
because 𝑦 𝑗+1 lies on the boundary of F (𝑦 𝑗 ).

Proposition 3.4.6. The SSC always terminates in at most:

• |𝐴| iterations for the AFW,

• |𝐴| − 1 iterations for the PFW,

• dim(Ω) + 1 iterations for the FDFW.

Proof. By Lemma 3.4.4 we just need to bound the maximum number of iterations

if the method performs always maximal steps for a linear objective 𝐿𝑔 (𝑥). The

AFW can do at most |𝐴| − 1 consecutive maximal away steps, since at every such

step the number of active atoms decreases by one. Analogously, the FDFW can

do at most dim(Ω) consecutive maximal in face steps, since at every such steps

the dimension of the minimal face containing the current iterate decreases by one.

The respective bound follows Lemma 3.4.4 by noticing that in the linear case the

methods terminate after a full FW step. For the PFW, the linearity of the objective

implies that only atoms in 𝐴 := arg max𝑎∈𝐴 𝑔
⊤𝑥 can be added to the support, and

only atoms in 𝐴 \ 𝐴 can be dropped from the support. In particular, once an atom

is dropped from the active set it cannot be added again, and since at every maximal

step the PFW drops an atom from the active set its maximal number of iterations

is |𝐴 \ 𝐴| ≤ |𝐴| − 1. □

We now define and give a bound on the worst case average number of SSC

iterations. Let 𝑇 (𝑘) be the number of points generated by the SSC at the step 𝑘.

Then we define the worst case average number of SSC iterations as the supremum

of

lim
𝑘→∞

1

𝑘

𝑘−1∑︁

𝑖=0

𝑇 (𝑖) (3.4.22)

over all the possible realizations of Algorithm 3 (of course under specific assumptions

on A).

The proof of the following result uses analogous arguments to the ones in [157,

Theorem 8] to bound the number of bad steps.
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Proposition 3.4.7. Assume that the linear minimizer is not changed during the

SSC. Then, for an infinite sequence {𝑥𝑘 }, the worst case average number of iterations

is

• 2 for the AFW and the PFW,

• Δ(Ω) + 1 for the FDFW.

Proof. Let 𝑇 (𝑘) be the number of iterates generated by the SSC at the step 𝑘 in

Phase II. For the AFW and the PFW, reasoning as in the proof of Proposition

3.4.6 we obtain that if the SSC does 𝑇 (𝑘) iterations, the number of active vertices

decreases by at least 𝑇 (𝑘) − 2. Then on the one hand

|𝑆(𝑘) | − |𝑆(0) | ≥ 1 − |𝑆(0) | , (3.4.23)

while on the other hand

|𝑆(𝑘) | − |𝑆(0) | =
𝑘−1∑︁

𝑖=0

( |𝑆(𝑖+1) | − |𝑆(𝑖) |)

≤ 2𝑘 −
𝑘−1∑︁

𝑖=0

𝑇 (𝑖) .
(3.4.24)

Combining (3.4.23) and (3.4.24) and rearranging, we obtain:

1

𝑘

𝑘−1∑︁

𝑖=0

𝑇 (𝑖) ≤ 2 + |𝑆(0) | − 1

𝑘
, (3.4.25)

and the desired result follows by taking the limit for 𝑘 → ∞.

For the FDFW, notice that at every iteration the SSC performs a sequence of

maximal in face steps terminated either by a Frank Wolfe step, after which F (𝑦 𝑗 )
can increase of at most Δ(Ω), or by a non maximal in face step, after which F (𝑦 𝑗 )
stays the same. In both cases, we have

dim(F (𝑥𝑘+1)) − dim(F (𝑥𝑘 )) ≤ Δ(Ω) − 𝑇 (𝑘) + 1. (3.4.26)

Then,

dim F (𝑥𝑘 ) − dim F (𝑥0) ≥ − dim F (𝑥0) , (3.4.27)

and

dim F (𝑥𝑘 ) − dim F (𝑥0) =
𝑘−1∑︁

𝑖=0

(dim(F (𝑥𝑖+1) − dim(F (𝑥𝑖))))

≤ 𝑘Δ(Ω) + 𝑘 −
𝑘−1∑︁

𝑖=0

𝑇 (𝑖) .
(3.4.28)

The conclusion follows as for the AFW and the PFW. □
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3.4.3 Convergence rates

Smooth non convex objectives

We first prove, in the generic smooth non convex case, convergence to the set of

stationary points with a rate of 𝑂 ( 1√
𝑘
) for ∥𝜋(𝑇Ω(𝑥𝑖),−∇ 𝑓 (𝑥𝑖))∥.

Theorem 3.4.8. Let us consider the sequence {𝑥𝑘 } generated by Algorithm 3 and

assume that

• the angle condition (3.3.2) holds;

• the SSC procedure always terminates in a finite number of steps.

Then { 𝑓 (𝑥𝑘 )} is decreasing, 𝑓 (𝑥𝑘 ) → 𝑓 ∗ ∈ ❘ and the limit points of {𝑥𝑘 } are sta-

tionary. Furthermore, for any sequence {𝑥𝑘 } satisfying the conditions of Proposition

3.4.3, we have ∥𝑥𝑘 − 𝑥𝑘 ∥ → 0, and

min
0≤𝑖≤𝑘

∥𝜋(𝑇Ω(𝑥𝑖),−∇ 𝑓 (𝑥𝑖))∥ ≤ min
0≤𝑖≤𝑘

∥𝑥𝑖+1 − 𝑥𝑖∥
𝐾

≤

√︄
2( 𝑓 (𝑥0) − 𝑓 ∗)
𝐾2𝐿 (𝑘 + 1) , (3.4.29)

for 𝐾 = 𝜏/(𝐿 (1 + 𝜏)).

Proof. The sequence { 𝑓 (𝑥𝑘 )} is decreasing by (3.4.6). Thus by compactness 𝑓 (𝑥𝑘 ) →
𝑓 ∗ ∈ ❘ and in particular 𝑓 (𝑥𝑘 )− 𝑓 (𝑥𝑘+1) → 0. So that by (3.4.6) also ∥𝑥𝑘+1−𝑥𝑘 ∥ → 0.

Let {𝑥𝑘 (𝑖)} → 𝑥∗ be any convergent subsequence of {𝑥𝑘 }. For {𝑥𝑘 } chosen as in the

proof of Proposition 3.4.3 we have ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ ∥𝑥𝑘+1 − 𝑥𝑘 ∥ because 𝑥𝑘 = 𝑦𝑇 = 𝑥𝑘 in

case 1 and case 2, by (3.4.14) in case 3, and by (3.4.17) in case 4. Therefore

∥𝑥𝑘 (𝑖) − 𝑥𝑘 (𝑖) ∥ ≤ ∥𝑥𝑘 (𝑖)+1 − 𝑥𝑘 (𝑖) ∥ → 0 .

Furthermore, ∥𝜋(𝑇Ω(𝑥𝑘 (𝑖)),−∇ 𝑓 (𝑥𝑘 (𝑖))))∥ ≤ ∥𝑥𝑘 (𝑖)+1−𝑥𝑘 (𝑖) ∥
𝐾

→ 0 again by Proposition

3.4.3, so that 𝑥𝑘 (𝑖) → 𝑥∗ with ∥𝜋(𝑇Ω(𝑥𝑘 (𝑖)),−∇ 𝑓 (𝑥𝑘 (𝑖)))∥ → 0. Then

∥𝜋(𝑇Ω(𝑥∗),−∇ 𝑓 (𝑥∗))∥ = 0

and 𝑥∗ is stationary.

The first inequality in (3.4.29) follows directly from (3.4.7). As for the second,

we have

𝑘 + 1

𝐾2
( min
0≤𝑖≤𝑘

∥𝑥𝑖+1 − 𝑥𝑖∥)2
=
𝑘 + 1

𝐾2
min
0≤𝑖≤𝑘

∥𝑥𝑖+1 − 𝑥𝑖∥2

≤ 1

𝐾2

𝑘∑︁

𝑖=0

∥𝑥𝑖 − 𝑥𝑖+1∥2 ≤ 2

𝐿𝐾2

𝑘∑︁

𝑖=0

( 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖)) ≤
2( 𝑓 (𝑥0) − 𝑓 ∗)

𝐿𝐾2
,
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Algorithm Article LMO c.r. Gradient c.r. Gap

NCGS [205] 𝑂
(

1

𝑘0.25

)
𝑂

(
1√
𝑘

)
min0≤𝑖≤𝑘 𝜋(𝑥𝑖)

AFW, FW [47], [156] 𝑂
(

1√
𝑘

)
𝑂

(
1√
𝑘

)
min0≤𝑖≤𝑘 𝐺 (𝑥𝑖)

AFW, PFW, FDFW + SSC Ours 𝑂
(

1√
𝑘

)
𝑂

(
1√
𝑘

)
min0≤𝑖≤𝑘 ∥𝜋(𝑇Ω(𝑥𝑖),−∇ 𝑓 (𝑥𝑖))∥

Table 3.2: Comparison between convergence rates in the generic smooth non convex

case. See also Remark 3.4.10. 𝜋(𝑥) = ∥𝑥 − 𝜋
(
Ω, 𝑥 − ∇ 𝑓 (𝑥 )

2𝐿

)
∥, 𝐺 is the FW gap (see Section

2.6.1).

where we used (3.4.6) in the first inequality, { 𝑓 (𝑥𝑖)} decreasing together with 𝑓 (𝑥𝑖) →
𝑓 ∗ in the second and the thesis follows by rearranging terms. □

We now give a corollary for Theorem 3.4.8 specialized to the FW variants de-

scribed in Section 3.3.1 (see also Table 3.2).

Corollary 3.4.9. Let us assume that Ω = conv(𝐴), with |𝐴| < +∞ in Problem

(3.2.1). Then the sequence {𝑥𝑘 } generated by Algorithm 3 with AFW (PFW or

FDFW) in the SSC converges at a rate given by equation (3.4.29), with 𝜏 = 𝜏𝑝/2
(𝜏𝑝 or 𝜏𝑣/2, respectively).

Proof. Finite termination of the SSC follows by Proposition 3.4.6, and the angle

condition is satisfied by Proposition 3.3.3. Thus we have all the assumptions to

apply Theorem 3.4.8. □

Remark 3.4.10. Notice that in Table 3.2 we use the Frank Wolfe gap (see Section

2.6.1) as a measure of convergence. By combining equation (3.2.3) with (2.6.8), we

obtain, for any 𝑦 ∈ Ω

𝐺 (𝑦) ≤ 𝐷∥𝜋(𝑇Ω(𝑦),−∇ 𝑓 (𝑦))∥ . (3.4.30)

Taking into account equation (3.4.30), it is easy to see that our rate is an improve-

ment of the ones proved in [156] and [47] (see Table 3.2). Furthermore, we do

not need to start from a vertex to avoid dependence from the support of {𝑥0} like

in [47, Theorem 5.1]. Finally, our method improves the conditional gradient sliding

rate (NCGS) not only in LMO but also in gradients, given that from Ω−{𝑦} ⊂ 𝑇Ω(𝑦)
it follows 𝜋(𝑦) ≤ ∥𝜋(𝑇Ω(𝑦),−∇ 𝑓 (𝑦))∥/2𝐿 for every 𝑦 ∈ Ω.
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Objectives with KL property

As a consequence of Proposition 3.4.3, we have linear convergence rates for the

general algorithmic scheme reported in Algorithm 3 under the KL inequality (3.2.4),

the angle condition (3.3.2), and finite termination of the SSC procedure. In the next

results (Lemma 3.4.11, Theorem 3.4.13 and Corollary 3.4.14), we always assume the

following:

• the angle condition (3.3.2) holds;

• the SSC procedure always terminates in a finite number of steps.

Lemma 3.4.11. Let us consider the sequence {𝑥𝑘 } generated by Algorithm 3 and

assume that the objective function 𝑓 satisfies condition (3.2.4), with 𝑓 (𝑥∗) fixed, in

every feasible point generated by the algorithm. Then, for 𝑞 =

(
1 + 𝜇

𝐿
𝜏2

(1+𝜏)2
)−1

we

have 𝑓 (𝑥𝑘 ) → 𝑓 (𝑥∗), with

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑞𝑘 ( 𝑓 (𝑥0) − 𝑓 (𝑥∗)) , (3.4.31)

and 𝑥𝑘 → 𝑥∗ with

∥𝑥𝑘 − 𝑥∗∥ ≤
√

2 − 2𝑞( 𝑓 (𝑥0) − 𝑓 (𝑥∗))
√
𝐿 (1 − √

𝑞)
𝑞
𝑘
2 , (3.4.32)

for 𝑥∗ stationary point such that 𝑓 (𝑥∗) = 𝑓 (𝑥∗).

In order to prove Lemma 3.4.11 we first need a technical Lemma based on Kara-

mata’s inequality ( [143], [144]) for concave functions. We now recall the inequality.

Given 𝐴, 𝐵 ∈ ❘𝑁 it is said that 𝐴 majorizes 𝐵, written 𝐴 ≻ 𝐵, if

𝑗∑︁

𝑖=1

𝐴𝑖 ≥
𝑗∑︁

𝑖=1

𝐵𝑖 for 𝑗 ∈ [1 : 𝑁] ,

𝑁∑︁

𝑖=1

𝐴𝑖 =

𝑁∑︁

𝑖=1

𝐵𝑖 .

If ℎ is concave and 𝐴 ≻ 𝐵 by Karamata’s inequality

𝑁∑︁

𝑖=1

ℎ(𝐴𝑖) ≤
𝑁∑︁

𝑖=1

ℎ(𝐵𝑖) .

We can now state and prove the technical lemma.
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Lemma 3.4.12. Let { 𝑓𝑖}𝑖∈[0: 𝑗] be a sequence of nonnegative numbers such that 𝑓𝑖+1 ≤
𝑞 𝑓𝑖 for some 𝑞 < 1. Then

𝑗−1∑︁

𝑖=0

√︃
𝑓𝑖 − 𝑓𝑖+1 ≤

√︁
𝑓0(1 − 𝑞)
1 − √

𝑞
. (3.4.33)

Proof. Let �̄� = max{𝑖 ≥ 0 | 𝑓 𝑗 ≤ 𝑞𝑖 𝑓0}, so that by (3.4.41) we have �̄� ≥ 𝑗 . Define

𝑤∗, 𝑣 ∈ ❘ �̄�+1

≥0
by

𝑣 = ( 𝑓0 − 𝑞 𝑓0, ..., 𝑞 �̄�−1 𝑓0 − 𝑞 �̄� 𝑓0, 𝑞 �̄� 𝑓0 − 𝑓 𝑗 ) ,
𝑤∗

= ( 𝑓0 − 𝑓1, ..., 𝑓 𝑗−1 − 𝑓 𝑗 , 0, ..., 0) .
(3.4.34)

Then for 0 ≤ 𝑙 < �̄� we have

𝑙∑︁

𝑖=0

𝑣𝑖 = 𝑓0 − 𝑞𝑙+1 𝑓0 ≤ 𝑓0 − 𝑓min(𝑙+1, 𝑗) =
𝑙∑︁

𝑖=0

𝑤∗
𝑖 , (3.4.35)

where we used 𝑞𝑙+1 𝑓0 ≥ 𝑓𝑙+1 for 𝑙 ≤ 𝑗 − 1 and 𝑞𝑙+1 𝑓0 ≥ 𝑓 𝑗 for 𝑗 ≤ 𝑙 < �̄� in the

inequality. Furthermore, for 𝑙 = �̄� we have

𝑙∑︁

𝑖=0

𝑣𝑖 = 𝑓0 − 𝑓 𝑗 =

𝑙∑︁

𝑖=0

𝑤∗
𝑖 . (3.4.36)

Now if 𝑤 is the permutation in descreasing order of 𝑤∗, clearly thanks to (3.4.35),

and (3.4.36) we have 𝑤 ≻ 𝑣. Then

𝑗−1∑︁

𝑖=0

√︃
𝑓𝑖 − 𝑓𝑖+1 =

�̄�+1∑︁

𝑖=0

√︃
𝑤∗
𝑖
=

�̄�+1∑︁

𝑖=0

√
𝑤𝑖 ≤

�̄�+1∑︁

𝑖=0

√
𝑣𝑖

≤
√︃
𝑓0

+∞∑︁

𝑖=0

√︁
𝑞𝑖 − 𝑞𝑖+1 =

√︁
𝑓0(1 − 𝑞)
1 − √

𝑞
,

(3.4.37)

where the first inequality follows from Karamata’s inequality. □

Proof of Lemma 3.4.11. If the sequence {𝑥𝑘 } is finite, with 𝑥𝑚 = 𝑥𝑚 stationary for

some 𝑚 ≥ 0, we define 𝑥𝑘 = 𝑥𝑚 for every 𝑘 ≥ 𝑚, so that we can always assume {𝑥𝑘 }
infinite. Notice that with this convention the sufficient decrease condition (3.4.6)

is still satisfied for every 𝑘. Let 𝑓𝑘 = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗). { 𝑓𝑘 } is monotone decreasing

by (3.4.6), and nonnegative since (3.2.4) holds for every 𝑥𝑘 .
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We want prove 𝑓𝑘+1 ≤ 𝑞 𝑓𝑘 . This is clear if 𝑓𝑘+1 = 0. Otherwise using the notation

of Proposition 3.4.3 we have

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝐿

2
∥𝑥𝑘 − 𝑥𝑘+1∥2 ≥ 𝐿𝐾2

2
∥𝜋(𝑇Ω(𝑥𝑘 ),−∇ 𝑓 (𝑥𝑘 ))∥ , (3.4.38)

where we used (3.4.6) in the first inequality, (3.4.7) in the second. Since 𝑥𝑘 ∈ {𝑦 𝑗 }𝑇𝑗=0

by Proposition 3.4.3, we can apply (3.2.4) in 𝑥𝑘 to obtain

𝐿𝐾2

2
∥𝜋(𝑇Ω(𝑥𝑘 ),−∇ 𝑓 (𝑥𝑘 ))∥2 ≥ 𝜇𝐿𝐾2( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗)) ≥ 𝜇𝐿𝐾2 𝑓𝑘+1. (3.4.39)

Concatenating (3.4.38), (3.4.39) and rearranging we obtain

𝑓𝑘+1 ≤ (1 + 𝜇𝐿𝐾2)−1 𝑓𝑘 = 𝑞 𝑓𝑘 . (3.4.40)

Thus by induction for any 𝑖 ≥ 0

𝑓𝑘+𝑖 ≤ 𝑞𝑖 𝑓𝑘 , (3.4.41)

which implies in particular (3.4.31).

We can now bound the length of the tails of {𝑥𝑘 }:
+∞∑︁

𝑖=0

∥𝑥𝑘+𝑖 − 𝑥𝑘+𝑖+1∥ ≤
√︂

2

𝐿

+∞∑︁

𝑖=0

√︁
𝑓𝑘+𝑖 − 𝑓𝑘+𝑖+1

≤
√︁

2 𝑓𝑘 (1 − 𝑞)
√
𝐿 (1 − √

𝑞)
≤

√︁
2 𝑓0(1 − 𝑞)

√
𝐿 (1 − √

𝑞)
𝑞
𝑘
2 ,

(3.4.42)

where we used (3.4.6) in the first inequality, Lemma 3.4.12 with { 𝑓𝑖} = { 𝑓𝑘+𝑖} and

for 𝑗 → +∞ in the second inequality, and (3.4.41) in the third. In particular 𝑥𝑘 → 𝑥∗

with

∥𝑥𝑘 − 𝑥∗∥ ≤
+∞∑︁

𝑗=0

∥𝑥𝑘+ 𝑗 − 𝑥𝑘+ 𝑗+1∥ =
√︁

2 𝑓0(1 − 𝑞)
√
𝐿 (1 − √

𝑞)
𝑞
𝑘
2 (3.4.43)

by (3.4.42). □

The KL assumption of Lemma 3.4.11 is trivially true if (3.2.4) holds globally

for every 𝑥∗ in the set of solutions of Problem (3.2.1); an analogous assumption is

used in [146] for the PL property. By [38, Corollary 6], for convex objectives this

assumption is satisfied in particular under a global quadratic Holderian error bound,

thus, e.g., by strongly convex objectives.

Under mild assumptions on the stationary point 𝑥∗, we can also apply Lemma 3.4.11

locally on non convex objectives, thus adapting to our projection free setting the

local results given in [13, Section 2.3] for proximal methods.



3.4 First order projection free methods with SSC procedure 67

Theorem 3.4.13. Let Assumption 3.1 hold at 𝑥∗. Further assume that 𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗) ⇒
𝑓 (𝑥𝑘+1) ≥ 𝑓 (𝑥∗). Then, for some 𝛿 > 0, if 𝑥0 ∈ 𝐵𝛿 (𝑥∗) the rates (3.4.31) and (3.4.32)

hold.

Proof. By continuity, for 𝛿 → 0 and 𝑓0 = 𝑓 (𝑥0) − 𝑓 (𝑥∗) we have that

max
𝑥0∈𝐵𝛿 (𝑥∗)∩[ 𝑓 ≥ 𝑓 (𝑥∗)]

𝑓0 → 0 , (3.4.44)

so we can take 𝛿 < 𝛿/2 small enough in such a way that

max
𝑥0∈𝐵𝛿 (𝑥∗)∩[ 𝑓 ≥ 𝑓 (𝑥∗)]

√︁
2 𝑓0(1 − 𝑞)
𝐿 (1 − √

𝑞) +
√︂

2

𝐿

√︁
𝑓0 <

𝛿

2
. (3.4.45)

Let now 𝑥0 ∈ 𝐵𝛿 (𝑥∗) ∩ [ 𝑓 ≥ 𝑓 (𝑥∗)], so that

𝛿 <
𝛿

2
< 𝛿 −

√︁
2 𝑓0(1 − 𝑞)
𝐿 (1 − √

𝑞) −
√︂

2

𝐿

√︁
𝑓0 , (3.4.46)

where we use (3.4.45) in the second inequality. We now want to prove, by induction

on 𝑘, {𝑥𝑖}𝑖∈[0:𝑘] ⊂ 𝐵𝛿 (𝑥∗) with 𝑓 (𝑥𝑖+1) ≤ 𝑞 𝑓 (𝑥𝑖) for every 𝑖 ∈ [0 : 𝑘] and 𝑘 ∈ ◆. To

start with,
𝑘−1∑︁

𝑖=0

∥𝑥𝑖 − 𝑥𝑖+1∥ ≤
√︂

2

𝐿

𝑘−1∑︁

𝑖=0

√︁
𝑓𝑖 − 𝑓𝑖+1 ≤

√︁
2 𝑓0(1 − 𝑞)

√
𝐿 (1 − √

𝑞)
(3.4.47)

where we used (3.4.6) in the first inequality, and Lemma 3.4.12 (which we can apply

thanks to the inductive assumption) in the second. But then

∥𝑥𝑘+1 − 𝑥∗∥ ≤ ∥𝑥0 − 𝑥∗∥ +
(
𝑘−1∑︁

𝑖=0

∥𝑥𝑖 − 𝑥𝑖+1∥
)
+ ∥𝑥𝑘 − 𝑥𝑘+1∥

≤ 𝛿 +
√︁

2 𝑓0(1 − 𝑞)
𝐿 (1 − √

𝑞) +
√︂

2

𝐿

√︁
𝑓𝑘 − 𝑓𝑘+1

< 𝛿 +
√︁

2 𝑓0(1 − 𝑞)
𝐿 (1 − √

𝑞) +
√︂

2

𝐿

√︁
𝑓𝑘 < 𝛿 ,

(3.4.48)

where we used (3.4.47) together with (3.4.6) in the second inequality, the assumption

𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗) ⇒ 𝑓𝑘+1 ≥ 0 in the third inequality, and (3.4.46) together with 𝑓0 ≥ 𝑓𝑘

in the last inequality.

We now have

∥𝑥𝑘 − 𝑥∗∥ ≤ ∥𝑥0 − 𝑥∗∥ +
(
𝑘−1∑︁

𝑖=0

∥𝑥𝑖 − 𝑥𝑖+1∥
)
+ ∥𝑥𝑘 − 𝑥𝑘 ∥

≤ ∥𝑥0 − 𝑥∗∥ +
(
𝑘−1∑︁

𝑖=0

∥𝑥𝑖 − 𝑥𝑖+1∥
)
+ ∥𝑥𝑘 − 𝑥𝑘+1∥ < 𝛿 ,

(3.4.49)
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where we use ∥𝑥𝑘 −𝑥𝑘 ∥ ≤ ∥𝑥𝑘+1−𝑥𝑘 ∥ in the second inequality and the last inequality

follows as in (3.4.48). Thus 𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗) as well, which is enough to prove (3.4.40)

and complete the induction. We have thus obtained {𝑥𝑘 }, {𝑥𝑘 } ⊂ 𝐵𝛿 (𝑥∗), and the

conclusion follows exactly as in the proof of Lemma 3.4.11. □

It is not difficult to see that the assumption 𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗) ⇒ 𝑓 (𝑥𝑘+1) ≥ 𝑓 (𝑥∗)
is true, e.g., if 𝑥∗ is a minimizer on its connected component of the sublevel set

[ 𝑓 ≤ 𝑓 (𝑥0)].

As a corollary of Theorem 3.4.13, we can apply Lemma 3.4.11 and derive the

following asymptotic rates.

Corollary 3.4.14. Let us consider the sequence {𝑥𝑘 } generated by Algorithm 3. Let

Assumption 3.1 hold at every point of the limit set of {𝑥𝑘 }. Then, for some positive

constants 𝑀 and �̃�, {𝑥𝑘 } → 𝑥∗, with the asymptotic rates:

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑀𝑞𝑘 ,

∥𝑥𝑘 − 𝑥∗∥ ≤ �̃�𝑞
𝑘
2 .

(3.4.50)

Proof. Let 𝑥∗ be a limit point of {𝑥𝑘 }, and let 𝛿 be as in Theorem 3.4.13. First,

for some 𝑘 ∈ ◆ we must have 𝑥𝑘 ∈ 𝐵𝛿 (𝑥∗). Furthermore, for every 𝑘 ∈ ◆ we

have 𝑓 (𝑥𝑘 ) ≥ 𝑓 (𝑥∗) because 𝑓 (𝑥𝑘 ) is non increasing and converges to 𝑓 (𝑥∗). Thus

we have all the necessary assumptions to obtain the asymptotic rates by applying

Theorem 3.4.13 to {𝑦𝑘 } = {𝑥𝑘+𝑘 }. □

Similarly to what we did for Theorem 3.4.8, here we give a corollary for Lemma 3.4.11

related to the FW variants described in Section 3.3.1.

Corollary 3.4.15. Let us assume that the objective function 𝑓 satisfies condi-

tion (3.2.4) on every point generated by the algorithm, with 𝑓 (𝑥∗) fixed, and that

Ω = conv(𝐴) with |𝐴| < +∞ in Problem (3.2.1). Then the sequence {𝑥𝑘 } generated

by Algorithm 3 with AFW (PFW or FDFW) in the SSC converges at the rates given

by Lemma 3.4.11, with 𝜏 = 𝜏𝑝/2 (𝜏𝑝 or 𝜏𝑣/2, respectively).

Proof. Finite termination of the SSC follows by Proposition 3.4.6, and the angle

condition is satisfied by Proposition 3.3.3. Thus we have all the assumptions to

apply Lemma 3.4.11. □

For comparison, we now recall some well-known result related to global linear

convergence rates for the FW variants under analysis.



3.4 First order projection free methods with SSC procedure 69

Algorithm Article Objective 𝛾(𝑘) 𝐼𝑏 𝑞𝑔𝑠 ℎ𝑘/ℎ0 upper bound 𝑇𝑎𝑣𝑔

AFW [157] SC 𝑘/2 |𝑆0 | − 1 1 − 𝜇

𝐿

𝜏2
𝑝

4

(
1 − 𝜇

𝐿

𝜏2
𝑝

4

) 𝑘
2

-

PFW [157] SC 𝑘/(3|𝐴|! + 1) - 1 − 𝜇

𝐿
𝜏2
𝑝

(
1 − 𝜇

𝐿
𝜏2
𝑝

) 𝑘
3 |𝐴|!+1

-

FDFW2 [153] SC 𝑘/(Δ(Ω) + 1) dim(F (𝑥0)) 1 − 𝜇

𝐿

𝜏2
𝑣

4

(
1 − 𝜇

𝐿

𝜏2
𝑣

4

) 𝑘
Δ(Ω)+1

-

AFW + SSC Ours NC, KL 𝑘 -
(
1 + 𝜇

𝐿

𝜏2
𝑝

(2+𝜏𝑝)2
)−1 (

1 + 𝜇

𝐿

𝜏2
𝑝

(2+𝜏𝑝)2
)−𝑘

2

PFW + SSC Ours NC, KL 𝑘 -
(
1 + 𝜇

𝐿

𝜏2
𝑝

(1+𝜏𝑝)2
)−1 (

1 + 𝜇

𝐿

𝜏2
𝑝

(1+𝜏𝑝)2
)−𝑘

2

FDFW + SSC Ours NC, KL 𝑘 -
(
1 + 𝜇

𝐿

𝜏2
𝑣

(1+𝜏𝑣)2
)−1 (

1 + 𝜇

𝐿

𝜏2
𝑣

(1+𝜏𝑣)2
)−𝑘

Δ(Ω) + 1

Table 1: Comparison between the rates of the standard and SSC version of some FW

variants for Ω = conv(𝐴) with |𝐴| < ∞. SC = strongly convex, NC = non convex, KL =

KL property. 𝛾(𝑘): lower bound on the number of good steps after 𝑘 steps, counting from

the Ąrst good step. 𝐼𝑏: bound on the number of bad steps before the Ąrst good step. 𝑞𝑔𝑠:

rate in good steps. ℎ𝑘/ℎ0 upper bound: worst case rate assuming no initial bad steps,

equal to 𝑞
𝛾 (𝑘 )
𝑔𝑠 . Δ(Ω) = maximum increase in face dimension F (𝑥𝑘+1) − F (𝑥𝑘) after a FW

step. 𝑆0 = active set for 𝑥0. 𝑇𝑎𝑣𝑔 = worst case average iteration number of the SSC (see

Proposition 3.4.7)

Proposition 3.4.16. Let us assume that the objective function 𝑓 is 𝜇−strongly

convex and Ω = conv(𝐴) with |𝐴| < +∞ in Problem (3.2.1). Let {𝑥𝑘 } be a sequence

generated by the AFW (PFW or FDFW), with stepsize given by exact line search. If

the initial active set is 𝑆0 = {𝑥0} for the AFW (𝑆0 = {𝑥0} for the PFW, dim(F (𝑥0)) =
0 for the FDFW), then

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤ 𝑞
𝛾(𝑘)
𝑔𝑠 ( 𝑓 (𝑥0) − 𝑓 ∗) , (3.4.51)

for 𝛾(𝑘) and 𝑞𝑔𝑠 given in Table 1.

Proof. For the AFW and the PFW the result follows directly from [157, Theorem

1], with the exception of the good steps rate for the PFW, which can be obtained

by applying the bound [157, Equation 10] in [157, Equation 5]. For the FDFW

the result follows from [153, Theorem 1] (where the method is referred to as DiCG),

with the bound 𝜇PWidth(𝑉 (Ω)2 on the geometric strong convexity constant implied

by [157, Theorem 6] improved to 𝜇PFWidth(Ω)2 as in Proposition 3.3.3. □

For all the examples where an upper bound on 𝜏𝑝 =
PWidth(𝐴)

𝐷
is known (see

[206], [200] and references therein) when dim(conv(𝐴)) → ∞ then 𝜏𝑝 → 0 and

our rates for the SSC converge to the rates without SSC for good steps in Table 1.
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While we are not able to prove this limit in general, for all polytopes with dimension

greater or equal to 2, except low dimensional simplices (see Example 3.4.17), we still

have 𝜏𝑝 ≤ 1

2
(because PdirW(𝐴, 𝑔, 𝑥) + PdirW(𝐴,−𝑔, 𝑥) ≤ 𝐷 for 𝑥 in the relative

interior of conv(𝐴) and ±𝑔 feasible and orthogonal to conv(𝑆) for some 𝑆 ∈ 𝑆𝑥).

Using this together with Example 3.4.17 for simplices, it is easy to check that

the rates in Corollary 3.4.15 (SSC based FW variants) are strict improvements on

the known worst case rates (standard FW variants) reported in Proposition 3.4.16,

with a limited number of exceptions. These are the trivial one dimensional case and

simplices with low dimension (≤ 4 for the PFW, and ≤ 8 for the AFW using the

loose bounds in Example 3.4.17) combined with objectives having condition number

𝜇/𝐿 sufficiently close to 1.

Example 3.4.17. If 𝑊 (conv(𝐴)) is the width of conv(𝐴) (see [157, Section 3]) then

it follows directly from the definition of PWidth that 𝑊 (conv(𝐴)) ≥ PWidth(𝐴),
with equality for 𝐴 = {𝑒1, ..., 𝑒𝑛} (see [157] and [200]). Let now 𝐴 = {𝑎1, ..., 𝑎𝑛}
be a set of 𝑛 affinely independent points in ❘𝑛−1. We claim that, for 𝑟𝑛 =

√︃
1 − 1

𝑛

circumradius of the 𝑛 − 1 dimensional unit simplex Δ𝑛−1

PWidth(𝐴)/𝐷 ≤ 𝑟−1
𝑛 𝑊 (Δ𝑛−1) =




2𝑟−1
𝑛

√︃
1

𝑛
for 𝑛 even,

2𝑟−1
𝑛

√︃
1

𝑛−1/𝑛 for 𝑛 odd.
(3.4.52)

To see this, assume without loss of generality 𝐷 = 1 and 0 ∈ int(Ω) for Ω = conv(𝐴).
Then if 𝐴𝑆 = {𝑎1, ..., 𝑎𝑛} we have 𝑊 (conv(𝐴𝑆)) ≥ 𝑊 (conv(𝐴)). We can conclude

PWidth(𝐴)
𝐷

= PWidth(𝐴) ≤ 𝑊 (conv(𝐴)) ≤ 𝑊 (conv(𝐴𝑆)) ≤ 𝑟−1
𝑛 𝑊 (Δ𝑛−1) , (3.4.53)

where in the last inequality we used that regular simplices maximize the width

among simplices with fixed inradius (see, e.g., [9] and [115]).

Remark 3.4.18. The two main assumptions we make on the algorithm in this

section are the angle condition and finite termination of the SSC. When the angle

condition fails, like for the FW method when the solution is on the boundary, we

expect the method to exhibit the zigzagging behaviour mentioned in Section 2.6.2.

As for finite termination, given the very mild convergence properties necessary to

achieve it discussed in Remark 3.4.5, when it is violated the algorithm might not

converge at all even without SSC.
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3.5 Examples

We now discuss some examples of objectives satisfying the KL property and

sets where the angle condition can be satisfied with an explicit bound, relevant to

practical optimization problems.

3.5.1 KL property

The KL property of Assumption 3.1 is satisfied for Problem (3.2.1) in the fol-

lowing cases:

• 𝑓 is composite strongly convex, i.e. 𝑓 (𝑥) = 𝑔(𝐵𝑥) with 𝑔 strongly convex, and

Ω is a polytope [170, Proposition 4.1],

• 𝑓 is composite strongly convex as in the previous point, Ω is the 𝑙 𝑝 ball for

𝑝 ∈ [1, 2], and inf𝑥∈Ω 𝑓 (𝑥) > inf𝑥∈❘𝑛 𝑔(𝐵𝑥) [170, Proposition 4.2],

• 𝑓 is (non convex) quadratic, i.e. 𝑓 (𝑥) = 𝑥⊤𝑄𝑥 + 𝑏⊤𝑥 + 𝑐, and Ω is a polytope,

[170, Corollary 5.2],

• 𝑓 is non convex quadratic and does not satisfy the degeneracy condition of

[138, equation (30)], and Ω is the unit sphere [138, Theorem 3.13].

• 𝑓 is a nonlinear least square objective with full row rank Jacobian, and 𝑥∗ is in

the interior of Ω (see [82, Theorem 2] for a special case that easily generalizes

to the desired property).

3.5.2 Angle condition bounds

Bounds using PWidth

For the unit simplex and the unit cube explicit Θ(1/√𝑛) values were given in [200,

Example 1 and 2]. With analogous arguments it can be proved that the PWidth

of the 𝑙1 ball is 1/√𝑛. By Proposition (3.3.3), this implies that the angle condition

can be lower bounded with 𝜏 = Θ(1/√𝑛) for the unit simplex and the 𝑙1 ball, and

with 𝜏 = Θ(1/𝑛) for the unit cube.
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Bounds using facial distance vf

For a polytope Ω = {𝑥 ∈ ❘𝑛 | 𝐴𝑥 ≤ 𝑏} with 𝐴 ∈ ❘𝑚×𝑛 the facial distance can be

defined as (see [27]):

vf(Ω) = min
𝑣∈𝑉 (Ω)

𝑖:(𝑎 (𝑖) )⊤𝑣<𝑏𝑖

𝑏𝑖 − (𝑎 (𝑖))⊤𝑣
∥𝑎 (𝑖) ∥

. (3.5.1)

It is the easy to bound vf(Ω) on some specific class of polytopes and, consequently,

give an explicit bound for the angle condition (see also [24]). For instance, if the

matrix 𝐴 is totally unimodular (i. e. all the vertices are integral for 𝑏 integral), we

have the following properties.

Proposition 3.5.1. If the matrix 𝐴 is totally unimodular and 𝑏 is integral, then

for 𝑎 = max𝑖∈[1:𝑚] ∥𝑎𝑖∥:

• for the AFW or the PFW, if the size of the active set stays bounded by �̄�, then

SBAFW(Ω) ≥ 1

2�̄�𝑎𝐷
, SBPFW(Ω) ≥ 1

�̄�𝑎𝐷
; (3.5.2)

• for the FDFW,

SBFD(Ω) ≥
1

2𝐷𝑎(dim(Ω) + 1) ≥ 1

2𝐷𝑎(𝑛 + 1) . (3.5.3)

Proof. If 𝐴 is totally unimodular then for 𝑖 ∈ [1 : 𝑚], 𝑣 ∈ 𝑉 such that 𝑏𝑖−(𝑎 (𝑖))⊤𝑣 > 0

we have
𝑏𝑖 − (𝑎 (𝑖))⊤𝑣

∥𝑎𝑖∥
≥ 1

∥𝑎𝑖∥
(3.5.4)

since the numerator on the LHS must be at least one. By applying (3.5.4) to the

RHS of (3.5.1) we obtain

vf(Ω) ≥ min
𝑖∈[1:𝑚]

1

∥𝑎𝑖∥
=

1

𝑎
. (3.5.5)

Then the thesis follows for the AFW and the PFW directly from the bounds of

Remark 3.3.4. For the FDFW, the second part of (3.5.3) is trivially true since

dim(Ω) ≤ 𝑛, and the first follows by the bound given in Remark 3.3.4, using that

by the Caratheodory theorem for every feasible point 𝑥 there exists 𝑆 ∈ 𝑆𝑥 with

|𝑆 | ≤ dim(Ω) + 1. □
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The bound of Proposition 3.5.1 allows us to bound the angle condition for the

min cost flow polytope with integral capacities:

Ω = {𝑥 ∈ ❘𝑛 | 𝐴𝑥 ≤ 𝑏, 0 ≤ 𝑥 ≤ 𝑐} , (3.5.6)

with 𝑏, 𝑐 integral and 𝐴 incidence matrix of a directed graph 𝐺.

Corollary 3.5.2. Consider a directed graph 𝐺 with incidence matrix 𝐴 ∈ ❘𝑚×𝑛 and

maximum degree of a vertex 𝑑. Then if Ω is given as in (3.5.6):

SBFD(Ω) ≥
1

2
√
𝑑 (𝑛 + 1)∥𝑐∥

(3.5.7)

Proof. By the capacity constraints, the diameter of Ω is at most ∥𝑐∥. Then the

result follows easily from Proposition 3.5.1 by noticing that Ω can be rewritten

as {𝑥 ∈ ❘𝑛 | 𝐴𝑥 ≤ 𝑏} for 𝐴 = (𝐴; 𝐼;−𝐼) totally unimodular (see, e.g., [223]) with

maximum norm of a row equal to
√
𝑑. □

Bounds on sets with smooth boundary

On convex sets with smooth boundary the angle condition can be satisfied with

constant arbitrarily close to 1 using orthographic retractions [208, Section 6.3]. Fur-

thermore, on sublevel sets of smooth and strongly convex functions the FDFW

satisfies the angle condition with constant equal to the condition number of the

function divided by 2 [208, Section 6.2].

3.5.3 Applications

There is a number of practical optimization problems with the feasible sets and

objectives discussed above. To start with, the LASSO problem, the minimum en-

closing ball problem, training linear support vector machines and finding maximal

cliques in graphs can all be formulated as convex quadratic optimization prob-

lems [48] on the 𝑙1 ball or the simplex. The trust region subproblem is a non convex

quadratic problem on the unit sphere (see [138]). The min cost flow problem with a

quadratic objective is also of practical interest [220]. Many other examples can be

found in [170].

3.6 Numerical tests

We tested the SSC on the AFW and the PFW methods, applied to a quadratic

(non convex) relaxation of the maximum clique problem proposed in [40].
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More precisely, let 𝐴 be the adjacency matrix of a graph 𝐺. In [40] it is proved

that there is a one to one correspondence between the maximal cliques of 𝐺 and the

local minima of the function 𝑓 : Δ𝑛−1 → ❘ defined by

𝑓 (𝑥) = −𝑥⊺𝐴𝑥 − 1

2
∥𝑥∥2. (3.6.1)

Therefore, we consider instances of Problem (3.2.1) with objective (3.6.1) and fea-

sible set the 𝑛 − 1 dimensional unit simplex, that is Ω = Δ𝑛−1.

The graph instances we use are taken from the DIMACS benchmark [140]. To have

a fair comparison for both the AFW and the PFW we use the stepsize given by

𝛼𝑘 = min{𝛼max

𝑘 ,−∇ 𝑓 (𝑥𝑘 )
⊤𝑑𝑘

𝐿∥𝑑𝑘 ∥2
} (3.6.2)

with 𝛼max

𝑘
determined by boundary conditions. In this way the new point computed

by the methods coincides with the first point computed in the SSC procedure of their

multistep versions.

We reported in Tables 3, 4 the results for the most challenging instances, aggregated

on 100 runs starting from random points. The SSC clearly improves the CPU times

while keeping the solution quality. Indeed in these problems the SSC allows the

methods to identify the support of a local minimum in fewer iterations, so that the

slow initial convergence phase is skipped (see Figures 3.3, 3.4).

Remark 3.6.1. While discussing the optimization of the SSC for specific problems

is beyond the scope of this thesis, we remark that the method can still be useful

even when both gradient updates and LMO are very cheap, as it is often the case

with Frank Wolfe variants. For instance, in the case of quadratic problems on the

simplex we deal with in this section, if the SSC does 𝑠 AFW steps, the resulting

point can be written as an affine combination of the starting point together with at

most 𝑠 vertices. The gradient updates can then be performed in parallel at once, as a

matrix-vector multiplication where the vector has at most 𝑠+1 non zero components.

Without SSC, such updates must be performed sequentially. Beside this, without

SSC the objective value must be computed at every iteration rather than only at

the end of the SSC.
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Table 3: Max clique found, average clique size, standard deviation of clique sizes and

average CPU time for AFW and SSC + AFW on max clique instances from the DIMACS

benchmark.

AFW SSC + AFW

Instance Max Mean Std CPU time Max Mean Std CPU time

C2000.5 14 11.7 0.89 2.800 14 11.6 1.00 0.082

C2000.9 67 60.2 2.20 3.135 65 60.0 2.05 0.200

C4000.5 16 12.8 0.94 23.487 16 12.5 0.92 0.429

MANN_a81 1080 1080.0 0.00 31.156 1080 1080.0 0.00 25.047

keller6 45 38.4 2.41 13.713 43 37.8 2.22 0.413

Table 4: Max clique found, average clique size, standard deviation of clique sizes and

average CPU time for PFW and SSC + PFW on max clique instances from the DIMACS

benchmark.

PFW SSC + PFW

Instance Max Mean Std CPU time Max Mean Std CPU time

C2000.5 14 11.8 0.86 2.811 14 12.1 0.86 0.077

C2000.9 67 62.3 1.83 3.031 68 62.0 1.77 0.150

C4000.5 15 12.7 0.92 23.423 16 13.4 0.95 0.379

MANN_a81 1080 1080.0 0.00 19.867 1080 1080.0 0.00 15.442

keller6 44 37.3 2.68 13.515 45 35.6 2.83 0.258
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Figure 3.3: Iteration number and CPU time vs log(ℎ𝑘/ℎ0) in the Ąrst and the second

column respectively for the instance keller6

Data availability. The data analysed during the current study are available in

the 2nd DIMACS implementation challenge repository,

http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
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Figure 3.4: Iteration number and CPU time vs log(ℎ𝑘/ℎ0) in the Ąrst and the second

column respectively for the instance C4000.5
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Chapter 4

Active Set Identification

properties of the Away-Step

Frank–Wolfe Algorithm

In this chapter, we study active set identification results for the AFW

in different settings. We first prove a local identification property that

we apply, in combination with a convergence hypothesis, to get an active

set identification result. We then prove, in the nonconvex case, a novel

𝑂 (1/
√
𝑘) convergence rate result and active set identification for different

step sizes (under suitable assumptions on the set of stationary points).

By exploiting those results, we also give explicit active set complexity

bounds for both strongly convex and nonconvex objectives. While we

initially consider the probability simplex as feasible set, we subsequently

show how to adapt some of our results to generic polytopes. 1

4.1 Active set identification and FW variants

Identifying a surface containing a solution (and/or the support of sparse so-

lutions) represents a relevant task in optimization, since it allows to reduce the

dimension of the problem at hand and to apply a more sophisticated method in the

end (see, e.g., [29, 33, 83, 88, 118–120]). This is the reason why, in the last decades,

identification properties of optimization methods have been the subject of extensive

1This chapter is based on ŞActive Set Complexity of the Away-Step FrankŰWolfe AlgorithmŤ

in SIAM Journal on Optimization, vol. 30, iss. 3, pp. 2470-2500, 2020 [48].
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studies.

Beside its slow convergence rate discussed in Chapter 2, the classic FW approach

has another relevant drawback with respect to other algorithms: even when dealing

with the simplest polytopes, it cannot identify the active set in finite time (see,

e.g., [46]). Due to the renewed interest in the method, it has hence become a

relevant issue to determine whether some FW variants admit active set identification

properties similar to those of other first order methods. In this chapter we focus on

the AFW and analyze active set identification properties for problems of the form

min { 𝑓 (𝑥) | 𝑥 ∈ Δ𝑛−1} ,

where the objective 𝑓 is a differentiable function with Lipschitz regular gradient

and the feasible set is the probability simplex. When the algorithm converges to a

stationary point 𝑥∗ we say that it identifies the active set if it correctly determines

all the binding constraints. The active set complexity is then defined as the number

of iterations after which every sequence generated by the algorithm identifies this

subset of constraints. In the chapter, we extend this active set complexity definition

to include sequences convergent to certain subsets of stationary points. We also

extend some of the active set complexity results to general polytopes.

4.1.1 Contributions

It is a classic result that on polytopes and under strict complementarity condi-

tions the AFW with exact line search identifies the face containing the minimum

in finite time for strongly convex objectives [116]. More general active set iden-

tification properties for Frank-Wolfe variants have recently been analyzed in [46],

where the authors proved active set identification for sequences convergent to a sta-

tionary point, and AFW convergence to a stationary point for 𝐶2 objectives with

a finite number of stationary points and satisfying a technical convexity-concavity

assumption (this assumption is essentially a generalization of a property related

to quadratic possibly indefinite functions). The main contributions of this chapter

with respect to [46] are twofold:

• First, we give quantitative local and global active set identification complexity

bounds under suitable assumptions on the objective. The key element in the

computation of those bounds is a quantity that we call "active set radius".
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This radius determines a neighborhood of a stationary point for which the

AFW at each iteration identifies an active constraint (if there is any not yet

identified one). In particular, to get the active set complexity bound it is suf-

ficient to know how many iterations it takes for the AFW sequence to enter

this neighborhood.

• Second, we analyze the identification properties of AFW without the technical

convexity-concavity 𝐶2 assumption used in [46] (we consider general noncon-

vex objectives with Lipschitz gradient instead). More specifically, we prove

active set identification under different conditions on the step size and some

additional hypotheses on the support of stationary points.

In order to prove our results, we consider step sizes dependent on the Lipschitz

constant of the gradient (see, e.g., [22], [134] and references therein). By exploiting

the affine invariance property of the AFW (see, e.g., [136]), we also extend some of

the results to generic polytopes. In our analysis we see how the AFW identification

properties are related to the value of Lagrangian multipliers on stationary points.

This, to the best of our knowledge, is the first time that some active set complexity

bounds are given for a variant of the FW algorithm.

The chapter is organized as follows: after presenting the AFW method for opti-

mization on the simplex and some preliminaries in Section 4.2, we study the local

behaviour of this algorithm regarding the active set in Section 4.3. In Section 4.4 we

provide active set identification results in a quite general context, and apply these

to the strongly convex case for obtaining complexity bounds. Section 4.5 treats the

nonconvex case, giving both global and local active set complexity bounds. Finally,

in Section 4.6 we extend some of our results to generic polytopes.

4.1.2 Related work

In [60] the authors proved that the projected gradient method and other con-

verging sequential quadratic programming methods identify quasi-polyhedral faces

under some nondegeneracy conditions. In [61] those results were extended to the

case of exposed faces in polyhedral sets without the nondegeneracy assumptions.

This extension is particularly relevant to our work since the identification of ex-

posed faces in polyhedral sets is the framework that we use in studying the AFW

on polytopes. In [240] the results of [60] were generalized to certain nonpolyhedral
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surfaces called "𝐶 𝑝 identifiable" contained in the boundary of convex sets. A key

insight in these early works was the openness of a generalized normal cone defined

for the identifiable surface containing a nondegenerate stationary point. This open-

ness guarantees that, in a neighborhood of the stationary point, the projection of

the gradient identifies the related surface. It turns out that for linearly constrained

sets the generalized normal cone is related to positive Lagrangian multipliers on the

stationary point.

A generalization of [60] to nonconvex sets was proved in [62], while an extension

to nonsmooth objectives was first proved in [123]. Active set identification results

have also been proved for a variety of projected gradient, proximal gradient and

stochastic gradient related methods (see for instance [218] and references therein).

Recently, explicit active set complexity bounds have been given for some of the

methods listed above. Bounds for proximal gradient and block coordinate descent

method were analyzed in [196] and [195] under strong convexity assumptions on

the objective. A more systematic analysis covering many gradient related proxi-

mal methods (like, e.g., accelerated gradient, quasi Newton and stochastic gradient

proximal methods) was carried out in [218].

As for FW-like methods, in addition to the results in [116] and [46] discussed ear-

lier, identification results have been proved in [78] for fully corrective variants on

the probability simplex. However, since fully corrective variants require computing

the minimum of the objective on a given face at each iteration, they are not suited

for nonconvex problems.

4.2 Preliminaries

In this chapter, 𝑓 : Δ𝑛−1 → ❘ is a function with gradient having Lipschitz

constant 𝐿. The constant 𝐿 is also used as Lipschitz constant for ∇ 𝑓 with respect

to the norm ∥ · ∥1. This does not require any additional hypothesis on 𝑓 since

∥ · ∥1 ≥ ∥ · ∥, so that

∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ ≤ 𝐿∥𝑥 − 𝑦∥1

for every 𝑥, 𝑦 ∈ Δ𝑛−1. X∗ is the set of points satisfying first order optimality condi-

tions for the minimization of 𝑓 on Δ𝑛−1, that is ∇ 𝑓 (𝑥)⊤𝑑 ≥ 0 for every 𝑑 feasible

direction in 𝑥. We call X∗ the set of stationary points (see, e.g., [30]).

We define dist1 in the same way of the Euclidean distance dist but with respect to

∥ · ∥1 instead of ∥ · ∥. We now introduce the multiplier functions, which were recently
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used in [83] to define an active set strategy for minimization over the probability

simplex.

For every 𝑥 ∈ Δ𝑛−1, 𝑖 ∈ [1 : 𝑛] the multiplier function 𝜆𝑖 : Δ𝑛−1 → ❘ is defined as

𝜆𝑖 (𝑥) = ∇ 𝑓 (𝑥)⊤(𝑒𝑖 − 𝑥),

or in vector form

𝜆(𝑥) = ∇ 𝑓 (𝑥) − 𝑥⊤∇ 𝑓 (𝑥)𝑒 .

For every 𝑥 ∈ X∗ these functions coincide with the Lagrangian multipliers of the

constraints 𝑥𝑖 ≥ 0.

We define the the extended support in 𝑥 ∈ X∗ as

𝐼 (𝑥) = {𝑖 ∈ [1 : 𝑛] | 𝜆𝑖 (𝑥) = 0} ,

and with 𝐼𝑐 (𝑥) = {1, ...𝑛} \ 𝐼 (𝑥) the set of binding constraints in 𝑥. By first order

optimality conditions (for minimization) we have 𝜆𝑖 (𝑥) ≥ 0 for every 𝑖 ∈ [1 : 𝑛] and

therefore

𝜆𝑖 (𝑥) > 0 ∀ 𝑖 ∈ 𝐼𝑐 (𝑥) .

We use the notation 𝑎𝑘 → 𝐴 for the convergence of a sequence {𝑎𝑘 } to the set 𝐴

as equivalent to dist(𝑎𝑘 , 𝐴) → 0.

Keeping in mind that

Δ𝑛−1 = conv({𝑒𝑖, 𝑖 = 1, . . . , 𝑛}),

we can assume that LMOΔ𝑛−1
(𝑟) always returns a vertex of the probability simplex,

that is

LMOΔ𝑛−1
(𝑟) = 𝑒�̂�

with �̂� ∈ arg min
𝑖

𝑟𝑖 .

4.2.1 FW and AFW on the probability simplex

Algorithm 1 is the classical FW method on the probability simplex. At each

iteration, this first order method generates a descent direction that points from the

current iterate 𝑥𝑘 to a vertex 𝑠𝑘 minimizing the scalar product with the gradient,

and then moves along this search direction of a suitable step size if stationarity

conditions are not satisfied.
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Algorithm 5 Frank–Wolfe method on the probability simplex

1: Initialize 𝑥0 ∈ Δ𝑛−1, 𝑘 := 0

2: Set 𝑠𝑘 := 𝑒�̂�, with �̂� ∈ arg min
𝑖

∇𝑖 𝑓 (𝑥𝑘 ) and 𝑑FW
𝑘

:= 𝑠𝑘 − 𝑥𝑘
3: if 𝑥𝑘 is stationary then

4: STOP

5: end if

6: Choose the step size 𝛼𝑘 ∈ (0, 1] with a suitable criterion

7: Update: 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑FW
𝑘

8: Set 𝑘 := 𝑘 + 1. Go to Step 2

The away step variant for the unit simplex is instead reported in Algorithm 2.

When the AFW performs an away step, we have that either the support of the

current iterate stays the same or decreases of one (we get rid of the component

whose index is associated to the away direction in case 𝛼𝑘 = 𝛼max

𝑘
). On the other

hand, when the algorithm performs a Frank Wolfe step, only the vertex given by the

LMO is eventually added to the support of the current iterate. These two properties

are fundamental for the active set identification of the AFW.

Algorithm 6 Away–step Frank–Wolfe on the probability simplex

1: 𝑥0 ∈ Δ𝑛−1, 𝑘 := 0

2: Set 𝑠𝑘 := 𝑒�̂�, with �̂� ∈ arg min
𝑖

∇𝑖 𝑓 (𝑥𝑘 ) and 𝑑FW
𝑘

:= 𝑠𝑘 − 𝑥𝑘
3: if 𝑥𝑘 is stationary then

4: STOP

5: end if

6: Let 𝑣𝑘 := 𝑒 �̂� , with �̂� ∈ arg max
𝑗∈𝑆𝑘

∇ 𝑗 𝑓 (𝑥𝑘 ), 𝑆𝑘 := { 𝑗 : (𝑥𝑘 ) 𝑗 > 0} and 𝑑A
𝑘

:= 𝑥𝑘 − 𝑣𝑘

7: if −∇ 𝑓 (𝑥𝑘 )⊤𝑑FW
𝑘

≥ −∇ 𝑓 (𝑥𝑘 )⊤𝑑A𝑘 then

8: 𝑑𝑘 := 𝑑FW
𝑘

, and 𝛼max

𝑘
:= 1

9: else

10: 𝑑𝑘 := 𝑑A
𝑘

, and 𝛼max

𝑘
:= (𝑥𝑘 )𝑖/(1 − (𝑥𝑘 )𝑖)

11: end if

12: Choose the step size 𝛼𝑘 ∈ (0, 𝛼max

𝑘
] with a suitable criterion

13: Update: 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘
14: 𝑘 := 𝑘 + 1. Go to step 2.



4.2 Preliminaries 85

4.2.2 Technical results related to step sizes

In order to obtain convergence results we of course need some lower bound on the

step size. In particular, we lower bound 𝛼𝑘 with the Lipschitz constant dependent

step size �̄�𝑘 introduced in Section 2.5:

�̄�𝑘 = min

(
𝛼max

𝑘 ,
−∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘
𝐿∥𝑑𝑘 ∥2

)
, (4.2.1)

We now prove several properties related to the step size given in (4.2.1). First, we

prove that it is always a lower bound on the step size obtained by the exact line

search. We then prove that

𝛼𝑘 ≥ min(𝛼max

𝑘 , 𝑐
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
) for some 𝑐 > 0,

for the Armijo line search and if we impose the weak Wolfe conditions, setting

𝛼𝑘 = 𝛼
max

𝑘
whenever they cannot be satisfied. When 𝑐 ≥ 1 then (4.2.1) is of course

a lower bound for the step size 𝛼𝑘 , and when 𝑐 < 1 we can still recover (4.2.1) by

considering �̃� =
𝐿
𝑐

instead of 𝐿 as Lipschitz constant.

Lemma 4.2.1. Consider a sequence {𝑥𝑘 } in Δ𝑛−1 such that 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 with

𝛼𝑘 ∈ ❘≥0, 𝑑𝑘 ∈ ❘𝑛. Let �̄�𝑘 be defined as in (4.2.1), let 𝑝𝑘 = −∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 and assume

𝑝𝑘 > 0. Then:

1. If 0 ≤ 𝛼𝑘 ≤ 2𝑝𝑘/(∥𝑑𝑘 ∥2𝐿), the sequence {𝑥𝑘 } has the property (4.5.33).

2. If 𝛼𝑘 = �̄�𝑘 then (4.5.3) is satisfied with 𝜌 =
1

2
. Additionally, we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥ 𝐿
∥𝑥𝑘+1 − 𝑥𝑘 ∥2

2
. (4.2.2)

3. If 𝛼𝑘 is given by exact line search, then 𝛼𝑘 ≥ �̄�𝑘 and (4.5.3) is again satisfied

with 𝜌 =
1

2
.

If 𝛼𝑘 ≤ 𝛼max

𝑘
the condition of point 1 implies 0 ≤ 𝛼𝑘 ≤ 2�̄�𝑘 .

Proof. By the standard descent lemma [31, Proposition 6.1.2] we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘 ) ≥ 𝛼𝑝𝑘 − 𝛼2 𝐿∥𝑑𝑘 ∥2

2
. (4.2.3)

It is immediate to check

𝛼∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 + 𝛼2 𝐿∥𝑑𝑘 ∥2

2
≤ 0 , (4.2.4)
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for every 0 ≤ 𝛼 ≤ 2𝑝𝑘
𝐿∥𝑑𝑘 ∥2 .

𝛼𝑝𝑘 − 𝛼2 𝐿∥𝑑𝑘 ∥2

2
≥ 𝛼𝑝𝑘/2 ≥ 𝛼2 𝐿∥𝑑𝑘 ∥2

2
(4.2.5)

for every 0 ≤ 𝛼 ≤ 𝑝𝑘
𝐿∥𝑑𝑘 ∥2 .

1. For every 𝑥 ∈ conv(𝑥𝑘 , 𝑥𝑘+1) ⊆
{
𝑥𝑘 + 𝛼𝑑𝑘 | 0 ≤ 𝛼 ≤ 2𝑝𝑘

𝐿∥𝑑𝑘 ∥2

}
, we have

𝑓 (𝑥) = 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + 𝛼∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 + 𝛼2 𝐿∥𝑑𝑘 ∥2

2
≤ 𝑓 (𝑥𝑘 ) ,

where we used (4.2.3) in the first inequality and (4.2.4) in the second inequality.

2. We have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + �̄�𝑘𝑑𝑘 ) ≥ �̄�𝑘 𝑝𝑘/2 ,

where we have the hypotheses to apply (4.2.5) since 0 ≤ �̄�𝑘 ≤ 𝑝𝑘
𝐿∥𝑑𝑘 ∥2 . Again by

(4.2.5)

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + �̄�𝑘𝑑𝑘 ) ≥ �̄�2

𝑘

𝐿∥𝑑𝑘 ∥2

2
= 𝐿

∥𝑥𝑘 − 𝑥𝑘+1∥2

2
.

3. If 𝛼𝑘 = 𝛼
max

𝑘
then there is nothing to prove since �̄�𝑘 ≤ 𝛼max

𝑘
. Otherwise we have

0 =
𝜕

𝜕𝛼
𝑓 (𝑥𝑘 + 𝛼𝑑𝑘 ) |𝛼=𝛼𝑘 = 𝑑⊤𝑘 (∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 )) (4.2.6)

and therefore

−𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘 ) = −𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘 ) + 𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) = −𝑑⊤𝑘 (∇ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ))
≤ 𝐿∥𝑑𝑘 ∥∥𝑥𝑘 − (𝑥𝑘 + 𝛼𝑘𝑑𝑘 )∥ = 𝛼𝑘𝐿∥𝑑𝑘 ∥2 ,

(4.2.7)

where we used (4.2.6) in the first equality and the Lipschitz condition in the in-

equality. From (4.2.7) it follows

𝛼𝑘 ≥
−𝑑⊤

𝑘
∇ 𝑓 (𝑥𝑘 )

𝐿∥𝑑𝑘 ∥2
≥ �̄�𝑘

and this proves the first claim. As for the second,

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + �̄�𝑘𝑑𝑘 ) ≥
�̄�𝑘

2
𝑝𝑘 ,

where the first inequality follows from the definition of exact line search and the

second by point 2 of the lemma. □
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Corollary 4.2.2. Under the hypotheses of Lemma 4.2.1, assume that 𝑓 (𝑥𝑘 ) is

monotonically decreasing and assume that for some subsequence 𝑘 ( 𝑗) we have 𝑥𝑘 ( 𝑗)+1 =

𝑥𝑘 ( 𝑗) + �̄�𝑘 ( 𝑗)𝑑𝑘 ( 𝑗). Then

∥𝑥𝑘 ( 𝑗) − 𝑥𝑘 ( 𝑗)+1∥ → 0 .

Proof. By (4.2.2) we have

𝑓 (𝑥𝑘 ( 𝑗)) − 𝑓 (𝑥𝑘 ( 𝑗)+1) ≥
𝐿

2
∥𝑥𝑘 ( 𝑗) − 𝑥𝑘 ( 𝑗)+1∥2

and the conclusion follows by monotonicity and boundedness. □

We now briefly recall the Armijo line search and the Wolfe conditions with a

couple of adaptations to our setting. For the Armijo search we impose the usual

condition of sufficient decrease

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝑐1𝛼𝑘 𝑝𝑘 (4.2.8)

and assume that the tentative step sizes are given by 𝛽(0)
𝑘

= 𝛼max

𝑘
, 𝛽

( 𝑗+1)
𝑘

= 𝛾𝛽
( 𝑗)
𝑘

for

𝑐1, 𝛾 ∈ (0, 1).

Lemma 4.2.3. If 𝛼𝑘 is determined by the Armijo line search described above then

𝛼𝑘 ≥ min(𝛼max

𝑘 , 2𝛾(1 − 𝑐1)
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
) ≥ min{1, 2𝛾(1 − 𝑐1)}�̄�𝑘 (4.2.9)

with �̄�𝑘 = min(𝛼max

𝑘
,

𝑝𝑘
𝐿∥𝑑𝑘 ∥2 ) as in (4.2.1), and (4.5.3) holds with 𝜌 = 𝑐1 min{1, 2𝛾(1−

𝑐1)} < 1.

Proof. From the upper bound on 𝑓 given in (4.2.3) it follows

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘 ) ≥ 𝑐1𝛼𝑝𝑘 for 𝛼 ∈ [0, 2(1 − 𝑐1)
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
] (4.2.10)

and

𝛼𝑘 > 2𝛾(1 − 𝑐1)
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
.

Therefore

𝛼𝑘 ≥ min(𝛼max

𝑘 , 2𝛾(1 − 𝑐1)
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
) ≥ min{1, 2𝛾(1 − 𝑐1)}�̄�𝑘 , (4.2.11)

which proves (4.2.9). We also have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝑐1𝛼𝑘 𝑝𝑘 ≥ 𝑐1 min{1, 2𝛾(1 − 𝑐1)}�̄�𝑘 𝑝𝑘 , (4.2.12)

where we used the Armijo condition (4.2.8) in the first inequality and (4.2.9) in the

second. Hence, by 𝑐1, 𝛾 ∈ (0, 1) and 𝑐1(1 − 𝑐1) ≤ 1

4
, we get that equation (4.5.3)

holds with 𝜌 = 𝑐1 min{1, 2𝛾(1 − 𝑐1)} < 1. □
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The weak Wolfe conditions [194] are (4.2.8) together with

−𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≤ 𝑐2𝑝𝑘 (4.2.13)

for some 𝑐2 ∈ (𝑐1, 1).

Lemma 4.2.4. Assume 𝛼𝑘 = min(𝛼max

𝑘
, �̃�𝑘 ) with �̃�𝑘 satisfying the weak Wolfe con-

ditions. Then

𝛼𝑘 ≥ min(𝛼max

𝑘 , (1 − 𝑐2)
𝑝𝑘

𝐿∥𝑑𝑘 ∥2
) ≥ (1 − 𝑐2)�̄�𝑘 (4.2.14)

and (4.5.3) holds with 𝜌 = 𝑐1(1 − 𝑐2) < 1.

Proof. Case a): 𝛼𝑘 = 𝛼
max

𝑘
. Then trivially 𝛼𝑘 ≥ �̄�𝑘 and by point 2 of Lemma 4.2.1,

equation (4.5.3) is satisfied with 𝜌 =
1

2
.

Case b): the second weak Wolfe condition holds. We have

𝑐2𝑝𝑘 ≥ −𝑑⊤𝑘 ∇ 𝑓 (𝑥𝑘+𝛼𝑘𝑑𝑘 ) = 𝑑⊤𝑘 (−∇ 𝑓 (𝑥𝑘 )+(∇ 𝑓 (𝑥𝑘 )−∇ 𝑓 (𝑥𝑘+𝛼𝑘𝑑𝑘 ))) ≥ 𝑝𝑘−𝛼𝑘𝐿∥𝑑𝑘 ∥2

(4.2.15)

where we used (4.2.13) in the first inequality. Rearranging (4.2.15) we obtain

𝛼𝑘 ≥
(1 − 𝑐2)𝑝𝑘
𝐿∥𝑑𝑘 ∥2

. (4.2.16)

As for part 1 we can now use the Armijo condition (4.2.8) to obtain (4.5.3) with

𝜌 = 𝑐1(1 − 𝑐2) :

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝑐1𝛼𝑘 𝑝𝑘 ≥ 𝑐1(1 − 𝑐2)�̄�𝑘 𝑝𝑘 , (4.2.17)

where we used (4.2.16) in the second inequality. To conclude, since 1

4
≥ 𝑐1(1 −

𝑐1) > 𝑐1(1 − 𝑐2) for 0 < 𝑐1 < 𝑐2 < 1, the bound (4.5.3) holds in both cases with

𝜌 = 𝑐1(1 − 𝑐2). □

4.2.3 Elementary inequalities

In several proofs we need some elementary inequalities concerning the euclidean

norm ∥ · ∥ and the norm ∥ · ∥1.

Lemma 4.2.5. Given {𝑥, 𝑦} ⊂ Δ𝑛−1, 𝑖 ∈ [1 : 𝑛] we have that

1. ∥𝑒𝑖 − 𝑥∥ ≤
√

2(𝑒𝑖 − 𝑥)𝑖 holds; that

2. (𝑦 − 𝑥)𝑖 ≤ ∥𝑦 − 𝑥∥1/2 holds; and
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3. if {𝑥𝑘 } is a sequence generated on the probability simplex by the AFW then

∥𝑥𝑘+1 − 𝑥𝑘 ∥1 ≤ 2∥𝑥𝑘+1 − 𝑥𝑘 ∥ for every 𝑘.

Proof. 1. (𝑒𝑖 − 𝑥) 𝑗 = −𝑥 𝑗 for 𝑗 ≠ 𝑖, (𝑒𝑖 − 𝑥)𝑖 = 1 − 𝑥𝑖 =
∑
𝑗≠𝑖 𝑥 𝑗 . In particular

∥𝑒𝑖 − 𝑥∥ = (
∑︁

𝑗≠𝑖

𝑥2

𝑗 + (𝑒𝑖 − 𝑥)2

𝑖 )
1

2 ≤ ((
∑︁

𝑗≠𝑖

𝑥 𝑗 )2 + (1 − 𝑥𝑖)2) 1

2 =
√

2(
∑︁

𝑗≠𝑖

𝑥 𝑗 ) =
√

2(𝑒𝑖 − 𝑥)𝑖

2. Since
∑
𝑗∈[1:𝑛] 𝑥 𝑗 =

∑
𝑗∈[1:𝑛] 𝑦 𝑗 so that

∑(𝑥 − 𝑦) 𝑗 = 0 we have

(𝑦 − 𝑥)𝑖 =
∑︁

𝑗≠𝑖

(𝑥 − 𝑦) 𝑗

and as a consequence

∥𝑦 − 𝑥∥1 =

∑︁

𝑗∈[1:𝑛]
| (𝑦 − 𝑥) 𝑗 | ≥ (𝑦 − 𝑥)𝑖 +

∑︁

𝑗≠𝑖

(𝑥 − 𝑦) 𝑗 = 2(𝑦 − 𝑥)𝑖 .

3. We have 𝑥𝑘+1−𝑥𝑘 = 𝛼𝑘𝑑𝑘 with 𝑑𝑘 = ±(𝑒𝑖−𝑥𝑘 ) for some 𝑖 ∈ [1 : 𝑛]. By homogeneity

it suffices to prove ∥𝑑𝑘 ∥ ≥ 1

2
∥𝑑𝑘 ∥1. We have

∥𝑑𝑘 ∥ ≥ 1 − (𝑥𝑘 )𝑖 =
1

2
(1 − (𝑥𝑘 )𝑖 +

∑︁

𝑗≠𝑖

(𝑥𝑘 ) 𝑗 ) =
1

2
∥𝑑𝑘 ∥1 ,

where in the first equality we used
∑𝑛
𝑖=1

(𝑥𝑘 )𝑖 = 1 (so that 1 − (𝑥𝑘 )𝑖 =
∑
𝑗≠𝑖 (𝑥𝑘 ) 𝑗) and

in the second equality we used 0 ≤ 𝑥𝑘 ≤ 1. □

4.3 Local active set variables identification prop-

erty of the AFW

In this section we prove a rather technical proposition which is the key tool to

give quantitative estimates for the active set complexity. It states that when the

sequence is close enough to a fixed stationary point at every step the AFW identifies

one variable violating the complementarity conditions with respect to the multiplier

functions on this stationary point (if it exists), and it sets the variable to 0 with an

away step. The main difficulty is giving a tight estimate for how close the sequence

must be to a stationary point for this identifying away step to take place.

A lower bound on the size of the nonmaximal away steps is needed in the following

theorem, since otherwise for steps small enough the sequence can stay arbitrarily

close to the starting point.
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Let {𝑥𝑘 } be the sequence of points generated by the AFW, and let 𝑥∗ be a fixed

point in X∗. Since 𝑥∗ does not vary in this section, we write for simplicity 𝐼 and 𝐼𝑐

instead of 𝐼 (𝑥∗) and 𝐼𝑐 (𝑥∗), respectively, in the rest of this section.

Note that by complementary slackness we have 𝑥∗𝑗 = 0 for all 𝑗 ∈ 𝐼𝑐.
Before proving the main theorem we need to prove the following lemma to bound

the Lipschitz constant of the multipliers on stationary points.

Lemma 4.3.1. Given ℎ > 0, 𝑥𝑘 ∈ Δ𝑛−1 such that ∥𝑥𝑘 − 𝑥∗∥1 ≤ ℎ let

𝑂𝑘 = {𝑖 ∈ 𝐼𝑐 | (𝑥𝑘 )𝑖 = 0}

and assume that 𝑂𝑘 ≠ 𝐼
𝑐. Let 𝛿𝑘 = max𝑖∈[1:𝑛]\𝑂𝑘 𝜆𝑖 (𝑥∗). For every 𝑖 ∈ {1, ..., 𝑛}:

|𝜆𝑖 (𝑥∗) − 𝜆𝑖 (𝑥𝑘 ) | ≤ ℎ(𝐿 + 𝛿𝑘
2
) . (4.3.1)

Proof. By considering the definition of 𝜆(𝑥), we can write

|𝜆𝑖 (𝑥𝑘 ) − 𝜆𝑖 (𝑥∗) | = |∇ 𝑓 (𝑥𝑘 )𝑖 − ∇ 𝑓 (𝑥∗)𝑖 + ∇ 𝑓 (𝑥∗)⊤(𝑥∗ − 𝑥𝑘 ) + (∇ 𝑓 (𝑥∗) − ∇ 𝑓 (𝑥𝑘 ))⊤𝑥𝑘 |
≤ |∇ 𝑓 (𝑥∗)𝑖 − ∇ 𝑓 (𝑥𝑘 )𝑖 + (∇ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥∗))⊤𝑥𝑘 | + |∇ 𝑓 (𝑥∗)⊤(𝑥∗ − 𝑥𝑘 ) | .

(4.3.2)

By taking into account the fact that 𝑥𝑘 ∈ Δ𝑛−1 and gradient of 𝑓 is Lipschitz

continuous, we have

|∇ 𝑓 (𝑥𝑘 )𝑖 − ∇ 𝑓 (𝑥∗)𝑖 + (∇ 𝑓 (𝑥∗) − ∇ 𝑓 (𝑥𝑘 ))⊤𝑥𝑘 | = | (∇ 𝑓 (𝑥∗) − ∇ 𝑓 (𝑥𝑘 ))⊤(𝑥𝑘 − 𝑒𝑖) |
≤ ∥∇ 𝑓 (𝑥∗) − ∇ 𝑓 (𝑥𝑘 )∥1∥𝑥𝑘 − 𝑒𝑖∥∞ ≤ 𝐿ℎ,

(4.3.3)

where the last inequality is justified by the Hölder inequality with exponents 1,∞.

We now bound the second term in the right-hand side of (4.3.2). Let

𝑢 𝑗 = max{0, (𝑥∗ − 𝑥𝑘 ) 𝑗 }, 𝑙 𝑗 = max{0,−(𝑥∗ − 𝑥𝑘 ) 𝑗 } .

We have
∑
𝑗∈[1:𝑛] 𝑥

∗
𝑗 =

∑
𝑗∈[1:𝑛] (𝑥𝑘 ) 𝑗 = 1 since {𝑥∗, 𝑥𝑘 } ⊂∈ Δ𝑛−1, so that

∑︁

𝑗∈[1:𝑛]
(𝑥∗ − 𝑥𝑘 ) 𝑗 =

∑︁

𝑗∈[1:𝑛]
(𝑢 𝑗 − 𝑙 𝑗 ) = 0 and hence

∑︁

𝑗∈[1:𝑛]
𝑢 𝑗 =

∑︁

𝑖∈[1:𝑛]
𝑙 𝑗 .

Moreover, ℎ′
def

= 2
∑
𝑗∈[1:𝑛] 𝑢 𝑗 = 2

∑
𝑗∈[1:𝑛] 𝑙 𝑗 =

∑
𝑗∈[1:𝑛] 𝑢 𝑗 + 𝑙 𝑗 =

∑
𝑗∈[1:𝑛] |𝑥∗𝑗 − (𝑥𝑘 ) 𝑗 | ≤ ℎ,

hence

ℎ′/2 =

∑︁

𝑗∈[1:𝑛]
𝑢 𝑗 =

∑︁

𝑗∈[1:𝑛]
𝑙 𝑗 ≤ ℎ/2 .
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We can finally bound the second piece of (4.3.2), using 𝑢 𝑗 = 𝑙 𝑗 = 0 for all 𝑗 ∈ 𝑂𝑘

(because (𝑥𝑘 ) 𝑗 = 𝑥∗𝑗 = 0):

|∇ 𝑓 (𝑥∗)⊤(𝑥∗ − 𝑥𝑘 ) | = |∇ 𝑓 (𝑥∗)⊤𝑢 − ∇ 𝑓 (𝑥∗)⊤𝑙 | ≤ ℎ′

2
(∇ 𝑓 (𝑥∗)𝑀 − ∇ 𝑓 (𝑥∗)𝑚)

≤ ℎ

2
(∇ 𝑓 (𝑥∗)𝑀 − ∇ 𝑓 (𝑥∗)𝑚), (4.3.4)

where ∇ 𝑓 (𝑥𝑘 )𝑀 and ∇ 𝑓 (𝑥𝑘 )𝑚 are respectively the maximum and minimum compo-

nent of the gradient in [1 : 𝑛] \𝑂𝑘 .

Now, considering inequalities (4.3.2), (4.3.3) and (4.3.4), we can write

|𝜆𝑖 (𝑥𝑘 ) − 𝜆𝑖 (𝑥∗) | ≤ 𝐿ℎ + ℎ
2
(∇ 𝑓 (𝑥∗)𝑀 − ∇ 𝑓 (𝑥∗)𝑚).

By taking into account the definition of 𝛿𝑘 and the fact that 𝜆(𝑥∗) 𝑗 ≥ 0 for all 𝑗 , we

can write

𝛿𝑘 = max
𝑖, 𝑗∈[1:𝑛]\𝑂𝑘

(∇ 𝑓 (𝑥∗)𝑖 − ∇ 𝑓 (𝑥∗) 𝑗 ) ≥ ∇ 𝑓 (𝑥∗)𝑀 − ∇ 𝑓 (𝑥∗)𝑚 .

We can finally write

|𝜆𝑖 (𝑥𝑘 ) − 𝜆𝑖 (𝑥∗) | ≤ ℎ(𝐿 + 𝛿𝑘
2
),

thus concluding the proof. □

We now show a few simple but important results that connect the multipliers

and the directions selected by the AFW algorithm. For a fixed 𝑥𝑘 the multipliers

𝜆𝑖 (𝑥𝑘 ) are the values of the linear function 𝑥 ↦→ ∇ 𝑓 (𝑥𝑘 )⊤𝑥 on the vertices of Δ𝑛−1

(up to a constant), which in turn are the values considered in the AFW to select

the direction. This basic observation is essentially everything we need for the next

results.

Lemma 4.3.2. Using the notation introduced in Algorithm 2, we have:

(a) If max{𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ 𝑆𝑘 } > max{−𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ [1 : 𝑛]}, then the AFW performs

an away step with 𝑑𝑘 = 𝑑
A
𝑘

= 𝑥𝑘 − 𝑒�̂� for some 𝑖 ∈ argmax{𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ 𝑆𝑘 }.

(b) For every 𝑖 ∈ [1 : 𝑛] \ 𝑆𝑘 if 𝜆𝑖 (𝑥𝑘 ) > 0 then (𝑥𝑘+1)𝑖 = (𝑥𝑘 )𝑖 = 0.

Proof. (a) By the definition of the away direction 𝑑A
𝑘

it follows

𝑑A
𝑘

∈ argmax{−∇ 𝑓 (𝑥𝑘 )⊤𝑑 | 𝑑 = 𝑥𝑘 − 𝑒𝑖, 𝑖 ∈ 𝑆𝑘 }
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which implies

𝑑A
𝑘

= 𝑥𝑘−𝑒�̂� for some �̂� ∈ argmax{−∇ 𝑓 (𝑥𝑘 )⊤(𝑥𝑘−𝑒𝑖) | 𝑖 ∈ 𝑆𝑘 } = argmax{𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ 𝑆𝑘 } .
(4.3.5)

As a consequence of (4.3.5)

−∇ 𝑓 (𝑥𝑘 )⊤𝑑A𝑘 = max{−∇ 𝑓 (𝑥𝑘 )⊤𝑑 | 𝑑 = 𝑥𝑘 − 𝑒𝑖, 𝑖 ∈ 𝑆𝑘 } = max{𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ 𝑆𝑘 } ,
(4.3.6)

where the second equality follows from 𝜆𝑖 (𝑥𝑘 ) = −∇ 𝑓 (𝑥𝑘 )⊤𝑑 with 𝑑 = 𝑥𝑘 − 𝑒𝑖.
Analogously

−∇ 𝑓 (𝑥𝑘 )⊤𝑑FW
𝑘

= max{−∇ 𝑓 (𝑥𝑘 )⊤𝑑 | 𝑑 = 𝑒𝑖 − 𝑥𝑘 , 𝑖 ∈ {1, ...𝑛}}
= max{−𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ {1, ...𝑛}} .

(4.3.7)

We can now prove that −∇ 𝑓 (𝑥𝑘 )⊤𝑑FW
𝑘

< −∇ 𝑓 (𝑥𝑘 )⊤𝑑A𝑘 , so that the away direction

is selected under assumption (a):

− ∇ 𝑓 (𝑥𝑘 )⊤𝑑FW
𝑘

= max{−𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ {1, ...𝑛}}
< max{𝜆𝑖 (𝑥𝑘 ) | 𝑖 ∈ 𝑆𝑘 } = −∇ 𝑓 (𝑥𝑘 )⊤𝑑A𝑘 ,

where we used (4.3.6) and (4.3.7) for the first and the second equality respectively,

and the inequality is true by hypothesis.

(b) By considering the fact that (𝑥𝑘 )𝑖 = 0, we surely cannot choose the vertex 𝑒𝑖 to

define the away-step direction. Furthermore, since 𝜆(𝑥𝑘 )𝑖 = ∇ 𝑓 (𝑥𝑘 )⊤(𝑒𝑖 − 𝑥𝑘 ) > 0,

direction 𝑑 = 𝑒𝑖−𝑥𝑘 cannot be chosen as the Frank-Wolfe direction at step 𝑘 as well.

This guarantees that (𝑥𝑘+1)𝑖 = 0. □

We can now prove the main theorem. The strategy is to split [1 : 𝑛] in three

subsets 𝐼, 𝐽𝑘 ⊂ 𝐼𝑐 and 𝑂𝑘 = 𝐼
𝑐 \ 𝐽𝑘 and use Lemma 4.3.1 to control the variation of

the multiplier functions on each of these three subsets. In the proof we examine two

possible cases under the assumption of being close enough to a stationary point.

If 𝐽𝑘 = ∅, which means that the current iteration of the AFW has identified the

support of the stationary point, then we show that the AFW chooses a direction

contained in the support, so that also 𝐽𝑘+1 = ∅.

If 𝐽𝑘 ≠ ∅, we show that in the neighborhood claimed by the theorem the largest

multiplier in absolute value is always positive, with index in 𝐽𝑘 , and big enough,

so that the corresponding away step is maximal. This means that the AFW at the

iteration 𝑘 + 1 identifies a new active variable.
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Theorem 4.3.3. If 𝐼𝑐 is not the empty set, let us define

𝛿min = min{𝜆𝑖 (𝑥∗) | 𝑖 ∈ 𝐼𝑐} > 0, 𝐽𝑘 = {𝑖 ∈ 𝐼𝑐 | (𝑥𝑘 )𝑖 > 0} .

Assume that for every 𝑘 such that 𝑑𝑘 = 𝑑A
𝑘

the step size 𝛼𝑘 is either maximal

with respect to the boundary condition (that is 𝛼𝑘 = 𝛼max

𝑘
) or 𝛼𝑘 ≥ −∇ 𝑓 (𝑥𝑘)⊤𝑑𝑘

𝐿∥𝑑𝑘 ∥2 . If

∥𝑥𝑘 − 𝑥∗∥1 <
𝛿min

𝛿min+2𝐿
= 𝑟∗ then

|𝐽𝑘+1 | ≤ max{0, |𝐽𝑘 | − 1} . (4.3.8)

The latter relation also holds in case 𝐼𝑐 = ∅ whence we put 𝑟∗ = +∞.

Proof. If 𝐼𝑐 = ∅, or equivalently, if 𝜆(𝑥∗) = 0, then there is nothing to prove since

𝐽𝑘 ⊂ 𝐼𝑐 = ∅ ⇒ |𝐽𝑘 | = |𝐽𝑘+1 | = 0.

So assume 𝐼𝑐 ≠ ∅. Recall that 𝜆𝑖 (𝑥∗) > 0 for every 𝑖 ∈ 𝐼𝑐, so that necessarily

𝛿min > 0.

For every 𝑖 ∈ [1 : 𝑛], by Lemma 4.3.1

𝜆𝑖 (𝑥𝑘 ) ≥ 𝜆𝑖 (𝑥∗) − ∥𝑥𝑘 − 𝑥∗∥1(𝐿 + 𝛿𝑘
2
)

> 𝜆𝑖 (𝑥∗) − 𝑟∗(𝐿 + 𝛿𝑘
2
) = 𝜆𝑖 (𝑥∗) −

𝛿min(𝐿 + 𝛿𝑘
2
)

2𝐿 + 𝛿min

.

(4.3.9)

We now distinguish two cases.

Case 1: |𝐽𝑘 | = 0. Then 𝛿𝑘 = 0 because 𝐽𝑘 ∪ 𝐼 = 𝐼 and 𝜆𝑖 (𝑥∗) = 0 for every 𝑖 ∈ 𝐼.
Relation (4.3.9) becomes

𝜆𝑖 (𝑥𝑘 ) ≥ 𝜆𝑖 (𝑥∗) −
𝛿min𝐿

2𝐿 + 𝛿min

,

so that for every 𝑖 ∈ 𝐼𝑐, since 𝜆𝑖 (𝑥∗) ≥ 𝛿min, we have

𝜆𝑖 (𝑥𝑘 ) ≥ 𝛿min − 𝛿min𝐿

2𝐿 + 𝛿min

> 0 . (4.3.10)

This means that for every 𝑖 ∈ 𝐼𝑐 we have (𝑥𝑘 )𝑖 = 0 by the Case 1 condition 𝐽𝑘 = ∅
and 𝜆𝑖 (𝑥𝑘 ) > 0 by (4.3.10). We can then apply part (b) of Lemma 4.3.2 and conclude

(𝑥𝑘+1)𝑖 = 0 for every 𝑖 ∈ 𝐼𝑐. Hence 𝐽𝑘+1 = ∅ = 𝐽𝑘 and Theorem 4.3.3 is proved in this

case.

Case 2. |𝐽𝑘 | > 0. For every 𝑖 ∈ argmax{𝜆 𝑗 (𝑥∗) | 𝑗 ∈ 𝐽𝑘 }, we have

𝜆𝑖 (𝑥∗) = max
𝑗∈𝐽𝑘

𝜆 𝑗 (𝑥∗) = max
𝑗∈𝐽𝑘∪𝐼

𝜆 𝑗 (𝑥∗),
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where we used the fact that 𝜆 𝑗 (𝑥∗) = 0 < 𝜆𝑖 (𝑥∗) for every 𝑗 ∈ 𝐼. Then by the

definition of 𝛿𝑘 , it follows

𝜆𝑖 (𝑥∗) = 𝛿𝑘 .

Thus (4.3.9) implies

𝜆𝑖 (𝑥𝑘 ) > 𝜆𝑖 (𝑥∗) −
𝛿min(𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿min

= 𝛿𝑘 −
𝛿min(𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿min

, (4.3.11)

where we used (4.3.9) in the inequality. But since 𝛿𝑘 ≥ 𝛿min and the function

𝛿min ↦→ − 𝛿min

2𝐿+𝛿min
is decreasing in ❘>0 we have

𝛿𝑘 −
𝛿min(𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿min

≥ 𝛿𝑘 −
𝛿𝑘 (𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿𝑘
=
𝛿𝑘

2
. (4.3.12)

Concatenating (4.3.11) with (4.3.12), we finally obtain

𝜆𝑖 (𝑥𝑘 ) >
𝛿𝑘

2
. (4.3.13)

We now show that 𝑑𝑘 = 𝑥𝑘 − 𝑒 �̂� with �̂� ∈ 𝐽𝑘 .
For every 𝑗 ∈ 𝐼, since 𝜆 𝑗 (𝑥∗) = 0, again by Lemma 4.3.1, we have

|𝜆 𝑗 (𝑥𝑘 ) | = |𝜆 𝑗 (𝑥𝑘 ) − 𝜆 𝑗 (𝑥∗) | ≤ ∥𝑥𝑘 − 𝑥∗∥1(𝐿 + 𝛿𝑘/2)

< 𝑟∗(𝐿 + 𝛿𝑘/2) =
𝛿min(𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿min

≤ 𝛿𝑘/2,
(4.3.14)

where we used ∥𝑥𝑘 − 𝑥∗∥1 < 𝑟∗, which is true by definition, in the first inequality,

and rearranged (4.3.12) to get the last inequality. For every 𝑗 ∈ 𝐼𝑐, by (4.3.9), we

can write

𝜆 𝑗 (𝑥𝑘 ) > 𝛿min −
𝛿min(𝐿 + 𝛿𝑘

2
)

2𝐿 + 𝛿min

> −𝛿𝑘
2
.

Using this together with (4.3.14) and (4.3.11), we get −𝜆 𝑗 (𝑥𝑘 ) < 𝛿𝑘/2 < 𝜆ℎ (𝑥𝑘 ) for

every 𝑗 ∈ [1 : 𝑛], ℎ ∈ argmax{𝜆𝑞 (𝑥∗) | 𝑞 ∈ 𝐽𝑘 }. So the hypothesis of Lemma 4.3.2

is satisfied and 𝑑𝑘 = 𝑑A
𝑘

= 𝑥𝑘 − 𝑒 �̂� with �̂� ∈ argmax{𝜆 𝑗 (𝑥𝑘 ) | 𝑗 ∈ 𝑆𝑘 }. We need to

show �̂� ∈ 𝐽𝑘 . But 𝑆𝑘 ⊆ 𝐼 ∪ 𝐽𝑘 and by (4.3.14) if �̂� ∈ 𝐼 then 𝜆𝑙 (𝑥𝑘 ) < 𝛿𝑘/2 < 𝜆 𝑗 (𝑥𝑘 )
for every 𝑗 ∈ argmax{𝜆 𝑗 (𝑥∗) | 𝑗 ∈ 𝐽𝑘 }. If �̂� ∈ 𝑂𝑘 then (𝑥𝑘 ) �̂� = 0 and �̂� ∉ 𝑆𝑘 . Hence

we can conclude argmax{𝜆 𝑗 (𝑥𝑘 ) | 𝑗 ∈ 𝑆𝑘 } ⊆ 𝐽𝑘 and 𝑑𝑘 = 𝑥𝑘 − 𝑒 �̂� with �̂� ∈ 𝐽𝑘 . In

particular, by (4.3.13) we get

max{𝜆 𝑗 (𝑥𝑘 ) | 𝑗 ∈ 𝐽𝑘 } = 𝜆 �̂� (𝑥𝑘 ) >
𝛿𝑘

2
. (4.3.15)
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We now want to show that 𝛼𝑘 = 𝛼
max

𝑘
. Assume by contradiction 𝛼𝑘 < 𝛼max. Then

by the lower bound on the step size and (4.3.13)

𝛼𝑘 ≥
−∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘
𝐿∥𝑑𝑘 ∥2

=
𝜆𝑖 (𝑥𝑘 )
𝐿∥𝑑𝑘 ∥2

≥ 𝛿min

2𝐿∥𝑑𝑘 ∥2
, (4.3.16)

where in the last inequality we used (4.3.15) together with 𝛿𝑘 ≥ 𝛿min. Also, by

Lemma 4.2.5

∥𝑑𝑘 ∥ = ∥𝑒 �̂� − 𝑥𝑘 ∥ ≤
√

2(𝑒 �̂� − 𝑥𝑘 ) �̂� = −
√

2(𝑑𝑘 ) �̂� ⇒
(𝑑𝑘 ) �̂�
∥𝑑𝑘 ∥2

≤
(𝑑𝑘 ) �̂�

∥𝑑𝑘 ∥
√

2
≤ −1/2

(𝑥𝑘 ) �̂� = (𝑥𝑘 − 𝑥∗) �̂� ≤
∥𝑥𝑘 − 𝑥∗∥1

2
<
𝑟∗
2

=
𝛿min

4𝐿 + 2𝛿min

.

(4.3.17)

Finally, combining (4.3.17) with (4.3.16)

(𝑥𝑘+1) �̂� = (𝑥𝑘 ) �̂� + (𝑑𝑘 ) �̂�𝛼𝑘 <
𝑟∗
2
− ∥𝑑𝑘 ∥2

2
𝛼𝑘 ≤

𝑟∗
2
− ∥𝑑𝑘 ∥2

2

𝛿min

2𝐿∥𝑑𝑘 ∥2

=
𝛿min

4𝐿 + 2𝛿min

− 𝛿min

4𝐿
< 0,

where we used (4.3.16) to bound 𝛼𝑘 in the first inequality, (4.3.17) to bound (𝑥𝑘 ) �̂�
and

(𝑑𝑘) �̂�
∥𝑑𝑘 ∥2 . Hence (𝑥𝑘+1) �̂� < 0, contradiction. □

4.4 Active set complexity bounds

Before giving the active set complexity bounds in several settings it is important

to clarify that by active set associated to a stationary point 𝑥∗ we do not mean the set

supp(𝑥∗)𝑐 = {𝑖 ∈ [1 : 𝑛] | (𝑥∗)𝑖 = 0}} but the set 𝐼𝑐 (𝑥∗) = {𝑖 ∈ [1 : 𝑛] | 𝜆𝑖 (𝑥∗) > 0} of

binding constraints. In general 𝐼𝑐 (𝑥∗) ⊂ supp(𝑥∗)𝑐 by complementarity conditions,

with

supp(𝑥∗)𝑐 = 𝐼𝑐 (𝑥∗) ⇔ strict complementarity holds in 𝑥∗. (4.4.1)

The face F of Δ𝑛−1 defined by the constraints with indices in 𝐼𝑐 (𝑥∗) still has a nice

geometrical interpretation: it is the face of Δ𝑛−1 exposed by −∇ 𝑓 (𝑥∗).
It is at this point natural to require that the sequence {𝑥𝑘 } converges to a subset 𝐴

of X∗ for which 𝐼𝑐 is constant. This motivates the following definition:

Definition 4.4.1. A compact subset 𝐴 of X∗ is said to have the support identifica-

tion property (SIP) if there exists an index set 𝐼𝑐
𝐴
⊂ [1 : 𝑛] such that

𝐼𝑐 (𝑥) = 𝐼𝑐𝐴 for all 𝑥 ∈ 𝐴 .
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a subset 𝐴 of X∗ enjoying the SIP. We say that this algorithm solves the active

set problem in 𝑀 steps if (𝑥𝑘 )𝑖 = 0 for every 𝑖 ∈ 𝐼𝑐
𝐴
, 𝑘 ≥ 𝑀. If, given a set of

conditions on (𝐴, 𝑓 , 𝑥0), 𝑀 is the minimum number which has this property for every

sequence generated by the algorithm, then we say that the active set complexity of

the algorithm is 𝑀, under the given conditions.

We can now apply Theorem 4.3.3 to show that once a sequence is definitely close

enough to a set enjoying the SIP, the AFW identifies the active set in at most |𝐼𝑐 |
steps.

Theorem 4.4.3. Let {𝑥𝑘 } be a sequence generated by the AFW, with step size

𝛼𝑘 ≥ �̄�𝑘 . Let X∗ be the set of stationary points of a function 𝑓 : Δ𝑛−1 → ❘ with

∇ 𝑓 having Lipschitz constant 𝐿. Assume that there exists a compact subset 𝐴 of X∗

with the SIP such that 𝑥𝑘 → 𝐴. Then there exists 𝑀 such that

(𝑥𝑘 )𝑖 = 0 for every 𝑘 ≥ 𝑀 and all 𝑖 ∈ 𝐼𝑐𝐴 .

Proof. Let 𝐽𝑘 = {𝑖 ∈ 𝐼𝑐
𝐴
| (𝑥𝑘 )𝑖 > 0} and choose 𝑘 such that dist1(𝑥𝑘 , 𝐴) < 𝛿min (𝐴)

2𝐿+𝛿min (𝐴) =

𝑟∗ for every 𝑘 ≥ 𝑘. Then for every 𝑘 ≥ 𝑘 there exists 𝑦∗ ∈ 𝐴 with ∥𝑥𝑘 − 𝑦∗∥1 < 𝑟∗.

But since by hypothesis for every 𝑦∗ ∈ 𝐴 the support of the multiplier function is 𝐼𝑐
𝐴

with 𝛿min(𝐴) ≤ 𝜆𝑖 (𝑦∗) for every 𝑖 ∈ 𝐼𝑐
𝐴
, we can apply Theorem 4.3.3 with 𝑦∗ as fixed

point and obtain that |𝐽𝑘+1 | ≤ max(0, |𝐽𝑘 | − 1). This means that it takes at most

|𝐽𝑘 | ≤ |𝐼𝑐
𝐴
| steps for all the variables with indices in 𝐼𝑐

𝐴
to be 0. Again by (4.3.8), we

conclude by induction |𝐽𝑘 | = 0 for every 𝑘 ≥ 𝑀 = 𝑘 + |𝐼𝑐
𝐴
|, since |𝐽𝑘+|𝐼𝑐

𝐴
| | = 0. □

The proof of Theorem 4.4.3 also gives a relatively simple upper bound for the

complexity of the active set problem:

Proposition 4.4.4. Under the assumptions of Theorem 4.4.3, the active set com-

plexity is at most

min{𝑘 ∈ ◆0 | dist1(𝑥𝑘 , 𝐴) < 𝑟∗∀𝑘 ≥ 𝑘} + |𝐼𝑐𝐴 |,

where 𝑟∗ =
𝛿min (𝐴)

2𝐿+𝛿min (𝐴) .

We now report an explicit bound for the strongly convex case, and analyze in

depth the nonconvex case in Section 4.5. From strong convexity of 𝑓 , it is easy to

see that the following inequality holds for every 𝑥 on Δ𝑛−1:

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝑢1

2
∥𝑥 − 𝑥∗∥2

1
, (4.4.2)

with 𝑢1 > 0.



98 Active set Identification properties of the AFW

Corollary 4.4.5. Let {𝑥𝑘 } be the sequence of points generated by AFW with 𝛼𝑘 ≥
�̄�𝑘 . Assume that 𝑓 is strongly convex and let

ℎ𝑘 ≤ 𝑞𝑘ℎ0, (4.4.3)

with 𝑞 < 1 and ℎ𝑘 = 𝑓 (𝑥𝑘 )− 𝑓∗, be the convergence rate related to the AFW (see [157],

Theorem 8). Then the active set complexity is

max

(
0,

⌈
ln(ℎ0) − ln(𝑢1𝑟

2
∗/2)

ln(1/q)

⌉)
+ |𝐼𝑐 | . (4.4.4)

Proof. Notice that by the linear convergence rate (4.4.3), and the fact that 𝑞 < 1,

the number of steps needed to reach the condition

ℎ𝑘 ≤
𝑢1

2
𝑟2
∗ (4.4.5)

is at most

𝑘 = max

(
0,

⌈
ln(ℎ0) − ln(𝑢1𝑟

2
∗/2)

ln(1/𝑞)

⌉)
.

We claim that if condition (4.4.5) holds then it takes at most |𝐼𝑐 | steps for the

sequence to be definitely in the active set.

Indeed, if 𝑞𝑘ℎ0 ≤ 𝑢1

2
𝑟2
∗ then necessarily 𝑥𝑘 ∈ 𝐵1(𝑥∗, 𝑟∗) by (4.4.2), and by mono-

tonicity of the bound (4.4.3) we then have 𝑥𝑘+ℎ ∈ 𝐵1(𝑥∗, 𝑟∗) for every ℎ ≥ 0. Once

the sequence is definitely in 𝐵1(𝑥∗, 𝑟∗) by (4.3.8) it takes at most |𝐽𝑘 | ≤ |𝐼𝑐 | steps

for all the variables with indices in 𝐼𝑐 to be 0. To conclude, again by (4.3.8) since

|𝐽𝑘+|𝐼𝑐 | | = 0 by induction |𝐽𝑚 | = 0 for every 𝑚 ≥ 𝑘 + |𝐼𝑐 |. □

Remark 4.4.6. In Corollary 4.4.5, if we assume the linear rate (4.4.3) (which may

not hold in the nonconvex case), then the strong convexity of 𝑓 can be replaced by

the condition (4.4.2).

4.5 Active set complexity for nonconvex objec-

tives

In this section, we focus on problems with nonconvex objectives. We first give

a more explicit convergence rate for AFW in the nonconvex case, then we prove a

general active set identification result for the method. Finally, we analyze both local
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and global active set complexity bounds related to AFW. A fundamental element

in our analysis is the FW gap function 𝑔 : Δ𝑛−1 → ❘ defined as

𝑔(𝑥) = max
𝑖∈[1:𝑛]

{−𝜆𝑖 (𝑥)} .

We clearly have 𝑔(𝑥) ≥ 0 for every 𝑥 ∈ Δ𝑛−1, with equality iff 𝑥 is a stationary point.

The reason why this function is called FW gap is evident from the relation

𝑔(𝑥𝑘 ) = −∇ 𝑓 (𝑥𝑘 )⊤𝑑FW
𝑘

.

This is a standard quantity appearing in the analysis of FW variants (see, e.g., [136]

) and is computed for free at each iteration of a FW-like algorithm. In [156], the

author uses the gap to analyze the convergence rate of the classic FW algorithm in

the nonconvex case. More specifically, a convergence rate of 𝑂 ( 1√
𝑘
) is proved for the

minimal FW gap up to iteration 𝑘:

𝑔∗𝑘 = min
0≤𝑖≤𝑘−1

𝑔(𝑥𝑖).

The results extend in a nice and straightforward way the ones reported in [192] for

proving the convergence of gradient methods in the nonconvex case. Inspired by

the analysis of the AFW method for strongly convex objectives reported in [200],

we now study the AFW convergence rate in the nonconvex case with respect to the

sequence {𝑔∗
𝑘
}.

4.5.1 Global convergence

We start investigating the minimal FW gap, giving estimates of rates of con-

vergence. In the next theorem and in the subsequent Corollary 4.5.2 we assume

that the AFW starts from a vertex of the probability simplex. Thanks to the affine

invariance properties of the AFW this is not a restrictive assumption. For a generic

starting point one can indeed apply the same theorem to the AFW starting from

𝑒𝑛+1 for 𝑓 : Δ𝑛 → ❘ satisfying

𝑓 (𝑦) = 𝑓 (𝑦1𝑒1 + · · · + 𝑦𝑛𝑒𝑛 + 𝑦𝑛+1𝑥0), (4.5.1)

where 𝑥0 ∈ Δ𝑛−1 is the desired starting point (see also Corollary 4.5.3). Formally,

this leads to the computation of a sequence {𝑦𝑘 } on Δ𝑛 which can be mapped to a

sequence {𝑥𝑘 } on Δ𝑛−1 by the affine transformation

𝑝(𝑦) = 𝑦1𝑒1 + · · · + 𝑦𝑛𝑒𝑛 + 𝑦𝑛+1𝑥0 . (4.5.2)

In Section 4.6, we discuss the invariance of the AFW under affine transformations

in more detail.
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Theorem 4.5.1. Let 𝑓 ∗ = min𝑥∈Δ𝑛−1
𝑓 (𝑥), and let {𝑥𝑘 } be a sequence generated by

the AFW algorithm applied to 𝑓 on Δ𝑛−1, with 𝑥0 a vertex of Δ𝑛−1. Assume that the

step size 𝛼𝑘 is larger or equal than �̄�𝑘 (as defined in (4.2.1)), and that

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝜌�̄�𝑘
(
−∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘

)
(4.5.3)

for some fixed 𝜌 > 0. Then for every 𝑇 ∈ ◆

𝑔∗𝑇 ≤ max

(√︄
4𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

𝜌𝑇
,
4( 𝑓 (𝑥0) − 𝑓 ∗)

𝑇

)
. (4.5.4)

Proof. Let 𝑟𝑘 = −∇ 𝑓 (𝑥𝑘 ) and 𝑔𝑘 = 𝑔(𝑥𝑘 ). We distinguish three cases.

Case 1. �̄�𝑘 < 𝛼
max

𝑘
. Then �̄�𝑘 =

−∇ 𝑓 (𝑥𝑘)⊤𝑑𝑘
𝐿∥𝑑𝑘 ∥2 and relation (4.5.3) becomes

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) ≥ 𝜌�̄�𝑘𝑟
⊤
𝑘 𝑑𝑘 =

𝜌

𝐿∥𝑑𝑘 ∥2
(𝑟⊤𝑘 𝑑𝑘 )2

and consequently

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥
𝜌

𝐿∥𝑑𝑘 ∥2
(𝑟⊤𝑘 𝑑𝑘 )2 ≥ 𝜌

𝐿∥𝑑𝑘 ∥2
𝑔2

𝑘 ≥
𝜌𝑔2

𝑘

2𝐿
, (4.5.5)

where we used 𝑟⊤
𝑘
𝑑𝑘 ≥ 𝑔𝑘 in the second inequality and ∥𝑑𝑘 ∥ ≤

√
2 in the third one.

As for 𝑆𝑘 , by hypothesis we have either 𝑑𝑘 = 𝑑
FW
𝑘

so that 𝑑𝑘 = 𝑒𝑖 − 𝑥𝑘 or 𝑑𝑘 = 𝑑
A
𝑘

=

𝑥𝑘 − 𝑒𝑖 for some 𝑖 ∈ {1, ..., 𝑛}. In particular 𝑆𝑘+1 ⊆ 𝑆𝑘 ∪ {𝑖} so that |𝑆𝑘+1 | ≤ |𝑆𝑘 | + 1.

Case 2: 𝛼𝑘 = �̄�𝑘 = 𝛼max

𝑘
= 1, 𝑑𝑘 = 𝑑FW

𝑘
. By the standard descent lemma [31,

Proposition 6.1.2] applied to 𝑓 with center 𝑥𝑘 and 𝛼 = 1

𝑓 (𝑥𝑘+1) = 𝑓 (𝑥𝑘 + 𝑑𝑘 ) ≤ 𝑓 (𝑥𝑘 ) + ∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 +
𝐿

2
∥𝑑𝑘 ∥2 .

Since by the Case 2 condition min
(
−∇ 𝑓 (𝑥𝑘)⊤𝑑𝑘

∥𝑑𝑘 ∥2𝐿
, 1

)
= 𝛼𝑘 = 1 we have

−∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘
∥𝑑𝑘 ∥2𝐿

≥ 1 , so − 𝐿∥𝑑𝑘 ∥2 ≥ ∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 ,

hence we can write

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥ −∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 −
𝐿

2
∥𝑑𝑘 ∥2 ≥ −∇ 𝑓 (𝑥𝑘 )

⊤𝑑𝑘
2

≥ 1

2
𝑔𝑘 . (4.5.6)
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Reasoning as in Case 1 we also have |𝑆𝑘+1 | ≤ |𝑆𝑘 | + 1.

Case 3: 𝛼𝑘 = �̄�𝑘 = 𝛼
max

𝑘
, 𝑑𝑘 = 𝑑

A
𝑘

. Then 𝑑𝑘 = 𝑥𝑘 − 𝑒𝑖 for 𝑖 ∈ 𝑆𝑘 and

(𝑥𝑘+1) 𝑗 = (1 + 𝛼𝑘 ) (𝑥𝑘 ) 𝑗 − 𝛼𝑘 (𝑒𝑖) 𝑗 ,

with 𝛼𝑘 = 𝛼max

𝑘
=

(𝑥𝑘)𝑖
1−(𝑥𝑘)𝑖 . Therefore (𝑥𝑘+1) 𝑗 = 0 for 𝑗 ∈ {1, ..., 𝑛} \ 𝑆𝑘 ∪ {𝑖} and

(𝑥𝑘+1) 𝑗 ≠ 0 for 𝑗 ∈ 𝑆𝑘 \ {𝑖}. In particular |𝑆𝑘+1 | = |𝑆𝑘 | − 1.

For 𝑖 = 1, 2, 3 let now 𝑛𝑖 (𝑇) be the number of Case 𝑖 steps done in the first 𝑇

iterations of the AFW. We have by induction on the recurrence relation we proved

for |𝑆𝑘 |
|𝑆𝑇 | − |𝑆0 | ≤ 𝑛1(𝑇) + 𝑛2(𝑇) − 𝑛3(𝑇) , (4.5.7)

for every 𝑇 ∈ ◆.

Since 𝑛3(𝑇) = 𝑇 − 𝑛1(𝑇) − 𝑛2(𝑇) from (4.5.7) we get

𝑛1(𝑇) + 𝑛2(𝑇) ≥
𝑇 + |𝑆𝑇 | − |𝑆0 |

2
≥ 𝑇

2
, (4.5.8)

where we used |𝑆0 | = 1 ≤ |𝑆𝑇 |. Let now 𝐶𝑇𝑖 be the set of iteration counters up to

𝑇 − 1 corresponding to Case 𝑖 steps for 𝑖 ∈ {1, 2, 3}, which satisfies |𝐶𝑇𝑖 | = 𝑛𝑖 (𝑇). We

have by summing (4.5.5) and (4.5.6) for the indices in 𝐶𝑇
1

and 𝐶𝑇
2

respectively

∑︁

𝑘∈𝐶𝑇
1

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) +
∑︁

𝑘∈𝐶𝑇
2

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘 ) ≥
∑︁

𝑘∈𝐶𝑇
1

𝜌𝑔2

𝑘

2𝐿
+

∑︁

𝑘∈𝐶𝑇
2

1

2
𝑔𝑘 . (4.5.9)

We now lower bound the right-hand side of (4.5.9) in terms of 𝑔∗
𝑇

as follows:

∑︁

𝑘∈𝐶𝑇
1

𝜌𝑔2

𝑘

2𝐿
+

∑︁

𝑘∈𝐶𝑇
2

1

2
𝑔𝑘 ≥ |𝐶𝑇

1
| min
𝑘∈𝐶𝑇

1

𝜌𝑔2

𝑘

2𝐿
+ |𝐶𝑇

2
| min
𝑘∈𝐶𝑇

2

𝑔𝑘

2

≥(|𝐶𝑇
1
| + |𝐶𝑇

2
|) min

(
𝜌(𝑔∗

𝑇
)2

2𝐿
,
𝑔∗
𝑇

2

)
= [𝑛1(𝑇) + 𝑛2(𝑇)] min

(
𝜌
(𝑔∗
𝑇
)2

2𝐿
,
𝑔∗
𝑇

2

)

≥𝑇
2

min

(
𝜌(𝑔∗

𝑇
)2

2𝐿
,
𝑔∗
𝑇

2

)
.

(4.5.10)

Since the left-hand side of (4.5.9) can clearly be upper bounded by 𝑓 (𝑥0) − 𝑓 ∗ we

have

𝑓 (𝑥0) − 𝑓 ∗ ≥ 𝑇

2
min

(
𝜌(𝑔∗

𝑇
)2

2𝐿
,
𝑔∗
𝑇

2

)
.
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To finish, if 𝑇
2

min
(
𝑔∗
𝑇

2
,
𝜌(𝑔∗

𝑇
)2

2𝐿

)
=
𝑇𝑔∗

𝑇

4
we then have

𝑔∗𝑇 ≤ 4( 𝑓 (𝑥0) − 𝑓 ∗)
𝑇

(4.5.11)

and otherwise

𝑔∗𝑇 ≤

√︄
4𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

𝜌𝑇
. (4.5.12)

The claim follows by taking the max in the system formed by (4.5.11) and (4.5.12).

□

In Section 4.2.2, we prove that condition (4.5.3) is satisfied by exact line search

and Armijo line search as well. We also prove that it is satisfied if we impose the

weak Wolfe conditions and take 𝛼max

𝑘
whenever the conditions are incompatible with

the constraint 𝛼𝑘 ≤ 𝛼max

𝑘
.

When the step sizes coincide with the lower bounds �̄�𝑘 or are obtained using

exact line search, we have the following corollary:

Corollary 4.5.2. Under the assumptions of Theorem 4.5.1, if 𝛼𝑘 = �̄�𝑘 or if 𝛼𝑘 is

selected by exact line search then for every 𝑇 ∈ ◆

𝑔∗𝑇 ≤ max

(√︂
8𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

𝑇
,
4( 𝑓 (𝑥0) − 𝑓 ∗)

𝑇

)
. (4.5.13)

Proof. By points 2 and 3 of Lemma 4.2.1, relation (4.5.3) is satisfied with 𝜌 =
1

2
for

both 𝛼𝑘 = �̄�𝑘 and 𝛼𝑘 given by exact line search, and we also have 𝛼𝑘 ≥ �̄�𝑘 in both

cases. The conclusion follows directly from Theorem 4.5.1. □

Applying the trick of adding the starting point as a vertex allows us to drop the

assumptions of starting from a vertex in Theorem 4.5.1.

Corollary 4.5.3. Let 𝑥0 ∈ Δ𝑛−1, and let {𝑦𝑘 } be a sequence generated by the AFW

applied to the objective function 𝑓 defined in (4.5.1) with 𝑦0 = 𝑒𝑛+1. Let {𝑥𝑘 } =

{𝑝(𝑦𝑘 )}. Then under the assumptions of Theorem 4.5.1 on 𝛼𝑘 and 𝑓 , the bound

(4.5.4) and Corollary 4.5.2 still hold.

Proof. The multipliers are invariant by affine transformation (see Section 4.6 for

further details), and since the FW gap depends on the multipliers, it is also invariant

under affine transformation. Also adding the multiplier related to 𝑥0 does not change

the FW gap, which is always realized in one of the vertices of the original simplex



4.5 Active set complexity for nonconvex objectives 103

since it is the maximum of a linear function plus a constant. Therefore, the FW gap

is invariant with respect to 𝑝, so that the same arguments used for Theorem 4.5.1

and Corollary 4.5.2 can still be applied to {𝑥𝑘 } = {𝑝(𝑦𝑘 )}. □

Since adding a vertex alters the active set identification properties of the problem

(e.g., the active set radius), we cannot apply the above results directly in the rest

of this section. Instead we use some key intermediate results presented in the proof

of Theorem 4.5.1.

4.5.2 A general active set identification result

We can now give a general active set identification result in the nonconvex set-

ting. While we do not use strict complementarity when the step sizes are given by

(4.2.1), without this assumption we need strict complementarity.

If 𝐴 ⊆ X∗ enjoys the SIP and if strict complementarity is satisfied for every 𝑥 ∈ 𝐴,

then as a direct consequence of (4.4.1) we have

supp(𝑥) = [1 : 𝑛] \ 𝐼𝑐 (𝑥) = [1 : 𝑛] \ 𝐼𝑐𝐴 (4.5.14)

for every 𝑥 ∈ 𝐴. In this case we can then define supp(𝐴) as the (common) support

of the points in 𝐴.

For the result we need an observation on connectedness which seems to be folklore

in an optimization context. This property is needed, e.g. for the proof of [192,

Theorem 4.1.2] and similar results are discussed in [25]. However, we are not aware

of an explicit proof for this property, so for the readers’ convenience we provide a

short argument:

Lemma 4.5.4. Let {𝑥𝑘 } be a bounded sequence in ❘𝑛 such that ∥𝑥𝑘 − 𝑥𝑘+1∥ → 0.

Then the set of limit points of {𝑥𝑘 } is connected.

Proof. Assume by contradiction that there are two open sets 𝑈1 and 𝑈2 separating

the limit points of {𝑥𝑘 }. Then there must exist an infinite number of points from

{𝑥𝑘 } both in 𝑈1 and 𝑈2, and in particular a subsequence {𝑥𝑘 ( 𝑗)} of {𝑥𝑘 } such that

𝑥𝑘 ( 𝑗) ∈ 𝑈1 and 𝑥𝑘 ( 𝑗)+1 ∈ 𝑈𝑐
1

for every 𝑗 ∈ ◆0. By the condition ∥𝑥𝑘 ( 𝑗) − 𝑥𝑘 ( 𝑗)+1∥ → 0

we obtain

dist(𝑥𝑘 ( 𝑗) ,𝑈𝑐
1
) → 0 . (4.5.15)

Since {𝑥𝑘 ( 𝑗)} is bounded by hypothesis it has a non empty set of limit points. But

every limit point of {𝑥𝑘 ( 𝑗)} must be necessarily in 𝑈𝑐
1

by (4.5.15) and also in the

closure of 𝑈1 (because {𝑥𝑘 ( 𝑗)} ⊂ 𝑈1) and therefore not in 𝑈2, a contradiction. □
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We proceed with the announced result.

Theorem 4.5.5. Let {𝑥𝑘 } be the sequence generated by the AFW method with step

sizes satisfying 𝛼𝑘 ≥ �̄�𝑘 and (4.5.3), where �̄�𝑘 is given by (4.2.1). Let X∗ be the

subset of stationary points of 𝑓 . We have:

(a) 𝑥𝑘 → X∗.

(b) If 𝛼𝑘 = �̄�𝑘 then {𝑥𝑘 } converges to a connected component 𝐴 of X∗. If addi-

tionally 𝐴 has the SIP then {𝑥𝑘 } identifies 𝐼𝑐
𝐴

in finite time.

Assume now that X∗ =
⋃𝐶
𝑖=1
𝐴𝑖 with 𝐴𝑖 compact for each 𝑖 ∈ [1 : 𝐶], with distinct

supports and such that 𝐴𝑖 has the SIP for each 𝑖 ∈ [1:𝐶].

(c) If 𝛼𝑘 ≥ �̄�𝑘 and if strict complementarity holds for all points in X∗ then {𝑥𝑘 }
converges to 𝐴𝑙 for some 𝑙 ∈ [1 : 𝐶] and identifies 𝐼𝑐

𝐴𝑙
in finite time.

Proof. a) By the proof of Theorem 4.5.1 and the continuity of the multiplier function

we have

𝑥𝑘 ( 𝑗) → 𝑔−1(0) = X∗ , (4.5.16)

where {𝑘 ( 𝑗)} is the sequence of indexes corresponding to Case 1 or Case 2 steps.

Let 𝑘′( 𝑗) be the sequence of indexes corresponding to Case 3 steps. Since for such

steps 𝛼𝑘 ′ ( 𝑗) = �̄�𝑘 ′ ( 𝑗) we can apply Corollary 4.2.2 to obtain

∥𝑥𝑘 ′ ( 𝑗) − 𝑥𝑘 ′ ( 𝑗)+1∥ → 0 . (4.5.17)

Combining (4.5.16), (4.5.17) and the fact that there can be at most 𝑛−1 consecutive

Case 3 steps, we get 𝑥𝑘 → X∗.

b) By the boundedness of 𝑓 and point 2 of Lemma 4.2.1 if 𝛼𝑘 = �̄�𝑘 then ∥𝑥𝑘+1−𝑥𝑘 ∥ →
0. Now Lemma 4.5.4 together with point a) ensures that the set of limit points must

be contained in a connected component 𝐴 of X∗. By Theorem 4.4.3 it follows that

if 𝐴 has constant support {𝑥𝑘 } identifies 𝐼𝑐
𝐴

in finite time.

c) Consider a disjoint family of subsets {𝑈𝑖}𝐶𝑖=1
of Δ𝑛−1 with𝑈𝑖 = {𝑥 ∈ Δ𝑛−1 | dist1(𝑥, 𝐴𝑖) ≤

𝑟𝑖} where 𝑟𝑖 is small enough to ensure some conditions that we now specify. First,

we need

𝑟𝑖 <
𝛿min(𝐴𝑖)

2𝐿 + 𝛿min(𝐴𝑖)
so that 𝑟𝑖 is smaller than the active set radius of every 𝑥 ∈ 𝐴𝑖 and in particular for

every 𝑥 ∈ 𝑈𝑖 there exists 𝑥∗ ∈ 𝐴𝑖 such that

∥𝑥 − 𝑥∗∥1 <
𝛿min(𝑥∗)

2𝐿 + 𝛿min(𝑥∗)
. (4.5.18)
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Second, we choose 𝑟𝑖 small enough so that {𝑈𝑖}𝐶𝑖=1
are disjoint and

supp(𝑦) ⊇ supp(𝐴𝑖) ∀𝑦 ∈ 𝑈𝑖 , (4.5.19)

where these conditions can be always satisfied thanks to the compactness of 𝐴𝑖.

Assume now by contradiction that the set 𝑆 of limit points of {𝑥𝑘 } intersects more

than one of the {𝐴𝑖}𝐶𝑖=1
. Let in particular 𝐴𝑙 minimize |supp(𝐴𝑙) | among the sets

containing points of 𝑆. By point a) 𝑥𝑘 ∈ ∪𝐶
𝑖=1
𝑈𝑖 for 𝑘 ≥ 𝑀 large enough and we

can define an infinite sequence {𝑡 ( 𝑗)} of exit times greater than 𝑀 for 𝑈𝑙 so that

𝑥𝑡 ( 𝑗) ∈ 𝑈𝑙 and 𝑥𝑡 ( 𝑗)+1 ∈ ∪𝑖∈[1:𝐶]\𝑙𝑈𝑖. Up to considering a subsequence we can assume

𝑥𝑡 ( 𝑗)+1 ∈ 𝑈𝑚 for a fixed 𝑚 ≠ 𝑙 for every 𝑗 ∈ ◆0.

We now distinguish two cases as in the proof of Theorem 4.3.3, where by equation

(4.5.18) the hypotheses of Theorem 4.3.3 are satisfied for 𝑘 = 𝑡 ( 𝑗) and some 𝑥∗ ∈ 𝐴𝑙 .
Case 1. (𝑥𝑡 ( 𝑗))ℎ = 0 for every ℎ ∈ 𝐼𝑐

𝐴𝑙
. In the notation of Theorem 4.3.3 this

corresponds to the case |𝐽𝑡 ( 𝑗) | = 0. Then by (4.3.10) we also have 𝜆ℎ (𝑥𝑡 ( 𝑗)) > 0 for

every ℎ ∈ 𝐼𝑐
𝐴𝑙

. Thus (𝑥𝑡 ( 𝑗)+1)ℎ = (𝑥𝑡 ( 𝑗))ℎ = 0 for every ℎ ∈ 𝐼𝑐
𝐴𝑙

by Lemma 4.3.2, so

that we can write

supp(𝐴𝑚) ⊆ supp(𝑥𝑡 ( 𝑗)+1) ⊆ [1 : 𝑛] \ 𝐼𝑐𝐴𝑙 = supp(𝐴𝑙), (4.5.20)

where the first inclusion is justified by (4.5.19) for 𝑖 = 𝑚 and the second by strict

complementarity (see also (4.5.14) and the related discussion). But since by hypoth-

esis supp(𝐴𝑚) ≠ supp(𝐴𝑙) the inclusion (4.5.20) is strict and so it is in contradiction

with the minimality of |supp(𝐴𝑙) |.
Case 2. |𝐽𝑡 ( 𝑗) | > 0. Then reasoning as in the proof of Theorem 4.3.3 we obtain

𝑑𝑡 ( 𝑗) = 𝑥𝑡 ( 𝑗) − 𝑒 ℎ̄ for some ℎ̄ ∈ 𝐽𝑡 ( 𝑗) ⊂ 𝐼𝑐
𝐴𝑙

. Let 𝑥∗ ∈ 𝐴𝑙 , and let 𝑑 = 𝛼𝑡 ( 𝑗)𝑑𝑡 ( 𝑗). The

sum of the components of 𝑑 is 0 with the only negative component being 𝑑ℎ̄ and

therefore

𝑑ℎ̄ = −
∑︁

ℎ∈[1:𝑛]\ℎ̄
𝑑ℎ = −

∑︁

ℎ∈[1:𝑛]\ℎ̄
|𝑑ℎ | (4.5.21)

We claim that ∥𝑥𝑡 ( 𝑗)+1 − 𝑥∗∥1 ≤ ∥𝑥𝑡 ( 𝑗) − 𝑥∗∥1. This is enough to finish because

since 𝑥∗ ∈ 𝐴𝑙 is arbitrary then it follows dist1(𝑥𝑡 ( 𝑗)+1, 𝐴𝑙) ≤ dist1(𝑥𝑡 ( 𝑗) , 𝐴𝑙) so that

𝑥𝑡 ( 𝑗)+1 ∈ 𝑈𝑙 , a contradiction.
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We have
∥𝑥∗ − 𝑥𝑡 ( 𝑗)+1∥1 = ∥𝑥∗ − 𝑥𝑡 ( 𝑗) − 𝛼𝑡 ( 𝑗)𝑑𝑡 ( 𝑗) ∥1

=|𝑥∗
ℎ̄
− (𝑥𝑡 ( 𝑗))ℎ̄ − 𝑑ℎ̄ | +

∑︁

ℎ∈[1:𝑛]\ℎ̄
|𝑥∗ℎ − (𝑥𝑡 ( 𝑗))ℎ − 𝑑ℎ |

=|𝑥∗
ℎ̄
− (𝑥𝑡 ( 𝑗))ℎ̄ | + 𝑑ℎ̄ +

∑︁

ℎ∈[1:𝑛]\ℎ̄
|𝑥∗ℎ − (𝑥𝑡 ( 𝑗))ℎ − 𝑑ℎ |

≤|𝑥∗
ℎ̄
− (𝑥𝑡 ( 𝑗))ℎ̄ | + 𝑑ℎ̄ +

∑︁

ℎ∈[1:𝑛]\ℎ̃
( |𝑥∗ℎ − (𝑥𝑡 ( 𝑗))ℎ | + |𝑑ℎ |)

=∥𝑥𝑡 ( 𝑗) − 𝑥∗∥1 + 𝑑ℎ̄ +
∑︁

ℎ∈[1:𝑛]\ℎ̄
|𝑑ℎ | = ∥𝑥𝑡 ( 𝑗) − 𝑥∗∥1

where in the third equality we used 0 = 𝑥∗
ℎ̄
≤ −𝑑ℎ̄ ≤ (𝑥𝑡 ( 𝑗))ℎ̄ and in the last equality

we used (4.5.21).

Reasoning by contradiction we have proved that all the limit points of {𝑥𝑘 } are in 𝐴𝑙
for some 𝑙 ∈ [1, ..., 𝐶]. The conclusion follows immediately from Theorem 4.4.3. □

4.5.3 Quantitative version of active set identification

Let 𝑞 : ❘>0 → ◆0 be such that 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≤ 𝜀 for every 𝑘 ≥ 𝑞(𝜀). In this

section, we give global active set complexity bounds for non convex objectives as

a function of 𝑞, which measures how long it takes for 𝛾𝑘 = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) to fall

definitely under a threshold value. We assume that the gap function 𝑔(𝑥) satisfies

the Hölderian error bound condition

𝑔(𝑥) ≥ 𝜃 dist1(𝑥,X∗)𝑝 (4.5.22)

for some 𝜃, 𝑝 > 0. This condition is satisfied, e.g., if 𝑓 (𝑥) (and therefore ∇ 𝑓 (𝑥))
is a semialgebraic function. In this case then also 𝑔(𝑥) is semialgebraic because

obtained by sums, products and maxima of semialgebraic functions, and (4.5.22)

holds by Łojasiewicz’ inequality (Corollary 2.6.7 in [35], see also [38] and references)

applied to 𝑔 and dist1(𝑥,X∗).
In the convex case, condition (4.5.22) on the FW gap 𝑔(𝑥) is weaker than the

more common Hölderian error bound condition on the objective, see [38, 148, 243].

This follows trivially from the fact that the FW gap 𝑔(𝑥) is always larger than the

objective gap 𝑓 (𝑥) − 𝑓 ∗ for convex 𝑓 . The Hölderian error bound assumption on the

gap allows us to give more explicit active set complexity bounds.

Theorem 4.5.6. Assume X∗ =
⋃
𝑖∈[1:𝐶] 𝐴𝑖 where 𝐴𝑖 is compact and with the SIP

for every 𝑖 ∈ [1 : 𝐶] and 0 < 𝑑
def

= min{𝑖, 𝑗}⊂[1:𝐶] dist1(𝐴𝑖, 𝐴 𝑗 ). Let 𝑟∗ be the minimum
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active set radius of the sets {𝐴𝑖}𝐶𝑖=1
. Assume that 𝑔(𝑥) satisfies (4.5.22). Assume

that the step sizes satisfy 𝛼𝑘 = �̄�𝑘 , with �̄�𝑘 given by (4.2.1). Then the active set

complexity is at most 𝑞(𝜀) + 𝑛 − 1 for 𝜀 satisfying the following conditions

𝜀 < 𝐿 ,

(
2
√
𝐿𝜀

𝜃

) 1

𝑝

< 𝑟∗ and 2

(
2
√
𝐿𝜀

𝜃

) 1

𝑝

+ 2𝑛

√︂
2𝜀

𝐿
≤ 𝑑 . (4.5.23)

The proof is essentially a quantitative version of the argument used to prove

point b) of Theorem 4.5.5.

Proof. Fix 𝑘 ≥ 𝑞(𝜀), so that

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≤ 𝜀 . (4.5.24)

We refer to Case 𝑖 steps for 𝑖 ∈ [1 : 3] following the definitions in Theorem 4.5.1. If

the step 𝑘 is a Case 1 step, then by (4.5.5) with 𝜌 = 1/2 we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥
𝑔(𝑥𝑘 )2

4𝐿

and this together with (4.5.24) implies

2
√
𝐿𝜀 ≥ 2

√︁
𝐿 ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1)) ≥ 𝑔(𝑥𝑘 ) .

Analogously, if the step 𝑘 is a Case 2 step, then by (4.5.6) we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≥
𝑔(𝑥𝑘 )

2

so that 2𝜀 ≥ 𝑔(𝑥𝑘 ). By the leftmost condition in (4.5.23) we have 𝜀 < 𝐿 so that

2
√
𝐿𝜀 ≥ 2𝜀, and therefore for both Case 1 and Case 2 steps we have

𝑔(𝑥𝑘 ) ≤ 2
√
𝐿𝜀 . (4.5.25)

By inverting relation (4.2.2), we also have

∥𝑥𝑘 − 𝑥𝑘+1∥ ≤
√︂

2( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1))
𝐿

≤
√︂

2𝜀

𝐿
. (4.5.26)

Now let 𝑘 ≥ 𝑞(𝜀) be such that step 𝑘 is a Case 1 or Case 2 step. By the error bound

condition together with (4.5.25)

dist1(𝑥𝑘 ,X∗) ≤
(
𝑔(𝑥𝑘 )
𝜃

) 1

𝑝

≤
(
2
√
𝐿𝜀

𝜃

) 1

𝑝

< 𝑟∗ , (4.5.27)
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where we used (4.5.25) in the second inequality and the second condition of (4.5.23)

in the third inequality. In particular there exists 𝑙 such that dist1(𝑥𝑘 , 𝐴𝑙) ≤ (2
√
𝐿𝜀/𝜃)1/𝑝.

We claim now that 𝐼𝑐
𝐴𝑙

is already identified at the step 𝑘.

First, we claim that for every Case 1 or Case 2 step with index 𝜏 ≥ 𝑘 we have

dist1(𝑥𝜏, 𝐴𝑙) ≤ (𝑔(𝑥𝜏)/𝜃)1/𝑝. We reason by induction on the sequence {𝑠(𝑘′)} of Case

1 or Case 2 steps following 𝑘, so that in particular 𝑠(1) = 𝑘 and dist1(𝑥𝑠(1) , 𝐴𝑙) ≤
𝑔(𝑥𝑠(1)) is true by (4.5.27). Since there can be at most 𝑛 − 1 consecutive Case 3

steps, we have 𝑠(𝑘′ + 1) − 𝑠(𝑘′) ≤ 𝑛 for every 𝑘′ ∈ ◆0. Therefore

∥𝑥𝑠(𝑘 ′) − 𝑥𝑠(𝑘 ′+1) ∥1 ≤
𝑠(𝑘 ′+1)−1∑︁

𝑖=𝑠(𝑘 ′)
∥𝑥𝑖+1 − 𝑥𝑖∥1 ≤ 2

𝑠(𝑘 ′+1)−1∑︁

𝑖=𝑠(𝑘 ′)
∥𝑥𝑖+1 − 𝑥𝑖∥

≤2[𝑠(𝑘′ + 1) − 𝑠(𝑘′)]
√︂

2𝜀

𝐿
≤ 2𝑛

√︂
2𝜀

𝐿
,

(4.5.28)

where in the second inequality we used part 3 of Lemma 4.2.5 to bound each of the

summands of the left-hand side, and in the third inequality we used (4.5.26). As-

sume now by contradiction dist1(𝑥𝑠(𝑘 ′+1) , 𝐴𝑙) > (𝑔(𝑥𝑠(𝑘 ′+1))/𝜃)1/𝑝. Then by (4.5.27)

applied to 𝑠(𝑘′ + 1) instead of 𝑘 there must exists necessarily 𝑗 ≠ 𝑙 such that

dist1(𝑥𝑠(𝑘 ′+1) , 𝐴 𝑗 ) ≤ (𝑔(𝑥𝑠(𝑘 ′+1))/𝜃)1/𝑝. In particular we have

∥𝑥𝑠(𝑘 ′) − 𝑥𝑠(𝑘 ′+1) ∥1 ≥ dist1(𝐴𝑙 , 𝐴 𝑗 ) − dist1(𝑥𝑠(𝑘 ′+1) , 𝐴 𝑗 ) − dist1(𝑥𝑠(𝑘 ′) , 𝐴𝑙)

≥𝑑 −
(
𝑔(𝑥𝑠(𝑘 ′))

𝜃

) 1

𝑝

−
(
𝑔(𝑥𝑠(𝑘 ′+1))

𝜃

) 1

𝑝

≥ 𝑑 − 2

(
2
√
𝐿𝜀

𝜃

) 1

𝑝

,
(4.5.29)

where we used (4.5.25) in the last inequality. But by the second condition of (4.5.23),

we have

𝑑 − 2

(
2
√
𝐿𝜀

𝜃

) 1

𝑝

> 2𝑛

√︂
2𝜀

𝐿
. (4.5.30)

Concatenating (4.5.28), (4.5.30) and (4.5.29) we get a contradiction and the claim

is proved. Notice that an immediate consequence of this claim is dist1(𝑥𝜏, 𝐴𝑙) < 𝑟∗
by (4.5.27) applied to 𝜏 instead of 𝑘, where 𝜏 ≥ 𝑘 is an index corresponding to a

Case 1 or Case 2 step.

To finish the proof, first we have that there exists an index 𝑘 ∈ [𝑞(𝜀), 𝑞(𝜀) + 𝑛 − 1]
corresponding to a Case 1 or Case 2 step, since there can be at most 𝑛−1 consecutive

Case 3 steps. Second, since by (4.5.27) we have dist1(𝑥𝑘 , 𝐴𝑙) < 𝑟∗ and 𝑘 does not

correspond to a Case 3 step, by the local identification Theorem 4.3.3 necessarily

(𝑥𝑘 )𝑖 = 0 ∀ 𝑖 ∈ 𝐼𝑐
𝐴𝑙

. Moreover, by the claim every Case 1 and Case 2 step following



4.5 Active set complexity for nonconvex objectives 109

step 𝑘 happens for points inside 𝐵1(𝐴𝑙 , 𝑟∗) so it does not change the components

corresponding to 𝐼𝑐
𝐴𝑙

by the local identification Theorem 4.3.3. At the same time,

Case 3 steps do not increase the support, so that (𝑥𝑘+𝑙)𝑖 = 0 for every 𝑖 ∈ 𝐼𝑐
𝐴𝑙

, 𝑙 ≥ 0.

Thus active set identification happens in 𝑘 ≤ 𝑞(𝜀) + 𝑛 − 1 steps. □

Remark 4.5.7. When we have an explicit expression for the convergence rate 𝑞(𝜀),
then we can get an active set complexity bound using Theorem 4.5.6. For instance,

we can compare this result with the one for strongly convex objectives, assuming

𝐶 = 1, 𝑝 = 2, 𝜃 = 𝑢1/2, and 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) ≤ ℎ0𝑞
𝑘 for some 𝑞 ∈ (0, 1). These

conditions are always satisfied by strongly convex objectives. Applying the theorem

we obtain the active set complexity bound

𝑞(𝜀) + 𝑛 − 1 ≤
⌈
max

(
0,

ln(ℎ0) − ln(min(𝐿, 𝑟4
∗𝑢

2

1
/16𝐿))

ln(1/𝑞)

)⌉
+ 𝑛 (4.5.31)

which is always larger than the bound given in (4.4.4). This is expected, given the

weaker assumptions on the convergence of the objective and the weaker (at least in

the convex case) error bound.

Remark 4.5.8. Assume that the set of stationary points is finite, so that 𝐴𝑖 = {𝑎𝑖}
for every 𝑖 ∈ [1:𝐶] with 𝑎𝑖 ∈ Δ𝑛−1. Let

𝑐min = min
𝑖∈[1:𝐶]

min
𝑗 :(𝑎𝑖) 𝑗≠0

(𝑎𝑖) 𝑗 (4.5.32)

be the minimal nonzero component of a stationary point. Then the method con-

verges to a point 𝑎𝑙 and identifies its support in at most 𝑞(𝜀) + |𝐼𝑐 (𝑎𝑙) | iterations,

where here 𝜀 has no explicit dependence on 𝑛:

𝜀 <𝐿, 𝑟 (𝜀) + 𝑙 (𝜀) < min(𝑟∗, 𝑐min/2) ,

where 𝑟 (𝜀) =
(

2
√
𝐿𝜀
𝜃

) 1

𝑝

and 𝑙 (𝜀) = 2

√︃
2𝜀
𝐿

. We do not discuss the proof since it roughly

follows the same lines of arguments leading to the proof of Theorem 4.5.6.

4.5.4 Local active set complexity bound

A key hypothesis to ensure local convergence to a strict local minimum is

𝑥𝑘 ∈ argmax{ 𝑓 (𝑥) | 𝑥 ∈ conv(𝑥𝑘 , 𝑥𝑘+1)} . (4.5.33)
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which in particular holds when 𝛼𝑘 = �̄�𝑘 as it is proved in Lemma 4.2.1. The property

(4.5.33) is obviously stronger than the usual monotonicity, and it ensures that the

sequence cannot escape from connected components of sublevel sets. When 𝑓 is

convex it is immediate to check that (4.5.33) holds if and only if { 𝑓 (𝑥𝑘 )} is monotone

non increasing.

Let 𝑥∗ be a stationary point which is also a strict local minimizer isolated from

the other stationary points and 𝑓 = 𝑓 (𝑥∗). Let then 𝛽 be such that there exists a

connected component 𝑉𝑥∗,𝛽 of 𝑓 −1((−∞, 𝛽]) satisfying

𝑉𝑥∗,𝛽 ∩ X∗
= {𝑥∗} = arg min

𝑥∈𝑉𝑥∗ ,𝛽
𝑓 (𝑥) .

Theorem 4.5.9. Let 𝑥0 ∈ 𝑉𝑥∗,𝛽, and let {𝑥𝑘 } be the sequence generated by the AFW

with step size 𝛼𝑘 = �̄�𝑘 . Let

𝑟∗ =
𝛿min(𝑥∗)

2𝐿 + 𝛿min(𝑥∗)
.

Then 𝑥𝑘 → 𝑥∗ and the sequence identifies the support in at most
⌈
max

(
4( 𝑓 (𝑥0) − 𝑓 (𝑥∗))

𝜏
,
8𝐿 ( 𝑓 (𝑥0) − 𝑓 (𝑥∗))

𝜏2

)⌉
+ 𝑛

steps with

𝜏 = min{𝑔(𝑥) | 𝑥 ∈ 𝑓 −1( [𝑚, +∞)) ∩𝑉𝑥∗,𝛽} ,

where

𝑚 = min{ 𝑓 (𝑥) | 𝑥 ∈ 𝑉𝑥∗,𝛽 \ 𝐵𝑟∗ (𝑥∗)} .

Proof. As in the proof of Corollary 4.5.2, the assumptions of Theorem 4.5.1 are

satisfied with 𝜌 =
1

2
. By point 1 of Lemma 4.2.1, the condition 𝛼𝑘 = �̄�𝑘 on the step

sizes implies that {𝑥𝑘 } satisfies (4.5.33). In particular, {𝑥𝑘 } can not leave connected

components of level sets so that {𝑥𝑘 } ⊂ 𝑉𝑥∗,𝛽 and

lim
𝑘→∞

𝑓 (𝑥𝑘 ) ≥ 𝑓 (𝑥∗) .

By (4.5.7) and (4.5.9) it follows

𝑓 (𝑥0) − 𝑓 (𝑥∗) ≥ [𝑛1(𝑇) + 𝑛2(𝑇)] min

(
(𝑔∗
𝑇
)2

4𝐿
,
𝑔∗
𝑇

2

)
. (4.5.34)

Moreover applying (4.5.8) we obtain

𝑛1(𝑇) + 𝑛2(𝑇) ≥
𝑇 + |𝑆𝑇 | − |𝑆0 |

2
≥ 𝑇 − 𝑛 + 1

2
(4.5.35)



4.6 AFW complexity for generic polytopes 111

where the second inequality follows from |𝑆𝑇 | − |𝑆0 | ≥ −𝑛+1. Concatenating (4.5.34)

and (4.5.35) we get

𝑓 (𝑥0) − 𝑓 (𝑥∗) ≥ 𝑇 − 𝑛 + 1

2
min

(
(𝑔∗
𝑇
)2

4𝐿
,
𝑔∗
𝑇

2

)
(4.5.36)

from which we have the following bound on 𝑔∗
𝑇
:

𝑔∗𝑇 ≤ max

(√︂
8𝐿 ( 𝑓 (𝑥0) − 𝑓 (𝑥∗))

𝑇 − 𝑛 + 1
,
4( 𝑓 (𝑥0) − 𝑓 (𝑥∗))

𝑇 − 𝑛 + 1

)
(4.5.37)

for 𝑇 ≥ 𝑛. It is now straightforward to check that if

ℎ̄ =

⌈
max

(
4( 𝑓 (𝑥0) − 𝑓 ∗)

𝜏
,
8𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

𝜏2

)⌉
+ 𝑛 ,

then

𝑔∗
ℎ̄
< 𝜏 .

Since (4.5.34) is derived considering the gap 𝑔 only in case 1 and case 2 indexes, we

have that there exists ℎ̃ ≤ ℎ̄ case 1 or case 2 index such that 𝑔(𝑥 ℎ̃) < 𝜏. Therefore,

by the definition of 𝜏, we get 𝑓 (𝑥 ℎ̃) < 𝑚. We claim that 𝑥ℎ ∈ 𝐵𝑟∗ (𝑥∗) for every ℎ ≥ ℎ̃.

Indeed, since 𝑓 (𝑥 ℎ̃) < 𝑚 and {𝑥𝑘 } can not leave connected components of level sets

we have for every ℎ ≥ ℎ̃

𝑥ℎ ∈ 𝑉𝑥∗,𝛽 ∩ 𝑓 −1((−∞, 𝑚)) ⊂ 𝐵𝑟∗ (𝑥∗) ,

where the inclusion follows directly from the definition of 𝑚. Since the index ℎ̃

corresponds to a case 1 or a case 2 step done in the active set region 𝐵𝑟∗ (𝑥∗) by the

local identification Theorem 4.3.3 the method must have already done all the case

3 steps needed to identify 𝐼𝑐 (𝑥∗). Then we obtain the active set complexity bound

ℎ̃ ≤ ℎ̄ =

⌈
max

(
4( 𝑓 (𝑥0) − 𝑓 ∗)

𝜏
,
8𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

𝜏2

)⌉
+ 𝑛 , (4.5.38)

as desired. □

4.6 AFW complexity for generic polytopes

It is well known as anticipated in the introduction that every application of the

AFW to a polytope can be seen as an application of the AFW to the probability
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simplex. Even though rewriting an optimization problem on the simplex can lead

to a dramatic increase in complexity, this equivalence is still useful because it al-

lows us to extend the properties we proved on the simplex to generic polytopes.

Furthermore, in practice the AFW only needs a linear minimization oracle and the

points appearing in the convex combination giving the current iterate [157], while

knowledge of the whole transformation between the polytope and the simplex is not

needed.

In this section we show the connection between the active set and the face of the

polytope exposed by −∇ 𝑓 (𝑦∗), where 𝑦∗ is a stationary point for 𝑓 . We then pro-

ceed to show with a couple of examples how the results proved for the probability

simplex can be adapted to general polytopes. In particular we generalize Theorem

4.4.3, thus proving that under a convergence assumption the AFW identifies the

face exposed by the gradients of some stationary points. An analogous result is al-

ready well known for the gradient projection algorithm, and was first proved in [61]

building on [60] which used an additional strict complementarity assumption but

worked in a more general setting than polytopes, that of convex compact sets with

a polyhedral optimal face.

Before stating the generalized theorem we need to introduce additional notation and

prove a few properties mostly concerning the generalization of the simplex multiplier

function 𝜆 to polytopes.

Let 𝑃 be a polytope and 𝑓 : 𝑃 → ❘𝑛 be a function with gradient having Lipschitz

constant 𝐿.

To define the AFW algorithm we need a finite set of atoms A such that conv(A) = 𝑃.

As for the probability simplex we can then define for every 𝑎 ∈ A the multiplier

function 𝜆𝑎 : 𝑃 → ❘ by

𝜆𝑎 (𝑦) = ∇ 𝑓 (𝑦)⊤(𝑎 − 𝑦) .
Finally, let 𝐴 be a matrix having as columns the atoms in A, so that 𝐴 is also a

linear transformation mapping Δ|A|−1 in 𝑃 with 𝐴𝑒𝑖 = 𝐴
𝑖 ∈ A (but the same results

hold with the same proofs if we have an affine transformation 𝑒𝑖 → 𝐴𝑒𝑖 + 𝑏).

In order to apply Theorem 4.3.3 we need to check that the transformed problem

min{ 𝑓 (𝐴𝑥) | 𝑥 ∈ Δ|A|−1}

still has all the necessary properties under the assumptions we made on 𝑓 .

Let 𝑓 (𝑥) = 𝑓 (𝐴𝑥). First, it is easy to see that the gradient of 𝑓 is still Lipschitz.

Also 𝜆 is invariant under affine transformation, meaning that 𝜆𝐴𝑖 (𝐴𝑥) = 𝜆𝑖 (𝑥) for

every 𝑖 ∈ [1 : |A|], 𝑥 ∈ Δ|A|−1. Indeed,

𝜆𝐴𝑖 (𝐴𝑥) = ∇ 𝑓 (𝐴𝑥)⊤(𝐴𝑖 − 𝐴𝑥) = ∇ 𝑓 (𝐴𝑥)⊤𝐴(𝑒𝑖 − 𝑥) = ∇ 𝑓 (𝑥)⊤(𝑒𝑖 − 𝑥) = 𝜆𝑖 (𝑥) .
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Let 𝑌 ∗ be the set of stationary points for 𝑓 on 𝑃, so that by invariance of mul-

tipliers X∗ = 𝐴−1(𝑌 ∗) is the set of stationary points for 𝑓 . The invariance of the

identification property follows immediately from the invariance of 𝜆: if the support

of the multiplier functions for 𝑓 restricted to 𝐵 is {𝐴𝑖}𝑖∈𝐼𝑐 , then the support of the

multiplier functions for 𝑓 restricted to 𝐴−1(𝐵) is 𝐼𝑐.

We now show the connection between the face exposed by −∇ 𝑓 and the support of

the multiplier function. Let 𝑦∗ = 𝐴𝑥∗ ∈ 𝑌 ∗ and let

𝑃∗(𝑦∗) = {𝑦 ∈ 𝑃 | ∇ 𝑓 (𝑦∗)⊤𝑦 = ∇ 𝑓 (𝑦∗)⊤𝑦∗}
= argmax{−∇ 𝑓 (𝑦∗)⊤𝑦 | 𝑦 ∈ 𝑃} = F𝑒 (−∇ 𝑓 (𝑦∗))

be the face of the polytope 𝑃 exposed by −∇ 𝑓 (𝑦∗). The complementarity conditions

for the generalized multiplier function 𝜆 can be stated very simply in terms of

inclusion in 𝑃∗(𝑦∗): since 𝑦∗ ∈ 𝑃∗(𝑦∗) we have 𝜆𝑎 (𝑦∗) = 0 for every 𝑎 ∈ 𝑃∗(𝑦∗),
𝜆𝑎 (𝑦∗) > 0 for every 𝑎 ∉ 𝑃∗(𝑦∗). But 𝑃 is the convex hull of the set of atoms in A
so that the previous relations mean that the face 𝑃∗(𝑦∗) is the convex hull of the

set of atoms for which 𝜆𝑎 (𝑦∗) = 0:

𝑃∗(𝑦∗) = conv{𝑎 ∈ A | 𝜆𝑎 (𝑦∗) = 0}

or in other words since 𝜆𝐴𝑖 (𝑦∗) = 0 if and only if 𝑖 ∈ 𝐼 (𝑥∗) = {𝑖 ∈ [1 : 𝑛] | 𝜆𝑖 (𝑥∗) = 0}:

𝑃∗(𝑦∗) = conv{𝑎 ∈ A | 𝑎 = 𝐴𝑖, 𝑖 ∈ 𝐼 (𝑥∗)} . (4.6.1)

A consequence of (4.6.1) is that given any subset 𝐵 of 𝑃 with the SIP, we necessarily

get 𝑃∗(𝑤) = 𝑃∗(𝑧) for every 𝑤, 𝑧 ∈ 𝐵, since 𝐼 (𝑤) = 𝐼 (𝑧). For such a subset 𝐵 we

can then define

𝑃∗(𝐵) = 𝑃∗(𝑦∗) for any 𝑦∗ ∈ 𝐵

where the definition does not depend on the specific 𝑦∗ ∈ 𝐵 considered. We can now

restate Theorem 4.4.3 in slightly different terms:

Theorem 4.6.1. Let {𝑦𝑘 } be a sequence generated by the AFW on 𝑃 and let {𝑥𝑘 }
be the corresponding sequence of weights in Δ|A|−1 such that {𝑦𝑘 } = {𝐴𝑥𝑘 }. Assume

that the step sizes satisfy 𝛼𝑘 ≥ �̄�𝑘 (using 𝑓 instead of 𝑓 in (4.2.1)). If there exists

a compact subset 𝐵 of 𝑌 ∗ with the SIP such that 𝑦𝑘 → 𝐵, then there exists 𝑀 such

that

𝑦𝑘 ∈ 𝑃∗(𝐵) for every 𝑘 ≥ 𝑀.

Proof. Follows from Theorem 4.4.3 and the affine invariance properties discussed

above. □
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In Theorem 4.6.1, in order to compute �̄�𝑘 the Lipschitz constant 𝐿 of ∇ 𝑓 (defined

on the simplex) is necessary. When optimizing on a general polytope, the calculation

of an accurate estimate of 𝐿 for 𝑓 may be problematic. However, by Lemma 4.2.1

if the AFW uses exact line search, the step size �̄�𝑘 (and in particular the constant

𝐿) is not needed because the inequality 𝛼𝑘 ≥ �̄�𝑘 is automatically satisfied.

We now generalize the analysis of the strongly convex case. The technical problem

here is that strong convexity, which is used in Corollary 4.4.5, is not maintained

by affine transformations, so that instead we have to use a weaker error bound

condition. As a possible alternative, in [157] linear convergence of the AFW is

proved with dependence only on affine invariant parameters, so that any version of

Theorem 4.3.3 and Corollary 4.4.5 depending on those parameters instead of 𝑢1, 𝐿

would not need this additional analysis.

Let 𝑃 = {𝑦 ∈ ❘𝑛 | 𝐶𝑦 ≤ 𝑏}, 𝑦∗ be the unique minimizer of 𝑓 on 𝑃 and 𝑢 > 0 be such

that

𝑓 (𝑦) ≥ 𝑓 (𝑦∗) + 𝑢
2
∥𝑦 − 𝑦∗∥2 .

The function 𝑓 inherits the error bound condition necessary for Corollary 4.4.5 from

the strong convexity of 𝑓 : for every 𝑥 ∈ Δ|A|−1 by [27], Lemma 2.2 we have

dist(𝑥,X∗) ≤ 𝜃∥𝐴𝑥 − 𝑦∗∥

where 𝜃 is the Hoffman constant related to [𝐶𝑇 , [𝐼; 𝑒;−𝑒]𝑇 ]𝑇 . As a consequence if

𝑓 ∗ is the minimum of 𝑓

𝑓 (𝑥) − 𝑓 ∗ = 𝑓 (𝐴𝑥) − 𝑓 (𝑦∗) ≥ 𝑢

2
∥𝐴𝑥 − 𝑦∗∥2 ≥ 𝑢

2𝜃2
dist(𝑥,X∗)2

and using that 𝑛∥ · ∥2 ≥ ∥ · ∥2

1
we can finally retrieve an error bound condition with

respect to ∥ · ∥1:

𝑓 (𝑥) − 𝑓 ∗ ≥ 𝑢

2𝑛𝜃2
dist1(𝑥,X∗)2. (4.6.2)

Having proved this error bound condition for 𝑓 we can now generalize (4.3.5):

Corollary 4.6.2. The sequence {𝑦𝑘 } generated by the AFW is in 𝑃∗(𝑦∗) for

𝑘 ≥ max

(
0,

ln(ℎ0) − ln(𝑢𝑃𝑟2
∗/2)

ln(1/𝑞)

)
+ |𝐼𝑐 |

where 𝑞 ∈ (0, 1), is the constant related to the linear convergence rate 𝑓 (𝑦𝑘 )− 𝑓 (𝑦∗) ≤
𝑞𝑘 ( 𝑓 (𝑦0) − 𝑓 (𝑦∗)), 𝑢𝑃 =

𝑢
2𝑛𝜃2 , 𝑟∗ =

𝛿min

2𝐿+𝛿min
with 𝛿min = min{𝜆𝑎 (𝑦∗) | 𝜆𝑎 (𝑦∗) > 0}.
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Proof. Let 𝐼 = {𝑖 ∈ [1 : |A|] | 𝜆𝐴𝑖 (𝑦∗) = 0}, 𝑃∗ = 𝑃∗(𝑦∗). Since 𝑃∗ = conv(A ∩ 𝑃∗)
and by (4.6.1) conv(A ∩ 𝑃∗) = conv{𝐴𝑖 | 𝑖 ∈ 𝐼} the theorem is equivalent to prove

that for every 𝑘 larger than the bound, we have 𝑦𝑘 ∈ conv{𝐴𝑖 | 𝑖 ∈ 𝐼}. Let {𝑥𝑘 } be

the sequence generate by the AFW on the probability simplex, so that 𝑦𝑘 = 𝐴𝑥𝑘 .

We need to prove that, for every 𝑘 larger than the bound, we have

𝑥𝑘 ∈ conv {𝑒𝑖 | 𝑖 ∈ 𝐼} ,

or in other words (𝑥𝑘 )𝑖 = 0 for every 𝑖 ∈ 𝐼𝑐.
Reasoning as in Corollary 4.4.5 we get that dist1(𝑥𝑘 ,X∗) < 𝑟∗ for every

𝑘 ≥ ln(ℎ0) − ln(𝑢𝑃𝑟2
∗/2)

ln(1/𝑞) . (4.6.3)

Let 𝑘 be the minimum index such that (4.6.3) holds. For every 𝑘 ≥ 𝑘 there exists

𝑥∗ ∈ X∗ with ∥𝑥𝑘 − 𝑥∗∥1 < 𝑟∗. But 𝜆𝑖 (𝑥) = 𝜆𝐴𝑖 (𝑦∗) for every 𝑥 ∈ X∗ by the invariance

of 𝜆, so that we can apply Theorem 4.3.3 with fixed point 𝑥∗ and obtain that if

𝐽𝑘 = {𝑖 ∈ 𝐼𝑐 | (𝑥𝑘 )𝑖 > 0} then 𝐽𝑘+1 ≤ max(0, 𝐽𝑘 − 1). The conclusion follows exactly

as in Corollary 4.4.5. □
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Chapter 5

Fast Cluster Detection in

Networks with a FW variant

Cluster detection plays a fundamental role in the analysis of data. In

this chapter, we focus on the use of 𝑠-defective clique models for network-

based cluster detection and propose a nonlinear optimization approach

that efficiently handles those models in practice. In particular, we intro-

duce an equivalent continuous formulation for the problem under anal-

ysis, and we analyze some tailored variants of the FW algorithm that

enable us to quickly find maximal 𝑠-defective cliques. The good practical

behavior of those algorithmic tools, which is closely connected to their

support identification properties, makes them very appealing in practical

applications. The reported numerical results clearly show the effective-

ness of the proposed approach. 1

5.1 A continuous optimization approach for max-

imum s-defective clique

In the context of network analysis the clique model, dating back at least to the

work of Luce and Perry [177] about social networks, refers to subsets with every two

elements in a direct relationship. The problem of finding maximal cliques has numer-

ous applications in domains including telecommunication networks, biochemistry,

1This chapter is based on the article ŞFast Cluster Detection in Networks by First Order

OptimizationŤ in SIAM Journal on Mathematics of Data Science, vol. 4, iss. 1, pp. 285-305,

2022 [49].
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financial networks, and scheduling ( [43], [241]). From an optimization perspective,

this problem has been the subject of extensive studies stimulating new research direc-

tions in both continuous and discrete optimization (see, e.g., [41], [43], [45], [217]).

The Motzkin-Straus quadratic formulation [188] in particular has motivated sev-

eral algorithmic approaches (see [40], [133] and references therein) to the maximum

clique problem, beside being of independent interest for its connection with Turán’s

theorem [7].

Since the strict requirement that every two elements have a direct connection is

often not satisfied in practice, many relaxations of the clique model have been pro-

posed (see, e.g., [199] for a survey). We are here interested in 𝑠-defective cliques

( [76], [224], [247]), allowing up to 𝑠 links to be missing, and introduced in [247]

for the analysis of protein interaction networks obtained with large scale techniques

subject to experimental errors.

In this chapter, we first define a regularized version of a cubic continuous formula-

tion for the maximum 𝑠-defective clique problem proposed in [217], and then apply

variants of the classic FW method [101] to this formulation.

The support identification properties of FW variants are especially suited for our

maximal 𝑠-defective clique formulation, since in this case the optimization process

can stop as soon as the support of a solution is identified.

5.1.1 Problem formulation

For a vector 𝑟 ∈ ❘𝑑, the 𝑑-dimensional Euclidean space, and a set 𝐴 ⊂ [1:𝑑], we

denote with 𝑟𝐴 the components of 𝑟 with indexes in 𝐴. Let G = (𝑉, 𝐸) be a graph

with vertices 𝑉 and and edges 𝐸 , 𝑛 = |𝑉 |, 𝐴G the adjacency matrix of G, and let

Ḡ = (𝑉, 𝐸) the complementary graph. Recall that the Motzkin-Strauss formulation

for the maximum clique problem is

max{𝑥⊤𝐴G𝑥 | 𝑥 ∈ Δ𝑛−1} . (MS)

We now introduce the cubic continuous formulation for the 𝑠−defective clique prob-

lem given in [217]. For 𝑠 ∈ ◆ with 𝑠 ≤ |𝐸 | we define

𝐷𝑠 (G) = {𝑦 ∈ {0, 1}𝐸 | 𝑒⊺𝑦 ≤ 𝑠} ,

representing the set of "fake edges" to be added to the graph in order to complete

an 𝑠-defective clique, and its continuous relaxation as

𝐷′
𝑠 (G) = {𝑦 ∈ [0, 1]𝐸 | 𝑒⊺𝑦 ≤ 𝑠} .
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For 𝑦 ∈ 𝐷′
𝑠 (G) we define the induced adjacency matrix 𝐴(𝑦) ∈ ❘𝑛×𝑛 as

𝐴(𝑦)𝑖 𝑗 =
{
𝑦𝑖 𝑗 if {𝑖, 𝑗} ∈ 𝐸 ,
0 if {𝑖, 𝑗} ∉ 𝐸 .

For 𝑦 ∈ 𝐷𝑠 (G) in particular we define G(𝑦) as the graph with adjacency matrix

𝐴G + 𝐴(𝑦), that is the graph where we add to G the edge {𝑖, 𝑗} whenever 𝑦𝑖 𝑗 = 1.

We also define 𝐸 (𝑖) and 𝐸 𝑦 (𝑖) as the neighbors of 𝑖 in G and G(𝑦) respectively.

Let P𝑠 = Δ𝑛−1 × 𝐷′
𝑠 (G). The objective of the 𝑠-defective clique relaxation defined

in [217] is

𝑓G (𝑧) = 𝑓G (𝑥, 𝑦) := 𝑥⊺ [𝐴G + 𝐴(𝑦)]𝑥 , 𝑧 = (𝑥, 𝑦) ∈ P𝑠 (5.1.1)

so that when 𝐴(𝑦) = 0 one retrieves Motzkin-Straus quadratic objective. The cor-

responding formulation for the maximum 𝑠−defective clique problem is then

max{ 𝑓G (𝑧) | 𝑧 ∈ P𝑠} . (S)

5.1.2 Contributions

Our contributions can be summarized as follows:

• We solve the spurious solution problem for the maximum 𝑠-defective clique for-

mulation proposed in [217] by introducing a regularized version, for which we

prove equivalence between local maximizers and maximal 𝑠-defective cliques.

In particular, no postprocessing algorithms are needed to derive the desired

structure from a local solution. Our work develops along the lines of analo-

gous results proved for regularized versions of the Motzkin - Straus quadratic

formulation ( [43], [133]).

• We prove that the FDFW applied to our formulation identifies the support of

a maximal 𝑠-defective clique in a finite number of iterations.

• We propose a tailored Frank-Wolfe variant for the 𝑠-defective clique formu-

lation at hand exploiting its product domain structure. This method retains

the identification properties of the FDFW while significantly outperforming it

in numerical tests.

The codes of the methods described in the chapter, together with the tested in-

stances, are available at the following link: https://github.com/DamianoZeffiro/

s_defective_fw.
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in [40]. As we shall see in Proposition 5.2.1, the main advantage of the regularized

objective ℎG is that, in sharp contrast to 𝑓G, it does not admit any spurious local

solutions, i.e., the support of the 𝑥 component of every local maximizer 𝑝 = (𝑥, 𝑦)
of ℎG (i.e., a maximizer in a neighborhood 𝑈 ⊆ P𝑠 of 𝑝) is a maximal 𝑠-defective

clique.

For non-empty 𝐶 ⊆ 𝑉 let 𝑥 (𝐶) = 1

|𝐶 |
∑
𝑖∈𝐶 𝑒𝑖 be the characteristic vector in Δ𝑛−1 of

the clique 𝐶, and

Δ
(𝐶)

= {𝑥 ∈ Δ𝑛−1 | 𝑥𝑖 = 0 for all 𝑖 ∈ 𝑉 \ 𝐶}

be the minimal face of Δ𝑛−1 containing 𝑥 (𝐶) in its relative interior.

For 𝑝 ∈ P𝑠 we define as 𝑇P𝑠 (𝑝) = {𝑣− 𝑝 : 𝑣 ∈ P𝑠} as the cone of feasible directions at

𝑝 in P𝑠, while for 𝑟 ∈ ❘|𝑉 |+|𝐸 | we define 𝑇0

P𝑠 (𝑝, 𝑟) as the intersection between 𝑇P𝑠 (𝑝)
and the plane orthogonal to 𝑟:

𝑇0

P𝑠 (𝑝, 𝑟) = {𝑑 ∈ 𝑇P𝑠 (𝑝) | 𝑑⊤𝑟 = 0} .

We now prove that (i) every local maximizer of ℎG is strict and that (ii) there is a

one-to-one correspondence between (strict) local maximizers of ℎG and 𝑠-defective

cliques coupled together with 𝑠 fake edges including the one missing on the clique.

Recall that in our polytope-constrained setting, (second order) sufficient conditions

for the local maximality of 𝑝 ∈ P𝑠 are (see, e.g., [30])

∇ℎG (𝑝)⊤𝑑 ≤ 0 for all 𝑑 ∈ 𝑇P𝑠 (𝑝) (5.2.1)

and

𝑑⊺𝐷2ℎG (𝑝)𝑑 < 0 for all 𝑑 ∈ 𝑇0

P𝑠 (𝑝,∇ℎG (𝑝)) . (5.2.2)

In the rest of the chapter we use M𝑠 (G) to denote the set of strict local maximizers

of ℎG.

Proposition 5.2.1 (characterization of local maxima for ℎG). The following are

equivalent:

(i) 𝑝 ∈ P𝑠 is a local maximizer for ℎG (𝑥, 𝑦);

(ii) 𝑝 ∈ M𝑠 (G);

(iii) 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) where 𝑠 = 𝑒⊺𝑦 (𝑝) ∈ ◆, with 𝐶 an 𝑠-defective clique in G which

is also a maximal clique in G(𝑦 (𝑝)), and 𝑦 (𝑝) ∈ 𝐷𝑠 (G) such that 𝑦
(𝑝)
𝑖 𝑗

= 1 for

every {𝑖, 𝑗} ∈
(𝐶
2

)
∩ 𝐸.
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In either of these equivalent cases, we have

ℎG (𝑝) = 1 − 2 − 𝛼
2|𝐶 | + 𝑠 𝛽

2
. (5.2.3)

Proof. Let 𝑝 = (𝑥 (𝑝) , 𝑦 (𝑝)) ∈ P𝑠, 𝑔 = ∇ℎG (𝑝), 𝐻 = 𝐷2ℎG (𝑝).
(ii) ⇒ (i) is trivial.

(i) ⇒ (iii). If 𝑠 := 𝑒⊺𝑦 (𝑝) were fractional, then for some {𝑖, 𝑗} ∈ 𝐸 we would have

𝑦
(𝑝)
𝑖 𝑗

< 1. Furthermore

𝜕ℎG (𝑝)
𝜕𝑦𝑖 𝑗

= 2𝑥
(𝑝)
𝑖
𝑥
(𝑝)
𝑗

+ 𝛽𝑦 (𝑝)
𝑖 𝑗

≥ 0,
𝜕ℎG (𝑝)
𝜕2𝑦𝑖 𝑗

= 𝛽 > 0 . (5.2.4)

Thus for 𝜀 > 0 small enough we have ℎG (𝑝 +𝜀𝑒𝑖 𝑗 ) > ℎG (𝑝) with 𝑝 +𝜀𝑒𝑖 𝑗 ∈ P𝑠, which

means that 𝑝 is not a local maximizer. Hence 𝑠 ∈ ◆ and obviously 𝑠 ≤ |𝐸 | as well

as 𝑦 (𝑝) ∈ 𝐷′
𝑠 (G).

Assume now by contradiction that 𝑝 is a local maximizer but 𝑦 (𝑝) ∉ 𝐷𝑠 (G). Then

for two distinct edges {𝑖, 𝑗}, {𝑙, 𝑚} ∈ 𝐸 we must have 𝑦
(𝑝)
𝑖 𝑗
, 𝑦

(𝑝)
𝑙𝑚

∈ (0, 1). Let 𝑑 =

(0, 𝑒𝑖 𝑗 − 𝑒𝑙𝑚). Since ±𝑑 are both feasible directions and 𝑝 is a local maximizer,

necessarily 𝑔⊤𝑑 = 0. But we also have

𝑑⊺𝐻𝑑 =
𝜕ℎG (𝑝)
𝜕2𝑦𝑖 𝑗

+
𝜕ℎG (𝑝)
𝜕2𝑦𝑙𝑚

− 2
𝜕ℎG (𝑝)
𝜕𝑦𝑖 𝑗𝜕𝑦𝑙𝑚

= 2𝛽 > 0 . (5.2.5)

so that again for 𝜀 > 0 small enough ℎG (𝑝 + 𝜀𝑑) > ℎG (𝑝) with 𝑝 + 𝜀𝑑 ∈ P𝑠, a

contradiction.

We proved that if 𝑝 is a local maximizer, then 𝑠 = 𝑒⊺𝑦 (𝑝) ∈ ◆ and 𝑦 (𝑝) ∈ 𝐷𝑠 (G).
But 𝑥 (𝑝) must be a local maximizer for the function 𝑥 ↦→ ℎG (𝑥, 𝑦 (𝑝)), which is (up

to a constant) a regularized maximal clique relaxation for the augmented graph

G(𝑦 (𝑝)). By the characterization of local maximizers for this function given in [133,

Proposition 2.2] (see also [40, Theorem 9]) we must have 𝑥 = 𝑥 (𝐶) with 𝐶 a maximal

clique in G(𝑦 (𝑝)). In particular, since G(𝑦 (𝑝)) is defined by adding 𝑠 edges to G, 𝐶

must be an 𝑠-defective clique in G.

(iii) ⇒ (ii). For a fixed 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) with 𝐶, 𝑦 (𝑝) satisfying the conditions of point

(iii) let 𝐶 = 𝑉 \𝐶, 𝑆 = supp(𝑦 (𝑝)) and 𝑆 = 𝐸 \ 𝑆. We abbreviate 𝐸 (𝑝) (𝑖) = 𝐸 𝑦 (𝑖) with

𝑦 = 𝑦 (𝑝). For every 𝑖 ∈ 𝑉 we have

𝑔𝑖 = 𝛼𝑥
(𝐶)
𝑖

+
∑︁

𝑗∈𝐸 (𝑝) (𝑖)
2𝑥

(𝐶)
𝑗

(5.2.6)

In particular for 𝑖 ∈ 𝐶

𝑔𝑖 =
𝛼

|𝐶 | +
∑︁

𝑗∈𝐶\{𝑖}
2𝑥

(𝐶)
𝑗

=
1

|𝐶 | (𝛼 + 2|𝐶 | − 2) (5.2.7)
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and for every 𝑖 ∈ 𝐶
𝑔𝑖 =

∑︁

𝑗∈𝐸 (𝑝) (𝑖)∩𝐶
2𝑥

(𝐶)
𝑗

≤ 2|𝐶 | − 2

|𝐶 | (5.2.8)

where we used 𝑥 (𝐶)
𝑗

= 1/|𝐶 | for every 𝑗 ∈ 𝐶, 𝑥 (𝐶)
𝑗

= 0 otherwise.

For {𝑖, 𝑗} ∈ 𝐸 we have

𝑔𝑖 𝑗 = 𝛽𝑦
(𝑝)
𝑖 𝑗

+ 2𝑥
(𝐶)
𝑖
𝑥
(𝐶)
𝑗

(5.2.9)

and in particular 𝑔𝑖 𝑗 = 0 for {𝑖, 𝑗} ∈ 𝑆, while for {𝑖, 𝑗} ∈ 𝑆

𝑔𝑖 𝑗 = 𝛽 + 2𝑥
(𝐶)
𝑖
𝑥
(𝐶)
𝑗

≥ 𝛽 > 0 , (5.2.10)

where we used 𝑦
(𝑝)
𝑖 𝑗

= 1 for {𝑖, 𝑗} ∈ 𝑆, 0 otherwise, and 𝑥 (𝐶)
𝑖
𝑥
(𝐶)
𝑗

= 0 for {𝑖, 𝑗} ∈ 𝑆 ⊆ 𝐸 .

Let 𝑑 be a feasible direction from 𝑝, so that 𝑑 = 𝑣 − 𝑝 with 𝑣 ∈ P𝑠. Let 𝜎𝑆 =∑
{𝑖, 𝑗}∈𝑆 𝑔𝑖 𝑗 , 𝜎𝐶 =

∑
𝑖∈𝐶 𝑣𝑖

= 1−∑
𝑖∈𝐶 𝑣𝑖 ∈ [0, 1], 𝑚𝐶 = max𝑖∈𝐶 𝑔𝑖, so that by (5.2.8) we have 𝑚𝐶 ≤ 2|𝐶 |−2

|𝐶 | . Then

𝑔⊤𝑝 =

∑︁

𝑖∈𝐶
𝑥
(𝐶)
𝑖
𝑔𝑖+

∑︁

𝑖∈𝐶
𝑥
(𝐶)
𝑖
𝑔𝑖+

∑︁

(𝑖, 𝑗)∈𝑆
𝑦
(𝑝)
𝑖 𝑗
𝑔𝑖 𝑗 =

1

|𝐶 |
∑︁

𝑖∈𝐶
𝑔𝑖+

∑︁

{𝑖, 𝑗}∈𝑆
𝑔𝑖 𝑗 =

1

|𝐶 | (𝛼+2|𝐶 |−2)+𝜎𝑆

(5.2.11)

where we used (5.2.7) in the last equality. We also have

𝑔⊤𝑉 𝑣𝑉 = 𝑔⊤𝐶𝑣𝐶 + 𝑔⊤
𝐶
𝑣𝐶 ≤ 𝛼 + 2|𝐶 | − 2

|𝐶 | 𝜎𝐶 + (1 − 𝜎𝐶)𝑚𝐶 ≤ 𝛼 + 2|𝐶 | − 2

|𝐶 | (5.2.12)

where we used (5.2.7) together with the Hölder inequality in the first inequality,

𝑚𝐶 ≤ 2|𝐶 |−2

|𝐶 | in the second inequality and 𝜎𝐶 ≤ 1. Finally,

𝑔⊤
𝐸
𝑣𝐸 = 𝑔⊤𝑆 𝑣𝑆 + 𝑔⊤𝑆 𝑣𝑆 = 𝑔

⊤
𝑆 𝑣𝑆 ≤ 𝜎𝑆 (5.2.13)

where we used 𝑔𝑆 = 0 in the second equality, and 𝑣𝑖 ≤ 1 for every 𝑖 ∈ 𝐸 in the

inequality. We can conclude

𝑔⊤𝑑 = 𝑔⊤𝑉 𝑣𝑉 + 𝑔⊤
𝐸
𝑣𝐸 − 𝑔⊤𝑝 ≤ 0 (5.2.14)

where we used (5.2.13), (5.2.11) and (5.2.12) in the inequality. We have equality

iff there is equality both in (5.2.12) and (5.2.13), and thus iff 𝑣 = (𝑥 (𝑣) , 𝑦 (𝑣)) with

supp(𝑥 (𝑣)) = 𝐶 and 𝑦 (𝑣) = 𝑦 (𝑝). In particular 𝑝 is a first order stationary point with

𝑇0

P𝑠 (𝑝, 𝑔) = {𝑑 ∈ 𝑇P𝑠 (𝑝) | 𝑑 = 𝑣 − 𝑝, 𝑣𝐶 = 0, 𝑣𝐸 = 𝑝𝐸 } = {𝑑 ∈ 𝑇P𝑠 (𝑝) | 𝑑𝐶 = 𝑑𝐸 = 0} .
(5.2.15)
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Let 𝐻𝐶 be the submatrix of 𝐻 with indices in 𝐶. We have, for (𝑖, 𝑗) ∈ 𝐶2 with 𝑖 ≠ 𝑗 ,

𝐻𝑖 𝑗 = 1 since 𝐶 is a clique in the augmented graph G(𝑦𝑝), while 𝐻𝑖𝑖 = 𝛼 for every

𝑖 ∈ 𝑉 and in particular for every 𝑖 ∈ 𝐶. This proves

𝐻𝐶 = 2𝑒𝑒⊺ + (𝛼 − 2)■ . (5.2.16)

Now if 𝑇0

P𝑠 (𝑝, 𝑔) ∋ 𝑑 ≠ 0 we have

𝑑⊺𝐻𝑑 = 𝑑
⊺

𝐶
𝐻𝐶𝑑𝐶 = 𝑑

⊺

𝐶
(2𝑒𝑒⊺ + (𝛼 − 2)■)𝑑𝐶 = (𝛼 − 2)∥𝑑𝐶 ∥2 < 0 (5.2.17)

where we used 𝑑𝐶 = 𝑑𝐸 = 0 in the first equality, 𝑒⊺𝑑𝐶 = 𝑒⊺ (𝑣𝑉 − 𝑝𝑉 ) = 1 − 1 = 0

in the third one. This proves the claim, since we have sufficient conditions for local

optimality thanks to (5.2.14) and (5.2.17). □

As a corollary, the global optimum of ℎG is achieved on maximum 𝑠-defective

cliques.

Corollary 5.2.2. The global maximizers of ℎG (𝑧) are all the points 𝑝 of the form

𝑝 = (𝑥𝐶∗
, 𝑦 (𝑝)) where 𝐶∗ is an 𝑠-defective clique of maximum cardinality, and 𝑦 (𝑝) ∈

𝐷𝑠 (G) such that 𝑒⊺𝑦 (𝑝) = 𝑠.

Proof. Let 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) a local maximizer for ℎG (𝑧). Then its objective value is,

by (5.2.3), ℎG (𝑝) = 1− 2−𝛼
2|𝐶 | + 𝑠

𝛽

2
, which is (globally) maximized when |𝐶 | is as large

as possible, because 2 − 𝛼 > 0 by assumption. □

Thanks to Proposition 5.2.1, for every 𝑝 ∈ M𝑠 (G) we can define 𝑦 (𝑝) ∈ 𝐷𝑠 (G)
and a maximal clique 𝐶 of G(𝑦 (𝑝)) such that 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)).
We now prove that the face of P𝑠 exposed by the gradient in 𝑝 ∈ M𝑠 (G) is simply the

product between Δ(𝐶) and the singleton {𝑦 (𝑝)}. This property, sometimes referred

to as strict complementarity, is of key importance to prove identification results for

Frank-Wolfe variants (see [46], [47], [107], and the discussion of external regularity

in [42, Section 5.3]). We use it to prove a local identification and convergence result

for the FDFW (see Theorem 5.3.1).

Lemma 5.2.3. Let 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) ∈ M𝑠 (G). Then the face exposed by ∇ℎG (𝑝)
coincides with the minimal face F (𝑝) of P𝑠 containing 𝑝:

F𝑒 (∇ℎG (𝑝)) = F (𝑝) = Δ
(𝐶)
𝑛−1

× {𝑦 (𝑝)} . (5.2.18)

Proof. To start with, the second equality follows from the fact that 𝑦 (𝑝) is a vertex of

𝐷′
𝑠 (G) and that Δ(𝐶)

𝑛−1
is the minimal face of Δ𝑛−1 containing 𝑥 (𝐶). The first equality is
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then equivalent to proving that for every vertex 𝑎 = (𝑎𝑥 , 𝑎𝑦) of P𝑠 with 𝑎 ∈ P𝑠\F (𝑝)
we have 𝜆𝑎 (𝑝) < 0. Given that stationarity conditions must hold in Δ𝑛−1 and 𝐷′

𝑠 (G)
separately, 𝜆𝑎 (𝑝) < 0 if and only if

𝜆𝑥𝑎 (𝑝) :=∇𝑥ℎG (𝑝)⊤(𝑎𝑥 − 𝑥 (𝐶)) ≤ 0 , (5.2.19a)

𝜆
𝑦
𝑎 (𝑝) :=∇𝑦ℎG (𝑝)⊤(𝑎𝑦 − 𝑦 (𝑝)) ≤ 0 , (5.2.19b)

and at least one of these relations must be strict. Since 𝑎 is a vertex of P𝑠, 𝑎𝑥 = 𝑒𝑙
with 𝑙 ∈ [1 : 𝑛] and 𝑎𝑦 ∈ 𝐷𝑠 (G), while 𝑎 ∉ F (𝑝) implies 𝑙 ∉ 𝐶 or 𝑎𝑦 ≠ 𝑦

(𝑝). If 𝑙 ∈ 𝐶
then 𝜆𝑥𝑎 (𝑝) = 0 by stationarity conditions, otherwise

∇𝑥ℎG (𝑝)⊤𝑥 (𝐶) = 2(𝑥 (𝐶))⊺ [𝐴 + 𝐴(𝑦 (𝑝))]𝑥 (𝐶) + 𝛼∥𝑥 (𝐶) ∥2
= 2 − 2 − 𝛼

|𝐶 | (5.2.20)

and

∇𝑥ℎG (𝑝)⊤𝑎𝑥 =
𝜕

𝜕𝑥𝑙
ℎG (𝑝) = 𝛼𝑥𝑙 +

∑︁

𝑗∈𝐶∩𝐸 (𝑝) (𝑙)
2𝑥 𝑗 = 2

|𝐶 ∩ 𝐸 (𝑝) (𝑙) |
|𝐶 | ≤ 2− 2

|𝐶 | , (5.2.21)

where we used 𝑎𝑥 = 𝑒𝑙 in the first equality, 𝑙 ∉ 𝐶 together with 𝑥 𝑗 = 1/|𝐶 | for every

𝑗 ∈ 𝐶 in the third equality, and the maximality of the clique 𝐶 in the augmented

graph G(𝑦 (𝑝)) in the inequality. Combining (5.2.20) and (5.2.21), we obtain

∇𝑥ℎG (𝑝)⊤(𝑎𝑥 − 𝑥 (𝐶)) ≤ − 𝛼

|𝐶 | < 0 , (5.2.22)

which proves that (5.2.19a) holds with strict inequality if 𝑙 ∉ 𝐶, or else with equality

if 𝑙 ∈ 𝐶.

In a similar vain we proceed with (5.2.19b). If 𝑎𝑦 = 𝑦
(𝑝) then (5.2.19b) holds with

equality but then 𝑙 ∈ 𝑉 \ 𝐶 and we are done. So suppose 𝑎𝑦 ≠ 𝑦 (𝑝), and consider

the supports 𝑆𝑦 = {{𝑖, 𝑗} ∈ 𝐸 | (𝑎𝑦)𝑖 𝑗 = 1} and 𝑆𝑝 = {{𝑖, 𝑗} ∈ 𝐸 | 𝑦 (𝑝)
𝑖 𝑗

= 1}. Since

𝑎𝑦 ∈ 𝐷𝑠 (G), we have |𝑆𝑦 | ≤ 𝑠 and on the other hand, by Proposition 5.2.1(iii),

|𝑆𝑝 | = 𝑠. As 𝑆𝑦 and 𝑆𝑝 must be distinct, we conclude 𝑆𝑦 \ 𝑆𝑝 ≠ ∅. Furthermore,

by (5.2.4) for every {𝑖, 𝑗} in 𝐴𝑝 we have

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) ≥ 𝛽𝑦

(𝑝)
𝑖 𝑗

= 𝛽 > 0 , (5.2.23)

while for every {𝑖, 𝑗} in 𝐴𝑦 \ 𝐴𝑝 we have

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) = 0 (5.2.24)
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because 𝑦
(𝑝)
𝑖 𝑗

= 0 by definition of 𝐴𝑝 and 𝑥 (𝐶)
𝑖
𝑥
(𝐶)
𝑗

= 0 since, again invoking Proposi-

toin 5.2.1(iii), {𝑖, 𝑗} ∈ 𝐸 \
(𝐶
2

)
. So we can finally prove (5.2.19b) by observing

∇𝑦ℎG (𝑝)⊤(𝑎𝑦 − 𝑦 (𝑝)) =
∑︁

{𝑖, 𝑗}∈𝐴𝑦

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) −

∑︁

{𝑖, 𝑗}∈𝐴𝑝

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝)

=

∑︁

{𝑖, 𝑗}∈𝐴𝑦\𝐴𝑝

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) −

∑︁

{𝑖, 𝑗}∈𝐴𝑝\𝐴𝑦

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) = −

∑︁

{𝑖, 𝑗}∈𝐴𝑝\𝐴𝑦

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑝) < 0

(5.2.25)

where we used (5.2.24) in the third equality and (5.2.23) together with 𝐴𝑝 \ 𝐴𝑦 ≠ ∅
in the inequality. □

5.3 Frank-Wolfe method with in face directions

Let Q = conv(𝐴) ⊂ ❘𝑛 with |𝐴| < +∞. In this section, we consider the FDFW

for the solution of the smooth constrained optimization problem

max{ 𝑓 (𝑤) | 𝑤 ∈ Q} .

In particular, {𝑤𝑘 } is always a sequence generated by the FDFW applied to the

polytope Q with objective 𝑓 . For 𝑤 ∈ Q we denote with F (𝑤) the minimal face

of Q containing 𝑤. The FDFW at every iteration chooses between the classic FW

direction 𝑑FW
𝑘

calculated at Step 2 and the in face direction 𝑑FD
𝑘

calculated at Step

10 with the criterion in Step 12. When 𝑓 = ℎG and Q = P𝑠, it is not difficult to see

that the main cost to compute 𝑣𝑘 is finding the smallest 𝑠 components of a vector

with size at most |𝐸 |. After the algorithm performs an in face step, we have that the

minimal face containing the current iterate either stays the same or its dimension

drops by one. The latter case occurs when the method performs a maximal feasible

in face step (i.e., a step with 𝛼𝑘 = 𝛼
max

𝑘
and 𝑑𝑘 = 𝑑

FD
𝑘

), generating a point on the

boundary of the current minimal face. As we prove formally in Proposition 5.3.3,

this drop in dimension is what allows the method to quickly identify low dimensional

faces containing solutions.

We often require the following lower bound on the stepsizes:

𝛼𝑘 ≥ �̄�𝑘 := min(𝛼max

𝑘 , 𝑐
∇ 𝑓 (𝑤𝑘 )⊤𝑑𝑘

∥𝑑𝑘 ∥2
) (S1)

for some 𝑐 > 0. Furthermore, for some convergence results we need the following

sufficient increase condition for some constant 𝜌 > 0:

𝑓 (𝑤𝑘 + 𝛼𝑘𝑑𝑘 ) − 𝑓 (𝑤𝑘 ) ≥ 𝜌�̄�𝑘 ∇ 𝑓 (𝑤𝑘 )⊤𝑑𝑘 . (S2)
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Algorithm 7 Frank-Wolfe method with in face directions (FDFW) on a polytope

1: Initialize 𝑤0 ∈ Q, 𝑘 := 0

2: Let 𝑠𝑘 ∈ arg max𝑦∈Q ∇ 𝑓 (𝑤𝑘 )⊤𝑦 and 𝑑FW
𝑘

:= 𝑠𝑘 − 𝑤𝑘 .
3: if 𝑤𝑘 is stationary then

4: STOP

5: end if

6: Let 𝑣𝑘 ∈ arg min𝑦∈F (𝑤𝑘) ∇ 𝑓 (𝑤𝑘 )⊤𝑦 and 𝑑FD
𝑘

:= 𝑤𝑘 − 𝑣𝑘 .
7: if ∇ 𝑓 (𝑤𝑘 )⊤𝑑FW

𝑘
≥ ∇ 𝑓 (𝑤𝑘 )⊤𝑑FD

𝑘
then

8: 𝑑𝑘 := 𝑑FW
𝑘

9: else

10: 𝑑𝑘 := 𝑑FD
𝑘

11: end if

12: Choose the stepsize 𝛼𝑘 ∈ (0, 𝛼max

𝑘
] with a suitable criterion

13: Update: 𝑤𝑘+1 := 𝑤𝑘 + 𝛼𝑘𝑑𝑘
14: Set 𝑘 := 𝑘 + 1. Go to step 2.

These conditions generalize properties of exact and Armijo line search, as a corollary

of the results in Section 4.2.2.

We now state a local convergence and identification result for the FDFW applied

to our maximal 𝑠-defective clique formulation (P).

Theorem 5.3.1 (FDFW local identification and convergence). Let 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) ∈
M𝑠 (G), let {𝑧𝑘 } be a sequence generated by the FDFW. Then under (S1) there exists

a neighborhood 𝑈 (𝑝) of 𝑝 such that if 𝑘 := min{𝑘 ∈ ◆0 | 𝑧𝑘 ∈ 𝑈 (𝑝)} we have the

following properties:

(a) if ℎG (𝑧𝑘 ) is monotonically increasing, then supp(𝑧𝑘 ) = 𝐶 and 𝑦𝑘 = 𝑦 (𝑝) for

every 𝑘 ≥ 𝑘 + dim F (𝑤𝑘 );

(b) if (S2) also holds then 𝑧𝑘 → 𝑝.

Before presenting the proof of Theorem 5.3.1, it is convenient to prove some

generic convergence results for the FDFW. To start with, it is useful to define the

multiplier functions 𝜆𝑎 for 𝑎 ∈ 𝐴, 𝑤 ∈ ❘𝑛 as

𝜆𝑎 (𝑤) = ∇ 𝑓 (𝑤)⊤(𝑎 − 𝑤) . (5.3.1)

We adapt FW gap to the maximization case, thus obtaining the following measure

of stationarity

𝐺 (𝑤) := max
𝑦∈Q

∇ 𝑓 (𝑤)⊤(𝑤 − 𝑦) = max
𝑎∈𝐴

∇ 𝑓 (𝑤)⊤(𝑤 − 𝑎) = max
𝑎∈𝐴

−𝜆𝑎 (𝑤) , (5.3.2)
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as well as an "in face" gap

𝐺F (𝑤) = max(𝐺 (𝑤), max
𝑏∈F (𝑤)∩𝐴

𝜆𝑏 (𝑤)) . (5.3.3)

Using these definitions, we have

∇ 𝑓 (𝑤𝑘 )⊤𝑑𝑘 = max(∇ 𝑓 (𝑤𝑘 )⊤𝑑FW
𝑘

,∇ 𝑓 (𝑤𝑘 )⊤𝑑FD
𝑘

)
=max(𝐺 (𝑤𝑘 ), max

𝑦∈F (𝑤𝑘)
∇ 𝑓 (𝑤𝑘 )⊤(𝑤𝑘 − 𝑦)) = 𝐺F (𝑤𝑘 ) , (5.3.4)

where in the second equality we used

∇ 𝑓 (𝑤𝑘 )⊤𝑑FW
𝑘

= max
𝑦∈𝑄

∇ 𝑓 (𝑤𝑘 )⊤(𝑦 − 𝑤𝑘 ) (5.3.5)

and in the third equality

∇ 𝑓 (𝑤𝑘 )⊤𝑑FD
𝑘

= max
𝑏∈F (𝑤𝑘)

∇ 𝑓 (𝑤𝑘 )⊤(𝑤𝑘 − 𝑏) = max
𝑏∈F (𝑤𝑘)∩𝐴

−𝜆𝑏 (𝑤𝑘 ) . (5.3.6)

From the definitions it also immediately follows

𝐺F (𝑤) ≥ 𝐺 (𝑤) ≥ 0 (5.3.7)

with equality iff 𝑤 is a stationary point.

In order to obtain a local identification result, we need to prove that under certain

conditions the method does consecutive maximal in face steps, thus identifying a

low dimensional face containing a minimizer. First, in the following lemma we give

an upper bound for the maximal feasible stepsize.

Lemma 5.3.2. If 𝑤𝑘 is not stationary, then 𝛼𝑘 ≤ 𝐺 (𝑤𝑘 )/𝐺F (𝑤𝑘 ).

Proof. Notice that since 𝑤𝑘 is not stationary we have 𝐺 (𝑤𝑘 ) > 0 and therefore also

𝐺F (𝑤𝑘 ) > 0. Now

∇ 𝑓 (𝑤𝑘 )⊤(𝑤𝑘 + 𝛼𝑘𝑑𝑘 ) ≤ max
𝑦∈Q

∇ 𝑓 (𝑤𝑘 )⊤𝑦 = ∇ 𝑓 (𝑤𝑘 )⊤(𝑤𝑘 + 𝑑FW
𝑘

)

= ∇ 𝑓 (𝑤𝑘 )⊤𝑤𝑘 + 𝐺 (𝑤𝑘 ) ,

where in the inequality we used 𝑤𝑘 + 𝛼𝑘𝑑𝑘 ∈ Q. Subtracting ∇ 𝑓 (𝑤𝑘 )⊤𝑤𝑘 on both

sides we obtain

𝛼𝑘∇ 𝑓 (𝑤𝑘 )⊤𝑑𝑘 ≤ 𝐺 (𝑤𝑘 ) . (5.3.8)

and the thesis follows by applying (5.3.4) to the LHS. □
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We can now prove a local identification result.

Proposition 5.3.3. Let 𝑝 be a stationary point for 𝑓 defined on Q and assume that

(S1) holds. We have the following properties:

(a) there exists 𝑟∗(𝑝) > 0 such that if 𝑤𝑘 ∈ 𝐵𝑟∗ (𝑝) (𝑝) ∩ F𝑒 (∇ 𝑓 (𝑝)) then 𝑤𝑘+1 ∈
F𝑒 (∇ 𝑓 (𝑝));

(b) for any 𝛿 > 0 there exists 𝑟 (𝛿, 𝑝) ≤ 𝛿 such that if 𝑤𝑘 ∈ 𝐵𝑟 (𝛿,𝑝) (𝑝) then 𝑤𝑘+ 𝑗 ∈
F𝑒 (∇ 𝑓 (𝑝)) ∩ 𝐵𝛿 (𝑝) for some 𝑗 ≤ dim(F (𝑤𝑘 )).

Proof. (a) Notice that by definition of exposed face and stationarity conditions

𝜆𝑎 (𝑝) ≤ 0 (5.3.9)

for every 𝑎 ∈ 𝐴, with equality iff 𝑎 ∈ F𝑒 (∇ 𝑓 (𝑝)). Then by continuity we can take

𝑟∗(𝑝) small enough so that 𝜆𝑎 (𝑤) < 0 for every 𝑎 ∈ 𝐴 \ (𝐴 ∩ F𝑒 (∇ 𝑓 (𝑝))). Under

this condition, if 𝑤𝑘 ∈ 𝐵𝑟∗ (𝑝) (𝑝) then the method cannot select a FW direction

pointing toward an atom outside the exposed face F𝑒 (∇ 𝑓 (𝑝)), because all the atoms

maximizing the RHS of (5.3.2) must necessarily be in F𝑒 (∇ 𝑓 (𝑝)). In particular

if 𝑤𝑘 ∈ 𝐵𝑟∗ (𝑝) (𝑝) ∩ F𝑒 (∇ 𝑓 (𝑝)) then the method selects either an in face direction

or a FW direction pointing toward a vertex in F𝑒 (∇ 𝑓 (𝑝)). In both cases, 𝑤𝑘+1 ∈
F𝑒 (∇ 𝑓 (𝑝)).
(b) Let 𝐷 be the diameter of Q. We now consider 𝑟 (0) (𝛿, 𝑝) ≤ min(𝛿, 𝑟∗(𝑝)) such

that, for every 𝑤 ∈ 𝐵𝑟 (0) (𝛿,𝑝) (𝑝)

max
𝑎∈𝐴

𝜆𝑎 (𝑤) < min
𝑏∈𝐴\F𝑒 (∇ 𝑓 (𝑝))

min(−𝜆𝑏 (𝑤),
𝑐

𝐷2
𝜆𝑏 (𝑤)2) . (5.3.10)

As we will see in the rest of the proof this upper bound together with Lemma 5.3.2

ensures in particular that the FDFW performs maximal in face steps in 𝐵𝑟 (0) (𝛿,𝑝) (𝑝)\
F𝑒 (∇ 𝑓 (𝑝)). Furthermore, (5.3.10) can always be satisfied thanks to (5.3.9) and by

the continuity of multipliers. We then define recursively for 1 ≤ 𝑙 ≤ 𝑛 a sequence

𝑟 (𝑙) (𝛿, 𝑝) ≤ 𝑟 (𝑙−1) (𝛿, 𝑝) of radii small enough so that, for

𝑀𝑙 = sup
𝑤∈𝐵 (𝑙) (𝑝)\F𝑒 (∇ 𝑓 (𝑝))

𝐺 (𝑤)/𝐺F (𝑤) , (5.3.11)

with 𝐵(𝑙) (𝑝) := 𝐵𝑟 (𝑙) (𝛿,𝑝) (𝑝) we have

𝑟 (𝑙) (𝛿, 𝑝) + 𝐷𝑀𝑙 < 𝑟
(𝑙−1) (𝛿, 𝑝) . (5.3.12)
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Again this sequence can always be defined thanks to the continuity of multipliers.

Finally, we define 𝑟 (𝛿, 𝑝) = 𝑟 (𝑛) (𝛿, 𝑝).
Given these definitions, when 𝑤𝑘 ∈ 𝐵(𝑙) (𝑝) ⊂ 𝐵(0) (𝑝) and 𝑤𝑘 is not in F𝑒 (∇ 𝑓 (𝑝))
an in face direction is selected, because

∇ 𝑓 (𝑤𝑘 )⊤𝑑FW
𝑘

= max
𝑎∈𝐴

𝜆𝑎 (𝑤) < min
𝑏∈𝐴\F𝑒 (∇ 𝑓 (𝑝))

−𝜆𝑏 (𝑤)

≤ max
𝑏∈F (𝑤𝑘)∩𝐴

−𝜆𝑏 (𝑤𝑘 ) = ∇ 𝑓 (𝑥𝑘 )⊤𝑑FD
𝑘

,
(5.3.13)

where we used (5.3.10) in the first inequality, 𝑤𝑘 ∉ F𝑒 (𝑝) in the second, and (5.3.6)

in the second equality. We now want to prove that in this case 𝛼𝑘 is maximal

reasoning by contradiction. On the one hand, we have

𝛼𝑘 ≥ 𝑐
∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘

∥𝑑𝑘 ∥2
≥ 𝑐

𝐷2
∇ 𝑓 (𝑥𝑘 )⊤𝑑𝑘 =

𝑐

𝐷2
𝐺F (𝑤𝑘 ) (5.3.14)

where we used the assumption (S1) in the first inequality, ∥𝑑𝑘 ∥ ≤ 𝐷 in the second

and 𝐺F (𝑤𝑘 ) = ∇ 𝑓 (𝑥𝑘 )⊤𝑑FD
𝑘

together with 𝑑𝑘 = 𝑑
FD
𝑘

in the last one.

On the other hand,

𝐺 (𝑤𝑘 ) = max
𝑎∈𝐴

𝜆𝑎 (𝑤𝑘 ) <
𝑐

𝐷2
min

𝑏∈𝐴\F𝑒 (∇ 𝑓 (𝑝))
𝜆𝑏 (𝑤)2 ≤ 𝑐

𝐷2
max

𝑏∈F (𝑤𝑘)
𝜆𝑏 (𝑤)2

=
𝑐

𝐷2
(∇ 𝑓 (𝑤𝑘 )⊤𝑑𝑘 )2

=
𝑐

𝐷2
𝐺F (𝑤𝑘 )2

(5.3.15)

where we used (5.3.10) in the first inequality, 𝑤𝑘 ∉ F𝑒 (∇ 𝑓 (𝑝)) in the second, (5.3.6)

together with 𝑑𝑘 = 𝑑
FD
𝑘

in the second equality, and (5.3.4) in the third equality.

The inequality (5.3.15) leads us to a contradiction with the lower bound on 𝛼𝑘 given

by (5.3.14), since it implies

𝛼𝑘 ≤
𝐺 (𝑤𝑘 )
𝐺F (𝑤𝑘 )

<
𝑐

𝐷2
𝐺F (𝑤𝑘 ) , (5.3.16)

where we applied Lemma 5.3.2 in the first inequality and (5.3.15) in the second.

Assume now 𝑤𝑘 ∈ 𝐵(𝑛) (𝑝). We prove by induction that, for every 𝑗 ∈ [−1 :

dim(F (𝑤𝑘 )) − 1], if {𝑤𝑘+𝑖}0≤𝑖≤ 𝑗 ∩ F𝑒 (∇ 𝑓 (𝑝)) = ∅ then 𝑤𝑘+ 𝑗+1 ∈ 𝐵(𝑛− 𝑗−1) (𝑝). For

𝑗 = −1 we have 𝑤𝑘 ∈ 𝐵(𝑛) (𝑝) by assumption. Now if {𝑤𝑘+𝑖}0≤𝑖≤ 𝑗 ∩ F𝑒 (∇ 𝑓 (𝑝)) = ∅
we have

∥𝑤𝑘+ 𝑗+1 − 𝑝∥ ≤ ∥𝑤𝑘+ 𝑗 − 𝑝∥ + ∥𝑤𝑘+ 𝑗+1 − 𝑤𝑘+ 𝑗 ∥ < 𝑟 (𝑛− 𝑗) (𝛿, 𝑝) + ∥𝑤𝑘+ 𝑗+1 − 𝑤𝑘+ 𝑗 ∥

=𝑟 (𝑛− 𝑗) (𝛿, 𝑝) + 𝛼𝑘 ∥𝑑𝑘 ∥ ≤ 𝑟 (𝑛− 𝑗) (𝛿, 𝑝) + 𝐷 𝐺 (𝑤𝑘 )
𝐺F (𝑤𝑘 )

≤ 𝑟 (𝑛− 𝑗) (𝛿, 𝑝) + 𝐷𝑀𝑛− 𝑗 < 𝑟
(𝑛− 𝑗−1) (𝛿, 𝑝) ,

(5.3.17)
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where we used the inductive hypothesis 𝑤𝑘+ 𝑗 ∈ 𝐵(𝑛− 𝑗) (𝑝) in the second inequal-

ity, Lemma 5.3.2 in the third inequality, (5.3.11) in the fourth inequality and the

assumption (5.3.12) in the last one. In particular 𝑤𝑘+ 𝑗+1 ∈ 𝐵(𝑛− 𝑗−1) (𝑝) and the in-

duction is completed.

Since 𝐵(𝑛− 𝑗) (𝑝) ⊂ 𝐵(0) (𝑝), if 𝑤𝑘+ 𝑗 ∈ (𝐵(𝑛− 𝑗) (𝑝) \ F𝑒 (∇ 𝑓 (𝑝)) then 𝛼𝑘+ 𝑗 must be

maximal and therefore dim(F (𝑤𝑘+ 𝑗+1)) < dim(F (𝑤𝑘+ 𝑗 )). But starting from the

index 𝑘 the dimension of the current face can decrease at most dim(F (𝑤𝑘 )) < 𝑛

times in consecutive steps, so there must exists 𝑗 ∈ [0, dim(F (𝑤𝑘 ))] such that

𝑤𝑘+ 𝑗 ∈ F𝑒 (∇ 𝑓 (𝑝)). Taking the minimum 𝑗 satisfying this condition we also obtain

𝑤𝑘+ 𝑗 ∈ 𝐵(0) (𝑝) ⊂ 𝐵𝛿 (𝑝). □

A straightforward adaptation of results from [47] implies convergence to the set

of stationary points for the FDFW.

Proposition 5.3.4. If (S1) and (S2) hold, then all the limit points of the FDFW

are contained in the set of stationary points of 𝑓 .

Proof. The proof presented in the special case of the simplex in [47], where the

FDFW coincides with the away-step Frank-Wolfe, extends to generic polytopes in

a straightforward way. □

In the next lemma we improve the FDFW local identification result given in

Proposition 5.3.3 under an additional strong concavity assumption for the face con-

taining the solution, satisfied in particular by ℎG.

Lemma 5.3.5. Let 𝑝 be a local maximizer for 𝑓 restricted to Q. Assume that (S1)

holds and that 𝑓 is strongly concave2 in F𝑒 (∇ 𝑓 (𝑝)). Then, for a neighborhood 𝑈 (𝑝)
of 𝑝, if 𝑤0 ∈ 𝑈 (𝑝):

(a) if { 𝑓 (𝑤𝑘 )} is increasing, there exists 𝑘 ∈ [0 : dim(F (𝑤0))] such that 𝑤𝑘+𝑖 ∈
F𝑒 (∇ 𝑓 (𝑝)) for every 𝑖 ≥ 0;

(b) if in addition also (S2) holds, then {𝑤𝑘+𝑖}𝑖≥0 converges to 𝑝.

Proof. (a) Let 𝜇 be the strong concavity constant of 𝑓 restricted to F𝑒 (∇ 𝑓 (𝑝)), so

that

𝑓 (𝑤) ≤ 𝑓 (𝑝) − 𝜇

2
∥𝑤 − 𝑝∥2 (5.3.18)

for every 𝑤 ∈ F𝑒 (∇ 𝑓 (𝑝)). For 𝜀 =
𝜇𝑟∗ (𝑝)2

2
, let L𝜀 be the superlevel of 𝑓 for 𝑓 (𝑝) − 𝜀:

L𝜀 = {𝑦 ∈ Q | 𝑓 (𝑦) > 𝑓 (𝑝) − 𝜀} . (5.3.19)

2in fact, we only need strict concavity of 𝑓 here.
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Let now 𝑟 = 𝑟 (𝛿, 𝑝) defined as in Proposition 5.3.3, with 𝛿 = 𝑟∗(𝑝). By (5.3.18) it

follows L𝜀∩F𝑒 (∇ 𝑓 (𝑝)) ⊂ 𝐵𝑟∗ (𝑝) (𝑝). Assume now 𝑤0 ∈ 𝑈 (𝑝) with𝑈 (𝑝) = 𝐵𝑟 (𝑝)∩L𝜀.

By applying Proposition 5.3.3 we obtain that there exists 𝑘 ∈ [0:dim(F (𝑤0))] such

that 𝑤𝑘 is in F𝑒 (∇ 𝑓 (𝑝)) ∩ 𝐵𝑟∗ (𝑝) (𝑝). But since 𝑓 (𝑤𝑘 ) ≥ 𝑓 (𝑤0) > 𝑓 (𝑝) − 𝜀 we have

the stronger condition 𝑤𝑘 ∈ L𝜀 ∩ F𝑒 (∇ 𝑓 (𝑝)).To conclude, notice that the sequence

cannot escape from this set, because for 𝑖 ≥ 0 𝑤𝑘+𝑖 ∈ L𝜀 implies that also 𝑤𝑘+𝑖+1 is

in L𝜀, and 𝑤𝑘+𝑖 ∈ L𝜀 ∩ F𝑒 (∇ 𝑓 (𝑝)) ⊂ 𝐵𝑟∗ (𝑝) (𝑝) ∩ F𝑒 (∇ 𝑓 (𝑝)) implies that also 𝑤𝑘+𝑖+1

is in F𝑒 (∇ 𝑓 (𝑝)).
(b) By point (a) {𝑤𝑘+𝑖}𝑖≥0 is contained in F𝑒 (∇ 𝑓 (𝑝)). But by assumption 𝑓 is

strongly concave in F𝑒 (∇ 𝑓 (𝑝)) with 𝑝 global maximum and the only stationary

point. To conclude it suffices to apply Proposition 5.3.4. □

Corollary 5.3.6. Let {𝑤𝑘 } be a sequence generated by the FDFW algorithm. As-

sume that there are no saddle points in the limit set of {𝑤𝑘 }, and that for every

local maximizer 𝑝 the objective 𝑓 is strongly concave in F𝑒 (∇ 𝑓 (𝑝)). Then under the

conditions (S1) and (S2) on the stepsize, we have 𝑤𝑘 → 𝑝 with 𝑝 a local maximizer

satisfying 𝑤𝑘 ∈ F𝑒 (∇ 𝑓 (𝑝)) for 𝑘 large enough.

Proof. Follows from (5.3.5) by observing that the sequence must be ultimately con-

tained in 𝑈 (𝑝) for some local maximizer 𝑝. □

Proof of Theorem 5.3.1. Let 𝐴(𝑝) = 𝐴G + 𝐴(𝑦 (𝑝)). Then for 𝑥 ∈ Δ(𝐶)

𝑥⊺𝐴(𝑝)𝑥 =
∑︁

(𝑖, 𝑗)∈𝑉2

𝑥𝑖𝐴(𝑝)𝑖 𝑗𝑥 𝑗 =
∑︁

𝑖∈𝐶
𝑥𝑖 (

∑︁

𝑗∈𝐶
𝐴(𝑝)𝑖 𝑗𝑥 𝑗 ) =

∑︁

𝑖∈𝐶
𝑥𝑖 (

∑︁

𝑗∈𝐶\{𝑖}
𝑥 𝑗 )

=

∑︁

𝑖∈𝐶
(𝑥𝑖

∑︁

𝑗∈𝐶
𝑥 𝑗 − 𝑥2

𝑖 ) = (
∑︁

𝑖∈𝐶
𝑥𝑖)2 −

∑︁

𝑖∈𝐶
𝑥2

𝑖 ,
(5.3.20)

where in the first equality we used supp(𝑥) = 𝐶, in the second that 𝐶 is a clique n

𝐺 (𝑦 (𝑝)), and
∑
𝑖∈𝐶 𝑥𝑖 =

∑
𝑖∈𝑉 𝑥𝑖 = 1.

Observe now that the function 𝑥 ↦→ ℎG (𝑥, 𝑦 (𝑝)) is strongly concave in Δ(𝐶). Indeed

for 𝑥 ∈ Δ(𝐶)

ℎG (𝑥, 𝑦 (𝑝)) = 𝑥⊺𝐴(𝑝)𝑥 +
𝛼

2
∥𝑥∥2 + 𝛽

2
∥𝑦 (𝑝) ∥2

= (
∑︁

𝑖∈𝐶
𝑥𝑖)2 −

∑︁

𝑖∈𝐶
𝑥2

𝑖 +
𝛼

2
∥𝑥∥2 + 𝛽

2
∥𝑦 (𝑝) ∥2

= 1 − (1 − 𝛼

2
)
∑︁

𝑖∈𝐶
𝑥2

𝑖 +
𝛽

2
∥𝑦 (𝑝) ∥2 ,

(5.3.21)

where in the second equality we used (5.3.20). The RHS of (5.3.21) is strongly

concave in 𝑥 since 𝛼 ∈ (0, 2) so that −(1 − 𝛼/2) ∈ (−1, 0). This together with

Lemma 5.2.3 gives us the necessary assumptions to apply (5.3.5). □
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As a corollary, we have the following global convergence result under the mild

assumption that the set of limit points contains no saddle points.

Corollary 5.3.7 (FDFW global convergence). Let {𝑧𝑘 } be a sequence generated by

the FDFW and assume that there are no saddle points in the limit set of {𝑧𝑘 }. Then

under the conditions (S1) and (S2) on the stepsize we have 𝑧𝑘 → 𝑝 = (𝑥 (𝐶) , 𝑦 (𝑝)) ∈
M𝑠 (G), with supp(𝑥𝑘 ) ⊂ 𝐶 and 𝑦𝑘 = 𝑦𝑝 for 𝑘 large enough.

Proof. Follows from Corollary 5.3.6, where all the necessary assumptions are satis-

fied as for Proposition 5.3.1. □

5.4 FWdc: A Frank-Wolfe variant for 𝑠-defective

clique

As can be seen from numerical results, one drawback of the standard FDFW

applied to the 𝑠-defective clique formulation (P) is the slow convergence of the high

dimensional 𝑦 component. Since this component is "tied" to the 𝑥 component, it

is not possible to speed up the convergence by changing the regularization term

without compromising the quality of the solution. Motivated by this challenge,

we introduce a tailored Frank-Wolfe variant, namely FWdc, for the maximum 𝑠-

defective clique formulation (P), which exploits the product domain structure of

the problem at hand by employing separate updating rules for the two blocks.

In particular, at every iteration the method alternates a FDFW step on the 𝑥

Algorithm 8 FWdc: Frank-Wolfe variant for 𝑠-defective clique

1: Initialize 𝑧0 := (𝑥0, 𝑦0) ∈ P𝑠, 𝑘 := 0

2: if 𝑧𝑘 is stationary then

3: STOP

4: end if

5: Compute 𝑥𝑘+1 applying one iterate of Algorithm 7 with 𝑤0 = 𝑥𝑘 and 𝑓 (𝑤) =

ℎG (𝑤, 𝑦𝑘 ).
6: Let 𝑦𝑘+1 ∈ arg max𝑦∈𝐷′

𝑠 (G) ∇𝑦ℎG (𝑥𝑘+1, 𝑦𝑘 )⊤𝑦.
7: Set 𝑘 := 𝑘 + 1. Go to step 2.

variables (Step 5) with a full FW step on the 𝑦 variable (Step 6), so that 𝑦𝑘 is

always chosen in the set of vertices 𝐷𝑠 (G) of 𝐷′
𝑠 (G). Furthermore, as stated in the

next proposition, {𝑦𝑘 } is ultimately constant. This allows us to obtain convergence
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results by applying the general properties of the FDFW proved in the previous

section to the 𝑥 component.

Proposition 5.4.1. In Algorithm 8, if ℎG (𝑥𝑘+1, 𝑦𝑘 ) ≥ ℎG (𝑥𝑘 , 𝑦𝑘 ) for every 𝑘 ∈ ◆0,

then {𝑦𝑘 } can change at most 2

𝛽
− 2−𝛼
𝛽 |𝐶∗ | +𝑠 times, with 𝐶∗ 𝑠-defective clique of maximal

cardinality.

Proof. Assume that 𝑦𝑘 and 𝑦𝑘+1 are distinct vertices of 𝐷′
𝑠 (G), and let 𝑧+

𝑘
= (𝑥𝑘+1, 𝑦𝑘 ).

Then

ℎG (𝑧𝑘+1) − ℎG (𝑧+𝑘 ) ≥ ∇ℎG (𝑧+𝑘 )⊤(𝑧𝑘+1 − 𝑧+𝑘 ) +
𝛽

2
∥𝑧𝑘+1 − 𝑧+𝑘 ∥2

=∇𝑦ℎG (𝑧+𝑘 )⊤(𝑦𝑘+1 − 𝑦𝑘 ) +
𝛽

2
∥𝑦𝑘+1 − 𝑦𝑘 ∥2 ≥ 𝛽

2
> 0

(5.4.1)

where we used the 𝛽−strong convexity of 𝑦 ↦→ ℎG (𝑥, 𝑦) in the first inequality, 𝑧+
𝑘
−𝑧𝑘 =

(0, 𝑦𝑘 − 𝑦𝑘+1) in the equality, 𝑦𝑘+1 ∈ arg max𝑦∈P𝑠 ∇𝑦ℎG (𝑧+𝑘 )⊤𝑦 and the fact that the

distance between vertices of 𝐷′
𝑠 (G) is at least 1 in the second inequality.

Therefore 𝑦𝑘 can change at most

max
𝑧∈P𝑠

2(ℎG (𝑧) − ℎG (𝑧0))
𝛽

≤ max
𝑧∈P𝑠

2ℎG (𝑧)
𝛽

=
1 − 1/|𝐶∗ | + 𝛼/2|𝐶∗ | + 𝑠𝛽/2

𝛽/2 =
2

𝛽
+ 𝛼 − 2

𝛽 |𝐶∗ | + 𝑠

times, where we used ℎG ≥ 0 in the first inequality, and Corollary (5.2.2) in the

second inequality. □

Theorem 5.4.2. Let {𝑧𝑘 } be a sequence generated by Algorithm 8, with regulariza-

tion coefficient 𝛼 = 1. If conditions (S1) and (S2) hold on the stepsizes, then {𝑧𝑘 }
converges to a stationary point and identifies its support in finite time.

Proof. As a corollary of Proposition 5.4.1, an application of Algorithm 8 reduces,

after a finite number of changes for the variable 𝑦, to an application of the FDFW

on the simplex for the optimization of the quadratic objective

𝑓 (𝑥) = 𝑥⊺𝐴(𝑦)𝑥 + 𝛼
2
∥𝑥∥2 + 𝛽

2
∥𝑦∥2

= 𝑥⊺𝐴G(𝑦)𝑥 +
𝛽

2
∥𝑦∥2 , (5.4.2)

for a fixed 𝑦 ∈ 𝐷𝑠 (G) and 𝐴G(𝑦) = 𝐴(𝑦) + 𝛼
2
■.

This is, up to a constant, a regularized Motzkin-Straus quadratic formulation for

the maximal clique problem associated to the graph G(𝑦). For 𝛼 = 1, by the proof

of [50, Theorem 12] we have that all principal minors of 𝐴G(𝑦) do not vanish, and

consequently by [50, Theorem 8] there can be at most one stationary point in the
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relative interior of any face of the domain Δ|𝑉 |−1. Furthermore, by [182, Theorem

2.5], strict complementarity conditions hold in every stationary point.

By the above reasoning in particular we have that there is a finite number of sta-

tionary points, all satisfying strict complementarity conditions and with distinct

supports. After noticing that on the simplex the FDFW coincides with the AFW,

we have all the assumptions to conclude by [47, Theorem 4.5]. □

Remark 5.4.3. While all local solutions correspond to cliques by Proposition 5.2.1,

both Corollary 5.3.7 and Theorem 5.4.2 do not rule out convergence to saddle points.

However, this is not an issue in practice. First, in our numerical tests the methods

always converged to a local solution, in line with studies showing that many first

order methods avoid saddle points with probability one (see, e.g., [50], [165]). Sec-

ond, while local solutions are attractive as proved in Theorem 5.3.1, a saddle point

by definition can never be attractive for any strictly monotone method. Lastly, for

our specific problem there are cheap strategies to escape saddle points even when

the starting point is "unlucky" (e.g. a saddle point itself). We now describe one

such strategy for Algorithm 8, to be applied e.g. if the FW gap (5.3.2) is below

a certain threshold and supp(𝑥𝑘 ) is not yet a clique in G(𝑦𝑘 ). The first step is to

select {𝑖, 𝑗} ⊂ supp(𝑥𝑘 ) \ 𝐸 , an operation which requires checking at most
(supp(𝑥𝑘)

2

)

entries of the adjacency matrix. The second step, assuming without loss of general-

ity 𝜕
𝜕𝑥𝑖
ℎG (𝑥𝑘 , 𝑦𝑘 ) ≤ 𝜕

𝜕𝑥 𝑗
ℎG (𝑥𝑘 , 𝑦𝑘 ), is to replace (𝑥𝑘 )𝑖 and (𝑥𝑘 ) 𝑗 with (1 − 𝜖) (𝑥𝑘 )𝑖 and

(𝑥𝑘 ) 𝑗 + 𝜖 (𝑥𝑘 )𝑖 respectively, for some fixed 𝜖 ∈ (0, 1]. The resulting point can then

be used as a new starting point for Algorithm 8. It is not difficult to prove that if

(𝑥𝑘 , 𝑦𝑘 ) is close enough to a saddle point 𝑝, then the algorithm escapes from 𝑝 after

restarting.

For a clique 𝐶 of G(𝑦) different from G we define 𝑚(𝐶,G(𝑦)) as

min
𝑣∈𝑉\𝐶

|𝐶 | − |𝐸 𝑦 (𝑣) ∩ 𝐶 | , (5.4.3)

that is the minimum number of edges needed to increase by 1 the size of the clique.

We now give an explicit bound on how close the sequence {𝑥𝑘 } generated by Algo-

rithm 8 must be to 𝑥 (𝐶) for the identification to happen.

Proposition 5.4.4. Let {𝑧𝑘 } be a sequence generated by Algorithm 8, 𝑦 ∈ 𝐷𝑠 (G),
𝐶 be a clique in G(𝑦), let 𝛿max be the maximum eigenvalue of the adjacency matrix

𝐴 := 𝐴G + 𝐴(𝑦). Let 𝑘 be a fixed index in ◆0, 𝐼𝑐 the components of supp(𝑥𝑘 )
with index not in 𝐶 and let 𝐿 := 2𝛿max + 𝛼. Assume that 𝑦𝑘+ 𝑗 = 𝑦 is constant for
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0 ≤ 𝑗 ≤ |𝐼𝑐 |, that (S1) holds for 𝑐 = 1/𝐿, and that

∥𝑥𝑘 − 𝑥 (𝐶) ∥1 ≤
𝑚𝛼 (𝐶,G(𝑦𝑘 ))

𝑚𝛼 (𝐶,G(𝑦𝑘 )) + 2|𝐶 |𝛿max + |𝐶 |𝛼 (5.4.4)

for 𝑚𝛼 (𝐶,G(𝑦𝑘 )) = 𝑚(𝐶,G(𝑦𝑘 )) − 1 + 𝛼/2. Then supp(𝑥𝑘+|𝐼𝑐 |) = 𝐶.

Proof of Proposition 5.4.4. Since 𝑦𝑘 does not change for 𝑘 ∈ [𝑘 : 𝑘 + |𝐼𝑐 |], Algorithm

8 corresponds to an application of the AFW to the simplex Δ𝑛−1 on the variable 𝑥.

For 1 ≤ 𝑖 ≤ 𝑛 let 𝜆𝑖 (𝑥) = 𝜕
𝜕𝑥𝑖
ℎG (𝑥, 𝑦𝑘 ) be the multiplier functions associated to the

vertices of the simplex, and let

𝜆min = min
𝑖∈𝑉\𝐶

−𝜆𝑖 (𝑥 (𝐶)) , (5.4.5)

be the smallest negative multiplier with corresponding index not in 𝐶. Let 𝐿′ be a

Lipschitz constant for ∇𝑥ℎG (𝑥, 𝑦) with respect to the variable 𝑥. By [47, Theorem

3.3] if

∥𝑥𝑘 − 𝑥 (𝐶) ∥1 <
𝜆min

𝜆min + 2𝐿′
(5.4.6)

we have the desired identification result.

We now prove that we can take 𝐿′ equal to 𝐿 in the following way:

∥∇𝑥ℎG (𝑥′, 𝑦𝑘 )−∇𝑥ℎG (𝑥, 𝑦𝑘 )∥ = ∥2𝐴(𝑥′−𝑥) +𝛼(𝑥′−𝑥)∥ ≤ (2𝛿max+𝛼)∥𝑥′−𝑥∥ , (5.4.7)

where we used ∇𝑥ℎG (𝑥, 𝑦) = 2𝐴𝑥 + 𝛼𝑥 in the equality. As for the multipliers, for

𝑖 ∈ 𝑉 \ 𝐶 we have the lower bound

−𝜆𝑖 (𝑥 (𝐶)) = ∇𝑥ℎG (𝑥 (𝐶) , 𝑦𝑘 )⊤(𝑥 (𝐶) − 𝑒𝑖) =
−2|𝐶 ∩ 𝐸 𝑦𝑘 (𝑖) | + 2|𝐶 | − 2 + 𝛼

|𝐶 |

≥
2𝑚𝛼 (𝐶,G(𝑦𝑘 ))

|𝐶 |

(5.4.8)

by combining (5.2.20) and (5.2.21) in the second equation. We can now bound 𝜆min

from below:

𝜆min = min
𝑖∈𝑉\𝐶

−𝜆𝑖 (𝑥 (𝐶)) ≥ min
𝑖∈𝑉\𝐶

2|𝐶 | − 2|𝐶 ∩ 𝐸 𝑦
𝑘
(𝑖) | − 2 + 𝛼

|𝐶 | ≥
2𝑚𝛼 (𝐶,G(𝑦𝑘 ))

|𝐶 | ,

(5.4.9)

where we applied (5.4.8) in the inequality. Finally, we have

𝜆min

𝜆min + 2𝐿
≤

𝑚𝛼 (𝐶,G(𝑦𝑘 ))
𝑚𝛼 (𝐶,G(𝑦𝑘 )) + 2|𝐶 |𝛿max + |𝐶 |𝛼 (5.4.10)

where we applied (5.4.8) together with (5.4.9) in the inequality. The thesis follows

applying (5.4.10) to the RHS of (5.4.6). □
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Remark 5.4.5. It is a well known result that for any graph the maximal eigenvalue

𝛿max of the adjacency matrix is less than or equal to 𝑑max, the maximum degree of

a node (see, e.g., [87]). Then condition (5.4.4) can be replaced by

∥𝑥𝑘 − 𝑥 (𝐶) ∥1 ≤
𝑚𝛼 (𝐶,G(𝑦𝑘 ))

𝑚𝛼 (𝐶,G(𝑦𝑘 )) + 2|𝐶 |𝑑max + |𝐶 |𝛼 . (5.4.11)

5.5 Numerical results

In this section we report on a numerical comparison of the methods. We remark

that, even though these methods only find maximal 𝑠-defective cliques, they can

still be applied as a heuristic to derive lower bounds on the maximum 𝑠-defective

clique within a global optimization scheme. With our tests, we aim to achieve the

followings:

• empirically verify the active set identification property of the proposed meth-

ods;

• prove that the proposed FW variant is faster than the FDFW on these regu-

larized problems, while mantaining the same solution quality;

• show that the proposed FW variant give better performances than a given

black-box solver (i.e., CONOPT) on these regularized problems both in terms

of CPU time and solution found;

• show that our approach, which is based on solving the regularized problem

(P) via the FWdc algorithm, finds solutions as good as the ones found by

the method described in [217], which consists in solving the Motzkin-Straus

problem

max{ 𝑓G (𝑧) | 𝑧 ∈ P𝑠} , (MS)

using the CONOPT solver combined with a tailored post processing routine.

In the tests, the regularization parameters were set to 𝛼 = 1 and 𝛽 = 2/𝑛2. An

intuitive motivation for this choice of 𝛽 can be given by imposing that the missing

edges for an identified 𝑠-defective clique are always included in the support of the

FW vertex. Formally, if 𝑥𝑘 = 𝑥
(𝐶) with 𝐶 an 𝑠-defective clique and (𝑦𝑘 )𝑖 𝑗 = 0 with

{𝑖, 𝑗} ∈
(𝐶
2

)
we want to ensure that the FW vertex 𝑠𝑘 = (𝑥 (𝑠𝑘) , 𝑦 (𝑠𝑘)) is such that

𝑦
(𝑠𝑘)
𝑖 𝑗

= 1. Now for {𝑙, 𝑚} ∉
(𝐶
2

)
and assuming |𝐶 | < 𝑛 (otherwise 𝐶 = 𝑉 and the
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problem is trivial) we have

𝜕

𝜕𝑦𝑖 𝑗
ℎG (𝑥𝑘 , 𝑦𝑘 ) =

2

|𝐶 |2 >
2

𝑛2
= 𝛽 ≥ 𝜕

𝜕𝑦𝑙𝑚
ℎG (𝑥𝑘 , 𝑦𝑘 ) (5.5.1)

where the first equality and the last inequality easily follow from (5.2.4). From

(5.5.1) it is then immediate to conclude that {𝑖, 𝑗} must be in the support of 𝑦 (𝑠𝑘).

We used the stepsize 𝛼𝑘 = �̄�𝑘 with �̄�𝑘 given by (S1) for 𝑐 = 1, corresponding to an

estimate of 1 for the Lipschitz constant 𝐿 of ∇ℎG. The SSC was used to improve the

performance of the methods (see Chapter 3 for details). The code was written in

MATLAB and the tests were performed on an Intel Core i7-10750H CPU 2.60GHz,

16GB RAM.

The 50 graph instances we used in the tests are taken from the Second DIMACS Im-

plementation Challenge [140]. These graphs are a common benchmark to assess the

performance of algorithms for maximum (defective) clique problems (see references

in [217]), and the particular instances we selected coincide with the ones employed

in [217] in order to ensure a fair comparison at least for the quality of the solutions.

Following the rule adopted in [217], for each triple (G, 𝑠,A) with G a graph from

the 50 instances considered, 𝑠 ∈ [1 : 4], A the FDFW, the FWdc or the CONOPT

solver, we set a global time limit of 600 seconds and employed a simple restarting

scheme with up to 100 random starting points. For all the algorithms the 𝑥 compo-

nent of the starting point was generated with MATLAB’s function rand and then

normalized dividing it by its sum. An analogous rule was applied to generate the

𝑦 component for the starting point of the FDFW and the CONOPT solver, while

for the FWdc algorithm the 𝑦 component was simply initialized to 0. To improve

the performance of the FDFW, we exploit the quick reduction in the dimension of

the minimal face containing the current iterate for the 𝑦 variable. This improve-

ment is possible using that the SSC with the FDFW method always operates on

the minimal face containing the iterate given as input, until at least the last step

(which can be a FW step and move the iterate away from the starting face). For

the stopping criterion of the FDFW and the FWdc, two conditions are required:

the current support of the 𝑥 components coincides with an 𝑠-defective clique, and

the FW gap is less than or equal to 𝜀 := 2 ∗ 10−3. For the CONOPT solver there

are no identification guarantees, so the default stopping criterion was used. In the

experiments, both the FDFW and the FWdc always terminated having identified an

𝑠-defective clique, thus providing an empirical verification of the results we proved

in this chapter.

In the boxplots, each series consists of 50 values corresponding to aggregate data
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Figure 5.2: 𝑆𝑖- 𝑗 is the box plot related to the maximum clique found for the instance by

strategy 𝑖 for 𝑠 = 𝑗 , divided by the clique number/maximum clique cardinality known of

the instance.
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Figure 5.3: 𝑆𝑖- 𝑗 is the box plot related to the average running time for strategy 𝑖 with

𝑠 = 𝑗 .

for the runs performed on the 50 instances. Here we list the strategies considered

in our experiments:

• Strategy 1 and Strategy 2 (abbreviated S1 and S2) consist in solving the

regularized problem (P) using, respectively, the FDFW and the FWdc algo-

rithm with the parameters reported above.

• Strategy 3 (abbreviated S3) consists in solving the regularized problem (P)

by means of the CONOPT solver.

• Strategy 4 (abbreviated S4) consists in solving the Motzkin-Straus prob-

lem (MS) by means of the CONOPT solver combined with a post processing

routine.
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The numerical results related to Strategy 4 are taken from [217], while the re-

sults for Strategy 3 were replicated on our machine using the CONOPT/MAT-

LAB integration provided by TOMLAB. We highlight that the results reported

for Strategy 4 are meant to give the reader a baseline for the quality of the solu-

tions found by our method. The red lines represent the median of the values in

each series, and the boxes extend from the 25th percentile 𝑞1 of the observed data

to the 75th percentile 𝑞3. The whiskers cover all the other values in a range of

[𝑞1 − 𝑤(𝑞3 − 𝑞1), 𝑞3 + 𝑤(𝑞3 − 𝑞1)], with the coefficient 𝑤 equal to 2.7 times the

standard deviation of the values.

In Figure 5.2, the box plot 𝑆𝑖- 𝑗 represents the distribution of the maximum cardinal-

ity of the 𝑠-defective clique found by strategy 𝑖 with 𝑠 = 𝑗 , divided by the maximum

clique cardinality known of the instance. Notice that some data points are greater

than 1, as expected since for 𝑠 > 0 the cardinality of an 𝑠-defective clique can ex-

ceed the maximum clique cardinality. The solutions obtained using both FWdc anf

FDFW on the regularized problem (Strategy 1 and 2) are generally better than

the ones obtained using the CONOPT solver on the same problem (Strategy 3).

Furthermore, while the variance is higher for the solutions found by Strategy 4, no

significant difference can be seen in the median quality of the solutions found by

Strategy 1, Strategy 2 and Strategy 4.

In Figure 5.3, 𝑆𝑖- 𝑗 represents the distribution of average running times in seconds

(on a logarithmic scale, explaining the asymmetry of the box plots) of strategy 𝑖

for 𝑠 = 𝑗 . Here we can see that FWdc outperforms both FDFW and the CONOPT

on the regularized problem (MS). Indeed, FWdc is more efficient (as it requires a

much smaller median execution time) and more robust (as the variance of the CPU

time is remarkably smaller). Furthermore, we notice that the CPU times reported

for Strategy 2 are good if compared with the ones obtained by Strategy 4 in [217].

The results hence indicate that the proposed strategy is a viable alternative when

searching for s-defective maximal cliques. We refer the reader to the supplementary

material for detailed numerical results.



Chapter 6

Direct search methods

While there is no unique definition of direct search methods, these can be

characterized as derivative free methods that do not build, implicitly or

explicitly, a model of the gradient. Starting mostly as intuitive and easy

to implement heuristics in the ’50, they have now become a diverse set

of algorithms with rigorous convergence analyses, global and local con-

vergence guarantees, and a wide range of applications. In this chapter,

we review some classic direct search methods and properties relevant for

the algorithms studied in Chapters 7 and 8.

6.1 A short history

Direct search methods are first of all zeroth order (or derivative free) methods,

requiring a black box oracle only for the objective value. However, beside this el-

ementary property there is no formal definition of what makes a method "direct

search". This term, in reference to a class optimization algorithms, was first used

in [127], for iterative methods with a strategy to select new trial points based on

previous function evaluations and in particular on the best solution obtained up

to that time. Today "direct search" is used more broadly, with M. Wright’s [239]

application to any method that "does not in its heart develop an approximate gra-

dient" widely accepted (see, e.g., [151,163]). With respect to model based derivative

free methods, direct search approaches arguably require weaker assumptions on the

objective [16], being easily adaptable even to problems with discontinuities [53].

Moreover, many of these methods were originally developed as heuristics, and in

spite of an increasing number of works proving rigorous convergence properties with

141
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classic analysis arguments (see, e.g., [81,151]), direct search algorithms still include

steps whose effectiveness cannot be easily quantified (see also Section 6.3).

In their history of direct search methods in [169], the authors distinguish three

classes: simplex, pattern search, and adaptive sets of search directions methods.

Pattern search methods choose tentative points in a rational lattice, with a param-

eter to define the resolution of the lattice updated at every iteration based on the

function value of new trial points. The exploration strategies of these methods are

devised to visit enough points in a neighborhood of the current tentative solution

to guarantee stationarity at the limit. This class includes coordinate search, widely

recognized as the oldest direct search method and first described by E. Fermi and

N. Metropolis in [99], generalized pattern search (GPS, [222]), integrating heuristics

in between local exploration steps, and mesh adaptive direct search (MADS, [18]), a

further development considering a dense set of directions for local exploration steps

in order to deal with non smoothness and constraints. Simplex methods maintain a

simplex with the respective function values of the vertices, and modify this simplex

at every iteration in a way to adapt it to the features of the objective function. The

first instance of a simplex method appeared in [216], and was based on the single

operation of reflecting a vertex with respect to the baricenter of the opposite face.

The most popular algorithm in this class is instead the Nelder-Mead method [190],

relying on other operations called contractions and expansions beside reflections.

Finally, adaptive set of search directions methods at every iteration change the set

of poll directions, possibly to adapt it to information obtained about the objective.

The first method in this class was proposed by Rosenbrock in [212], motivated by

the inefficiency of coordinate search on certain objectives with minimizers in nar-

row valleys like the so called Rosenbrock’s "banana function". The main idea of

Rosenbrock’s algorithm is to rotate the set of search directions at certain steps,

ensuring the inclusion of a direction derived chaining several previous steps. The

most known adaptive search method is Powell’s method [204], adapting conjugate

gradient to the derivative free case. More recent developments that can be included

in this class are variants with line search extrapolation (see, e.g., [179]), increasing

the stepsize along a poll direction until a decrease condition is no longer satisfied,

and randomized direct search variants (see, e.g., [113]), relying on a random set of

search directions and able to achieve optimal iteration complexity for smooth non-

convex objectives.

In this chapter, we focus on some pattern search and adaptive sets of search direc-

tions methods for unconstrained optimization. These will provide some context for

the extensions to the Riemannian and stochastic setting in chapter 7 and 8 respec-
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tively. A thorough description of the history and modern developments of direct

search methods is beyond the scope of this chapter. We refer the reader to [169]

for a detailed history until the ’90; to [151] for a survey focusing on the theoretical

convergence properties of direct search methods both in the constrained and the un-

constrained case; to [16] for a survey including recent techniques and applications to

real world optimization problems; to [15,81,163] for books presenting direct search

methods within the context of derivative free optimization.

6.2 Clarke directional derivative and cosine mea-

sure

We consider the following global optimization problem:

min
𝑥∈❘𝑛

𝑓 (𝑥) (6.2.1)

where 𝑓 is locally Lipschitz continuous. While there are plenty of works that deal

with the constrained case, in this survey we focus only on the unconstrained case,

given its relevance for Chapters 7 and 8.

We now introduce two important preliminaries. The first one is the Clarke direc-

tional derivative of 𝑓 at 𝑥 in the direction 𝑣 ∈ ❘𝑛, defined as

𝑓 ◦(𝑥, 𝑣) = lim sup
𝑡→0𝑦→𝑥

𝑓 (𝑦 + 𝑡𝑣) − 𝑓 (𝑦)
𝑡

. (6.2.2)

A point 𝑥∗ is said to be Clarke stationary if all its directional derivatives are nonneg-

ative: 𝑓 (𝑥∗, 𝑣) ≥ 0 for every 𝑣 ∈ ❘𝑛. It is a well known result (see, e.g., [15, Theorem

6.9]) that if 𝑥∗ is a local minimizer then it is Clarke stationary, while as in the

differentiable case, the converse is not true.

The second important preliminary is the cosine measure. As we will see in Section

6.3, many direct search methods require sets of search directions with the special

property of being positive spanning sets, where a set 𝐷 ⊂ ❘𝑛 is a positive spanning

set iff every element in ❘𝑛 can be written as a linear combination with nonnegative

coefficients of elements in 𝐷. This concept is strictly related to that of cosine mea-

sure. For a finite subset 𝐷 ⊂ ❘𝑛 (with nonzero vectors) the cosine measure related

to a vector 𝑟 ∈ ❘𝑛 \ {0} is defined as the maximum cosine between a direction in 𝐷

and 𝑟:

cm(𝐷, 𝑟) = max
𝑑∈𝐷

𝑟⊤𝑑

∥𝑑∥∥𝑟 ∥ . (6.2.3)
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The cosine measure of 𝐷 itself can then be defined as the minimum cosine measure

related to a vector 𝑟 varying in ❘𝑛 \ {0}:

cm(𝐷) = min
𝑟∈❘𝑛\{0}

cm(𝐷, 𝑟) . (6.2.4)

It is a well known property (see, e.g., [81, Section 2.2]) that 𝐷 is a positive spanning

set iff cm(𝐷) > 0.

6.3 Directional direct search methods

We will focus on a class of methods roughly following the basic scheme pre-

sented in Algorithm 10, which is a slight adaptation of [163, Algorithm 2]. As

in [163], we will call the algorithm "directional direct search method". It relies on

the testdescent subroutine (Algorithm 9), looking for some points in a set of ten-

tative points satisfying a predetermined decrease condition. At every iteration, it

performs a search step and a poll step. In the search step, a finite set of search

points is chosen and ordered to update 𝑥𝑘 using the testdescent subroutine. This

step is driven by heuristics and not crucial for convergence purposes. In the poll

step, another set of tentative points is generated by moving with stepsize 𝛼𝑘 along

each directions in the poll set 𝐷𝑘 . With respect to [163, Algorithm 2], we do not

impose a specific rule for the decrease or increase of 𝛼𝑘 , since there can be strate-

gies different than the linear one considered in [163, Algorithm 2], as we will se

for MADS in Section 6.3.2. Furthermore, we note that line search variants do not

strictly adhere to this scheme, since the stepsize 𝛼𝑘 can depend from the tentative

direction 𝑑 ∈ 𝐷𝑘 (see Section 6.3.5). We finally remark that the scheme in Algo-

rithm 10 covers pattern search and adaptive set of search directions methods but

does not cover simplex methods.

Algorithm 9 testdescent( 𝑓 , 𝑥, 𝑃)

1: Set 𝑥+ = 𝑥

2: for 𝑝 ∈ 𝑃 do

3: Evaluate 𝑓 (𝑝)
4: if 𝑓 (𝑝) − 𝑓 (𝑥) acceptable then

5: 𝑥+ = 𝑝

6: optional break

7: end if

8: end for
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Algorithm 10 Directional direct search method

1: Input: 𝑥0 ∈ ❘𝑛, 𝛼0 > 0

2: for 𝑘 = 0, . . . do

3: Choose and order a finite set 𝑌𝑘 ⊂ ❘𝑛

4: Set 𝑥+
𝑘
= testdescent( 𝑓 , 𝑥𝑘 , 𝑌𝑘 ) {search step}

5: if 𝑥+
𝑘
= 𝑥𝑘 then

6: Choose and order poll directions 𝐷𝑘 ⊂ ❘𝑛

7: Set 𝑥+
𝑘
= testdescent( 𝑓 , 𝑥𝑘 , {𝑥𝑘 + 𝛼𝑘𝑑𝑖 : 𝑑𝑖 ∈ 𝐷𝑘 }) {poll step}

8: end if

9: if 𝑥+
𝑘
= 𝑥𝑘 then

10: decrease 𝛼𝑘
11: else

12: increase 𝛼𝑘
13: end if

14: 𝑥𝑘+1 = 𝑥+
𝑘

15: end for

The most used acceptance tests for the decrease of 𝑓 are the simple decrease

condition

𝑓 (𝑝) < 𝑓 (𝑥) , (6.3.1)

and the sufficient decrease condition

𝑓 (𝑝) < 𝑓 (𝑥) − 𝜌(𝛼) , (6.3.2)

with 𝛼 stepsize and some 𝜌 : ❘>0 → ❘>0 non decreasing and such that

lim
𝑡→0

𝜌(𝑡)
𝑡

= 0 . (6.3.3)

6.3.1 Coordinate search

For coordinate search, 𝑌𝑘 is empty (there is no search step), and 𝐷𝑘 = 𝐷 is the

set of coordinate directions:

𝐷 = {±𝑒𝑖 | 𝑖 ∈ {1, ..., 𝑛}} . (6.3.4)

The stepsize 𝛼𝑘 is always increased or decreased by a fixed rational constant 𝜏.
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6.3.2 Mesh based methods

Before illustrating the next two methods, that is GPS and MADS, we report the

definition of mesh as given in [15, Part 3]. For a positive spanning set 𝐷, a center

𝑥 and a mesh size parameter 𝛿 > 0, the related mesh is defined as

𝑀 = {𝑥 + 𝛿𝐷𝑦 | 𝑦 ∈ ◆𝑝} , (6.3.5)

where with a slight abuse of notation we use 𝐷 also for the matrix 𝐷 ∈ ❘𝑛×𝑝 with

columns corresponding to the elements of 𝐷.

Generalized pattern search

Given 𝐺 ∈ ❘𝑛×𝑛 invertible and 𝑍 ∈ ❩𝑛×𝑝 with columns forming a positive span-

ning set, GPS uses the mesh 𝑀𝑘 with size parameter 𝛼𝑘 , positive spanning set given

by the columns of 𝐷 = 𝐺𝑍 and center 𝑥. The method then follows the scheme pre-

sented in Algorithm 10 with search set 𝑌𝑘 ⊂ 𝑀𝑘 , and poll set 𝐷𝑘 positive spanning

subset of the columns of 𝐷. In order for the method to show some convergence

properties, the stepsize must always be increased or decreased by a predetermined

constant 𝜏 ∈ ◗. Finally, the decrease condition used by GPS is simple decrease. We

have the following convergence property (see, e.g., [15, Theorem 7.7]).

Theorem 6.3.1. If the level subsets of 𝑓 are bounded, then there exists a subse-

quence {𝑥𝑘 }𝑘∈𝐾 of {𝑥𝑘 } convergent to a point 𝑥∗ and such that:

(i) if 𝑑 appears infinitely often in {𝐷𝑘 }𝑘∈𝐾 , then 𝑓 ◦(𝑥∗, 𝑑) ≥ 0.

(ii) if 𝑓 ∈ 𝐶1, then ∇ 𝑓 (𝑥∗) = 0

Mesh adaptive direct search

One key issue with GPS is that the set of poll directions is finite. Hence, as for

coordinate search, even when the generated sequence converges there is no guarantee

that the limit point is Clarke stationary (see [151] for a counterexample). Moreover,

for constrained optimization problems GPS gets stuck in points where the cone

of feasible descent directions does not include elements of 𝐷. This motivated the

introduction of MADS. Beside the mesh 𝑀𝑘 defined exactly as for GPS, MADS

makes use of the frame 𝐹𝑘 of extent determined by the frame size parameter Δ𝑘 ,

defined as

𝐹𝑘 = {𝑥 ∈ 𝑀𝑘 | ∥𝑥 − 𝑥𝑘 ∥∞ ≤ Δ𝑘𝑏} , (6.3.6)
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for 𝑏 = max{∥𝑑∥∞ | 𝑑 ∈ 𝐷}. A popular rule relating the frame size parameter with

the mesh size parameter is 𝛼𝑘 = min(Δ𝑘 ,Δ2

𝑘
). In MADS, the search set is a finite

subset of 𝑀𝑘 like for GPS, while the poll set 𝐷𝑘 must be a positive spanning set

such that 𝑥𝑘 + 𝛼𝑘𝐷𝑘 ⊂ 𝐹𝑘 ∩ 𝑀𝑘 . The acceptance criterion is still simple descent.

For MADS, we have the following convergence property (see [15, Chapter 8] for a

reference and more convergence results).

Theorem 6.3.2. If the level subsets of 𝑓 are bounded, then there exists a subse-

quence {𝑥𝑘 }𝑘∈𝐾 of {𝑥𝑘 } convergent to a point 𝑥∗ and such that:

(i) if 𝑑 is a limit point of {𝑑𝑘 }𝑘∈𝐾 with 𝑑𝑘 ∈ 𝐷𝑘 for every 𝑘 ∈ ◆0, then 𝑓 ◦(𝑥∗, 𝑑) ≥
0.

(ii) if 𝑓 ∈ 𝐶1 and cm(𝐷𝑘 ) ≥ 𝜅min for every 𝑘 ∈ ◆0 and for a constant 𝜅min > 0

independent from 𝑘, then ∇ 𝑓 (𝑥∗) = 0.

A result analogous to Theorem 6.3.1 holds for MADS, with 𝑓 ◦(𝑥∗, 𝑑) ≥ 0 for

any 𝑑 limit of a sequence of directions used in the poll steps of the convergence

subsequence with index set 𝐾. A lower bound on the cosine measure of 𝐷𝑘 is

needed to ensure ∇ 𝑓 (𝑥∗) = 0

6.3.3 Generating set search

The generating set search approach (GSS) is another variant of Algorithm 10.

For this method, there is no search step and no mesh. The only conditions on the

set of poll directions 𝐷𝑘 is that it must contain a positive spanning set 𝐺𝑘 with

cm(𝐺𝑘 ) ≥ 𝜅min for some constant 𝜅min > 0, and elements with uniformly lower

and upper bounded norm. The following convergence result holds (see, e.g., [151,

Theorem 3.11]) when the method uses the sufficient decrease condition (6.3.2).

Theorem 6.3.3. Assume that 𝑓 is differentiable with ∇ 𝑓 Lipschitz continuous, and

that [ 𝑓 ≤ 𝑓 (𝑥0)] is compact. Then

lim inf
𝑘→+∞

∥∇ 𝑓 (𝑥𝑘 )∥ = 0. (6.3.7)

Notice therefore how we have a result analogous to point (ii) of Theorem 6.3.1,

replacing the use of a mesh with the sufficient decrease condition.

Another important result for this method is the 𝑂 ( 𝑛2

𝜖2 ) function evaluation complex-

ity proved in [228] in the case where 𝜌(𝛼) = 𝛾𝛼2 for some 𝛾 > 0.
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6.3.4 Direct search based on probabilistic descent

The use of random directions in the poll set has been a popular choice for several

direct search methods including MADS. A suitable choice of random directions in

MADS implies in fact convergence to Clarke stationary points (see [15, Chapter 8]).

Direct search methods based on probabilistic descent take this idea one step further,

relaxing the requirement that 𝐷𝑘 must be a positive spanning set to a probabilistic

assumption. More precisely, the version introduced in [113] assumes that all the

directions in 𝐷𝑘 are in the unit sphere and that with some probability 𝑝 > 0, for a

constant 𝜅min > 0:

P(cm(𝐷𝑘 ,−∇ 𝑓 (𝑥𝑘 )) > 𝜅min | 𝐷0, ..., 𝐷𝑘−1) > 𝑝 . (6.3.8)

In other words, 𝐷𝑘 must have positive cosine measure with respect to −∇ 𝑓 (𝑥𝑘 ) with

positive probability and in a uniform way.

The two main features of direct search based on probabilistic descent are the fol-

lowing:

• the condition (6.3.8) can be achieved by sampling any number of directions

uniformly at random in the unit sphere;

• for continuously differentiable functions it has a function evaluation complex-

ity of 𝑂 (𝑚𝑛
𝜖2 ), for 𝑚 number of directions sampled at every iteration, thus

improving on the 𝑂 ( 𝑛2

𝜀2 ) GSS complexity and achieving for 𝑚 constant the

same complexity of zeroth order methods (see, e.g., [111]), which is state of

the art for smooth non convex problems.

6.3.5 Direct search methods with line search extrapolation

Direct search methods with line search aim to combine the benefits of line search,

which exploits knowledge of good descent directions, together with those of pattern

search, which obtains local information about the objective. We report here a

special case of [179, Algorithm 2], one of the first algorithms proposed with this

approach, rewriting it in a way that underlines its resemblance to the general scheme

10, without altering its main properties. The main innovations with respect to

Algorithm 10 consists in the subroutine 12 and in the introduction of a tailored

stepsize for each direction. Instead of testing all the directions in the poll set with a

fixed stepsize, the method increases the tailored stepsize related to a direction 𝑝 ∈ 𝑃
(Step 3 of Algorithm 12) until a sufficient decrease condition is no longer satisfied

(Step 2 of Algorithm 12).
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Algorithm 11 Direct search method with LS

1: Input: 𝑥0 ∈ ❘𝑛, (𝛼 𝑗
0
) 𝑗∈[1:𝐾] ∈ ❘𝐾>0

, 𝛾 > 0, 𝜃 ∈ (0, 1), positive spanning set

𝑃 = {𝑝 𝑗 } 𝑗∈[1:𝐾] .

2: Set 𝑗0 = 0

3: for 𝑘 = 0, 1, ... do

4: for 𝑖 = 1, ..., 𝐾 do

5: Set 𝑥𝑘+1, 𝛼
𝑖
𝑘+1

= testacceptanceLS(𝑥𝑘 , 𝛼𝑖𝑘 , 𝑝
𝑖, 𝜃, 𝛾)

6: end for

7: end for

Algorithm 12 testacceptanceLS(𝑥, 𝛼, 𝑝, 𝜃, 𝛾)

1: if 𝑓 (𝑥 + 𝛼𝑝) ≤ 𝑓 (𝑥) − 𝛾𝛼2 then

2: while 𝑓 (𝑥 + 𝛼𝑝) ≤ 𝑓 (𝑥) − 𝛾𝛼2 do

3: Set 𝛼 = 𝛼/𝜃
4: end while

5: Set 𝑥 = 𝑥 + 𝜃𝛼𝑝
6: end if

7: Set 𝛼 = 𝜃𝛼

8: Return (𝑥, 𝛼)

We have the following convergence result, which can be proved along the lines

of [179, Proposition 5.2].

Proposition 6.3.4. If [ 𝑓 ≤ 𝑓 (𝑥0)] is compact, and 𝑓 is continuously differentiable,

lim
𝑘→∞

∇ 𝑓 (𝑥𝑘 ) = 0 . (6.3.9)

6.4 Applications

While it is well understood that direct search methods are a poor choice for

optimization problems where the gradient is available (see, e.g. [81]), there are a

number of cases where these methods should be considered. First, direct search

methods can be a good choice when the gradient of the objective is discontinuous at

a solution, or when the gradient has many discontinuities with no special structure

(see [151, Section 6]). Second, they can be useful for simulation based optimiza-

tion problems where applying automatic differentiation is not possible because of

a proprietary or legacy code too expensive to rewrite. Third, they can be useful
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when objective evaluations are costly, so that computing gradient estimates is too

expensive, or when objective evaluations are noisy, so that computing an accurate

estimate of the gradient might not be possible at all.

We now report practical examples, some taken from [81, Section 1] or [15, Section

6], together with more recent ones. We refer the reader to those works for a more

detailed description as well as for a more extensive list. Several examples use NO-

MAD, the open source implementations of MADS (see, e.g., [1]).

The first example is hyperparameter tuning, i.e. finding the choice of parameters

optimizing the performance of an algorithm (see, e.g., [132] for a survey on the

subject). Examples of applications of direct search include [19], where NOMAD

was used to optimize the performance of trust region methods on a standard set

of problems; [227], where direct search methods were used to fine tune regression

parameters for data streams; [159], where NOMAD was used to tune both learn-

ing and structural parameters of a deep neural network; [245], where MADS was

used to tune some parameters in a generative adversarial network for text-based

CAPTCHAs.

The second and perhaps most known example is engineering design. In [51] for in-

stance direct search methods were used to optimize the design of an helicopter rotor

blaze with respect to the vibration trasmitted to the hub. In [63] a computer aided

material selection tool to support design of aircraft structure was developed using

the Direct multi-search (DMS) solver from [86]. In [145] aerodynamic optimization

of airfoils was performed with MADS.

The third example is molecular design, where computer aided simulation is a key

tool to obtain structures with desirable properties, partly replacing inefficient trial-

and-error experiments. Applications of direct search methods to these problems can

be found in [8, 183,219].

Lastly, direct search methods can be used in drug design and testing. When a math-

ematical model of the impact of a certain drug is available, optimization methods

can be used to tune several parameters. As an example, in [70,71] MADS was used

to optimize drug distribution in a nanoparticle-mediated drug delivery treatment for

cancer. In [141] NOMAD was used in the study of a key antimalarian substance.



Chapter 7

Retraction based Direct Search

Methods for Riemannian

Optimization

In this chapter, we explore the application of direct search methods to

Riemannian optimization, wherein minimization is to be performed with

respect to variables restricted to lie on a manifold. More specifically, we

consider classic and line search extrapolation variants of direct search,

and, by making use of retractions, we devise tailored strategies for the

minimization of both smooth and nonsmooth functions. As such we ana-

lyze, for the first time in the literature, a class of direct search algorithms

for minimizing nonsmooth objectives on a Riemannian manifold without

having access to (sub)derivatives. Along with convergence guarantees we

provide a set of numerical performance illustrations on a standard set of

problems.

7.1 Derivative free optimization on Riemannian

manifolds

Riemannian optimization, or solving minimization problems wherein the deci-

sion variable is constrained to lie on a Riemannian manifold, is an active area of

research considering the numerous problems in data science, robotics, and other set-

tings wherein there is an important geometric structure characterizing the allowable

inputs.

151
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To the best of our knowledge, thorough studies of derivative free optimization

(DFO) on Riemannian manifolds have only been carried out recently in the lit-

erature. In [171], the authors focus on a model based method using a two point

function approximation for the gradient. The paper [244] presents a specialized

Polak-Ribiéere-Polyak procedure for finding a zero of a tangent vector field on a

Riemannian manifold. In [92], it is claimed that the convergence analysis of MADS

for unconstrained objectives can be extended to the case of embedded Rieman-

nian manifolds using the exponential map. In the subsequent work [93], the author

focuses on a specific class of manifolds (reductive homogeneous spaces, including

several matrix manifolds), discussing more in detail how thanks to the properties

of exponential maps, a straightforward extension of MADS is possible at least for

that class. Some DFO methods and nonsmooth problems on Riemannian manifolds

without convergence analysis can be found in [130] and references therein.

7.1.1 Contributions

This chapter presents the introduction of a classic set of direct search algo-

rithms to the case of Riemannian optimization, as well as the first analysis of re-

traction based direct search strategies on Riemannian manifolds. In particular, we

first adapt, thanks to the use of retractions, a classic direct search scheme (see,

e.g., [81,151]) and a line search based scheme (see, e.g., [85,174,178,179] for further

details on this class of methods) to deal with the minimization of a given smooth

function over a manifold. Then, inspired by the ideas in [98], we extend the two

proposed strategies to the nonsmooth case. The introduction of the manifold con-

straint presents significant challenges: namely the stable structure of the Euclidean

vector space makes it natural for a fixed set of coordinate-like directions to consis-

tently approximate desired directions by spanning the space in a uniform way. The

fact that this geometric structure can change necessitates that we carefully adjust

the poll directions corresponding to the change in this structure, and do so with

minimal computational expense. The associated convergence theory presents some

novel results that could be of independent interest.

The codes relevant to the numerical tests are available at the following link:

https://github.com/DamianoZeffiro/riemannian-ds.
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7.2 Preliminaries

We now introduce some notation for the formalism we use in this chapter. We

refer the reader to, e.g., [3, 55,56] for an overview of the relevant background.

Let M be a smooth manifold. We are interested here in the problem

min
𝑥∈M

𝑓 (𝑥) (7.2.1)

with 𝑓 continuous and bounded below. We consider both the case of 𝑓 (𝑥) being

continuously differentiable, as well as a more general nonsmooth case. For 𝑥 ∈ M, let

𝑇𝑥M be the tangent vector space at 𝑥 and 𝑇M be the tangent bundle ∪𝑥∈M𝑇𝑥M. We

assume that M is a compact and connected Riemannian manifold, but all our results

can be extended to geodesically complete Riemannian manifolds in a straightforward

way. For 𝑥 in M, we have a scalar product ⟨·, ·⟩𝑥 : 𝑇𝑥M×𝑇𝑥M → ❘ and a norm ∥ · ∥𝑥
on 𝑇𝑥M smoothly depending on 𝑥. Let dist(·, ·) be the distance induced by the scalar

product, so that for 𝑥, 𝑦 ∈ M we have that dist(𝑥, 𝑦) is the length of the shortest

geodesic connecting 𝑥 and 𝑦. Furthermore, let ∇M be the Levi-Civita connection

for M (see [55, Theorem 5.5] for a precise definition), and Γ : 𝑇M × M → 𝑇M
be a parallel transport with respect to ∇M along distance minimizing geodesics,

with Γ
𝑦
𝑥 (𝑣) ∈ 𝑇𝑦M transport of the vector 𝑣 ∈ 𝑇𝑥M to one in 𝑇𝑦M along a distance

minimizing geodesic connecting 𝑥 and 𝑦. Any nonuniqueness in the definition of Γ

is either explicitly accounted for or inconsequential without loss of generality in the

context.

When M is embedded in ❘𝑛, we define P𝑥 as the orthogonal projection from ❘𝑛

to 𝑇𝑥M, and 𝑆(𝑥, 𝑟) ⊂ ❘𝑛 as the sphere centered at 𝑥 and with radius 𝑟.

We write {𝑎𝑘 } as a shorthand for {𝑎𝑘 }𝑘∈𝐼 when the index set 𝐼 is clear from

the context. We also use the shorthand notations 𝑇𝑘M,P𝑘 , ⟨·, ·⟩𝑘 , ∥ · ∥𝑘 , Γ
𝑗

𝑖
for

𝑇𝑥𝑘M,P𝑥𝑘 , ⟨·, ·⟩𝑥𝑘 , ∥ · ∥𝑥𝑘 and Γ
𝑥 𝑗
𝑥𝑖 . When there is no ambiguity on the value of 𝑥, we

use simply ∥ · ∥ instead of ∥ · ∥𝑥.
We define the distance dist∗ between vectors in different tangent spaces in a stan-

dard way using parallel transport (see for instance [20]): for 𝑥, 𝑦 ∈ M, 𝑣 ∈ 𝑇𝑥M and

𝑤 ∈ 𝑇𝑦𝑀,

dist∗(𝑣, 𝑤) = ∥𝑣 − Γ
𝑥
𝑦𝑤∥ = ∥𝑤 − Γ

𝑦
𝑥 𝑣∥ , (7.2.2)

and for a sequence {(𝑦𝑘 , 𝑣𝑘 )} in 𝑇M we write 𝑣𝑘 → 𝑣 if 𝑦𝑘 → 𝑦 in M and

dist∗(𝑣𝑘 , 𝑣) → 0. By compactness, for dist(𝑥, 𝑦) small enough the minimizing

geodesic is uniquely defined, and consequently the parallel transport Γ and the

distance dist∗ also are, as we will use in several proofs. Furthermore, by compact-

ness and connectedness, a geodesic connecting 𝑥 and 𝑦 always exists and dist∗ is
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always well defined.

As it is common in the Riemannian optimization literature (see, e.g., [4]), to define

our tentative descent directions we use a retraction 𝑅 : 𝑇M → M. We assume

𝑅 ∈ 𝐶1(𝑇M,M), with

dist(𝑅(𝑥, 𝑑), 𝑥) ≤ 𝐿𝑟 ∥𝑑∥ , (7.2.3)

(true in any compact subset of 𝑇M given the 𝐶1 regularity of 𝑅, without any further

assumptions)

For a scalar-valued function 𝑓 : M → ❘, let the gradient grad 𝑓 (𝑥) be defined as

the unique element of 𝑇𝑥M such that for all 𝑣 ∈ M, it holds that,

𝐷 𝑓 (𝑥) [𝑣] = ⟨𝑣, grad 𝑓 (𝑥)⟩𝑥 .

When M is embedded in ❘𝑛, the (Riemannian) gradient is a simple projection onto

𝑇𝑥M, i.e., grad 𝑓 (𝑥) = P𝑥 (∇ 𝑓 (𝑥)).

7.3 Smooth optimization problems

In this section, we consider solving (7.2.1) with the objective satisfying 𝑓 ∈
𝐶1(M), indicating that the gradient grad 𝑓 (𝑥) is continuous on M as a function of

𝑥. We now formally present the Lipschitz continuous gradient assumption.

Assumption 7.1. There exists 𝐿 𝑓 > 0 such that for all 𝑥, 𝑦 ∈ M

dist∗(grad 𝑓 (𝑥), grad 𝑓 (𝑦)) = ∥Γ𝑦𝑥 grad 𝑓 (𝑥) − grad 𝑓 (𝑦)∥ ≤ 𝐿 𝑓 dist(𝑥, 𝑦) . (7.3.1)

Consider this descent Lemma type decrease property,

𝑓 (𝑅(𝑥, 𝑑)) ≤ 𝑓 (𝑥) + ⟨grad 𝑓 (𝑥), 𝑑⟩ + 𝐿
2
∥𝑑∥2 . (7.3.2)

Like in the unconstrained case, the Lipschitz gradient property implies the standard

descent property.

Proposition 7.3.1. Assume that M is compact and 𝑅 is a 𝐶2 retraction. If condi-

tion (7.3.1) holds, then the decrease property (7.3.2) holds for some constant 𝐿 > 0.

Proof. Let (𝜑) be a chart defined in a neighborhood 𝑈 of 𝑥 ∈ M. We can take

the neighborhood small enough so that for 𝑦, 𝑧 varying in 𝑈 the parallel transport

Γ𝑧𝑦 depends smoothly on 𝑦, 𝑧 and is uniquely defined. We use the notation (𝑥, 𝑑) =
(𝜑(𝑥), 𝑑𝜑(𝑥)𝑑) for (𝑥, 𝑑) ∈ 𝑇M. We pushforward the manifold and the related
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structure with the chart 𝜑, i.e. for 𝜑 = 𝜑−1 we define 𝑓 = 𝑓 ◦ 𝜑, 𝑈 = 𝜑(𝑈),
𝑅(𝑦, 𝑑) = 𝑅(𝑦, 𝑑), for 𝑑, 𝑞 ∈ 𝑇𝑥M we define 𝑔(𝑑, 𝑞) = ⟨𝑑, 𝑞⟩𝑥, ∥𝑑−𝑞∥𝑥 = ∥𝑑−𝑞∥𝑥, and

Γ̃
𝑦

𝑥
(𝑑) = Γ

𝑦
𝑥 (𝑑). With slight abuse of notation we use dist(𝑥, 𝑦) to denote dist(𝑥, 𝑦).

We also define as grad 𝑓 the gradient of 𝑓 with respect to the scalar product 𝑔, so

that 𝑔(grad 𝑓 (𝑥), 𝑑) = ⟨∇ 𝑓 (𝑥), 𝑑⟩ for any 𝑑 ∈ ❘𝑚. Importantly, by the equivalence

of norms in ❘𝑚 we can use 𝑂 (∥𝑑∥𝑥) and 𝑂 (∥𝑑∥) interchangeably.

We first prove (7.3.2) in 𝑥 for some constant 𝐿 > 0 and any 𝑑 with ∥𝑑∥ ≤ 𝐵 for

some 𝐵 > 0. Equivalently, we want to prove

𝑓 (𝑅(𝑥, 𝑑)) ≤ 𝑓 (𝑥) + 𝑔(grad 𝑓 (𝑥), 𝑑) + 𝐿
2
∥𝑑∥2

𝑥 . (7.3.3)

for 𝑑 s.t. ∥𝑑∥ ≤ 𝐵.

By compactness we can choose (𝜑,𝑈) and 𝐵 > 0 in such a way that, for every

𝑦 ∈ 𝑈1 ⊂ 𝑈 and 𝑑 with ∥𝑑∥𝑦 ≤ 𝐵 we have 𝑅(𝑦, 𝑑) ∈ 𝑈2 ⊂ 𝑈, with 𝑈2 compact and

𝐵 > 0 independent from 𝑥, 𝑦, 𝑑.

First, since 𝑅 is in particular 𝐶1 regular

𝑅(𝑥, 𝑑) = 𝑥 +𝑂 (∥𝑑∥𝑥) , (7.3.4)

and by smoothness of the parallel transport

Γ̃
𝑦

𝑥
𝑞 = 𝑞 +𝑂 (∥𝑥 − 𝑦∥) . (7.3.5)

Furthermore,

grad 𝑓 (𝑥 + 𝑞) = Γ̃
𝑥+𝑞
𝑥

grad 𝑓 (𝑥) +𝑂 (dist(𝑥, 𝑥 + 𝑞)) , (7.3.6)

by the Lipschitz continuity assumption (7.3.1), and consequently

grad 𝑓 (𝑅(𝑥, 𝑞)) = Γ̃
𝑅(𝑥,𝑞)
𝑥

grad 𝑓 (𝑥) +𝑂 (dist(𝑥, 𝑅(𝑥, 𝑞)))

=Γ̃
𝑅(𝑥,𝑞)
𝑥

grad 𝑓 (𝑥) +𝑂 (∥𝑞∥) ,
(7.3.7)

where we used (7.2.3) in the last equality.

Finally, since, 𝑑
𝑑𝑡
𝑅(𝑥, 𝑡𝑑) is 𝐶1 regular, we also have

𝑑

𝑑𝑡
𝑅(𝑥, 𝑡𝑞) |𝑡=ℎ =

𝑑

𝑑𝑡
𝑅(𝑥, 𝑡𝑞) |𝑡=0 +𝑂 (∥ℎ𝑞∥)

=𝑞 +𝑂 (ℎ∥𝑞∥) = Γ̃
𝑅(𝑥,ℎ𝑞)
𝑥

𝑞 +𝑂 (∥𝑅(𝑥, ℎ𝑞) − 𝑥∥) +𝑂 (ℎ∥𝑞∥) = Γ̃
𝑅(𝑥,ℎ𝑞)
𝑥

𝑞 +𝑂 (ℎ∥𝑞∥) ,
(7.3.8)
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where we used (7.3.5) in the third equality, and (7.2.3) in the last one. Again by

compactness, for 𝑦 ∈ 𝑈1, 𝑡 ≤ 1, ∥𝑞∥, ∥𝑑∥ ≤ 𝐵 the implicit constants can be taken

with no dependence from the variables.

Now for 𝑑 s.t. 𝑑 ≤ 𝐵 define 𝑞 = 𝐵𝑑/∥𝑑∥, so that 𝑑 = �̄�𝑞 for �̄� = ∥𝑑∥/𝐵. Then we

obtain (7.3.3) reasoning as follows:

𝑓 (𝑅(𝑥, 𝑑)) − 𝑓 (𝑅(𝑥, 0)) = 𝑓 (𝑅(𝑥, �̄�𝑞)) − 𝑓 (𝑅(𝑥, 0))

=

∫ �̄�

0

𝑑

𝑑𝑡
𝑓 (𝑅(𝑥 + 𝑡𝑞))𝑑𝑡 =

∫ �̄�

0

𝑔(grad 𝑓 (𝑅(𝑥, 𝑡𝑞)), 𝑑
𝑑𝑡
𝑅(𝑥, 𝑡𝑑))𝑑𝑡

=

∫ �̄�

0

𝑔(Γ̃𝑅(𝑥,𝑡𝑞)
𝑥

grad 𝑓 (𝑥) +𝑂 (𝑡∥𝑞∥), Γ̃𝑅(𝑥,𝑡𝑑)
𝑥

𝑑 +𝑂 (𝑡∥𝑞∥))𝑑𝑡

=

∫ �̄�

0

(
𝑔(Γ̃𝑅(𝑥,𝑡𝑞)

𝑥
grad 𝑓 (𝑥), Γ̃𝑅(𝑥,𝑡𝑑)

𝑥
𝑑) +𝑂 (𝑡∥𝑞∥)

)
𝑑𝑡

=𝑔(grad 𝑓 (𝑥), 𝑑) +𝑂 (�̄�2∥𝑞∥) = 𝑔(grad 𝑓 (𝑥), 𝑑) +𝑂 (∥𝑑∥2) ,

(7.3.9)

where we used (7.3.7) and (7.3.8) in the fourth inequality. To conclude, notice that

the above argument does not depend from the choice of 𝑥 ∈ 𝑈1, so that it can be

extended to every 𝑦 ∈ 𝑈1 and then by compactness to every 𝑦 ∈ M. □

We remark that Proposition 7.3.1 is a key tool to extend convergence properties

from the unconstrained case to the Riemannian case. To the best of our knowledge,

this result is new to the literature. Under the stronger assumption that 𝑓 has

Lipschitz gradient as a function in ❘𝑛, the standard descent property was proved for

retractions in [56]. For 𝑓 twice differentiable, a local version of (7.3.2) was proved

in [55, Lemma 10.58].

Another assumption we make in this context is that the gradient norm is globally

bounded.

Assumption 7.2. There exists 𝑀 𝑓 > 0 such that

∥grad 𝑓 (𝑥)∥ ≤ 𝑀 𝑓 , (7.3.10)

for every 𝑥 ∈ M.

For each of the algorithms in this section, we further assume that, at each iter-

ation 𝑘, we have a positive spanning basis {𝑝 𝑗
𝑘
} 𝑗∈[1:𝐾] of the tangent space 𝑇𝑥𝑘𝑀 of

the iterate 𝑥𝑘 (further details on how to get a positive spanning basis can be found,

e.g., in [81]). More specifically, we assume that the basis stays bounded and does

not become degenerate during the algorithm, that is,
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Assumption 7.3. There exists 𝐵 > 0 such that

max
𝑗∈[1:𝐾]

∥𝑝 𝑗
𝑘
∥ ≤ 𝐵, (7.3.11)

for every 𝑘 ∈ ◆. Furthermore there is a constant 𝜏 > 0 such that

max
𝑗∈[1:𝐾]

⟨𝑟, 𝑝 𝑗
𝑘
⟩ ≥ 𝜏∥𝑟 ∥, (7.3.12)

for every 𝑘 ∈ ◆ and 𝑟 ∈ 𝑇𝑥𝑘𝑀.

Notice how given the boundedness of the basis vectors (7.3.12) is equivalent to

imposing that the cosine measure of {𝑝 𝑗
𝑘
} as a positive spanning basis of 𝑇𝑘M is

uniformly lower bounded for 𝑘 ∈ ◆.

7.3.1 Direct search algorithm

We present here our Riemannian Direct Search method based on Spanning Bases

(RDS-SB) for smooth objectives as Algorithm 13.

Algorithm 13 RDS-SB

1: Input: 𝑥0 ∈ M, 𝛾1 ∈ (0, 1), 𝛾2 ≥ 1, 𝛼0 > 0, 𝜌 > 0

2: for 𝑘 = 0, 1, ... do

3: Compute a positive spanning basis {𝑝 𝑗
𝑘
} 𝑗=1:𝐾 of 𝑇𝑘M

4: for 𝑗 = 1, ..., 𝐾 do

5: Let 𝑥
𝑗

𝑘
= 𝑅(𝑥𝑘 , 𝛼𝑘 𝑝 𝑗𝑘 )

6: if 𝑓 (𝑥 𝑗
𝑘
) ≤ 𝑓 (𝑥𝑘 ) − 𝜌𝛼2

𝑘
then

7: 𝛼𝑘+1 = 𝛾2𝛼𝑘 , 𝑥𝑘+1 = 𝑥
𝑗

𝑘

8: Declare the step 𝑘 successful

9: Break

10: end if

11: end for

12: if 𝑓 (𝑥 𝑗
𝑘
) > 𝑓 (𝑥𝑘 ) − 𝜌𝛼2

𝑘
for 𝑗 ∈ [1 : 𝐾] then

13: 𝛼𝑘+1 = 𝛾1𝛼𝑘 , 𝑥𝑘+1 = 𝑥𝑘

14: Declare the step 𝑘 unsuccessful

15: end if

16: end for
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This procedure resembles the standard direct search algorithm for unconstrained

derivative free optimization (see, e.g., [81, 151]) with two significant modifications.

First, at every iteration a positive spanning basis is computed for the current tangent

vector space 𝑇𝑘M. As this space is expected to change at every iteration, it is not

possible to use the same standard positive spanning sets appearing in the classic

algorithms. Second, the candidate point 𝑥
𝑗

𝑘
is computed by retracting the step 𝛼𝑘 𝑝

𝑗

𝑘

from the current tangent space 𝑇
𝑥
𝑗

𝑘

M to the manifold, ensuring satisfaction of the

geometric constraint.

7.3.2 Convergence analysis

Now we show convergence of the method, under the assumption that M is

compact. We will first prove that the gradient, in unsuccessful iterates, must be

bounded by a constant proportional to the stepsize (Lemma 7.3.3). This is a well

known bound in the unconstrained case (see, e.g. [228, Theorem 1]), and we are able

to extend it to the Riemannian case thanks to Proposition 7.3.1. Given that the

stepsize converges to zero, the bound implies that the gradient converges to zero for

unsuccessful steps. We then prove, using the Lipschitz continuity of the gradient,

that the gradient converges to zero for successful steps as well. This is a novel result

also for the unconstrained case, where only subsequential convergence guarantees are

typically given for the gradient norm (see, e.g., [228] for some complexity bounds).

The first lemma states a bound on the scalar product between the gradient and

the descent direction for an unsuccessful iteration.

Lemma 7.3.2. If 𝑓 (𝑅(𝑥𝑘 , 𝛼𝑘 𝑝 𝑗𝑘 )) > 𝑓 (𝑥𝑘 ) − 𝜌𝛼2

𝑘
, then

𝛼𝑘 (𝐿𝐵2 + 𝜌) > −⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩ . (7.3.13)

Proof. To start with, we have

𝑓 (𝑥𝑘 ) − 𝜌𝛼2

𝑘 < 𝑓 (𝑅(𝑥, 𝛼𝑘 𝑝 𝑗𝑘 )) ≤ 𝑓 (𝑥𝑘 ) + 𝛼𝑘 ⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩ + 𝐿𝛼
2

𝑘 ∥𝑝
𝑗

𝑘
∥2

≤ 𝑓 (𝑥𝑘 ) + 𝛼𝑘 ⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩ + 𝐿𝛼
2

𝑘𝐵
2 ,

(7.3.14)

where we used (7.3.2) in the second inequality, and (7.3.11) in the third one. The

above inequality can be rewritten as

𝛼𝑘 ⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩ + 𝛼
2

𝑘 (𝐿𝐵2 + 𝜌) > 0. (7.3.15)

Given that 𝛼𝑘 > 0, the above is true iff

𝛼𝑘 > −
⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩

(𝐿𝐵2 + 𝜌) , (7.3.16)
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which rearranged gives the thesis. □

From this we can infer a bound on the gradient with respect to the stepsize.

Lemma 7.3.3. If iteration 𝑘 is unsuccessful, then

∥grad 𝑓 (𝑥𝑘 )∥ ≤ 𝛼𝑘 (2𝐿𝐵2 + 𝜌)
𝜏

. (7.3.17)

Proof. If iteration 𝑘 is unsuccessful, equation (7.3.13) must hold for every 𝑗 ∈ [1 :

𝐾]. We obtain the thesis by applying the positive spanning property (7.3.12) in the

RHS:

𝛼𝑘 (𝐿𝐵2 + 𝜌) > max
𝑗∈[1:𝐾]

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗𝑘⟩ ≥ 𝜏∥grad 𝑓 (𝑥𝑘 )∥ . (7.3.18)

□

Finally, we are able to show convergence of the gradient norm using the lemmas

above and appropriate arguments regarding the step sizes.

Theorem 7.3.4. For the sequence {𝑥𝑘 } generated by Algorithm 13 we have

lim
𝑘→∞

∥grad 𝑓 (𝑥𝑘 )∥ = 0 . (7.3.19)

Proof. To start with, it holds that 𝛼𝑘 → 0 since the objective is bounded below,

{ 𝑓 (𝑥𝑘 )} is non increasing with 𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) − 𝜌𝛼2

𝑘
if the step 𝑘 is successful, and

so there can be a finite number of successful steps with 𝛼𝑘 ≥ 𝜀 for any 𝜀 > 0.

For a fixed 𝜀 > 0, let 𝑘 such that 𝛼𝑘 ≤ 𝜀 for every 𝑘 ≥ 𝑘. We now show that, for

every 𝜀 > 0 and 𝑘 ≥ 𝑘 large enough, we have

∥grad 𝑓 (𝑥𝑘 )∥ ≤ 𝜀
(
(2𝐿𝐵2 + 𝜌)

𝜏
+ 𝐿 𝑓 𝐿𝑟𝐵

𝛾2

𝛾2 − 1

)
, (7.3.20)

which implies the thesis given that 𝜀 is arbitrary.

First, (7.3.20) is satisfied for 𝑘 ≥ 𝑘 if the step 𝑘 is unsuccessful by Lemma 7.3.3:

∥grad 𝑓 (𝑥𝑘 )∥ ≤ 𝛼𝑘 (2𝐿𝐵2 + 𝜌)
𝜏

≤ 𝜀(2𝐿𝐵2 + 𝜌)
𝜏

, (7.3.21)

using 𝛼𝑘 ≤ 𝜀 in the second inequality.

If the step 𝑘 is successful, then let 𝑗 be the minimum positive index such that the
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step 𝑘 + 𝑗 is unsuccessful. We have that 𝛼𝑘+𝑖 = 𝛼𝑘𝛾𝑖2 for 𝑖 ∈ [0 : 𝑗 − 1], and since

𝛼𝑘+ 𝑗−1 ≤ 𝜀 by induction we get 𝛼𝑘+𝑖 ≤ 𝜀𝛾𝑖− 𝑗+1

2
. Therefore

𝑗−1∑︁

𝑖=0

𝛼𝑘+𝑖 ≤
𝑗−1∑︁

𝑖=0

𝜀𝛾
𝑖− 𝑗+1

2
≤ 𝜀

∞∑︁

ℎ=0

𝛾−ℎ
2

= 𝜀
𝛾2

𝛾2 − 1
. (7.3.22)

Then

dist(𝑥𝑘 , 𝑥𝑘+ 𝑗 ) ≤
𝑗−1∑︁

𝑖=0

dist(𝑥𝑘+𝑖, 𝑥𝑘+𝑖+1) =
𝑗−1∑︁

𝑖=0

dist(𝑥𝑘+𝑖, 𝑅(𝑥𝑘+𝑖, 𝛼𝑘+𝑖𝑝 𝑗 (𝑘+𝑖)𝑘+𝑖 ))

≤
𝑗−1∑︁

𝑖=0

𝐿𝑟𝛼𝑘+𝑖𝐵 ≤ 𝐿𝑟𝐵𝜀
𝛾2

𝛾2 − 1
.

(7.3.23)

where we used (7.2.3) together with (7.3.11) in the second inequality, and (7.3.22)

in the third one.

In turn,

∥grad 𝑓 (𝑥𝑘 )∥ ≤ dist∗(grad 𝑓 (𝑥𝑘 ), grad 𝑓 (𝑥𝑘+ 𝑗 )) + ∥grad 𝑓 (𝑥𝑘+ 𝑗 )∥

≤𝐿 𝑓 dist(𝑥𝑘 , 𝑥𝑘+ 𝑗 ) +
𝜀(2𝐿𝐵2 + 𝜌)

𝜏
≤ 𝜀

(
2𝐿𝐵2 + 𝜌

𝜏
+ 𝐿 𝑓 𝐿𝑟𝐵

𝛾2

𝛾2 − 1

)
,

(7.3.24)

where we used (7.3.1) and (7.3.21) with 𝑘 + 𝑗 instead of 𝑘 for the first and second

summand respectively in the second inequality, and (7.3.23) in the last one. □

7.3.3 Incorporating line search extrapolation

The works [178, 179] (see also Section 6.3.5) introduced the use of an extrapo-

lating line search that tests the objective on variable inputs farther away from the

current iterate than the tentative point obtained by direct search on a given direc-

tion (i.e., an element of the positive spanning set). Such a thorough exploration of

the search directions ultimately yields better performances in practice. We found

that the same technique can be applied in the Riemannian setting to good effect.

We present here our Riemannian Direct Search with Extrapolation method based

on Spanning Bases (RDSE-SB) for smooth objectives. The scheme is presented in

detail as Algorithm 14, which can be viewed as a Riemannian version of [179, Algo-

rithm 2]. As we can easily see, the method uses a specific stepsize for each direction

in the positive spanning basis, so that instead of 𝛼𝑘 we have a set of stepsizes

{𝛼 𝑗
𝑘
} 𝑗∈[1:𝐾] for every 𝑘 ∈ ◆0. Furthermore a retraction based line search procedure
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(see Algorithm 15) is used to better explore a given direction in case a sufficient

decrease of the objective is obtained.

When analyzing the RDSE-SB method, due to the changes in the tangent space,

we cannot keep the same basis for different iterates as is done in the unconstrained

case (see [179, Algorithm 2, Step 2 and 3]). We therefore introduce, using the

distance dist∗ to compare vectors in different tangent spaces, a novel condition

ensuring some continuity in the choice of the basis.

Assumption 7.4. For every 𝑙, 𝑚 ∈ ◆, 𝑗 ∈ [1 : 𝐾], there exists a constant 𝐿Γ > 0

such that

dist∗(𝑝 𝑗
𝑙
, 𝑝

𝑗
𝑚) ≤ 𝐿Γ dist(𝑥𝑙 , 𝑥𝑚) . (7.3.25)

By compactness, condition (7.3.25) always holds globally if it holds when dist(𝑥𝑙 , 𝑥𝑚)
is small enough. In turn, when M is embedded in ❘𝑛 it is easy to see that this is

true if {𝑝 𝑗
𝑘
} 𝑗∈[1:𝐾] is the projection of a spanning basis of ❘𝑛 (independent from 𝑘)

into 𝑇𝑘M, using that 𝑇𝑥M varies smoothly with 𝑥.

Algorithm 14 RDSE-SB

1: Input: 𝑥0 ∈ ❘𝑛, {𝛼 𝑗
0
} 𝑗∈[1:𝐾] , 𝛾 > 0, 𝛾1 ∈ (0, 1), 𝛾2 ≥ 1.

2: for 𝑘 = 0, 1, ... do

3: Compute a positive spanning basis {𝑝 𝑗
𝑘
} 𝑗∈[1:𝐾] of 𝑇𝑘M

4: Set 𝑗 (𝑘) = mod (𝑘, 𝑛), 𝛼𝑖
𝑘
= �̃�𝑖

𝑘
and �̃�𝑖

𝑘+1
= �̃�𝑖

𝑘
for 𝑖 ∈ [1 : 𝐾] \ { 𝑗 (𝑘)}.

5: Compute 𝛼
𝑗 (𝑘)
𝑘

, �̃�
𝑗 (𝑘)
𝑘+1

with Linesearchprocedure(�̃�
𝑗 (𝑘)
𝑘

, 𝑥𝑘 , 𝑝
𝑗 (𝑘)
𝑘

, 𝛾, 𝛾1, 𝛾2)

6: Set 𝑥𝑘+1 = 𝑅(𝑥𝑘 , 𝛼 𝑗 (𝑘)𝑘
𝑝
𝑗 (𝑘)
𝑘

)
7: end for

Algorithm 15 Linesearchprocedure(𝑥, 𝛼, 𝑑, 𝛾, 𝛾1, 𝛾2)

1: if 𝑓 (𝑅(𝑥𝑘 , 𝛼𝑑)) > 𝑓 (𝑥) − 𝛾𝛼2 then

2: Return (0, 𝛾1𝛼)
3: end if

4: while 𝑓 (𝑅(𝑥𝑘 , 𝛼𝑑)) < 𝑓 (𝑥) − 𝛾𝛼2 do

5: Set 𝛼 = 𝛾2𝛼

6: end while

7: Return (𝛼/𝛾2, 𝛼/𝛾2)

We now proceed to prove convergence of this method.
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Lemma 7.3.5. We have, at every iteration 𝑘, that the following inequality holds:

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗 (𝑘)𝑘
⟩ < �̃� 𝑗 (𝑘)

𝑘+1

𝛾2

𝛾1

(2𝐿𝐵2 + 𝛾). (7.3.26)

Proof. It is immediate to check that we must always have

𝑓 (𝑅(𝑥𝑘 ,Δ𝑘 𝑝 𝑗 (𝑘)𝑘
)) > 𝑓 (𝑥𝑘 ) − 𝛾Δ2

𝑘 , (7.3.27)

for Δ𝑘 =
1

𝛾1
�̃�
𝑗 (𝑘)
𝑘+1

if the Linesearchprocedure terminates at the second line, and

Δ𝑘 = 𝛾2�̃�
𝑗 (𝑘)
𝑘+1

if the Linesearchprocedure terminates in the last line. Then in both

cases

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗 (𝑘)𝑘
⟩ < Δ𝑘 (2𝐿𝐵2 + 𝛾) ≤ �̃� 𝑗 (𝑘)

𝑘+1

𝛾2

𝛾1
(2𝐿𝐵2 + 𝛾) , (7.3.28)

where we used Lemma 7.3.2 in the first inequality. □

The assumption 7.4 allows us to extend [179, Proposition 5.2] to the Riemannian

case.

Theorem 7.3.6. For {𝑥𝑘 } generated by Algorithm 14, we have

lim
𝑘→∞

∥grad 𝑓 (𝑥𝑘 )∥ → 0 . (7.3.29)

Proof. Let �̄�𝑘 = max 𝑗∈[1:𝐾] �̃�
𝑗 (𝑘)
𝑘+1

, so that �̄�𝑘 → 0 since �̃�
𝑗 (𝑘)
𝑘

→ 0, reasoning as in

the proof of Theorem 7.3.4. As a consequence of Lemma 7.3.5 we have

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝 𝑗 (𝑘)𝑘
⟩ < �̄�𝑘𝑐1 , (7.3.30)

for the constant 𝑐1 =
𝛾2

𝛾1
(2𝐿𝐵2 + 𝛾) independent from 𝑗 (𝑘).

It remains to bound ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩ for 𝑖 ≠ 𝑗 . To start with, we have the following

bound:

− ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩ ≤ −⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ + |⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ − ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩|
≤𝑐1�̄�𝑘+ℎ + |⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ − ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩| ,

(7.3.31)

for ℎ ≤ 𝐾 such that 𝑘 +ℎ = 𝑗 (𝑖), and where in the second inequality we used (7.3.30)

with 𝑘 + ℎ instead of 𝑘. For the second summand appearing in the RHS of (7.3.31),
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we can write the following bound

|⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ − ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩|
= |⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ − ⟨Γ𝑘+ℎ𝑘 grad 𝑓 (𝑥𝑘 ), Γ𝑘+ℎ𝑘 𝑝𝑖𝑘⟩|

≤|⟨grad 𝑓 (𝑥𝑘+ℎ) − Γ
𝑘+ℎ
𝑘 grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘+ℎ⟩| + |⟨Γ𝑘+ℎ𝑘 grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘+ℎ − Γ

𝑘+ℎ
𝑘 𝑝𝑖𝑘⟩|

+|⟨grad 𝑓 (𝑥𝑘+ℎ) − Γ
𝑘+ℎ
𝑘 grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘+ℎ − Γ

𝑘+ℎ
𝑘 𝑝𝑖𝑘⟩|

≤𝐿 𝑓 dist(𝑥𝑘 , 𝑥𝑘+ℎ)∥𝑝𝑖𝑘+ℎ∥ + 𝐿Γ∥grad 𝑓 (𝑥𝑘 )∥ dist(𝑥𝑘+ℎ, 𝑥𝑘 ) + 𝐿 𝑓 𝐿Γ dist(𝑥𝑘 , 𝑥𝑘+ℎ)2

≤(𝐿 𝑓 𝐵 + 𝐿Γ𝑀 𝑓 + 𝐿 𝑓 𝐿Γ dist(𝑥𝑘+ℎ, 𝑥𝑘 )) dist(𝑥𝑘+ℎ, 𝑥𝑘 ) ,
(7.3.32)

where in the second inequality we used the Cauchy-Schwartz inequality together

with the Assumptions on the Lipschitz property of the iterates (7.3.1) and (7.3.25),

while in the third inequality we used conditions (7.3.11) and (7.3.10).

We can now bound dist(𝑥𝑘 , 𝑥𝑘+ℎ) as follows

dist(𝑥𝑘+ℎ, 𝑥𝑘 ) ≤
ℎ−1∑︁

𝑙=0

dist(𝑥𝑘+𝑙+1, 𝑥𝑘+𝑙)

=

ℎ−1∑︁

𝑙=0

dist(𝑥𝑘+𝑙 , 𝑅(𝑥𝑘+𝑙 , �̄�𝑘+𝑙 𝑝 𝑗 (𝑘+𝑙)𝑘+𝑙 )) ≤
ℎ−1∑︁

𝑙=0

𝐿𝑟 �̄�𝑘+𝑙 ∥𝑝 𝑗 (𝑘+𝑙)𝑘+𝑙 ∥

≤𝐵𝐿𝑟
ℎ−1∑︁

𝑙=0

�̄�𝑘+𝑙 ≤ ℎ𝐵𝐿𝑟 max
𝑙∈[0:ℎ−1]

�̄�𝑘+𝑙

≤𝐾𝐵𝐿𝑟 max
𝑙∈[0:𝐾]

�̄�𝑘+𝑙 ,

(7.3.33)

where we used (7.2.3) in the second inequality, (7.3.11) in the third one, and ℎ ≤ 𝐾

in the last one.

Now let Δ𝑘 = max𝑙∈[0:𝐾] �̄�𝑘+𝑙 , so that in particular Δ𝑘 → 0. We apply (7.3.33) to

the RHS of (7.3.32) and obtain

|⟨grad 𝑓 (𝑥𝑘+ℎ), 𝑝𝑖𝑘+ℎ⟩ − ⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩| ≤ (𝐿 𝑓 𝐵 + 𝐿Γ𝑀 𝑓 + 𝐿 𝑓 𝐿Γ𝑐2Δ𝑘 )𝑐2Δ𝑘 → 0 ,

(7.3.34)

for 𝑘 → ∞ and 𝑐2 = 𝐾𝐵𝐿𝑟 . Finally, for every 𝑖 ∈ [1 : 𝐾]

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩ ≤ 𝑐1�̄�𝑘+ℎ + (𝐿 𝑓 𝐵 + 𝐿Γ𝑀 𝑓 + 𝐿 𝑓 𝐿Γ𝑐2Δ𝑘 )𝑐2Δ𝑘 → 0 , (7.3.35)

and the thesis follows after observing that, by (7.3.12),

∥grad 𝑓 (𝑥𝑘 )∥ ≤ 1

𝜏
max
𝑖∈[1:𝐾]

−⟨grad 𝑓 (𝑥𝑘 ), 𝑝𝑖𝑘⟩ → 0 , (7.3.36)

where the convergence of the gradient norm to zero is a consequence of (7.3.35). □
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7.4 Nonsmooth objectives

Now we proceed to present and study direct search methods in the context where

𝑓 is Lipschitz continuous, and bounded from below, but not necessarily continuously

differentiable. The algorithms we devise are built around the ideas given in [98],

where the authors consider direct search methods for nonsmooth objectives in Eu-

clidean space.

7.4.1 Clarke stationarity for nonsmooth functions on Rie-

mannian manifolds

In order to perform our analysis, we first need to define the Clarke directional

derivative for a point 𝑥 ∈ M. The standard approach is to write the function in

coordinate charts and take the standard Clarke derivative in an Euclidean space

(see, e.g., [129] and [131]). Formally, given a chart (𝜑,𝑈) at 𝑥 ∈ M and 𝑣 ∈ 𝑇𝑥M,

we define

𝑓 ◦(𝑥, 𝑣) = 𝑓 ◦(𝜑(𝑥), 𝑑𝜑(𝑥)𝑣) , (7.4.1)

for 𝑓 (𝑦) = 𝑓 (𝜑−1(𝑦)). The following lemma shows the relationship between defini-

tion (7.4.1) and a directional derivative like object defined with retractions. This

nontrivial result is the key tool allowing us to extend the analysis of direct search

methods on ❘𝑛 to the Riemannian setting.

Lemma 7.4.1. If (𝑦𝑘 , 𝑞𝑘 ) → (𝑥, 𝑑) and 𝑡𝑘 → 0,

𝑓 ◦(𝑥, 𝑑) ≥ lim sup
𝑘→∞

𝑓 (𝑅(𝑦𝑘 , 𝑡𝑘𝑞𝑘 )) − 𝑓 (𝑦𝑘 )
𝑡𝑘

. (7.4.2)

In order to prove the above result we first need the following lemma.

Lemma 7.4.2. For a Lipschitz continuous function ℎ : ❘𝑚 → ❘, 𝑦, 𝑣 ∈ ❘𝑚, if

𝑦𝑘 → 𝑦, 𝑣𝑘 → 𝑣 and 𝑡𝑘 → 0 then

ℎ◦(𝑦, 𝑣) ≥ lim sup
𝑘→∞

ℎ(𝑦𝑘 + 𝑡𝑘𝑣𝑘 ) − ℎ(𝑦𝑘 )
𝑡𝑘

. (7.4.3)

Proof. We have

|ℎ(𝑦𝑘 + 𝑡𝑘𝑣𝑘 ) − ℎ(𝑦𝑘 + 𝑡𝑘𝑣) | ≤ 𝑡𝑘𝐿ℎ∥𝑣 − 𝑣𝑘 ∥ = 𝑜(𝑡𝑘 ) , (7.4.4)
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with 𝐿ℎ the Lipschitz constant of ℎ. Then

lim sup
𝑘→∞

ℎ(𝑦𝑘 + 𝑡𝑘𝑣𝑘 ) − ℎ(𝑦𝑘 )
𝑡𝑘

= lim sup
𝑘→∞

ℎ(𝑦𝑘 + 𝑡𝑘𝑣) + 𝑜(𝑡𝑘 ) − ℎ(𝑦𝑘 )
𝑡𝑘

= lim sup
𝑘→∞

ℎ(𝑦𝑘 + 𝑡𝑘𝑣) − ℎ(𝑦𝑘 )
𝑡𝑘

≤ ℎ◦(𝑦, 𝑣) ,
(7.4.5)

where we used (7.4.4) in the first equality, and with the inequality true by definition

of the Clarke derivative. □

Proof of Lemma 7.4.1. With the notation introduced in the proof of Proposition

7.3.1, without loss of generality we assume that 𝑈 is bounded and that 𝜑 can be

extended to a neighborhood containing the closure of 𝑈.

First, since pushforward 𝑅 of a 𝐶2 retraction on ❘ is a 𝐶2 retraction itself of 𝑇❘𝑚

on ❘𝑚, we have the Taylor expansion

𝑅(𝑦, 𝑣) = 𝑦 + 𝑣 +𝑂 (∥𝑣∥2) , (7.4.6)

with the implicit constant uniform for 𝑦 varying in 𝑈 and 𝑣 chosen in ❘𝑚.

Second, for any fixed constant 𝐵 > 0, by continuity we have

∥Γ̃𝑥𝑘
𝑥
𝑞 − 𝑞∥ ≤ 𝑂 (∥𝑥 − 𝑥𝑘 ∥) , (7.4.7)

for 𝑘 → ∞, 𝑞 ∈ ❘𝑚 with ∥𝑞∥ ≤ 𝐵, and with a uniform implicit constant.

Therefore

∥𝑑𝑘 − 𝑑∥ ≤ ∥𝑑𝑘 − Γ̃
𝑥𝑘
𝑥
𝑑∥ + ∥Γ̃𝑥𝑘

𝑥
𝑑 − 𝑑∥ ≤ 𝑂

(
∥𝑑𝑘 − Γ̃

𝑥𝑘
𝑥
(𝑑)∥𝑥

)
+𝑂 (∥𝑥 − 𝑥𝑘 ∥)

= 𝑂
(
∥𝑑𝑘 − Γ

𝑥𝑘
𝑥 (𝑑)∥𝑥

)
+𝑂 (∥𝑥 − 𝑥𝑘 ∥) = 𝑜(1) ,

(7.4.8)

where in the second inequality we used (7.4.7), and in the last equality we used

𝑑𝑘 → 𝑑 together with 𝑥𝑘 → 𝑥.

Let now 𝑣𝑘 = (𝑅(𝑥𝑘 , 𝑡𝑘𝑑𝑘 ) − 𝑥𝑘 )/𝑡𝑘 . Then

∥𝑣𝑘 − 𝑑∥ =
1

𝑡𝑘
∥𝑅(𝑥𝑘 , 𝑡𝑘𝑑𝑘 ) − 𝑥𝑘 − 𝑡𝑘𝑑∥ ≤ 1

𝑡𝑘
(∥𝑅(𝑥𝑘 , 𝑡𝑘𝑑𝑘 ) − 𝑥𝑘 − 𝑡𝑘𝑑𝑘 ∥ + 𝑡𝑘 ∥𝑑𝑘 − 𝑑𝑘 ∥)

=
1

𝑡𝑘
(𝑂 (𝑡2𝑘 ∥𝑑𝑘 ∥2) + 𝑡𝑘𝑜(1)) = 𝑜(1) ,

(7.4.9)

where we used (7.4.6) and (7.4.8) for the first and the second summand in the second

equality. In other words, 𝑣𝑘 → 𝑑. To conclude,

lim sup
𝑘→∞

𝑓 (𝑅(𝑦𝑘 , 𝑡𝑘𝑑𝑘 )) − 𝑓 (𝑦𝑘 )
𝑡𝑘

= lim sup
𝑘→∞

𝑓 (𝑅(𝑦𝑘 , 𝑡𝑘𝑑𝑘 )) − 𝑓 (𝑦𝑘 )
𝑡𝑘

= lim sup
𝑘→∞

𝑓 (𝑦𝑘 + 𝑡𝑘𝑣𝑘 ) − 𝑓 (𝑦𝑘 )
𝑡𝑘

≥ 𝑓 ◦(𝑥, 𝑑) = 𝑓 ◦(𝑥, 𝑑) ,
(7.4.10)
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where in the inequality we were able to apply (7.4.2) because 𝑣𝑘 → 𝑑 by (7.4.9). □

7.4.2 Refining subsequences

We now adapt the definition of refining subsequence used in the analysis of

direct search methods (see, e.g., [17,98]) to the Riemannian setting. Let (𝑥𝑘 , 𝑑𝑘 ) be

a sequence in 𝑇M.

Definition 7.4.3. We say that the subsequence {𝑥𝑖(𝑘)} is refining if 𝑥𝑖(𝑘) → 𝑥, and

if for every 𝑑 ∈ 𝑇𝑥M with ∥𝑑∥𝑥 = 1 there is a further subsequence { 𝑗 (𝑖(𝑘))} such

that

lim
𝑘→∞

dist∗(𝑑 𝑗 (𝑖(𝑘)) , 𝑑) = 0 . (7.4.11)

We now give a sufficient condition for a sequence to be refining, assuming that

the manifold is embedded in ❘𝑛 and that the directions are obtained projecting from

the unit sphere to the tangent spaces.

Proposition 7.4.4. If 𝑥𝑖(𝑘) → 𝑥∗, 𝑑𝑖(𝑘) is dense in the unit sphere, and 𝑑𝑖(𝑘) =

P𝑘 (𝑑𝑖(𝑘))/∥P𝑘 (𝑑𝑖(𝑘))∥𝑘 for P𝑘 (𝑑𝑖(𝑘)) ≠ 0 and 𝑑𝑖(𝑘) = 0 otherwise, then it holds that

the subsequence {𝑥𝑖(𝑘)} is refining.

Proof. Fix 𝑑 ∈ 𝑇𝑥∗M, with ∥𝑑∥𝑥∗ = 1, and let 𝑑 = 𝑑/∥𝑑∥. By density, we have that

𝑑 𝑗 (𝑖(𝑘)) → 𝑑 for a proper choice of the subsequence { 𝑗 (𝑖(𝑘))}. Then

lim
𝑘→∞

𝑑 𝑗 (𝑖(𝑘)) = lim
𝑘→∞

P𝑘 (𝑑 𝑗 (𝑖(𝑘)))
∥P𝑘 (𝑑 𝑗 (𝑖(𝑘)))∥𝑘

=
P𝑥∗ (𝑑)

∥P𝑥∗ (𝑑)∥𝑥∗
=

𝑑

∥𝑑∥𝑥∗
= 𝑑 , (7.4.12)

where in the second equality we used the continuity of P𝑥 and of the norm ∥ · ∥𝑥,
and in the third equality we used P𝑥∗ (𝑑) = 𝑑 since 𝑑 ∈ 𝑇𝑥∗M by construction. □

7.4.3 Direct search for nonsmooth objectives

We present here our Riemannian Direct Search method based on Dense Direc-

tions (RDS-DD) for nonsmooth objectives. The scheme is presented in detail as

Algorithm 16. The algorithm performs three simple steps at an iteration 𝑘. First,

a search direction is selected randomly in the current tangent space. Then a ten-

tative point is generated by retracting the step 𝛼𝑘𝑑𝑘 from the tangent space to the

manifold. Such a point is then eventually accepted as the new iterate if a suffi-

cient decrease condition of the objective function is satisfied (and the stepsize is

expanded), otherwise the iterate stays the same (and the stepsize is reduced).
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Algorithm 16 RDS-DD

1: Input: 𝑥0 ∈ ❘𝑛, 𝛼0 > 0, 𝛾 > 0, 𝛾1 ∈ (0, 1), 𝛾2 ≥ 1

2: for 𝑘 = 0, 1, ... do

3: Sample 𝑑𝑘 randomly in {𝑑 ∈ 𝑇𝑘M | ∥𝑑∥ = 1}
4: if 𝑓 (𝑅(𝑥𝑘 , 𝛼𝑘𝑑𝑘 )) ≤ 𝑓 (𝑥) − 𝛾𝛼2

𝑘
then

5: 𝑥𝑘+1 = 𝑅(𝑥𝑘 , 𝛼𝑘𝑑𝑘 ), 𝛼𝑘+1 = 𝛾2𝛼𝑘

6: else

7: 𝑥𝑘+1 = 𝑥𝑘 , 𝛼𝑘+1 = 𝛾1𝛼𝑘

8: end if

9: end for

Thanks to the theoretical tools previously introduced, and in particular to the re-

lation between retractions and the Clarke directional derivative proved in Lemma 7.4.1,

we can easily show that a suitable subsequence of unsuccessful iterations of the RDS-

DD method converges to a Clarke stationary point.

Theorem 7.4.5. Let {𝑥𝑘 } be generated by Algorithm 16. If {𝑥𝑖(𝑘)} is refining, with

𝑥𝑖(𝑘) → 𝑥∗, and 𝑖(𝑘) is an unsuccessful iteration for every 𝑘 ∈ ◆ ∪ {0}, 𝑥∗ is Clarke

stationary.

Proof. By the same assumptions as in the smooth case 𝛼𝑘 → 0 and in particular

𝛼𝑖(𝑘) → 0. Since by assumption 𝑖(𝑘) is an unsuccessful step, we have, for every 𝑖(𝑘)

𝑓 (𝑅(𝑥𝑖(𝑘) , 𝛼𝑖(𝑘)𝑑𝑖(𝑘))) − 𝑓 (𝑥𝑖(𝑘)) > −𝛾𝛼2

𝑖(𝑘) . (7.4.13)

Let { 𝑗 (𝑖(𝑘))} be such that 𝑑 𝑗 (𝑖(𝑘)) → 𝑑, and let 𝑦𝑘 = 𝑥 𝑗 (𝑖(𝑘)), 𝑞𝑘 = 𝑑 𝑗 (𝑖(𝑘)), 𝑡𝑘 = 𝛼 𝑗 (𝑖(𝑘)).

We have

lim sup
𝑘→∞

𝑓 (𝑅(𝑦𝑘 , 𝑡𝑘𝑞𝑘 )) − 𝑓 (𝑦𝑘 )
𝑡𝑘

≥ lim sup
𝑘→∞

−𝛾𝛼𝑖(𝑘) = 0 , (7.4.14)

thanks to (7.4.13), and by applying Lemma 7.4.1 we get

𝑓 ◦(𝑥∗, 𝑑) ≥ lim sup
𝑘→∞

𝑓 (𝑅(𝑦𝑘 , 𝑡𝑘𝑞𝑘 )) − 𝑓 (𝑦𝑘 )
𝑡𝑘

≥ 0 , (7.4.15)

which implies the thesis since 𝑑 is arbitrary. □

7.4.4 Direct search with line search extrapolation for nons-

mooth objectives

We present here our Riemannian Direct Search method with line search Extrap-

olation based on Dense Directions (RDSE-DD) for nonsmooth objectives. It can be
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seen as an extension to the Riemannian setting of the DFN𝑠𝑖𝑚𝑝𝑙𝑒 algorithm intro-

duced in [98] for the bound constrained setting. The detailed scheme is given in

Algorithm 17. As we can easily see, the algorithm performs just two simple steps at

an iteration 𝑘. First, a given search direction is suitably projected on the current

tangent space. Then a line search is performed using Algorithm 15 to hopefully

obtain a new point that guarantees a sufficient decrease.

Algorithm 17 RDSE-DD

1: Input: 𝑥0 ∈ ❘𝑛, 𝛼0 > 0, 𝛾 > 0, 𝛾1 ∈ (0, 1), 𝛾2 ≥ 1, {𝑑𝑘 } dense in 𝑆(0, 1).
2: for 𝑘 = 0, 1, ... do

3: Sample 𝑑𝑘 randomly in {𝑑 ∈ 𝑇𝑘M | ∥𝑑∥ = 1}
4: Compute 𝛼𝑘 , �̃�𝑘+1 with Linesearchprocedure(�̃�𝑘 , 𝑥𝑘 , 𝑑𝑘 , 𝛾, 𝛾1, 𝛾2)

5: Set 𝑥𝑘+1 = 𝑅(𝑥𝑘 , 𝛼𝑘𝑑𝑘 )
6: end for

Once again, by exploiting the theoretical tools previously introduced, we can

straightforwardly prove that a suitable subsequence of the RDSE-DD iterations

converges to a Clarke stationary point. It is interesting to notice that, thanks to

the use of the line search strategy, we are not restricted to considering unsuccessful

iterations this time.

Theorem 7.4.6. Let {𝑥𝑘 } be generated by Algorithm 17. If {𝑥𝑖(𝑘)} is refining, with

𝑥𝑖(𝑘) → 𝑥∗, then 𝑥∗ is Clarke stationary.

Proof. Let 𝛽𝑘 = �̃�𝑘/𝛾2 if the line search procedure exits before the loop, and 𝛽𝑘 =

𝛾1�̃�𝑘+1 otherwise. Clearly 𝛽𝑘 → 0, and by definition of the line search procedure,

for every 𝑘

𝑓 (𝑅(𝑥𝑘 , 𝛽𝑘𝑑𝑘 )) − 𝑓 (𝑥𝑘 ) > −𝛾𝛽2

𝑘 . (7.4.16)

The rest of the proof is analogous to that of Theorem 7.4.5. □

7.5 Numerical results

We now report the results of some numerical experiments of the algorithms

described in this chapter on a set of simple but illustrative example problems. The

comparison among the algorithms is carried out by using data and performance

profiles [186]. Specifically, let 𝑆 be a set of algorithms and 𝑃 a set of problems. For
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each 𝑠 ∈ 𝑆 and 𝑝 ∈ 𝑃, let 𝑡𝑝,𝑠 be the number of function evaluations required by

algorithm 𝑠 on problem 𝑝 to satisfy the condition

𝑓 (𝑥𝑘 ) ≤ 𝑓𝐿 + 𝜏( 𝑓 (𝑥0) − 𝑓𝐿) , (7.5.1)

where 0 < 𝜏 < 1 and 𝑓𝐿 is the best objective function value achieved by any solver

on problem 𝑝. Then, the performance and data profiles of solver 𝑠 are defined,

respectively, by the following functions

𝜌𝑠 (𝛼) =
1

|𝑃 |

����
{
𝑝 ∈ 𝑃 :

𝑡𝑝,𝑠

min{𝑡𝑝,𝑠′ : 𝑠′ ∈ 𝑆} ≤ 𝛼
}���� ,

𝑑𝑠 (𝜅) =
1

|𝑃 |
��{𝑝 ∈ 𝑃 : 𝑡𝑝,𝑠 ≤ 𝜅(𝑛𝑝 + 1)

}�� ,

where 𝑛𝑝 is the dimension of problem 𝑝.

We used a budget of 100(𝑛𝑝 + 1) function evaluations in all cases and two dif-

ferent precisions for the condition (7.5.1), that is 𝜏 ∈ {10−1, 10−3}. We consider

randomly generated instances of well-known optimization problems over manifolds

from [3,55,130]. The size of the ambient space for the instances varies from 2 to 200.

For all the problems, the manifold structure we used was the one available in the

MANOPT library [54]. After a basic tuning phase, we set the algorithm parameters

as follows: we used 𝛾1 = 0.61, 𝛾2 = 1 and 𝛾 = 0.77 for Algorithm 13, 𝛾1 = 0.81,

𝛾2 = 3.12 and 𝛾 = 0.11 for Algorithm 14, and the stepsize 1.64/𝑛 (recall that 𝑛 is

the dimension of the ambient space) for the ZO-RGD method.

For the nonsmooth strategies RDS-DD+ and RDSE-DD+, we considered the same

parameters of the smooth case for RDS-SB and RDSE-SB, setting 𝛼𝜖 = 10−4, and

for both RDS-DD and RDSE-DD used 𝛾1 = 0.95, 𝛾2 = 2, and 𝛾 = 1. When dealing

with the nonsmooth case, the stepsize used for ZO-RGD was the same as the one

considered in the smooth case.

The positive spanning basis was obtained both in Algorithm 13 and Algorithm 14 by

projecting the positive spanning basis (𝑒1, ..., 𝑒𝑛,−𝑒1, ...,−𝑒𝑛) of the ambient space

❘𝑛 on the tangent space. The initial stepsize was set to 1 for all the direct search

methods, with no fine tuning.

We generated the starting point and the parameters related to the instances either

with MATLAB rand function or by using the random element generators imple-

mented in the MANOPT library.

7.5.1 Smooth problems

We describe here the 8 smooth instances of problem (7.2.1) from [3,55].
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Largest eigenvalue, singular value, and top singular values problem

In the largest eigenvalue problem [55, Section 2.3], given a symmetric matrix

𝐴 ∈ 𝑆(𝑛, 𝑛) = {𝐴 ∈ ❘𝑛×𝑛 | 𝐴 = 𝐴⊤}, we are interested in computing

max
𝑥∈❙𝑛−1

𝑥⊤𝐴𝑥 . (7.5.2)

The largest singular value problem [55, Section 2.3] can be formulated generaliz-

ing (7.5.2): given 𝐴 ∈ ❘𝑚×ℎ, we are interested in

max
𝑥∈❙𝑚−1,𝑦∈❙ℎ−1

𝑥⊤𝐴𝑦 . (7.5.3)

Notice how the domain in (7.5.2) and (7.5.3) are a sphere and the product of two

spheres respectively.

Finally, to compute the sum of the top 𝑟 singular values, as explained in [55, Section

2.5] it suffices to solve

max
𝑋∈𝑆(𝑚,𝑟),𝑌∈𝑆(ℎ,𝑟)

𝑋⊤𝐴𝑌 , (7.5.4)

for 𝑆(𝑎, 𝑏) the Stiefel manifold with dimensions (𝑎, 𝑏).

Dictionary learning

The dictionary learning problem [55, Section 2.4] can be formulated as

min ∥𝑌 − 𝐷𝐶∥ + 𝜆∥𝐶∥1,

s.t. 𝐷 ∈ ❘𝑑×ℎ, 𝐶 ∈ ❘ℎ×𝑘 , ∥𝐷1∥ = ... = ∥𝐷ℎ∥ = 1 ,
(7.5.5)

for a fixed 𝑌 ∈ ❘𝑑×𝑘 , 𝜆 > 0, ∥ · ∥1 the ℓ1− norm, and 𝐷1, ..., 𝐷ℎ the columns of 𝐷.

In our implementation we smooth the objective by using a smoothed version ∥ · ∥1,𝜀

of ∥ · ∥1

∥𝐶∥1,𝜀 =

∑︁

𝑖, 𝑗

√︃
𝐶2

𝑖, 𝑗
+ 𝜀2 . (7.5.6)

In our tests, we generated the solution 𝐶 using MATLAB sprand function, with a

density of 0.3, set the regularization parameter 𝜆 to 0.01 and 𝜀 to 0.001.

Synchronization of rotations

Let SO(𝑑) be the special orthogonal group:

SO(𝑑) = {𝑅 ∈ ❘𝑑×𝑑 | 𝑅⊤𝑅 = 𝐼𝑑 and det(𝑅) = 1} . (7.5.7)
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In the synchronization of rotations problem [55, Section 2.6], we need to find rota-

tions 𝑅1, ..., 𝑅ℎ ∈ SO(𝑑) from noisy measurements 𝐻𝑖 𝑗 of 𝑅𝑖𝑅
−1

𝑗 , for every (𝑖, 𝑗) ∈ 𝐸 ,

a subset of
(ℎ
2

)
(the set of couples of distinct elements in [1 : ℎ]). The objective is

then

min
𝑅1,...,𝑅ℎ∈SO(𝑑)

∑︁

(𝑖, 𝑗)∈𝐸
∥𝑅𝑖 − 𝐻𝑖 𝑗𝑅 𝑗 ∥2 . (7.5.8)

In our tests, we considered the case ℎ = 2 for simplicity.

Low-rank matrix completion

The low rank matrix completion problem [55, Section 2.7] can be written, for a

fixed matrix 𝑀 ∈ ❘𝑚×ℎ, as

min
∑

(𝑖, 𝑗)∈Ω(𝑋𝑖 𝑗 − 𝑀𝑖 𝑗 )2,

𝑠.𝑡. 𝑋 ∈ ❘𝑚×ℎ, rank(𝑋) = 𝑟 , (7.5.9)

given a positive integer 𝑟 > 0 and a subset of indices Ω ⊂ [1 : 𝑚] × [1 : ℎ]. It can be

proven that the optimization domain, that is the matrices in ❘𝑚×𝑛 with fixed rank

𝑟, can be given a Riemannian manifold structure (see, e.g., [225]).

Gaussian mixture models

In the Gaussian mixture model problem [55, Section 2.8], we are interested in

computing a maximum likelihood estimation for a given set of observations 𝑥1, ..., 𝑥ℎ:

max
𝑢1,...,𝑢𝑘∈❘𝑑

Σ̂1,...,Σ̂𝑘∈Sym(𝑑)+,
𝑤∈Δ𝐾−1

+

ℎ∑︁

𝑖=1

log

(
𝐾∑︁

𝑘=1

𝑤𝑘
1√︁

2𝜋 det(Σ𝑘 )
𝑒

(𝑥−𝜇𝑘 )⊤Σ−1
𝑘

(𝑥−𝜇𝑘 )
2

)
, (7.5.10)

where Sym(𝑑)+ is the manifold of positive definite matrices

Sym(𝑑)+ = {𝑋 ∈ ❘𝑑×𝑑 | 𝑋 = 𝑋⊤, 𝑋 ≻ 0} (7.5.11)

and Δ𝐾−1
+ is the subset of strictly positive elements of the simplex Δ𝐾−1, which can

be given a manifold structure. In our tests, we considered the case 𝐾 = 2 and

the reformulation proposed in [128], which does not use the unconstrained variables

(𝑢1, ..., 𝑢𝑘 ).
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Procrustes problem

The Procrustes problem [3] is the following linear regression problem, for fixed

𝐴 ∈ ❘𝑙×𝑛 and 𝐵 ∈ ❘𝑙×𝑝:
min
𝑥∈M

∥𝐴𝑋 − 𝐵∥2

𝐹 , (7.5.12)

In our tests, we assumed the variable 𝑋 ∈ ❘𝑛×𝑝 to be in the Stiefel manifold St(𝑛, 𝑝),
a choice leading to the so called unbalanced orthogonal Procrustes problem.

Results

In Figure 7.1, we include the results related to the 8 smooth instances of problem

(7.2.1) discussed above, each with 15 different problem dimensions (from 2 to 200),

for a total number of 60 tested instances. We compared our methods, that is RDS-SB

and RDSE-SB, with the zeroth order gradient descent (ZO-RGD, [171, Algorithm

1]).

The results clearly show that RDSE-SB performs better than RDS-SB and ZO-RGD

both in efficiency and reliability for both levels of precision. By taking a look at

the detailed results in Section 7.5.4, we can also see how the gap between RDSE-SB

and the other two algorithms gets larger as the problem dimension grows.
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Figure 7.1: Smooth case: results for all the instances

7.5.2 Nonsmooth problems

We report two nonsmooth problems taken from [130].

Sparsest vector in a subspace

Given an orthonormal matrix 𝑄 ∈ ❘𝑚×𝑛, the problem of finding the sparsest

vector in the subspace generated by the columns of 𝑄 can be relaxed as

min
𝑥∈❙𝑛−1

∥𝑄𝑥∥1 . (7.5.13)
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Nonsmooth low-rank matrix completion

In the nonsmooth version of the low rank matrix completion problem (7.5.9) the

Euclidean norm is replaced with the 𝑙1 norm, so that in the objective we have a sum

of absolute values:
min

∑
(𝑖, 𝑗)∈Ω |𝑋𝑖 𝑗 − 𝑀𝑖 𝑗 |,

𝑠.𝑡. 𝑋 ∈ ❘𝑚×𝑛, rank(𝑋) = 𝑟 . (7.5.14)

7.5.3 Results

We report here a preliminary comparison between a direct search strategy, a line

search strategy and ZO-RGD on the two nonsmooth instances of (7.2.1) presented

above, each with 15 different problem sizes (from 2 to 200), thus getting a total

number of 30 tested instances. We remark that while in the unconstrained setting

the performance of zeroth order (sub)gradient descent methods on nonsmooth ob-

jectives have been analyzed (see, e.g., [193]), there are, to the best of our knowledge,

no convergence guarantees in the Riemannian setting.

In the direct search strategy (RDS-DD+), we apply the RDS-SB method until

𝛼𝑘+1 ≤ 𝛼𝜖 , at which point we switch to the nonsmooth version RDS-DD. Analo-

gously, in the line search strategy (RDSE-DD+), we apply the RDSE-SB method

until max 𝑗∈[1:𝐾] �̃�
𝑗

𝑘+1
≤ 𝛼𝜖 , at which point we switch to the nonsmooth version

RDSE-DD. Both strategies use a threshold parameter 𝛼𝜖 > 0 to switch from the

smooth to the nonsmooth DFO algorithm. We refer the reader to [98] and references

therein for other direct search strategies combining coordinate and dense directions.

We report, in Figure 7.2, the comparison between the considered strategies. As in

the smooth case, the line search based strategy outperforms both the simple direct

search and the zeroth order one. By taking a look at the detailed results in Section

7.5.4, we can once again see how the gap between the algorithms gets larger as the

problem dimension gets large enough.
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Figure 7.2: Nonsmooth case: results for all the instances
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7.5.4 Data and performance profiles by ambient space di-

mension

We report here further detailed numerical results, splitting the problems by

ambient space dimension: between 2 and 15 for small instances, between 16 and 50

for medium instances, and between 51 and 200 for large instances.
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(l) Perf. p., 𝜏 = 10−3

Figure 7.3: From top to bottom: results for small, medium and large instances in the

smooth case.
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Figure 7.4: From top to bottom: results for small, medium and large instances in the

nonsmooth case.
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Chapter 8

Convergence of direct search

under a tail bound condition on

the black box error

In this chapter, we use tail bounds to define a tailored probabilistic

condition for function estimation that eases the theoretical analysis of a

stochastic direct search method. In particular, we focus on the uncon-

strained minimization of a potentially non-smooth function, whose values

can only be estimated via stochastic observations, and give a simplified

convergence proof for a basic direct search scheme. We also study the

trade-off between algorithm parameters, assumptions on the noise, and

number of samples needed at every iteration for convergence.

8.1 Derivative free optimization with stochastic

oracles

We consider the following unconstrained optimization problem

min
𝑥∈❘𝑛

𝑓 (𝑥) , (8.1.1)

with 𝑓 locally Lipschitz continuous and possibly non-smooth function such that

inf 𝑓 = 𝑓 ∗ ∈ ❘. We assume that the original function 𝑓 (𝑥) is not computable, and

the only information available on 𝑓 is given by a stochastic oracle producing an

estimate 𝑓 (𝑥) for any 𝑥 ∈ ❘𝑛. In some contexts, we can assume that the estimate is
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a random variable parameterized by 𝑥, that is

𝑓 (𝑥) = 𝐹 (𝑥, 𝜉),

with the black-box oracle given by sampling on the 𝜉 space. When dealing with, e.g.,

statistical learning problems, the function 𝐹 (𝑥, 𝜉) evaluates the loss of the decision

rule parametrized by 𝑥 on a data point 𝜉 (see, e.g., [160] for further details). In

simulation-based engineering applications, the function 𝐹 (𝑥, 𝜉) is simply related to

some noisy computable version of the original function. In this case 𝜉 represents the

random variable that induces the noise (a classic example is given by Monte Carlo

simulations). A detailed overview is given in, e.g., [11].

When this random variable is exact in expected value, problem (8.1.1) turns out

to be the expected loss formulation

min
𝑥∈❘𝑛

❊𝜉 [𝐹 (𝑥, 𝜉)], (8.1.2)

a case addressed in recent literature, see, e.g., [162,215], for further details.

Although the role of derivative-free optimization is particularly important when

the black-box representing the function is somehow noisy or, in general, of a stochas-

tic type, traditional DFO methods have been developed primarily for determinis-

tic functions, and only recently adapted to deal with stochastic observations (see,

e.g., [74] for a detailed discussion on this matter). We give here a brief overview of

the main results available in the literature by first focusing on trust region strategies

and then moving to direct search approaches.

In [162], the authors describe a trust-region algorithm to handle noisy objectives

and prove convergence when 𝑓 is sufficiently smooth (i.e., with Lipschitz continuous

gradient) and the noise is drawn independently from a distribution with zero mean

and finite variance, that is they aim at solving a smooth version of problem (8.1.2),

when 𝜉 is additive noise. In the same line of research, the authors in [215] de-

veloped a class of derivative-free trust-region algorithms, called ASTRO-DF, for

unconstrained optimization problems whose objective function has Lipschitz con-

tinuous gradient and can only be implicitly expressed via a Monte Carlo oracle.

The authors consider again an objective with noise drawn independently from a dis-

tribution with zero mean, finite variance and a bound on the 4𝑣-th moment (with

𝑣 ≥ 2), and prove the almost sure convergence of their method when using stochastic

polynomial interpolation models. Another relevant reference in this context is given

by [74], where the authors analyze a trust-region model-based algorithm for solving

unconstrained stochastic optimization problems. They consider random models of
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a smooth objective function, obtained from stochastic observations of the function

or its gradient. Convergence rates for this class of methods are reported in [34,68].

The frameworks analyzed in [34,68,74] extend the trust region DFO method based

on probabilistic models described in [23]. It is important to notice that the random-

ness in the models described in [23] comes from the way sample points are chosen,

rather than from noise in the function evaluations.

All the above-mentioned model-based approaches consider functions with a cer-

tain degree of smoothness (e.g., with Lipschitz continuous gradient) and assume

that a probabilistically accurate gradient estimate (e.g., some kind of probabilisti-

cally fully-linear model) can be generated, while of course such an estimate is not

available when dealing with non-smooth functions.

A detailed convergence rate analysis of stochastic direct search variants is re-

ported in [96] for the smooth case, i.e., for an objective function with Lipschitz con-

tinuous gradient. A stochastic mesh adaptive direct search for black-box nonsmooth

optimization is proposed in [14]. The authors prove convergence with probability

one to a Clarke stationary point (see [77]) of the objective function by assuming

that stochastic observations are sufficiently accurate and satisfy a variance condi-

tion. The analysis adapts to the considered gradient-free framework the theoretical

analysis given in [198] for a class of stochastic gradient-based methods. It is extended

in [97] to the constrained case.

8.1.1 Contributions

The main goal of this chapter is to analyze some tail-bound probabilistic condi-

tions for the error of a black box used within a general direct search scheme. We

show how they can be used to obtain convergence and define a trade-off between

noise, algorithm parameters, and number of samples.

Our algorithmic scheme is a simple direct search strategy obtained by replacing the

function values with their estimates in the acceptance test of the deterministic coun-

terpart. The scheme works as follows: it chooses a direction over the unit sphere;

generates the new iterate by moving along the direction, and finally it uses a suitable

acceptance test to decide if the new point can be accepted (successful iteration) or

not. Convergence of the method is then carried out by simply assuming that our

tail-bounds hold. The analysis has two main steps. In the first one, we show a

result that implies convergence of the stepsize to zero almost surely. In the second

one, we focus on the random sequence of the unsuccessful iterations and prove, by

exploiting the first result, Clarke stationarity at limit points.
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We will see how:

• our conditions are implied by the variance conditions considered in [14] and by

the probabilistically accurate function estimate assumption used in [14,74,198];

• one of our conditions is implied by a tail bound used in [162];

• the finite variance oracle usually considered in the literature (see, e.g., [162,

215]) can be replaced by a finite moment oracle (see Section 8.2.5 for further

details) when constructing estimates satisfying our conditions.

• we can compute the number of samples needed for convergence as a function

of the stepsize exponent used in the acceptance test and the moments of the

noise. One of our results is that if all the moments are finite like in the case

of gaussian noise we only need 𝑂 (Δ−2−𝜀
𝑘

) samples with 𝜀 > 0 for a suitable

choice of the stepsize exponent, instead of the 𝑂 (Δ−4

𝑘
) samples required in

previous works on stochastic trust region (see, e.g., [34, 74, 215]) and direct

search (see [14, 96, 97]) methods, where Δ𝑘 is the stepsize at the step 𝑘 (see

Remark 8.2.10).

8.2 A weak tail-bound probabilistic condition for

function estimation

In order to give convergence results for our algorithm, we first need some proba-

bilistic assumptions on the accuracy of the oracle. In this section, we hence describe

our tail-bound conditions and compare them with other existing conditions from

the literature. The stochastic quantities defined hereafter lie in a probability space

(Ω, F ,P), with probability measure P and 𝜎-algebra F containing subsets of Ω,

that is the space of the realizations of the algorithms under analysis. Any single

outcome of the sample space Ω will be denoted by 𝑤. For a random variable 𝑋

defined in Ω we use the shorthand {𝑋 ∈ 𝐴} to denote {𝑤 | 𝑋 (𝑤) ∈ 𝐴}.
Our algorithm generates a random process with the following random variables and

corresponding realizations. The search direction and the stepsize are denoted with

Δ𝑘 and 𝐺𝑘 , with realizations 𝛿𝑘 and 𝑔𝑘 respectively. The function values 𝑓 (𝑥𝑘 ) and

𝑓 (𝑥𝑘 +Δ𝑘𝐺𝑘 ) are denoted with 𝐹𝑘 and 𝐹
𝑔

𝑘
, with realizations 𝑓𝑘 and 𝑓

𝑔

𝑘
respectively.

We define F𝑘−1 as the 𝜎−algebra of events up to the choice of 𝐺𝑘 (so that in par-

ticular 𝐺𝑘 is measurable with respect to F𝑘−1). More explicitly, we define F𝑘−1 as
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the 𝜎-algebra generated by (𝐹𝑗 , 𝐹𝑔𝑗 )𝑘−1

𝑗=0
and (𝐺 𝑗 )𝑘𝑗=0

. Finally, we use ❊ to denote

expectation and conditional expectation, and a.s. as a shorthand for "almost surely".

8.2.1 The weak tail-bound probabilistic condition

We now introduce our tail bound assumptions.

Assumption 8.1. For every 𝛼 > 0 and some 𝜀 𝑓 > 0, 𝑞 > 1 (independent of 𝛼, 𝑘),

a.s.:

P
(
|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ𝑞𝑘 |F𝑘−1

)
≤
𝜀 𝑓

𝛼
. (A1)

Assumption 8.2. For every 𝛼 > 0 and some 𝜀𝑞 > 0, 𝑝 > 1, 𝑞 > 1 (independent

of 𝛼, 𝑘), a.s.:

P
(
|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ1+𝑞/𝑝

𝑘
|F𝑘−1

)
≤
𝜀𝑞

𝛼𝑝
. (A2)

Notice that we are only assuming error bounds for the estimate of the difference

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) and not for the estimates of 𝑓 (𝑥𝑘 ) and 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) taken

individually; we basically want to bound the probability that the error in that

estimate is large, as such an estimation plays a crucial role in the acceptance tests

of our algorithm. If 𝑝 = 𝑞 = 2, condition (A2) implies (A1) for 𝜀 𝑓 = max(1, 𝜀𝑞), as

it can be seen using that the LHS are the same while the RHS are 𝑂 ( 1

𝛼2 ) and 𝑂 ( 1

𝛼
)

respectively.

In our convergence arguments we will need Assumptions 8.1 and 8.2 with a F𝑘−1

measurable random variable A rather than a real number 𝛼. This is justified by the

following lemma.

Lemma 8.2.1. Let A be a positive F𝑘−1 measurable random variable. If (A1) holds,

then it holds also with A instead of 𝛼, and an analogous result is true for (A2).

Proof. We prove the result in the case where A is a discrete random variable with

a countable set of possible realizations {𝑎𝑖}𝑖∈◆, which is sufficient since the general

case then follows by approximation.

Let 𝑋 = |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |/Δ𝑞𝑘 . By the definition of conditional

probability, (A1) holds with A instead of 𝛼 iff, for every 𝐹 ∈ F𝑘−1:

❊[✶𝐹✶{𝑋≤A}] ≤ ❊[✶𝐹
𝜀 𝑓

A
] . (8.2.1)
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Indeed we have

❊[✶𝐹✶{𝑋≤A}] =
∑︁

𝑖∈◆
❊[✶𝐹✶{𝑋≤A}✶{A=𝑎𝑖}] =

∑︁

𝑖∈◆
❊[✶𝐹∩{A=𝑎𝑖}✶{𝑋≤𝑎𝑖}]

≤
∑︁

𝑖∈◆
❊[✶𝐹∩{A=𝑎𝑖}

𝜀 𝑓

𝑎𝑖
] =

∑︁

𝑖∈◆
❊[✶𝐹✶{A=𝑎𝑖}

𝜀 𝑓

𝑎𝑖
] = ❊[✶𝐹

𝜀 𝑓

A
]

(8.2.2)

as desired, where we used that 𝐹 ∩ {A = 𝑎𝑖} is measurable w.r.t. F𝑘−1 together with

(A1) for 𝛼 = 𝑎𝑖 in the inequality.

This proves the Lemma for (A1), and an analogous argument holds for (A2). □

8.2.2 Conditional Chebycheff’s inequality

We briefly recall here for completeness the conditional Chebycheff’s inequality,

which will be a key tool to relate our assumptions with other used in previous works.

Thanks to the properties of conditional expectations, this inequality can be proved

in the same way as the standard Chebycheff’s inequality.

Proposition 8.2.2. Given random variables 𝑋, 𝜖 defined on ❘𝑛 with 𝜖 > 0 measur-

able with respect to a sub 𝜎-field F , we have

P( |𝑋 | ≥ 𝜖 | F ) ≤ ❊[|𝑋 | | F ]
𝜖

.

Proof. We have
𝜖P( |𝑋 | ≥ 𝜖 | F ) = 𝜖❊[✶|𝑋 |≥𝜖 | F ]
= ❊[𝜖✶|𝑋 |≥𝜖 | F ] ≤ ❊[|𝑋 | | F ] ,

where we used that 𝜖 is F measurable in the second equality and the monotonicity

of the conditional expectation together with 𝜖✶|𝑋 |≥𝜖 ≤ |𝑋 | in the inequality. □

Remark 8.2.3. Alternative proofs to Lemma 8.2.1 without approximation argu-

ments and to Proposition 8.2.2 can be given using [52, Theorem 3.1.1] in a straight-

forward way (see, e.g., [52, Corollary 3.1.1]).

8.2.3 Comparison with the existing conditions

Our conditions are weaker than the ones imposed in [14]. More precisely, they

are implied by [14, Equation (2)], rewritten in our notation as

❊[|𝐹𝑔
𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) |2 | F𝑘−1] ≤ 𝑘2

𝑓Δ
4

𝑘

❊[|𝐹𝑘 − 𝑓 (𝑥𝑘 ) |2 | F𝑘−1] ≤ 𝑘2

𝑓Δ
4

𝑘 ,
(8.2.3)
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for a constant 𝑘 𝑓 > 0. The 𝑘 𝑓 -variance condition in (8.2.3) is a gradient free

version of [198, Assumption 2.4, (iii)], and more precisely can be obtained from

the latter by removing the gradient related terms in the right hand side. However,

in [198] as well as in other works on smooth stochastic derivative free optimization

(see, e.g., [74,162,215] and references therein), a probabilistically accurate gradient

estimate is also used, while of course such an estimate is not available in a possibly

non-smooth setting.

Proposition 8.2.4. Condition (8.2.3) implies Assumption 8.1 and Assumption 8.2

for 𝜀 𝑓 = 2𝑘 𝑓 and 𝜀𝑞 = 4𝑘2

𝑓
, 𝑝 = 2 respectively, and 𝑞 = 2.

Proof. First, notice that

❊[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |2 | F𝑘−1]
≤ 2(❊[|𝐹𝑔

𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) |2 | F𝑘−1] + ❊[|𝐹𝑘 − 𝑓 (𝑥𝑘 ) |2 | F𝑘−1])

≤ 4𝑘2

𝑓Δ
4

𝑘 ,

(8.2.4)

where we used (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for 𝑎, 𝑏 ∈ ❘ in the first inequality, and (8.2.3)

in the second.

We now prove (A1). In order to do so, we only need a bound on the first moment

❊[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | | F𝑘−1], implied by the bound on the second

moment (8.2.4) thanks to conditional Jensen’s inequality:

❊[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | | F𝑘−1]

≤
√︃
❊[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |2 | F𝑘−1] ≤ 2𝑘 𝑓Δ

2

𝑘 .
(8.2.5)

We can now conclude by noticing

P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ2

𝑘 |F𝑘−1)

≤
❊( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | |F𝑘−1)

𝛼Δ2

𝑘

≤
2𝑘 𝑓

𝛼
,

(8.2.6)

where we used the conditional Chebyshev’s inequality in the first inequality, and

(8.2.5) in the second inequality. In particular, (8.2.3) implies (A1) for 𝜀 𝑓 = 2𝑘 𝑓 .

As for (A2), we have

P[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ2

𝑘 | F𝑘−1]
= P[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |2 ≥ 𝛼2

Δ
4

𝑘 | F𝑘−1]

≤
❊[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |2 | F𝑘−1]

𝛼2Δ4

𝑘

≤
4𝑘2

𝑓

𝛼2
,
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where we used the conditional Chebyshev’s inequality in the first inequality, and (8.2.4)

in the second inequality. By setting 𝜀𝑞 = 4𝑘2

𝑓
in the above equation we obtain

P[|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ2

𝑘 | F𝑘−1] ≤
𝜀𝑞

𝛼2
. (8.2.7)

as desired. □

Remark 8.2.5. In the direct search algorithm proposed in [14] the search direction

at iteration 𝑘 is chosen before the function estimates to be used in the acceptance

test are computed. Thus our analysis can be extended also to that algorithm.

Remark 8.2.6. As a corollary of Proposition 8.2.4, our assumptions can always be

satisfied if the variance of the oracle is finite (see Section 8.2.4 in for details). In

Section 8.2.5 this is proved for finite moment oracles as well.

We now describe the relation between our assumptions and the 𝛽-probabilistically

accurate function estimate assumption

P({|𝐹𝑘 − 𝑓 (𝑥𝑘 ) | ≤ 𝜏 𝑓Δ2

𝑘 } ∩ {|𝐹𝑔
𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) | ≤ 𝜏 𝑓Δ2

𝑘 |} | F𝑘−1) ≥ 𝛽 , (8.2.8)

used in [14, 74, 198] in combination with other assumptions. In particular, con-

ditions (8.2.3) are used in [14] and [198] (as discussed above), and a probabilistic

assumption on the accuracy of random models for the objective is considered in [74].

We show that if (8.2.8) is satisfied for every 𝛽 in a certain interval, with 𝜏 𝑓

depending on an accuracy parameter 𝜀, then also our assumptions are satisfied with

𝜀 𝑓 , 𝜀𝑞 dependent on 𝜀. Note that the parameter 𝜏 𝑓 is upper bounded by a function

of 𝛽, arbitrarily large for 𝛽 close to 1, but the result holds for any positive 𝜏 𝑓 within

the prescribed interval.

Proposition 8.2.7. Let 𝜀 > 0 and 𝑝 ∈ (0, 1). Assume that (8.2.8) holds for every

𝛽 ∈ [1 − 𝑝, 1).

• If 𝜏 𝑓 <
𝜀

2(1−𝛽) , then Assumption 8.1 holds with 𝜀 𝑓 =
𝜀
𝑝

and 𝑞 = 2.

• If 𝜏 𝑓 <
1

2

√︃
𝜀

1−𝛽 , then Assumption 8.2 holds with 𝜀𝑞 =
√︃
𝜀
𝑝

and 𝑝 = 𝑞 = 2.

Proof. First observe that by the triangular inequality

|𝐹𝑘 − 𝑓 (𝑥𝑘 ) | + |𝐹𝑔
𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) | ≥ |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | .
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Let 𝛼 > 𝜀 𝑓 be arbitrary. Then, for any 𝜏 𝑓 <
𝛼
2
,

{|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | < 𝛼Δ2

𝑘 }
⊃ {|𝐹𝑘 − 𝑓 (𝑥𝑘 ) | ≤ 𝜏 𝑓Δ2

𝑘 } ∩ {|𝐹𝑔
𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) | ≤ 𝜏 𝑓Δ2

𝑘 } .
(8.2.9)

Therefore, for 𝛽 = 1 − 𝜀 𝑓
𝛼
𝑝,

P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝛼Δ2

𝑘 |F𝑘−1)
= (1 − P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | < 𝛼Δ2

𝑘 |F𝑘−1))
≤ (1 − P({|𝐹𝑘 − 𝑓 (𝑥𝑘 ) | ≤ 𝜏 𝑓 (𝛽)Δ2

𝑘 } ∩ {|𝐹𝑔
𝑘
− 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) | ≤ 𝜏 𝑓 (𝛽)Δ2

𝑘 } | F𝑘−1))

≤ 1 − 𝛽 =
𝜀 𝑓

𝛼
𝑝 ≤

𝜀 𝑓

𝛼
,

where we were able to apply (8.2.9) in the first inequality since by assumption

𝜏 𝑓 (𝛽) < 𝜀
2(1−𝛽) =

𝛼
2
, and the second inequality follows from (8.2.8). Given that

𝛼 > 𝜀 𝑓 is arbitrary, this proves the first point of the thesis, and an analogous

reasoning holds for the second. □

We now show how the tail bound [162, Condition 2] is stronger than (a slight

modification of) Assumption 8.1 for 𝑞 = 2. We remark that in [162] this tail bound

is combined with a probabilistically accurate difference estimate assumption and

fully linear local model in order to prove convergence. We first recall the tail bound

assumption [162, Condition 2]:

P(𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) > (𝛽𝜂 + 𝜀) min{Δ𝑘 ,Δ2

𝑘 } |F𝑘−1) ≤
𝜃

𝜀
, (8.2.10)

for every 𝜀 > 0, 𝑘 > 𝑘, and some 𝛽, 𝜂, 𝜃 > 0. We now introduce the following

modification of Assumption 8.1 for 𝑞 = 2, essentially equivalent for our purposes:

P(𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) > 𝛼Δ2

𝑘 |F𝑘−1) ≤
𝜀 𝑓

𝛼
, (8.2.11)

for every 𝛼 ≥ 𝜀 𝑓 . It is straightforward to check that all of our results still hold if

we replace (A1) with (8.2.11).

Proposition 8.2.8. If (8.2.10) holds with

𝜃 + 𝛽𝜂 < 𝜀 𝑓 , (8.2.12)

then (8.2.11) holds.
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Proof. First, for every 𝛼 ≥ 𝜀 𝑓 we have

𝜃

𝛼 − 𝜂𝛽 ≤
𝜀 𝑓

𝛼
(8.2.13)

under (8.2.12), since

𝜃

1 − 𝜂𝛽/𝛼 ≤ 𝜃

1 − 𝜂𝛽/𝜀 𝑓
=

𝜀 𝑓 𝜃

𝜀 𝑓 − 𝜂𝛽
≤ 𝜀 𝑓 ,

where we used 𝛼 ≥ 𝜀 𝑓 in the first inequality and (8.2.12) in the last inequality.

Now, for every 𝛼 ≥ 𝜀 𝑓 :

P(𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) > 𝛼Δ2

𝑘 |F𝑘−1)
= P(𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) > (𝜂𝛽 + (𝛼 − 𝜂𝛽))Δ2

𝑘 |F𝑘−1)
≤ P(𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) > (𝜂𝛽 + (𝛼 − 𝜂𝛽)) min{Δ𝑘 ,Δ2

𝑘 } |F𝑘−1)

≤ 𝜃

𝛼 − 𝜂𝛽 ≤
𝜀 𝑓

𝛼
,

(8.2.14)

where we used (8.2.10) with 𝜀 = 𝛼 − 𝑛𝛽 in the first inequality and (8.2.13) in the

last inequality. □

8.2.4 Finite variance oracle

A common assumption in stochastic derivative-free optimization is that the

stochastic oracle is exact in expected value and with bounded variance [162,215]:

𝑓 (𝑥) = ❊𝜉 [𝐹 (𝑥, 𝜉)] ,
Var𝜉 [𝐹 (𝑥, 𝜉)] ≤ 𝑉 < +∞ . (8.2.15)

In other words, the objective is assumed to be the expected value of a random

variable 𝐹 (𝑥, 𝜉) parametrized by 𝑥, with the black-box oracle given by sampling

on the 𝜉 space. The estimate 𝐹𝑘 can then be computed by averaging on 𝑝𝑘 i.i.d.

samples {𝜉𝑘,𝑖}𝑝𝑘𝑖=1
of 𝜀:

𝐹𝑘 =
1

𝑝𝑘

𝑝𝑘∑︁

𝑖=1

𝐹 (𝑥𝑘 , 𝜉𝑘,𝑖) , (8.2.16)

and analogously 𝐹
𝑔

𝑘
can be computed by averaging on 𝑝

𝑔

𝑘
random samples {𝜉𝑔

𝑘,𝑖
}𝑝

𝑔

𝑘

𝑖=1
.

Denoting with ⌈·⌉ the upper integer approximation, we have that ⌈𝑉/(𝑘2

𝑓
Δ4

𝑘
)⌉

samples are enough to satisfy (8.2.3) and therefore in particular our conditions
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for 𝜀 𝑓 = 2𝑘 𝑓 , 𝜀𝑞 = 4𝑘2

𝑓
, and 𝑝 = 𝑞 = 2 thanks to Proposition 8.2.4. Indeed for

𝑝𝑘 ≥ ⌈𝑉/(𝑘2

𝑓
Δ4

𝑘
)⌉ we have

❊[|𝐹𝑘 − 𝑓 (𝑥𝑘 ) |2 | F𝑘−1] =❊


(
1

𝑝𝑘

𝑝𝑘∑︁

𝑖=1

𝐹 (𝑥𝑘 , 𝜉𝑘,𝑖) − 𝑓 (𝑥𝑘 )
)2

| F𝑘−1



=
1

𝑝𝑘
❊

[
1

𝑝𝑘

𝑝𝑘∑︁

𝑖=1

(𝐹 (𝑥𝑘 , 𝜉𝑘,𝑖) − 𝑓 (𝑥𝑘 ))2 | F𝑘−1

]

=
1

𝑝𝑘
Var[𝐹 (𝑥𝑘 , 𝜉)] ≤

𝑉

𝑝𝑘
≤ 𝑘2

𝑓Δ
4

𝑘 ,

where we used the F𝑘−1 measurability of 𝑝𝑘 in the second equality, that {𝜉𝑘,𝑖}𝑝𝑘𝑖=1
are

i.i.d. and also independent of F𝑘−1 in the third equality, and the assumption (8.2.15).

The inequality for 𝐹
𝑔

𝑘
can be proved analogously when 𝑝

𝑔

𝑘
≥ ⌈𝑉/(𝑘2

𝑓
Δ4

𝑘
)⌉.

8.2.5 Finite moment oracle

We now describe the more general case where instead of having finite variance

we have finite 𝑟−th moment for some 𝑟 > 1:

𝑓 (𝑥) = ❊𝜉 [𝐹 (𝑥, 𝜉)] ,
E𝜉 [|𝐹 (𝑥, 𝜉) − 𝑓 (𝑥) |𝑟] ≤ 𝑀𝑟 < +∞ . (8.2.17)

Recall that finite 𝑟−th moment implies finite 𝑟′−th moment for any 𝑟′ ∈ (1, 𝑟]. Thus

for 𝑟 < 2 assumption (8.2.17) is weaker than (8.2.15), while for 𝑟 > 2 (8.2.17) is

stronger than (8.2.15). The next result describes the number of samples needed

asymptotically to satisfy our tail bound conditions as a function of 𝑟, 𝑞.

Theorem 8.2.9. If 𝑟 ∈ (1, 2], then Assumptions 8.1 and 8.2 for 𝑝 = 𝑟 can be

satisfied with

𝑂
(
Δ

min(− 𝑞𝑟

𝑟−1
,− 𝑟+𝑞
𝑟−1

)
𝑘

)
(8.2.18)

samples, while if 𝑟 ∈ [2 + ∞), they can be satisfied with

𝑂

(
Δ

min(−2𝑞,− 2(𝑟+𝑞)
𝑟

)
𝑘

)
(8.2.19)

samples.

We start with a lemma derived from classic results on the convergence rate for

the law of large numbers from [229,230].
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Proof. Let 𝐹𝑘 = 𝐹𝑘 − 𝑓 (𝑥𝑘 ) and 𝐹
𝑔

𝑘
= 𝐹

𝑔

𝑘
− 𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘 ), for 𝐹𝑘 and 𝐹

𝑔

𝑘
average of

𝑝𝑘 samples as in Section 8.2.4.

We start with the case 𝑟 ∈ (1, 2]. By the conditional version of [229, Theorem 2],

we have

❊[|𝑋𝑘 |𝑟 | F𝑘−1] ≤ 2𝑀𝑟 𝑝
1−𝑟
𝑘 (8.2.20)

for 𝑋𝑘 = 𝐹𝑘 , 𝐹
𝑔

𝑘
. Let now 𝑋𝑘 = 𝐹𝑘 − 𝐹𝑔𝑘 . We have

❊[|𝑋𝑘 |𝑟 | F𝑘−1] ≤ 2𝑟−1❊[|𝐹𝑘 |𝑟 + |𝐹𝑔
𝑘
|𝑟 | F𝑘−1] ≤ 2𝑟𝑀𝑟 𝑝

1−𝑟
𝑘 , (8.2.21)

where we used | |𝑎 | + |𝑏 | |𝑟 ≤ 2𝑟−1( |𝑎 |𝑟 + |𝑏 |𝑟) for 𝑎, 𝑏 ∈ ❘ in the first inequality,

and (8.2.20) in the second. Now by Jensen’s inequality

❊[|𝑋𝑘 | | F𝑘−1] ≤ 𝑟
√︁
❊[|𝑋𝑘 |𝑟 | F𝑘−1] ≤ 2

𝑟
√︁
𝑀𝑟 𝑝

1−𝑟
𝑟

𝑘
. (8.2.22)

We can finally obtain our first tail bound:

P( |𝑋𝑘 | ≥ 𝛼Δ𝑞𝑘 | F𝑘−1) =≤
❊[|𝑋𝑘 | | F𝑘−1]

𝛼Δ
𝑞

𝑘

≤ 2
𝑟
√︁
𝑀𝑟

𝑝
1−𝑟
𝑟

𝑘

𝛼Δ
𝑞

𝑘

(8.2.23)

where we used the conditional Chebycheff inequality in the first inequality, and (8.2.22)

in the second inequality. For 𝑝𝑘 = 𝑂 (Δ− 𝑞𝑟

𝑟−1

𝑘
) in particular the RHS of (8.2.23) is

𝑂 (1/𝛼), implying Assumption 8.1 as desired. As for Assumption 8.2, reasoning as

for (8.2.23) and applying (8.2.21) we obtain

P( |𝑋𝑘 | ≥ 𝛼Δ
1+ 𝑞

𝑟

𝑘
| F𝑘−1) = P( |𝑋𝑘 |𝑟 ≥ 𝛼Δ𝑟+𝑞𝑘 | F𝑘−1)

≤ ❊[|𝑋𝑘 |𝑟 | F𝑘−1]
𝛼𝑟Δ

𝑟+𝑞
𝑘

≤ 2𝑟𝑀𝑟

𝑝1−𝑟
𝑘

𝛼𝑟Δ
𝑟+𝑞
𝑘

,
(8.2.24)

where for 𝑝𝑘 = 𝑂 (Δ− 𝑞+𝑟
𝑟−1

𝑘
) the RHS of (8.2.24) is 𝑂 (1/𝛼𝑟) and Assumption 8.2 follows.

In the case 𝑟 ∈ (2, +∞), by the conditional version of the first moment bound

in [230, Section 5], we have

❊[|𝑋𝑘 |𝑟 | F𝑘−1] ≤ 𝐾𝑝
− 𝑟

2

𝑘
(8.2.25)

for some constant 𝐾 dependent from the distribution of the error, and for 𝑋𝑘 =

𝐹𝑘 , 𝐹
𝑔

𝑘
. Then reasoning as for the case 𝑟 ∈ (1, 2], we obtain, analogously to (8.2.23):

P( |𝑋𝑘 | ≥ 𝛼Δ𝑞𝑘 | F𝑘−1) ≤
❊[|𝑋𝑘 | | F𝑘−1]

𝛼Δ
𝑞

𝑘

≤
𝑟
√︁
❊[|𝑋𝑘 |𝑟 | F𝑘−1]

𝛼Δ
𝑞

𝑘

≤
𝑟
√
𝐾𝑝

− 1

2

𝑘

𝛼Δ
𝑞

𝑘

,

(8.2.26)
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so that in particular for 𝑝𝑘 = 𝑂 (Δ−2𝑞

𝑘
) we retrieve Assumption 8.1. We then obtain,

analogously to (8.2.24):

P( |𝑋𝑘 | ≥ 𝛼Δ
1+ 𝑞

𝑟

𝑘
| F𝑘−1) = P( |𝑋𝑘 |𝑟 ≥ 𝛼𝑟Δ𝑟+𝑞𝑘 | F𝑘−1)

≤ ❊[|𝑋𝑘 |𝑟 | F𝑘−1]
𝛼𝑟Δ

𝑟+𝑞
𝑘

≤
𝐾𝑝

− 𝑟
2

𝑘

𝛼𝑟Δ
𝑟+𝑞
𝑘

.
(8.2.27)

so that in particular for 𝑝𝑘 = 𝑂 (Δ
−2(𝑟+𝑞)

𝑟

𝑘
) we retrieve Assumption 8.2. The result

then follows immediately taking the worst case of the bounds proved above for

𝑝𝑘 . □

Remark 8.2.10. Let 𝜀 > 0. Applying (8.2.19) with 𝑟𝜀 = max(2, 2𝑞

𝜀
) and 𝑞𝜀 = 1 + 𝜀

2

we can conclude that 𝑂 (Δ−2−𝜀
𝑘

) samples are sufficient to satisfy assumptions 8.1 and

8.2 for 𝑝 = 𝑟𝜀 and 𝑞 = 𝑞𝜀, under the finite moment assumption (8.2.17) for 𝑟 = 𝑟𝜀.

8.3 Direct search for stochastic non-smooth func-

tions

In this section, we first describe a simple stochastic direct search algorithm for

the unconstrained minimization problem given in (8.1.1), where 𝑓 is possibly non-

smooth, and then analyze its convergence.

8.3.1 A simple stochastic direct search scheme

A detailed description of our stochastic direct search method is given in Al-

gorithm 18. At each iteration, we generate a direction 𝑔𝑘 in the unitary sphere

(independently of the estimates of the objective function generated so far; see Step

3), and perform a step along the direction 𝑔𝑘 with stepsize 𝛿𝑘 . Then, at Step 4,

we compute the estimate values 𝑓
𝑔

𝑘
and 𝑓𝑘 of the function at the resulting trial

point 𝑥𝑘 + 𝛿𝑘𝑔𝑘 and also at 𝑥𝑘 . We then accept or reject the trial point based on a

sufficient decrease condition, imposing that the improvement on the objective esti-

mate at the trial point is at least 𝜃𝛿
𝑞

𝑘
. If the sufficient decrease condition is satisfied,

we have a successful iteration. We hence update our iterate 𝑥𝑘+1 by setting it equal

to the trial point and expand or keep the same stepsize at Step 5. Otherwise, the

iteration is unsuccessful, so we do not move (i.e., 𝑥𝑘+1 = 𝑥𝑘) and shrink the stepsize

(see Step 6).
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Algorithm 18 Stochastic direct search

0: 1 Initialization. Choose a point 𝑥0, Δ0, 𝜃 > 0, 𝜏 ∈ (0, 1), 𝜏 ∈ [1, 1 + 𝜏], 𝑞 > 1.

0: 2 For 𝑘 = 0, 1 . . .

0: 3 Select a direction 𝑔𝑘 in the unitary sphere.

0: 4 Compute estimates 𝑓𝑘 and 𝑓
𝑔

𝑘
for 𝑓 in 𝑥𝑘 and 𝑥𝑘 + 𝛿𝑘𝑔𝑘 .

0: 5 If 𝑓𝑘 − 𝑓 𝑔𝑘 ≥ 𝜃𝛿𝑞
𝑘
, Then set SUCCESS = true, 𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑘𝑔𝑘 , Δ𝑘+1 = 𝜏𝛿𝑘 .

0: 6 Else set SUCCESS = false, 𝑥𝑘+1 = 𝑥𝑘 , Δ𝑘+1 = (1 − 𝜏)𝛿𝑘 .
0: 7 End if

0: 8 End for

In order for the method to convergence to Clarke stationary points, the sequence

{𝑔𝑘 } must be dense in the unit sphere on certain subsequences (see Theorem 8.3.3).

We remark that a dense sequence on the unit sphere can be generated using a

suitable quasirandom sequence (see, e.g., [121,172]).

8.3.2 Convergence analysis under the tail-bound probabilis-

tic condition

The following theorem, which implies that the stepsize sequence {Δ𝑘 } converges

to zero almost surely, is a key result in the convergence analysis. By taking a look

at the proof, we can see how the use of the tail-bound probabilistic condition (A1)

allows us to give a unified argument for unsuccessful and successful steps.

We define now for convenience the positive constants 𝜏+𝑞 = (1+𝜏)𝑞−1, 𝜏−𝑞 = 1−(1−𝜏)𝑞,
and 𝜏(Δ)𝑞 = 𝜏+𝑞 + 𝜏−𝑞 . To obtain our result we need the following lower bound on the

parameter 𝜃 defining the sufficient decrease condition, dependent on the stepsize

update parameter 𝜏 and the tail bound parameter 𝜀 𝑓 :

𝜃 >
𝜀 𝑓 𝜏

(Δ)
𝑞

𝜏−𝑞
. (8.3.1)

Notice that since 𝜏 ∈ (0, 1) we must always have 𝜃 > 0. The bound (8.3.1) allows

us to relate stepsize expansions to improvements of the objective.

Theorem 8.3.1. Under Assumption 8.1, if (8.3.1) holds then
∑︁

𝑘∈◆0

❊[Δ𝑞
𝑘
] < ∞ (8.3.2)
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a.s. in Ω.

Proof. Let Φ𝑘 = 𝑓 (𝑥𝑘 ) − 𝑓 ∗ + 𝜂Δ𝑞
𝑘
, with 𝜂 =

𝜃

𝜏
(Δ)
𝑞

, and

𝜀 = −𝜀 𝑓 +
𝜏−𝑞 𝜃

𝜏
(Δ)
𝑞

> 0 ,

where the inequality follows by (8.3.1).

We will prove, for every 𝑘 ≥ 0, that

❊[Φ𝑘 −Φ𝑘+1 | F𝑘−1] ≥ 𝜀Δ𝑞𝑘 . (8.3.3)

The thesis then follows as in [14, Theorem 1] (or directly by Robbins-Siegmund

theorem [210]).

It remains to prove (8.3.3). Let 𝜌𝑘 be the random variable such that 𝑓 (𝑥𝑘 ) −
𝑓 (𝑥𝑘 +Δ𝑘𝐺𝑘 ) = (𝜃 − 𝜌𝑘 )Δ𝑞𝑘 , and let 𝐽𝑘 be the event that the step 𝑘 is successful. We

have

❊[(Φ𝑘 −Φ𝑘+1) |F𝑘−1] = ❊[(Φ𝑘 −Φ𝑘+1) (✶𝐽𝑘 + (1 − ✶𝐽𝑘 )) |F𝑘−1]
= ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) + 𝜂(Δ𝑞𝑘 − Δ

𝑞

𝑘+1
))❊[✶𝐽𝑘 |F𝑘−1]

+ ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘+1) + 𝜂(Δ𝑞𝑘 − Δ
𝑞

𝑘+1
))❊[ 1 − ✶𝐽𝑘 |F𝑘−1]

= ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) + 𝜂(Δ𝑞𝑘 − Δ
𝑞

𝑘+1
))❊[✶𝐽𝑘 |F𝑘−1]

+ 𝜂(Δ𝑞
𝑘
− Δ

𝑞

𝑘+1
)❊[1 − ✶𝐽𝑘 |F𝑘−1]

≥ (((𝜃 − 𝜌𝑘 ) − 𝜂𝜏+𝑞 )❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 ❊[1 − ✶𝐽𝑘 |F𝑘−1])Δ𝑞𝑘 ,

(8.3.4)

where we used 𝑥𝑘 = 𝑥𝑘+1 for unsuccessful steps in the second equality, and Δ𝑘+1 =

𝜏Δ𝑘 ≤ (1 + 𝜏)Δ𝑘 for successful steps in the inequality. In turn,

(((𝜃 − 𝜌𝑘 ) − 𝜂𝜏+𝑞 )❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 ❊[1 − ✶𝐽𝑘 |F𝑘−1])Δ𝑞𝑘
= ((𝜃 − 𝜌𝑘 − 𝜂𝜏(Δ)𝑞 )❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 )Δ

𝑞

𝑘

= −𝜌𝑘Δ𝑞𝑘❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 Δ
𝑞

𝑘
,

(8.3.5)

where we used ❊[1 − ✶𝐽𝑘 |F𝑘−1] = 1 − ❊[✶𝐽𝑘 |F𝑘−1] in the first equality, and 𝜃 = 𝜂𝜏(Δ)𝑞

in the second one. By combining (8.3.4) and (8.3.5) we can therefore conclude

❊[(Φ𝑘 −Φ𝑘+1) |F𝑘−1] ≥ −𝜌𝑘Δ𝑞𝑘❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 Δ
𝑞

𝑘
. (8.3.6)

Notice that if the step is successful then 𝑓𝑘 − 𝑓
𝑔

𝑘
≥ 𝜃Δ𝑞

𝑘
, which implies

𝑓𝑘 − 𝑓
𝑔

𝑘
− ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) ≥ 𝜃Δ𝑞𝑘 − (𝜃 − 𝜌𝑘 )Δ𝑞𝑘 = 𝜌𝑘Δ

𝑞

𝑘
.
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In particular

𝐽𝑘 ⊂ {|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝜌𝑘Δ
𝑞

𝑘
} ,

and we can write

❊[✶𝐽𝑘 |F𝑘−1] = P(𝐽𝑘 |F𝑘−1) ≤ P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝜌𝑘Δ
𝑞

𝑘
|F𝑘−1) .

(8.3.7)

We now have

−𝜌𝑘❊[✶𝐽𝑘 |F𝑘−1] ≥ −𝜌𝑘P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥ 𝜌𝑘Δ
𝑞

𝑘
|F𝑘−1) ≥ −𝜀 𝑓 ,

(8.3.8)

where we applied (8.3.7) in the first inequality, the last inequality is a direct conse-

quence of (A1) for 𝛼 = 𝜌𝑘 . Hence,

−𝜌𝑘Δ𝑞𝑘❊[✶𝐽𝑘 |F𝑘−1] + 𝜂𝜏−𝑞 Δ
𝑞

𝑘
≥ (−𝜀 𝑓 + 𝜂𝜏−𝑞 )Δ

𝑞

𝑘
= 𝜀Δ

𝑞

𝑘
, (8.3.9)

where we used (8.3.8) in the inequality.

Claim (8.3.3) can finally be obtained by concatenating (8.3.6) and (8.3.9). □

The lemma we now state will be useful for the proof of the optimality result

of Theorem 8.3.3 which is based on the Clarke generalized directional derivative.

We notice that Assumption 8.2 plays a key role in this result, allowing us to upper

bound the error of the reduction estimate by a quantity that depends on the stepsize

Δ𝑘 .

Lemma 8.3.2. Let 𝐾 be the set of indices of unsuccessful iterations (notice that 𝐾

is random). Then under Assumptions 8.1–8.2 and (8.3.1) we have a.s. in Ω

lim inf
𝑘∈𝐾, 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ 0 . (8.3.10)

Proof. Clearly it suffices to show that, for any given 𝑚 ∈ ◆ and a.s.,

lim inf
𝑘∈𝐾, 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ − 1

𝑚
. (8.3.11)

To start with, by applying (A2) with 𝛼 =
Δ
− 𝑞𝑝
𝑘

𝑚
we have

P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥
Δ𝑘

𝑚
| F𝑘−1) ≤ 𝑚𝑝

Δ
𝑞

𝑘
𝜀𝑞 .
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and therefore taking expectations on both sides

P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥
Δ𝑘

𝑚
) ≤ 𝑚𝑝❊[Δ𝑞

𝑘
]𝜀𝑞 . (8.3.12)

We can now deduce

∑︁

𝑘∈◆0

P( |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥
Δ𝑘

𝑚
) ≤

∑︁

𝑘∈◆0

𝑚𝑝❊[Δ𝑞
𝑘
]𝜀𝑞 < ∞ , (8.3.13)

where we applied Theorem 8.3.1 in the last inequality. In particular, by the Borel-

Cantelli’s First Lemma

P

({
|𝐹𝑘 − 𝑓

𝑔

𝑘
− ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≥

Δ𝑘

𝑚

}
i.o.

)
= 0 ,

where “i.o.” stands for infinitely often. Hence, we have a.s.

|𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) | ≤
Δ𝑘

𝑚
for 𝑘 large enough. (8.3.14)

From this we can infer that a.s., for every 𝑘 ∈ 𝐾 large enough

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥
𝐹
𝑔

𝑘
− 𝐹𝑘 − |𝐹𝑘 − 𝐹𝑔𝑘 − ( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )) |

Δ𝑘

≥ −𝜃Δ𝑘 −
1

𝑚
,

(8.3.15)

where we used (8.3.14) combined with the unsuccessful step condition of Algo-

rithm 18 in the second inequality. Finally, (8.3.11) follows passing to the liminf for

𝑘 → ∞ in (8.3.15). □

We now report the main convergence result for our stochastic direct search

scheme.

Theorem 8.3.3. Assume that 𝑓 is Lipschitz continuous with constant 𝐿∗
𝑓

around

any limit point of the sequence of iterates {𝑥𝑘 }. Let 𝐾 be the set of indices of

unsuccessful iterations. Under Assumptions 8.1–8.2, the following property holds

a.s. in Ω: if 𝐿 ⊂ 𝐾 (notice that 𝐿, 𝐾 are random) is such that {𝐺𝑘 }𝑘∈𝐿 is dense in

the unit sphere and

lim
𝑘∈𝐿, 𝑘→∞

𝑥𝑘 = 𝑥
∗ ,

then the point 𝑥∗ is Clarke stationary.
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Proof. Let 𝑑 be a direction in the unitary sphere, and for 𝑤 ∈ Ω let 𝑆(𝑤) ⊂ 𝐿 (𝑤)
be such that

lim
𝑘∈𝑆(𝑤), 𝑘→∞

𝐺𝑘 = 𝑑 .

By definition of Clarke stationarity, we just need to prove that a.s. (for an event

independent of 𝑑)

lim sup
𝑘∈𝑆(𝑤), 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝑑) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ 0 .

Then on 𝑉 ′ we can write

lim sup
𝑘∈𝑆(𝑤), 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ lim inf
𝑘∈𝐾 (𝑤), 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ 0,

(8.3.16)

where the last inequality follows by (8.3.10).

Now using the Lipschitz property of 𝑓 we can write, for 𝑘 ∈ 𝑆(𝑤) large enough,

𝑓 (𝑥𝑘 + Δ𝑘𝑑) − 𝑓 (𝑥𝑘 )
Δ𝑘

=
𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )

Δ𝑘
+ 𝑓 (𝑥𝑘 + Δ𝑘𝑑) − 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 )

Δ𝑘

≥ 𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

− 𝐿∗𝑓 ∥𝐺𝑘 − 𝑑∥.

Passing to the limsup for 𝑘 ∈ 𝑆(𝑤) ⊂ 𝐿 (𝑤) we get

lim sup
𝑘∈𝑆(𝑤), 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝑑) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ lim sup
𝑘∈𝑆(𝑤), 𝑘→∞

𝑓 (𝑥𝑘 + Δ𝑘𝐺𝑘 ) − 𝑓 (𝑥𝑘 )
Δ𝑘

≥ 0 ,

for every 𝑤 ∈ 𝑉 ′, where we used ∥𝐺𝑘 −𝑑∥ → 0 by construction in the first inequality

and (8.3.16) in the second. □



Chapter 9

Conclusion

In this thesis, several convergence results were given for first order projection

free and direct search methods. A recurring theme was the use of relatively "cheap"

local search directions relaxing some properties of the (projected) negative gradient

and still achieving comparable convergence results. For instance, in Chapter 3 a

framework to obtain linear convergence for constrained smooth optimization prob-

lems using directions satisfying the angle condition (3.3.2) was employed to improve

several FW variants. In Chapters 4 and 5 it was proved that using the FW direction

combined with away or in face steps one can obtain local identification properties

analogous to those of the projected gradient method. In Chapter 7 qualitative

convergence results on Riemannian manifolds were given for methods applying re-

tractions to tentative descent directions chosen from a poll set with positive cosine

measure on the tangent space of the current iterate. Finally, the direct search

method in Chapter 8 allows the directions to be taken uniformly at random in the

unit sphere, while still showing convergence properties to Clarke stationary points

for stochastic objectives.

We now discuss some possible future works. First, concerning the framework intro-

duced in Chapter 3 for projection free optimization, a possible extension consists in

its adaptation to problems on product domains, i.e. of the form

min
𝑥∈Ω(1)×...×Ω(𝑚)

𝑓 (𝑥) . (9.0.1)

As explained in Section 2.8, a block coordinate version of the classic FW method

for problem (9.0.1) was given in [158]. With respect to that work, an adaptation

of our framework to problem (9.0.1) would also cover FW variants, and different

block selection strategies from the randomized one like parallel and Gauss-Southwell

block selection (see, e.g., [195]). The main idea here is that by applying the SSC

195



196 Conclusion

separately to each of the blocks one can retrieve descent properties analogous to

those proved in the single block case in Chapter 3. For instance, for the parallel

update

𝑥
(𝑖)
𝑘+1

= SSC(𝑥 (𝑖)
𝑘
,−∇ 𝑓 (𝑥𝑘 ) (𝑖)) for 𝑖 ∈ [1 : 𝑚] (9.0.2)

it is possible to prove a property analogous to (3.4.7), that is

∥𝑥𝑘+1 − 𝑥𝑘 ∥2 ≥ 𝜏2

2(1 + 𝜏2)𝐿2
∥𝜋(𝑇Ω(𝑥𝑘 ),−∇ 𝑓 (𝑥𝑘 ))∥2 , (9.0.3)

for a suitably chosen 𝑥𝑘 .

For direct search methods, a possible future work consists in combining the method

analyzed in Chapter 8 with the nonmonotone linesearch technique. This technique,

introduced in [114] for Newton’s method and analyzed in [248] for gradient descent,

consists in considering an upper bound 𝐸𝑘 on 𝑓 (𝑥𝑘 ) instead of 𝑓 (𝑥𝑘 ) itself in suffi-

cient decrease conditions, thus enabling more aggressive exploration strategies. It

has been extended to direct search methods in the recent work [173], but only for

deterministic objectives. A promising approach for the stochastic case appears to

be considering 𝐸𝑘 as an exponential moving average of the past function estimates,

adapting an idea introduced in [248] for deterministic gradient descent. One impor-

tant obstacle is that in the stochastic case we cannot ensure that 𝐸𝑘 is an upper

bound on 𝑓 (𝑥𝑘 ). A possible solution is to prove instead

P(𝐸𝑘 − 𝑓 (𝑥𝑘 ) ≤ −𝛼Δ2

𝑘 | F𝑘−1) ≤
𝜀𝐸

𝛼2
(9.0.4)

for every 𝛼 > 0 and some 𝜀𝐸 > 0, that is a tail bound condition along the lines of

those introduced in Chapter 8.

Another possible development concerning the tail bound conditions 8.1 and 8.2 is

their extensions to model based derivative free optimization methods. A suitable

setting for such an extension appears to be the trust region method proposed in [172].

The sufficient decrease condition 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 + 𝑠𝑘 ) ≥ 𝜂1𝜃∥𝑠𝑘 ∥𝑞 used in [172], with 𝑠𝑘
solution of the trust region subproblem and 𝜂1 > 0 constant, can be easily extended

to the stochastic setting using function estimates 𝑓𝑘 and 𝑓 𝑠
𝑘

in place of exact function

values. Then 8.1 and 8.2 can be adapted by using ∥𝑠𝑘 ∥ and �̂�𝑘 in place of Δ𝑘 and

𝑔𝑘 respectively. However, it is still unclear to the authors if these conditions can be

extended, beside to the function estimates used in the sufficient decrease condition,

to the trust region model itself.

Other future works include the extension of the methods studied in Chapters 3, 4

and 7 to the stochastic case, as well as more numerical tests on real world data

science problems.
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