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Abstract. We prove the validity of regularizing properties of the bound-
ary integral operator corresponding to the double layer potential asso-
ciated to the fundamental solution of a nonhomogeneous second order
elliptic differential operator with constant coefficients in Hölder spaces
by exploiting an estimate on the maximal function of the tangential
gradient with respect to the first variable of the kernel of the double
layer potential and by exploiting specific imbedding and multiplication
properties in certain classes of kernels of integral operators and a gen-
eralization of a result for integral operators on differentiable manifolds.
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1. Introduction

In this paper, we consider the double layer potential associated to the fun-
damental solution of a second order differential operator with constant coef-
ficients in Hölder spaces. Unless otherwise specified, we assume throughout
the paper that

n ∈ N \ {0, 1},

where N denotes the set of natural numbers including 0. Let α ∈ [0, 1],
m ∈ N\{0}. Let Ω be a bounded open subset of Rn of class Cm,α with m ≥ 1.
Here we understand that Cm,0 ≡ Cm. For the definition and properties of
the classical Schauder spaces we refer for example to Dalla Riva, the author
and Musolino [7, Chap. 2], Dondi and the author [8, §2]. We employ the same
notation of Dondi and the author [8] that we now introduce.
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Let νΩ or simply ν ≡ (νl)l=1,...,n denote the external unit normal to ∂Ω.
Let N2 denote the number of multi-indexes γ ∈ N

n with |γ| ≤ 2. For each

a ≡ (aγ)|γ|≤2 ∈ C
N2 , (1.1)

we set

a(2) ≡ (alj)l,j=1,...,n a(1) ≡ (aj)j=1,...,n a ≡ a0.

with alj ≡ 2−1ael+ej
for j �= l, ajj ≡ aej+ej

, and aj ≡ aej
, where {ej :

j = 1, . . . , n} is the canonical basis of Rn. We note that the matrix a(2) is
symmetric. Then we assume that a ∈ C

N2 satisfies the following ellipticity
assumption

inf
ξ∈Rn,|ξ|=1

Re

⎧
⎨

⎩

∑

|γ|=2

aγξγ

⎫
⎬

⎭
> 0, (1.2)

and we consider the case in which

alj ∈ R ∀l, j = 1, . . . , n. (1.3)

Then we introduce the operators

P [a,D]u ≡
n∑

l,j=1

∂xl
(alj∂xj

u) +
n∑

l=1

al∂xl
u + au,

B∗
Ωv ≡

n∑

l,j=1

ajlνl∂xj
v −

n∑

l=1

νlalv,

for all u, v ∈ C2(Ω), and a fundamental solution Sa of P [a,D], and the
boundary integral operator corresponding to the double layer potential

WΩ[a, Sa, μ](x) ≡
∫

∂Ω

μ(y)B∗
Ω,y (Sa(x − y)) dσy

= −
∫

∂Ω

μ(y)
n∑

l,j=1

ajlνl(y)
∂Sa

∂xj
(x − y) dσy

−
∫

∂Ω

μ(y)
n∑

l=1

νl(y)alSa(x − y) dσy ∀x ∈ ∂Ω,

(1.4)

where the density or moment μ is a function from ∂Ω to C and dσy is the
ordinary (n − 1)-dimensional measure. Here the subscript y of B∗

Ω,y means
that we are taking y as variable of the differential operator B∗

Ω,y. The role
of the double layer potential in the solution of boundary value problems for
the operator P [a,D] is well known (cf. e.g., Günter [16], Kupradze et al. [22],
Mikhlin [26].)

The analysis of the continuity and compactness properties of WΩ[a, Sa, ·]
is a classical topic and several results in the literature show that WΩ[a, Sa, ·]
improves the regularity of Hölder continuous functions on ∂Ω. We briefly
recall some references ‘(see Dondi and the author [8]).
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In case n = 3, α ∈]0, 1[ and Ω is of class C1,α and Sa is the fundamental
solution of the Laplace operator, it has long been known that WΩ[a, Sa, ·] is
a linear and compact operator in C1,α(∂Ω) and is linear and continuous from
C0(∂Ω) to C0,α(∂Ω) (cf. Schauder [33,34], Miranda [28].)

In case n = 3, m ≥ 2 α ∈]0, 1[ and Ω is of class Cm,α and if P [a,D] is
the Laplace operator, Günter [16, Appendix, § IV, Thm. 3] has proved that
W [∂Ω,a, Sa, ·] is bounded from Cm−2,α(∂Ω) to Cm−1,α′

(∂Ω) for α′ ∈]0, α[.
In case n ≥ 2, m ≥ 2, α ∈]0, 1], O. Chkadua [2] has pointed out that

one could exploit Kupradze, Gegelia, Basheleishvili and Burchuladze [22,
Chap. IV, Sect. 2, Thm 2.9, Chap. IV, Sect. 3, Theorems 3.26 and 3.28]
and prove that if Ω is of class Cm,α, then W [∂Ω,a, Sa, ·] is bounded from
Cm−1,α′

(∂Ω) to Cm,α′
(∂Ω) for α′ ∈]0, α[.

In case n = 2, m = 1, α ∈]0, 1[ and β ∈]0, 1[, α + β > 1 and if P [a,D]
is the Laplace operator Fichera and De Vito [9, LXXXIII] have proved that
the operator WΩ[a, Sa, ·] is bounded from C0,β(∂Ω) to C1,α+β−1(∂Ω).

In case n = 3 , α ∈]0, 1[, and Ω is of class C2 and if P [a,D] is the
Helmholtz operator, Colton and Kress [4] have developed previous work of
Günter [16] and Mikhlin [26] and proved that the operator WΩ[a, Sa, ·] is
bounded from C0,α(∂Ω) to C1,α(∂Ω) and that accordingly it is compact in
C1,α(∂Ω).

In case n ≥ 2, α ∈]0, 1[ and Ω is of class C2 and if P [a,D] is the Laplace
operator, Hsiao and Wendland [18, Remark 1.2.1] deduce that the operator
W [∂Ω,a, Sa, ·] is bounded from C0,α(∂Ω) to C1,α(∂Ω) by the work of Mikhlin
and Prössdorf [27].

In case n = 3, m ≥ 2 α ∈]0, 1[ and Ω is of class Cm,α and if P [a,D] is the
Helmholtz operator, Kirsch [20] has proved that the operator WΩ[a, Sa, ·] is
bounded from Cm−1,α(∂Ω) to Cm,α(∂Ω) and that accordingly it is compact
in Cm,α(∂Ω).

Then Heinemann [17] has developed the ideas of von Wahl in the frame
of Schauder spaces and has proved that if Ω is of class Cm+5 and if Sa

is the fundamental solution of the Laplace operator, then the double layer
improves the regularity of one unit on the boundary, i.e., WΩ[a, Sa, ·] is linear
and continuous from Cm,α(∂Ω) to Cm+1,α(∂Ω).

Mitrea [30] has proved that the double layer of second order equations
and systems is compact in C0,β(∂Ω) for β ∈]0, α[ and bounded in C0,α(∂Ω)
under the assumption that Ω is of class C1,α. Then by exploiting a formula
for the tangential derivatives such results have been extended to compactness
and boundedness results in C1,β(∂Ω) and C1,α(∂Ω), respectively.

In Dondi and the author [8], we have proved that if m ≥ 1, β ∈]0, α], α ∈
]0, 1[, then WΩ[a, Sa, ·] is linear and continuous from Cm,β(∂Ω) to Cm,α(∂Ω)
and a related result if we chose β = 0.

In this paper we plan to consider the case in which Ω is of class C1,α

for α ∈]0, 1]. If α ∈]0, 1[, β ∈]0, 1], β + α > 1, we prove that WΩ[a, Sa, ·] is
linear and continuous from C0,β(∂Ω) to C1,α+β−1(∂Ω) for β ∈]0, 1[ and that
it is linear and continuous from C0,1(∂Ω) to the generalized Schauder space
C1,ωα(∂Ω) of functions with 1-st order tangential derivatives which satisfy a
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generalized ωα-Hölder condition with

ωα(r) ∼ rα| ln r| as r → 0,

see Theorem 5.1. If α = 1, we show that if the maximal function of the
tangential gradient with respect to the first variable of the kernel of the
double layer potential is bounded, then WΩ[a, Sa, ·] is linear and continuous
from C0,β(∂Ω) to C1,β(∂Ω) for β ∈]0, 1[ and is linear and continuous from
C0,1(∂Ω) to the generalized Schauder space C1,ω1(∂Ω) of functions with 1-st
order tangential derivatives which satisfy a generalized ω1-Hölder condition
with

ω1(r) ∼ r1| ln r| as r → 0,

see Theorem 5.5. For the validity of condition on the maximal function, we
refer to [25].

Our proofs are based on a Theorem of [24, Thm. 6.3] on integral oper-
ators, that we report here in the case in which the domain of integration is
a compact differentiable manifold, see Theorem 3.10. Theorem 3.10 develops
an approach that has been introduced within the frame of Hölder spaces by
Garćıa-Cuerva and Gatto [10,11], Gatto [12] and in case α = 1 it requires
that we can estimate the maximal function associated to the tangential gradi-
ent of the kernel of the double layer potential with respect to its first variable
and that the same tangential gradient belongs to a certain class of kernels.

Then we prove the membership in the class of kernels by exploiting the
imbedding and multiplication properties that we have highlighted and proved
in [24], that extend the validity of corresponding statements for the classes
that had been introduced in Giraud [15], Gegelia [13] and Kupradze, Gegelia,
Basheleishvili and Burchuladze [22, Chap. IV] and that we report here in the
special cases we need, see Sect. 3. Here we note that the properties of Sect. 3
actually simplify a proof that would be otherwise long to explain.

2. Notation

Let Mn(R) denote the set of n×n matrices with real entries. δl,j denotes the
Kronecker symbol. Namely, δl,j = 1 if l = j, δl,j = 0 if l �= j, with l, j ∈ N. |A|
denotes the operator norm of a matrix A, At denotes the transpose matrix
of A. We set

Bn(ξ, r) ≡ {η ∈ R
n : |ξ − η| < r} , (2.1)

for all (ξ, r) ∈ R
n×]0,+∞[. If D is a subset of Rn, then we set

B(D) ≡ {
f ∈ C

D : f is bounded
}

, ‖f‖B(D) ≡ sup
D

|f | ∀f ∈ B(D).

Then C0(D) denotes the set of continuous functions from D to C and we
introduce the subspace C0

b (D) ≡ C0(D) ∩ B(D) of B(D). Let ω be a function
from [0,+∞[ to itself such that

ω(0) = 0, ω(r) > 0 ∀r ∈]0,+∞[,
ω is increasing, lim

r→0+
ω(r) = 0,
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and sup
(a,t)∈[1,+∞[×]0,+∞[

ω(at)
aω(t)

< +∞. (2.2)

Here ‘ω is increasing’ means that ω(r1) ≤ ω(r2) whenever r1, r2 ∈ [0,+∞]
and r1 < r2. If f is a function from a subset D of Rn to C, then we denote by
|f : D|ω(·) the ω(·)-Hölder constant of f , which is delivered by the formula

|f : D|ω(·) ≡ sup
{ |f(x) − f(y)|

ω(|x − y|) : x, y ∈ D, x �= y

}

.

If |f : D|ω(·) < ∞, we say that f is ω(·)-Hölder continuous. Sometimes, we
simply write |f |ω(·) instead of |f : D|ω(·). The subset of C0(D) whose functions
are ω(·)-Hölder continuous is denoted by C0,ω(·)(D) and |f : D|ω(·) is a semi-
norm on C0,ω(·)(D). Then we consider the space C

0,ω(·)
b (D) ≡ C0,ω(·)(D) ∩

B(D) with the norm

‖f‖
C

0,ω(·)
b (D)

≡ sup
x∈D

|f(x)| + |f |ω(·) ∀f ∈ C
0,ω(·)
b (D).

Remark 2.1. Let ω be as in (2.2). Let D be a subset of Rn. Let f be a bounded
function from D to C, a ∈]0,+∞[. Then,

sup
x,y∈D, |x−y|≥a

|f(x) − f(y)|
ω(|x − y|) ≤ 2

ω(a)
sup
D

|f |.

In the case in which ω(·) is the function rα for some fixed α ∈]0, 1],
a so-called Hölder exponent, we simply write |· : D|α instead of |· : D|rα ,
C0,α(D) instead of C0,rα

(D), C0,α
b (D) instead of C0,rα

b (D), and we say that
f is α-Hölder continuous provided that |f : D|α < +∞.

3. Special Classes of Potential Type Kernels in R
n

In this section we collect some basic properties of the classes of kernels that
we need. For the proofs, we refer to [24, §3]. If X and Y are subsets of Rn,
then we denote by DX×Y the diagonal of X × Y , i.e., we set

DX×Y ≡ {(x, y) ∈ X × Y : x = y} (3.1)

and if X = Y , then we denote by DX the diagonal of X × X, i.e., we set

DX ≡ DX×X .

An off-diagonal function in X × Y is a function from (X × Y )\DX×Y to C.
We now wish to consider a specific class of off-diagonal kernels.

Definition 3.1. Let X and Y be subsets of R
n. Let s ∈ R. We denote by

Ks,X×Y (or more simply by Ks), the set of continuous functions K from
(X × Y )\DX×Y to C such that

‖K‖Ks,X×Y
≡ sup

(x,y)∈(X×Y )\DX×Y

|K(x, y)| |x − y|s < +∞.

The elements of Ks,X×Y are said to be kernels of potential type s in X × Y .
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We plan to consider ‘potential type’ kernels as in the following definition
(see also Dondi and the author [8], where such classes have been introduced
in a form that generalizes those of Giraud [15], Gegelia [13] and Kupradze,
Gegelia, Basheleishvili and Burchuladze [22, Chap. IV]).

Definition 3.2. Let X, Y ⊆ R
n. Let s1, s2, s3 ∈ R. We denote by Ks1,s2,s3(X×

Y ) the set of continuous functions K from (X × Y )\DX×Y to C such that

‖K‖Ks1,s2,s3 (X×Y ) ≡ sup
{

|x − y|s1 |K(x, y)| : (x, y) ∈ X × Y, x �= y

}

+ sup
{ |x′ − y|s2

|x′ − x′′|s3
|K(x′, y) − K(x′′, y)| :

x′, x′′ ∈ X,x′ �= x′′, y ∈ Y \Bn(x′, 2|x′ − x′′|)
}

< +∞.

One can easily verify that (Ks1,s2,s3(X × Y ), ‖ · ‖Ks1,s2,s3 (X×Y )) is a
normed space. By our definition, if s1, s2, s3 ∈ R, we have

Ks1,s2,s3(X × Y ) ⊆ Ks1,X×Y

and

‖K‖Ks1,X×Y
≤ ‖K‖Ks1,s2,s3 (X×Y ) ∀K ∈ Ks1,s2,s3(X × Y ).

We note that if we choose s2 = s1 + s3 we have a so-called class of standard
kernels. Then we have the following elementary known embedding lemma
(cf. e.g., [24, Lem. 3.1]).

Lemma 3.3. Let X, Y ⊆ R
n. Let s1, s2, s3 ∈ R. If a ∈ [0,+∞[, then

Ks1,s2,s3(X × Y ) is continuously embedded into Ks1,s2−a,s3−a(X × Y ).

Next we introduce the following known elementary lemma, which we
exploit later and which can be proved by the triangular inequality.

Lemma 3.4. If x′, x′′ ∈ R
n, x′ �= x′′, y ∈ R

n\Bn(x′, 2|x′ − x′′|), then
1
2
|x′ − y| ≤ |x′′ − y| ≤ 2|x′ − y|.

Next we state the following two product rule statements (cf. [24, Thm. 3.1,
Prop. 3.1]).

Theorem 3.5. Let X, Y ⊆ R
n. Let s1, s2, s3, t1, t2, t3 ∈ R.

(i) If K1 ∈ Ks1,s2,s3(X × Y ) and K2 ∈ Kt1,t2,t3(X × Y ), then the following
inequality holds

|K1(x′, y)K2(x′, y) − K1(x′′, y)K2(x′′, y)|
≤ ‖K1‖Ks1,s2,s3 (X×Y )‖K2‖Kt1,t2,t3 (X×Y )

×
( |x′ − x′′|s3

|x′ − y|s2+t1
+

2|s1||x′ − x′′|t3
|x′ − y|t2+s1

)

for all x′, x′′ ∈ X, x′ �= x′′, y ∈ Y \Bn(x′, 2|x′ − x′′|).
(ii) The pointwise product is bilinear and continuous from

Ks1,s1+s3,s3(X × Y ) × Kt1,t1+s3,s3(X × Y ) to Ks1+t1,s1+s3+t1,s3(X × Y ).
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Proposition 3.6. Let X, Y ⊆ R
n. Let s1, s2, s3 ∈ R, α ∈]0, 1]. Then the

following statements hold.
(i) If K ∈ Ks1,s2,s3(X × Y ) and f ∈ C0,α

b (X), then

|K(x, y)f(x)| |x − y|s1 ≤ ‖K‖Ks1,X×Y
sup
X

|f | ∀(x, y) ∈ X × Y \DX×Y .

and

|K(x′, y)f(x′) − K(x′′, y)f(x′′)|
≤ ‖K‖Ks1,s2,s3 (X×Y )‖f‖C0,α

b (X)

{ |x′ − x′′|s3

|x′ − y|s2
+ 2|s1| |x′ − x′′|α

|x′ − y|s1

}

for all x′, x′′ ∈ X, x′ �= x′′, y ∈ Y \Bn(x′, 2|x′ − x′′|).
(ii) If s2 ≥ s1 and X and Y are both bounded, then the map from

Ks1,s2,s3(X × Y ) × C0,s3
b (X) to Ks1,s2,s3(X × Y )

that takes the pair (K, f) to the kernel K(x, y)f(x) of the variable
(x, y) ∈ (X × Y )\DX×Y is bilinear and continuous.

(iii) The map from

Ks1,s2,s3(X × Y ) × C0
b (Y ) to Ks1,s2,s3(X × Y )

that takes the pair (K, f) to the kernel K(x, y)f(y) of the variable
(x, y) ∈ (X × Y )\DX×Y is bilinear and continuous.

Next we have the following imbedding statement that holds for bounded
sets (cf. [24, Prop. 3.2]).

Proposition 3.7. Let X, Y be bounded subsets of Rn. Let s1, s2, s3, t1, t2,
t3 ∈ R. Then the following statements hold.
(i) If t1 ≥ s1 then Ks1,X×Y is continuously embedded into Kt1,X×Y .
(ii) If t1 ≥ s1, t3 ≤ s3 and (t2 − t3) ≥ (s2 − s3), then

Ks1,s2,s3(X × Y ) is continuously embedded into Kt1,t2,t3(X × Y ).
(iii) If t1 ≥ s1, t3 ≤ s3, then Ks1,s1+s3,s3(X × Y ) is continuously embedded

into the space Kt1,t1+t3,t3(X × Y ).

We now show that we can associate a potential type kernel to all Hölder
continuous functions (cf. [24, Lem. 3.3]).

Lemma 3.8. Let X, Y be subsets of R
n. Let α ∈]0, 1]. Then the following

statements hold.
(i) If μ ∈ C0,α(X ∪ Y ), then the map Ξ[μ] defined by

Ξ[μ](x, y) ≡ μ(x) − μ(y) ∀(x, y) ∈ (X × Y )\DX×Y (3.2)

belongs to K−α,0,α(X × Y ).
(ii) The operator Ξ from C0,α(X ∪ Y ) to K−α,0,α(X × Y ) that takes μ to

Ξ[μ] is linear and continuous.

In order to introduce a result of [24, Thm. 6.3], we need to introduce
a further norm for kernels in the case in which Y is a compact manifold of
class C1 that is imbedded in M = R

n and X = Y .
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Definition 3.9. Let Y be a compact manifold of class C1 that is imbedded in
R

n. Let s1, s2, s3 ∈ R. We set

K�
s1,s2,s3

(Y × Y ) ≡
{

K ∈ Ks1,s2,s3(Y × Y ) :

sup
x∈Y

sup
r∈]0,+∞[

∣
∣
∣
∣
∣

∫

Y \Bn(x,r)

K(x, y) dσy

∣
∣
∣
∣
∣
< +∞

}

and

‖K‖K�
s1,s2,s3 (Y ×Y ) ≡ ‖K‖Ks1,s2,s3 (Y ×Y )

+ sup
x∈Y

sup
r∈]0,+∞[

∣
∣
∣
∣
∣

∫

Y \Bn(x,r)

K(x, y) dσy

∣
∣
∣
∣
∣

∀K ∈ K�
s1,s2,s3

(Y × Y ).

Clearly, (K�
s1,s2,s3

(Y × Y ), ‖ · ‖K�
s1,s2,s3 (Y ×Y )) is a normed space. By

definition, K�
s1,s2,s3

(Y × Y ) is continuously embedded into Ks1,s2,s3(Y × Y ).
Next we introduce a function that we need for a generalized Hölder norm. For
each θ ∈]0, 1], we define the function ωθ(·) from [0,+∞[ to itself by setting

ωθ(r) ≡
⎧
⎨

⎩

0 r = 0,
rθ| ln r| r ∈]0, rθ],
rθ
θ | ln rθ| r ∈]rθ,+∞[,

where rθ ≡ e−1/θ for all θ ∈]0, 1]. Obviously, ωθ(·) is concave and satisfies
condition (2.2). We also note that if D ⊆ R

n, then the continuous embedding

C0,θ
b (D) ⊆ C

0,ωθ(·)
b (D) ⊆ C0,θ′

b (D)

holds for all θ′ ∈]0, θ[. Here the subscript b denotes that we are consider-
ing the intersection of a (generalized) Hölder space with the space B(D) of
the bounded functions in D. Then we introduce the following result of [24,
Thm. 6.3].

Theorem 3.10. Let Y be a compact manifold of class C1 that is imbedded in
R

n. Let s1 ∈ [0, (n−1)[. Let β ∈]0, 1], t1 ∈ [β, (n−1)+β[, t2 ∈ [β,+∞[, t3 ∈
]0, 1]. Let the kernel K ∈ Ks1,s1+1,1(Y ×Y ) satisfy the following assumption

K(·, y) ∈ C1(Y \{y}) ∀y ∈ Y.

Let gradY,xK(·, ·) denote the tangential gradient of K(·, ·) with respect to the
first variable. Then the following statements hold.
(i) If t1 < (n−1) and gradY,xK(·, ·) ∈ (Kt1,t2,t3(Y × Y ))n, then the follow-

ing statements hold.
(a) If t2 − β > (n − 1), t2 < (n − 1) + β + t3 and

∫

Y

K(·, y) dσy ∈ C1,min{β,(n−1)+t3+β−t2}(Y ),

then the map from C0,β(Y ) to C1,min{β,(n−1)+t3+β−t2}(Y ) that
takes μ to the function

∫

Y
K(·, y)μ(y) dσy is linear and continu-

ous.
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(aa) If t2 − β = (n − 1) and
∫

Y

K(·, y) dσy ∈ C1,max{rβ ,ωt3 (·)}(Y ),

then the map from C0,β(Y ) to C1,max{rβ ,ωt3 (·)}(Y ) that takes μ to
the function

∫

Y
K(·, y)μ(y) dσy is linear and continuous.

(ii) If t1 = (n − 1) and gradY,xK(·, ·) ∈
(
K�

t1,t2,t3(Y × Y )
)n

, then the fol-
lowing statements hold.
(b) If t2 − β > (n − 1), t2 < (n − 1) + β + t3 and

∫

Y

K(·, y) dσy ∈ C1,min{β,(n−1)+t3+β−t2}(Y ),

then the map from C0,β(Y ) to C
1,min{β,(n−1)+t3+β−t2}
b (Y ) that

takes μ to the function
∫

Y
K(·, y)μ(y) dσy is linear and continu-

ous.
(bb) If t2 − β = (n − 1) and

∫

Y

K(·, y) dσy ∈ C1,max{rβ ,ωt3 (·)}(Y ),

then the map from C0,β(Y ) to C1,max{rβ ,ωt3 (·)}(Y ) that takes μ to
the function

∫

Y
K(·, y)μ(y) dσy is linear and continuous.

(iii) If t1 > (n−1) and gradY,xK(·, ·) ∈ (Kt1,t2,t3(Y × Y ))n, then the follow-
ing statements hold.
(c) If t2 − β > (n − 1), t2 < (n − 1) + β + t3 and

∫

Y

K(·, y) dσy ∈ C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y ),

then the map from C0,β(Y ) to

C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y )

that takes μ to the function
∫

Y
K(·, y)μ(y) dσy is linear and con-

tinuous.
(cc) If t2 − β = (n − 1) and

∫

Y

K(·, y) dσy ∈ C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y ),

then the map from C0,β(Y ) to C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y ) that
takes μ to the function

∫

Y
K(·, y)μ(y) dσy is linear and continuous.

We also need to consider convolution kernels, thus we introduce the
following notation. If n ∈ N\{0}, m ∈ N, h ∈ R, α ∈]0, 1], then we set

Km,α
h ≡

{

k ∈ Cm,α
loc (Rn\{0}) : k is positively homogeneous of degree h

}

,

(3.3)
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where Cm,α
loc (Rn\{0}) denotes the set of functions of Cm(Rn\{0}) whose re-

striction to Ω is of class Cm,α(Ω) for all bounded open subsets Ω of Rn such
that Ω ⊆ R

n\{0} and we set

‖k‖Km,α
h

≡ ‖k‖Cm,α(∂Bn(0,1)) ∀k ∈ Km,α
h .

We can easily verify that
(
Km,α

h , ‖ · ‖Km,α
h

)
is a Banach space. We also men-

tion the following variant of a well known statement.

Lemma 3.11. Let n ∈ N\{0}, h ∈ [0,+∞[. If k ∈ C0,1
loc (Rn\{0}) is positively

homogeneous of degree −h, then k(x − y) ∈ Kh,h+1,1(Rn × R
n). Moreover,

the map from K0,1
−h to Kh,h+1,1(Rn × R

n) which takes k to k(x − y) is linear
and continuous (see (3.3) for the definition of K0,1

−h).

Proof. Since k is positively homogeneous of degree −h, we have

|k(x − y)| ≤ ( sup
∂Bn(0,1)

|k|)|x − y|−h ∀(x, y) ∈ (Rn × R
n)\DRn×Rn .

Since k is positively homogeneous of degree −(n−1), the inequality of Cialdea
[3, VIII, p. 47] (see also Dalla Riva, the author and Musolino [7, Lem. 4.14]
with α = 1) implies that if x′, x′′ ∈ R

n, x′ �= x′′, y ∈ R
n\Bn(x′, 2|x′ − x′′|),

then

|k(x′ − y) − k(x′′ − y)|
≤ (21 + 2h)max{ sup

∂Bn(0,1)

|k|, |k : ∂Bn(0, 1)|1}

×|(x′ − y) − (x′′ − y)|(min{|(x′ − y)|, |(x′′ − y)|})−h−1.

Then Lemma 3.4 implies that |x′′ − y| ≥ 1
2 |x′ − y|, and thus we have

|k(x′ − y) − k(x′′ − y)| ≤ (2 + 2h)

×max{ sup
∂Bn(0,1)

|k|, |k : ∂Bn(0, 1)|1} |x′ − x′′|
|x′ − y|h+1

2h+1

and the proof is complete. �
If X and Y are subsets of Rn, then the restriction operator

from Kh,h+1,1(Rn × R
n) to Kh,h+1,1(X × Y )

is linear and continuous. Thus Lemma 3.11 implies that the map

from the subspace K0,1
−h of C0,1

loc (Rn\{0}) to Kh,h+1,1(X × Y ),

which takes k to k(x − y) is linear and continuous.

Remark 3.12. As Lemma 3.11 shows the convolution kernels associated to
positively homogeneous functions of negative degree are standard kernels.
We note however that there exist potential type kernels that belong to a
class Ks1,s2,s3(X × Y ) with s2 �= s1 + s3.

4. Technical Preliminaries on the Differential Operator

Let Ω be a bounded open subset of Rn of class C1. The kernel of the boundary
integral operator corresponding to the double layer potential is the following
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B∗
Ω,y (Sa(x − y)) ≡ −

n∑

l,j=1

ajlνl(y)
∂Sa

∂xj
(x − y)

−
n∑

l=1

νl(y)alSa(x − y) ∀(x, y) ∈ (∂Ω)2\D∂Ω (4.1)

(cf. (1.4)). In order to analyze the kernel of the double layer potential, we
need some more information on the fundamental solution Sa. To do so, we
introduce the fundamental solution Sn of the Laplace operator. Namely, we
set

Sn(x) ≡
{ 1

sn
ln |x| ∀x ∈ R

n\{0}, if n = 2,
1

(2−n)sn
|x|2−n ∀x ∈ R

n\{0}, if n > 2,

where sn denotes the (n−1) dimensional measure of ∂Bn(0, 1) and we follow
a formulation of Dalla Riva [5, Thm. 5.2, 5.3] and Dalla Riva, Morais and
Musolino [6, Thm. 5.5], that we state as in Dondi and the author [8, Cor. 4.2]
(see also John [19], and Miranda [28] for homogeneous operators, and Mitrea
and Mitrea [31, p. 203]).

Proposition 4.1. Let a be as in (1.1), (1.2), (1.3). Let Sa be a fundamental
solution of P [a,D]. Then there exist an invertible matrix T ∈ Mn(R) such
that

a(2) = TT t, (4.2)

a real analytic function A1 from ∂Bn(0, 1)×R to C such that A1(·, 0) is odd,
b0 ∈ C, a real analytic function B1 from R

n to C such that B1(0) = 0, and a
real analytic function C from R

n to C such that

Sa(x) =
1√

det a(2)
Sn(T−1x) + |x|3−nA1(

x

|x| , |x|)
+(B1(x) + b0(1 − δ2,n)) ln |x| + C(x), (4.3)

for all x ∈ R
n\{0}, and such that both b0 and B1 equal zero if n is odd.

Moreover,
1√

det a(2)
Sn(T−1x)

is a fundamental solution for the principal part of P [a,D].

In particular for the statement that A1(·, 0) is odd, we refer to Dalla
Riva, Morais and Musolino [6, Thm. 5.5, (32)], where A1(·, 0) coincides with
f1(a, ·) in that paper. Here we note that a function A from (∂Bn(0, 1)) × R

to C is said to be real analytic provided that it has a real analytic extension
to an open neighbourhood of (∂Bn(0, 1)) × R in R

n+1. Then we have the
following elementary lemma.

Lemma 4.2. Let n ∈ N\{0, 1}. A function A from (∂Bn(0, 1))×R to C is real
analytic if and only if the function Ã from (Rn\{0}) × R defined by

Ã(x, r) ≡ A(
x

|x| , r) ∀(x, r) ∈ (Rn\{0}) × R (4.4)

is real analytic.
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Proof. If A is real analytic, then it has a real analytic extension A� to an
open neighborhood U of (∂Bn(0, 1)) × R in R

n+1. Since the function x
|x| is

real analytic in x ∈ R
n\{0}, then the composition Ã of A� and of ( x

|x| , r) is
real analytic.

Conversely, if Ã is real analytic, we note that Ã is an extension of A to
the open neighborhood (Rn\{0}) × R of (∂Bn(0, 1)) × R in R

n+1 and that
accordingly A is real analytic. �

Then one can prove the following formula for the gradient of the fun-
damental solution (see Dondi and the author [8, Lem. 4.3, (4.8) and the
following 2 lines]. Here one should remember that A1(·, 0) is odd and that
b0 = 0 if n is odd).

Proposition 4.3. Let a be as in (1.1), (1.2), (1.3). Let T ∈ Mn(R) be as
in (4.2). Let Sa be a fundamental solution of P [a,D]. Let B1, C be as in
Proposition 4.1. Then there exists a real analytic function A2 from ∂Bn(0, 1)×
R to C

n such that

DSa(x) =
1

sn

√
det a(2)

|T−1x|−nxt(a(2))−1

+|x|2−nA2(
x

|x| , |x|) + DB1(x) ln |x| + DC(x) ∀x ∈ R
n\{0}.

(4.5)

Moreover, A2(·, 0) is even.

Then one can prove the following formula for the kernel of the double
layer potential

B∗
Ω,y (Sa(x − y)) = −DSa(x − y)a(2)ν(y) − νt(y)a(1)Sa(x − y)

= − 1

sn

√
det a(2)

|T−1(x − y)|−n(x − y)tν(y)

−|x − y|2−nA2(
x − y

|x − y| , |x − y|)a(2)ν(y)

−DB1(x − y)a(2)ν(y) ln |x − y| − DC(x − y)a(2)ν(y)

−νt(y)a(1)Sa(x − y) ∀x, y ∈ ∂Ω, x �= y. (4.6)

(see Dondi and the author [8, (5.2) p. 86]). Then the following statement
holds (see Dondi and the author [8, Lem. 5.1, inequality at line 13 of p. 86]).

Lemma 4.4. Let a be as in (1.1), (1.2), (1.3). Let Sa be a fundamental solu-
tion of P [a,D]. Let α ∈]0, 1]. Let Ω be a bounded open subset of Rn of class
C1,α. Then the following statements hold.
(i) If α ∈]0, 1[, then

bΩ,α ≡ sup
{

|x − y|n−1−α|B∗
Ω,y (Sa(x − y)) | : x, y ∈ ∂Ω, x �= y

}

< +∞.

(4.7)

If n > 2, then (4.7) holds also for α = 1. If n = 2 and DB1(0) = 0,
then (4.7) holds also for α = 1.
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(ii) If n = 2 and α = 1, then

bΩ,α ≡ sup
{ |B∗

Ω,y (Sa(x − y)) |
(1 + | ln |x − y||) : x, y ∈ ∂Ω, x �= y

}

< +∞. (4.8)

In particular, the kernel B∗
Ω,y (Sa(x − y)) belongs to Kε,(∂Ω)×(∂Ω) for all

ε ∈]0,+∞[.
(iii)

b̃Ω,α ≡ sup
{ |x′ − y|n−α

|x′ − x′′| |B∗
Ω,y (Sa(x′ − y)) − B∗

Ω,y (Sa(x′′ − y)) | :

x′, x′′ ∈ ∂Ω, x′ �= x′′, y ∈ ∂Ω\Bn(x′, 2|x′ − x′′|)
}

< +∞.

By applying equality (4.6), we can compute a formula for the tangential
gradient with respect to its first variable of the kernel of the double layer
potential and establish some of its properties. To do so we introduce the
following technical lemma (see Dondi and the author [8, Lem. 3.2 (v), 3.3]).

Lemma 4.5. Let Y be a nonempty bounded subset of Rn. Then the following
statements hold.

(i) Let F ∈ Lip(∂Bn(0, 1) × [0,diam (Y )]) with

Lip(F ) ≡
{ |F (θ′, r′) − F (θ′′, r′′)|

|θ′ − θ′′| + |r′ − r′′| :

(θ′, r′), (θ′′, r′′) ∈ ∂Bn(0, 1) × [0,diam (Y )], (θ′, r′) �= (θ′′, r′′)
}

.

Then
∣
∣
∣
∣F

(
x′ − y

|x′ − y| , |x
′ − y|

)

− F

(
x′′ − y

|x′′ − y| , |x
′′ − y|

)∣
∣
∣
∣

≤ Lip(F )(2 + diam (Y ))
|x′ − x′′|
|x′ − y| ∀y ∈ Y \Bn(x′, 2|x′ − x′′|),

(4.9)

for all x′, x′′ ∈ Y , x′ �= x′′. In particular, if f ∈ C1(∂Bn(0, 1) × R,C),
then

Mf,Y ≡ sup
{ ∣

∣
∣
∣f

(
x′ − y

|x′ − y| , |x
′ − y|

)

− f

(
x′′ − y

|x′′ − y| , |x
′′ − y|

)∣
∣
∣
∣

|x′ − y|
|x′ − x′′|

: x′, x′′ ∈ Y, x′ �= x′′, y ∈ Y \Bn(x′, 2|x′ − x′′|)
}

is finite and thus the kernel f
(

x−y
|x−y| , |x − y|

)
belongs to K0,1,1(Y × Y ).

(ii) Let W be an open neighbourhood of (Y − Y ). Let f ∈ C1(W,C). Then
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M̃f,Y ≡ sup
{

|f(x′ − y) − f(x′′ − y)| |x′ − x′′|−1 :

x′, x′′ ∈ Y, x′ �= x′′, y ∈ Y

}

< +∞.

Here Y − Y ≡ {y1 − y2 : y1, y2 ∈ Y }. In particular, the kernel f(x − y)
belongs to the class K0,0,1(Y × Y ), which is continuously imbedded into
K0,1,1(Y × Y ).

(iii) The kernel ln |x − y| belongs to Kε,1,1(Y × Y ) for all ε ∈]0, 1[.

Proof. For the proof of (i), the first part of (ii) and (iii), we refer to Dondi
and the author [8, Lem. 3.2 (v), 3.3]. The imbedding of the second part of
(ii) follows by the imbedding Proposition 3.7 (ii). �

We are now ready to prove the following statement. For the definition
of tangential gradient grad∂Ω and tangential divergence div∂Ω, we refer to
Kirsch and Hettlich [21, A.5], Chavel [1, Chap. 1].

Lemma 4.6. Let a be as in (1.1), (1.2), (1.3). Let Sa be a fundamental solu-
tion of P [a,D]. Let α ∈]0, 1]. Let Ω be a bounded open subset of Rn of class
C1,α. Then the following statements hold.
(i) If h ∈ {1, . . . , n}, then

(grad∂Ω,xB∗
Ω,y (Sa(x − y)))h =

∂

∂xh
B∗

Ω,y (Sa(x − y)))

−νh(x)
n∑

l=1

νl(x)
∂

∂xl
B∗

Ω,y (Sa(x − y)))

=
n

sn

√
det a(2)

(x − y)t · ν(y)
|T−1(x − y)|n

×
n∑

l=1

νl(x)
[

νl(x)

∑n
j,z=1(T

−1)jz(xz − yz)(T−1)jh

|T−1(x − y)|2

−νh(x)

∑n
j,z=1(T

−1)jz(xz − yz)(T−1)jl

|T−1(x − y)|2
]

−
∑n

l=1 νl(x)
[
νl(x)νh(y) − νh(x)νl(y)

]

sn

√
det a(2)|T−1(x − y)|n

−(2 − n)|x − y|1−nA2

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)

×
n∑

l=1

νl(x)
[
νl(x)

xh − yh

|x − y| − νh(x)
xl − yl

|x − y|
]

−
n∑

j=1

∂A2

∂yj

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)|x − y|−n

×
n∑

l=1

νl(x)
[

νl(x)
(

δjh|x − y| − (xj − yj)(xh − yh)
|x − y|

)
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−νh(x)
(

δjl|x − y| − (xj − yj)(xl − yl)
|x − y|

)]

−∂A2

∂r

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)

×
n∑

l=1

νl(x)
[

νl(x)
xh − yh

|x − y|n−1
− νh(x)

xl − yl

|x − y|n−1

]

−
n∑

j,z=1

n∑

l=1

νl(x)
[

νl(x)
∂2B1

∂xh∂xj
(x − y) − νh(x)

∂2B1

∂xl∂xj
(x − y)

]

×ajzνz(y) ln |x − y|

−DB1(x − y)a(2)ν(y)
n∑

l=1

νl(x)
[

νl(x)
xh − yh

|x − y|2 − νh(x)
xl − yl

|x − y|2
]

−
n∑

j,s=1

n∑

l=1

νl(x)
[

νl(x)
∂2C

∂xh∂xj
(x − y) − νh(x)

∂2C

∂xl∂xj
(x − y)

]

ajsνs(y)

−ν(y)t · a(1)
n∑

l=1

νl(x)
[

νl(x)
∂Sa

∂xh
(x − y) − νh(x)

∂Sa

∂xl
(x − y)

]

(4.10)

for all (x, y) ∈ (∂Ω)2\D∂Ω, where we understand that the symbols

∂A2

∂yj
∀j ∈ {1, . . . , n}

denote partial derivatives of any of the analytic extensions of A2 to an
open neighborhood of (∂Bn(0, 1)) × R in R

n+1.
(ii) The kernel grad∂Ω,xB∗

Ω,y (Sa(x − y)) belongs to (Kn−α,n,α(∂Ω × ∂Ω))n.

Proof. (i) By formula (4.6), we have

∂

∂xh
B∗

Ω,y (Sa(x − y))) = − (−n)

sn

√
det a(2)

×
n∑

j,z=1

(T−1)jz(xz − yz)(T−1)jh

|T−1(x − y)|2
(x − y)t · ν(y)
|T−1(x − y)|n

− 1

sn

√
det a(2)

|T−1(x − y)|−nνh(y)

−(2 − n)|x − y|1−n xh − yh

|x − y| A2(
x − y

|x − y| , |x − y|)a(2)ν(y)

−
n∑

j=1

∂A2

∂yj
(

x − y

|x − y| , |x − y|)a(2)ν(y)
δjh|x − y| − (xj−yj)(xh−yh)

|x−y|
|x − y|n

−∂A2

∂r
(

x − y

|x − y| , |x − y|)a(2)ν(y)
xh − yh

|x − y|n−1

−
n∑

j,z=1

∂2B1

∂xh∂xj
(x − y)ajzνz(y) ln |x − y|



21 Page 16 of 28 M. Lanza de Cristoforis IEOT

−DB1(x − y)a(2)ν(y)
xh − yh

|x − y|2

−
n∑

j,s=1

∂2C

∂xh∂xj
(x − y)ajsνs(y) − ν(y)t · a(1) ∂Sa

∂xh
(x − y)

for all (x, y) ∈ (∂Ω)2\D∂Ω. Then the definition of tangential gradient implies
the validity of formula (4.10).

We now turn to the proof of (ii). If suffices to show that if h ∈ {1, . . . , n},
then each addendum in the right hand side of formula (4.10) belongs to the
class Kn−α,n,α(∂Ω × ∂Ω).

By Lemma 3.11 the kernel 1
|T −1(x−y)|n belongs to Kn,n+1,1(∂Ω × ∂Ω).

Since there exists cΩ,α ∈]0,+∞[ such that

|ν(y) · (x − y)| ≤ cΩ,α|x − y|1+α ∀x, y ∈ ∂Ω

the kernel ν(y) · (x− y) belongs to K−1−α,−α,1(∂Ω× ∂Ω) (cf. e.g., Dondi and
the author [8, Lem. 3.4 and p. 87 line 8]). Then the product Theorem 3.5
implies that the kernel ν(y)(x−y)

|T −1(x−y)|n belongs to Kn−1−α,n−α,1(∂Ω × ∂Ω). By
Lemma 3.3, Kn−1−α,n−α,1(∂Ω×∂Ω) is contained in Kn−1−α,n−1,α(∂Ω×∂Ω).

By Lemma 3.11 the kernel xh−yh

|T −1(x−y)|2 belongs to K1,2,1(∂Ω × ∂Ω). By
Lemma 3.3, K1,2,1(∂Ω × ∂Ω) is contained in K1,1+α,α(∂Ω × ∂Ω). Then the
α-Hölder continuity of ν and Propostion 3.6 imply that

n∑

l=1

νl(x)
[

νl(x)

∑n
j,z=1(T

−1)jz(xz − yz)(T−1)jh

|T−1(x − y)|2

−νh(x)

∑n
j,z=1(T

−1)jz(xz − yz)(T−1)jl

|T−1(x − y)|2
]

belongs to K1,1+α,α(∂Ω × ∂Ω). Then the product Theorem 3.5 (ii) implies
that

(x − y)t · ν(y)
|T−1(x − y)|n

n∑

l=1

νl(x)
[

νl(x)

∑n
j,z=1(T

−1)jz(xz − yz)(T−1)jh

|T−1(x − y)|2

× − νh(x)

∑n
j,z=1(T

−1)jz(xt − yt)(T−1)jl

|T−1(x − y)|2
]

∈ Kn−α,n,α(∂Ω × ∂Ω). (4.11)

We now consider the second addendum in the right hand side of formula
(4.10) and we observe that

∑n
l=1 νl(x)

[
νl(x)νh(y) − νh(x)νl(y)

]

sn

√
det a(2)|T−1(x − y)|n

=
∑n

l=1 νl(x)
[
νl(x)(νh(y) − νh(x)) − νh(x)(νl(y) − νl(x))

]

sn

√
det a(2)|T−1(x − y)|n

for all (x, y) ∈ (∂Ω)2\D∂Ω. Since ν is α-Hölder continuous, Lemma 3.8 implies
that νh(x) − νh(y) belongs to K−α,0,α(∂Ω × ∂Ω). By Lemma 3.11 the kernel
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1
|T −1(x−y)|n belongs to Kn,n+1,1(∂Ω×∂Ω) ⊆ Kn,n+1−(1−α),1−(1−α)(∂Ω×∂Ω).
Then the product Theorem 3.5 (ii) implies that

νh(x) − νh(y)
|T−1(x − y)|n ∈ Kn−α,n+α−α,α(∂Ω × ∂Ω).

Then the α-Hölder continuity of ν and Propostion 3.6 implies that
n∑

l=1

(νl(x) − νl(y))
|T−1(x − y)|n νl(x)νh(x) ∈ Kn−α,n,α(∂Ω × ∂Ω).

Hence,
∑n

l=1 νl(x)
[
νl(x)νh(y) − νh(x)νl(y)

]

|T−1(x − y)|n ∈ Kn−α,n,α(∂Ω × ∂Ω). (4.12)

We now consider the third addendum in the right hand side of formula (4.10).
Since A2 is real analytic in ∂Bn(0, 1)×R, Lemma 4.5 (i) implies that the kernel
A2

(
x−y

|x−y| , |x − y|
)

belongs to K0,1,1(∂Ω × ∂Ω). Since the function |ξ|1−n ξh

|ξ|
of the variable ξ ∈ R

n\{0} is positively homogeneous of degree −(n − 1),
Lemma 3.11 implies that the kernel |x−y|1−n xh−yh

|x−y| is of class Kn−1,n,1(∂Ω×
∂Ω). Then the product Theorem 3.5 (ii) and Proposition 3.6 (iii) imply that
the kernel

−(2 − n)|x − y|1−n xh − yh

|x − y| A2

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)

belongs to the class Kn−1,n,1(∂Ω × ∂Ω). By the imbedding Proposition 3.7
(ii) with

s1 = n − 1, s2 = n, s3 = 1, t1 = n − α, t2 = n, t3 = α,

Kn−1,n,1(∂Ω×∂Ω) is contained in Kn−α,n,α(∂Ω×∂Ω). Since the components
of ν are of class C0,α, the product Proposition 3.6 (ii) implies that

−(2 − n)|x − y|1−nA2

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)

×
n∑

l=1

νl(x)
[
νl(x)

xh − yh

|x − y| − νh(x)
xl − yl

|x − y|
] ∈ Kn−α,n,α(∂Ω × ∂Ω).

(4.13)

We now consider the fourth addendum in the right hand side of formula
(4.10). Let j ∈ {1, . . . , n}. Since ∂A2

∂yj
is real analytic in ∂Bn(0, 1)×R, Lemma

4.5 (i) implies that the kernel ∂A2
∂yj

(
x−y

|x−y| , |x − y|
)

belongs to K0,1,1(∂Ω×∂Ω).
By Lemma 3.3,

K0,1,1(∂Ω × ∂Ω) ⊆ K0,1−(1−α),1−(1−α)(∂Ω × ∂Ω) = K0,α,α(∂Ω × ∂Ω).

Since the functions |ξ|−(n−1) and |ξ|−n−1ξjξl of the variable ξ ∈ R
n\{0}

are positively homogeneous of degree −(n − 1), Lemma 3.11 implies that the
kernels |x−y|−(n−1) and |x−y|−n−1(xj−yj)(xl−yl) are of class Kn−1,n,1(∂Ω×
∂Ω). By Lemma 3.3, Kn−1,n,1(∂Ω × ∂Ω) is contained in Kn−1,n−1+α,α(∂Ω ×
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∂Ω). Then the product Theorem 3.5 (ii) implies that the product is continuous
from

Kn−1,n−1+α,α(∂Ω × ∂Ω) × K0,α,α(∂Ω × ∂Ω) to Kn−1,n−1+α,α(∂Ω × ∂Ω).

Then the α-Hölder continuity of the components of ν, Proposition 3.6 (ii),
(iii) and the imbedding Proposition 3.7 (iii) imply that

−
n∑

j=1

∂A2

∂yj

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)|x − y|−n

×
n∑

l=1

νl(x)
[

νl(x)
(

δjh|x − y| − (xj − yj)(xh − yh)
|x − y|

)

−νh(x)
(

δjl|x − y| − (xj − yj)(xl − yl)
|x − y|

)]

∈ Kn−1,n−1+α,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω). (4.14)

We now consider the fifth addendum in the right hand side of formula (4.10).
Since ∂A2

∂r is real analytic in ∂Bn(0, 1) × R, Lemma 4.5 (i) implies that the

kernel ∂A2
∂r

(
x−y

|x−y| , |x − y|
)

belongs to K0,1,1(∂Ω × ∂Ω) that is contained in

K0,α,α(∂Ω×∂Ω) (cf. Lemma 3.3). Since the function |ξ|−(n−1)ξl of the variable
ξ ∈ R

n\{0} is positively homogeneous of degree n − 2, Lemma 3.11 implies
that the kernels |x− y|−(n−1)(xl − yl) are of class Kn−2,n−1,1(∂Ω× ∂Ω), that
is contained in Kn−2,n−2+α,α(∂Ω × ∂Ω) (cf. Lemma 3.3). Then the product
Theorem 3.5 (ii) implies that the product is continuous from

Kn−2,n−2+α,α(∂Ω × ∂Ω) × K0,α,α(∂Ω × ∂Ω) to Kn−2,n−2+α,α(∂Ω × ∂Ω).

Then the α-Hölder continuity of the components of ν, Proposition 3.6 (ii),
(iii) and the imbedding Proposition 3.7 (iii) imply that

∂A2

∂r

(
x − y

|x − y| , |x − y|
)

a(2)ν(y)
n∑

l=1

νl(x)

×
[

νl(x)
xh − yh

|x − y|n−1
− νh(x)

xl − yl

|x − y|n−1

]

∈ Kn−2,n−2+α,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω). (4.15)

We now consider the sixth addendum in the right hand side of formula (4.10).
Since B1 is analytic, Lemma 4.5 (ii) implies that the kernel ∂2B1

∂xl∂xj
(x − y)

belongs to K0,1,1(∂Ω×∂Ω) that is contained in K0,α,α(∂Ω×∂Ω) for each j, l ∈
{1, . . . , n} (cf. Lemma 3.3). Then the α-Hölder continuity of the components
of ν and the product Proposition 3.6 (ii), (iii) imply that

n∑

j,z=1

n∑

l=1

νl(x)
[

νl(x)
∂2B1

∂xh∂xj
(x − y) − νh(x)

∂2B1

∂xl∂xj
(x − y)

]

ajzνz(y)

∈ K0,α,α(∂Ω × ∂Ω).

By Lemma 4.5 (iii) and by the imbedding Proposition 3.7 (ii), we have

ln |x − y| ∈ Kε,1,1(∂Ω × ∂Ω) ⊆ Kε,α+ε,α(∂Ω × ∂Ω) ∀ε ∈]0, 1[.
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Theorem 3.5 (ii) implies that the product is continuous from

K0,α,α(∂Ω × ∂Ω) × Kε,α+ε,α(∂Ω × ∂Ω) to Kε,α+ε,α(∂Ω × ∂Ω).

Hence, inequalities n − α ≥ ε, α ≤ α and the imbedding Proposition 3.7 (iii)
imply that

n∑

j,z=1

n∑

l=1

νl(x)
[

νl(x)
∂2B1

∂xh∂xj
(x − y) − νh(x)

∂2B1

∂xl∂xj
(x − y)

]

×ajzνz(y) ln |x − y| ∈ Kε,α+ε,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω).
(4.16)

We now consider the seventh addendum in the right hand side of formula
(4.10). Since B1 is analytic, Lemma 4.5 (ii) and the product Proposition 3.6
(iii) imply that DB1(x − y)a(2)ν(y) belongs to K0,1,1(∂Ω × ∂Ω) that is con-
tained in K0,α,α(∂Ω×∂Ω) (cf. Lemma 3.3). Since the functions |ξ|−2ξl of the
variable ξ ∈ R

n\{0} are positively homogeneous of degree −1, Lemma 3.11
implies that the kernels |x − y|−2(xl − yl) are of class K1,2,1(∂Ω × ∂Ω) that
is contained in K1,1+α,α(∂Ω×∂Ω) (cf. Lemma 3.3). Hence the α-Hölder con-
tinuity of the components of ν and the product Proposition 3.6 (ii) imply
that

n∑

l=1

νl(x)
[

νl(x)
xh − yh

|x − y|2 − νh(x)
xl − yl

|x − y|2
]

∈ K1,1+α,α(∂Ω × ∂Ω).

Theorem 3.5 (ii) implies that the product is continuous from

K0,α,α(∂Ω × ∂Ω) × K1,1+α,α(∂Ω × ∂Ω) to K1,1+α,α(∂Ω × ∂Ω)

and thus the imbedding Proposition 3.7 (iii) implies that

DB1(x − y)a(2)ν(y)
n∑

l=1

νl(x)
[

νl(x)
xh − yh

|x − y|2 − νh(x)
xl − yl

|x − y|2
]

∈ K1,1+α,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω).
(4.17)

We now consider the eighth addendum in the right hand side of formula
(4.10). Since C is analytic, Lemma 4.5 (ii) implies that the kernel ∂2C

∂xl∂xj
(x−y)

belongs to K0,1,1(∂Ω×∂Ω) that is contained in K0,α,α(∂Ω×∂Ω) for each j, l ∈
{1, . . . , n} (cf. Lemma 3.3). Then the α-Hölder continuity of the components
of ν, the product Proposition 3.6 (ii), (iii) and the imbedding Proposition 3.7
(iii) imply that

n∑

j,s=1

n∑

l=1

νl(x)
[

νl(x)
∂2C

∂xh∂xj
(x − y) − νh(x)

∂2C

∂xl∂xj
(x − y)

]

ajsνs(y)

∈ K0,α,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω). (4.18)

We now consider the nineth addendum in the right hand side of formula
(4.10). By Dondi and the author [8, Rmk. 6.1], the kernels ∂Sa

∂xl
(x− y) belong

to the class Kn−1,n,1(∂Ω × ∂Ω) that is contained in Kn−1,n−1+α,α(∂Ω × ∂Ω)
for each l ∈ {1, . . . , n} (cf. Lemma 3.3). Hence the α-Hölder continuity of the



21 Page 20 of 28 M. Lanza de Cristoforis IEOT

components of ν, the product Proposition 3.6 (ii), (iii) and the imbedding
Proposition 3.7 (iii) imply that

−ν(y)t · a(1)
n∑

l=1

νl(x)
[

νl(x)
∂Sa

∂xh
(x − y) − νh(x)

∂Sa

∂xl
(x − y)

]

∈ Kn−1,n−1+α,α(∂Ω × ∂Ω) ⊆ Kn−α,n,α(∂Ω × ∂Ω).
(4.19)

By the memberships of (4.11)–(4.19), we conclude that each addendum in the
right hand side of formula (4.10) belongs to the class Kn−α,n,α(∂Ω×∂Ω). �

5. Continuity Properties of the Double Layer Potential

As a consequence of Lemmas 4.4 and 4.6, we can apply Theorem 3.10 and
prove the following classical result on the continuity of the double layer po-
tential on the boundary (see Miranda [29, 15.VI], where the author mentions
a result of Giraud [14]. For the Laplace operator in case n = 2 see Fichera
and De Vito [9, LXXXIII]).

Theorem 5.1. Let n ∈ N\{0, 1}. Let a be as in (1.1), (1.2), (1.3). Let Sa be
a fundamental solution of P [a,D]. Let α ∈]0, 1[, β ∈]0, 1], α + β > 1.

Let Ω be a bounded open subset of Rn of class C1,α. Then the following
statements hold.
(i) If β < 1, then the operator WΩ[a, Sa, ·] from C0,β(∂Ω) to C1,α+β−1(∂Ω)

defined by (1.4) for all μ ∈ C0,β(∂Ω) is linear and continuous.
(ii) If β = 1, then the operator WΩ[a, Sa, ·] from C0,β(∂Ω) = C0,1(∂Ω) to

C1,ωα+β−1(∂Ω) = C1,ωα(∂Ω) defined by (1.4) for all μ ∈ C0,1(∂Ω) is
linear and continuous.

Proof. By formula (4.6), we have B∗
Ω,y (Sa(· − y))) ∈ C1((∂Ω)\{y}) for all

y ∈ ∂Ω. By Lemmas 4.4 and 4.6, we know that the kernel of the double layer
potential belongs to Kn−1−α,n−α,1(∂Ω×∂Ω) and that its tangential gradient
with respect to the variable x belongs to (Kn−α,n,α(∂Ω×∂Ω))n. We now plan
to apply Theorem 3.10 (iii). We first note that Theorem 9.2 of Dondi and the
author [8] implies that WΩ[a, Sa, 1] ∈ C1,α(∂Ω). Moreover,

β ≤ 1 ≤ n − 1 < n − α ≡ t1 = (n − 1) + (1 − α) < (n − 1) + β,

t2 ≡ n ≥ (n − 1) + β, 0 ≤ s1 ≡ (n − 1) − α < n − 1.

(i) If β < 1, then t2 − β = n − β = (n − 1) + 1 − β > n − 1,

β ≤ 2 ≤ t2 = n < n + α + β − 1 = (n − 1) + β + t3,

where t3 ≡ α,

and

min{β, (n − 1) + β − t1, (n − 1) + t3 + β − t2}
= min{β, (n − 1) + β − (n − α), (n − 1) + α + β − n} = α + β − 1 ≤ α.

Then

WΩ[a, Sa, 1] ∈ C1,α(∂Ω)
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⊆ C1,α+β−1(∂Ω) = C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(∂Ω)

and Theorem 3.10 (iii) (c) implies that WΩ[a, Sa, ·] is linear and continuous
from C0,β(∂Ω) to

C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(∂Ω) = C1,α+β−1(∂Ω).

(ii) If β = 1, then t2 − β = n − β = n − 1 and

C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(∂Ω) = C1,max{r,rα,ωα(·)}(∂Ω) = C1,ωα(·)(∂Ω).

Then

WΩ[a, Sa, 1] ∈ C1,α(∂Ω) ⊆ C1,ωα(·)(∂Ω) = C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(∂Ω)

and Theorem 3.10 (iii) (cc) implies that WΩ[a, Sa, ·] is linear and continuous
from C0,β(∂Ω) = C0,1(∂Ω) to

C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(∂Ω) = C1,ωα(·)(∂Ω). �
Next we introduce the following two technical statements in case n = 2.

Lemma 5.2. Let Ω be a bounded open Lipschitz subset of R2. Then

c
(v)
Ω ≡ sup

x∈∂Ω,s∈]0,1/e[

|s log s|−1

∫

(∂Ω)∩B2(0,s)

| log |x − y|| dσy < +∞.

Proof. By the Lemma of the uniform cylinders, there exist r, δ ∈]0, 1/e[ such
that if x ∈ ∂Ω, then there exist a 2 × 2 orthogonal matrix Rx such that

C(x,Rx, r, δ) ≡ x + Rt
x(B2−1(0, r)×] − δ, δ[)

is a coordinate cylinder for Ω around x, i.e., there exists γx ∈ C0,1(B1(0, r))
such that

Rx(Ω − x) ∩ (B2−1(0, r)×] − δ, δ[)
= {(η, y) ∈ B2−1(0, r)×] − δ, δ[: y < γx(η)} ≡ hypographs(γx),

|γx(η)| < δ/2 ∀η ∈ B2−1(0, r), γx(0) = 0, (5.1)

and the corresponding function γx satisfies the inequality

A ≡ sup
x∈∂Ω

‖γx‖C0,1(B1(0,r)) < +∞

(cf. [23, Defn. 10.1, Lem. 10.1]). By the continuity of the logarithm, it suffices
to show that the supremum of the statement is finite with s ∈]0, r[ and we
note that (∂Ω) ∩ B2(x, s) ⊆ (∂Ω) ∩ C(x,Rx, r, δ) for all s ∈]0, r[ and x ∈ ∂Ω.
Then we have

∫

(∂Ω)∩B2(x,s)

| log |x − y|| dσy

≤
∫

{η∈]−r,r[:|η|2+γx(η)2<s2}
| log |(η, γx(η))| | dη

√
1 + ess sup |γ′

x|2

≤
∫

{η∈]−r,r[:|η|<s}
| log |η| | dη

√
1 + A2 ≤ 2 [η − η log η]η=s

η=0+

√
1 + A2

≤ 4|s log s|
√

1 + A2 ∀x ∈ ∂Ω, s ∈]0, 1/e[.

�
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Proposition 5.3. Let n = 2. Let a be as in (1.1), (1.2), (1.3). Let Sa be
a fundamental solution of P [a,D]. Let Ω be a bounded open Lipschitz sub-
set of R2. Let Sa be a fundamental solution of P [a,D]. Let vΩ[Sa, μ](x) ≡∫

∂Ω
Sa(x − y)μ(y) dσy∀x ∈ R

n for all μ ∈ L∞(∂Ω). Then vΩ[Sa, ·] is contin-
uous from L∞(∂Ω) to C0,ω1(·)(∂Ω).

Proof. By Theorem 7.2 of Dondi and the author [8], we already know that
vΩ[Sa, ·] is continuous from L∞(∂Ω) to C0(∂Ω). We now take μ ∈ L∞(∂Ω)
and we turn to estimate the Hölder constant of vΩ[Sa, μ]. By formula (4.3)
above, by the inequality |T−1x| ≥ |T |−1|x| for x ∈ R

2\{0} and by Lemma
4.2 (ii) of Dondi and the author [8], there exists a constant c ∈]0,+∞[ such
that

| log |ξ||−1|Sa(ξ)| ≤ c ∀ξ ∈ B2(0, 1/e)\{0},

|x′ − y|
|x′ − x′′| |Sa(x′ − y) − Sa(x′′ − y)| ≤ c

∀x′, x′′ ∈ ∂Ω, x′ �= x′′, y ∈ (∂Ω)\Bn(x′, 2|x′ − x′′|).
Let x′, x′′ ∈ ∂Ω, x′ �= x′′. By Remark 2.1, there is no loss of generality in
assuming that 0 < 3|x′ − x′′| ≤ 1/e. Then the inclusion B2(x′, 2|x′ − x′′|) ⊆
B2(x′′, 3|x′ − x′′|) and the triangular inequality imply that

|vΩ[Sa, μ](x′) − vΩ[Sa, μ](x′′)|
≤ ‖μ‖L∞(∂Ω)

{ ∫

B2(x′,2|x′−x′′|)∩∂Ω

|Sa(x′ − y)| dσy

+
∫

B2(x′′,3|x′−x′′|)∩∂Ω

|Sa(x′′ − y)| dσy

+
∫

∂Ω\B2(x′,2|x′−x′′|)
|Sa(x′ − y) − Sa(x′′ − y) | dσy

}

. (5.2)

Then Lemma 5.2 implies that
∫

B2(x′,2|x′−x′′|)∩∂Ω

|Sa(x′ − y)| dσy

+
∫

B2(x′′,3|x′−x′′|)∩∂Ω

|Sa(x′′ − y)| dσy

≤ c

{∫

B2(x′,2|x′−x′′|)∩∂Ω

| log |x′ − y||dσy

+
∫

B2(x′′,3|x′−x′′|)∩∂Ω

| log |x′′ − y||dσy

}

≤ c2c
(v)
Ω 3|x′ − x′′|| log(3|x′ − x′′|)|

≤ 6cc
(v)
Ω |x′ − x′′|(| log 3| + | log |x′ − x′′||)

≤ 6cc
(v)
Ω | log 3|2|x′ − x′′|| log |x′ − x′′||. (5.3)
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Moreover,
∫

∂Ω\B2(x′,2|x′−x′′|)
|Sa(x′ − y) − Sa(x′′ − y) | dσy

≤ c

∫

∂Ω\B2(x′,2|x′−x′′|)

|x′ − x′′|
|x′ − y| dσy (5.4)

Then Lemma 3.5 (iv) of Dondi and the author [8] implies that there exists
civ
Ω ∈]0,+∞[ such that

∫

∂Ω\B2(x′,2|x′−x′′|)

dσy

|x′ − y| ≤ civ
Ω | log |x′ − x′′||

for all x′, x′′ ∈ ∂Ω, 0 < |x′ −x′′| ≤ 1/e. Hence, the statement holds true. �

Next we prove a regularity statement for the double layer potential of
a constant function. To do so, we need to exploit the tangential derivatives
of a function defined on the boundary of an open set of class C1. If l, r ∈
{1, . . . , n}, then Mlr denotes the tangential derivative operator from C1(∂Ω)
to C0(∂Ω) that takes f to

Mlr[f ] ≡ νl
∂f̃

∂xr
− νr

∂f̃

∂xl
on ∂Ω, (5.5)

where f̃ is any continuously differentiable extension of f to an open neigh-
borhood of ∂Ω. We note that Mlr[f ] is independent of the specific choice of f̃
(cf. e.g., Dalla Riva, the author and Musolino [7, §2.21]). Then we can state
the following.

Lemma 5.4. Let n ∈ N\{0}. Let Ω be a bounded open subset of Rn of class
C1,1. Let a be as in (1.1), (1.2), (1.3). Let Sa be a fundamental solution of
P [a,D]. Then WΩ[a, Sa, 1] ∈ C1,ω1(·)(∂Ω).

Proof. By Theorem 9.1 of Dondi and the author [8], we know that WΩ[a, Sa, 1]
belongs to C1(∂Ω) and that the tangential derivatives of WΩ[a, Sa, 1] are de-
livered by the following formula.

Mlj [WΩ[a, Sa, 1]] = νlQj

[
ν · a(1), 1

]
− νjQl

[
ν · a(1), 1

]

+ν · a(1) {Ql [νj , 1] − Qj [νl, 1]} + R[νl, νj , 1] on ∂Ω, (5.6)

where

Qj [g, μ](x) =
∫

∂Ω

(g(x) − g(y))
∂Sa

∂xj
(x − y)μ(y) dσy ∀x ∈ ∂Ω,

for all (g, μ) ∈ C0,1(∂Ω) × L∞(∂Ω) and

R[νl, νj , 1] ≡
∑

r=1

ar {Qr[νlνj , 1] − νlQr[νj , 1] − Qr[νj , νl]}

+a {νlvΩ[Sa, νj ] − νjvΩ[Sa, νl]} on ∂Ω,

vΩ[Sa, νj ](x) ≡
∫

∂Ω

Sa(x − y)νj(y) dσy ∀x ∈ R
n



21 Page 24 of 28 M. Lanza de Cristoforis IEOT

for all l, j ∈ {1, . . . , n}. By the Lipschitz continuity of the components of ν,
Proposition 5.3 above and Theorem 7.2 of Dondi and the author [8] imply
that vΩ[Sa, νj ] belongs to C0,ω1(·)(∂Ω). By the Lipschitz continuity of the
components of ν, Theorem 8.2 (i) of [8] implies that Qr[νlνj , 1], Qr[νj , 1],
Qj

[
ν · a(1), 1

]
, Qr[νj , νl], belong to C0,ω1(·)(∂Ω) for all j, l, r ∈ {1, . . . , n}.

Hence, the tangential derivatives Mlj [WΩ[a, Sa, 1]] belong to C0,ω1(·)(∂Ω) for
all j, l ∈ {1, . . . , n}, and accordingly WΩ[a, Sa, 1] belongs to C1,ω1(·)(∂Ω)
(cf. e.g., Dondi and the author [8, Lem. 2.3]). �

As a consequence of Lemmas 4.4, 4.6, 5.4, we can apply Theorem 3.10
and prove the following theorem on the continuity of the double layer poten-
tial on the boundary.

Theorem 5.5. Let β ∈]0, 1]. Let Ω be a bounded open subset of Rn of class
C1,1.

Let a be as in (1.1), (1.2), (1.3). Let Sa be a fundamental solution of
P [a,D]. Assume that the following condition holds

sup
x∈∂Ω

sup
r∈]0,+∞[

∣
∣
∣
∣
∣

∫

(∂Ω)\Bn(x,r)

grad∂Ω,xB∗
Ω,y (Sa(x − y)) dσy

∣
∣
∣
∣
∣
< +∞, (5.7)

i.e., the maximal function of the tangential gradient of the kernel of the double
layer potential with respect to its first variable is bounded.

Then the following statements hold.

(i) If β < 1, then the operator WΩ[a, Sa, ·] from C0,β(∂Ω) to C1,β(∂Ω)
defined by (1.4) for all μ ∈ C0,β(∂Ω) is linear and continuous.

(ii) If β = 1, then the operator WΩ[a, Sa, ·] from C0,1(∂Ω) to C1,ω1(·)(∂Ω)
defined by (1.4) for all μ ∈ C0,1(∂Ω) is linear and continuous.

Proof. By formula (4.6), we have B∗
Ω,y (Sa(· − y))) ∈ C1((∂Ω)\{y}) for all

y ∈ ∂Ω. If n = 2, we choose ε ∈]0, 1[ and Lemma 4.4 (ii), (iii) implies that
the kernel of the double layer potential belongs to Kε,1,1(∂Ω×∂Ω). Then the
imbedding Proposition 3.7 (ii) implies that Kε,1,1(∂Ω × ∂Ω) is contained in
Kε,1+ε,1(∂Ω × ∂Ω).

If n ≥ 3 Lemma 4.4 (i), (iii) implies that the kernel of the double layer
potential belongs to the class Kn−2,n−1,1(∂Ω × ∂Ω).

Then if n ≥ 2 Lemma 4.6 and condition (5.7) imply that the tangential
gradient with respect to the variable x of the kernel of the double layer
potential belongs to the class (K�

n−1,n,1(∂Ω × ∂Ω))n. We now plan to apply
Theorem 3.10 (ii). By Lemma 5.4, we have

WΩ[a, Sa, 1] ∈ C1,ω1(·)(∂Ω) ⊆ C1,α(∂Ω) ∀α ∈]0, 1[.

Moreover,

β ≤ 1 ≤ n − 1 ≡ t1 < (n − 1) + β,

t2 ≡ n ≥ 2 > β, s1 ≡
{

ε < 2 − 1 = n − 1 if n = 2,
(n − 1) − 1 < n − 1 if n ≥ 3.
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(i) If β < 1, then

t2 − β = n − β > n − 1, t2 = n < (n − 1) + β + 1 = (n − 1) + β + t3

where t3 ≡ 1.

and WΩ[a, Sa, 1] ∈ C1,ω1(·)(∂Ω) ⊆ C1,min{β,(n−1)+t3+β−t2}(∂Ω). Thus The-
orem 3.10 (ii) (b) implies that WΩ[a, Sa, ·] is linear and continuous from
C0,β(∂Ω) to

C1,min{β,(n−1)+t3+β−t2}(∂Ω) = C1,min{β,(n−1)+1+β−n)}(∂Ω) = C1,β(∂Ω).

(ii) If β = 1, then t2 − β = n − β = n − 1 and WΩ[a, Sa, 1] ∈ C1,ω1(·)(∂Ω) ⊆
C1,max{rβ ,ω1(r)}(∂Ω). Thus Theorem 3.10 (ii) (bb) implies that WΩ[a, Sa, ·]
is linear and continuous from C0,β(∂Ω) = C0,1(∂Ω) to

C1,max{rβ ,ω1(r)}(∂Ω) = C1,max{r1,ω1(r)}(∂Ω) = C1,ω1(·)(∂Ω). �

For the validity of condition (5.7), we refer to [25].

6. Conclusion

We have considered the boundary integral operator WΩ[a, Sa, ·] correspond-
ing to the double layer potential on the boundary of a bounded open subset
Ω of Rn of class C1,α for α ∈]0, 1].

If α ∈]0, 1[, β ∈]0, 1], we have considered the case in which β + α > 1
and we have proved that WΩ[a, Sa, ·] improves the Hölder regularity of a
function of precisely α if the Hölder function has Hölder exponent β ∈]0, 1[
and instead of α with some loss if β = 1 (cf. Theorem 5.1).

Thus we have extended result of Fichera and De Vito [9, LXXXIII])
who has considered the Laplace operator in case n = 2.

If α = 1, we have proved that if condition (5.7) on the tangential gra-
dient of the kernel of the double layer potential is satisfied, then WΩ[a, Sa, ·]
improves the Hölder regularity of a function of precisely one unit if the Hölder
function has Hölder exponent β ∈]0, 1[ and instead of one unit with some loss
if β = 1 (cf. Theorem 5.5).

Thus for α = 1, we have extended the results of Colton and Kress [4]
for the Helmoltz operator and of Hsiao and Wendland [18, Remark 1.2.1]
for the Laplace operator, who have considered the case in which with Ω of
class C2, for the generality of the operators involved, for the regularity of the
boundary of Ω and for the analysis of case β = 1.

Now within the frame of the theory of pseudo-differential operators on
the boundary of a smooth set Ω, the operator WΩ[a, Sa, ·] is known to increase
the regularity of one unit. Thus the present paper shows that the threshold
for such increase to be of order one within the frame of Hölder/Schauder
spaces is the C1,1 regularity of the boundary. Indeed for boundaries that are
only of class C1,α with α < 1 such increase is lower than one.

Instead, one cannot expect any increase of regularity if Ω is only a
Lipschitz set (cf. Mitrea, Mitrea and Mitrea [32, Prop. 25.5.21]).
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Another outcome of the present paper is that we have shown that one
could prove technical results on layer potentials by exploiting the some ba-
sic imbedding and multiplication properties of classes of kernels that gen-
eralize previus work of Giraud [15], Gegelia [13] and Kupradze, Gegelia,
Basheleishvili and Burchuladze [22, Chap. IV] and the abstract results that
have been proved in [24].
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