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ON THE BEST CONSTANT IN THE NONLOCAL ISOPERIMETRIC

INEQUALITY OF ALMGREN AND LIEB

NICOLA GAROFALO

Abstract. In 1989 Almgren and Lieb proved a rearrangement inequality for the Sobolev spaces
of fractional order W s,p. The case p = 2 of their result implies the nonlocal isoperimetric
inequality

Ps(E)

|E|
N−2s

N

≥
Ps(B1)

|B1|
N−2s

N

, 0 < s < 1/2,

where Ps indicates the fractional s-perimeter, and B1 is the unit ball in R
N . In this note we

explicitly compute the best constant, and show that for any 0 < s < 1/2, one has

Ps(B1)

|B1|
N−2s

N

=
Nπ

N

2
+sΓ(1− 2s)

sΓ(N
2
+ 1)

2s

N Γ(1− s)Γ(N+2−2s

2
)
.

1. A simple proof of the computation of the best constant

In their 1989 paper [2, Theorem 9.2 (i)], Almgren and Lieb proved that, if f ∈ W s,p, for
0 < s < 1 and 1 ≤ p < ∞, then also f⋆ ∈ W s,p and

(1.1) ||f⋆||W s,p ≤ ||f ||W s,p ,

where f⋆ denotes the non-increasing rearrangement of |f |. Here, for 1 ≤ p < ∞ and s > 0 we
have denoted by W s,p the Banach space of functions f ∈ Lp with finite Aronszajn-Gagliardo-
Slobedetzky seminorm,

(1.2) [f ]p,s =

(
∫

RN

∫

RN

|f(x)− f(y)|p

|x− y|N+ps
dxdy

)1/p

,

see e.g. [1] or also [11] (throughout this note we assume N ≥ 2). Notice that if δλf(x) = f(λx),
with λ > 0, then [δλf ]

p
p,s = λ−N+ps[f ]pp,s. Consider now the nonlocal perimeter of a set,

(1.3) Ps(E) = [1E ]
2
2,s = [1E ]1,2s.

This notion has appeared in the works of Bourgain, Brezis and Mironescu [4], [5], [6], of Maz’ya
[16], and of Caffarelli, Roquejoffre and Savin [7]. These latter authors have begun the study
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2 ON THE BEST CONSTANT, ETC.

of the Plateau problem with respect to a family of fractional perimeters. By the above noted
scaling property, we have

(1.4)
Ps(δλE)

|δλE|(N−2s)/N
=

Ps(E)

|E|(N−2s)/N
.

This observation suggests that the fractional perimeter should satisfy the following isoperimetric
inequality: given 0 < s < 1/2, there exists a constant i(N, s) > 0 such that for any measurable
set E ⊂ R

N , such that |E| < ∞, one has

(1.5)
Ps(E)

|E|(N−2s)/N
≥ i(N, s).

(we note that when s ≥ 1/2 any non-empty open set has infinite s-perimeter, see e.g. the proof
of Proposition 1.1 below). In fact, it is well-known (see e.g. [13], [14] and [12]) that (1.5) is
contained in the Almgren-Lieb inequality (1.1), since the latter, combined with the observation
(1.4), implies

(1.6)
Ps(E)

|E|
N−2s

N

≥
Ps(B1)

|B1|
N−2s

N

,

where B1 ⊂ R
N is the unit ball. The important case of equality in (1.6) is contained in the works

[13] and [14].
In this note we present a simple proof of the following explicit expression of the best constant

in the right-hand side of (1.6). In connection with our result the reader should see the remarks
at the end of this note.

Proposition 1.1. For any 0 < s < 1/2, one has

(1.7)
Ps(B1)

|B1|
N−2s

N

=
Nπ

N
2
+sΓ(1− 2s)

sΓ(N2 + 1)
2s
N Γ(1− s)Γ(N+2−2s

2 )
.

It is worth noting that the exact limiting behavior of the isoperimetric quotient Ps(B1)

|B1|
N−2s

N

at

the poles s = 1
2 , or s = 0, is captured by the factor Γ(1−2s)

s (recall that Γ(z) has a simple pole

at z = 0 with residue 1). Hereafter, we indicate with σN−1 = 2π
N
2

Γ(N/2) the (N − 1)-dimensional

volume of the unit sphere S
N−1 ⊂ R

N , and with ωN = σN−1/N the N -dimensional volume of
the unit ball. One has from (1.7)

(1.8) lim
s→0+

s
Ps(B1)

|B1|
N−2s

N

=
2π

N
2

Γ(N2 )
= σN−1, lim

s→ 1

2

−

(1− 2s)Ps(B1) =
2Nπ

N
2

Γ(N2 + 1)
1

N Γ(N+1
2 )

|B1|
N−1

N .

Both limit relations in (1.8) are special cases of well-known results. In fact, the case p = 2 of
[18, Theor. 3] gives for f ∈ W s,2,

lim
s→0+

s

∫

RN

∫

RN

|f(x)− f(y)|2

|x− y|N+2s
dxdy = σN−1||f ||

2
L2(RN ).
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Taking f = 1B1
in such result, we obtain the first relation in (1.8). On the other hand, we recall

that, in answer to a question posed in [4], J. Dávila in [8, Theor. 1] extended to any dimension
their limiting formula for N = 1, and proved

(1.9) lim
sր1/2

(1− 2s)Ps(E) =

(
∫

SN−1

| < eN , ω > |dσ(ω)

)

P (E),

where eN = (0, ..., 0, 1). Since one easily recognises that
∫

SN−1 | < eN , ω > | = 2π
N−1

2

Γ(N+1

2
)
, it is clear

that taking E = B1 in (1.9) we obtain the latter relation in (1.8).

Proof of Proposition 1.1. Using Plancherel theorem (we adopt the definition of Fourier transform

f̂(ξ) =
∫

RN e−2πi<ξ,x>f(x)dx, which gives ||f ||2 = ||f̂ ||2), we easily obtain for an arbitrary

function f ∈ L2

[f ]22,s = 2

∫

RN

|f̂(ξ)|2
∫

RN

1− cos(2π < h, ξ >)

|h|N+2s
dhdξ.

Now, a simple computation gives

∫

RN

1− cos(2π < h, ξ >)

|h|N+2s
dh = (2π|ξ|)2s

∫

RN

1− cos(hN )

|h|N+2s
dh =

π
N
2 Γ(1− s)

s22sΓ
(

N+2s
2

)(2π|ξ|)2s,

where in the last equality we have used the well-known identity

∫

RN

1− cos(hN )

|h|N+2s
dh =

π
N
2 Γ(1− s)

s22sΓ
(

N+2s
2

) ,

see e.g. [13, Lemma 3.1]. We conclude that the fractional perimeter of the unit ball is given by

(1.10) Ps(B1) = [1B1
]22,s =

2π
N
2
+2sΓ(1− s)

sΓ
(

N+2s
2

)

∫

RN

|ξ|2s|1̂B1
(ξ)|2dξ.

In what follows, we denote by Jν(z) the Bessel function of the first kind and order ν. Using

Bochner’s formula û(ξ) = 2π|ξ|−
N
2
+1

∫∞
0 r

N
2 f(r)JN

2
−1(2π|ξ|r)dr for the Fourier transform of a

spherically symmetric function u(x) = f(|x|), see [3, Theorem 40 p.69], in combination with the

identity
∫ 1
0 xν+1Jν(ax)dx = a−1Jν+1(a), ℜν > −1, see [15, 6.561, 5., p.683], we have

(1.11) 1̂B1
(ξ) = 2π|ξ|−

N
2
+1

∫ 1

0
r

N
2 JN

2
−1(2π|ξ|r)dr = |ξ|−

N
2 JN

2

(2π|ξ|).

Since the asymptotic behaviour of Jν is given by Jν(z) ∼=
2−ν

Γ(ν+1)z
ν , as z → 0, Jν(z) = O(z−1/2),

as z → +∞, we see that |ξ|s1̂B1
(ξ) ∈ L2(RN ) if and only if s < 1/2 (notice that this shows that

a ball has infinite s-perimeter if 1/2 ≤ s < 1). For 0 < s < 1/2 we thus find

(1.12)

∫

RN

|ξ|2s−N |JN
2

(2π|ξ|)|2dξ = σN−1

∫ ∞

0
r−(1−2s)|JN

2

(2πr)|2dr.
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The latter integral can be computed explicitly using a special case of the beautiful, classical
formula of Weber-Schafheitlin from 1880/1888: let ℜ(ν + µ+ 1) > ℜλ > 0, α > 0, then

(1.13)

∫ ∞

0
r−λJν(αr)Jµ(αr)dr =

αλ−1Γ(λ)Γ(ν+µ−λ+1
2 )

2λΓ(µ−ν+λ+1
2 )Γ(ν+µ+λ+1

2 )Γ(ν−µ+λ+1
2 )

,

see 6.574, 2. on p. 692 in [15], but for a proof see 13.4 on p. 398 in [22], or the original papers of
Sonine [21, pp. 51-52] and Schafheitlin [20]. Taking ν = µ = N/2, λ = 1− 2s > 0, and α = 2π
in (1.13), we thus find

∫ ∞

0
r−(1−2s)|JN

2

(2πr)|2dr =
Γ(1− 2s)Γ(N+2s

2 )

2π2sΓ(1− s)2Γ(N+2−2s
2 )

.

Combining this observation with (1.10), (1.12), we obtain

Ps(B1)

|B1|
N−2s

N

=
2π

N
2
+2sΓ(1− s)

sΓ
(

N+2s
2

) ω
2s−N

N

N σN−1
Γ(1− 2s)Γ(N+2s

2 )

2π2sΓ(1− s)2Γ(N+2−2s
2 )

=
Nπ

N
2
+sΓ(1− 2s)

sΓ(N2 + 1)
2s
N Γ(1− s)Γ(N+2−2s

2 )
,

which is the desired conclusion (1.7).
�

In closing, the following two remarks are in order. First, in (4.2) and (1.4) of their 2008 work
[14], Frank and Seiringer had already shown that

(1.14)
Ps(B1)

|B1|
N−2s

N

=
Nπs

(N − 2s)Γ(N2 + 1)
2s
N

CN,s,1,

where (keeping in mind that their s corresponds to our 2s) they defined

(1.15) CN,s,1 = 2σN−2

∫ 1

0
r−(1−2s)(1− rN−2s)

∫ 1

−1

(1− t2)
N−3

2

(1− 2rt+ r2)
N+2s

2

dtdr.

The authors provide the explicit values of CN,s,1 only for N = 1 or 3, but the integral in the
right-hand side of (1.15) does not seem to be easily computable, in general. We note that our
formula (1.7) does exactly that.

Secondly, after a preliminary version of this note was completed, R. Frank has kindly informed
us that the explicit value in our formula (1.7) can also be obtained by combining Proposition 2.3
in the work [12] with a result in Samko’s book [19] which is itself cited in [12]. In a subsequent
conversation, A. Figalli has kindly told us that, although an expression of the best constant is
not explicitly written in their work, one can extract it from the following chain of results (which
for the reader’s sake we have outlined in detail, also keeping in mind that their s corresponds to
our 2s):
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1) The first key step is formula (2.11) in Proposition 2.3 in [12] which states

(1.16) Ps(B1) =
σN−1

2s(N − 2s)
λs
1.

Here, λs
1 indicates the first eigenvalue of the following operator in formula (2.7) in [12] :

Jsu =
21−2sπ

N−1

2 Γ(1−2s
2 )

(1 + 2s)Γ(N+2s
2 )

D1+su,

where D1+s is the hypersingular operator on S
N−1 defined by

D1+su(x) =
2s2s

π
N−1

2

Γ(N+2s
2 )

Γ(1−2s
2 )

P.V.

∫

SN−1

u(x)− u(y)

|x− y|N+2s
dσ(y).

2) Denoting by λ⋆
1(s) the first eigenvalue of the operator D1+s, then by the above definition

of Js one has that

λs
1 =

21−2sπ
N−1

2 Γ(1−2s
2 )

(1 + 2s)Γ(N+2s
2 )

λ⋆
1(s).

3) Finally, λ⋆
1(s) is contained in Lemma 6.26 in [19]. The latter gives (see also (2.4) in [12])

λ⋆
1(s) =

Γ(N+2+2s
2 )

Γ(N−2s
2 )

−
Γ(N+2s

2 )

Γ(N−2−2s
2 )

.

However, it should be noted that the indirect proof outlined in (1)-(3) is not self-contained
and relies on several auxiliary results. For instance, the proof of (1.16) above, i.e., (2.11) in
[12, Prop. 2.3], uses various special calculations involving the operator Js and, per se, is at
least as long as the whole proof of Proposition 1.1. More importantly, (1)-(3) involve facts from
harmonic analysis on the sphere S

N−1 which our simple proof of (1.7) avoid altogether. For
instance, it rests on Lemma 6.26 from [19] which is not self-contained since its proof hinges on
the Funk-Hecke formula for spherical harmonics (see [19, Theor. 1.7]), and on the expression,
in terms of various special integrals involving Gegenbauer polynomials, of the coefficients in the
Fourier-Laplace series of a function on the sphere.

As a final comment, we note that since in Proposition 1.1 we explicitly compute Ps(B1), our
result provides an alternative direct computation of the above mentioned number λs

1 in (1.16).
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