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Abstract
This paper develops a new approach to small time local attainability of smooth mani-
folds of any dimension, possibly with boundary and to prove Hölder continuity of the
minimum time function. We give explicit pointwise conditions of any order by using
higher order hamiltonians which combine derivatives of the controlled vector field
and the functions that locally define the target. For the controllability of a point our
sufficient conditions extend some classically known results for symmetric or control
affine systems, using the Lie algebra instead, but for targets of higher dimension our
approach and results are new. We find our sufficient higher order conditions explicit
and easy to compute for targets with curvature and general control systems. Some
cases of nonsmooth targets are also included.

Keywords Control theory · Controllability conditions · Minimum time function ·
Hamilton Jacobi equation · Hölder regularity
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1 Introduction

In this paper, we consider a nonlinear control system, F : Rn × A → R
n ,

{
ẋt = F(xt , at ),
x0 = x ∈ R

n .
(1.1)

Controllability of (1.1) is a classical subject in optimal control. Given a closed set
T ⊂ R

n , our target, we are interested in the behaviour of trajectories, the solutions of
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(1.1), in the neighborhood of a given point xo ∈ T \int T . We want to find trajectories
reaching T in small time starting at any point x in the neighborhood of xo in order
to make the target small time locally attainable (STLA) at xo, or equivalently the
minimum time function T continuous (and vanishing) at xo. Our target is locally the
solution of a system of h(≤ n) smooth and independent equations and at most an
inequality (if h < n), i.e. a manifold with boundary but some nonsmooth examples
are also included in our approach. The two extreme cases in our study are T = {xo},
the point, and T being the closure of an open set, the fat target. Particularly the former
is a classical subject of geometric control theory, and it has been deeply studied in the
literature. The latter has become interesting in more recent years because it presents
difficulties of a different nature and it has implications in the study of regularity of
solutions to Hamilton Jacobi Bellman equations defined in general open sets. We will
give answers also for all intermediate dimensions of the target, where the literature is
much less expanded, as far as we know. We are not going to make any assumptions
on the algebraic structure of the controlled vector field F , while in the literature
one mostly finds results for symmetric, or control affine systems. We point out that
all our arguments are local in the neighborhood of the given point xo ∈ T , but for
notational convenience, we prefer to think the system globally defined. The system
will always satisfy existence, uniqueness and uniform boundedness of trajectories, see
(2.10) below, and control functions at , t > 0 will always be piecewise constant. We
will often say that f : Rn → R

n is an available vector field of the system, if there is
a ∈ A such that f (x) ≡ F(x, a).

Our main focus is on finding simple and efficient sufficient conditions for reg-
ularity of the minimum time function T , rather than the perspective of geometric
control, namely discussing the structure of the Lie algebra leading to local control-
lability properties. We recall that when T is continuous, it is the unique solution of
the Hamilton–Jacobi partial differential equation, solved by the classical Bellman
approach, and Hölder regularity of T also determines the regularity of solutions of
more general HJ equations based on the same control system, see [8]. We will obtain
the continuity of T at xo by proving local estimates of the form

T (x) ≤ C |x − xo|1/k, xo ∈ T , x ∈ Bδ(xo) (1.2)

for an appropriate positive integer k. We say that the system satisfies a k-th order
attainability condition at xo when (1.2) holds. It is well known, see e.g. our paper with
Bardi [9] and the book [6], that if this holds true at every point of the target then the
minimum time function is continuous in its open domain, while it is usually only lower
semicontinuous in general, given appropriate convexity assumptions on F . When the
previous estimate can be improved to

T (x) ≤ Cd(x, T )1/k, xo ∈ T , x ∈ Bδ(xo) (1.3)

at every point of the target, then it also known that T becomes moreover locally
1/k−Hölder continuous in its domain. Here d(x, T ) indicates the distance of x from
the target.We think that it is preferable to split these two steps of the quest for regularity
of T , since proving (1.2) allows us to extend some of the arguments of the case of the
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point target, while going from (1.2) to (1.3) is not always obvious and is not yet clarified
for general systems. This second step is clear if we can choose the constants C, k, δ
in (1.2) uniformly in xo, as it is usually done in the literature, although this is far from
being necessary in general. We will not discuss it in full detail in the present paper,
see our other paper [35] for some positive results. Sometimes (1.2) may hold while
(1.3) does not as we show in an example below marking the difference with previous
literature. Of course when T is a point, the two estimates (1.2), (1.3) coincide.

For the point target, one usually seeks answers in the Lie algebra of the available
vector fields, for instance the well known full rank condition. This is sufficient for
symmetric systems, as a consequence of the classical Chow-Rashevskii [13] result.
For affine systems, some classical results as for instance Sussmann [37, 38] seek
properties on the Lie algebra of the available vector fields in addition to the rank
condition in order to obtain controllability at equilibrium points, see in particular the
work by Frankowska [15] and Kawski [18], that extend the classical Kalman condition
for linear systems, see [17]. Our perspective, that also applies to general targets, is
different. In order to explain it, suppose for now that locally in the neighborhood of
xo, T = {x : u(x) = u(xo)} where u : Rn → R

h . Our general idea is to start by
finding directions v ∈ R

h\{0} of k−th order variation of u at xo, namely such that
there is a trajectory of (1.1) with x0 = xo such that

u(xt ) = u(xo) + vtk + tko(1), as t → 0 + .

We will construct such directions quite explicitly by using higher order hamiltonian
expressions that involve derivatives of the vector fields and those of the function
u, obtained by Taylor expansions of the composed function u(xt ). They are easily
computable both analytically and numerically therefore they can be implemented in
practical problems. We stress the fact that in general the expression of k-th order
variations may contain high order derivatives of u, therefore even in the case of a fat
target we are not limited to the normal direction or even the curvature, contrary to
previous literature. Next we will require the family of k-th order variations to be a
positive basis of Rh , in order to prove that the target is STLA in the neighborhood of
xo and (1.2) holds. Roughly speaking, we look at u(xt ) as a trajectory in the space
R
h , where h ≤ n is the codimension of the target and where the target projects to

a single point. We remark that we only study the family of variations at one point
xo ∈ T . Contrary to previous literature, in any neighborhood of xo there might be
points where the target is not controllable and (1.3) unachievable in general without
further assumptions. Moreover there might be points outside the target where any
element of the Lie algebra does not point toward it. Indeed higher derivatives of u are
important and may induce controllability. One could also reach the target at higher
order with just one vector field with no need of exploiting the Lie algebra. Both these
facts are incorporated in our sufficient conditions.

Notice that if the target is the single point xo then we can choose u(x) = x − xo.
Only in this case our k-th order variations are high order variations of the trajectories
of the control system, sometimes called high order variations of the attainable set
in the literature. Thus we feel that our approach is the correct counterpart of the
Lie algebra for targets of positive dimension and the higher order hamiltonians we
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consider is the counterpart of the Lie bracket. We build reference trajectories starting
at xo, one for each element of the positive basis, and we estimate their distance with
the trajectory starting at a generic point x in the neighborhood of xo and using the same
controls one after the other. Eventually with a fixed point argument and extending an
implicit function result, originally shown in [29], we get controllability of the target.
Our results also apply to certain classes of nonsmooth fat targets and our second
order sufficient conditions are also necessary for fat targets as shown in [35]. The
concept of positive basis of a vector space was used in Petrov [29] to determine that
a point is first order STLA if the available vector fields of a nonlinear control system
form at the point a positive basis of Rn . Our result is an extension of that classical
statement for sufficient conditions of any order and targets of any dimension. Often
in the literature Taylor estimates of the trajectories are combined with the first (or
second) order Taylor estimate of the distance from the target. Indeed the positive basis
condition can be equivalently rewritten by using the proximal normal set at the point
of the target, since this set can have a high dimension because the distance function is
necessarily nonsmooth at the boundary of the target for codimension higher than one.
However the approach with the distance function has the serious drawback in that it is
not clear how to encode properties of higher derivatives of the distance function (e.g.
curvature and higher) since nonsmooth analysis is yet of no help. Moreover in that
approach a point x in the neighborhood of xo is projected on the target and at the foot
of the projection (not necessarily xo) conditions on the system are needed, contrary
to our sufficient conditions. We cope with this problems by writing instead Taylor
estimates of the composed function u(xt ) directly, where u is vector valued. In the
case of the point target, we find in our proof either the classical Chow-Rashevskii [13]
controllability of symmetric systems and the one for affine systems of Frankowska
[15] and Kawski [18], i.e. our k-order variations seem to detect only the good Lie
brackets. We also notice that usually in the literature, the proof that a target is STLA
follows different paths in the case of the point and of fat targets. Here we give a unified
presentation for the two cases as well as all intermediate dimensions of the target.

Our approach initiated in [33] where we studied symmetric systems and [35] where
we considered general nonlinear systems. In both papers we consider a fat target and
find simple algebraic second order sufficient conditions to show that the target is STLA
with trajectories of at most one switch and a degenerate elliptic differential inequality
to express them. We expect to be able to use a similar approach to prove small time
local capturability of pursuit evasion differential games, where higher order sufficient
conditions are completely missing from the literature, as far as we know. Also control
problems with state constraints can be naturally approached with our methods. We
will undertake such problems in the future.

Most attainability results in the literature concern controllability to a point. Besides
what we already mentioned, Liverowskii [24] extended the approach by Petrov, see
also [30], to prove second order sufficient and necessary conditions for the point. For
other results on higher order necessary and sufficient conditions for affine systems,
we refer to Bianchini and Stefani [10–12, 36] and to Krastanov [20] for dynamics on
manifords. We also mention the chapter on controllability of control systems in the
book by Coron [14] where many additional references can be found. For fat targets,
Bardi-Falcone [7] found necessary and sufficient first order conditions, while more
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recently our paper with Bardi and Feleqi [8] derives necessary second order conditions
and drops one level of regularity of sufficient conditions, by using the generalized Lie
brackets of Rampazzo-Sussman [31]. For affine systems with drift vanishing on the
target, Krastanov and Quincampoix [20–22] proved higher order sufficient STLA
conditions of a different nature for nonsmooth fat targets only involving the normal
vectors and using the idea of variations of the attainable set. The work by Marigonda
and Rigo [26, 27] pointed out the importance of the curvature of the target to imply
controllability, and studied higher order attainability of certain nonsmooth targets for
affine systems with nontrivial drift, and local Hölder continuity of the minimum time
function. Later with Le [23] they studied higher order sufficient conditions focusing on
the presence of state constraints. For attainability of a smooth target with intermediate
dimension much fewer results are available in the classical literature. We know of the
papers by Bacciotti [5] for first order conditions and the author [32] for second order
conditions for symmetric systems and smooth targets of any dimension, possibly with
a boundary. We finally mention Motta and Rampazzo [28] who construct higher order
hamiltonians adding iterated Lie brackets as additional vector fields to prove global
asymptotic controllability. Their Hamiltonian is still a first order operator in contrast
to ours. Recently Albano et al. [4] show for some symmetric systems that the set where
local Lipschitz continuity of the minimum time function fails is the union of singular
trajectories, and that it is analytic except on a null set. For results in this direction see
also the author in [34].

We outline the contents of the paper. In Sect. 2 we develop the basic asymptotic
formulas for trajectories and some calculus in order to understand relationships with
previous literature and build the tools to check the examples. Sections3–4 are the core
of the paper and present the sufficient conditions for STLA. We work out three cases
separately: the case of the fat target because it is easier and does not use the Lemma
in the Appendix; the case of the point because it does not use an extra assumption and
develops some preliminary tool needed in the general proof. Finally the general case
of intermediate dimensions of the target is dealt with. Section5 shows some examples
where we apply our results in particular extending the current literature. The Appendix
contains a revisited Petrov’s Lemma which is a key ingredient of the arguments.

2 Preliminaries and Notations: Hamiltonian Asymptotic Formulas

In this section we derive explicit high order variations of the composition of a vector
valued function u with a trajectory of a control system, in particular of trajectories
themselves when u is the identity. For smooth u and vector field, such variations
will contain derivatives both of u and of the vector field possibly of any order. If in
particular u ≡ d is scalar and the distance function from a set, they might contain the
exterior normal direction, the curvature and higher derivatives of the distance. Using
the distance function for targets of codimension higher than one is however not always
a good idea since it will be nonsmooth at points of the target. We start with the case
when u is scalar and we are dealing with a dynamical system. This will introduce
the Lie derivatives and illustrate what we mean by a Hamiltonian approach. Next we
will proceed with trajectories of control systems introducing new Hamilton–Taylor
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operators and later with vector valued functions. We emphasise that the expressions
that we will derive are explicit, easily computable either analitically and numerically.
What we do has connections with classical formalism to compute the asymptotics of
flows of dynamical systems, such as for instance chronological calculus by Agrachev
and Gamkrelidze, see e.g. [1–3], or products of exponentials by Sussmann, see e.g.
[19, 38], but in that work we did not find what we specifically need here.

We start with a function u : Rn → R and consider the trajectories of a dynamical
system {

ẋt = f (xt ),
x0 ∈ R

n,
(2.1)

where f ∈ C(Rn;Rn) is a vector field. For integer k ≥ 1, f ∈ Ck−1(Rn;Rn), we
introduce the Hamiltonian operators H (h)

f : Ch(Rn) → C(Rn), h = 0, . . . , k,

H (0)
f u ≡ u, H f u = f · ∇u, H (h+1)

f u = H f ◦ H (h)
f u.

Note that H f u in the literature also appears as Lie derivative of u (or pre-hamiltonian).
Observe that, in any interval where the trajectory is defined,

d

dt
u(xt ) = H f u(xt ),

dk

dtk
u(xt ) = H (k)

f u(xt )

and therefore the following property easily follows.

Lemma 2.1 If f ∈ Ck−1(Rn;Rn) is Lipschitz continuous and u ∈ Ck(Rn), then the
following Taylor formula holds

u(xt ) =
k∑

i=0

t i

i ! H
(i)
f u(x0) + tko(1), as t → 0. (2.2)

Remark 2.2 The remainder term o(1) in (2.2) can be expressed as

1

k!
(
H (k)

f u(xs) − H (k)
f u(x0)

)
,

for a suitable s ∈ (0, t) and then it goes to 0 as t → 0 locally uniformly for x0 ∈ R
n .

We also notice that the operator H (2)
f : C2(Rn) → C(Rn) can be explicitely written

as

H (2)
f u = H f ◦ H f u = f · ∇( f · ∇u) = Tr(D2u f ⊗ f ) + Df f · ∇u

and it is degenerate elliptic on u. Likewise H f ,k := H (k)
f is a partial differential

operator of order k.
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When f , u are C∞ and u(xt ) is analytic, we obtain, for small t ,

u(xt ) =
+∞∑
k=0

tk

k!H
(k)
f u(x0) =: etH f u(x0),

introducing an exponential notation for the Hamiltonian. We now want to apply the
same approach to families of vector fields and consider what we name one-switch
(balanced) trajectories. Let t > 0 and f , g ∈ C(Rn;Rn) be two vector fields. Consider
a Caratheodory solution of

ẋs =
{
f (xs), if s ∈ [0, t),
g(xs), if s ∈ [t, 2t], x0 ∈ R

n . (2.3)

Note that xs[t] is indeed a family of trajectories indexed with the parameter t > 0,
although we will usually hide the parameter t . We want to describe the variation at the
end point u(x2t ) − u(x0).

Lemma 2.3 Let f , g ∈ Ck−1(Rn;Rn), f , g Lipschitz, and u ∈ Ck(Rn). Then the one
switch trajectory (2.3) satisfies the following asymptotic formula

u(x2t ) = u(x0) +
k∑

i=1

t i

i ! (H f � Hg)
i u(x0) + tko(1), as t → 0, (2.4)

where the remainder tends to 0 locally uniformly with respect to x0. Here we define

(H f � Hg)
i u :=

m∑
i=0

(
m
i

)
H (m−i)

f ◦ H (i)
g u.

Proof In the assumptions, by (2.2) we know that, in the [t, 2t] interval,

u(x2t ) =
k∑

i=0

t i

i ! H
(i)
g u(xt ) + tko(1),

as t → 0, where the remainder goes to 0 uniformly with respect to the initial point,
which is xt in this case. For i = 1, . . . , k, let v = H (i)

g u, likewise

H (i)
g u(xt ) = v(xt ) =

k−i∑
j=0

t j

j !H
( j)
f v(x0) + tk−i o(1)

=
k−i∑
j=0

t j

j !H
( j)
f ◦ H (i)

g u(x0) + tk−i o(1),
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thus finally

u(x2t ) =
k∑

i=0

t i
i !

(
k−i∑
j=0

t j
j ! H

( j)
f ◦ H (i)

g u(x0) + tk−i o(1)

)
+ tko(1)

=
k∑

i=0

(
k−i∑
j=0

t i+ j

i ! j ! H
( j)
f ◦ H (i)

g u(x0)

)
+ tko(1)

=
k∑

m=0

tm
m!

m∑
i=0

(
m
i

)
H (m−i)

f ◦ H (i)
g u(x0) + tko(1).

�
Notice that H f �Hg = H f +Hg = H f +g is itself aHamiltonian operator. However

we caution the reader that, if m ≥ 2,

(
H f � Hg

)m �= H (m)
f +g,

in general. Indeed if [ f , g] = Dg f − Df g represents the Lie bracket of two vector
fields, then we immediately compute

H[ f ,g]u = [ f , g] · ∇u = H f ◦ Hgu − Hg ◦ H f u = 1

2
((H f � Hg)

2u − (Hg � H f )
2u)

and therefore, as an example,

(H f � Hg)
2u = H (2)

f u + 2H f ◦ Hgu + H (2)
g u = H (2)

f+gu + [ f , g] · ∇u. (2.5)

Therefore Lie brackets are part of the game, as they should be. Also observe that for
λ > 0 by definition we have that

(Hλ f � Hλg)
mu = λm(H f � Hg)

mu,

so we have a homogeneity property. We notice the following sometimes useful alge-
braic properties

H− f u = −H f u; (H f � H f )
ku = 2k H (k)

f u, (H− f � H−g)
ku = (−1)k(H f � Hg)

ku.

Remark 2.4 It will be important to discuss the sign of the quantities (H f �Hg)
i u(x0),

choosing f , g appropriately. In the special case k = 2, from (2.5) we get that if
(H f � Hg)

2u(x0) < 0 then either H (2)
f +gu(x0) < 0 or [ f , g] · ∇u(x0) �= 0. We can

check that the implication can be somewhat reversed. Let

S(x) =
(

H (2)
f u(x) H f ◦ Hgu(x)

Hg ◦ H f u(x) H (2)
g u(x)

)

and observe that S(x) is symmetric if and only if [ f , g]·∇u(x) = 0. In [33] we proved
the following.
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Proposition If [ f , g] · ∇u(x0) �= 0 then there is an eigenvector a1 = t (a1,1, a2,1)
of t S(x0)S(x0) with strictly positive eigenvalue λ2 (λ > 0), such that if a2 =
t (a1,2, a2,2) = −S(x0)a1/λ, then a1 �= −a2 and

(Ha1,2 f +a2,2g � Ha1,1 f +a2,1g)
2u(x0) < 0.

The contents of Lemma 2.3 can be clearly extended to (balanced) switch trajectories
with any finite number of switches. For instance, given three vector fields f , g, h ∈
Cm−1(Rn;Rn) and u ∈ Cm(Rn), we can also introduce the operators H f ,g,h,m :
Cm(Rn) → C(Rn), where

H f ,g,h,mu(x0) ≡ (H f �Hg �Hh)
mu :=

∑
i, j, i+ j≤m

(
m
i, j

)
H (m−i− j)

f ◦H ( j)
g ◦H (i)

h u.

(2.6)
We recall that the trinomial coefficients are defined as

(
m
i, j

)
= m!

(m − i − j)!i ! j ! =
(
m
i

)(
m − i

j

)
.

To clarify the above definition, we notice the following property. First define the
following notation

((H f � Hg) � Hh)
ku :=

k∑
i=0

(
k
i

) (
H f � Hg

)k−i ◦ H (i)
h u.

Proposition 2.5 Let f , g, h ∈ Ck−1(Rn;Rn) and u ∈ Ck(Rn). Then

(H f � Hg � Hh)
ku = ((H f � Hg) � Hh)

ku.

More in general, if f1, . . . , fm+1 ∈ Ck−1(Rn;Rn), then

(H f1 � · · · � H fm+1)
ku = ((H f1 � · · · � H fm ) � H fm+1)

ku, (2.7)

where notations are extended in a straightforward way.

Proof It is a matter of computing things. For three vector fields,

(H f � Hg � Hh)
k = ∑

i, j, i+ j≤k

(
k
i, j

)
H (k−i− j)

f ◦ H ( j)
g ◦ H (i)

h u

=
k∑

i=0

(
k
i

) (∑k−i
j=0

(
k − i
j

)
H (k−i− j)

f ◦ H ( j)
g

)
◦ H (i)

h u

=
k∑

i=0

(
k
i

) (
H f � Hg

)k−i ◦ H (i)
h u.

The general case can be proved similarly by induction. �
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By the previous statement, the k−th power of the sum ofm+1Hamiltonians can either
be defined recursively by the right hand side of (2.7) or explicitly in the corresponding
way to (2.6), by using the multinomial coefficients. The previous operators that we
have defined appear in the Taylor estimates of trajectories in the following way. Given
vector fields f1, . . . , fm ∈ C(Rn;Rn), a (balanced) trajectory with (m − 1)-switches
is a Caratheodory solution of

ẋs =

⎧⎪⎪⎨
⎪⎪⎩

f1(xs), if s ∈ [0, t),
f2(xs), if s ∈ [t, 2t),
. . . ,

fm(xs), s ∈ [(m − 1)t,mt],
x0 ∈ R

n . (2.8)

It is now clear by construction that by using an elementary induction argument on the
parameters, we obtain the following result for the families of trajectories parametrised
by t .

Proposition 2.6 Let f1, . . . , fm ∈ Ck−1(Rn;Rn) and u ∈ Ck(Rn). Then the (bal-
anced) trajectorywith (m−1)-switches (2.8) satisfies the following asymptotic formula
at the end point

u(xmt ) = u(x0) +
k∑

i=1

t i

i ! (H f1 � · · · � H fm )i u(x0) + tko(1), as t → 0, (2.9)

where the remainder tends to 0 locally uniformly in x0.

2.1 Nonlinear Control Systems

We now consider the nonlinear control system (1.1), where x. is the state and a. is
the control, determined by a controlled vector field F . The general assumptions we
make here will stand for the rest of the paper. We assume for convenience that A is
a compact subset of a metric space, F : Rn × A → R

n is continuous and locally
Lipschitz continuous in the variable x in a neighborhood of xo ∈ R

n , that is we can
find R, L > 0 such that

|F(x, a) − F(y, a)| ≤ L|x − y|, (2.10)

for all x, y ∈ BR(xo), a ∈ A. In particular there is M > 0 such that

|F(x, a)| ≤ |F(x, a) − F(xo, a)| + |F(xo, a)| ≤ L|x − xo| + |F(xo, a)| ≤ M,

for all x ∈ BR(xo), a ∈ A. Therefore if (xs)s∈[0,t] is a trajectory solution of (1.1) then

|xs − x | ≤ Ms, s ∈ [0, t],

and |xs − xo| ≤ R if |x − xo| ≤ R/2 and t ≤ R/(2M) =: σ .
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To the control system we associate a target T , a closed subset of Rn . The target
will be assumed smooth, in the sense that given xo ∈ T \intT , it is locally defined in
BR(xo) by a family of h(≤ n) equations (a h−dimensional manifold)

⎧⎨
⎩
u1(x) = 0,
. . . ,

uh(x) = 0,

possibly, when h ≤ n − 1, with an additional inequality (a h−dimensional manifold
with boundary)

uh+1(x) ≤ 0,

where u1, . . . , uh+1 ∈ C1(Rn) at least, are given functions.We always assume that the
jacobian of either one of the functions involved in the definition ofT , u = (u1, . . . , uh)
or û = (u1, . . . , uh+1) has full rank at xo.

We are interested in the property that T is small time local attainable (STLA for
short) in the neighborhood of the given point xo, namely the continuity at xo of the
minimum time function

T (x) = inf
a.∈L∞((0,+∞);A)

tx (a)(≤ +∞),

where tx (a) = min{t ≥ 0 : xt ∈ T }(≤ +∞), xt trajectory of the control system
corresponding to the control a· and initial point x . Note that T (xo) = 0. It is well
known that the continuity of T at all boundary points of the target propagates in the
whole of the domain of T (the reachable set) which is then an open set, see e.g. Bardi
and the author [8, 9]. We will seek continuity of T at xo by proving estimates of the
form (1.2) in the neighborhood of xo, for a suitable integer k.

We give some definitions to classify the structure of system (1.1).

Definition 2.7 We say that the system is convex if for any pair of available vector fields
f , g ∈ C(Rn;Rn) any convex combination λ f + (1 − λ)g, for all λ ∈ [0, 1] is also
available.

We say that the system is symmetric if it is convex and for any available vector field
f , then also − f is available.
We say that a system is affine (in the control) if it has the structure

F(x, a) = fo(x) + G(x, a),

where G(x, a) is symmetric. Usually fo is called the drift.
We say that a function u : Rn → R has a k − th order decrease rate for the control

system at xo ∈ R
n if there are available vector fields f1, . . . fm such that

(H f1 � · · · � H fm )ku(xo) < 0, (H f1 � · · · � H fm )i u(xo) = 0 for all i = 1, . . . , k − 1.
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Notice that if A ⊂ R
m is convex and F(x, a) = fo(x) + ∑m

i=1 ai fi (x), then the
system is convex. If A is moreover symmetric with respect to the origin, then it is
affine in the control and symmetric if fo ≡ 0.

Observe that if we have as available vector fields f ,− f , g,−g, then we can com-
pute (H f � Hg � H− f � H−g)u(x) = 0 and

(H f � Hg � H− f � H−g)
2u(x) = ((H f � Hg) � (H− f � H−g))

2u(x)
= (H f � Hg)

2u(x) + (H− f � H−g)
2u(x) + 2(H f � Hg) ◦ (H− f � H−g)u(x)

= 2(H f � Hg)
2u(x) − 2H (2)

f+gu(x) = 2[ f , g] · ∇u(x).
(2.11)

Therefore if [ f , g] · ∇u(xo) < 0 then u has a second order decrease rate at xo. For
general systems however we cannot produce a trajectory having the second order
Taylor coefficient proportional to the Lie bracket of any two given available vector
fields.

Remark 2.8 The equivalence (2.5) gives rise to the following fully degenerate second
order Hamilton–Jacobi operator taking into account pairs of available vector fields

max
(a1,a2)∈A×A

{−Tr(D2u (F(x, a1) + F(x, a2)) ⊗ (F(x, a1) + F(x, a2)))
−(D(F(x, a1) + F(x, a2)) (F(x, a1) + F(x, a2))
+[(F(x, a1), F(x, a2))]) · ∇u.}

that we introduced in [33, 35] as a counterpart of the classical Bellman operator, in
order to study the second order attainability of fat targets. If F(xo, a) ·∇u(xo) = 0 for
all a ∈ A, then such operator applied to u is strictly positive at xo if and only if u has
2nd order decrease rate at xo. If moreover u ≡ d is the signed distance function from
∂T which is negative in the interior of the target, then n(xo) = ∇d(xo) is the exterior
normal vector and d has second order decrease rate if and only if there are a1, a2 ∈ A
such that

Tr(D2d (F(xo, a1) + F(xo, a2)) ⊗ (F(xo, a1) + F(xo, a2)))

+ (D(F(xo, a1) + F(xo, a2)) (F(xo, a1) + F(xo, a2))

+[(F(·, a1), F(·, a2))](xo)) · n(xo) < 0.

The first line above is proportional to the normal curvature in the direction of the
average of the vector fields and the second checks the directions of an appropriate
vector field and the exterior normal. It has two contributions: the first relative to the
average again and the second to their Lie bracket. If in particular a1 = a2 we find that
d has 2nd order decrease rate with only one vector field as

Tr(D2d F(xo, a1) ⊗ F(xo, a1))

+ (DF(xo, a1) F(xo, a1)) · n(xo) < 0.

We now develop some calculus for the Hamiltonian-Taylor coefficients to show
that they can be manipulated as easily as the Lie brackets.
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Proposition 2.9 Let f , g ∈ Ck(Rn;Rn) and u ∈ Ck+1(Rn). Then for k = 1, (H f �
Hg)u = H f +gu, and for all k ≥ 1

(H f � Hg)
k+1u = H f ◦ (H f � Hg)

ku + (H f � Hg)
k ◦ Hgu. (2.12)

Proof We compute from the definition

k+1∑
i=0

(
k + 1
i

)
H (k+1−i)

f ◦ H (i)
g u = H (k+1)

f u + H (k+1)
g u +

k∑
i=1

(
k + 1
i

)
H (k+1−i)

f ◦ H (i)
g u

= H (k+1)
f u + H (k+1)

g u +
k∑

i=1

(
k
i

)
H (k+1−i)

f ◦ H (i)
g u +

k∑
i=1

(
k

i − 1

)
H (k+1−i)

f ◦ H (i)
g u

= H f ◦
k∑

i=0

(
k
i

)
H (k−i)

f ◦ H (i)
g u +

k+1∑
i=1

(
k

i − 1

)
H (k+1−i)

f ◦ H (i)
g u

= H f ◦ (H f � Hg)
ku +

(
k∑

i=0

(
k
i

)
H (k−i)

f ◦ H (i)
g

)
◦ Hgu.

�
Sometimes our Taylor operators simplify to first order. This is important, because

it allows to drop the regularity of the target in our statements. The first example is the
following.

Remark 2.10 Suppose that we have two vector fields balanced at x0, i.e. f (x0) +
g(x0) = 0. Therefore H f+gu(xo) = ( f + g) · ∇u(x0) = 0 and by Proposition 2.9 we
also have

(H f � Hg)
2u(x0) = H[ f ,g]u(x0),

(H f � Hg)
3u(x0) = H f ◦ H[ f ,g]u(x0) + H[ f ,g] ◦ Hgu(x0)

+D(D( f + g)( f + g)) f · ∇u(x0)

= ad2g f (x0), ·∇u(xo) + D(( f + g)( f + g)) f · ∇u(x0),

where the second equation only holds for u(x) = xi , and
where we defined the iterated Lie bracket adg f := [g, f ], adk+1

g f := [g, adkg f ].
Thus in this case the higher order decrease rate condition is reduced to discussing the
sign of a first order operator provided by an iterated Lie bracket.

A higher order Hamiltonian–Taylor operator always reduces to first order when the
function u is linear. Let for instance I(x)=x and suppose that u(x) = Ii (x) for some
i = 1, . . . , n. Notice in fact that if f = ( f1, . . . , fn) is an available vector field, then

H f Ii (x) = f · ∇ Ii (x) = fi (x).

If we have two vector fields f , g, we can then prove the following.
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Proposition 2.11 Let f , g be twoavailable vector fieldswith the appropriate regularity
required in the operations of the following formulas. Then for all k ≥ 2 and i =
1, . . . , n we have that

(H f � Hg)
2 Ii (x) = F2 · ∇ Ii (x) = (F2)i (x),

(H f � Hg)
k+1 Ii (x) = Fk+1 · ∇ Ii (x) = (Fk+1)i (x),

where we define recursively F2(x) = D( f +g)( f +g)(x)+[ f , g](x) and Fk+1(x) :=
DFk( f + g)(x) + [Fk, g](x). Therefore (H f � Hg)

k Ii is a first order operator on Ii .

Proof For the two vector fields f , g we obtain, if ei is the i-th element of the standard
unit basis of Rn , i.e. xi = x · ei , since ∇ Ii = ei ,

H f ◦ Hg Ii (x) = f · ∇gi (x) = Dg f · ei = Dg f · ∇ Ii (x).

Thus

(H f � Hg)
2 Ii (x) = (D( f + g)( f + g) + [ f , g]) · ∇ Ii (x) = F2 · ∇ Ii (x).

Next

(H f � Hg)
3 Ii (x) = H f ◦ (H f � Hg)

2 Ii (x) + (H f � Hg)
2 ◦ Hg Ii (x)

= f · ∇(F2)i (x) + F2 · ∇gi (x)
= {DF2( f + g) + DgF2 − DF2g} · ∇ Ii (x)
= (DF2( f + g) + [F2, g]) · ∇ Ii (x) = F3 · ∇ Ii (x).

At this point we find similarly by induction that

(H f � Hg)
k+1 Ii (x) = (DFk( f + g) + [Fk, g]) · ∇ Ii (x) = Fk+1 · ∇ Ii (x).

�

2.2 Vector Valued H-operators for Functions

When f1, . . . . fm ∈ C j−1(Rn;Rn) are vector fields and u : R
n → R

h , u =
(u1, . . . , uh) ∈ C j (Rn;Rh), we will use the following notation for a vector valued
operator

(H f1 � · · · � H fm ) j u := t ((H f1 � · · · � H fm ) j ur )r=1,...,h .

Our expansion formulas therefore become statements also for vector valued functions
and in particular trajectories themselves.

Proposition 2.12 Let f1, . . . , fm ∈ Ck−1(Rn;Rn) and u ∈ Ck(Rn;Rh). Then the
(balanced) trajectory with (m − 1)-switches (2.8) satisfies the following asymptotic
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formula in Rh

u(xmt ) = u(x0) +
k∑

i=1

t i

i ! (H f1 � · · · � H fm )i u(x0) + tko(1), as t → 0, (2.13)

where the remainder tends to 0 locally uniformly in x0. If in particular h = n and
u(x) = I (x) = x is the identity function onRn, thenwe obtain the following expansion
formula for balanced trajectories

xmt = x0 +
k∑

i=1

t i

i ! (H f1 � · · · � H fm )i I (x0) + tko(1), as t → 0. (2.14)

Remark 2.13 Consider two points x1, x2 ∈ R
n and a family of available vector fields

f1, . . . , fm . For 0 < s ≤ t ≤ T consider the trajectory x1r defined in [0,ms], starting
at x1 and using the vector fields fi on subsequent intervals of length s as in (2.8) and
the trajectory x2r defined in [0,mt], starting at x2 and using the vector fields fi on
subsequent intervals of length t . Notice that by Gronwall inequality

|x1s − x2t | ≤ M |t − s| + |x1 − x2|eLs, |x12s − x22t | ≤ M |t − s| + |x1s − x2t |eLs,

and then by induction |x1ms − x2mt | ≤ C(|t−s|+|x1− x2|),C depending onm, T . The
end point of a balanced trajectory of a given family of vector fields is then continuous
with respect to the initial point and time. Therefore the remainder o(1) in (2.13) can
be expressed as a continuous function in γ = γ (x0, t) given by γ (x0, 0) = 0 and

γ (x0, t) = k!
tk

(
u(xmt ) − u(x0) −

k∑
i=1

t i

i ! (H f1 � · · · � H fm )i u(x0)

)
, if t > 0.

Remark 2.14 To better understand our expansion formula in the vector case, note that
if f , g are available vector fields then

(H f � Hg)
3 I = H f ◦ (H (2)

f +g I + H[ f ,g] I ) + (H (2)
f +g + H[ f ,g]) ◦ Hg I = H (3)

f +g I

+(H (2)
f+g ◦ Hg I − Hg ◦ H (2)

f +g I ) + (H f ◦ H[ f ,g] I + H[ f ,g] ◦ Hg I )

and now since

H (2)
f +g ◦ Hg I − Hg ◦ H (2)

f +g I = H f+g ◦ H[ f ,g] I + H[ f ,g] ◦ H f+g I ;
H f ◦ H[ f ,g] I + H[ f ,g] ◦ Hg I = ad2f g + H[ f ,g] ◦ H f +g I = ad2g f + H f +g ◦ H[ f ,g] I
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we finally obtain

1

3! (H f � Hg)
3 I = 1

3!H
(3)
f+g I + 1

2

(
H f +g ◦ (

1

2
H[ f ,g] I )

+(
1

2
H[ f ,g]) ◦ H f +g I

)
+ 1

12
(ad2f g + ad2g f ).

This confirms the third term in the expansion of the Baker–Campbell–Hausdorff for-
mula.

The following statement shows how to express a second order operator differently.

Proposition 2.15 Let f1, . . . , fm ∈ C1(Rn;Rn) be available vector fields and u ∈
C2(Rn). Then

(H f1 � · · · � H fm )2 I = D( f1 + · · · + fm)( f1 + · · · + fm) + ∑
1≤i< j≤m[ fi , f j ],

(H f1 � · · · � H fm )2u = H (2)
f1+···+ fm

u + ∑
1≤i< j≤m[ fi , f j ] · ∇u.

Proof We only prove the second formula. We already know that

(H f1 � H f2)
2u = H (2)

f1+ f2
u + [ f1, f2] · ∇u.

Now notice that by definition

(H f1 � H f2 � H f3)
2u = (H f1 � H f2)

2u + H (2)
f3
u + 2H f1+ f2

◦H f3u ± H f3 ◦ H f1+ f2u

= H (2)
f1+ f2

u + H f1+ f2 ◦ H f3u + H f3 ◦ H f1+ f2u + H (2)
f3
u

+[ f1, f2] ◦ ∇u + [ f1 + f2, f3] · ∇u

= H (2)
f1+ f2+ f3

u + ([ f1, f2] + [ f1, f3] + [ f2, f3]) · ∇u.

We complete similarly the statement by induction. We leave the easy details to the
reader. �

We add some definitions to the vector case.

Definition 2.16 We say that a function u : Rn → R
h has a k− th order rate of change

in the direction of v ∈ R
h , k ≥ 1, for the control system at xo ∈ R

n if there are
available vector fields f1, . . . fm such that H f1+···+ fm u(xo) �= 0 if k = 1 or for k ≥ 2

v = 1

k! (H f1 � · · ·� H fm )ku(x0) �= 0, (H f1 � · · ·� H fm )i u(x0) = 0 for all i = 1, . . . , k−1.

(2.15)
Let Lu := {v : v satisfies (2.15)} ⊂ R

h .
In particular we say that a balanced trajectory xs of (1.1) as in (2.8) moves at k−th

order rate in the direction of v ∈ R
n for the control system at xo ∈ R

n if the vector
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fields f1, . . . fm are such that ( f1 + · · · + fm)(xo) �= 0 if k = 1 or for k ≥ 2

v = 1

k! (H f1 � · · ·� H fm )k I (x0) �= 0, (H f1 � · · ·� H fm )i I (x0) = 0 for all i = 1, . . . , k−1.

(2.16)
Let L ≡ LI := {v : v satisfies (2.16)} ⊂ R

n .

Remark 2.17 (Brackets and iterated Lie brackets.) Similarly to what we observed in
(2.11), if f , g, h and − f ,−g,−h are available vector fields, in particular in the case
of a symmetric system, then with a little algebraic effort one sees that, as expected,

(H f � Hg � H− f � H−g)I ≡ 0, (H f � Hg � H− f � H−g)
2 I = 2[ f , g],

thus [ f , g] ∈ L if it is nonvanishing at xo, while on the other hand

(H f � Hg � H− f � H−g � Hh � Hg � H f � H−g � H− f � H−h)I ≡ 0,
(H f � Hg � H− f � H−g � Hh � Hg � H f � H−g � H− f � H−h)

2 I ≡ 0,
(H f � Hg � H− f � H−g � Hh � Hg � H f � H−g � H− f � H−h)

3 I = 6[[ f , g], h],

so that [[ f , g], h] ∈ L, if it is nonvanishing at xo. Therefore, when using the identity
function inRn , and if the system is symmetric, continuing in this fashion one can check
that the complete Lie algebra generated by the available vector fields is contained in
L.

Remark 2.18 (The ad operator for vector fields.) Using the argument of Remark 2.10
we can see the following. Assume that fo(x) + ε f1(x) are available vector fields for
all ε ∈ [−1, 1] and that fo(xo) = 0. This happens for instance in the case of an affine
system with drift fo and xo as an equilibrium point, in particular for a linear system.
Let f (x) = fo(x)+ε f1(x) and g(x) = fo(x)−ε f1(x). Then observe that by Remark
2.10

(H f � Hg)I (xo) = 2ε(−1)ad fo f1(xo) + o(ε),

as ε → 0. This indicates that we can find iterated Lie brackets given by the ad operator
close to directions in L. Indeed we find for instance

(H f � Hg � Hg � H f )I (xo) = 2 fo(xo) = 0, (H f � Hg � Hg � H f )
2 I (xo) = 0,

(H f � Hg � Hg � H f )
3 I (xo) = 12εad2fo f1(xo) + 4ε2ad2f1 fo(xo).

Therefore given v a unit vector, if v · ad2fo f1(xo) < 0 then for ε sufficiently close to 0

also v ·(H f �Hg�Hg�H f )
3 I (xo) < 0 and (1/3!)(H f �Hg�Hg�H f )

3 I (xo) ∈ L.
We can proceed further as

(H f � Hg � Hg � H f � Hg � H f � H f � Hg)
j I (xo) = 0

for j = 1, 2, 3 while (H f � Hg � Hg � H f � Hg � H f � H f � Hg)
4 I (xo) =

−192εad3fo f1(xo) + o(ε) and so forth.
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3 Small Time Local Attainability of Fat Targets

In this section we obtain a first attainability result for the control system (1.1) with the
general assumptions of the previous Sect. 2.1, in the case of targets locally described
by an inequality. Namely in the neighborhood BR(xo) of xo the target is described as

T = {x : u(x) ≤ u(xo)},

where u ∈ C1(Rn), ∇u(xo) �= 0. This case is easier because u is scalar, possibly
the distance from the target, as there is only one constraint to cope with and we do
not really need the Lemma in the Appendix. Note that this accommodates also the
case of a target given by a single equation {x : u(x) = u(xo)} because the two sets
of the complement of the target {x : u(x) > u(xo)} and {x : u(x) < u(xo)} are
locally disconnected. At the end of the section we extend the result and show how our
approach can lead to sufficient conditions for controllability also for some classes of
nonsmooth targets.

Theorem 3.1 For some integer k > 0 let u ∈ Ck(Rn) and xo ∈ T \intT be such that
∇u(xo) �= 0. Suppose that u has k−th order decrease rate, i.e. there are available
vector fields fi ∈ Ck−1(Rn;Rn), i = 1, . . . ,m such that

(H f1 �· · ·�H fm )ku(xo) < 0 and (H f1 �· · ·�H fm ) j u(xo) = 0 for j = 1, . . . , k−1.
(3.1)

Then there are δ, δ′ > 0 and a constant K > 0 such that for any x ∈ R
n, |x − xo| ≤ δ′

we can find t ∈ [0, δ] such that if xs is the trajectory obtained by using the vector
fields fi on subsequent intervals of length t as in (2.8) and starting out at x, then
xmt ∈ BR(xo), u(xmt ) ≤ u(xo) and moreover

t ≤ K |x − xo|1/k .

In particular the minimum time function T to reach the target T satisfies

T (x) ≤ Km|x − xo|1/k, x ∈ Bδ′(xo) (3.2)

and thus it is continuous at xo and the target is STLA at xo.

Proof The proof is local, in the neighborhood of the point xo. By the assumptions, we
can choose co > 0 such that A := (H f1 � · · · � H fm )ku(xo) ≤ −2co < 0. We pick a
radius R > 0 so that ∇u(x) �= 0 in BR(xo) and T ∩ BR(xo) = {x ∈ BR(xo) : u(x) ≤
u(xo)}. We consider σ > 0 so that for any |x − xo| ≤ R/2, 0 ≤ t ≤ σ , any trajectory
{xs : s ≥ 0} of the control system using only the vector fields fi and starting at x
satisfies |xs − xo| ≤ R, for s ≤ mt .

For any x, t such that |x − xo| ≤ R/2, 0 ≤ t ≤ σ , and u(x) > u(xo), we construct
the trajectory xs using the vector fields f1, . . . , fm in subsequent intervals of length t
and starting out at x , and the corresponding reference trajectory xos starting at xo and
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using the same control. Notice that changing t modifies the trajectory drastically. We
define the continuous function (see Remark 2.13)

ρ(x, t) = u(xomt ) − u(xmt )

and we observe that by local Lipschitz continuity of u and Gronwall estimates on the
trajectories, there are constants C, L > 0 such that

|ρ(x, t)| ≤ Ĉ |xmt − xomt | ≤ C |x − xo|eLmσ , (3.3)

for all |x − xo| ≤ R/2 and t ∈ [0, σ ]. In particular

lim
t→0

ρ(x, t) = u(xo) − u(x) < 0, lim
x→xo

sup
t∈[0,σ ]

|ρ(x, t)| = 0. (3.4)

By the asymptotic formula of the trajectory xos proven in Proposition 2.6 and the
assumptions, we have that

u(xomt ) − u(xo) =
k∑
j=1

t j

j ! (H f1 � · · · � H fm ) j u(xo) + tk

k!γ (t)

= tk

k!
(
(H f1 � · · · � H fm )ku(xo) + γ (t)

)
,

where limt→0 γ (t) = 0. Therefore we can find 0 < δ(≤ σ) independent of x , such
that |γ (t)| ≤ co, for all t ∈ [0, δ]. For a given x , |x − xo| ≤ R/2, we thus prove that
by (3.3)

u(xmt ) − u(xo) = u(xmt ) − u(xomt ) + tk
k!

(
(H f1 � · · · � H fm )ku(xo) + γ (t)

)
≤ tk

k! (A + γ (t)) − ρ(x, t) ≤ −cotk/k! + C |x − xo|eLmσ .

(3.5)
We now notice that the right hand side in (3.5) is zero for

t = t∗ =
(
Ck!
co

eLmσ

)1/k

|x − xo|1/k

and that this choice is admissible since t∗ ≤ δ provided we choose

|x − xo| ≤ δ′ = co
Ck!e

−Lmσ δk .

Thus the target is reached at most at time mt∗ and the estimate on the minimum
time function holds. �
Remark 3.2 In our previous papers [33, 35] we proved that if k = 2 and the system
is symmetric or affine, then the decrease rate condition of the previous Theorem with
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m ≤ 2, e.g. a trajectory with at most one switch, is necessary and sufficient for the
target being STLA at xo and holding (1.2), the necessary part being proven in [8].
Notice that in (3.1) derivatives of u up to order k may appear.

The next statement shows how to improve in a simple way estimate (3.2) and obtain
Hölder regularity of the minimum time function. We need some uniformity of the
pointwise estimate satisfied by T . Below we indicate the distance function from the
target as d(x, T ) := min{|x − y| : y ∈ T }.
Proposition 3.3 We consider the control system (1.1) and the target T at the beginning
of the section with u ∈ C1(Rn). Assume that there are R,C > 0 and an integer k such
that for all x ∈ T ∩ BR(xo) the minimum time function satisfies

T (y) ≤ C |y − x |1/k for all y ∈ BR/2(x).

Then T also satisfies

T (x) ≤ d(x, T )1/k, for all x ∈ BR/2(xo).

In particular if the assumption holds for all xo ∈ T , then T is locally 1/k−Hölder
continuous in its domain if F satisfies (2.10) globally.

Proof Let x ∈ BR/2(xo), and px ∈ T , |x − px | = d(x, T ), be a projection of x . Then
px ∈ BR(xo) since |px − xo| ≤ |px − x | + |x − xo| ≤ 2|x − xo| and we can apply
the assumption at px and find

T (x) ≤ C |x − px |1/k = Cd(x, T )1/k .

The last part of the statement comes from a standard argument as in the book [6] or
in [8]. �
If the decrease rate sufficient condition can be satisfied in the viscosity solutions sense
or for some other classes of nonsmooth sets, we can drop regularity of the target.

Corollary 3.4 Let xo ∈ T \intT . The two following hold.
(i) Let u ∈ C(Rn), suppose that T ∩ BR(xo) = {x : u(x) ≤ u(xo)} and that there is
	 ∈ Ck(Rn) such that u − 	 attains a local maximum point at xo, ∇	(xo) �= 0 and
	 has k−th order decrease rate at xo. Then all conclusions of Theorem 3.1 hold true.
(ii) For some integer k > 0 let ui ∈ Ck(Rn), i = 1, . . . , l, be such that ∇ui (xo) �= 0,
and T ∩ BR(xo) = {x ∈ BR(xo) : ui (x) ≤ ui (xo), i = 1, . . . , l}. Suppose that
ui has ki−th order decrease rate for all i , i.e. there are available vector fields fh ∈
Ck−1(Rn;Rn), h = 1, . . . ,m such that for all i = 1, . . . , l

(H f1�· · ·�H fm )ki ui (xo) < 0 and (H f1�· · ·�H fm ) j ui (xo) = 0 for j = 1, . . . , k−1.
(3.6)

Then there are δ, δ′ > 0 and a constant K > 0 such that for any x ∈ R
n, |x − x0| ≤ δ′

we can find t ∈ [0, δ] such that if xs is the trajectory obtained by using the vector
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fields fi as in (2.8) and starting out at x, then ui (xmt ) ≤ ui (xo) for all i = 1, . . . , l
and moreover t ≤ K |x − xo|1/k if k = maxi ki . All other conclusions of Theorem 3.1
remain unchanged.

Proof (i) If there is a neighborhood of xo such that u(x)−	(x) ≤ u(xo)−	(xo) for
x ∈ BR(xo), then

T̂ = {x ∈ BR(xo) : 	(x) ≤ 	(xo)} ⊂ {x ∈ BR(xo) : u(x) ≤ u(xo)}.

We thus apply the assumption on 	 and determine that T̂ , and therefore T , is STLA
at xo.
(ii) We modify the proof of Theorem 3.1. By the assumptions, we can choose co > 0
such that Ai := (H f1 � · · · � H fm )ki ui (xo) ≤ −2co < 0, for all i = 1, . . . , l.
Following the proof of Theorem 3.1, we reach (3.5) for each constraint, and if δ ≤ 1,

ui (xmt ) − ui (xo) ≤ −co
tki

ki ! − ρi (x, t) ≤ −co
tk

k! − ρ(x, t),

where = 1, . . . , l, ρ(x, t) = mini ρi (x, t). We conclude as in Theorem 3.1. �
Of course one can extend Proposition 3.3 as in Corollary 3.4 as well.

4 Small Time Local Attainability of Manifolds

4.1 The Case of a Point Target

In this section the target for system (1.1) is a point T = {xo} ⊂ R
n , which is identified

by the system u(x) = x − xo = 0. This case simplifies with respect to the general
one because the target is determined by flat constraints. The constants R, σ below will
follow Sect. 2.1.

We start with a useful Lemma comparing a trajectory at a point and the translation
of the trajectory starting at a different point but following the same control.

Lemma 4.1 Let (xos )s∈[0,t] be a solution of (1.1) starting at xo and (as)s∈[0,t] be the
corresponding control. Let x �= xo and ys = xos + x − xo, s ∈ [0, t] be the translation
of xos starting at x. Then if t, |x − xo| are sufficiently small, the trajectory (xs)s∈[0,t]
of (1.1) starting at x with control as satisfies

|xt − yt | ≤ LeLt |x − xo|t .

Proof The translated trajectory ys is itself a trajectory of a translated control system

ẏs = F(ys + xo − x, as), y0 = x .

Therefore

|xs − ys | ≤
∫ s

0
|F(xr , ar ) − F(yr + xo − x, ar )| dr ≤ L|x − xo|s + L

∫ s

0
|xr − yr | dr
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for all s ∈ [0, t]. By usual Gronwall estimates we then get

|xt − yt | ≤ LeLt |x − xo|t .

�
In this section we are going to assume the following condition at xo:

(A1) Wehavem groups of available vector fields of the control system: f (i)
1 , . . . , f (i)

j(i),

i = 1, . . . ,m and integers ki > 0 such that f (i)
r ∈ Cki−1(Rn;Rn) andwe denote

k̄ = maxi ki . We suppose for convenience that j(i) = 1 if ki = 1. We assume
that

R
n � Ao

i := 1

ki !
(
H

f (i)
1

� · · · � H
f (i)
j(i)

)ki
I (xo) �= 0.

and if ki ≥ 2

(
H

f (i)
1

� · · · � H
f (i)
j(i)

)r

I (xo) = 0, 1 ≤ r < ki , i = 1, . . . ,m.

In particular the i-th group has j(i) vector fields and the trajectory moves at ki−th
order rate at xo in the direction of Ao

i ∈ L. We construct the n × m matrix, written
in columns as Ao = (

Ao
i

)
i=1,...,m , so that Ao has a column for each group of vector

fields. The main assumption on matrix Ao is the following.

(A2) As a n × m matrix, the m columns of the matrix Ao are a positive basis of Rn .
In particular Ao has rank n (and m ≥ n + 1).

Remark 4.2 The notion of positive basis of a vector space is classical and recalled in
the Appendix together with a technical lemma that we need in the main results of
this section, where we use the assumption (A2). If ki = 1 for each i , then in (A1)
we have m vector fields satisfying Ao

i = fi (xo) �= 0. In this case assumption (A2) is
the positive basis considion of the classical work by Petrov [29, 30]. If k̄ = 2, then
(A2) has been used by Liverovskii [24, 25] as necessary and sufficient second order
condition when the columns of Ao are either available vector fields or their first Lie
brackets.

Below for any vector τ ∈ R
m we indicate τ ≥ 0 if τ = (τ1, . . . , τm) and τi ≥ 0 for

i = 1, . . . ,m. Let τ = (τ1, . . . , τm) ≥ 0. We are going to define several reference
trajectories. For i = 1, . . . ,m and τi ≥ 0, trajectory xo,it starts at xo and it is a balanced
trajectory of the j(i) fields f (i)

1 , . . . , f (i)
j(i) followed in consecutive time intervals of

length τ
1/ki
i each, and therefore by Proposition 2.12 and (A1) we know that at the end

point
xo,i
j(i)τ

1/ki
i

= xo + Ao
i τi + τi o(1), (4.1)

as τi → 0. For the given τ ≥ 0, we build recursively a further reference trajectory
as follows. We put T0 = 0 for convenience. For the first group: we consider the
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trajectory xos ≡ xo,1s , s ∈ [0, T1], T1 = j(1)τ 1/k11 . We proceed recursively with the
following groups of vector fields. If we have defined xos up to the i−th group and time

Ti = ∑i
l=1 j(l)τ 1/kll , we proceed with the (i + 1)-th group of vector fields starting

at xoTi and prolonging the trajectory by following the vector fields f (i+1)
1 , . . . , f (i+1)

j(i+1)

in j(i + 1) successive intervals of respective length τ
1/ki+1
i+1 until we reach the point

xoTi+1
, Ti+1 = Ti + j(i + 1)τ 1/ki+1

i+1 . Recursively, for all τ ≥ 0 we have a trajectory xos
well defined for s ∈ [0, Tm].

For a generic initial point x ∈ BR/2(xo), and s ∈ [0, Tm], we also consider the
corresponding trajectory xs starting at x with the same control as xos . We finally
construct the translated trajectories yi+1

s = xo,i+1
s + xoTi − xo for s ∈ [0, j(i +

1)τ 1/ki+1
i+1 ]. Notice that yi+1

0 = xoTi . Standing (A1), we have now defined xo,is , yis ,
s ∈ [0, Ti − Ti−1], i = 1, . . . ,m, and xos , xs , s ∈ [0, Tm].

We start with the following Lemma that we will also use in the following section.

Lemma 4.3 Consider a nonlinear control system in the form (1.1) and suppose that
(A1) is satisfied at the point xo ∈ T . Then with the notations above

xoTi = xo +
i∑

j=1

Ao
jτ j + (τ1 + · · · + τi )o(1), (4.2)

for all i = 1, . . . ,m, as τ → 0. In particular there is C > 0 such that

|xoTi − xo| ≤ C(τ1 + · · · + τi ),

for i = 1, . . . ,m and all τ sufficiently small.

Proof We prove the statement by an induction argument. For the first group of vector
fields and (4.1) we have

xoT1 = xo,1T1
= xo + Ao

1τ1 + τ1o(1),

as τ → 0. Suppose now by induction that after the i-th group of vector fields, 1 ≤ i <

m, we have that (4.2) is satisfied. Observe that

xoTi+1
− xo = (xoTi+1

− yi+1
Ti+1−Ti

) + (xo,i+1
Ti+1−Ti

− xo) + (xoTi − xo)

= (xoTi+1
− yi+1

Ti+1−Ti
)

+Ao
i+1τi+1 + τi+1o(1) +

i∑
j=1

Ao
jτ j + (τ1 + · · · + τi )o(1)

wherewe rewrote the second term in the first line by (4.1) and the third by the induction
assumption (4.2) at i . Notice that by Lemma 4.1, if Tm ≤ σ , comparing the trajectories
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in [Ti , Ti+1],

|xoTi+1
− yi+1

Ti+1−Ti
| ≤ C |xoTi − xo|(Ti+1 − Ti ) ≤ Ĉ(τ1 + · · · + τi )o(1),

again by the induction assumption (4.2). This proves that (4.2) holds for i + 1 and the
conclusion is thus reached. �

Wenowprove themain result of this part of the paper. The construction of the reference
trajectories made above stands.

Theorem 4.4 Consider a nonlinear control system in the form (1.1) and suppose that
(A1) and (A2) are satisfied at the point xo ∈ R

n. Then the target T = {xo} is STLA
and the minimum time function T (x) at a point x in the neighborhood of xo satisfies

T (x) ≤ C |x − xo|1/k̄ .

In particular T is locally 1/k̄-Hölder continuous in its domain, if F satisfies (2.10)
globally.

Proof Given x �= xo, x ∈ BR/2(xo), we want to find R
m � τ ≥ 0 so that xTm = xo,

where (xs)s has been defined above. Notice that by Gronwall estimates on trajectories
and if Tm ≤ σ , therefore for τ ≥ 0 sufficiently small, then the continuous function
ρ(x, τ ) = xoTm − xTm satisfies

|ρ(x, τ )| ≤ C |x − xo|.

In particular limx→xo sup|τ |≤σ |ρ(x, τ )| = 0. We use Lemma 4.3 for i = m and
conclude that

xTm − xo = xTm − xoTm + xoTm − xo = Aoτ + γ̂ (τ )

m∑
i=1

τi − ρ(x, τ )

= (Ao + γ (τ))τ − ρ(x, τ ), (4.3)

where γ̂ is a continuous function with values in R
n such that γ̂ (0) = 0 and γ (τ) is

n × m matrix valued vanishing as τ → 0 with m columns all equal to γ̂ . Finding
τ ≥ 0 so that the right hand side of (4.3) is zero is the content of Lemma 6.2(i) in the
Appendix. It uses a fixed point argument and it is where the assumption (A2) is finally
needed. Thus there are δ, δ′ > 0 such that for all x, |x − xo| < δ′ we can find τ ≥ 0,
|τ | < δ and for such τ , xTm = xo. The corresponding trajectory xs then reaches the
point xo at time Tm . Moreover Lemma 6.2 also shows that for the specific τ we have

m∑
i=1

τi ≤ K sup
|τ |≤δ

|ρ(x, τ )| ≤ C |x − xo|
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and therefore (we may assume that τi ≤ 1 for all i)

Tm =
m∑
i=1

j(i)τ 1/kii ≤ Ĉ

(
m∑
i=1

τ
1/k̄
i

)
≤ C̃ |x − xo|1/k̄ .

The final statement of the Theorem concerning Hölder regularity of the minimum time
function now follows by well known arguments, see e.g. [6]. �
Remark 4.5 In the case of a point as target, Remark 2.17 applied to symmetric systems
outlines the fact that the set L ⊃ {h(xo) : h ∈ Lie(F)} = L(F)(xo), where Lie(F)

is the Lie algebra generated by all the available vector fields of the control system.
If L(F)(xo) = R

n , then L contains a positive basis on R
n and we can recover in

Theorem 4.4 the classical sufficient condition for small time local controllability of
Rashevskii and Chow [13].
Similarly Remark 2.18 applied to the case of an affine system where F(x, a) =
fo(x) + G(x, a) with an equilibrium point at xo outlines the fact that La(F)(xo) =
∪λ≥0λ co{adkfo f (xo) : k ∈ N, F(x, a) = fo(x)+ f (x), a ∈ A} ⊂ ∪λ≥0λ coL. Here
fo is the drift, fo(xo) = 0, f (x) = G(x, a) is a generic available vector field in the
symmetric part of F and co C is the convex hull of the set C . If La(F)(xo) = R

n

then the set L contains a positive basis of Rn . Therefore in Theorem 4.4 we can also
recover the sufficient condition of Frankovska [16] and Kawski [18].

4.2 A General Manifold with a Boundary

In this section we will discuss the attainability of general smooth targets, namely
manifolds possibly with a boundary. We therefore assume that in the neighborhood of
the point xo the target is described by a set of equations and at most one inequality.
Let u = t (u1, . . . , uh) : Rn → R

h and possibly also uh+1 : Rn → R be at least of
class C1 and such that ∇ui (xo), i = 1, . . . , h, (h + 1), are linearly independent. The
previous assumption stands throughout the section. Thus the target is locally defined
in the neighborhood of xo in one of the two following ways

T = {x : u(x) = u(xo)},
T = {x : u(x) = u(xo), uh+1(x) ≥ uh+1(xo)}. (4.4)

In the second case T has a boundary (as a manifold)

∂T = {x : u(x) = u(xo), uh+1(x) = uh+1(xo)}.

We will suppose for convenience that 1 ≤ h ≤ n − 1, as the two cases h = 0,
h = n have been previously treated. In particular the target has no interior points. We
will keep all notations as in the previous Sect. 4.1. The constants R, σ, L, M will also
follow Sect. 2.1. The next key Lemma compares the variation of a given vector valued
smooth function.
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Lemma 4.6 (i) Let (xos )s∈[0,t] be a solution of (1.1) starting at xo and (as)s∈[0,t] be the
corresponding control. Let (xs)s∈[0,t] be the trajectory of (1.1) starting at x ∈ BR/2(xo)
with the same control as and let u : Rn → R

h, u = (u1, . . . , uh), be a function of
class C2. Then, if t, |x − xo| > 0 are sufficiently small,

u(xt ) − u(x) = u(xot ) − u(xo) + α(x, t), (4.5)

whereα : BR/2(xo)×[0, σ ] → R
h is a continuous function and |α(x, t)| ≤ C |x−xo|t .

(ii) Suppose moreover that BR(xo) × A � (x, a) �→ Du(x)F(x, a) only depends
on a restricted group of variables xl1 , . . . , xlp and a ∈ A, and that the corresponding
components of the vector field Fl1, . . . , Flp also depend only on the same group of
variables as well. Suppose moreover

|Du(x)F(x, a) − Du(y)F(y, a)| ≤ L̂

√√√√ p∑
j=1

(xl j − yl j )
2, (4.6)

for all x, y ∈ BR(xo) and a ∈ A. Then (4.5) holds with α satisfying the stronger
estimate

|α(x, t)| ≤ Ct

√√√√ p∑
j=1

(xl j − (xo)l j )
2.

Proof Note that (4.5) holds with

α(x, t) = u(xt ) − u(x) − (u(xot ) − u(xo))

=
∫ t

0

(
Du(xs)F(xs, as) − Du(xos )F(xos , as)

)
ds

and then by Gronwall inequality

|α(x, t)| ≤ ∫ t
0 (‖D2u‖∞M + ‖Du‖∞L)|xs − xos | ds

≤ (‖D2u‖∞M + ‖Du‖∞L)|x − xo|
∫ t
0 e

Ls ds ≤ C |x − xo|t,

for |x − xo| sufficiently small, t ∈ [0, σ ] and C depending only on the data and σ .
The proof of (ii) is similar by considering the subsystem of (1.1) of the group of

components Fl1 , . . . , Flp and using (4.6). �

We are now going to assume the following conditions:

(B1) There are m groups of available vector fields: f (i)
1 , . . . , f (i)

j(i), i = 1, . . . ,m and

integers ki > 0 such that f (i)
r ∈ Cki−1(Rn;Rn) and u ∈ Ck̄(Rn;Rh), if xo ∈

T \∂T (respectively û = (u, uh+1) ∈ Ck̄(Rn;Rh+1), if xo ∈ ∂T ), where k̄ =
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maxi ki . We suppose for convenience that j(i) = 1 if ki = 1. We assume that

R
h � ki !Ao

i = (H
f (i)
1

� · · · � H
f (i)
j(i)

)ki u(xo) �= 0,

(resp. Rh+1 � ki ! t (Ao
i , si ) = (H

f (i)
1

� · · · � H
f (i)
j(i)

)ki û(xo) �= 0),

and if ki ≥ 2

(H
f (i)
1

� · · · � H
f (i)
j(i)

)r ul(xo) = 0,

1 ≤ r < ki , i = 1, . . . ,m, l = 1, . . . , h (resp. h + 1),

i.e. u has ki−th order rate of change in the direction of Ao
i ∈ Lu (resp. (Ao

i , si ) ∈
Lû).

If xo ∈ T \∂T , we construct a h×m matrix, written in columns as Ao = (
Ao
i

)
i=1,...,m

or else if xo ∈ ∂T , we add to Ao an extra row

Âo =
(
Ao

s

)
, s =

(
1

ki ! (H f (i)
1

� · · · � H
f (i)
j(i)

)ki uh+1(xo)

)
i=1,...,m

.

In particular in Ao (respectively Âo) there is only a column for each group of vector
fields and it is not zero. We suppose that:

(B2) If xo ∈ T \∂T , the m columns of the matrix Ao form a positive basis of Rh .
In particular Ao has rank h. If instead xo ∈ ∂T then the following holds: the
matrix Âo has rank h + 1 and for all p ∈ R

h and r ≥ 0 there exists λ =
t (λ1, . . . , λm) ≥ 0 such that p = Aoλ, r ≤ s · λ.

The second part of assumption (B2) modifies the positive basis condition in order to
be useful at boundary points of the manifold.

For any given family of nonnegative times τ = (τ1, . . . , τm) ≥ 0 sufficiently small,
and an initial point x ∈ BR/2(xo), we build as in the previous Sect. 4.1, the trajectories

xos , xs for s ∈ [0, Tm] and xo,is , for s ∈ [0, j(i)τ 1/kii ]. The next statement uses an
additional assumption to (B1–2), in order to prove that the target is STLA at xo.

Theorem 4.7 Consider a nonlinear control system in the form (1.1) and xo ∈ T , where
the target T is locally described as above in the section. Suppose that (B1) and (B2)
are satisfied at xo. In addition we require that the vector fields satisfying (B1) (below
ki and m come from assumption (B1)) also satisfy: either

(H
f (i)
1

� · · · � H
f (i)
j(i)

)r I (xo) = 0, (4.7)

for all i = 1, . . . ,m and 1 ≤ r < ki (if ki ≥ 2) or there is ī ∈ {1, . . . ,m − 1} such
that if ki ≥ 2, (4.7) holds for all i = 1, . . . , ī − 1 and 1 ≤ r < ki and ki = 1 for
i = ī + 1, . . .m.
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Then the target is STLA at xo and the minimum time function T (x) at a point x in the
neighborhood of xo satisfies (for appropriate δ′ ≤ σ )

T (x) ≤ C |x − xo|1/k̄ x ∈ Bδ′(xo). (4.8)

If moreover (4.8) holds near all points x̂ ∈ Bδ′(xo) ∩ T and C, δ′, k̄ are independent
of x̂ , then (4.8) improves to

T (x) ≤ Cd(x, T )1/k̄ .

If in particular the assumptions hold at all xo ∈ T and F satisfies (2.10) globally,
then T is locally 1/k̄− Hölder continuous in its domain.

Proof We proceed similarly to the proofs of Theorem 4.4 and Lemma 4.3, so we
only point out the main differences. With the notations of those results, for any x ∈
BR/2(xo), we want to find a nonnegative vector τ ∈ R

m so that u(xTm ) = u(xo) and
in addition uh+1(xTm ) ≥ uh+1(xo) when xo ∈ ∂T . Now, similarly to (4.3),

u(xTm ) − u(xo) = −ρ(x, τ ) + u(xoTm ) − u(xo),

and again ρ is continuous and |ρ(x, τ )| ≤ C |x − xo|, by the local Lipschitz continuity
of u, if τ is sufficiently small. By the assumption (B1) we know that

u(xo,i
j(i)τ

1/ki
i

) − u(xo) = Ao
i τi + τi o(1), (4.9)

as τ → 0, for i = 1 . . .m, since Ao
i ∈ Lu . Moreover we also have

uh+1(x
o,i

j(i)τ
1/ki
i

) − uh+1(xo) = siτi + τi o(1),

if xo ∈ ∂T . We will proceed in the case xo ∈ T \∂T and modify accordingly at the
end if xo ∈ ∂T . We want to proceed recursively as in Lemma 4.3 and assume that
after the i-th step

u(xoTi ) − u(xo) =
i∑

j=1

Ao
jτ j + (τ1 + · · · + τi ) o(1). (4.10)
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Observe that (4.10) holds for i = 1 by (4.9). Given (4.10) and using (B1)

u
(
xoTi+1

)
− u(xo) = u

(
xoTi+1

)
− u

(
xo,i+1
Ti+1−Ti

)
+ u

(
xo,i+1
Ti+1−Ti

)

−u(xo) −
(
u(xoTi ) − u(xo)

)
+

(
u(xoTi ) − u(xo)

)

=
[((

u(xoTi+1
) − u(xoTi )) − (u(xo,i+1

Ti+1−Ti
) − u(xo)

))]
+Ao

i+1τi+1 + τi+1o(1)

+
i∑

j=1

Ao
jτ j + (τ1 + · · · + τi )o(1). (4.11)

What remains to be done is the estimate of the square bracket in the last line. By using
Lemma 4.6(i) we get

∣∣∣((u(xoTi+1
) − u

(
xoTi )

)
− (u(xo,i+1

Ti+1−Ti
) − u(xo)

)∣∣∣ ≤ C |xoTi − xo| (Ti+1 − Ti ) .

(4.12)
We now need |xoTi − xo|(Ti+1 − Ti ) ≤ Ĉ(τ1 + · · · + τi )o(1) to conclude and this
does not seem to hold in general without further assumptions. We can obtain it since
Ti+1 − Ti = τi+1 for i ≥ ī as ki+1 = 1, or by Lemma 4.3 for i = 1, . . . , ī − 1 by
using the extra assumption so that we finally get by induction

u(xTm ) − u(xo) = Aoτ + o(1)
m∑
i=1

τi − ρ(x, τ ) = (Ao + γ (τ))τ − ρ(x, τ ), (4.13)

with an appropriate continuous, vector valued function γ (τ) vanishing as τ → 0. In
the case that xo ∈ ∂T then with easy changes, if ρ̂(x, τ ) = û(xoTm ) − û(xTm ), we
obtain similarly

û(xTm ) − û(xo) = ( Âo + γ̂ (τ ))τ − ρ̂(x, τ ).

We then complete the statement of the Theorem in both cases by using Lemma 6.2
in the Appendix similarly to the proof of Theorem 4.4, since in the case xo ∈ ∂T we
need u(xTm ) = u(xo) and uh+1(xTm ) ≥ uh+1(xo). �
Remark 4.8 Ideally we need the estimate (4.12) to have in the right hand side
C |u(xoTi ) − u(xo)|(Ti+1 − Ti ) = (τ1 + · · · + τi )o(1), by the induction assumption, to
be able to conclude as in Lemma 4.3 without further assumptions. This does not seem
to be reachable in general.
In Theorem 4.7 notice that no extra condition is assumed on the ī−th group of vector
fields. If ki = 2 then notice that the extra condition for the i-th group requires

0 = (H
f (i)
1

� · · · � H
f (i)
j(i)

)I (xo) = H f1+···+ f j(i) I (xo) = ( f (i)
1 + · · · + f (i)

j(i))(xo),
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i.e. the vector fields of the i−th group are balanced at xo. This kind of assumption
was made in the paper by the author [32] to prove the corresponding result for second
order sufficient conditions in the case of symmetric systems.

With a slight modification in the proof, we can in fact relax the extra assumption in the
statement of Theorem 4.7, which is too restrictive in some examples, by using Lemma
4.6(ii) instead.

Corollary 4.9 Consider the nonlinear control system (1.1)and xo ∈ T , where the target
T is locally described in one of two ways in (4.4). Suppose that (B1) and (B2) are
satisfied. In addition we require the following: BR(xo)×A � (x, a) �→ Du(x)F(x, a)

only depends on a restricted group of variables xl1 , . . . , xlp and a ∈ A, and (4.6)
holds true, for all x, y ∈ BR(xo) and a ∈ A. Suppose also that the corresponding
components of the vector field Fl1, . . . , Flp also depend only on the same group of
variables and the control as well, and: either

(H
f (i)
1

� · · · � H
f (i)
j(i)

)r Il(xo) = 0, (4.14)

for all i = 1, . . . ,m, l ∈ {l1, . . . , l p} and 1 ≤ r < ki , where ki comes from assumption
(B1) or there is ī ∈ {1, . . . ,m − 1} such that if ki ≥ 2, (4.14) holds for all i =
1, . . . , ī − 1 and 1 ≤ r < ki and ki = 1 for i = ī + 1, . . .m.
Then the target is STLA at xo and all other conclusions of Theorem 4.7 hold true.

Proof If xo ∈ T \∂T , we proceed as in the proof of Theorem 4.7 until we get to (4.11).
By using Lemma 4.6 (ii) instead, we modify (4.12) according to the current additional
assumption and obtain in the right hand side

C |(xoTi − xo)l1,...,l p |(Ti+1 − Ti )

instead, where the vector xl1,...,l p only contains the indicated p coordinates. We now
apply Lemma 4.1 to the subsystem of the space coordinates l1, . . . , l p and use it as in
Lemma 4.3 to finally achieve that, 1 ≤ i ≤ ī − 1,

(Ti+1 − Ti )

⎛
⎝xoTi − xo −

i∑
j=1

voj τ j

⎞
⎠

l1,...,l p

= (τ1 + · · · + τi ) o(1),

where voj = (1/ki !)(H f (i)
1

� · · · � H
f (i)
j(i)

)1/ki I j (xo) for j ∈ {l1, . . . , l p}. We conclude

the induction step

u
(
xoTi+1

)
− u(xo) =

i+1∑
j=1

Ao
jτ j + (τ1 + · · · + τi )o(1)

and again (4.13) is satisfied. Similarly, we complete the argument if xo ∈ ∂T , conclud-
ing the proof by applying Lemma 6.2(ii) in the Appendix and where the assumption
(B2) is required. �
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Another variation of the result is in the following.

Corollary 4.10 As in the previous Corollary assume (B1) and (B2) for the control
system (1.1) and xo ∈ T . Suppose in addition that for j = 0, 1 according to the fact
that xo ∈ T \∂T or xo ∈ ∂T : the first h + j columns of the jacobian Du(xo) (resp.
D(u, uh+1)(xo)) are not singular and that the last (n − h − j) components of the
system (Fi )h+ j+1,...,n, only depend on the corresponding coordinates (xi )h+ j+1,...,n
and the control a ∈ A. Moreover: either

(
H

f (i)
1

� · · · � H
f (i)
j(i)

)r

Il(xo) = 0, (4.15)

for all i = 1, . . . ,m, l ∈ {h + j + 1, . . . , n} and 1 ≤ r < ki , where ki comes from
assumption (B1) or there is ī ∈ {1, . . . ,m − 1} such that if ki ≥ 2, (4.7) holds for all
i = 1, . . . , ī − 1 and 1 ≤ r < ki and ki = 1 for i = ī + 1, . . .m.
Then the target is STLA at xo and all other conclusions of Theorem 4.7 hold true.

Proof We proceed as in the proof of Theorem 4.7 until we get to (4.11) and now
estimate (4.12) as follows. Add n − h − j components to u = (u1, . . . , uh+ j ) as
(ũ)i (x) = xi , for i = h + j + 1, . . . , n in order to make (u, ũ) : Rn → R

n locally
invertible around xo. If L is a Lipschitz constant for the inverse function (u, ũ)−1 then

|xoTi − xo|(Ti+1 − Ti ) ≤ L(|u(xoTi ) − u(xo)| + |(xoTi − xo)h+ j+1,...,n|)(Ti+1 − Ti )

≤ C(τ1 + · · · + τi )o(1),

by the induction assumption, by Lemma 4.1 applied to the subsystem of the space
coordinates h + j + 1, . . . , n and Lemma 4.3. Eventually the left hand side in (4.12)
estimates with C(τ1 + · · · + τi )o(1) and we conclude the proof as before. �

5 Examples

In this section we show some examples illustrating our method.

Example 5.1 In this example in the plane the system is symmetric with only one vector
field F(x, y, a) = a fo(x, y), fo(x, y) = t (0, 1) and control a ∈ [−1, 1]. In particular
Lie brackets and high order variations of trajectories have no role for controllability.
The target is T = {u(x, y) ≤ 0} where u(x, y) = x − y4. We compute the first Lie
derivative

F · ∇u(x, y) = −4ay3

which is always negative at the points of the boundary of the target, for some a = ±1,
except at the origin, therefore they have a first order controllability. Notice moreover
that F ·∇u(x, 0) = 0 for all x . So there are no vector fields in the Lie algebra pointing
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toward the target at these points and standard literature will not apply. We proceed
with higher order Lie derivatives and compute

H (2)
F u(x, y) = −12a2y2, H (3)

F u(x, y) = −24a3y

both vanishing at the origin and

H (4)
F u(x, y) = a4( fo)

4
2 ∂4yu(x, y) = −24a4 < 0

for either a = ±1. Therefore the target is STLA also at the origin and the minimum
time function satisfies

T (x) ≤ C(x2 + y2)1/8

in a neighborhood of the origin. Indeed one can easily compute the minimum time
function and T (x, y) = x1/4 − |y| for x ≥ y4 so that it follows that T (x, y) ≤
Ld(x, y)1/4 for a suitable constant L . Notice that the origin is never the end point of
a trajectory reaching the target and that the reason for the controllability at the origin
is ∂4y u(0, 0), another reason why known sufficient conditions in the literature will not
apply.

Example 5.2 In R
3 the control system is affine with vector field F = fo + a f1,

fo(x, y, z) = t (y, 0, 0), f1(x, y, z) = t (0, 1, 0), a ∈ [−1, 1], and it has an
equilibrium at the point P = (0, 0, 1/2). Notice that the point target {P} is not con-
trollable. We take as target T = {u = x + zy2 ≤ 0}, in the neighborhood of P . Since
F ·∇u = y(1+2az), in any neighborhood of P there are points of the boundary of the
target T where the system is not controllable e.g. Pε = (−ε2(1−ε),

√
2ε, (1−ε)/2),

ε → 0+, since F · ∇u(Pε) = √
2ε(1+ a(1− ε)) ≥ √

2ε(1− |1− ε|) > 0 for any a
and ε small. Therefore (1.3) cannot hold and standard literature will not apply at P .
Nevertheless F · ∇u(0, 0, 1/2) = 0 and

(H fo− f1 � H fo+ f1)
2u(P) = [ fo − f1, fo + f1] · ∇u(P) = −2 < 0

and therefore T at P is STLA and the minimum time function satisfies in a neighbor-
hood of P (for some C > 0)

T (x, y, z) ≤ C(x2 + y2 + (z − 1/2)2)1/4.

Example 5.3 (Reaching a curve in R
3.) Consider the affine system F(x, y, z, a) =

fo(x, y, z) + a f1(x, y, z) + b f2(x, y, z), a, b ∈ [−1, 1], where fo(x, y, z) =
t (0, 1, 0), f1(x, y, z) = t (1,−1, 0) and f2(x, y, z) = t (0, 0, 1) and assume that
we want to reach the curve u(x, y, z) = (x3 − y, z) = (0, 0). The vector fields are
constant therefore there is no high order variation of the trajectories to play with. To
check the first order condition,

Du F(x, y, z, a, b) = t (a(3x2 + 1) − 1, b),
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and then Du F(x, y, z, 0,±1) = t (−1,±1), while Du F(x, y, z, 1, 0) = t (3x2, 0).
Therefore all points of the target with x �= 0 are first order controllable as
{(−1, 1), (−1,−1), (3x2, 0)} is a positive basis of R2. Notice that as a single point,
the origin is not STLA for the system because the second cohordinate of the system
is nondecreasing. We easily compute at the origin

H (2)
fo+ f1

u(0, 0, 0) = t (6x, 0)|x=0 = t (0, 0),

H (3)
fo+ f1

u(0, 0, 0) = t (∂3x u (( f1)1)
3, 0) = t (6, 0),

Thus

Ao =
(
H (3)

fo+ f1
u(0) | H fo− f2u(0) | H fo+ f2u(0)

)
=

(
6 −1 −1
0 −1 1

)

and the columns of Ao are a positive basis of R2. Therefore the curve is third order
STLA at the origin by Theorem 4.7. No extra condition applies as ī = 1. It is
∂3x u (( f1)1)(0, 0, 0) that makes the origin controllable. Previous literature does not
enlighten this.

Example 5.4 Consider the affine system F(x, y, z, a) = fo(x, y, z) + a f1(x, y, z) +
b f2(x, y, z), a, b ∈ [−1, 1], where fo(x, y, z) = t (y, 0, 0), f1(x, y, z) = t (0, 1, 0)
and f2(x, y, z) = t (0, 0, 1) and assume that we want to reach the curve u(x, y, z) =
(2x − y2, z) = (0, 0). To check the first order condition at the origin,

Du F(0, 0, 0, 0,±1) = t (0,±1),
(H fo∓ f1 � H fo± f1)I (0, 0, 0) = t (0, 0), (H fo∓ f1 � H fo± f1)

2u(0, 0, 0) = t (∓6, 0).

Therefore the target is second order controllable at the origin by Theorem 4.7. The
curve is not controllable at other points, therefore the approach with the distance
function will not apply.

Example 5.5 (From the book byCoron [14].) InR2 with targetT = {(x, y) : x2+y2 ≤
r2} consider the affine vector field F(x, y, a) = f0(x, y) + a f1(x, y), f0(x, y) =
t (y3, 0), f1(x, y) = t (0, 1) and u(x, y) = x2 + y2 − r2. We compute

f (x, y, a) · ∇u(x, y) = y(xy2 + a),

which is negative on ∂T for some |a| ≤ 1 unless y = 0 so that the points where a first
order decrease rate condition fails are (±r , 0). Then we obtain

(H f0+ f1 � H f0− f1)
2u(±r , 0) = 0, (H f0+ f1 � H f0− f1)

3u(±r , 0) = 0,

(H f0+ f1 � H f0− f1)
4u(x, y) = 12x + 204y4,

(H f0− f1 � H f0+ f1)
4u(x, y) = −12x + 204y4,

therefore a fourth order condition holds at (±r , 0).
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If instead we change the target to the origin then we get ( fo ± f1)(0, 0) = t (0,±1)
and also

(H f0+ f1 � H f0− f1)I (0, 0) = (0, 0), (H f0+ f1 � H f0− f1)
2 I (0, 0) = (0, 0),

(H f0+ f1 � H f0− f1)
3 I (0, 0) = (0, 0), (H f0+ f1 � H f0− f1)

4 I (0, 0) = (12, 0),
(H f0− f1 � H f0+ f1)

4 I (0, 0) = (−12, 0).

Therefore {( fo ± f1)(0, 0), (H f0− f1 � H f0+ f1)
4 I (0, 0), (H f0+ f1 � H f0− f1)

4 I (0, 0)}
is a positive basis of R2 and we have a 4th order condition at the origin.
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6 Appendix: A Refinement of Petrov’s Lemma

The technical Lemma that we discuss in this section is a refinement of a result initially
due to Petrov [30] and a of first extension in the paper by the author [32]. It is based
on the properties of a positive basis of Rk . We will sketch the proof for the reader’s
convenience because it is one important step to compltete our arguments. We start
recalling the concept of a positive basis of a vector space.

Definition 6.1 We say that a family of vectors ai ∈ R
k, i = 1, . . .m is a positive

basis of Rk if for any x ∈ R
k there are nonnegative real numbers λi ≥ 0 such that

x = ∑m
i=1 λi ai .

We recall a few usefuls properties that a positive basis enjoys, see [29] formore details:

(i) {ai }i=1,...,m is a positive basis if and only if for any unit vector x ∈ R
k , |x | = 1,

there is i such that ai · x < 0;
(ii) {ai }i=1,...,m is a positive basis if and only if the cone ∪λ≥0λ co{a1, . . . , am} =

R
k ;

(iii) by compactness of the unit sphere and (i), one easily shows that: a positive basis
{ai } remains so after a small perturbation, that is: there is ε > 0 sufficiently small
so that if {bi }i=1,...,m satisfies |ai − bi | < ε, i = 1, . . . ,m, then {bi }i=1,...,m is
also a positive basis;

(iv) if {ai } is a positive basis, then there are strictly positive λi > 0, which can
therefore be taken as large as we wish, so that

∑m
i=1 λi ai = 0;
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(v) a positive basis contains a basis ofRk as a vector space and conversely if we have
a basis vi , i = 1, . . . , k of Rk , then adding to it the vector vk+1 = −∑k

i=1 vi
gives a positive basis.

The following statement improves Petrov [29] in part (i) and in parts (i-ii) slightly
the author [32]. Below we indicate R

m≥ = {τ ∈ R
m : τ ≥ 0} and Bσ (xo) = {x :

|x − xo| ≤ σ }.
Lemma 6.2 Let Ao ∈ R

k×m be a matrix whose columns are a positive basis of Rk .
(i) Let γ : Rn ×R

m≥ → R
k×m, ρ : Rn ×R

m≥ → R
k be continuous functions such that

for some σ ∈ (0, 1),

lim
τ→0,τ≥0

sup
x∈Bσ (xo)

|γ (x, τ )| = 0; lim
x→xo

sup
τ∈Bσ (0),τ≥0

|ρ(x, τ )| = 0. (6.1)

Therefore there are δ, δ′ > 0 such that for any x ∈ R
n, |x − x0| ≤ δ′, we can find

τ ∈ R
m, τ ≥ 0, |τ | ≤ δ such that the following equation is satisfied

(Ao + γ (x, τ ))τ = ρ(x, τ ), (6.2)

and moreover |τ | ≤ K sup|t |≤σ,t≥0 |ρ(x, t)|, for some K > 0 independent of x,
|x − xo| ≤ δ′.
(ii) Let s ∈ R

m be such that together with Ao above they satisfy: the matrix

Ão =
(
Ao
t s

)

(here t s is the transposed row vector of s) has rank k + 1 and for all p ∈ R
k and

r ≥ 0 there exists λ = t (λ1, . . . , λm) ≥ 0 such that

p = Aoλ, r ≤ s · λ.

Let γ : R
n × R

m → R
(k+1)×m, ρ : R

n × R
m → R

k+1 be continuous functions
satisfying (6.1). Then there are δ, δ′ > 0 such that for any x ∈ R

n, |x − x0| ≤ δ′ we
can find τ ∈ R

m, τ ≥ 0, |τ | ≤ δ and h(x) ≥ 0 such that the following equation is
satisfied

( Ão + γ (x, τ ))τ = ρ(x, τ ) + h(x)ek+1,

where ek+1 = t (0 . . . 0, 1) ∈ R
m+1. Moreover |τ | ≤ K sup|t |≤σ,t≥0 |ρ(x, t)|, for

some K > 0 independent of x, |x − xo| ≤ δ′.

Proof We outline the proof only in case (i) and refer to the references for more details.
By the first limit in (6.1) and rearranging the columns if necessary, we can assume
that taking a sufficiently small s > 0, for any (x, τ ) ∈ Bσ (xo) × Bs(0) the columns
of A(x, τ ) := Ao + γ (x, τ ) are still a positive basis of Rk and we can split A(x, τ ) =
(A1|A2) where A1(x, τ ) is a k × k matrix such that |detA1(x, τ )| ≥ co > 0 for all
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(x, τ ) ∈ Bσ (xo) × Bs(0). Notice that γ (x, 0) = 0. Let M = ‖A−1
1 ‖L∞(Bσ (xo)×Bs (0)),

by property (iv) of the positive basis we can find bo ∈ R
m such that (bo)i ≥ M + 1,

i = 1, . . . ,m and Aobo = 0. Given bo and M , again by the first limit in (6.1) we can
find 0 < δ(≤ s) such that

|A−1
1 (x, τ )γ (x, τ )bo| ≤ 1, for all (x, τ ), |τ | ≤ δ, |x − xo| ≤ σ, τ ≥ 0. (6.3)

Let K = |bo| + 1 + M . By the second limit in (6.1) choose 0 < δ′(≤ σ) such that

|ρ(x, τ )| ≤ δ

K
≤ 1, for all (x, τ ), |τ | ≤ σ, |x − xo| ≤ δ′, τ ≥ 0.

Now we can fix any x, |x − xo| ≤ δ′, and define b(x, τ ) = bo + b#(x, τ ) where

b#(x, τ ) = t (−A−1
1 (x, τ )γ (x, τ )bo, 0, . . . , 0) ∈ R

m

so that by (6.3) and (bo)i ≥ M +1, we get bi (x, τ ) ≥ M for all τ ≥ 0, |τ | ≤ δ, where
we indicate b(x, τ ) = (b1, . . . , bm). Note that, by the splitting Ao + γ = (A1|A2)

and Aobo = 0,

(Ao + γ (x, τ ))b(x, τ ) = γ (x, τ )bo + (Ao + γ (x, τ ))b#(x, τ ) = 0,

that b is continuous by the inverse function theorem and b(x, 0) = bo.
For any unit vector X ∈ R

k define c(x, τ, X) = t (A−1
1 (x, τ )X , 0) ∈ R

m and
observe that |c(x, τ, X)| ≤ M . Let β(x, τ, X) = b(x, τ ) + c(x, τ, X). Note that

(Ao + γ (x, τ ))β(x, τ, X) = (Ao + γ (x, τ ))c(x, τ, X) = X ,

and that β is continuous and such that β ≥ 0 since |c| ≤ M , and each (b)i ≥ M . We
also obtain that |β(x, τ, X)| ≤ |bo| + |b#(x, τ )| + |c(x, τ, X)| ≤ K for all |τ | ≤ δ,
|X | = 1, τ ≥ 0.

In order to solve (6.2), recall that x has been fixed and define

	(τ) =
{

|ρ(x, τ )|β(x, τ, ρ(x,τ )
|ρ(x,τ )| ), if ρ(x, τ ) �= 0

0, if ρ(x, τ ) = 0.

Now observe that by construction 	 : Bδ(0) ∩ {τ : τ ≥ 0} → Bδ(0) ∩ {τ : τ ≥ 0} is
a continuous function and therefore it has a fixed point τ ∗ (since Bδ(0) ∩ {τ : τ ≥ 0}
is closed and convex). Such fixed point then satisfies

(Ao + γ (x, τ ∗))τ ∗ = |ρ(x, τ ∗)|(Ao + γ (x, τ ∗)) β
(
x, τ ∗, ρ(x,τ∗)

|ρ(x,τ∗)|
)

= ρ(x, τ ∗)

if ρ(x, τ ∗) �= 0 otherwise the conclusion is obvious. Thus τ = τ∗ ≥ 0 solves equation
(6.2). Moreover the fixed point satisfies |τ ∗| ≤ K |ρ(x, τ ∗)|, |τ ∗| ≤ δ and therefore
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as we wanted

|τ ∗| ≤ K sup
|τ |≤σ

|ρ(x, τ )|.

Case (ii) is an appropriate variation of case (i) and follows similarly to the proof of
Proposition 3.2 in [32]. �
Remark 6.3 The original result by Petrov [30] solves the x−independent equation
(A+ γ (τ))τ = v ∈ R

k . The paper by the author solves (A+ γ (x, τ ))τ = H(x), and
adds case (ii) to the argument. Here we add the variable τ to the right hand side and
indicate the needed assumptions in this case.
If the columns of Ao are a positive basis of Rk and bo is such that (bo)i > 0, for all i ,
and Aobo = 0, then we may define eccentricity of the basis relative to bo as the ratio

E(bo) = mini (bo)i
maxi (bo)i

.

This is stable with respect to small perturbations of the basis (and the choice of bo).
Looking at the proof, if |γ (x, τ )| ≤ C |τ |, |ρ(x, τ )| ≤ C |x − xo|, as it happens in our
applications of the Lemma, then we easily check that the choices of δ, δ′ can be made
of the order of Ĉ E(bo), Ĉ a constant uniformly depending on the data, so they are
also stable with respect to small perturbations of the basis. Indeed to implement the
choice of δ in (6.3) we find

|A−1
1 (x, τ )γ (x, τ )bo| ≤ MC |τ |√m(M + 1)/E(bo)

when we choose bo so that M + 1 = mini (bo)i .
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