
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Empowering Simple Graph Convolutional Networks
Luca Pasa , Nicolò Navarin , Member, IEEE, Wolfgang Erb , and Alessandro Sperduti , Senior Member, IEEE

Abstract— Many neural networks for graphs are based on the
graph convolution (GC) operator, proposed more than a decade
ago. Since then, many alternative definitions have been proposed,
which tend to add complexity (and nonlinearity) to the model.
Recently, however, a simplified GC operator, dubbed simple
graph convolution (SGC), which aims to remove nonlinearities
was proposed. Motivated by the good results reached by this
simpler model, in this article we propose, analyze, and compare
simple graph convolution operators of increasing complexity that
rely on linear transformations or controlled nonlinearities, and
that can be implemented in single-layer graph convolutional
networks (GCNs). Their computational expressiveness is char-
acterized as well. We show that the predictive performance of
the proposed GC operators is competitive with the ones of other
widely adopted models on the considered node classification
benchmark datasets.

Index Terms— Deep learning, graph convolution (GC), graph
neural network (GNN), machine learning on graphs, structured
data.

I. INTRODUCTION

IN THE past few years, there has been an increasing
interest in the machine learning models able to deal with

graph-structured data, including kernel methods [1] and neural
networks [2]. The idea of graph neural networks (GNNs) is
to define a neural architecture that follows the topology of the
graph. Then a transformation is performed from the neurons
corresponding to a vertex and its neighborhood to a hidden
representation, which is associated with the same vertex in
another layer of the network. A new transformation is then
performed for each hidden layer of the GNN. Each of these
transformations depends on some parameters, which may be
shared among all the vertices, obtaining graph convolutional
networks (GCNs).

All these models share the intuition that nonlinearities are
essential to obtain models with high accuracy. Recently, this
idea has been questioned by the proposal of simple graph
convolution (SGC) [3], which remove the nonlinearities from
a popular GCN model, showing that it did not significantly
impact on the resulting predictive performance.

Manuscript received 21 August 2021; revised 9 May 2022 and 7 November
2022; accepted 15 December 2022. This research was supported by the
Department of Mathematics, University of Padua with the SID/BIRD 2020
project “Deep Graph Memory Networks” and with the provision of the
necessary High Performance Computing (HPC) resources. (Corresponding
author: Luca Pasa.)

Luca Pasa, Nicolò Navarin, and Wolfgang Erb are with the Department of
Mathematics “Tullio Levi-Civita,” University of Padua, 35121 Padua, Italy
(e-mail: lpasa@math.unipd.it).

Alessandro Sperduti is with the Department of Mathematics “Tullio Levi-
Civita,” University of Padua, 35121 Padua, Italy, and also with the DISI,
University of Trento, 38123 Trento, Italy.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3232291.

Digital Object Identifier 10.1109/TNNLS.2022.3232291

The SGC convolution is defined to have the minimum num-
ber of parameters possible, which is the input size multiplied
by the output size [4]. While this simple structure offers a
considerable speed-up of the training process, it might limit
the model in terms of expressiveness and the class of functions
that can be learned. In this article, we study the role of such a
simple convolutional filter and investigate how the adjunction
of additional parameters and nonlinearities in the filter function
influences the explored hypothesis space and the efficiency of
the method. Pursuing this aim, we introduce simple convolu-
tional models similar to the SGC that are able to represent
overlapping and larger classes of functions. Maintaining the
SGC approach of not being based on message-passing, but
defining a single layer that considers a variable receptive
field, we explore a landscape of related graph convolutional
filters with increasing complexity and expressiveness to better
understand, empirically and theoretically, how they behave in
terms of expressiveness, efficiency, and efficacy when applied
to tasks of increasing complexity.

As a first alternative to SGC, we consider a convolutional
model based on one of the simplest and most widespread linear
recursive filters, i.e., the exponential filter. Compared with
SGC, the resulting exponential graph convolution (ExpGC)
exploits one additional filter parameter that can be learned and
interpreted as a diffusion rate on the graph. ExpGC shows a
competitive and in some cases a better predictive performance
than SGC. In general, the classes of functions represented by
ExpGC and SGC are, up to particular cases, disjunct.

As a still simple but more expressive and general linear
model, we then consider linear graph convolution (LGC) [5].
The LGC model incorporates k + 1 parameters as coefficients
of a polynomial convolutional filter. Neglecting a slightly
differing normalization factors in the convolutional operation,
the LGC model is more general than ExpGC and SGC and
includes all the functions that can be represented by ExpGC
and SGC.

We then study a new way of increasing the expressive
power of such simple convolutions by defining a mechanism
based on simple hypernetworks to dynamically adapt the
convolution parameters to the input node, obtaining Hyper-
ExpGC (hExpGC) and Hyper-LGC (hLGC). We provide an
analysis of the expressiveness (i.e., the class of functions
that can be represented by the applied convolutions) and
the Rademacher complexity of our proposed simple graph
convolutions, showing the hierarchical relationship among
their hypothesis spaces. Having several increasingly complex
hypothesis spaces to exploit (from different graph convo-
lutions) allows to consider the specific convolution as an
hyperparameter, finding the most suitable model for the task at
hand. The relationships among the classes of functions that can

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3023-3046
https://orcid.org/0000-0003-3541-5401
https://orcid.org/0000-0002-8686-850X
https://orcid.org/0000-0002-4108-1754

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Relationships among the classes of functions that can be represented
by different graph convolutions. The circles represent the class of functions
that the various convolutional operators can model. We use cylinders to
describe the ability of the hypernetwork-based architectures to have different
parameters for each node.

be represented by the different convolutions are summarized
in Fig. 1.

We also show that hExpGC is able to provide a hint about
what is the neighbor size (i.e., how many hops from the node
should be performed) most relevant to the generation of the
output, thus providing a simple explainability mechanism.

From the experimental point of view, we considered six
datasets in our experimental comparison and show that the
proposed models achieve competitive predictive performance.
Finally, we include a detailed comparison on the computational
requirements of our proposed methods, showing that three
of our proposals are among the fastest methods in literature.
Through the experimental results, we also investigate when it
is more convenient to use a simpler model to maximize the
ratio between computation time and performance.

II. BACKGROUND

In the following, we denote scalars with lowercase letters,
e.g., x , vectors with bold lowercase letters, e.g., a, and matrices
with bold uppercase letters, e.g., M. When referring to the
elements of a matrix, we use the row and column indices
as subscripts, and the same letter is used for the matrix
in lowercase, i.e., mi j denotes the element at the i th row,
j th column of M. Furthermore, we denote sets with uppercase
letters, e.g., S.

Let G = (V , E, X) be a graph, where V = {v0, . . . , vn−1}
denotes the set of vertices (or nodes) of the graph, E ⊆ V ×V
is the set of edges, and X ∈ R

n×c is a multivariate signal on the
graph nodes with the i th row representing the attributes of vi .
We define A ∈ R

n×n as the adjacency matrix of the graph, with
elements ai j = 1 ⇐⇒ (vi , v j) ∈ E and ai j = 0 otherwise.

A. Graph Convolutions

The derivation of the graph convolution (GC) operator
originates from graph spectral filtering [6], [7]. Let us fix a
graph G. Let x : V → R be a signal on the nodes V of the
graph G, i.e., a function that associates a real value to each
node of V . Since the number of nodes in G is fixed (i.e., n) and
the set V is ordered, we can naturally represent every signal
as a vector x ∈ R

n. To set up a convolutional network on G,
we need the notion of a convolution ∗G between a signal x
and a filter signal f . However, as we do not have an inherent

description of translation on G, it is not so obvious how
to define the convolution directly in the graph domain. This
operation is therefore usually defined in the spectral domain
of the graph, using an analogy to classical Fourier analysis
in which the convolution of two signals is calculated as the
pointwise product of their Fourier transforms.

For this reason, we first provide a definition of the graph
Fourier transform [8]. Let L be the (normalized) graph Lapla-
cian, defined as L = In − D−(1/2)AD−(1/2), where In is the
n × n identity matrix, and D is the degree matrix. Since L is
real, symmetric, and positive semi-definite, we can compute
its eigendecomposition as L = U�U�, where � is a diagonal
matrix with the ordered eigenvalues of L as diagonal entries,
and the orthonormal matrix U contains the corresponding
eigenvectors {u0, . . . , un−1} of L as columns. In particular,
going back to our spatial signal x, we can define its graph
Fourier transform as x̂ = U�x.

Using the graph Fourier transform to switch between the
spatial and spectral domains, we are now ready to define
the graph convolution between a filter f and a signal x as
follows:

f ∗G x = U
�
f̂ 	 x̂

� = U
��

U�f
� 	 �

U�x
��

(1)

where f̂ 	 x̂ denotes the componentwise Hadamard product
of the two vectors x̂ and f̂ . The Hadamard product f̂ 	 x̂ can
be formulated in matrix–vector notation as f̂ 	 x̂ = F̂x̂ by
applying the diagonal matrix F̂ = diag(f̂). According to (1),
we therefore obtain

f ∗G x = UF̂U�x. (2)

We can design the diagonal matrix F̂ and, thus, the spectral
filter f in various ways. The simplest way would be to define
fθ as a parametric filter, i.e., use F̂θ = diag(θ), where θ =
(θ0, . . . , θn−1)

� is a completely free vector of filter parameters
that can be learned by the neural network. However, such a
filter grows in size with the data, and it is not well-suited
for learning. A better option pursued in this work is to use a
polynomial parameterization based on powers of the spectral
matrix � for the filter, such as

F̂θ =
k�

i=0

θi�
i . (3)

This filter has k + 1 parameters {θ0, . . . , θk} to learn, and it is
spatially k-localized on the graph. One of the main advantages
of this filter is that we can formulate it explicitly in the graph
domain. Recalling the eigendecomposition L = U�U� of the
graph Laplacian, (2) and (3) combined give

fθ ∗G x = UF̂θU�x = �k
i=0 θi Li x. (4)

Kipf and Welling [9] propose to fix the order k = 1 in (3)
to obtain a linear first-order filter for each graph convolutional
layer in a neural network. These simple convolutions can then
be stacked to improve the discriminatory power of the resulting
network.

The authors additionally use a renormalization trick to
limit the eigenvalues of the resulting matrix: they replace

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 3

In + D−(1/2)AD−(1/2) by D̃−(1/2)ÃD̃−(1/2), where Ã = A + In

and (D)i i = �n
j=0(Ã)i j .

Applying this convolution operator to a multivariate sig-
nal X ∈ R

n×c and using m filters, we obtain the follow-
ing definition for a single graph convolutional layer: H =
D̃−(1/2)ÃD̃−(1/2)X�, where � ∈ R

c×m .
To obtain a GCN, several graph convolutional layers are

stacked and interleaved by a nonlinear activation function,
typically a rectified linear unit (ReLU).

If H(0) = X, we obtain the following recursive definition
for the kth graph convolutional layer:

H(k) = ReLU
�

D̃− 1
2 ÃD̃− 1

2 H(k−1)�
�
. (5)

Although GC can also be applied to other settings, we will
from now on focus on the task of multiclass classification.
In the last GC layer (say the lth), the ReLU activator is
replaced by a softmax classifier (that is a multinomial logistic
regression) to output the predictions.

B. Simple Graph Convolution

In [3], a simplification of the convolution operator in (5) is
proposed, dubbed SGC. The idea is that perhaps the nonlin-
ear operator introduced by GCNs is not essential. However,
stacking multiple GC layers has an important effect on the
locality of the learned filters, i.e., after k GC layers, the hidden
representation of a vertex considers information coming from
the vertices up to distance k, i.e., the filters on the kth layer
are k-localized. Let us rewrite, for ease of notation

S = D̃− 1
2 ÃD̃− 1

2 (6)

then a GC layer as defined in (5) (not considering the ReLU
nonlinearity) becomes H(i) = SH(i−1)�. If we stack k such
layers with no nonlinearity, and we apply a softmax classifier
at the end, the output after k hidden layers is

Y = softmax

⎛
⎝ k
 ��

S . . . S X�(0) . . .�(k−1)

⎞
⎠. (7)

Since the SGC model is linear, we can reparameterize it as
� = �(0) . . .�(k−1) obtaining

Y = softmax
�
SkX�

�
. (8)

The great advantage of this model is a reduced number
of parameters compared with classical graph convolution.
Moreover, Sk can be computed only once, with a dramatic
speed-up compared with GCNs.

III. PROPOSED GRAPH CONVOLUTIONS

In the following, we present the main contributions of this
article. We introduce several simple convolutional models with
increasing number of parameters to analyze how the model
complexity influences its expressiveness and learnability of
function classes. We first use (an approximate) exponential
graph filter to define a respective convolutional network which
we refer to as ExpGC. Compared with SGC, it exploits an
additional parameter for the filter function.

We then present a more general and expressive model than
ExpGC and SGC, the so-called LGC [5]. The LGC, differently
than SGC and ExpGC, contains all the linear combinations
of monomials up to a degree k as possible filter functions.
Thanks to this general definition, the LGC model can represent
larger classes of functions compared with SGC and ExpGC.
For these three simple models, we present upper bounds for
their Rademacher complexity. Since the considered models use
a single graph convolution layer, these bounds can be directly
used to estimate the generalization error.

Finally, we define even more expressive convolutions, the
hExpGC and the hLGC, which introduce gating-like functions
depending on a number of parameters that are linear in the
size of the graph. These functions are implemented via para-
meterized (and learnable) networks that generate the values of
the convolution coefficients depending on the considered input
vertex.

A. Exponential Graph Convolution

In the following, we introduce the ExpGC operator based
on the coefficients of the exponential power series. It is one of
the simplest linear filters on graphs and its action to a graph
signal can be interpreted as a diffusion process on the graph.
Our aim is to have an extremely simple graph convolution
at disposition that is theoretically grounded in graph spectral
filtering and that yields a predictive performance comparable
or better than SGC.

We revisit the definition of parameterized filters in (3),
considering an exponential filter instead of a polynomial one

F̂β = eβ� =
∞�

i=0

β i

i ! �i . (9)

Recalling the eigendecomposition L = U�U� [similar to what
we did in (4)], we can derive the corresponding convolution
in the graph domain

fβ ∗G x = U

� ∞�
i=0

β i

i ! �i

�
Uᵀx =

∞�
i=0

β i

i ! Li x = eβLx.

Truncating the series to a maximum number k and applying
this filter to a multivariate signal and m outputs, we obtain
one layer of the ExpGC as

H(k) =
k�

i=0

β i

i ! Li X� (10)

where β and � are the parameters to be learned, and k is an
hyperparameter.

Note that in the limit k → ∞, we get

H(∞) = lim
k→∞

H(k) = eβLX�. (11)

This can be derived from the following approximation error
of our truncated ExpGC with respect to H∞:��H(∞) − H(k)

�� =
�����

∞�
i=k+1

β i

i ! Li X�

�����
≤ |β|k+1�L�k+1

(k + 1)!
�X��

1 − |β|�L�/(k + 2)
(12)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where �·� denotes the spectral norm for matrices. In partic-
ular, this estimate guarantees that for a truncation number k
large enough, the polynomial ExpGC model mimics a graph
convolution with an exponential kernel. As the solution of
the diffusion equation on the graph is determined by the
exponential kernel eβL, the input and output layers in the
ExpGC model are linked by a diffusion process on the graph
nodes. Moreover, during the training process the diffusion rate
β is optimally adjusted to the given training set. This yields
a first improvement over the SGC model introduced above in
which the propagation matrix Sk was a priori fixed and just the
weight matrix � is determined during the learning process.

Instantiating the single-layer neural network with the pro-
posed ExpGC filter, we obtain as final model

Y = softmax

�
k�

i=0

β i

i ! Li X�

�
. (13)

B. Linear Graph Convolution

By considering the ExpGC formulation in (13), we observe
that the single parameter β determines the weights assigned
to all the components in the summation (via the exponential
series expansion). In this way, possible graph convolutions
in the network are limited to those described by exponential
filters. In particular, these filters act as low-pass filters that
emphasize the contributions of the low-order monomials in the
representation of H more than the high-order ones. This might
be a restriction for some applications.

To allow larger families of polynomial filters in a network
layer and to increase the expressive power of the convolution
operator, we therefore study in this section also LGCs. The
main idea is to replace the terms (β i/ i !) with learnable
parameters, one for each i , obtaining the following general
formulation for a single layer:

H =
k�

i=0

αi Li X�. (14)

Similarly as before, we can define a single-layer LGC neural
network as

Y = softmax

�
k�

i=0

αi Li X�

�
. (15)

Note that in this work we derived the ExpGC and LGC
formulation in terms of spectral filters based on the graph
Laplacian L, while the SGC operator can be written as a
monomial of the perturbed operator S. In fact, using S instead
of L and fixing the coefficients α0 = · · · = αk−1 = 0,
and αk = 1, we see that the SGC operator fits as well in
this more general LGC framework, if we ignore the slightly
different normalization for S. Compared with the fixed SGC
scheme, and the ExpGC scheme with one additional parameter
β, the more flexible LGC formulation allows to learn k + 1
coefficients for the convolution in the network layer.

This added expressiveness does not allow us to bound the
approximation error introduced with respect to the version

with k = ∞. In fact, having no constraints on the αi parame-
ters, each term of the summation can potentially significantly
contribute to the final representation.

C. Rademacher Complexity for SGC, ExpGC, and LGC

The simple single-layered structure of the SGC, ExpGC,
and LGC networks allows to obtain explicit estimates for
their Rademacher complexity, a measure for the learnability of
function classes in the respective networks. While bounds of
the Rademacher complexity have been proven for deep GCNs
with particular graph topologies [10], the simplicity of our
networks allows for slightly tighter bounds that hold true for
general graphs.

For a set F of real-valued signals f : V → R on the
graph and a sampling set U = {u1, . . . , uL } ⊂ V (usually
i.i.d. random nodes distributed according to a given proba-
bility measure on the domain V), the empirical Rademacher
complexity of F with respect to U is defined as follows:

R̂(F) := E�

�
sup
f ∈F

1

L

L�
�=1

�� f (u�)

�

where E� denotes the expectation with respect to a uniform
distribution of � ∈ {−1, 1}L . Note that in the literature there
exists a second variant of the Rademacher complexity, the
so-called transductive Rademacher complexity [11]. Compared
with the empirical setting used in this work, the transductive
complexity also takes the nonsampled nodes into account.

Theorem 1: Let a, b > 0, sup j, j � |X j, j � | ≤ M , and consider
the set

FLGC =
�

Y = σ

�
k�

i=0

αi Li X�

�
| �α�∞ ≤ a, ���1 ≤ b

�

where σ is any Lipschitz-continuous activation function with
Lipschitz constants � and � ∈ R

c. Then the Rademacher
complexity of FLGC with respect to any sampling set U ⊂ V
of size L is bounded by

R̂(FLGC) ≤ abM�√
L

�
�L�k+1

1 − 1

�L�1 − 1

�
. (16)

Proof: Without loss of generality, we can assume that
u1 = v1, . . . , uL = vL . Since the activation function σ is
Lipschitz with constant � > 0, we can use the contraction
property of the Rademacher complexity and obtain

R̂(FLGC) ≤ �

L
E�

�
sup

�α�∞≤a
sup

���1≤b

L�
�=1

��

�
k�

i=0

αi Li X�

�
�

�

≤ sup
�α�∞≤a

sup
���1≤b

�

L

�����
�

k�
i=0

αi Li

�
X�

�����
∞

E�

�����
L�

�=1

��

�����
≤ bM�

L

�
k�

i=0

a�L�i
1

�√
L

= abM�√
L

�
�L�k+1

1 − 1

�L�1 − 1

�
.

Here, in the last step we used Jensen’s inequality. �

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 5

As expected, this theoretical estimate indicates that the bound
on the Rademacher complexity of the LGC increases as soon
as the degree k of the polynomial kernel or the length para-
meters a and b in FLGC increase. Similarly as in Theorem 1,
we get the following estimates for the Rademacher complex-
ities of the SGC and ExpGC networks.

Theorem 2: Let b, d > 0, sup j, j � |X j, j � | ≤ M , and consider
the sets

FExpGC =
�

Y = σ

�
k�

i=0

β i

i ! Li X�

�
| |β| ≤ d, ���1 ≤ b

�

FSGC = �
Y = σ

�
SkX�

� | ���1 ≤ b
�

where σ is any Lipschitz-continuous activation function with
Lipschitz constants � and � ∈ R

c. Then the respective
Rademacher complexities with respect to any sampling set
U ⊂ V of size L are bounded by

R̂�FExpGC
� ≤ bM�√

L
ed�L�1 , R̂(FSGC)≤ bM�√

L
�S�k

1. (17)

For proper choices of a and d and using the matrix L in
SGC instead of S, the sets FExpGC and FSGC are subsets of
FLGC. In this case, the Rademacher complexities of FSGC

and FExpGC are per definition smaller than the Rademacher
complexity of the larger set FLGC. This is also visible in the
respective Rademacher bounds in (16) and (17), where for
properly chosen lengths a and d , the bound in (16) dominates
the bounds in (17). While the bound for R̂(FSGC) depends
on the polynomial degree k, it is interesting that the bound
for R̂(FExpGC) is independent of k and depends rather on the
range of the exponential rate β. In particular, if the norm
of S is precisely 1, the Rademacher bound for R̂(FSGC)
remains constant for increasing k, while we can expect that
the complexity of FExpGC gets larger for increasing d .

Due to the simple one-layer structure of our networks,
we got explicit upper bounds for their Rademacher complexi-
ties. This is not necessarily the case for more complex archi-
tectures where two or more layers are stacked. For these type
of networks, it gets more difficult to derive meaningful bounds
since a bound on a single layer has to be combinatorially
reused leading in general to pessimistic upper bounds. For
GCNs with one hidden layer, such tight upper bounds have
been found in [12]. Tight upper bounds (with an additional
logarithmic factor in L) for deep GCNs have been derived
in [10] for specific graph topologies.

D. Expressive Power of SGC, ExpGC, and LGC

The Rademacher complexity analysis given in Section III-C
provides us with a powerful tool to study the expressive power
of the proposed graph convolutions. However, the available
upper bounds for those complexities do not always allow to
properly characterize the relationships among the different
classes of functions that the applied convolutions are able to
represent. In this section, we compare the expressive power
of the three convolutions SGC, ExpGC, and LGC, in the
sense of the family of functions that the convolutions in the
single networks can represent. Let us refer as HSGC, HExpGC,
and HLGC the family of functions that can be represented by

SGC, ExpGC, and LGC, respectively. In the following, we will
always use the graph Laplacian L instead of S in the SGC
network.

Theorem 3: LGC in (15) is more expressive than SGC
defined in (8).

Proof: Obviously, HSGC ⊆ HLGC since for each function
in SGC we can construct a corresponding LGC function where
the indices αi for the convolution filter are 0 for i �= k and
1 for i = k. The � parameters remain the same.

It is also easy to see that HSGC �= HLGC since any function
in HLGC that has more than one coefficient αi different from
0 can in general not be represented by SGC. �

Theorem 4: LGC in (15) is more expressive than ExpGC
defined in (13).

Proof: It is easy to see that HExpGC ⊆ HLGC since, fixed
any value of the parameter β in ExpGC, we can construct an
equivalent LGC model by setting αi = (β i/ i !).

To see that HLGC is strictly larger than HExpGC, we provide
an example of a family of functions in HLGC which is not in
HExpGC. Such a family is, for instance, given by a function
with constant coefficients, i.e., where αi = α j for all i ,
j ≤ k. This function cannot be represented by ExpGC given
the exponential nature of its coefficients. �

As for the relation between ExpGC and SGC, besides the
trivial case where k = 0 in which the two convolutions are
equivalent, for k > 0 the two sets of functions that can be
represented are disjunct.

E. Hyper-ExpGC

In the ExpGC convolution, a single learned parameter β
determines the weight of each i ∈ {0, . . . , k} term of the
summation. Since ExpGC is based on the coefficients of the
exponential power series, the weighted sum tends to emphasize
the contribution of a small subset of the considered terms
(we analyze this phenomenon more in deep in Section V-F).
Besides that, it is important to note that the expressiveness
of the convolution is also limited due to the fact that the β
parameter is shared between all the considered nodes. We can,
however, start from this intuition and define a mechanism
to overtake this limitation. To allow the model to adjust
dynamically β based on the input node, we propose the
hExpGC, which exploits a network f ([X, L1X, . . . , LkX])
generating a vector β = [βv |v ∈ V] having a different
parameter βv for each node v ∈ V . This idea is inspired by
the hypernetworks [13]. Hypernetworks were introduced in the
context of an RNN and CNN that were used to generate the
weights of a primary model solving the actual task. However,
the idea of having one network to predict the weights of
another was proposed earlier and has reemerged multiple
times [14], [15], [16].

In this work, f () is defined by a shallow neural network

f
��

X, L1X . . . , LkX
��

= �
X, L1X, . . . , LkX

� · W + b

Y = softmax

�
k�

i=0

f
��

X, L1X, . . . , Lk X
��i

i ! Li X�

�
(18)

where W ∈ R
s·k×1, and b is a scalar.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The hExpGC convolution presents another interesting fea-
ture indeed, i.e., given a node v, by analyzing the value of
(β i

v/ i !) for each i ∈ {0, . . . , k}, it is possible to identify
which values of k turn out to be more relevant to solve
the considered classification task. We empirically analyze this
feature in Section V-H.

F. Hyper-LGC

LGC aimed at increasing the expressiveness of ExpGC
exploiting multiple (i.e., k+1) weighting parameters compared
with the single parameter β of ExpGC, c.f., (13) and (15).
We can further increase the expressiveness of LGC by defining
a convolution with one parameter for each node and each layer.
This convolution can be defined as follows:

H =
k�

i=0

αi 	 Li X� (19)

where αi ∈ R
n is a vector of weights, one for each node

and for each i . Such definition, while allowing each node
to aggregate information coming from multiple terms of the
sum in a different way, would probably result in overfitting
due to the high number of parameters and the lack of any
regularization mechanism such as weight sharing. Moreover,
it would not be possible to evaluate out of sample nodes, due
to the undefined value of αi . Because of that, and similar to
what we did for hExpGC, we propose to define the weight
vectors αi as the output of a function implemented by a
neural network. The number of parameters of such network
will be lower with respect to the number of nodes, thus
forcing the exploitation of locality and feature similarity in
the graph domain. We propose to parameterize such function
on the input features propagated via the diffusion operator
at each i -hop step. Thus, the resulting function is a graph
convolutional neural network itself. Moreover, we implement
it using a gating mechanism that, for each node, modifies the
base parameter αi .

The hLGC is defined as follows:

Y = softmax

�
k�

i=0

�
Li X� 	 σ

�
fi
�
Li X

��
αi

��
(20)

where fi () is a deep neural network that exploits ReLU as
activation hidden function and returns a multiplicative factor
value for each node. In the following, we refer to fi () as the
hyper model. Note that differently from the common hyper
neural network previously proposed in literature, the hExpGC
and hLGC use a simpler hyper model. Indeed, the adopted
ones are simple networks, while in the hyper neural network
framework, it is common to use as hypernetwork a model that
has a similar structure than the primary model (e.g., the hyper
LSTM and the hyper CNN proposed in [13]).

An interesting feature of the hypernetworks is that their
particular structure allows to overtake the limitation imposed
by the weight sharing mechanism. Our approach slightly
differs from the typical hypernet mechanism. In fact, both
hExpGC and hLGC use the hyper model f () just to relax
the weight sharing limitation. Indeed, they do not delegate
the management of all the weights to the hyper network f (),

while maintaining most of its weights shared among all the
graph nodes. The models exploit the hyper models just to
create a multiplicative factor that allows the rescaling of the
components of the computed embedding.

G. Expressive Power of hLGC and hExpGC

Theorem 5: hLGC is more expressive than LGC
Proof: First, we have HLGC ⊆ HhLGC since, fixed any

value for the αi parameters of LGC, we can define the
corresponding vectors αi of hLGC with all the entries at the
same value.

To show that HLGC �= HhLGC, we consider for simplicity
only the case of a graph with a single node feature, i.e., where
x ∈ R

n×1. In this case, θ ∈ R is a single number for both LGC
and hLGC. For LGC, we can define γi = αiθ and rewrite every
fLGC in LGC as follows:

fLGC =
k�

i=0

γi Li x.

Thus, LGC can represent all the linear combinations of the
vectors Li x. If k < n, then the space spanned by these vectors
forms a proper subspace of R

n . Conversely, for fhLGC in
hLGC we obtain

fhLGC =
k�

i=0

γ i 	 Li x

where each γ i ∈ R
n, so hLGC is able to represent a much

larger subset or even the entire space R
n (depending on the

feature information x). �
Theorem 6: hExpGC is more expressive than ExpGC

Proof: The inclusion HExpGC ⊆ HhExpLGC follows directly
as in Theorem 5. For simplicity, we consider again only single
node features x ∈ R

n×1. Then, we can rewrite every function
in ExpGC as

fExpGC =
k�

i=0

θ
β i

i ! Li x

where θ is a single multiplicative parameter. The contribution
of the coefficient (β i/ i !) to the vector Li x is the same for each
node. On the other hand, hExpGC allows to have a different
coefficient (β i/ i !) for each node. Thus, it can represent a
richer set of functions of the form

fhExpGC =
k�

i=0

θ
β i

i ! 	 Li x.

In particular, each node can have associated a different
(exponential) combination of the basis vectors Li x. �

Theorem 7: hLGC is more expressive than hExpGC
Proof: This proof is very similar to the one provided in

Theorem 4. �
Both hExpGC and hLGC can represent a wide range of

functions. Of course, the definition of the hypernetwork pro-
viding in output the coefficients may (and should) limit such
expressiveness and trade-off bias for variance.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 7

H. Computational Complexity

SGC in (8) is very efficient compared with other convo-
lutions based on message-passing, e.g., GCN in (5), because
it is possible to precompute the terms SkX. Considering our
four proposed models in (13), (15), (18), and (20), we can
note that for all of them the terms Li X can be precomputed
as well. Thus, the computational requirements of our proposed
convolutions are comparable to the ones of SGC. While the
asymptotic complexity of SGC, of our proposed methods, and
other convolutions based on message passing is the same,
in practice SGC as well as our proposed convolutions can
be significantly faster compared with, for instance, the very
popular GCN (see Section V-D).

IV. RELATED WORKS

In the past few years, several models inspired by the
graph convolution idea have been proposed. We already dis-
cussed some methods that are closer to our formulation in
Section II. In this section, we detail other relevant methods in
literature. The first definition of neural network for graphs
(NN4Gs) dates back to the nineties [17]. More recently,
NN4Gs [18] proposed the idea that has been rebranded
later as graph convolution. Scarselli [2] defined a recurrent
NN4Gs, which was later extended [19] removing the con-
straint for the recurrent system to be a contraction mapping.
Duvenaud et al. [20] proposed a hierarchical approach similar
to NN4G and inspired by circular fingerprints in chemi-
cal structures that, differently from NN4G, exploited back-
propagation for training, later extended to consider edge labels
by ECC [21]. Zhang et al. [22] proposed a propagation scheme
for vertices’ representations based on the random-walk graph
Laplacian, similar to the one presented in (5), which has been
extended to consider neighbors at multiple distances [23].
PATCHY-SAN [24] defines a different convolutions on graphs,
which is conceptually closer to convolutions defined over
images, exploiting a canonical ordering on graph vertices.
Graph attention networks (GATs) [25] exploit a different
convolution operator based on masked self-attention. The idea
is to replace the adjacency matrix in the convolution with
a matrix of attention weights. The authors propose to use
multihead attention to stabilize the training. While it may
be more complex to train, GAT allows to weight differently
the neighbors of a node, and thus, it is a very expressive
graph convolution. Fast GCN [26] uses node sampling to
define a fast convolution operator, suited for the inductive
setting. LNet and AdaLNet [27] exploit filters learned on an
approximation of the Laplacian matrix. In particular, the model
proposed in [27] exploits particular localized polynomial filters
based on the Lanczos algorithm, which leverages multiscale
information. Deep graph infomax (DGI) [28] trains a GCN in
an unsupervised setting to obtain general node embeddings.
GNN with auto-regressive moving average (ARMA) filters
(ARMA) [29] defines an ARMA filter for graph convolution.
In [30], an extension of GCN using random learning tech-
niques and a least-squares regularization is investigated. This
extension allows to speed up the learning phase and improves
the performance of GCN in large-scale settings. In [31],
a graph convolution based on the Haar transform has been

proposed for GCNs to substitute the eigenbasis of the graph
Laplacian in (1).

The convolutional operators in the models described above
differ significantly from the ones considered in our analysis
since they are developed with the aim to be part of a deeper
model (excluding [30] where the model differs by the intro-
duction of random weights and a regularization parameter).
Indeed, they were developed to consider only the closest
(1-hop far) neighboring nodes. Stacking several convolutional
layers makes it possible to increase the considered receptive
field. Moreover, to be effective the models that exploit this
kind of operators tend to use nonlinearities. Our study is
inspired by the SGC model that was developed pursuing a
different direction: reduce the model complexity by removing
nonlinearities and collapsing weight matrices between consec-
utive layers. In this work, we propose a convolutional operator
(ExpGC) that is simpler to interpret than SGC and three others
(LGC, hExpGC, and hyper-GC) that gradually increase the
complexity of the model to improve the expressiveness of
the operator. It is worth to note that all the GC operators
considered in our analysis exploit a structure similar to the
one exploited by the SGC and follow the same idea to remove
complexities given in deep GNNs.

Recently, many works propose the idea of extending graph
convolution layers to increase the receptive field size. In gen-
eral, these models exploit the power series of the diffusion
operator. Differently from the models proposed in this article
(and the SGC), these models usually concatenate polyno-
mial powers of the adjacency matrix. This kind of mul-
tiscale representation of the graph features is also known
as graph-augmented multilayer perceptrons (GA-MLPs) [32].
Note that GA-MLPs exploit MLPs to aggregate the various
elements of the power series of the adjacency matrix. That
makes the GA-MLPs more complex (and more expressive)
than the models considered in our analysis. As the focus
of this article is on defining, analyzing, and comparing
simple single-layer models, we consider GA-MLPs and the
other models discussed in the following to go beyond the
purpose of our analysis since they exploit more sophisti-
cated, multilayer architectures compared with the ones we
investigated.

One of the methods that rely on the multiscale representa-
tion idea is the diffusion CNN (DCNN) [33]. DCNN defines
a different graph convolution (i.e., diffusion-convolution) that
incorporates in the definition of graph convolution the diffu-
sion operator, i.e., the multiplication of the input representa-
tion with a power series of the degree-normalized transition
matrix. The model proposed in [34] instead of using neighbor
aggregation function adopts graph augmented features that
combine node degree features and multiscale graph propagated
features. Moreover, the model aggregates the graph augmented
features of each vertex and projects each of these subsets
using an MLP. Luan et al. [35] propose to use the Krylov
blocks to define two novel deep GCN architectures. The
first one, named snowball, stacks several GC layers that
concatenate multiscale features incrementally, resulting in a
densely connected graph network. The second model, called
truncated Krylov, concatenates multiscale features in each
layer, in a way that the topological features from all the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

levels are mixed together. The MixHop graph convolution
layer was proposed in [36], where a multilayer architecture
based on such convolution is defined. Each layer of the
model mixes a subset (managed as a hyperparameter) of the
powers of the adjacency matrix, by multiplying them by
the embedding computed in the previous layer. Finally, each
layer concatenates the representation obtained for each con-
sidered diffusion operator’s powers. Nt and Maehara [37]
observed that multiplying graph signals with propagation
matrices corresponds to low-pass filtering. Based on this obser-
vation, the authors proposed the graph filter neural network,
which filters the input features by multiplication with graph
filter matrices. An alternative multiresolution architecture,
dubbed scalable inception graph neural networks (SIGNs),
is proposed by Rossi et al. [38]. The most interesting feature
of this architecture is its ability to scale GNN to a very
large graph. The author proposes to exploit as building block
for the model a set of exponentiations of linear diffusion
operators. Then, in each building block a learnable matrix is
used to linearly project every exponentiation of the diffusion
operator. As reported by the authors, the SIGN layer is able
to replicate some popular graph convolutional layers. To do
this, SIGN exploits a learnable weight matrix, with dimensions
depending on the number of considered degrees of the power
series of the diffusion operator. That makes this model more
complex to train than the ones here considered in our analysis.
Moreover, SIGN layers exploit a nonlinear activation function.
It is worth noting that a single layer of SIGN could be
used to implement the SGC, ExpGC, and LGC operators,
while SIGN cannot implement neither hExpGC nor hLGC.
Yu et al. [39] recently proposed an efficient and scalable
extension of the SIGN model developed to handle prediction
problems on heterogeneous graphs.

Liu et al. [40] proposed a model to learn node represen-
tations by adaptively incorporating information from large
receptive fields. The model computes the node feature trans-
formation by exploiting an MLP network. The computed node
features are then used to construct a multiscale representation
exploiting the exponentiation of the adjacency matrix obtained
from all the levels mixed together. More recently, a graph
multiscale representation was exploited to define a linear graph
operator, the polynomial GCN (PGCN) [41]. Even though in
Chen et al. [32] show multiscale architectures not to be more
expressive compared with GNNs, the authors proved PGCN
to be more expressive than the most common convolution
operators and their linear stacking. It is also worth noting that
PGCN is proven to be a generalization of the most common
spatially localized graph convolutions. Indeed, the authors
show that common graph convolution operators (including
SGC, ExpGC, and LGC) can be defined as specific instances of
a single PGC. Similar to SIGN, however, it cannot implement
the hyper-GCs considered in our analysis. In [42] and [43], the
multiscale representation approach was used in conjunction
with an attention/gating mechanisms resulting in scalable and
efficient models, while in [44] it is used in conjunction
with reservoir computing framework to obtain an extremely
efficient GNN.

TABLE I

DATASETS STATISTICS. THE COLUMNS #TRAIN, #VAL, AND #TEST
REPORT THE NUMBER OF NODES IN THE TRAINING,

VALIDATION, AND TEST SETS, RESPECTIVELY

V. RESULTS

In this section, we compare the proposed graph convolu-
tional layers against several widely adopted models on six
real-world node classification datasets.

A. Dataset

We empirically validated the proposed convolutions on six
widely adopted datasets of node classification: Citeseer, Cora,
PubMed, Reddit, WikiCS, and Ogbn-Arxiv. Each dataset is
a graph, and in the first three of them, nodes represent
documents and node features are sparse bag-of-words feature
vectors. Specifically, in Citeseer, Cora, and PubMed the task
requires to classify the research topics of papers. Each node
represents a scientific publication described by a 0/1-valued
word vector indicating the absence/presence of the correspond-
ing word from a dictionary. In the Reddit dataset, the task
involves the classification of Reddit posts. Each node is a post,
and the node label is the community, or “subreddit,” that a post
belongs to. The authors sampled 50 large communities and
built a post-to-post graph, connecting posts if the same user
comments on both. The WikiCS dataset [45] is a graph where
the nodes represent Wikipedia Computer Science articles and
the edges represent the hyperlinks among them. Also in this
case the node features derive from the text, but differently from
the other considered datasets, here they were calculated as the
average of pretrained GloVe word embeddings instead of using
binary bag-of-words vectors. In the Ogbn-Arxiv dataset [46],
the nodes represent arXiv papers while a direct edge connects
a paper cited by another one. Node labels consist of 128-D
feature vectors obtained by averaging the embeddings of words
in the title and abstract of the article. The task consists in
classifying the subject areas of arXiv CS papers. Relevant
statistics about the datasets are reported in Table I.

B. Experimental Setting and Implementation Details

We developed all the models involved in the comparison
using deep graph library (DGL) [47]. As baseline models,
we considered the SGC [see (8)], the GAT, and the GCN
[see (5)] convolutions. For these models, we exploit the
implementation provided by DGL. For all the datasets but
Reddit, we solve the resulting optimization problem with the
Adam algorithm (a variant of stochastic gradient descent with
momentum and adaptive learning rate). For the Reddit dataset,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 9

TABLE II

SETS OF HYPERPARAMETERS VALUES USED FOR MODEL SELECTION VIA GRID SEARCH

TABLE III

ACCURACY COMPARISON ON NODE CLASSIFICATION TASK BETWEEN THE PROPOSED MODELS AND THREE BASELINES (SGC, GAT,
AND GCN). THE MODEL SELECTION IS PREFORMED CONSIDERING THE RESULTS OBTAINED ON THE VALIDATION SET

we use the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (L-BFGS) algorithm [48]. We used early
stopping (with the patience set to 100) and model checkpoint,
monitoring the accuracy on the validation set. We set the
maximum number of epochs to 500. All the experiments
involved a shallow model composed of a single layer followed
by a softmax activation function. The results were obtained
by performing five runs for each model. For our experiments,
we adopted a machine equipped with: 2x Intel(R) Xeon(R)
CPU E5-2630L v3, 192GB of RAM, and an Nvidia Tesla
V100. For more details, check the publicly available code.1

1) Model Selection: Before discussing the results of the
proposed graph convolutions in the perspective of results of
the state-of-the-art methods, we would like to point out that
for different reasons, the results reported in literature are not
always comparable to the ones we report here. For instance,
there may be different versions of the same dataset (using
the same name), or different train/validation/test splits on the
same dataset that may significantly impact the reported results.
Another aspect to consider is the procedure adopted to select
the hyperparameters (such as learning rate, regularization, and
network architecture). Many papers report, for each dataset,
the best performance on the test set obtained after testing many
hyperparameter configurations. This procedure favors complex
methods that depend on many hyperparameters, since they
have a larger set of trials to select from compared with simpler
methods. However, the predictive performances computed in
this way are not unbiased estimations of the true error, and
thus, these results are not comparable to other model selection
methods [49]. For these reasons, we consider in this article
two experimental settings. In the first experimental setting,
reported in the following, we select all the hyperparameters
of each method on the validation set. We then evaluate the

1https://github.com/lpasa/SimpleGraphConvolutionalNetworks

test set with a single model. In the second one, that we
report in Appendix A, we used an approach followed by many
works in literature, i.e., we report the performance of the best
hyperparameter configuration for each dataset. As mentioned
before, these results shall be considered as an upper bound
on the predictive performance of the method.

To ensure a fair comparison using a correct model selection
procedure, we ran new experiments for all the models con-
sidered in the empirical comparison. For this reason, some of
the reported results do not coincide with the results reported
in literature. The hyperparameters of the model (number of
hidden units, learning rate, weight decay, k) were selected
using a limited grid search, where the explored sets of values
do change based on the considered dataset. We performed
some preliminary tests to select the set of values taken
into account for each hyperparameter. In Table II, we report
the sets of hyperparameter values used for the grid search.
To perform a fair comparison among the proposed models
and the baselines, we used the same hyperparameters grid for
all the models. As evaluation measure, we used the average
accuracy computed on the validation set.

C. Experimental Results

Table III reports the results obtained validating all the
hyperparameters on the validation set. For each method and
dataset, we report the average accuracy and the standard
deviation over five runs. For sake of completeness, we have
also reported in Appendix A the results obtained selecting the
best hyperparameter values on the test set. We recall that this
hyperparameter selection procedure is biased, as discussed in
the previous section.

Let us start considering the first proposed graph convolu-
tion: ExpGC. It shows competitive predictive performance,
performing more than 2% better than SGC on Citeseer and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

being comparable to GAT and GCN. On Cora, ExpGC per-
forms comparably to SGC and GAT, and slightly worse than
GCN. On the PubMed dataset, ExpGC performs slightly worse
than SGC, but comparably to GCN and slightly better than
GAT. On WikiCS, it achieves the best accuracy obtaining
the same performance as hLGC (with little more standard
deviation). On Ogbn-Arxiv, the ExpGC is comparable to the
GCN and SGC, while the accuracy is significantly lower than
the one achieved by GAT. On Reddit, ExpGC is comparable to
SGC, which in turn performs better than GCN. We could not
compute GAT on Reddit since even using the simplest possible
model (with a single attention head) the memory requirements
are higher than the 16 GB that are available on our GPU.

Considering LGC, it performs better than ExpGC in all
the considered datasets but WikiCS, while LGC performs
better than hExpGC on Citeseer and PubMed and WikiCS.
Moreover, it outperforms the competing methods in literature
in all the considered datasets except Ogbn-Arxiv, which is
the only dataset where a more complex nonlinear model like
GAT shows better performance. Note that both GAT and GCN
baselines exploit a layer with a different number of hidden
units compared with SGC and the proposed ExpGC, hExpGC,
and LGC models, which directly compute the representation in
the output space. Finally, the hLGC model achieves the best
predictive performance in all the considered datasets except
Ogbn-Arxiv, where it obtains the second higher result.

D. Computational Requirements

In Table IV, we report the average computational time
required to perform a single epoch for the three considered
convolutions from the literature and our proposals. We report,
for each convolution and dataset, the computational times
corresponding to the hyperparameters that provide the best
predictive results. We report the average duration (and standard
deviation) of all the training epochs, in milliseconds. We can
note that GAT and GCN are, in all the datasets, significantly
slower compared with ExpGC, hExpGC, and LGC that allow
to precompute the exponentiations of the adjacency matrix.
This is not the case for hLGC due to the overhead introduced
by the hypernetworks used for each i . It is worth notng
that the hLGC scales very well on huge dataset like Ogb-
Arxiv. Indeed, comparing the average computational time
required to perform a single epoch with the only model that
achieves a better accuracy (GAT) shows significantly lower
time demands. Note that the reported times are an average
over all the epochs, and thus, the preprocessing time for
SGC, ExpGC, LGC, hExpGC, and hLGC is included in the
reported time. In Table IV, we also report the number of
learnable parameters of the models selected via grid search.
The table shows that ExpGC, SGC, and LGC exploit a low
number of parameters. In comparison to the GCN and GAT,
the difference is in many cases of one order of magnitude.
Moreover, it is worth noting that the hExpGC model uses
a number of parameters that are similar to LGC, while the
difference is considerably bigger if we consider hLGC. Even
if both these models use hyper neural networks to generate
the parameters of the convolution, the particular structure of

TABLE IV

TIME COMPARISON AMONG THE MODELS PROPOSED IN THIS ARTICLE
AND THREE BASELINES (SGC, GAT, AND GCN). FOR EACH

CONVOLUTION AND DATASET, WE REPORT THE AVERAGE

DURATION (AND STANDARD DEVIATION) OF ALL THE

TRAINING EPOCHS OF THE BEST PERFORMING MODEL.
THE TIME MEASUREMENTS ARE REPORTED IN

MILLISECONDS. MOREOVER, WE ALSO REPORT

THE NUMBER OF TRAINABLE PARAMETERS
OF THE MODELS

hExpGC leads to a limit on the number of parameters that
have to be tuned. It is also interesting to note that the number
of parameters of LGC and ExpGC is very similar, and both
close to the minimum number of learnable parameters that a
model using the original input features has to manage [4].

E. Discussion

While the improvement of hLGC compared with the second
best performing method (LGC) on each dataset seems mar-
ginal, it is worth to note that hLGC consistently performs
better than other methods. While all four proposed methods
perform consistently better than SGC, hLGC is the method
showing the best predictive performance, while LGC exhibits
the best trade-off among predictive performance and required
computational time.

F. Comparison Among Simple Convolutions

In Fig. 2, we report the loss curves during training using
SGC and the four convolutions proposed in this work (ExpGC,
LGC, hExpGC, and hLGC) on the Cora dataset. On the other
datasets, similar considerations can be drawn. The plots report
the loss computed on the training, validation, and test sets. The
curves refer to the hyperparameters that yield the best results
for each method (whose results are reported in Table V).
It is interesting to note how the number of epochs that the
model requires to converge is related to the expressiveness of
the considered convolution. In fact, for SGC, ExpGC, LGC,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 11

Fig. 2. Loss curves computed with the progress of training epochs on Cora (node classification) training, test, and validation sets for SGC, ExpGC, LGC,
hExpGC, and hLGC.

Fig. 3. Values of the αi parameters of the LGC, values of (β i/ i !) on ExpGC, (averaged) values of (f ([X, L1X, . . . , LkX])i / i !) on hExpGC, and (averaged)
values of fi (Li X) on hLGC (variance is reported as well, but in some cases it is too small to be visualized), for values of i ∈ {0, . . . , k}. The considered
models are trained on the Citeseer, Cora, and PubMed datasets and their hyperparameters are selected on the respective validation sets.

hExpGC, and hLGC (that are increasingly expressive), we can
see that the slope of the curves becomes steeper as a more
expressive model is used.

An important role in the three proposed convolutions is
played by the multiplicative coefficients applied to each
term of the summation, which significantly influence the
optimization phase and the final results. For this reason,
we decided to study the values of these multiplicative
elements for all new models on the Citeseer, Cora, and
PubMed datasets. In Fig. 3, we have reported the coefficient
values for the three models selected in validation. For what
concerns ExpGC, a single learned parameter β determines
the weight of each i ∈ {0, . . . , k} term of the summation
[see (13)], computed as (β i/ i !). These values are represented
by the black line in Fig. 3. For hExpGC, we report values
of (f ([X, L1X, . . . , LkX])i/ i !), where f ([X, L1X, . . . , LkX])
outputs a different value for each nodes. The LGC convolution
defines, instead, a different multiplicative coefficient αi for
each i ∈ {0, . . . , k} (red line in Fig. 3). All αi (similar to β)

are adjusted during optimization. Finally, using the blue line,
we report the average of the output of the hypernetworks
fi (Li X) for each value of i ∈ {0, . . . , k} for the hLGC model.
Variance is also reported; however, it is so small that it is
not possible to discriminate it in the plot. We can note that
the coefficients learned by LGC tend to be closer to each
other compared with ExpGC, while the (average) coefficients
generated in the hLGC show a much larger range of variation
and diversification with respect to the other two models. The
hExpGC learns coefficients that are similar to the ones learned
by ExpGC, but with a considerable variance over nodes, thanks
to the use of f () that allows to have a different coefficient
based on the features of the considered node in input. From
these plots, it is evident that ExpGC is much more constrained
with respect to LGC, being forced to concentrate significant
values on few nearby terms. Moreover, the hLGC model
selected in validation exploits a much larger value of k, thus
showing a better ability to extract significant information from
large receptive fields on the graph. Finally, the very small

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Accuracy comparison of ExpGC, LGC, hExpGC, and hLGC using different values of k. The results are computed on the validation set of the datasets.

Fig. 5. Values of coefficients (f ([X, L1X, . . . , Lk X])i/ i !) on hExpGC for each node in the Cora, Citeseer and PubMed datasets for values of i ∈ {0, . . . , k}.
The considered models are trained on the Citeseer, Cora, and PubMed datasets, and their hyperparameters are selected on the respective validation sets.

variance observed for the output of the hypernetworks seems
to be an indication that the selected model does not overfit the
training data.

G. Impact of Hyperparameter k

Our experimental results show that the selection of the best
k value highly depends on the considered dataset. In Fig. 4,
we analyze the accuracy achieved by the models proposed
in this article, varying the hyperparameter k considering the
values used during the validation phase (reported in Table II).
The reported results are obtained using the validation set.
In Citeseer, selecting smaller k values allows to obtain higher
accuracy. Note that LGC and hLGC are more sensitive to this
parameter. On Cora, the ExpCG and LGC-based models show
different behaviors. Indeed, lower values of k are more suitable
for ExpGC and hExpGC, while higher values are preferable
for LGC and hLGC. On PubMed, all the models show stable
performance using a value of k ≥ 5. Similar stable trends
can be seen on WikiCS and Reddit. It is worth noting that

on PubMed, the hExpGC accuracy drops significantly using a
too large a value for k. On Ogbn-Arxiv, k impacts significantly
the performance of the LGC and hLGC. Indeed, the accuracy
achieved by these models drops significantly for k > 10.

H. Interpretability of hExpGC

In this section, we study how the particular structure of
hExpGC allows us to evaluate which are the most suitable
i values that have to be considered to perform the node
classification task. Indeed, the hyper model f () (18) exploited
by the hExpGC computes an ad hoc parameter βv for each
considered node v. The intuition is that the greater the value
of (β i

v/ i !), the higher the contribution of the embedding com-
puted considering a receptive field of i −hops. In Fig. 5, each
line represents the value of (β i

v/ i !) for each i ∈ {0, . . . , k}
of a single node contained in the dataset. It is interesting to
note how each different node drives the hExpGC to focus on
a different subset of the considered terms. The output of the
hyper model f ()also influences the size of the subsets of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 13

Fig. 6. Values of coefficients (f ([X, L1X, . . . , Lk X])i/ i !) on hExpGC for each node of the PubMed dataset according to their target class for values of
i ∈ {0, . . . , k}. The considered model is obtained on the training set using hyperparameters values selected on the validation set.

TABLE V

ACCURACY COMPARISON BETWEEN THE PROPOSED MODELS AND THREE BASELINES (SGC, GAT, AND GCN). THE
MODEL SELECTION IS PREFORMED CONSIDERING THE RESULTS OBTAINED ON THE TEST SET

considered terms. Indeed, for some nodes, many terms of the
summation are multiplied by a factor close to zero. Studying
how the values of the coefficients are distributed considering
the various classes (targets) of the nodes, we note that there are
no significant differences in the coefficient values’ distribution
among the nodes that belong to different classes. This suggests
that coefficients obtained for each node are more influenced by
node’s embeddings than by the class it belongs to. An example
of this behavior can be observed in Fig. 6, which reports the
coefficient values distribution of the 3 classes of the PubMed
dataset.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this article, we followed the opposite direction compared
with many works in literature on the definition of graph
convolution operators. Instead of increasing the complexity of
existing options, we started from the graph spectral filtering
theory and defined four increasingly expressive graph convolu-
tions. For two of these models, i.e., ExpGC and LGC, we also
provided the Rademacher generalization bounds that, due to
the simplicity of the proposed models, can be directly applied.
We showed that our proposals achieve very good predictive
performance while being more efficient (ExpGC, LGC, and
hExpGC) to compute than most alternatives in the literature.

In the future, we plan to expand the study of the
Rademacher complexity bounds on other graph convolutions
and analyze whether the bounds are tight enough to allow for a
comparison of the expressiveness of different graph operators.
Moreover, we would like to study the effects of stacking
multiple graph convolution layers in an architecture that

includes nonlinearities. Finally, we plan to test the proposed
convolutions in the setting of graph classification, instead of
node classification, considered in this article.

APPENDIX A
RESULTS—HYPERPARAMETER SELECTION ON TEST SET

The results reported in Table V were obtained selecting the
best hyperparameter values on the test set. For each hyper-
parameter configuration, the model with highest validation
accuracy was selected. We recall that this hyperparameter
selection procedure is biased, as discussed in Section V-B1.
We can note that the performance obtained in the validated
setting in Table III is in general lower compared with the ones
in Table V. Complex methods such as GAT tend to show a
higher decrease in accuracy.

REFERENCES

[1] N. Navarin and A. Sperduti, “Approximated neighbours minhash graph
node kernel,” in Proc. ESANN, 2017, pp. 281–286.

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[3] F. Wu, T. Zhang, A. H. de Souza, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proc. ICML, Feb. 2019,
pp. 6861–6871.

[4] L. Pasa, N. Navarin, and A. Sperduti, “Compact graph neural network
models for node classification,” in Proc. 37th ACM/SIGAPP Symp. Appl.
Comput., J. Hong, M. Bures, J. W. Park, and T. Cerny, Eds., Apr. 2022,
pp. 592–599, doi: 10.1145/3477314.3507100.

[5] N. Navarin, W. Erb, L. Pasa, and A. Sperduti, “Linear graph convolu-
tional networks,” in Proc. Eur. Symp. Artif. Neural Netw., Comput. Intell.
Mach. Learn., 2020, pp. 151–156.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3477314.3507100

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Neural
Inf. Process. Syst. (NIPS), Jun. 2016, pp. 1–9.

[7] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, Mar. 2011.

[8] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98,
May 2013.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017, pp. 1–14.

[10] V. K. Garg, S. Jegelka, and T. Jaakkola, “Generalization and represen-
tational limits of graph neural networks,” in Proc. 37th Int. Conf. Mach.
Learn. (ICML), 2020, pp. 3419–3430.

[11] P. Esser, L. C. Vankadara, and D. Ghoshdastidar, “Learning
theory can (sometimes) explain generalisation in graph neural
networks,” in Advances in Neural Information Processing Systems,
vol. 34, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds. Red Hook, NY, USA: Curran Associates,
2021, pp. 27043–27056. [Online]. Available: https://proceedings.
neurips.cc/paper/2021/file/e34376937c784505d9b4fcd980c2f1ce-
Paper.pdf

[12] S. Lv, “Generalization bounds for graph convolutional neural networks
via Rademacher complexity,” 2021, arXiv:2102.10234.

[13] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” in Proc. ICLR, 2017,
pp. 1–29.

[14] B. Klein, L. Wolf, and Y. Afek, “A dynamic convolutional layer for short
range weather prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 4840–4848.

[15] G. Riegler, S. Schulter, M. Ruther, and H. Bischof, “Conditioned
regression models for non-blind single image super-resolution,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 522–530.

[16] X. Jia, B. De Brabandere, T. Tuytelaars, and L. Van Gool, “Dynamic
filter networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 667–675.

[17] A. Sperduti and A. Starita, “Supervised neural networks for the clas-
sification of structures,” IEEE Trans. Neural Netw., vol. 8, no. 3,
pp. 714–735, May 1997.

[18] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Trans. Neural Netw., vol. 20, no. 3, pp. 498–511,
Mar. 2009.

[19] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. ICLR, 2016, pp. 1–20.

[20] D. Duvenaud et al., “Convolutional networks on graphs for learning
molecular fingerprints,” in Proc. NIPS, Montreal, QC, Canada, 2015,
pp. 2215–2223.

[21] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proc. CVPR, Jul. 2017,
pp. 3693–3702.

[22] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 1–8.

[23] D. V. Tran, N. Navarin, and A. Sperduti, “On filter size in graph con-
volutional networks,” in Proc. IEEE SSCI, Bengaluru, India, Nov. 2018,
pp. 1534–1541.

[24] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2014–2023.

[25] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. ICLR, 2018, pp. 1–12.

[26] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in Proc. ICLR, 2018,
pp. 1–15.

[27] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel, “LanczosNet: Multi-scale
deep graph convolutional networks,” in Proc. ICLR, 2019, pp. 1–18.

[28] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. ICLR, 2019, p. 4.

[29] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural
networks with convolutional ARMA filters,” 2019, arXiv:1901.01343.

[30] C. Huang, M. Li, F. Cao, H. Fujita, Z. Li, and X. Wu, “Are graph
convolutional networks with random weights feasible?” IEEE Trans.
Pattern Anal. Mach. Intell., early access, Jun. 15, 2022, doi:
10.1109/TPAMI.2022.3183143.

[31] M. Li, Z. Ma, Y. G. Wang, and X. Zhuang, “Fast Haar transforms for
graph neural networks,” Neural Netw., vol. 128, pp. 188–198, Aug. 2020.

[32] L. Chen, Z. Chen, and J. Bruna, “On graph neural networks versus
graph-augmented MLPs,” 2020, arXiv:2010.15116.

[33] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. NIPS, 2016, pp. 1993–2001.

[34] T. Chen, S. Bian, and Y. Sun, “Are powerful graph neural nets necessary?
A dissection on graph classification,” 2019, arXiv:1905.04579.

[35] S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break the ceiling:
Stronger multi-scale deep graph convolutional networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 10945–10955.

[36] S. Abu-El-Haija et al., “MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing,” in Proc. 36th Int.
Conf. Mach. Learn. (ICML), vol. 97, K. Chaudhuri and R. Salakhutdinov,
Eds., Long Beach, CA, USA, Jun. 2019, pp. 21–29. [Online]. Available:
http://proceedings.mlr.press/v97/abu-el-haija19a.html

[37] N. T. Hoang and T. Maehara, “Revisiting graph neural networks: All
we have is low-pass filters,” 2019, arXiv:1905.09550.

[38] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and
F. Monti, “SIGN: Scalable inception graph neural networks,” 2020,
arXiv:2004.11198.

[39] L. Yu, J. Shen, J. Li, and A. Lerer, “Scalable graph neural networks for
heterogeneous graphs,” 2020, arXiv:2011.09679.

[40] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 338–348.

[41] L. Pasa, N. Navarin, and A. Sperduti, “Polynomial-based graph convolu-
tional neural networks for graph classification,” Mach. Learn., vol. 111,
no. 4, pp. 1205–1237, Apr. 2022.

[42] W. Zhang et al., “Graph attention MLP with reliable label utilization,”
2021, arXiv:2108.10097.

[43] L. Pasa, N. Navarin, and A. Sperduti, “Simple multi-resolution gated
GNN,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2021,
pp. 1–7.

[44] L. Pasa, N. Navarin, and A. Sperduti, “Multiresolution reservoir graph
neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 6,
pp. 2642–2653, Jun. 2022, doi: 10.1109/TNNLS.2021.3090503.

[45] P. Mernyei and C. Cangea, “Wiki-CS: A Wikipedia-based benchmark
for graph neural networks,” 2020, arXiv:2007.02901.

[46] W. Hu et al., “Open graph benchmark: Datasets for machine learning
on graphs,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 22118–22133.

[47] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2019, arXiv:1909.01315.

[48] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-
Newton method for large-scale optimization,” SIAM J. Optim., vol. 26,
no. 2, pp. 1008–1031, Apr. 2016.

[49] L. Oneto, Model Selection and Error Estimation in a Nut-
shell. Cham, Switzerland: Springer, 2020. [Online]. Available:
https://link.springer.com/book/10.1007/978-3-030-24359-3

Luca Pasa received the B.Sc. and M.Sc. degrees
in computer science from the University of Padua,
Padua, Italy, in 2011 and 2013, respectively, and the
Ph.D. degree in mathematical sciences (curriculum
computer science) from the University of Padua,
in 2017, under the supervision of Prof. Alessandro
Sperduti.

He was a Post-Doctoral Researcher at the Center
for Translational Neurophysiology of Speech and
Communication (CTNSC), the Italian Institute of
Technology (IIT), and the Department of Math-

ematics, University of Padua. He is currently an Assistant Professor in
computer science at the Department of Mathematics “Tullio Levi-Civita,”
University of Padua. He has coauthored many research papers published in
international refereed journals and conference proceedings and he has been
actively involved in the organization of several special sessions at international
machine learning conferences. His research interests include automatic speech
recognition, neural networks, and deep learning with a particular focus on
sequential and structured domains.

Dr. Pasa is a member of IEEE Task Force on Deep learning and of the
Italian Association for Artificial Intelligence.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2022.3183143
http://dx.doi.org/10.1109/TNNLS.2021.3090503

PASA et al.: EMPOWERING SIMPLE GRAPH CONVOLUTIONAL NETWORKS 15

Nicolò Navarin (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Bologna, Bologna, Italy, in 2014.

He has been a Visiting Researcher at the Univer-
sity of Freiburg, Freiburg im Breisgau, Germany,
and the Universitá della Svizzera Italiana, Lugano,
Switzerland. He has been a Research Fellow at the
University of Nottingham, Nottingham, U.K. and the
University of Padua. He is a Tenuretrack Assistant
Professor in computer science at the Department
of Mathematics “Tullio Levi-Civita,” University of

Padua, Padua, Italy. His research interests lie in the field of machine learning,
including kernel methods and neural networks for structured data, online and
continual learning, and trustworthy ML.

Dr. Navarin is a member of the IEEE Computational Intelligence Society,
the IEEE Task Force on Deep Learning, and the IEEE Task Force on Learning
from Structured Data. He has been serving as a PC member in major machine
learning conferences, and he has been actively involved in the organization
of several special sessions (ESANN, WCCI, and IJCNN) and conferences
(INNS Big Data and Deep Learning 2019, International Conference on Process
Mining 2020, IEEE Symposium Series in Computational Intelligence 2021,
IEEE World Congress on Computational Intelligence 2022). He is an Asso-
ciate Editor for the Journals Evolving Systems (Springer) and Neurocomputing
(Elsevier), and an Editorial Board Member for Intelligenza Artificiale (AIxIA,
IOS Press).

Wolfgang Erb received the Ph.D. degree in math-
ematics from the Technical University of Munich,
Munich, Germany, in 2010.

He is an Assistant Professor in numerical analysis
at the Department of Mathematics “Tullio Levi-
Civita,” University of Padua, Padua, Italy. He has
been a Research Fellow at the University of Lübeck,
Lübeck, Germany, the University of Eichstätt-
Ingolstadt, Eichstätt, Germany, and an Assistant Pro-
fessor in mathematics at the University of Hawaii
at Manoa, Honolulu, HI, USA. His research inter-

ests include multivariate approximation theory, kernel methods for signal
processing and learning on graphs, fast and efficient reconstruction algorithms
for inverse problems, and applications in biomedical imaging, in particular
magnetic particle imaging.

Dr. Erb is a member of Italian Research Network on Approximation (RITA),
the Italian Mathematical Society UMI (working group TAA of approximation
theory), and the GNCS-INdAM.

Alessandro Sperduti (Senior Member, IEEE)
received the Ph.D. degree from the University of
Pisa, Pisa, Italy, in 1993.

He is a Full Professor at the Department
of Mathematics of the University of Padua,
Padua, Italy. Previously, he was an Assistant Pro-
fessor (1995–1998) and an Associate Professor
(1998–2002) at the Department of Computer Sci-
ence, University of Pisa. He is the author of more
than 220 publications on refereed journals, confer-
ences, and chapters in books. His research interests

are mainly in neural networks, kernel methods, and process mining.
Dr. Sperduti has been member of the European Neural Networks Society

(ENNS) Executive Committee, the Chair of the DMTC of IEEE CIS for the
years 2009 and 2010, the Chair of the NNTC for the years 2011 and 2012,
the Chair of the IEEE CIS Student Games-Based Competition Committee
for the years 2013 and 2014, and the Chair of the Continuous Education
Committee of the IEEE Computational Intelligence Society for year 2015.
He was a recipient of the 2000 AI*IA (Italian Association for Artificial
Intelligence) “MARCO SOMALVICO” Young Researcher Award. He has
been an invited plenary speaker in Neural Networks Conferences. He has
served as AC in major AI conferences and currently is in the editorial board
of the journals Theoretical Computer Science (Section C), Natural Computing,
and Neural Networks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 24,2023 at 12:11:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

