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Individualized Models for Glucose Prediction in
Type 1 Diabetes: comparing black-box

approaches to a physiological white-box one
Giacomo Cappon*, Francesco Prendin*, Andrea Facchinetti, Giovanni Sparacino, Simone Del Favero

Abstract— Objective: Accurate blood glucose (BG) pre-
diction are key in next-generation tools for type 1 diabetes
(T1D) management, such as improved decision support
systems and advanced closed-loop control. Glucose pre-
diction algorithms commonly rely on black-box models.
Large physiological models, successfully adopted for sim-
ulation, were little explored for glucose prediction, mostly
because their parameters are hard to individualize. In this
work, we develop a BG prediction algorithm based on a per-
sonalized physiological model inspired by the UVA/Padova
T1D Simulator. Then we compare white-box and advanced
black-box personalized prediction techniques.

Methods: A personalized nonlinear physiological model
is identified from patient data through a Bayesian approach
based on Markov Chain Monte Carlo technique. The in-
dividualized model was integrated within a particle filter
(PF) to predict future BG concentrations. The black-box
methodologies considered are non-parametric models es-
timated via gaussian regression (NP), three deep learning
methods: long-short-term-memory (LSTM), gated recurrent
unit (GRU), temporal convolutional networks (TCN), and
a recursive autoregressive with exogenous input model
(rARX). BG forecasting performances are assessed for sev-
eral prediction horizons (PH) on 12 individuals with T1D,
monitored in free-living conditions under open-loop ther-
apy for 10 weeks.

Results: NP models provide the most effective BG pre-
dictions by achieving a root mean square error (RMSE),
RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE =
31.60 mg/dL, significantly outperforming: LSTM, GRU (for
PH=30 minutes), TCN, rARX, and the proposed physiologi-
cal model for PH=30, 45 and 60 minutes.

Conclusions: Black-box strategies remain preferable for
glucose prediction even when compared to a white-box
model with sound physiological structure and individual-
ized parameters.
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I. INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease
caused by the progressive destruction of beta cells in the
pancreas, which leads to the inability of producing endogenous
insulin by the organism, [1]. As a result, blood glucose con-
centration (BG) tends to exceed the hyperglycemic threshold
(BG > 180 mg/dL), a situation that, if frequent and prolonged,
could lead to several serious cardiovascular long-term compli-
cations, as well as nephropathy and neuropathy, [2]. To reduce
BG levels, administration of exogenous insulin several times a
day is necessary. Unfortunately, excessive exogenous insulin
dosing could lead patients to hypoglycemia, i.e., BG < 70
mg/dL, which is dangerous even in the short-term since it
could cause fainting, light-headiness, coma and even death,
[3].

Effective T1D treatment relies on BG frequent monitoring,
made through either the classic fingerstick device, [4], or more
modern minimally invasive continuous glucose monitoring
(CGM) sensors, [5]–[7], and is far from being trivial, [8].
Indeed, T1D management represents, from a patient perspec-
tive, a life-long learning process to understand how several
everyday factors (e.g., illness, diet, and physical activity) affect
BG levels and how interventions (e.g., rescue carbohydrate
intake and, of course, insulin administration) can be used to
keep BG in the safe range. In this context, many efforts have
been made by the research community to provide new tools
able to help patients with T1D, [9], [10]. Among them, CGM-
based algorithms able to predict future BG concentration in
real-time have the potential to significantly improve T1D ther-
apy efficacy, [11], by enabling proactive therapeutic decisions
based on the expected future glucose levels, rather than the
current one.

Despite several different methodologies have been proposed
for real-time BG prediction, [11], the problem remains open
due to several unknown disturbances altering BG levels and to
the high inter-/intra-patient variability in glucose physiology.
The existing prediction techniques rely on a mathematical
model which describes the relationship between a certain set
of input features and BG. The choice of a suitable model of
glucose-insulin regulation is a critical step and the options
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spans from “black-box” models, completely data-driven, to
models based on mechanistic/semi-mechanistic nonlinear de-
scription of metabolic physiology.

A rich literature has focused on the first option, [11], [12],
exploring a broad spectrum of black-box approaches that
ranges from linear techniques (auto-regressive, auto-regressive
moving average, etc.), typically used in time-series analysis,
[13], [14], and system identification, [15]–[17], to the nonlin-
ear approaches commonly adopted in machine learning (sup-
port vector regression, random forests, gaussian process, feed
forward neural networks, autoregressive networks, etc.), [18]–
[20], and including the powerful deep learning techniques,
[21]–[23].

Among the white-box models, the nonlinear physiological
models available in the T1D literature, there are the so-called
minimal models, [24], that proposed simplified descriptions
of the physiology with a few equations and model parame-
ters. This parsimonious parametrization grants identifiability
in pre-defined experimental conditions. Unfortunately, these
models have proved too rigid and simplistic to allow accurate
prediction, [11]. A possible white-box alternative are maximal
models, commonly used in computer simulations, [25]–[28].
They provide a more realistic physiological description by
using several equations with many parameters. Despite their
appealing feature of having a clear and solid physiological
ground, their use for glucose prediction were substantially
less investigated, since their many parameters are hard to be
estimated form easily accessible patient data (i.e. CGM, meal
and insulin data), making them hard to personalize and thus
limiting their predictive effectiveness. Moreover, they have
a nonlinear structure, requiring sophisticated tools both for
parameters estimation and for the computation of glucose
prediction.

In this work, we face the above mentioned challenges
and explore the potential of using a white-box maximal-
model based methodology for glucose prediction, comparing
it to black-box alternatives. The white-box model adopted is
inspired by the UVA/Padova T1D Simulator, [28], accepted by
the US Food and Drug Administration (FDA) as a replacement
of animal preclinical testing of closed-loop drug delivery
systems. A Bayesian approach, implemented by Markov Chain
Monte Carlo (MCMC), [29], is used to estimate the large
number of parameters in the presence of complex nonlinear
dynamics. The obtained personalized model is then used
within a nonlinear prediction scheme based on a particle filter
methodology, [30].

The so derived white-box glucose prediction approach is
compared to four black-box algorithms: a nonparametric tech-
niques that recently proved effective in glucose prediction,
[17], three deep learning algorithms (long short term memory
(LSTM), gated recurrent unit (GRU), temporal convolutional
network (TCN)), and a recursive autoregressive with exoge-
nous input (rARX) model. Algorithms’ assessment has been
performed for different prediction horizon (PH) on a dataset
which comprises 12 subjects monitored for about 10 weeks in
daily-life conditions.

The paper is organized as follows. Section II describes the
nonlinear physiological model of glucose-insulin regulation

used for BG prediction. Section III describes the black-box
methodologies considered for this work. Section IV illustrates
the dataset and the evaluation metrics. Section V reports the
results and discussion. Finally, Section VI summarizes the
main findings, draws some conclusions and proposes possible
future developments.

II. WHITE-BOX GLUCOSE PREDICTION MODEL

In this work we explored the use of a white-box maximal
models for glucose prediction. The approach is based on
two components: i) a nonlinear model of glucose-insulin
regulation, which is personalized to capture patient-specific
physiology using a Bayesian methodology, and ii) a particle
filter that leverages on such model and, handling the non-
linearity, allows to formulate glucose predictions.

In the following, Section II.A describes the structure of
the physiological model, Section II.B discusses the model
identification procedure, and Section II.C reports details on
the employed prediction scheme.

A. Physiological Model of Glucose-Insulin Regulation

The physiological model of glucose-insulin regulation used
in this work has two inputs, insulin infusion I(t), and car-
bohydrate intake CHO(t), and one output, the interstitial
glucose concentration IG(t). The model is composed of three
subsystems describing subcutaneous insulin absorption, oral
glucose absorption, and glucose-insulin kinetics. As for a
preliminary version of the model presented in [31], we started
from the maximal physiological model implemented in the
UVA/Padova T1D Simulator (T1DS), [32], and to simplify it
as much as possible to reduce the number of parameters to
be estimated for individualization while retaining its ability
to achieve good glucose prediction. The details about model
structure and its parameters can be found in Appendix I.
The overall physiological model is a nonlinear time-invariant
state-space model:{

ẋxxphy(t) = f phy(xxxphy,uuuphy, t,θ phy)

y(t) = IG(t)
(1)

where xxxphy(t) is the state vector, defined as

xxxphy(t) := [xins, | xoral , | xglu]
T

where xins is the state vector of the subcutaneous insulin
absorption subsystem, xoral is the state vector of the oral
glucose absorption subsystem, and xglu is the state vector of
the glucose-insulin kinetics subsystem;

uuuphy(t) := [I(t),CHO(t)]

is the input vector; f phy(·) is the state update function obtained
combining (6) (7), and (9); θ phy is the set of unknown model
parameters (formally defined in Appendix I) whose estimation
will be discussed in the next section.
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B. Offline Bayesian Estimation of Personalized Model
Parameters by Markov Chain Monte Carlo

Model personalization has been performed by identifying
for each patient the unknown model parameters θ phy using
the training data Y := {CGM(tk), tk = k ·Ts,k = 1, . . . ,D} and
U := {uphy(tk), tk = k ·Ts,k = 1, . . . ,D} where D is the number
of data points available.

The identification has been performed by adopting a
Bayesian approach and specifically, in this work θ phy is
estimated through its posterior mean defined as

θ̂ phy = E[θ phy|Y,U ] =
∫

θ pθ |Y,U (θ |Y,U)dθ (2)

In fact the posterior mean is known to be the minimum
variance unbiased estimator of θ phy.

The Bayes theorem allows to obtain the a posteriori density
function pθ |Y,U (θ |Y,U) as:

pθ |Y,U (θ |Y,U) =
pY |θ ,U (Y |θ ,U)pθ (θ)∫
pY |θ ,U (Y |θ ,U)pθ (θ)dθ

(3)

where pY |θ ,U (Y |θ ,U) is the likelihood function, i.e., the prob-
ability of observing a certain Y given the parameter vector θ

and the input U .
Even using (3), the integral in (2) is analytically intractable,

therefore it has to be approximated by resorting to MCMC
[29]. In particular, we generate N samples θ i, i = 1, . . . ,N
from the posterior distribution pθ |Y,U (θ |Y,U), by creating a
Markov Chain whose stationary distribution is exactly this
posterior (target distribution). Then, these samples θ i are used
to perform Monte Carlo integration to obtain a point estimate
of θ phy:

θ̂ phy =
1
N

N

∑
i

θ i. (4)

To build such a chain, the Single Component Metropolis-
Hastings (SCMH) algorithm has been used [29]. Implementa-
tive details about the implemented SCMH procedure can be
found in Appendix II. An open-source software implementa-
tion of the proposed offline Bayesian estimation approach can
be found at https://github.com/gcappon/replay-bg.

C. Real-time Glucose Prediction through Particle Filter

Up to this point, we focused on estimating the parameters
of the physiological model of a T1D subject, to capture the
patient-specific dynamics. This process can be done ”offline”
using the available information obtained from retrospective
patient data.

As mentioned above, in this section, we will present how
we used such a personalized model to predict, in real-time,
future glucose concentrations. This task has to be performed
“online”, so we resorted to a sequential algorithm that at
each timestep tk, when a new measurement y(tk) = CGM(tk)
becomes available, updates the current estimate of the model
state x(tk) and uses it to infer future glucose concentration. In
particular, we employ the particle filter (PF), [30], the state-
of-the-art sequential Bayesian prediction technique capable of
handling the nonlinear structure of the model.

PF is based on the recursive update of the posterior
probability function p(x(tk)|y(t1:k),u(t1:k)) where y(t1:k) is a
shorthand for the variables y(t1), . . . ,y(tk) and u(t1:k) indicates
u(t1), . . . ,u(tk).

The recursive update of p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is
performed through two fundamental steps, i.e., one step-ahead
prediction and measurement update.

The one step-ahead prediction step assumes that the pos-
terior probability p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is available at
time tk−1 and uses such a posterior probability to infer

p(x(tk)|y(t1:k−1),u(t1:k))

Then, when at time tk a new measurement, y(tk), becomes
available, in the measurement update step such a measurement
is used to compute the posterior probability

p(x(tk)|y(t1:k),u(t1:k)).

The two steps are then repeated for each available
measurement in the dataset.

PF performs these steps using a sampled approximation of
the probability functions at play:

p(x(tk−1)|y(t1:k−1),u(t1:k−1))≈
P

∑
p=1

wp(tk−1)δ (x(tk−1)− xp(tk−1)).

where {xp(tk−1)}P
p=1 is a set of P points, called ”particles”,

in the support of p(x(tk−1)|y(t1:k−1),u(t1:k−1)). Each particle
is associated to a weight {wp(tk−1)}P

p=1,∑p wp(tk−1) = 1, and

p(x(tk)|y(t1:k−1),u(t1:k))≈
P

∑
p=1

w∗p(tk)δ (x(tk)− xp(tk)).

where {xp(tk)}P
p=1 are the P particles representing

p(x(tk)|y(t1:k−1),u(t1:k)), each associated to a weight
{w∗p(tk)}P

p=1,∑p w∗p(tk) = 1.
The one step-ahead prediction step of the PF is particularly

convenient. It can be shown that

p(x(tk)|y(t1:k−1),u(t1:k)) =∫
p(x(tk)|x(tk−1))p(x(tk−1)|y(t1:k−1),u(t1:k−1))dx(tk−1)

where p(x(tk)|x(tk−1)) is fully described by the state update
equations of (1).

Regarding the measurement update step, it is possible to
demonstrate that it holds

p(x(tk)|y(t1:k),u(t1:k)) ∝

p(y(tk)|x(tk),u(t1:k))p(x(tk)|y(t1:k−1),u(t1:k))

where p(y(tk)|x(tk),u(t1:k)) is the likelihood function that is
fully specified by (1).

Details on how these quantities are calculated in practice
are reported in Appendix III.
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As an additional result, the posterior probability
p(x(tk)|y(t1:k),u(t1:k)) is furtherly used by the PF to
compute the posterior probabilities

p(x(tk+i)|y(t1:k),u(t1:k+i)),∀i = 1, . . . ,PH

describing the state distribution predicted i steps-ahead in time
up to PH steps ahead (with PH the prediction horizon).

In particular, it is possible show that:

p(y(tk+i)|y(t1:k),u(t1:k+i)) =

p(y(tk+i)|x(tk+i)),∀i = 1, . . . ,PH

that is completely specified by equation (1).
Finally, a point estimate of future CGM values at time tk+i, i =
1, . . . ,PH can be derived using the expectation of the posterior:

ŷ(tk+i|tk) = E[p(y(tk+i)|x(tk+i))],∀i = 1, . . . ,PH.

An open-source software implementation of the proposed
real-time glucose prediction approach based on PF can be
found at https://github.com/checoisback/phy-predict.

III. BLACK-BOX GLUCOSE PREDICTION MODELS

A. Linear Non-parametric Models
Although the metabolic physiology is nonlinear, several

contributions have shown that its approximation with linear
models is an appealing option for BG prediction, [17], [33].
For this reason, our analysis considered the use of an advanced
nonparametric (NP) identification techniques for linear mod-
els, [34]. In particular, this approach estimates the unknown
impulse response related to insulin, meal and glucose, from
noisy measurements. Unlike the standard approach that con-
straints the unknown functions to a parametric structure, [35],
the nonparametric approach estimates the unknown impulse
responses over a infinite-dimensional set given by a Reproduc-
ing Kernel Hilbert Space (RKHS). Such a space is completely
specified by the choice of the kernel. In this case, the Stable
Spline kernel is used as it incorporates key prior knowledge,
such as smoothness and stability of the predictor impulse
responses to be estimated. In [17], this approach proved to be
the most effective among several linear and nonlinear methods
for glucose prediction.

B. Nonlinear Deep Learning Approaches
As described in [11], [36], there are a growing number of

deep learning methodologies to forecast BG levels. In partic-
ular, due to their ability to handle time-series and sequential
data, there is an increasing trend to develop both recurrent and
convolutional neural networks (RNN and CNN, respectively)
for BG forecasting, [21], [22], [37]. Unlike traditional feed-
forward neural networks in which the information flows from
the input towards the output layer, RNN are characterized by
recurrent units with loops propagating the information back to
the same unit, [38]. So, each learning step takes into account
not only the current input, but also what was learnt from the
previous inputs, [38]. In this work we implemented two multi-
input RNN based on: i) Long Short Term Memory (LSTM)
cells and ii) Gated Recurrent Units (GRU). Specifically, they

are composed by a single hidden layer which comprises 30
units, as in [21]. Similarly to [23], [39], we also investigated
the use of CNN-based algorithms, by developing a Temporal
Convolutional Network (TCN) which combines 3 causal and
dilated convolutional layers (equipped with 8, 16, and 32
filters) that are used for extracting features from the inputs.
Finally, all the proposed deep learning algorithms are fed
by three input channels (past history of glucose data, meal
intake, and insulin injections) and equipped with an output
layer (dense), comprising a number of units corresponding to
the future BG levels to forecast (in this work 12, corresponding
to a PH = 60 minutes, sampling time is 5 minutes), as in
[21], [40]. As shown in Figure 1, once fed by input data, the
algorithms provide as output a trajectory of 12 future consec-
utive glucose samples. Of note, the deep learning models are
developed within Python (Keras library) and trained using a
Nvidia Titan RTX.

Fig. 1: Schematic representation of BG forecasting with
LSTM, GRU and TCN.

C. Recursive Models
Finally, we explored adaptive strategies that have the po-

tential to accommodate the changes over time in patient
metabolism. In particular, we implemented the personalized
recursive autoregressive model with exogenous input (rARX)
proposed by Finan et al. [41]. As the other methodologies,
this approach takes in input past CGM values, carbohydrate
intakes, and insulin recordings. Beside using this data to
predict future CGM values, each time a new CGM sample
is collected the model parameters are adapted according to a
well-established recursive estimation scheme [35].

IV. METHODOLOGY ASSESSMENT

A. Dataset
The dataset used in this study is the Ohio Type 1 Diabetes

Mellitus dataset updated on the 2020 release, [42], from
now on referred as the OhioT1DM. The OhioT1DM dataset,
comprises 12 subjects with T1D monitored with a Medtronic
Enlite CGM system for 8 weeks. Participants wore an insulin
pump (Medtronic 530G or 630G) and a wearable system
(Basis Peak fitness or Empatica Embrace) to measure physi-
ological variables, such as skin temperature, skin conduction,
and heart rate. In addition, subjects reported information on
meals: timing, amount, and type (that is, breakfast, lunch,
dinner, snack, hypoglycemia treatment). Each subject in the
OhioT1DM data set is split into a training set (about the
intial 6 monitoring weeks) and into a test set (roughly the
last 10 days). This dataset represents a challenge for BG
predictive algorithms: glucose dynamics recorded in daily-
life conditions are much more complex to describe than
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Methods
RMSE [mg/dL] TG (min)

PH = 30 min PH = 45 min PH = 60 min PH = 30 min PH = 45 min PH = 60 min

PHY
24.00 33.03 41.14 15 22.5 30

[20.77-27.14] [29.17-36.06] [36.85-44.28] [12.5-20] [15-35] [22.5-50]

NP
18.99 25.72 31.60 15 20 20

[16.90-21.65] [23.44-30.52] [28.99-36.82] [10-20] [10-22.5] [15-27.5]

LSTM
19.75 26.80 32.54 15 20 25

[17.82-22.01] [24.55-30.30] [30.08-37.07] [12.5-22.5] [15-25] [22.5-32.5]

GRU
19.81 26.77 32.78 17.5 20 25

[17.75-21.93] [24.62-29.83] [30.31-36.67] [12.5-20] [20-25] [25-32.5]

TCN
20.11 27.28 33.54 15 20 25

[17.97-22.39] [25.46-30.47] [30.83-37.48] [10-20] [17.5-25] [20-32.5]

rARX
20.19 27.86 33.97 15 20 20

[18.74-21.90] [26.22-29.67] [32.64-36.08] [10-20] [10-20] [10-25]

TABLE I: Comparison between performance metrics (median [25th-75th]) obtained using the PHY, NP, LSTM, GRU, TCN,
and rARX models for PH = 30, 45, 60 minutes.

those generated by simulation tools or those recorded during
well-controlled in-hospital trial sessions, since in the former
the patient is exposed to substantially larger disturbances
to glucose homeostasis. Handling data recorded under free-
living conditions raises some technical issues mainly about
synchronization and completeness of the recorded information.
In particular, the OhioT1DM dataset presents long portion of
missing CGM readings and the sampling time is not homo-
geneous. Therefore, all signals were aligned into a uniform
time grid with a sampling period of Ts = 5 minutes. Any
CGM gap in the training set shorter than 30 minutes was
interpolated with a first order polynomial while a simple and
causal zero-order-hold imputation was performed on the test
set. A preliminary investigation indicates that alternative real-
time extrapolation techniques (e.g. linear extrapolation) do not
lead to a significant improvement in the overall prediction
performance.

B. Algorithms Assessment Metrics

Evaluation of prediction accuracy has been performed in the
test set by comparing the obtained glucose predictions with the
actual CGM values using different PH. Two, frequently used,
performance metrics are considered: the root mean square
error (RMSE) and the time gain (TG), defined as follows:

RMSE(i) =
1√
m
∥y(tk+i)− ŷ(tk+i|tk)∥2,∀i = 1, . . . ,PH.

where ∥ · ∥2 denotes the ℓ2 norm. The larger the RMSE the
worst the prediction.

T G(i) = i ·Ts−delay(y(tk+i), ŷ(tk+i)) ,∀i = 1, . . . ,PH.

where delay(s1(tk),s2(tk)) [min] quantifies the delay between
two signals s1(tk) and s2(tk) and is based on the cross-
correlation (xcorr), a measure of similarity of the two signals.
Specifically, the delay is defined as the temporal shift τ that

maximizes the cross-correlation (xcorr) between s1 and a τ-
shifted version of s2:

delay(s1(tk),s2(tk)) = argmax
τ

xcorr(s1(tk),s2(tk− τ)) . (5)

The higher T G, the more prompt and useful the prediction
and T G = 0 means that the model prediction is comparable to
looking at the current glucose level.
Performance metrics of Physiological model (within the PF)
are compared against NP, LSTM, GRU and TCN models using
a paired t-test unless the hypothesis of normal distribution was
rejected by a Lilliefors test (p-value < 0.05 ). In this case,
Wilcoxon ranksign test was used. Reported p-values are two-
tailed and considered statistically significant when < 0.05.

V. RESULTS AND DISCUSSION

Table I reports the prediction performance in terms of
RMSE and TG, for PH = 30, 45, and 60 minutes achieved by
the white-box physiological model (hereafter labeled as PHY),
and the considered black-box methodologies (i.e., NP, LSTM,
GRU, TCN, and rARX). From Table I, three main outcomes
can be observed: i) black box algorithms outperform PHY in
terms of RMSE, for all prediction horizons, ii) all methodolo-
gies seem to achieve similar TG (no statistically significant
difference was found when comparing all pairs of prediction
approaches with a paired t-test corrected with the Bofferroni
method), and iii) that there are no large differences in terms
of RMSE between the considered black-box approaches.

Specifically, the RMSE obtained by PHY is larger than the
one of the other methodologies by approximately 5 mg/dL,
7 mg/dL, and 9 mg/dL for PH = 30, 45, and 60 minutes,
respectively. This corresponds to a performance deterioration
of about 25%. The NP approach allows to achieve the lowest
RMSE: median RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL
and RMSE = 31.60 mg/dL for PH = 30, 45 and 60 minutes,
respectively. The performance improvement is found to be
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Fig. 2: Representative subject (ID:570) of the OhioT1DM dataset. The upper panel shows CGM data (grey dashed line) and
the 30-min ahead prediction obtained using PHY (blue line), NP (yellow line) and LSTM (red line). Middle panel shows the
CHO content of the meal, in g/min. Bottom panel shows injected insulin (U/min)

statistically significant with respect to LSTM and GRU (p-
value = 0.04 and p-value = 0.03) for PH = 30 minutes, while no
significant difference is found for longer prediction horizons.
Furthermore, NP model showed to be significantly better than
TCN, with p-value = 0.001, p-value = 0.006 and p-value
= 0.009, for PH = 45 and PH = 60 minutes, respectively.
The NP approach achieves the largest median improvement
with respect to PHY, decreasing RMSE by 26.5%, 26.2% and
24.9%, for PH = 30, 45 and 60, respectively (p-values < 10-4

for all the considered PHs). The numerical results obtained in
this work by LSTM, GRU and TCN are comparable with what
has been obtained in other literature contributions dealing with
the assessment of individualized deep learning algorithms for
BG forecasting in the OhioT1DM dataset, [22], [23], [33]. In
[22], a recurrent convolutional network granted a mean RMSE
= 20.6 mg/dL, 26.8 mg/dL and 33.9 mg/dL for PH = 30,
45 and 60 minutes, respectively. Similarly, the TCN and the
LSTM tested in [23] achieved a mean RMSE = 20.23 mg/dL
and RMSE = 20.11 mg/dL for PH = 30 minutes, and RMSE =
34.21 mg/dL and 33.10 mg/dL for PH = 60 minutes. Finally,
despite permitting model adaptation, rARX performs slightly
worse than the other black-box models employed in this work
but still better than PHY, by achieving a median RMSE =
20.18 mg/dL, 27.91 mg/dL and 34.14 mg/dL for PH = 30, 45
and 60 minutes, respectively.

To the best of our knowledge, there are only two other
literature contributions investigating maximal model individu-
alization, [43], [44]. However, both in [43], [44], rich datasets
of frequent plasma glucose and insulin measurements collected

in a clinical setting were required, thus strongly limiting
the applicability of these methodologies to be used on data
collected in free-living conditions. Furthermore, none of two
models derived was used for glucose prediction.

Regarding the use of particle filters to obtain glucose
predictions, the work of [45] showed the potential of this
approach for the scope. However, in the prediction scheme of
[45], they adopted an average model, thus not personalizing
the methodology at the patient level.

With the aim of better understanding the consistent differ-
ence between PHY and black-box models in glucose pre-
diction, we consider an illustrative example on a one-day
long data portion extracted from the test set, depicted in
Figure 2. In the top panel, CGM data (grey dashed line)
of a subject of the OhioT1DM dataset (ID:570) is shown
with the 30-minute ahead-in-time prediction of PHY, NP, and
LSTM models, in blue, yellow and red, respectively. Middle
and bottom panels show meal and insulin data, respectively.
Analyzing the extracted portion of data, there are two meals
with similar amount (30 g/min at 9:10, 35 g/min at 17:35) and
two similar corresponding insulin boluses delivered with the
so-called dual-wave mode, [46]. It is interesting to note that the
two corresponding postprandial responses are very different.
In the first case, glucose increases from 200 mg/dL to 300
mg/dL within an hour after the meal, whereas, in the second
case, glucose remains almost flat (about 20 mg/dL excursion)
and then decreases after an hour, reaching hypoglycemia. The
first postprandial excursion is aligned with the physiological
expectation that a meal should be followed by a glucose
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increase, while in the second postprandial excursion this does
not happen, for causes that are hard to guess and that might
span from an high fat meal composition to psychological
stress slowing down digestion. The (unavoidably simplified)
physiological model structure has not the flexibility to cover
both types of responses and the model imposes a similar
shape to the two postprandial glucose excursions leading,
as a consequence, to an extremely large prediction error
observed during the second meal. On the contrary, the black-
box approaches prove more flexible and are able to produce
two different postprandial shapes despite the similar inputs.

As a final consideration, we report a preliminary inves-
tigation of the computational power required to compute a
prediction using each method. In fact, in the final deployment
of a glucose prediction algorithm, this step might have be
performed in real-time on portable hardware. As a proxy,
we considered the computation time required on a DELL
desktop PC equipped with an Intel(R) Core(TM) i7-9700 CPU
@ 3.00GHz, 16.0 GB RAM. The code was not optimized,
PHY (considering N=5000 particles), NP and rARX are im-
plemented in Matlab while LSTM, GRU and TCN were im-
plemented using Python (Keras library). Therefore, this result
offers only an early exploration of this issue. The average time
required to PHY to compute the 30-minutes ahead prediction
is about 30 millisecond and is one order of magnitude larger
than the time required to the other methods: the NP method
needs 2 millisecond, rARX 0.05 milliseconds and the non-
linear methods (less than 3 milliseconds). Moreover, it should
be noted that the computation time of PHY is strongly affected
by the number of particle considered (here 5000), whereas the
other approaches exhibit a computational time less sensitive
to the method hyperparamters. The time required to train the
models is not considered, as this computationally demanding
step could be performed on a remote server.

Future work will attempt to increasing the flexibility of
white-box models. This will include considering time-varying
model parameters estimated in real-time by the PF, to track
patient-specific intraday variability and meal-to-meal differ-
ences in CHO absorption. Moreover, further investigations will
compare white-box and black-box modeling approaches for
control purposes, i.e. when they are used within a model-
based closed-loop controller or as core element of a decision
support systems. In fact, it is unclear if superior prediction
performance will translate into superior glycemic control or
if the physiologically grounded, albeit simplified, structure
of white-box model could lead to more robust and effective
control actions. Finally, future work will analyze the impact of
newer and more accurate CGM sensors on prediction accuracy.
In fact, the CGM sensor used in the dataset considered in
this work was less accurate than the newer generation devices
currently available in the market [47], [48].

VI. CONCLUSION

Real-time glucose prediction algorithms are key for de-
veloping next-generation tools to improve diabetes care. The
diabetes research community intensively focused on the use
of black-box prediction approaches, investigating many tech-
niques spanning from linear models to deep learning-based

approaches. On the other hand, white-box maximal models
for glucose predictions are less investigated, due a number of
technical difficulties they pose.
This work compared five black-box methodologies (a non-
parametric technique that recently proved effective in glucose
prediction, [17], a LSTM, [33], a GRU, a TCN, [23], and
a rARX [41]), with a newly developed white-box technique
based on a nonlinear physiological model of glucose-insulin
dynamics, whose parameters are individualized through a
MCMC approach and embedded in a PF to predict future glu-
cose values. On the data under study, collected by T1D patients
in free-living conditions, the considered black-box method-
ologies significantly outperform the white-box approach for
all the PH under study. Moreover, among the data-driven
algorithms, the best performance are achieved by the linear NP
approach, that grants statistically significant improvement in
the performance with respect to LSTM and GRU for PH = 30
minutes, and to TCN for all the considered PH. One possible
reason for the differences in performance between white-box
and black-box models might reside in the fact that the first are
less flexible in accommodating the large variety of patterns
observed in the data and that might be caused by multiple
unmodeled factors, including variability in meal absorption,
different meal compositions, stress, illnesses, physical activity,
inaccuracy in estimating carbohydrate content of a meal.
Future works will aim at increasing the flexibility of white-
box models and at comparing white-box and black-box model
for control purposes.

APPENDIX I
PHYSIOLOGICAL MODEL OF GLUCOSE-INSULIN

REGULATION

This appendix reports a detailed description of the nonlinear
physiological model of glucose-insulin regulation used by the
white-box glucose prediction approach presented in Section
II. The model is composed of three subsystems describing
subcutaneous insulin absorption, oral glucose absorption, and
glucose-insulin kinetics, to each presented in one of the
following sections.

A. Subcutaneous Insulin Absorption Subsystem

Fig. 3: Subcutaneous insulin absorption subsystem scheme.

The subcutaneous insulin absorption model is a slightly sim-
plified version of the one used in the T1DS model, described
in [49] and illustrated in Figure 3. The model is composed
of three compartments. Exogenous insulin I is infused to the
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first compartment where it appears after a delay β . In the first
compartment, representing insulin in a non-monomeric state,
insulin is transformed in a monomeric state and then diffused
to the plasma. The model equations are:

İsc1(t) =−kd · Isc1(t)+ I(t−β )/VI

İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t)
İp(t) = ka2 · Isc2− ke · Ip(t)

(6)

where Isc1 (mU/kg) and Isc2 (mU/kg) represent the insulin in a
non-monomeric and monomeric state, respectively; Ip (mU/l)
is the plasma insulin concentration; kd (min−1) is the rate
constant of diffusion from the first to the second compartment;
ka2 (min−1) is the rate constant of subcutaneous insulin
absorption from the second compartment to the plasma; ke
(min−1) is the fractional clearance rate; VI (l/kg) is the volume
of insulin distribution; β (min) is the delay in the appearance
of insulin in the first compartment. A priori information on
model parameters has been obtained from the literature, [49].
Specifically, VI and β have been set to population values,
i.e. 0.126 l/kg and 8 min, respectively. Furthermore, kd has
been constrained to kd ≥ ka2 since the two combinations are
interchangeable. Unknown model parameters, identified via
the MCMC procedure presented in Section II.B, are θ ins =
[ka2, kd].

B. Oral Glucose Absorption Subsystem

Fig. 4: Oral glucose absorption subsystem scheme.

The oral glucose absorption subsystem model, taken from
[50], represents a simplified version of the model used in
the T1DS and is illustrated in Figure 4. It describes the
gastro-intestinal tract as three-compartment system: the first
two compartments account for food in the stomach (solid and
grinded state), while the third compartment models the upper
small intestine where CHO is absorbed. Model equations are:

Q̇sto1(t) =−kgri ·Qsto1(t)+CHO(t)
Q̇sto2(t) = kgri ·Qsto1(t)− kempt ·Qsto2(t)
Q̇gut(t) = kempt ·Qsto2(t)− kabs ·Qgut(t)

(7)

where Qsto1 (mg/kg) and Qsto2 (mg/kg) are the glucose amount
in the stomach in a solid and liquid state, respectively; Qgut
(mg/kg) is the glucose concentration in the intestine; kgri
(min−1) is the rate constant of grinding; kempt (min−1) is the
rate constant of gastric emptying; kabs (min−1) is the rate
constant of intestinal absorption; CHO (mg/kg/min) is the
ingested carbohydrate rate. Model (7) allows to estimate the
rate of glucose appearance in plasma Ra (mg/kg/min) as:

Ra(t) = f · kabs ·Qgut(t) (8)

where f (dimensionless) is the fraction of the intestinal content
absorbed in the plasma. A priori information on model (7) has
been obtained from the literature, [50]. In particular, we set
f equal to 0.9 and we constrained kgri = kempt . Furthermore,
kabs has been constrained to kabs ≤ kempt since the two com-
binations are interchangeable. As such, the unknown model
parameters, estimated using the MCMC approach presented
in Section II.B, are θ oral = [kabs, kempt ].

C. Glucose-Insulin Kinetics Subsystem

Fig. 5: Glucose-insulin kinetics subsystem scheme.

The subsystem of glucose-insulin kinetics is based on a
well-known two-compartment model that describes the impact
of the plasmatic insulin action and glucose rate of appearance
in plasma glucose concentration introduced in [51]. The model
is further equipped with a third compartment to describe the
transport of glucose from plasma to the interstitium where it
is measured by the sensor. The model is illustrated in Fig. 5.
Model equations are:

Ġ(t) =−[SG+ρ(G)X(t)] ·G(t)+SG ·Gb +Ra(t)/VG

Ẋ(t) =−p2 · [X(t)−SI · (Ip(t)− Ipb)]
˙IG(t) =− 1

α
(IG(t)−G(t))

(9)
where G (mg/dl) is the plasma glucose concentration, X
(min−1) is the insulin action on glucose disposal and pro-
duction; SG (min−1) is the glucose effectiveness describing
glucose ability, per se, to promote glucose disposal and inhibit
glucose production; Gb (mg/dl) is the basal glucose concen-
tration in the plasma; VG (dl/kg) is the volume of glucose
distribution; p2 (min−1) is the rate constant of insulin action
dynamics; SI (ml/µU·min) is the insulin sensitivity; Ipb (mU/l)
is the basal insulin concentration in the plasma; IG (mg/dl)
is the interstitial glucose concentration; α (min) is the delay
between the plasmatic and interstitial glucose concentration
compartments; and ρ(G) is a function, introduced by [52], that
allows to better describe the insulin action in the hypoglycemic
range by increasing its impact when glucose concentration
decreases below a certain level. Furthermore, to account for
patient-specific intraday insulin sensitivity variability, [53], the
parameter SI is considered time-varying over the day:

SI =


SIB if 4 AM < t ≤ 11 AM
SIL if 11 AM < t ≤ 5 PM
SID otherwise

(10)
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A priori information on parameter distributions has been
obtained from the literature, [54]. Particularly, VG has been
fixed to population value, i.e. 1.45 dl/kg. Unknown model
parameters of glucose-insulin subsystem, identified via the
MCMC procedure presented in Section II.B, are θ glu = [SG,
SIB, SIL, SID, Gb, p2].

APPENDIX II
OFFLINE BAYESIAN ESTIMATION: IMPLEMENTATIVE

DETAILS

We partitioned θ phy into five sets θ phy := [θ 1,θ 2,θ 3,θ 4,θ 5],
namely θ 1 := [SG,SIB], θ 2 := [SIL,Gb], θ 3 := [SID], θ 4 :=
[p2,ka2,kd ], θ 5 := [kempt ,kabs].
This partitioning scheme has been chosen since it improves
MC mixing and allows to break the correlation between SI
and p2, known to be critical from the literature, [55]. An
iteration i of the algorithm consists of five steps p = 1, . . . ,5
and each step updates the p-th partition of θ phy, θ p, by
approval/rejection of a sample φ p extracted from the proposal
density function qp(·|·). Specifically, as prescribed by the
SCMH procedure, approval occurs with probability α

α = min(1,
π(φ p|θ i,−p)qp(θ i−1,p|φ p,θ i,−p)

π(θ i−1,p|θ i,−p)qp(φ p|θ i−1,p,θ i,−p)
)

with π(θ p|θ i,−p) proportional to the posterior of θ p given that
the other components θ−p assume the value θ−p = θ i,−p:

π(θ p|θ i,−p) = pY |θ ,U (Y |θ p,θ i,−p,U)pθ (θ p|θ i,−p,U)

where θ i,−p comprises all the other components of θ phy except
for θ p, and pθ (θ p|θ i,−p,U) is the prior probability distribution
of θ p given θ i,−p. Precisely, θ i,−p contains the most updated
version of each component as available at the current stage
of the algorithm: θ i,−p = [θ i,1, . . . ,θ i,p−1,θ i−1,p+1,θ i−1,5].
Components up to p− 1 have already been updated when
processing the p-th components at iteration i, while other
components, from p+ 1 to 5, have not been updated yet, so
their value computed in the previous iteration i−1 is used.

For what it concerns the proposal distribution, we used a
Gaussian centered in the value assumed by θ p in the previous
chain iteraction

qp(·|·) = N(θ i−1,p,Σp)

where Σp is a tuning parameter that regulates the acceptance
rate of the chain. We set Σp to a diagonal matrix whose com-
ponents are an estimate of the conditional standard deviation
of each element of partition p, sd(θ phyp |Y,U), multiplied by
a scaling factor 2.4/

√
d, where d is the number of parameters

to be estimated in p-th partition, as suggested in [56]. This
estimates is computed by running two exploratory MCMCs
for nIter = 600 iterations and updated every 1500 iterations
of the algorithm, thus implementing an adaptive SCMH.

Finally, the convergence of the MCMC has been verified
through the well-known Raftery-Lewis criterion, [29], which
provides the number of iterations necessary to ensure the
Markov Chain to represent the target posterior distribution.

The Adaptive Single Component Metropolis Hasting is
summarized in Algorithm 1.

Algorithm 1: Adaptive Single Component Metropolis
Hastings

i← 0;
initialize θ phy0 , nIter;
repeat

for p← 1 to 5 do
set θ phyi,−p =

[θ phyi,1 , . . . ,θ phyi,p−1 ,θ phyi−1,p+1 ,θ phyi−1,5 ];
sample φ p ∼ qp(·|·);
set

α =min(1,
π(φ p|θ i,−p)qp(θ i−1,p|φ p,θ i,−p)

π(θ i−1,p|θ i,−p)qp(φ p|θ i−1,p,θ i,−p)
)

sample U ∼ Uniform(0,1);
if U ≤ α then

set θ phyi,p = φ p;
else

set θ phyi,p = θ phyi−1,p ;
end

end
i← i+1

until n < nIter;

APPENDIX III
REAL-TIME PREDICTION THROUGH PARTICLE FILTER:

IMPLEMENTATIVE DETAILS

In the following, we present the numerical scheme im-
plemented by PF to perform the one step-ahead prediction,
measurement update, and multiple step-ahead prediction.

One step-ahead prediction step. Recalling that, at time tk−1,
p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is available in a sampled form
defined by set of P particles {xp(tk−1)}P

p=1 with associated
weights {w(tk−1)

p}P
p=1,∑p w(tk−1)

p = 1 such that

p(x(tk−1)|y(t1:k−1),u(t1:k−1))≈
P

∑
p=1

wp(tk−1)δ (x(tk−1)− xp(tk−1)),

PF performs the one step-ahead prediction step by drawing a
new set of particles {xp(tk)}P

p=1 from p(x(tk)|x(tk−1)):

xp(tk)∼ p(xp(tk)|xp(tk−1)). (11)

This probability is specified by (1):

p(xp(tk)|xp(tk−1)) = N(f(xp(tk−1),uuu, tk−1,θ),Σv).

In view of this, to draw the new set of particles it is sufficient
to let each particle xp(tk−1) evolve according to model (1),
and corrupt it with a realization of the noise v.

Measurement update step. The PF algorithm sets the weight
w∗p(tk) of each p-th particle xp(tk) to the likelihood function
evaluated on xp(tk)

w∗p(tk) = p(y(tk)|xp(tk),u(t1:k)). (12)

In particular, the statistics of the stochastic modelling error e,
p(y(tk)|xp(tk),u(t1:k)) is defined as:

p(y(tk)|x(tk),u(t1:k)) = N(y(tk)− yp(tk),SDε). (13)
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where yp(tk) is obtained using (1) and SDε is the constant
standard deviation of the error.

Weights are then normalized such that ∑p w∗p(tk) = 1.
This provides a sampled form representation of the posterior

density

p(x(tk)|y(t1:k−1),u(t1:k))≈
P

∑
p=1

w∗p(tk)δ (x(tk)− xp(tk)).

Resampling step. To improve the accuracy of PF, the
measurement update step is completed by updating the set
of particles. Specifically, {xp(tk)}P

p=1 are substituted with
a new set of P particles, {x∗p(tk)}P

p=1 generated from the
sampled representation of p(x(tk)|y(t1:k−1),u(t1:k)) such that
Pr(x∗p(tk) = xp(tk)) = w∗p(tk). This step is performed by a
well-established resampling algorithm [57].

As a result, all new particles {xp(tk)}P
p=1 are associated to

the same weight w∗p(tk) = 1/P, thus the approximation of
p(x(tk)|y(t1:k−1),u(t1:k)) simplifies to

p(x(tk)|y(t1:k−1),u(t1:k))≈
1
P

P

∑
p=1

δ (x(tk)− xp(tk)).

Multiple steps-ahead prediction. Multiple steps ahead pre-
dictions can be obtained as follows. First, the probabili-
ties p(x(tk+i)|y(t1:k),u(t1:k+i)),∀, i = 1, . . . ,PH are obtained
in sampled form starting from p(x(tk)|y(t1:k),u(t1:k)) and
propagating the P particles {xp(tk)}P

p=1 i steps ahead as we
did in the one step-ahead prediction step. Then, the set of
particles {yp(tk+i|tk)}P

p=1 is computed and used to obtain
p(y(tk+i)|y(t1:k),u(t1:k+i))∀, i = 1, . . . ,PH in sampled form.

Finally, a point estimate of glucose i steps-ahead, y(tk+i), is
obtained as the average computed over the sampled form of
p(y(tk+i)|y(t1:k),u(t1:k+i)), i.e.:

ŷ(tk+i|tk) =
1
P

P

∑
p=1

yp(tk+i|tk),∀i = 1, . . . ,PH.

The implemented PF is summarized in Algorithm 2.
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[12] A. Z. Woldaregay, E. Årsand, S. Walderhaug, D. Albers, L. Mamykina,
T. Botsis, and G. Hartvigsen, “Data-driven modeling and prediction
of blood glucose dynamics: Machine learning applications in type 1
diabetes,” Artificial Intelligence in Medicine, vol. 98, pp. 109–134, 2019.

[13] G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti, and
C. Cobelli, “Glucose concentration can be predicted ahead in time from
continuous glucose monitoring sensor time-series,” IEEE Transactions
on biomedical engineering, vol. 54, no. 5, pp. 931–937, 2007.

[14] M. Frandes, B. Timar, R. Timar, and D. Lungeanu, “Chaotic time series
prediction for glucose dynamics in type 1 diabetes mellitus using regime-
switching models,” Scientific reports, vol. 7, no. 1, pp. 1–10, 2017.

[15] J. Yang, L. Li, Y. Shi, and X. Xie, “An arima model with adaptive
orders for predicting blood glucose concentrations and hypoglycemia,”
IEEE journal of biomedical and health informatics, vol. 23, no. 3, pp.
1251–1260, 2018.

[16] X. Yu, M. Rashid, J. Feng, N. Hobbs, I. Hajizadeh, S. Samadi, M. Sevil,
C. Lazaro, Z. Maloney, E. Littlejohn et al., “Online glucose prediction
using computationally efficient sparse kernel filtering algorithms in type-
1 diabetes,” IEEE Transactions on Control Systems Technology, vol. 28,
no. 1, pp. 3–15, 2018.

[17] S. Faccioli, A. Facchinetti, G. Sparacino, G. Pillonetto, and
S. Del Favero, “Linear model identification for personalized prediction
and control in diabetes,” IEEE transactions on bio-medical engineering,
vol. 69, no. 2, pp. 558–568, 2022.

[18] E. I. Georga, V. C. Protopappas, D. Ardigo, D. Polyzos, and D. I.
Fotiadis, “A glucose model based on support vector regression for
the prediction of hypoglycemic events under free-living conditions,”
Diabetes technology & therapeutics, vol. 15, no. 8, pp. 634–643, 2013.

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3276193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



CAPPON AND PRENDIN et al.: INDIVIDUALIZED MODELS FOR GLUCOSE PREDICTION IN TYPE 1 DIABETES: COMPARING BLACK-BOX APPROACHES TO A
PHYSIOLOGICAL WHITE-BOX ONE 11
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