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ABSTRACT. Given a newform f, we extend Howard’s results on the variation of Heegner points
in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner
points and big Heegner classes in terms of compatible families of Heegner points on towers
of Shimura curves. The novelty of our approach, which systematically exploits the theory of
optimal embeddings, consists in treating both the case of definite quaternion algebras and the
case of indefinite quaternion algebras in a uniform way. We prove results on the size of Nekovai’s
extended Selmer groups attached to suitable big Galois representations and we formulate two-
variable Iwasawa main conjectures both in the definite case and in the indefinite case. Moreover,
in the definite case we propose refined conjectures a la Greenberg on the vanishing at the critical
points of (twists of) the L-functions of the modular forms in the Hida family of f living on the
same branch as f.
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1. INTRODUCTION
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The purpose of this work is to extend Howard’s results on the variation of Heegner points
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in Hida families of modular forms ([25]) to a general quaternionic setting. Analogues of the
constructions by Howard of systems of big Heegner points on towers of classical modular curves
have been proposed by Fouquet ([12], [13]) for Shimura curves attached to indefinite quaternion
algebras over totally real number fields; on the contrary, the case where modular curves need to be
replaced by Shimura curves coming from definite quaternion algebras has never been investigated.
However, the philosophy behind the so-called “parity conjectures” suggests that the definite and
indefinite cases are equally significant from an arithmetic point of view, so it would be desirable
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to have both sides of the quaternionic setting well understood and developed. With this goal in
mind, in this article we offer a systematic construction of big Heegner points and classes attached
to Hida families which treats simultaneously both the definite case and the indefinite case over
Q, and we study the arithmetic of the relevant extended Selmer groups as defined by Nekovar.
Now let us describe the subject of the paper more in detail.

Fix an integer N, a prime p { 6N and an ordinary p-stabilized newform

o
fl@) = ang" € Sp(To(Np),w)
n=1
where w is the Teichmiiller character and j = k (mod 2). Let F' be a finite extension of Q,
containing all the eigenvalues of the Hecke operators acting on f and let O denote its ring of
integers. Assume also that the residual representation attached to f is absolutely irreducible.

Fix an imaginary quadratic field K of discriminant prime to Np and consider the factorization
N = N*tN~ induced by K: a prime number ¢ divides NT (respectively, N~) if and only if ¢ splits
(respectively, is inert) in K. Assume throughout that N~ is square-free and say that we are in the
definite (respectively, indefinite) case if the number of primes dividing N~ is odd (respectively,
even). For simplicity, in this introduction we suppose that p does not divide the class number of
K.

Hida’s theory (]20], [21]) incorporates the modular form f and the p-adic Galois representation
pr: Gg = Gal(Q/Q) — GLy(F) attached to f by Deligne into an analytic family of modular
forms and Galois representations. More precisely, Hida defines the universal ordinary Hecke
algebra ho by taking the inverse limit over m of the (classical) Hecke algebras b, over O acting
on weight 2 cusp forms with coefficients in O of level I'i(Np™) and then projecting to the
ordinary part. Out of h, one then constructs a local domain R, finite and flat over the Iwasawa
algebra A := Op[1 + pZ,], such that certain prime ideals p of R (called arithmetic) correspond
to modular forms f, of suitable weight ky, level I'; (Np™>) and character v, with coefficients in
the residue field F}, of the localization of R at p; moreover, f; = f for a certain arithmetic prime
p of weight k. Finally, taking inverse limits over m of the p-adic Tate modules of the Jacobian
varieties of the modular curves X;(Np™) one can introduce a Gg-representation T which is free
of rank two over R and has the property that V, := T ®% F} is a twist of the representation
V(fy) associated with f,.

1.1. Big Selmer groups. In recent years, the systematic study of certain Selmer groups at-
tached to the Gg-representation T has been pursued, among others, by Nekovar and Plater
(I35]), Nekovar ([34]), Ochiai ([37]), Howard ([25]) and Delbourgo ([11]). More precisely, the
Gq-representation T admits a twist TT which has a perfect alternating pairing TT x TT — R(1),
and for every arithmetic prime p of R the representation V;f =Tl o F, is a self-dual twist of
V(fy)- Then, using Nekovéi’s theory of Selmer complexes ([34]), for any number field L one can
define extended Selmer groups H} (L, TT) and ﬁ}' (L, VpT), whose arithmetic is the main theme of
the present paper.

Now we briefly sketch the work of Howard which was the original inspiration for our article.
In order to study the arithmetic of Nekovai’s Selmer groups, when all primes ¢|N split in K (i.e.,
when N~ = 1) Howard introduced in [25] canonical cohomology classes

X. € Hj(H., T,

which he calls “big Heegner points”, where ¢ > 1 is an integer prime to N and H. is the ring class
field of K of conductor c. These classes are constructed by taking an inverse limit of cohomology
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classes arising from Heegner points in the Jacobians of classical modular curves via Kummer
maps, and satisfy suitable Euler system relations in the sense of Kolyvagin: see [25], §§2.2-2.4].
These objects are used to obtain various results on the arithmetic of the above-mentioned Selmer
groups; in particular, a vertical nonvanishing theorem (generalizing results of Cornut and Vatsal
n [9]) is proved in |25} §3.1 and §3.2], while an horizontal nonvanishing conjecture is formulated
in [25] §3.4]. Moreover, in [25, Conjecture 3.3.1] Howard proposes a two-variable Iwasawa main
conjecture for IA{T}JW (KOO,TT) which extends the Heegner point main conjecture formulated by
Perrin-Riou in [39]. Here
Hjpy (Koo, TT) = @H} (K,, TT)

is a module over the Iwasawa algebra R := R[G] attached to the Galois group G of the
anticyclotomic Zy-extension Ko, of K as described in [25], §3.3], and K, is the n-th layer of K,
i.e. the subfield of K such that Gal(K,/K) ~ Z/p"Z.

In this paper we are interested in results and conjectures of the type described above in the
more general case where one allows for the existence of primes dividing N which are inert in K.
In other words, the integer N~ is not necessarily equal to 1. In the indefinite case (i.e., when
the number of primes dividing N~ is even) our constructions and results should be compared
with those obtained by Fouquet in [12] and [I3] for Shimura curves over totally real fields; on
the contrary, as far as we know the definite case (corresponding to an odd number of primes
dividing N7) is considered here for the first time. The ability of performing constructions which
apply equally well to both the two cases is the most significant novelty in our approach, and
we hope that this represents a first step towards the development in a Hida context of a theory
of Bertolini-Darmon type ([1], [2], [3], [4]), where the interplay between definite and indefinite
settings (manifesting itself, for example, via Cerednik’s interchange of invariants, congruences
between special values, explicit reciprocity laws) plays a crucial role for studying the arithmetic
of modular forms.

In the rest of the introduction we give a brief description of the paper, referring to the main
body of the text for all details.

1.2. Families of optimal embeddings on Shimura curves. Let B denote the quaternion
algebra over QQ of discriminant N~ (thus B is split at the archimedean place co of Q in the
indefinite case and is ramified at oo in the definite case) and for every integer m > 0 choose
an Eichler order R,, of B of level NTp™ such that R,, C R,,—1 for all m > 1. If the hat
denotes adelizations, one then defines open compact subgroups U, C RX by imposing an extra
I (p™)-level structure on R,, and considers the Shimura curves X,, associated with U, (precise
definitions in terms of double cosets are given in §2.1] and §22). In the definite case these are
disjoint unions of genus 0 curves defined over QQ, while in the indefinite case they are compact
Riemann surfaces admitting canonical models over Q. For any integer ¢ > 1 prime to /N and the
discriminant of K we define the Heegner points of conductor ¢ on X, as those pairs [(g, f)] in
the subset

X = U, \ (B* x Hom(K, B)) /B* C X,,(C)

such that f is an optimal embedding of the order O, of K of conductor ¢ into the Eichler order
BN (g_lﬁmg) of B and the local component f, of f takes optimally the elements of O. ® Z,
congruent to 1 modulo p™Ok ® Z, to the local component of Uy, at p (see Definition B.1] for a
more precise statement). In §3.2] we prove that in the indefinite case these Heegner points are
rational over H.(u,m ), where H. is the ring class field of K of conductor ¢ and p,m is the group
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of p™-th roots of unity. If a € K* and f K* — B is the adelization of f, in both the definite
and the indefinite cases the map

(g, )] — [(9.(a), £)]
induces a (free) action of Gal(H.(m,m)/K) on the set of Heegner points of conductor c. Fur-

thermore, the group Div ()N(m) of divisors on X,, is endowed with an action of the usual Hecke
operators Ty for primes ¢ + Np™ and Uy for primes ¢|Np™ and of diamond operators (¢) for
¢ e (Z/p™Z)*. In Section [ we provide an explicit construction of suitably compatible families
of Heegner points on our tower of Shimura curves. The main features of our system of points are
summarized by the following

Theorem 1.1. For every integer m > 0 and every integer ¢ > 1 prime to N and the discriminant
of K there is a Heegner point f’c,m € )A(ir(nK) of conductor cp™, rational over Hcpm(upm) in the
indefinite case, such that the following conditions are satisfied.

(1) Vertical compatibility. If m > 2 then the equality

Up (Pem—1) = o (0 Hym (ayn )/ Hoyn -1 ) (Pen)

holds in Div ()Z'm_l), where oy, « is obtained from the covering map oy, : )Z'm — )A(:m_l.
(2) Horizontal compatibility. Let m > 1 and n > 1 be integers. Then the equality

Up (ﬁCpniam) = trHch”rﬂ (Npm+n)/Hcpm+n71 (Npm+n) (ﬁcp",m)

holds in Div(Xm). Furthermore, assuming chpm = {£1}, for primes £ t cNp which are
inert in K one has

TZ (Pcvm) = trHclpm (“p77l)/Hcpm (Np’"l) (Pcé,m) :

(3) Galois compatibility. Set p* := (—1)(p_1)/2p, let ecyc : Go — Z,) be the p-adic cyclotomic
character and let ¥ : Gal(Q/Q(v/p*)) — Zy [{*£1} be the unique continuous homomor-
phism such that 9% coincides with the restriction of €cyc- Then for all o € Gal(Q/H.pm)
the equality

JSZm = (9(0)) Pe,m
holds in Div ()N(m)

Proof. Part (1) is Proposition 7] part (2) is Proposition .8 plus Proposition [£9] and part (3)
is equality (22]). O

The existence o~f compatible sequences of CM points as in Theorem [[.T] was shown by Howard
in [25] when the X, are classical modular curves (using the interpretation of modular curves as
moduli spaces for elliptic curves with suitable level structures) and by Fouquet in [12] for Shimura
curves attached to indefinite quaternion algebras over totally real fields having exactly one split
archimedean place.

As remarked before, in this paper our families of CM points are introduced via a systematic
use of the theory of optimal embeddings as described in [I7] and [I], and this approach (although
technically more intricate than those of Howard and Fouquet) has the advantage of offering a
uniform setting for dealing with both the definite case and the indefinite case, as in [1]. The
importance of dealing with the definite case as well when studying the representation associated
with a Hida family stems from the fact that, conjecturally, the indefinite case should take care of
situations in which the rank of the Selmer group is odd, while the definite case should describe
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even rank settings. Observe, moreover, that the definite case cannot be treated by means of the
tools developed in [25], [12] and [13].

We use these families to construct big Heegner points and classes that are the counterparts of
those defined in [25], and then we prove results and formulate conjectures which generalize those
obtained in loc. cit. by Howard. In the rest of the introduction we focus our attention on the
main results obtained in our work. For clarity of exposition, it will be convenient to treat the
definite case and the indefinite case separately.

1.3. The definite case. As already observed, an adequate setting for dealing with arbitrary
quaternion algebras represents the newest contribution of the paper.

The literature on the arithmetic of (extended) Selmer groups attached to modular forms of
arbitrary weight which are associated with forms on definite quaternion algebras via the Jacquet—
Langlands correspondence is not so vast as that on the indefinite case (for instance, no analogue
in rank 0 of the results of Nekovar in [33] is available); as a consequence, the applications of our
Theorem [Tl we can presently offer are either conjectural or conditional.

Let w € {£1} be the common root number of the L-functions of the twisted forms fg (see §9.21
for the definition) for all but finitely many arithmetic primes p of R, and for every arithmetic
prime p let F, be the residue field of the localization of R at p. It is expected that for almost all
arithmetic primes p of R the dimension over F} of PNI} (K, VJ) isOifw=1andis2if w=-1.
Let us focus our attention on the case w = 1. We consider the Hecke modules

(1) Jm = Op [U,\B* /B*] ~ Pic(X,,) ®2 OF

and define the inverse limit J., := @1 Jm with respect to the canonical projection maps. By the

Jacquet-Langlands correspondence, the ordinary part J2'4 of this Op-module is endowed with
an action of the N™-new quotient Ts, of the universal ordinary Hecke algebra h%'d. One can
then introduce the finitely generated R-module J := J2d ®@7_ R. Under a reasonable hypothesis
(Assumption [0.2]), we prove that J is free of rank one over R and fix an isomorphism

(2) J~R.

The compatible sequence of Heegner points on the tower of definite Shimura curves whose exis-
tence is guaranteed by Theorem [[.T] can be combined with isomorphisms () to produce canonical
elements in J. By isomorphism (2)) one then obtains an element Jy € R. In light of the con-
jectural formulas for the dimension of Selmer groups that we recalled above, we predict that if
w =1 then Jy # 0 (Conjecture [@.5]). In fact, the element Jj is the counterpart in our context of
the divisor introduced by Gross in [I7, §11], hence it is naturally expected to be related to the
special values of the L-functions over K of the forms fg . When w = 1 the functional equations
suggest that these special values are non-zero for almost all arithmetic primes p, whence the
(conjectural) non-triviality of Jy. We elaborate on this circle of ideas in §9.4] where we propose
general conjectures on the vanishing of the special values of twists of the (classical) L-functions
over K of the modular forms living on the Hida branch of f. These conjectures can be viewed
as a refinement of the conjectures on the generic analytic rank of the forms in the Hida family
made by Greenberg in [15].

For every arithmetic prime p of R let m, : R — F}, be the canonical map. The following is
(part of) Conjecture

Conjecture 1.2. Suppose that w = 1. If m,(Jy) # 0 then ﬁ} (K, VpT) =0.
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We expect that Conjecture can be proved (at least for arithmetic primes of weight 2) by
suitably extending the arguments of [3] and [27] to the case of forms with non-trivial character.
In general, we can say that this conjecture plays in our definite setting a similar role to one of
Nekovai’s theorems ([33]) in the context considered by Howard. More precisely, just as Nekovar’s
work extends the classical results of Kolyvagin (see, e.g., [18]), Conjecture should be viewed
as a generalization of (a portion of) the theory of Bertolini and Darmon ([2], [3]) to modular
forms of higher weight. In this direction, see work in progress by Chida ([7], [8]). Now Theorem
can be stated as follows.

Theorem 1.3. Suppose that w = 1 and assume Conjecture [L.2. If Jo # 0 then ﬁ} (K, TT) s a
torsion R-module.

Another application of Theorem [[Tlis to the formulation of a conjecture in the Iwasawa theory
of our Hida family. Set G,, := Gal(K, /K) for all integers n > 1; essentially by corestricting to
the finite layers of K, one also gets elements Q7 € R for all ¢ € G,, and all n > 1. The
compatibility properties of these points allow us to define

Opi=0," Y Q@0 ' €RGy], o= limb, € Reo

O'EGn

where o, € R* is the image of the Hecke operator U, under the natural map f)géd — R. As
in §9.3] one introduces an R..-module ﬁ}’lw (KOO,AT) where A := Hom(TT,upoo). Finally,
write z — z* for the involution of R, given by o +— o~ on group-like elements. The following
statement (which is Conjecture [0.12]) must be seen as a main conjecture of Iwasawa theory in the
definite setting.

Conjecture 1.4. Assume that the local ring R is regular. The group ]?I}JW (Koo, AT) is a finitely
generated torsion module over Roo and there is an equality

(6:c - 05) = Charg., (Hjp, (Kw, AT))
of ideals of Roo.

Here the symbol ¥ denotes the Pontryagin dual and the product f - 0%, is interpreted as a
p-adic L-function. Note that these definitions are reminiscent of the constructions performed by

Bertolini and Darmon in, e.g., [1] and [3].

1.4. The indefinite case. This is the direct generalization of the classical modular curves setting
originally studied by Howard in [25], and has also been considered, along a different line of
investigation, in [12] and [13] by Fouquet (who works in the broader context of Shimura curves
attached to indefinite quaternion algebras over totally real fields). The reader is suggested to
compare our approach to Fouquet’s, since the goals and results of his work and of ours are of
different (and, in many respects, complementary) natures.

By taking the inverse limit of the p-adic Tate modules of the Jacobian varieties of X,, as in [21],
we construct a Gg-representation Tgy, which is free of rank two over R, and prove isomorphisms of
Gg-modules T ~ Tg}, and T ~ T;h. Following [25], the compatible sequence of Heegner points
of Theorem [Tl can then be used to define cohomology classes k. € H'! (Hc, TT). In this general
quaternionic setting, the problem of showing that these classes belong to Nekovai’s Selmer group
presents extra complications. More precisely, due to the possible presence of primes dividing N
which are inert in K and so split completely in H./K for all ¢ (prime to N), we are only able
to show that A - k. € ﬁ} (Hc, TT) for any choice of A € R in the annihilator of the R-torsion
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module HZ\N* H! (Kg, TJf)tors
in analogy with [25], the classes

%c =\ Ke € ﬁ}-(Hc,TT), 5() = COI“Hl/K(%l) S f‘j}(K, TT)

. We fix once and for all a non-zero A in this annihilator and define,

The following two results generalize theorems of Howard (for the definition of “non-exceptional
primes”, in the sense of Mazur-Tate-Teitelbaum, see §5.0]).

Theorem 1.5. Let p be a non-exceptional arithmetic prime OfNR with trivial character and even
weight. If 39 has non-trivial image in H} (K, VJ) then dimp, H} (K, V;r) =1.

This is Theorem [[0.4] in the text.
Theorem 1.6. If 3 is not R-torsion then ﬁ} (K, TT) is an R-module of rank one.

We prove this statement in Theorem [[0.6] and we expect the condition on the class 3o to
be always true. We finally remark that a main conjecture of Iwasawa theory is proposed in
Conjecture [I0.8 this can be viewed as the counterpart of Conjecture [[L4] in the indefinite setting
and extends both the conjecture [25, Conjecture 3.3.1] of Howard and the classical Heegner point
main conjecture for elliptic curves formulated by Perrin-Riou in [39].

Acknowledgements. We would like to thank Massimo Bertolini, Gaétan Chenevier, Haruzo Hida,
Ben Howard and Jan Nekovar for helpful discussions and correspondence on some of the topics
of this paper. We are also grateful to Olivier Fouquet for his interest in our work and his helpful
remarks. Last but not least, we especially wish to express our gratitude to the anonymous referee
for the extremely careful reading of earlier versions of this article: his or her constructive criticism
and several valuable suggestions led us to correct a few mistakes, completely rethink some parts
and improve the overall exposition in a significant way.

2. TOWERS OF SHIMURA CURVES

For any ring A denote by A=A ®z [, Z¢ its profinite completion, where the product is
over all prime numbers ¢, by A, := A ® Z, its (-adic compAletion at a prime number ¢ and by
A = A® R its archimedean completion. An element = € A is denoted by (z¢),.

Let N~ be a positive square free integer and N a positive integer prime to N~. Define

N:=NTN"~

and let p { N be an odd prime number. Denote by B the (unique, up to isomorphism) quaternion
algebra over Q of discriminant N~. If the number of primes dividing N~ is odd (respectively,
even) then B is definite (respectively, indefinite), that is, B is isomorphic to the Hamilton skew
field (respectively, to the matrix algebra Ms(R)). Fix once and for all an isomorphism

¢p : By e M2(Qp)

of Qp-algebras. Moreover, for every integer m > 0 let R,,, C B be an Eichler order of level N*p™
such that R;;1 C R; for all j > 0 and
b
bp(Rm @ Zp) = {(Z d> € My(Zy) ‘ ¢c=0 (mod pm)} .

Finally, for all m > 0 let U,, C RX be the subgroup of elements (z¢); with dp(zp) = (38)
(mod p™) for some b € Z, and some d € Z, .



8 MATTEO LONGO AND STEFANO VIGNI

Convention. In order not to burden the notation, in the rest of the paper we will often identify B,
with M2(Q,) via the isomorphism ¢, — we will do so according to convenience, without explicit
warning. T\hus the reader should always bear in mind that when we write, for example, “the
adele b € B has p-component b, equal to (a s ) € M2(Qp)” we really mean that b, is equal to

6 ((55)): h

2.1. Definite Shimura curves. Let B be definite. Denote by P = Ppn- the curve of genus 0
defined over QQ by setting

P(A) := {z € B®g A |z # 0, Norm(z) = Trace(z) =0} /A~

for any Q-algebra A, where Norm and Trace are the reduced norm and trace of B&gA. The group
B* acts on P by conjugation and this action is algebraic and defined over Q. Note that P(C) is
canonically identified with Homg(C, By,), where Hompg denotes homomorphisms of R-algebras.
Explicitly, if z — Z denotes complex conjugation then with each embedding f : C — B, one
associates the image z s of the unique C-line on the quadric {z € B®C | Norm(z) = Trace(z) = 0}
on which f(C*) acts via the character y — /y. Observe that ¢ is one of the two fixed points
of f(C*) acting on P(C). In fact, this recipe allows one to identify P(K) with Homg(K, B) for
any imaginary quadratic field K (cf. [I7, p. 131]). Define the definite Shimura curve of level Ry,
(respectively, U,,) and discriminant N~ to be the double coset space

X,, = E;L\(EX x P)/B* (respectively, X, = m\(§X x P)/B*),

where Eﬁl and Uy, act by left multiplication on B* and trivially on P, while B> acts by conju-
gation on P and by right multiplication on B*.
If K is an imaginary quadratic field write

XU i BE\ (B x PUK)) /B, X 1= U\ (B x B(K)) /B~

As remarked in [I7, p. 131], X = Xm(K) and X = X,n(K). However, in the following
we use the above symbols in order to keep our notation uniform with the one adopted in the
indefinite case (see below), where the points in Xr(nK) or X,(nK) are in general rational only over

(abelian) extensions of K.
Choose representatives gi,...,gnmm) and gi,..., gﬁ(m) of the double cosets R)\B*/B* and

Um\g % /B*, respectively. Define the finite arithmetic groups
i, =g 'RigiNB*,  TY =5 'UngNB"

with i € {1,...,h(m)} and j € {1,...,h(m)}. Then X,, and X,, can be expressed as disjoint
unions
h(m

) B h(m)
Xom= [ P/Th, Xm= ][] P/
i=1 i=1
of curves of genus 0.

2.2. Indefinite Shimura curves. Let B be indefinite. In this case, for all m > 0 both
RX\B*/B* and U, \B* /B> consist of a single class. Fix an isomorphism ¢ss : Bos — My (R);
then ¢oo(R)) is a discrete subgroup of GLa(R). Denote by Iy, the subgroup of ¢ (R,S,) consist-
ing of matrices with determinant 1 and let I, be the analogous subgroup of ¢oo (U, N B). Define
the Riemann surfaces

Yi(C) :=H /Ty Ypn:=H/Ty
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where H is the complex upper half plane and the groups I';, and fm act on H by Mobius (i.e.,
fractional linear) transformations. Let X,,(C) (respectively, X,,(C)) denote the Baily—Borel
compactification of Y,,(C) (respectively, Y,(C)). If B # My(Q) then X,,(C) = Y,(C) and
X, (C) = Y;,(C). The Riemann surface X, (C) (respectively, X,»(C)) has a model over Q which

will be denoted by X, (respectively, X,,,) and referred to as the indefinite Shimura curve of level
R, (respectively, U,,) and discriminant N~. Setting P := C — R for the union of the complex
upper and lower half-planes yields

Y (C) = RX\(B* x P)/B*,  Y,(C) = U,\(B* x P)/B*

where, as above, ]3%2 and U, act by left multiplication on B* and trivially on P, while B* acts
by Mobius transformations via ¢, on IP and by right multiplication on BX. Observe that there
is a B*-equivariant identification P = Homp(C, By,) (here B* acts on the homomorphisms by
conjugation): similarly to the definite case, with an embedding f : C — B, we associate the
unique fixed point of f(C*) lying in the upper half-plane, i.e., the fixed point z; such that the
induced action of f(C*) on the cotangent space of P at xf is via the character y — g/y. For any
imaginary quadratic field K fix an embedding K < C; so there are injections

X = R\ (B* x Homg(K, B)) /B* « X,,(C),

X = U, \ (B* x Homg(K, B)) /B* <~ X,,(C)
induced by the map Homg (K, B) — Homg(C, By,) which is obtained by extending scalars from

Q to R. Actually, the subsets X,(nK) and )Z',(nK) are contained in X,,(Q) and )A(:m(@), respectively,
where Q is the algebraic closure of Q in C.

As a piece of notation, both in the definite case and in the indefinite case write Div(X,,) and
Div(X,,) for the groups of divisors on the Riemann surfaces X,,(C) and X,,(C), respectively.

2.3. The tower of curves. The inclusions Ry,+1 C Ry, Un+1 C Uy, and Uy, C Ry, for m > 0
yield a commutative diagram of curves

aerl ~ (677 ~ amfl
(3) a Xom X1
lﬁm l ﬁmf 1
Am+1 Qm Am—1
Xm Xm—l

in which all maps are finite coverings that are defined over Q.

2.4. Hecke operators. We briefly review the standard description of the Hecke operators Ty
and U, in the case of our interest. Let m > 0 be an integer and let £ be a prime number which
does not divide Np™. In particular, the case m = 0 and ¢ = p is allowed. For all a € {0,...,¢—1}

denote by 5\,1 € B* the idele whose {-component is equal to ((1] ‘g) and whose components at all

other places are equal to 1. Similarly, let Ao be the idele whose f-component is equal to (é ?)
and all other components are 1. Then
-1 -1
RXMERY = JRIAUR Ao, UndoUn = | Unha UUnAcc.
a=0 a=0
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The action of Ty on Div(X,,) and Div(X,,) can be defined as

/-1

To(l(9, 1)) = Y _[(Rag, £)] + [(Foog: )]

a=0

The action of the Hecke operator U, on Div(X,,) and Div(X,,) for m > 1 will be especially
important for us. For all a € {0,...,p — 1} denote by 7, € B* the idele whose p-component is

equal to (é Z) and whose components at all other places are equal to 1. Then
p—1 p—1
RX#oRY, = | J Rifay  UnfoUm = | Unfa
a=0 a=0

The action of U, on Div(X,,) and Div(X,,) is given by

p—1

Up([(g, 1)]) = _[(Fag f)]-

a=0

Observe that, as pointed out also in [I, §1.5], the single terms in the sums expressing 7; and U,
depend on the choice of representative for [(g, f)], but their collections do not.

3. HEEGNER POINTS

Let K be an imaginary quadratic field of discriminant D = Dy prime to p/N and denote by
Ok its ring of algebraic integers. Assume that the following Heegner hypothesis is satisfied:
e a prime number ¢ divides Nt (respectively, N~) only if £ splits (respectively, is inert) in
K.

No conditions are imposed on p.

3.1. Heegner points. Denote by O the ring of integers of K. For any integer ¢ > 1 prime to
N let O, :=7Z + cOk be the order of K of conductor ¢ and let H. denote the ring class field of
K of conductor c.

For any order O C K and any Eichler order R C B, a morphism f € Homgq(K, B) is said to
be an optimal embedding of O in R if

fO)=RNfK) (e, fTH(R)=0).

We say that a point P = [(g, f)] € XT(nK) for some integer m > 0 is a Heegner point of conductor
c on X,, if f is an optimal embedding of O, into the Eichler order g_lﬁmg N B. Note that both
in the definite and in the indefinite case Heegner points are contained in X,,(Q). More precisely,
suppose that P is a Heegner point of conductor ¢ on X,,: if B is definite then P € X,,(K), while
if B is indefinite then P € X,,(H,.). In the indefinite case Heegner points on X, are well known
to satisfy Shimura’s reciprocity law ([44, Theorem 9.6]) describing the action of Gal(H, / K).

For the next definition, for all integers m > 0 let Uy, , denote the p-component of Uy,

Deﬁnition 3.1. We say that a point P= [(g,f)] € X( is a Heegner point of conductor ¢ on
X, if ﬁm( ) € Xm K) is a Heegner point of conductor ¢ and

fp_l(fp((oc ® Zp)*) ﬁgglUm,pgp) = (0. @Zp)* N(1+p" Ok @ Zp)™.
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In other words, Heegner points on )Z'm are lifts of Heegner points on X, satisfying a suitable
local condition at p. This condition will be used to study the field of rationality of Heegner points
on X,,.

3.2. Fields of rationality. Define an action of Gal(K?’/K) ~ I?X/KX on XK by the formula
P = [(gf(a), f)]
for all a € K*/K* and all P = [(g, f)] € X Define
Zy = {a=(as) € @Cxpm |lap=1 mod p™(Ok ® Zy)}.

If (g, f)] € X s a Heegner point of conductor ¢p™ then it follows directly from Definition 3]
that

(W Zn = 1 (F(O) 1 g™ Ung).

For any number field F' denote by I its idele group (so F* is the finite part of Ir). Write ﬁcpm
for the class field of Z,, oo 1= Z,,, x C*, so that

Gal(Hoym | K) ~ K* | K* Zp,.
Proposition 3.2. Let P € )Z',(HK) be a Heegner point of conductor cp™. Then
(1) Pe H° (Gal(Kab/ﬁcpm),)}m(K)) in the definite case;
(2) P e X (ﬁcpm) in the indefinite case.

Proof. Use the fact that P is fixed by the action of Gal(K?/ ﬁcpm) and that in the indefinite
case P is rational over K" by, for example, [9, Lemma 3.11]. O

We give a more explicit description of ﬁcpm. As a general notation, for every integer n > 1 let
i, be the n-th roots of unity. Set p* := (—1)®=1/2p,
Proposition 3.3. Hm = H e (pym)-
Proof. Write Gal(K/Q) ~ Ip/Q*C where €' := Normg g [ is the norm group of K. Define
Wy = HZEX x{a€Z)|a=1 (modp™)}

t#p

and set Wi, oo := W, x Ry where R, is the group of positive real numbers. The extension
K(p,m)/Q is abelian, and since Gal(Q(u,m)/Q) ~ Ig/Q* Wy, « it follows by global class field
theory (cf. [36, Ch. IV, Theorem 7.1]) that

Gal(K (pm)/Q) = Ig/Q* (C N Wi o).

Now Gal(K (p,m)/K) =~ K* /K *V,, where V,, denotes the finite part of the norm group Norm K(pym)/K (Ix(

Hence
(5) Gal(Heym (pym )/ K) = K> JEK* (Vi 1 O%m).
Since the finite part of Normg(,, ..)/0 (1 K(upm)) equals Norm g /q(V;,) and

Q* Normi (u)/0 (TK (,m)) = Q@ (€N Winoo),

it follows that N
Vin € {# € K* | Normpg g(z) € Q* Wy, }.

upm))'
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Let x € V,,, N @Cxpm and write = o + ¢p™B with o € Z and 8 € Ok. Then Normpg q(z) €
Q*Wp, N 7x = Wi,. On the other hand, locally at p one has the congruence

Normpg, g, (7p) = ()412, (mod p™).

It follows that oy, = +1 (mod p™), and we get the inclusion K*(V,,, N 6C>;)'m) C K*Z,,. Isomor-
phism ([B]) finally yields

(6) Hopn © Hopn (j0).

It is easily seen that the Galois group Gal(Hepm (ptym)/Hepm) is isomorphic to (5cxpm/ Oy Zm.
Since OZm/Zm is isomorphic to (Z/p™Z)* via the map which sends a = (ag)q; € OZm to a
(mod p™) € (Z/p™Z)*, and OJm = {£1} for m > 1, we get that

(7) [E[Cp"” N Hcp"”] — (’D(pm)/Z
The result follows from (6) and (7) upon noticing that [Hepm (ptym) @ Hepm] < o(p™)/2 because
Q(/p*) C Hepm. O

In light of Proposition [3.3] from now on we adopt the explicit notation Hym (p,m) in place of
the shorthand H.pm. The reason for doing so is that whenever p|c we have Hem # H (¢/p)pm+1s
so the previous notation would be ambiguous.

3.3. Hecke relations on X,,. Let r,s > 1 be integers. Then
Gal(Hepe () /K) =~ KX /K> (V, N OX.)

where V,. is the finite part of the norm group NormK(“pr) /K (I K(upr))' Hence for every pair of
integers t,u with ¢ > s and u > r there is an isomorphism

EX(V,n O ) JK* (Vun OF,) — Gal(Hepe () / Heps (p1,)).

As pointed out in the proof of Proposition B3], every element r = « + ¢p®5 € V,. N @Cxps (with
o € Z and B e @K) satisfies the local conditions

Normg, /g, (7p) = o?

5 (mod p"), Normg, /g, (zp) =1 (mod p").

~

Let 0 € Gal(H yn+1(pynr1)/Hepn (pyn+1)) be represented by the idele a, € OJn. By the above
discussion, we have

(8) a, = a+cp"pB, ap=1 (mod p").

Proposition 3.4. Let P be a Heegner point of conductor cp™ on )A(:m for somen >m > 1 and
let Q € Xr(nK) belong to the support of U,(P). Then

Up (ﬁ) - trHanﬂ (Bpn+1)/Hepn (Hyn+1) (Q)

m Div(Xm).

Proof. Let P = [(g, f)], so that Q = [(#4g,f)] for a certain a € {0,...,p — 1}. Hence, with
notation as above, @” = [(frag f (as), f)] Since P is a Heegner point of conductor ¢p™ and
n > m, it follows from (4)) and (8) that f(ag) € ¢ 'U,,g. Thus there esists « € U, such that
Q7 = [(Fazg, f)], whence

(9) Q° € Up(]B).
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Since the fields Hyn+1 and Hepn (pyn+1) are linearly disjoint over Hyn, the projection
Gal(Hcpn+1(upn+1)/Hcpn (upn+1)) — Gal(Hcan /Hcp")

is an isomorphism. Therefore the order of Gal(Hpyn+1(ptyn+1)/Hepn (pyn+1)) is p, and the claim

of the proposition follows from (). O

For simplicity, for the next proposition assume that chpm = {£1} (this excludes only the cases
where c=1, m =0 and K = Q(v/—1) or K = Q(v/—3)).
Proposition 3.5. Let m > 0. Fix a prime £ f Np™c which is inert in K. Let P bea Heegner
point of conductor cfp™ on X,, and let Q) € X,(nK) belong to the support of Ty(P). Then

Té (P) = trHclpm (P‘pm)/Hcpm (y'p””) (Q)

in Div ()Z'm)
Proof. Arguing exactly as in the proof of Proposition[3.4], it can be shown that if o € Gal (H cepm (Pym ) [ Hepm (upm))
then
(10) Q7 € T,(P).
On the other hand, since the fields Hgpm and Heym(p,m) are linearly disjoint over Hym, the
canonical projection induces an isomorphism

(11) Gal(Hegpm (ptym )/ Hepm (pm)) — Gal(Hegpm /Hepm ).
The claim of the proposition follows by combining (I0) and (II) because the two divisors are
both sums of £ + 1 points. O

4. FAMILIES OF HEEGNER POINTS

The purpose of this section is to construct a family of Heegner points on the tower of Shimura
curves which satisfies suitable compatibility properties with respect to the natural covering maps
in the tower. These points will be the building blocks in our definition of big Heegner points and
classes that will be performed in Section [l Unlike what is done in [25], to achieve our goal we
systematically adopt the language of optimal embeddings, and this approach allows us to treat
in a uniform way both the definite and the indefinite case.

4.1. Choice of local conditions. In order to introduce the systems of Heegner points that
we shall work with, we need to recall some auxiliary results and definitions. As a preliminary
remark, the Heegner hypothesis and [38, Theorems 1 and 2] ensure that the set of Heegner points
of conductor ¢p™ on X, is not empty.

Let O be an order of K and R an order of B. Let £ be a prime number. Define K, := K ®z Zy
and By := B ®z Zy. An injective homomorphism ¢ : K, < By of Qg-algebras is said to be an
optimal embedding of O ® Z, into R ® Z, if

W(ORZ) =p(K)N(RRZy)  (ie., o {HR®Zy) = O R ZLy).

Two optimal embeddings ¢ and ¢ of O ® Z, into R ® Z; are said to be equivalent if there exists
an element u € (R ® Zy)* such that ¢ = u~ u.

If f: K < B is an injective homomorphism of Q-algebras and £ is a prime number, denote by
fo = f®idg, : Ky — B, the homomorphism which is obtained from f by extension of scalars.
The next lemma says that, for a global injection, the property of being an optimal embedding is
local.
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Lemma 4.1. An injective homomorphism of Q-algebras f : K — B is an optimal embedding of
O into R if and only if fp is an optimal embedding of O ® Zy into R Q Zy for all primes L.

Proof. A routine verification; see [41, Lemma 4.9] for a quick proof using the elementary divisor
theorem. O

Let R be an Eichler order of B, let I,...,I; be representatives of all the distinct classes of
left R-ideals and denote by R; the right order of I; for i = 1,...,h. The number h depends only
on the level of R and the discriminant of the quaternion algebra, and the set {R1,..., Ry} is a
system of representatives for all the R-conjugacy classes of Eichler orders in B with the same
level as R. For every i € {1,...,h} fix an element ~; € B* such that R; = yi_lﬁw and write ; o
for the f-component of v; at a prime £.

Proposition 4.2. Let O be an order of K and R an Fichler order of B, and let {¢s}e be a
collection of optimal embeddings of O ® Zy into R @ Zg for all primes £. Then there exists an
optimal embedding f : K — B of O into R; for some i € {1,...,h} such that ’}/Z’jfg"}/;gl is
equivalent to @y for all £.

Proof. This is essentially a consequence of Eichler’s trace formula ([46, Ch. III, Théoréme 5.11]).
For later use, we give here a direct proof (see [46, Ch. III, §5] or [40} §3] for more details). By
the construction of B, there exists an injective homomorphism ¢ : K < B of (Q-algebras. By the
Skolem—Noether theorem, for every prime /¢ there exists a; € BZX such that g, = a;lcpgag. For
almost all primes ¢ which do not divide the discriminant of B, the level of R and the conductor of
O the map g, is an optimal embedding of O ® Zy into R® Zj: this is so because g(QO) is contained
in a maximal order whose f¢-adic completion is equal to R ® Z, for almost all £. Hence we can
assume that ay € (R ® Zy)* for almost all ¢; in fact, by [46, Ch. II, §3], if £ does not divide the
discriminant of B and the level of R there is only one equivalence class of optimal embeddings of
O ®Zy into R®Zy. Write a for the idele (ay)y. By the strong approximation theorem, there exist
a unique index i € {1,...,h}, a global element b € B* and a unit u € R* such that a = uy;b.
Then f := bgb~! is a global embedding of K into B such that f, is conjugate to ¢, for all primes
£. In fact, for every prime £ one has

Vil v = Yiebgeb™ Vi = (vigbag oe(vigbag )T =y topuy,

which shows that ~; ¢ fe; Zl is equivalent to . In particular, fy is an optimal embedding of O®Z,

into v, Zl(R ® Zg)vie = Ri ® Zy for every prime ¢, hence f is an optimal embedding of O into R;
by Lemma .11 O

For all integers k,m > 0 define the Eichler order ngm) of level Ntp* by the following local
conditions:

R™ @Zi=Ry®Z, forall £ # p;

R @2y = (i, ") = ()R Z) () 7,").

In particular, we have R,, = RgN R(()m) and R%n ) = R,,.

Proposition reduces the construction of global optimal embeddings to that of local ones.
In the following the local component at p is studied. Let p" be the power of p dividing ¢ exactly
(i-e., p*|c but p"*1 { ¢). Write K = Q(v/—D) with D > 0, so K, = Q,(v/=D) if p is inert in K
and K, = Q, ®Q, if p is split in K. Then we consider the following embeddings 1/11(,0) 1 K, — Bp:
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1) p inert
K, — By

@+ VD (g )

2) p split
K, — B,

(@8 — (b s):

Recall that Uy, , denotes the p-component of U,,. For all integers n > 0 an easy calculation shows
that

. zp,(f) is an optimal embedding of Ocpn ® Zj, into R, ® Zy;

o @) (W7 (O © 25)) NUnp) = (O ® Z)* N (1 +p" Ok ® Z)*.
Define

(12) Pl = (_gm )5 (9 )
and

U o= (_5m §)Unp (0772,
(m)

For all integers m,n > 0 it follows from the above equations for wl(f) and the definition of Ry,
that

. gp}f’m) is an optimal embedding of of Ogyn ® Z,, into R @ Ly;

o (08" ™ (Ocpr @ Z)*) NUNR) = (O @ Zp)* N (1 +p"Okc @ L) .
Lemma 4.3. Fiz an integer m > 0. Then

(1) gpéc’m) is an optimal embedding of Ocpm @ Zy, into Ry, @ Zy,.
2) (5™ (os™ ((Ocpm @ Zp)*) N Unp) = (O @ Zp)* N (L + p" O ® Z,y)*.

Proof. Since R%ﬂ ) — R, and

A (O ©3)) Uiy = 5™ (O & 2)") UL,

both claims are immediate consequences of the above formulas for n = m. O

For every prime ¢ # p choose an optimal embedding /o : K¢y — By of Ox ® Zy into R, ® Zy =
Ry ®Zy: this can be done by [38, Theorem 2]. If £ Np then for all integers n > 1 fix also optimal
embeddings ¢y, : Ky — By of O ® Zy into Ry ® Zy. For any prime £ set 7, := (é 2). If ¢ is inert
in K and ¢{ Np then choose ¢y and ¢, 1 in such a way that ¢z = 7Tg<pg7071'£_1 (for example, this

can explicitly be done by adopting definitions analogous to those of cpl(,c’l) and gpéc’o)). Suppose

that we have fixed ¢, for prime ¢ # p and integers n > 0 so that all the above conditions are
fulfilled. Let ¢ > 1 be an integer prime to N and the discriminant of K. For primes £ # p set
cp@c) = Qrn() where "9 is the maximal power of ¢ dividing ¢. We remark that, with these

choices, gpéc) = gpéc/) whenever £ 1 cc.
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4.2. Compatible families of Heegner points. We now use the proof of Proposition to
globalize the local choices performed in §4.11 To begin with, fix an injection g : K < B of

Q-algebras. Choose elements ag,, € BéX and al(,c’m) € BpX such that
o g = a7 praaen for € #pand n > 0;

° gp — (a]()qm))_l(p](f’m)a]()c’m)'
We can perform the above choices at p and at primes ¢ { Npc which are inert in K as follows.
(c,0)

First, assume that p{ c¢. Let ap " be an arbitrary element satisfying the above relation for m = 0.
Since gpz(f’m) = wp¢§,c’m_1)w5 1 we can define inductively
(13) a}f’m) = Wpaéc’m_l)

. .- . (ep" =t m+1) _ (eph,m) .
for all m > 1. Keeping the condition p t ¢, since ¢, = ¢p for all integers m > 0
and h > 1, we can also define inductively
(14) al()Cphvm) = aécph717m+l)

(e,;m)

for all m > 0 and h > 1. The two conditions above define a, for all ¢ > 1 and m > 0. Next,
as in the rest of the paper, let ¢ > 1 be an integer prime to IN. Suppose the prime ¢ is inert in
K and £t Npc. In this case, recall that we have chosen ¢y 1 and ¢ so that g = 7Tg<,0@7071'£_1.
Therefore we can fix an arbitrary aso so that g, = aZégpg,oam and define ag ;1 := meayp.

Fix an integer ¢ > 1 as before and recall that if ¢ is a prime then () denoﬁes the exact power
of ¢ dividing ¢. Fix also an integer m > 1 and define global elements (™ € B* by the following
local conditions:

(c,;m)

e the /-component of a is equal to ay () for all £ # p;

(c,;m)

(em) is equal to the ay”™ chosen before.

e the p-component of a
Thus for primes ¢4 Npc which are inert in K there is an equality
(15) aéeé’m) = wgaéc’m).
Observe that if £ { ¢’ or ¢ divides both ¢ and ¢ to the same power then a;’m) = aécl’m) for all
m > 0. Recall the idele 7y € B* introduced in §2.4] with p-component equal to 7, and all other
components equal to 1; then combining the definition of a(>™) with (I3)) and (4] yields equalities

(16) a(C,m) — ,ﬁ_oa(c,m—l)
and
(17) a(cph’m) _ a(Cphfl,m—l-l)

for all m > 0 and h > 1. Similarly, if £{ Npc and X\o € BX is the idele of §2.4] with all components
equal to 1 except the {-component which is equal to 7, then (&) gives the equality

(18) altm) = \yalom

for all m > 0.
Denote by Ry1,- .-, Ry p(m) the right orders of a set of representatives of the left R;,-ideals

and take Ym 1, Ym,h(m) € B* such that Eml = 7;1,1i§m7m,i for all : € {1,...,h(m)}. The set

G = {’Ym,la s 7"Ym,h(m)}
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is a complete set of representatives for the double coset space ﬁﬁl\é */B*. Write
(19) ™ = ue b
with ucm, € Eﬁq, Alem) e &, and be,m € B*. Then define
F™ = bemgbs L.
Note in particular that we obtain the equality
(20) g = bk fC™by = 03L O,
for all ¢,c,m,m'. Now the local embedding

/yéc,m) féc,m) (/yéc,m) )_1

is equivalent to goéc) for every ¢ # p and to goéc’m) for £ = p.

Proposition 4.4. Fix an integer m > 0. Then
(1) f©™ is an optimal embedding of Ogpm into BN (v(c’m))_lémv(c’m);
(2) We have the equality:
(fpc’m))_l (fpc’m) ((Ocznm ® Zp)x) N (VI(JC’m))_lUm,p%()c’m)) = (Ogpm ® Zp)X N(1+p"Ok ® Zp)x-

Proof. Part (1) is just a restatement of the definition of f(™). For (2), observe that there exists

(e;m)\ ™~ (e,m)

an element u € (v, ") (Rm ® Zp) vy such that

- c,m -1 c,m c,m
(21) £ = am ysem™) gl A,

The second statement in the proposition follows from part (2) of Lemma [A3] combined with
equation (2I)) and the fact that U,, ), is a normal subgroup of (R,, ® Z,)*. O
Corollary 4.5. The class [(v(c’m),f(cvm))] is a Heegner point of conductor cp™ both on Xr(nK)

and on )Z',(nK).
Proof. Both statements are immediate consequences of Proposition [4.4] O
Define the family of points
Peo=Poo = [(79, F°0)] € x{) = X¢")

Py = [(,y(c,m),f(c,m))] e X\ Py 1= [(uam,y(c,m)’f(qm))] e X,

The point ]Dvcm is a suitable lift of P ,, to )Z}(nK). We first note the following property enjoyed by

these points.

Proposition 4.6. The point P, (respectively, lgcm) 1s a Heegner point of conductor cp™ on
X (respectively, X, ).

Proof. A direct consequence of Corollary 4.5 where for ]Bm,c we use again the fact that U, ) is a
normal subgroup of (R, ® Z,)*. O
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4.3. Hecke relations in compatible families. The results we prove in this subsection justify
our choice of the lifts P, ,, of the points P, ,,. Write

s - Div(X,) — Div(X,,_1)

for the map between divisor groups induced by a;, by covariant functoriality. In other words,
am (P + -+ Pg) :=ap(P1) + - - + am(Ps) for all points Py, ..., Ps on X,,.

Proposition 4.7. Let m > 2. Then

Up(Pen—1) = G (80 () H 1 1) (i)
in Div(Xp_1)-
Proof. The image of Pep € X in X5 is given by
G (Pem) = [(Rotem-17 " Vbeim—1bz s fO™)] = [(Rotien-17 ™V, flem=)],

where the first equality comes from (@) and (I9) and the second from (20)). So am(ﬁc,m) belongs
to the support of U, (P ;m—1), and the result follows from Proposition 3.4 O

Proposition 4.8. Let m,r > 1. Then
Up(P,

cp7‘717m)

= trHcperr' (Hpm+7" )/Hcpm%"fl (ILPM+7") (PCPTvm)

m Div()?m).

Proof. We compute:

. 1 )] = [(ucp’"*l,m+17(cpr717m+1)bcpr—1 m—l—lbc_plr 1m’ f(cp"*l,m))]

= [(ucpr’m,y(Cpr, )b cp’, mb cp”" 1 m’f(CPT L )}
= [(ucpr,mfy(cpr7m ’f(cp ,m))] = ﬁCT’TﬂWJ

where the first equality comes from (16) and (1J), the second from (I7) and the third from

(20). We conclude that P+, belongs to the support U,(P,,r-1,,), and the result follows from

Proposition 3.41 O

[(WOUCp’ 1 m/y f(cp

For the next proposition assume that OJm = {£1}.
Proposition 4.9. Let m > 0 and fix a prime €1 Np™c which is inert in K. Then
Te(Pean) = 8y () g (i) (Petin)
in Div ()Z'm)
Proof. Observe that
[(ottemy ™, FE™)] = [(ttetmy ™ betmbams £™)] = Petms

where the first equality follows from (I8)) and (I9) and the second from (20). Hence lgcg,m belongs
to the support of Ty(P, ), and the result follows from Proposition O
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4.4. Galois relations in compatible families. Set Gg := Gal(Q/Q) and let
€cye : Gg — Z;

be the p-adic cyclotomic character. Since the restriction of ecy. to Gal(Q/Q(v/p*)) takes values
in (Z;)2 (recall that Q(y/p*) is the unique quadratic extension of Q contained in the p-adic
cyclotomic field), there is a unique continuous homomorphism

¥ Gal(Q/Q(v/p*)) — Z) /{£1}

such that ¥? = €eye- Fix o € Gal(Hepm (poym )/ Hepm ) with m > 1. The Galois group Gal(Hepm (/,L\me)/Hcpm)
is isomorphic to chpm / chpm Zm via the Artin map, so o can be represented by an element x € chpm

such that z, =1 for £ # p. Write x), = a + p™ with a € Z and 8 € Ok ® Zp. The image &

of o via the natural map Gal(Hepm (ptym)/Hepm) — Gal(Q(p,m)/Q(y/p%)) is represented via the

Artin map by Normg g(z) and, by class field theory, we have Normg g, (zp) 7! = €cye(7). Hence

€cyc(7) = a2 (mod p™) and 9(6) = £a~! (mod p™). Thus, observing that J(c) =1 (mod p™)

if o € Gal(Q/Q(ppm)), we may write

ﬁgm = <i19(‘7)>ﬁ0,m

for every o € Gal(Q/H_ym), where, for any a € Z, , the symbol (a) denotes the diamod operator
and, with a slight abuse of notation, we understand that Gal(Q/K?P) acts trivially on ﬁc,m in
the definite case. Since the action of (1) on Div(Xy,) is trivial, it follows that for all o €
Gal(Q/Hcpm) there is an equality

(22) ]Scc,rm = <19(‘7)>ﬁ0,m

in Div(X,,).

5. HIDA THEORY ON GLsy

Throughout this paper we choose an (algebraic) isomorphism C ~ C,, where C,, is the comple-
tion of an algebraic closure of Q,, and view any subring of C, as a subring of C via this fixed
isomorphism.

5.1. Ordinary Hecke algebras. In the next few lines we use Shimura’s notations 7'(n) and
T(n,n) (with n an integer) for the (abstract) Hecke operators defined as in [44], §3.1-§3.3] by
double cosets.

Define A := p,,_y and T := 1 + pZ,, so that we have a canonical isomorphism Z; ~T" x A.
Define the two Iwasawa algebras

A=0p[l], A:=0p[2]]

where F' is a finite extension of Q, (which will eventually contain the Fourier coeflicients of our
modular form f) and Op is its ring of integers, so that we have a natural inclusion A C A. Finally,
denote by z > [2] the inclusions of group-like elements I' < A and Z,; — A.

For any ring A, any congruence subgroup G' C SL2(Z) and any character ¢ : G — Q) let
Sk(G, 1, A) be the A-module of cusp forms of level G, weight k and character ¢ with coefficients
in A. We follow [25] for the presentation of Hida’s Hecke algebras. Define

Lo (N, p™) :==To(N)NT1(p™)
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and write by, ,,, for the Hecke algebra with Op-coefficients acting on Sj, (Fo,l(N, "), (C). The Op-
algebra by, ,, is a finite product of complete local rings. Let bzrf}l be the ordinary part of by ,,, i.e.,
the product of those local factors on which the image of U, is a unit. Define the Hecke algebras

ord

of weight k as by o = I'me)k’m and f)zfgo = r&lf)]ﬁm, the projective limits being taken with

hord

respect to the canonical maps. The Op- algebras Bk 00 and can be endowed with structures

of A and A-algebras in such a way that if a is an integer prime to Np and T (a,a)r denotes the
image of T'(a,a) in by, then the image of [a] in by ., is the diamond operator (a) defined by
the formula T'(a, ), = a*~%(a)y (here we adopt the conventions of [25] rather than those of [20]).
The A-algebra f)ord is finite and flat over A. For all weights k, k¥’ there is a unique isomorphism
of algebras

(23) Prejer O — b,

taking the images of T'(¢) and T'(¢,¢) in f)ord to the images of the same operators in f)ord It
will usually be convenient to identify the Hecke algebras f)ord for all weights k by means of the

isomorphisms (23)), so we simply set bord = bord

5.2. New quotients. We are especially interested in the C-vector space Sp¢¥ (FOJ(N , pm),(C)
consisting of those forms which are new at all the primes dividing N~. Write Ty, ,,, for the image
of by m in the endomorphisms ring End (SHCW (F071(N , "), (C)) and set

Tk,oo — r&lr]rk’m’ Tord — e ord . Tk,my Tord — eord . Tk,oo L Tord
m

where €' and ' are Hida’s ordinary idempotent projectors. Isomorphisms (23] yield isomor-

phisms of A-modules Tord Tzfdoo for all weights k, k', so we identify the algebras ']I‘%fgo for all
weights k and set T := ']I"’rd

5.3. Maximal ideals of Hecke algebras. Following [35, §1.4.4], we briefly describe the de-
compositions of our Hecke algebras into products of local components. Since f)géd and ngd are
finitely generated A-modules, they split as finite products

(24) ord H hgg(’iﬁ’ Tord H Tord

of their localizations at their (finitely many) maximal ideals m and m. Every summand appearing
in these decompositions is a complete local ring, finite over A. If L is the fraction field of A then
f)ord ®p L and Tord ®p L are finite-dimensional artinian algebras over L, so they are sums of local

artinian algebras. If m (respectively, m) is a maximal ideal of h%d (respectively, of T29) then
hggda ®a L (respectively, Tord ®a L) is a direct factor of h% @, L (respectively, of T2 @ L£).
There are splittings of £- algebras

(25) T@p L= (HE)@M, ngd@%/::(ﬂ/cj)@/v

icl jedJ
where F; and K; are finite field extensions of £ while M and N are nonreduced. In Hida’s

terminology, the F; and the K; are called the primitive components of hod @ £ and TE @, L,
respectively. As explained in [20] §3], one has I = J and there are canonical isomorphisms

(26) Fi = K;
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for all i € I. We say that F; (respectively, K;) belongs to m (respectively, m) if it is a direct
summand of hgéda ®a L (respectively, of ']I'géf‘m ®p L).
Now fix a modular form
(27) f=Yang" € Si(To(Np),o’, Op)
n>1

with j = k mod 2, where w : (Z/pZ)* — p,_; is the Teichmiiller character (here u,_; is the
group of (p — 1)-st roots of unity). Assume that f is a normalized eigenform for the Hecke
operators Ty (with ¢ Np) and U, (with ¢|Np). Here, as before, F' is a finite extension of Q, and

OF is its ring of integers. Let py : Gg — GL2(F') be the p-adic Galois representation attached to
f by Deligne.

Assumption 5.1. Throughout this article we assume that
i) the modular form f is an ordinary p-stabilized newform in the sense that a, € Oy and
the conductor of f is divisible by N (cf. [L6, Definition 2.5)), i.e., f arises from a newform
of level N or Np (this implies, in particular, that ps is ramified at all the primes dividing
N);
ii) the residual representation py is p-distinguished and absolutely irreducible.

Here we recall that py is said to be p-distinguished if its restriction to the decomposition group
Gq, = Gal(Q,/Qp) at p can be put in the shape prla,, = (0 &,) for characters e; # £ (see,
e.g., [14, §2]).

Duality between modular forms and Hecke algebras yields morphisms

HfZTgéd—>OF, éf:f)ggd—>(’)p
such that 0 factors through ']I'%ff and is characterized by 0(T'(¢)) = a, for all primes ¢, §¢([d]) =

§Fi=2for 6 € A, 04([y]) =~*"2 for v € T, while 9~f is the composition of the canonical projection
hggd — ngd with 6¢. Let my and m; be the maximal ideals corresponding to the unique local
factors of h%4 and T through which 0~f and 6y factor. Since f satisfies i) in Assumption 5.}
we can consider the unique primitive component K of hgg?ﬁf ®a L appearing in (28] to which f
belongs in the sense of [20, Corollary 3.7] or [22, pp. 316-317] (see also [25] p. 95] for the more
general type of arithmetic groups we are working with here). Thanks to isomorphisms (26]), there
is a unique primitive component of ng‘?m ; @A L (appearing in (25])) which is isomorphic to K:
denote this component by the same symbol K. Finally, let R be the integral closure of A in K.

Proposition 5.2. The ring R is a complete local noetherian domain which is finitely generated
as a A-module.

Proof. See, e.g., [45] Theorem 4.3.4]. O
: d : d . d

Observe that R is an hgéﬁf-algebra. Indeed, the field K is an hgéﬁf-algebra, moreover, hgé,ﬁf

identifies by (24]) with a A-subalgebra of h2'd, hence it is integral over A by (23], and this implies

that h‘;’ﬁf preserves the subring R of . Analogous arguments show that R is a ’]ng’im f—algebra.

Now consider the composition
foo 1 HXT — %G, — R
in which the first arrow is the natural projection and the second arrow is the structure map of

R as an h2 fﬁf-algebra. The map fo is uniquely determined by the primitive component C to
which f belongs.
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Definition 5.3. The local A-algebra hgédaf is the Hida family of f and R is the branch of the
Hida family on which f lives. We call the map fo the primitive morphism associated with f.

5.4. Critical characters. Factor €., : Gg — Z; as a product €cye = €rame€wild With €game :
Go — pp_1 and eyilq : Gg — T' and define the critical character © : Gg — A* by

Q. — 6(k-l—j—2)/2[ 1/2 ]

tame €wild

where e}v/ifd is the unique square root of €yyq taking values in I'. If ¢ € Z/(p — 1)Z then the
idempotent

Zw ‘ EOF[[Z ]]

5€A
satisfies the relation
(28) ei[(] =C'e;  forall ( € p, .
Since f(e;) =0if i # k+ j — 2, we have ej4;_o(bg" oo)mf (bzrgo)ﬁf. Therefore
(29) erj—2(Too)my = (TR0 )y
and it follows that in (']I‘%fgo)m ; we have

[€tame ()] = eﬁ:nZe 2(0)

for all 0 € Gg. Furthermore, by definition of ©, in (']I'%fgo)m ; there are also equalities

0%(0) = el (o) [ewita(0)] = [ecye(0)]

for all o € Gg.

5.5. Arithmetic primes and Galois representations. For every integer m > 0 denote by
Xo,1(N,p™) the compactified modular curve of level structure I'g 1 (IV,p"™), viewed as a scheme

over Q, by Jac(Xovl(N, pm)) its Jacobian variety and by Ta, (Jac (Xo,l(N, pm))) the p-adic Tate

hord

module of the Jacobian. As in [25, §2.1], for every integer m > 1 we define the h2%%-modules

Tagfgl = e%d (Tap(Jac(XQl(N,pm))) ®z, (’)F), Ta®d . L m Ta gf;}w
Ta ;j = Ta”™ Qo bgg‘j‘af, T := Ta2d ®hggdmf R.

All these modules are endowed with h%d-linear actions of the Galois group Gg. The R-module
T is free of rank two. Let RT denote R viewed as a module over itself with Gg acting through
©~! and define the critical twist of T to be the Gg-module
TT = T ®R RT Taor ®hord RT
o0, mf

The Gg-module T is unramified outside Np and the arithmetic Frobenius at a prime ¢ { Np
acts with characteristic polynomial X? — T, X + [(]¢. For a proof of these facts see, e.g., [25,
Proposition 2.1.2] and [32], Théoréme 7).

Write my for the maximal ideal of the local ring R and set

F'R = R/mR, FbordN _ hord /~ hord~

oo,my oo,my
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for the residue fields of R and hgédﬁf. Since R is finite over A by Proposition (5.2, the map

hord

Soi; R is also finite, hence integral. Thus Fg is naturally a finite extension of Fyora  and

00, M ¢

hence of F,,. The next result will be exploited in Section [0

Proposition 5.4. The residual Gg-representation T /mgT is equivalent up to finite base change
to the residual representation py of f. In particular, it is absolutely irreducible.

Proof. First of all, if the claimed equivalence of representations is true then the absolute ir-
reducibility follows from condition ii) in Assumption B.Jl With notation as above, there is a
canonical isomorphism of Gg-modules

T/mpT ~ (Tag?/m;Tag?) @s,,,, Fr.
oo,mf

As explained in [20, p. 251], all modular forms in the Hida family hggdﬁf have residual repre-

sentation equivalent to pg. On the other hand, by [25, Proposition 2.1.2], the local ring pord

oo,my
is a Gorenstein A-algebra, and then [2I §9] (see also [32) §3]) shows that the residual Gg-
representation Ta%r;l / m fTa%‘rii is equivalent (up to finite base change) to py. O

Now recall that I' := 1 + pZ,. If A is a finitely generated commutative A-algebra then a
homomorphism of Op-algebras x : A — Q) is said to be arithmetic if the composition of x with
the canonical map I' — A has the form v ~— 9(y)y"~2 for some integer » > 2 and some finite
order character ¢ of I'. The kernel of an arithmetic homomorphism, which is a prime ideal of
A, is said to be an arithmetic prime of A. If p is an arithmetic prime of A and, as usual, A,
is the localization of A at p then the residue field F, := A, /pA, is a finite extension of F'. The
composition I' — A* — F* has the form v Y (7)Y =2 for a finite order character ¢, : I' — F
and an integer ry, and we call ¥, and ry the wild character and the weight of the arithmetic prime
p, respectively. The homomorphisms of Op-algebras 0~f and 6 that were attached in §5.3] to the
modular form f are arithmetic.

Let p be an arithmetic prime of R of weight 7, and character 1, and set

(30) my := max{1, ordy(cond(¢y)) }.
By [21L Corollary 1.3], the morphism obtained by composing the maps

factors through h?;d and determines, by duality, an ordinary p-stabilized newform

(31) fo = Zan(fp)q” € Sp, (Coa(N,p™), Gy, Fp)

n>1

where, for simplicity, we put ¢, := wpwkﬂ e,

Denote by V(f,) the Gg-representation over F, attached to f, by Deligne. Thanks to a result
of Ribet ([42] Theorem 2.3]), it is known that V(f;) is (absolutely) irreducible. Define the Gg-
modules Ty, := T ®gr R, and V}, := T ®g F, = T, /pT, and their critical twists T! .= Tt R Ry
and V;JT =TI o F,. Then VJ is a twist of the classical representation attached to f,. See [25),
§2.1] and [35) §1.5 and §1.4] for details. Let now v be a place of Q above p, let D, C Gg be a
decomposition group at v and let I, C D, be the inertia subgroup. Denote by 7, : D, /I, — R*
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the character defined by sending the arithmetic Frobenius to U,. Then [25, Proposition 2.4.1]
ensures that there is a short exact sequence of R[D,]-modules

0— F(T)—T— F, (T) —0
where F,F(T) and F, (T) are free R-modules of rank one and D, acts on FT(T) (respectively,
on F, (T)) through 7, tecyclecyc] (respectively, through n,). Furthermore, if M denotes one of
Ty, Vj, T,TJ and VpT then twisting by © ! and tensoring the above exact sequence by Ry or F,
yields another short exact sequence of D,-modules
0— EF (M) — M — F, (M) — 0,

where F,F(M) and F, (M) are free modules of rank one over either R, or F},, depending on
whether M € {TP,T;E} or M € {V;J,VJ}, respectively. Finally, the Galois group Gg acts on
F;F(M) and F, (M) either by n; tecyclecyc] and n, or by ©7Intecyclecye] and © 71y, depending
on whether M € {Tp,Vp} or M € {T,TJ,VPT}, respectively.

5.6. Selmer groups. We recall the definitions of the various Selmer groups that are relevant for
our purposes. The reader may also wish to consult [25] §2.4] and [35] §2.1].
Let L be a number field and for any prime v of L let L, the completion of L at v and L)™ the

maximal unramified extension of L,. Let M be one of the left R[Gg]-modules T, TT, Ty, Tg, Voo

V;r where R denotes the ring R in the first two cases, the ring R, in the middle two cases and
the field F} in the last two cases. Fix a prime v of L and define the Greenberg local subgroup at
v by
ker(H'(Ly,, M) — H' (L™, M)) if v ¢ p,
HE (Lo, M) =
ker(H'(Ly,, M) — H'(L,, F, (M))) ifv|p.

Then the Greenberg Selmer group is by definition the group
Selg (L, M) = ker <H1(L, M) — [[ H" (Lo, M)/HE, (L, M)).

Let AT := Homyz, (TT, upoo). For M =TT, Af or VJ one can also consider the Nekovdr Selmer
group ﬁ}(L, M), which for M = TT or VpT sits in the short exact sequence

(32) 0 — @ HO(Ly, Fy (M) — Hf(L, M) — Selg:(L, M) — 0,
vlp
the direct sum being extended over the primes of L above p. The reader is referred to [34, Ch.
6] for definitions and to [34, Lemma 9.6.3] for a proof of (B32)).
If M =V, or V;JT one has the Bloch-Kato Selmer group H} (L, M) as well, whose definition (in

terms of Fontaine’s ring Be;s) can be found in [5, §3 and §5]. If M = V;f and p has even weight
then, by [34, Proposition 12.5.9.2], this group fits into the short exact sequence

(33) 0— P H (Lo, F, (V) — H}(L, V) — H}(L,V,)) — 0.

vlp
An arithmetic prime p of R is said to be ezceptional if r, = 2, the character v is trivial and the
image of U, under the map R — F, is equal to £1. The relations between the Selmer groups that

we introduced above are then summarized by exact sequences ([B2) and ([33) and the following
result.
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Proposition 5.5. (1) If p is a non-exceptional arithmetic prime of R then PNI} (L, VJ) and
Selar (L, VpT) are isomorphic.
(2) If p is an arithmetic prime of even weight then H} (L, V;JT) and Selg;y (L, V;JT) are isomor-
phic.

Proof. The first assertion is [25 (22)], which follows from [25, Lemma 2.4.4]. The last claim is
[25] (23)], which is immediate from (32]) and (33]). O

6. HIDA THEORY ON QUATERNION ALGEBRAS

Recall the quaternion algebra B over Q of discriminant N~ introduced at the beginning of
the paper. In the following (in slight conflict with the conventions of Section [B]) we use Hida’s
notations 7'(n) and T'(n,n) for the (abstract) Hecke operators defined as in [22], p. 309] by double
cosets. In this section we always assume that B is a division algebra, the theory for the split case
B ~ M3(Q) having been considered earlier.

Fix an integer m > 0. Recall that Div(. X,») and Div?(X,,) denote the groups of divisors and
of degree zero divisors, respectively, on X . Let Pr(X ) be the group of principal divisors on
)Z'm and define, as usual, the Picard groups

Pic(X,,) := Div(X,)/Pr(X,),  Pic®(X,,) := Div?(X,,)/Pr(X,n).
The groups Pic(X,,) and Pic®(X,,) are connected by the short exact sequence

(34) 0 — Pic®(Xpn) — Pic(Xn) 25 2 — 0,
where deg is the degree map.

6.1. Hecke modules in the definite case. Assume that B is definite and fix an integer m > 0.
As pointed out in [I, §1.4] and [17) §4], in this case Pic(X,,,) can be identified with the free abelian
group Z[U,,\B*/B*] on the finite set of double cosets Uy, \B*/B* and Pic’(X,,) corresponds

to the degree zero elements in this group. With notation as in §2.11 the sequence m fl(m)
is unbounded because the same is true, by [40, Theorem 16], _of the sequence m h(m), and
h(m) < h(m). Hence the ranks of the free abelian groups Pic(X,,) and Pic?(X,,) are unbounded
as m varies. Now define

I 1= Pic(X;n) @2 Op,  J° = Pic®(X,n) ®z Op.

Tensoring ([34)) with O over Z yields a short exact sequence of Op-modules

(35) 00— J° — J 25 0p — 0.
By what has been said a few lines before, there is an identification of Op-modules
(36) Jm = Op [Un\B* /B¥],

which will usually be viewed as an equality. The abelian group Pic()zm) is finitely generated,
so, by [28, Theorem 7.11], it follows that Endy (Pic()zm)) ®z OFf is canonically isomorphic to
Endo, (Jm). A similar remark also applies to J2,.

n [I, §1.4] (see also [I7, §4]) it is explained how equality (Bl can be used to define an Hecke
algebra with Op-coefficients, which we denote by B,,, acting (via Brandt matrices) on J,,, and
o
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Let us now assume m > 1. Since B,, is a finitely generated Op-module, we can define an
idempotent €24 € B,, attached to the Hecke operator U, and introduce the ordinary parts
xord .= eord L ¥ for X {IBSm, Jms J,On}. So Jo is a B"d-module. Since U, has degree p, exact
sequence (BH) implies that there is an isomorphism of B2*4-modules

ord ~, 70,0rd
Jord o joord,

The maps &, : X, — )N(m_l induce (by covariant functoriality) maps o « : Jym — Jim—1 and
Qs JO — Jnol_l preserving the ordinary parts, so one can consider the projective limits

Joo 1= lm Jpy,, JY ::@JS@, Jord .= l'&lJﬁfd
m m m
with respect to these maps. Define

Boo :=imB,, B! :=limBp¢

with respect to the canonical maps. Then J24 is a B2d-module, while J, and JO are B-
modules.

6.2. Hecke modules in the indefinite case. Now suppose that B is indefinite and fix an
integer m > 0. Then Pic’(X,,) can be identified with the Jacobian variety Jac(X,,) of X,
which is an abelian variety defined over Q whose dimension equals the genus of )Z'm, while (34])
shows that Pic(X,,) is an extension of Z by Pic?(X,,). More precisely, Pic(X,,) identifies with
the Q-points of the Picard scheme of )Z'm and Pico()zm) with the identiﬁy component of this

scheme. If L is an extension of Q then we denote by Pic(X,,)(L) and Pic’(X,,)(L) the L-rational
points of Pic(X,,) and Pic®(X,,), respectively. Unlike what was done in the definite case, in
the indefinite case by J,, and J?, we mean the functor from the category of Q-algebras to the

category of Op-modules which associate with any field extension L/Q the Op-modules

Jin(L) == Pic(Xn) (L) ®z Op,  Jo(L) := Jac(X,n)(L) ®z Op,
respectively. These modules are endowed with a canonical action of a Hecke Op-algebra B,,,
which is induced by the Hecke action on divisors via Albanese functoriality.

Let L be an algebraic extension of Q and set G, := Gal(Q/L). Since Jac(X,,) is defined over
Q, the Op-module J?, (L) has a natural left G -action and so is canonically a left B,,[G]-module.
Furthermore, the ordinary part

T (L) = et T (L)
inherits a canonical structure of left B24[G 1 ]-module, where €' denotes as above Hida’s ordinary
projector.

Suppose that L is a number field. Tensoring ([34]) (with values in L) by Op over Z yields, as
above, a short exact sequence of left Op[G]-modules

(37) 0 — JO (L) — Jn(L) L& 0p — 0.

Since J,,(L) is a finitely generated Op-module, it makes sense to introduce the idempotent e
in B,,, attached to the Hecke operator U, and define the ordinary part of J,,,(L) to be

Jo(L) = ead . g (L).
Now observe that, since U, has degree p, sequence (37)) shows that
(38) Id(L) = T (L)

ord
m
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for every m > 0 and every number field L. Let now L/Q be an algebraic field extension and write
it as a direct limit L = lim L; of finite extensions. Since the Jm(L;i) have ordinary parts which
are compatible with direct limits, we can define the ordinary part of J,,(L) as

Jo(L) = hgj;;{d(L,-).

Thanks to (38), and the fact that JO (L) = lim JO (L;) because direct limits commute with tensor
products, we see that
I (L) = Ty (L)

for every m > 0 and every extension L/Q. Thus Jo'(L) is a B29-module for every m and every
extension L/Q, where Bod := ¢4 . B,,,.

As above, for every extension L/Q and every m > 1 we can define by covariant functoriality
maps &mx : Jm(L) = Jm—1(L) and Qs : JO (L) — JO_; (L) which preserve the ordinary parts,
so we can form the projective limits

JoolL) = fim (L), TR = Y T (D), (L) = fim ()
with respect to these maps. Form the Op-modules
Boo :=1limB,,  BX!:=limBj"

In particular, JO (L) is a left By[G]-module and JIYL) is a left BYY[G]-module. Write
Tay (Jac(X,y,)) for the p-adic Tate module of Jac(X,,) and define

Ty = Tap(Jac(Xm)) ®z, OF, Too := @Tm

where the inverse limit is with respect to the canonical projection maps. Then T, and T, are
B and B,,-modules, respectively, and one can define the ordinary parts

Tord = o T, 7o = eord . ord)
which are left BO4[Gg] and B%4[Gg]-modules, respectively.

6.3. Jacquet—Langlands correspondence. In order to simplify notations, set T, := T2, and

Tord .= T‘Z)ff for x an integer m > 0 or the symbol oco: this is an extension of the convention
introduced at the end of §5.2
The Jacquet-Langlands correspondence (see [24] §2.4]) gives an isomorphism of Op-algebras

(39) JLy : Ty — By

taking T'(¢)2 and T'(¢, ()2 to the analogous operators in B,,. We define a continuous structure of
A-algebra on B, and B2 as in [24] §3.2.8], and denote [2] + (z) the image of group-like elements
of A. We normalize this action so that if n is an integer coprime with Np then T'(n,n) = (n)
as operators in B,, (as in the case of elliptic modular forms, we adopt the normalization in [25]
instead of the one usually found in Hida’s papers).

Proposition 6.1 (Jacquet-Langlands). There is a canonical isomorphism of A-algebras

ord ., mrord = ord
JLord ; ord =, gord,
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Proof. For m > 1 there are commutative diagrams

ord

L
ord m_ ord
P]I‘m IBgm
l JLord l
ord m—1 ord
Tm—l IB%m—l

where the vertical arrows are the canonical projections. The claim of the proposition then follows
by taking inverse limits and noticing that the two A-algebra structures agree on the set of integers
prime to Np, so (by a continuity argument) they must be equal. O

In light of (B9) and Proposition [6.I] from here on we identify the algebras By with the corre-
sponding T}, and use the latter symbols to denote both Hecke algebras. Similarly, we identify
the maximal ideal my and the ring R with their images via JLgéd.

Finally, we write ngdﬁ and ']T?,id’T for the twisted Gg-modules T4 and T, respectively,
where the action of Gg is via ©71.

6.4. Galois representations in the indefinite case. In this subsection, as in [12], we work
under the following assumption, whose analogue for the Hida family f)‘;daf is true by [25, Propo-

sition 2.1.2].

Assumption 6.2. The A-algebra T4 is Gorenstein, that is T%d —~ Homp (']I“’rd A) as

oco,my oco,my oco,my?
ord
Tw7mf—modules.

Define
T2, o= T2 @pora T Ty, := T4 O, R, T, := Ts, @r R

oco,myg * oo,my? oco,my
Let p be an arithmetic prime of R and set

TSh,p = TSh QR Rp, T;hm = TSh,p QR RTu

Vanp = Tsnp/pTsnp, VSTh,p = Vanp ®r R
All these groups are endowed with Gg and Heche actions. As before, let mz be the maximal
ideal of the local ring R. The next assumption plays the role of [12, Hypothese 1.4.26].

Assumption 6.3. The residual Gg-representation Tgp,/mgTgy is absolutely irreducible.

We keep Assumptions and [6.3] for the rest of this subsection. We first recall the basic
properties of the representations Tgy,.

Proposition 6.4. (1) The R-module Tgy, is free of rank two.
(2) The Gg-representation Tgy is unramified outside Np and the arithmetic Frobenius at a
prime {1 Np acts with characteristic polynomial X? — T, X + [(]¢.
(3) For any arithmetic prime p of R denote by V(f,) the Gg-representation over F, attached
to fp. Then the Gg-representation Vgp , is equivalent to the dual V*(fy,) of V(fy), hence

to V(fp)(ry — 1) @[]

Proof. Keeping our assumptions on the form f in mind, it can be checked that the hypotheses
made in [I2), §1.4.5] and used in the proof of [I12] Théoreme 1] are verified. We just remark that,
in our context, [12, Hypothese 1.4.28] is the analogue for Shimura curves of the main result of
[30], whose generalization to Shimura curves when N* = 1 and N~ = pq (with p,q distinct
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primes) is provided by [43, Theorem 2]. Assuming that the representation associated with f is
ramified at all primes dividing N, we expect that this result holds in our more general situation
as well (details will be given elsewhere). Since all assumptions are verified, the statements of the
proposition follow from [12] Théoreme 1]. O

Now recall the R-module T defined in §5.51 The following consequence of Proposition will
be crucial for our arguments.

Corollary 6.5. There are isomorphisms of Go[T%Y, ]-modules T ~ Tgy, and TT ~ Tgh.

oo,my

Proof. First of all, by §5.5] and part (1) in Proposition [6.4] both T and Tgy are free R-modules
of rank two. Moreover, Proposition £.4] and Assumption guarantee that the residual Gg-
representations T/mgT and Tgy/mgrTgy, are absolutely irreducible. Finally, by §5.5] and part
(2) in Proposition [6.4] the arithmetic Frobenius at a prime ¢ f Np acts on T and Tgy, with the
same characteristic polynomial. Putting all these statements together, the isomorphisms of Gg-
modules T ~ Tg, and TT ~ T;h follow from, e.g., [29, §5, Corollary|. The Hecke equivariance is
immediate from the definitions. O

Corollary [B.5limplies that for every arithmetic prime p of R there are isomorphisms of Go[T%4,, ]-

oo,my
modules T}, ~ Tgyp, Tg ~ Tgh » Vo =~ Vanp, VpJr ~ VSTh ps SO in the following we will unify these
notations and write T in place of Tgy, and analogously for the other Galois and Hecke-modules.

7. BIG HEEGNER POINTS AND CLASSES

In this section we introduce big Heegner points and big Heegner classes, and prove their main
compatibility properties. Note that the first three subsections apply both to the definite and to
the indefinite case. These results generalize the construction of Galois cohomology classes out of
Heegner points on classical modular curves achieved by Howard in [25]. The reader is also referred
to the work of Fouquet ([12], [13]) for an extension of some of Howard’s results to the broader
setting of Shimura curves attached to indefinite quaternion algebras over totally real fields.

For every integer d > 0 we introduce the notation

Gy = Gal(K™ /Hy)
where, with a slight abuse, we set Hy := K, so that Go = Gal(K ab /() is the abelianization G&>
of the absolute Galois group G = Gal(Q/K) of K.
Recall the subsets X\~ defined in 42,11 (definite case) and §2.2 (indefinite case), where K is
an imaginary quadratic field admitting injections K < B. In both cases, let us denote by
Dy, = Div()zg{))

the submodule of Div()zm) supported on points in )Z',(nK), endowed with natural Hecke and G}L?—
actions. Define
Do .= D, ®@r, T
v ()

For m > 2, the maps a,, : X ' — )N(,g{_)l induce, by covariant functoriality, maps a,, : D,, —
D,,_1 that respect the ordinary parts, so we can define

D= lim Dy,

This group is naturally endowed with actions of T and GE}P. In the indefinite case, when we
want to emphasize the field of rationality H ¢ K?P of a divisor or a limit of divisors we write
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D(H), for x = m or co. (In the definite case, all the points in D,, are rational over K, so there
is no need to specify fields of rationality.) Observe that R is naturally a T2%-module through

the composition TZd — ngf‘m ; = R. Define

D,, := D Q@ora R, D! :=D,, 9r R!
the structure of T29-module on D% is via the projection T4 — T°'4) and
(o] m (o @] m
D:=D3'®aR, Dl :i=DarR

All these groups are endowed with Hecke and G‘}{b—actions. Of course, in the indefinite case they
are more generally endowed with Gg-actions.

7.1. Galois relations. Fix an integer m > 1 and let o € Gal(Q/Hym). The inclusion Q(v/p*) C
Hpm implies that o is the identity on Q(y/p¥), so it follows that there exists £, € p,,_; such that
€2 = €ame(0). Hence

(40) Eretlim(o) = £0(0),

with 9 as in §4. By definition, ©(c) = £5772 [eiv/ifd(a)]. From (28)) it follows that
(41) O(0)erri-2 = & [eia(o)] ey = ensya [y (0)]

in A. Equations (29)), (0) and (41l imply that

(42) O(0)P = [£d(0)|P = (J(0)) P

for all P € D,,, where () is the diamond operator at ¢ as in §4.4

Recall the point JScm € )A(:T(nK) defined in §4.2] and write P, for its image in D,,. For all
o € Gal(Q/Hepm), equations ([22)) and (@2) give the equality P7,, = O(0)P.m in Dy, from
which it follows that

Pc,m € HO (gcpma D:[n) .

7.2. Hecke relations. For any integers s,t > 1 write corg,, g, for the corestriction map from
Hg to H,. Explicitly, for all n € Gal(H,/Hs) choose an extension 7j € Gal(K?P/H,) of n; if
Q € H°(Gy, D) then

(43) cory,, /m,(Q) = Z e Q.

neGal(Hst/Hs)
As usual, the maps a, : )Z'm — )A(:m_l induce maps
Gm = @ : H*(Gepm, D) —+ HO (G, DI )
by covariant functoriality.
Proposition 7.1. The equality
Qm (corHcpm JH 1 (Pcm)) =Up(Pem—1)

holds in HY (gcpmfl,Dj:n_l) for all m > 1.
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Proof. Since Heym and Hgpm-1(f,e0) are linearly disjoint over H,,m-1, we can fix a finite set
Sm C Gal(K®/H.m-1) of extensions of the elements in Gal(Heym /H,m-1) such that every
o € Sp, acts trivially on pt,.. Applying ek+j_ge°rd to the equation of Proposition .7] yields the
analogous relation

dn( D Pl) = Up(Pemn).

O’GSm
Now we calculate the corestriction cor Hopm /Hypm—1 by choosing the elements 7 of (43)) in S,,, and
this yields

Om, (corch/Hcpmil(Pc,m)) = am( Z Pgm)

O'GSm
The result follows. O

For all m > 1 define
Pem = cOtg 1 1.(Pen) € H' (G, D, ).

Corollary 7.2 (Hecke relations). The equality
am(Pc,m) - Up(Pc,m—l)-
holds in H° (gc, Din_l) for all m > 1.

Proof. Straightforward from Proposition [Z.1 on applying cor H, 1 /He- O

7.3. Big Heegner points. Thanks to Corollary and the isomorphism
lim H°(Ge, Df,) ~ H°(G., DY),

the following definition makes sense.

Definition 7.3. The big Heegner point of conductor c is the element
Pe :=lim U, ™ (Pem) € H (G, D).
m

7.4. Big Heegner classes in the indefinite case. Suppose we are in the indefinite case. Let

HC(Np ) be the maximal extension of H. unramified outside Np and set

GNP = Gal(HNP) /H,.).

If, with the above notations and conventions, we set J = Jod @r _ RT, then we may define the
twisted Kummer map

Om HO (Hm Jjn (Hcpm(upm))) — Hl (GﬁNp)7 T:[n)
as in [25 p. 101]. Write
Pen € HO(He, IV, (Hepm (pym)))

for the image of P, € H° (gc,Din) under the natural map and set e = 0m(Pem). Be-
cause of the Up-equivariance of the Kummer map, the Hecke relations of Corollary imply the
corresponding relations

(44) am (Kem) = Up(Kem—1)-
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Thanks to (44]) and the isomorphism of TE modules
(45) lim #'(GP), T,) ~ HY (G, TT),

we can give the following

Definition 7.4. The big Heegner class of conductor c is the element

ke i=lm U, ™ (kem) € H' (GNP, TT).

Put Hepoo (ppeo) := U1 Hepm (p,m) and, as above, define
ITi= I @poa R

By isomorphism (45]), taking the inverse limit with respect to the maps J,, yields a twisted
Kummer map
0o+ HY(GINP), I (Hepoo (pyee))) —> HY(GOVP), TH).
Write
750 S HO (gm JT (I{cpOO (ll'pw)))
for the image of P, € H° (QC, DT) under the natural map. The next lemma will be used in the
proof of Corollary

Lemma 7.5. 0o(P.) = ke.

Proof. Recall that, by definition, §,,(Pem) = Ke,m and pass to the inverse limit over m. O

Remark 7.6. In the special case where N~ =1 (i.e., when B ~ Ms(Q)) we expect that our system
of big Heegner classes essentially coincides with the system of big Heegner points considered by
Howard in [25]. On the contrary, we have not investigated the existence of an explicit relation
between our indefinite cohomology classes and the specialization to the base field F' = Q of the
ones introduced by Fouquet in [12].

8. EULER SYSTEM RELATIONS

This section is devoted to the proof of the “Euler system” relations satisfied by the classes
Pe.m and P, introduced above. The formulas obtained, which are the counterparts in our defi-
nite/indefinite quaternionic setting of the results in [25] §2.3], will be used in §10.2]to control the
size of certain Selmer groups.

8.1. The operator U,. We begin with an analysis of the action of the Hecke operator U,,.
Proposition 8.1. For all m > 1 the equality

Up(Peyn) = Oty 1 /Hpm (Pepam)
holds in H(Gepm, Dly).

Proof. The proof is similar to that of Proposition [l Applying ey ;2 to the equation of
g —

Proposition [4.8) yields the analogous relation ) g PZ,,, = Up(Pcm) in D},, and calculating

corestriction cor H, i1 /Hepm by choosing the elements 77 of (@3] in S, +1 gives the result. O
Corollary 8.2. The following relations hold for all integers ¢,m > 1:

(1) Up(Peyn) = corp,, /1. (Pepam) in H(Ge, DF);
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(2) UP(PC) = CorHcp/Hc (PCP) Zn HO (g07 DT) 7‘
(3) Up(ke) = cory,, /m. (Kep) in H! (GENP), TT).
Proof. Relation (I)) follows easily from Proposition Bl and the equality
COI'HCP/HC e} COTHCpm+1/Hcp = COI‘HCpm /He 9} CorHcpm+1/Hcpm

Relation (2) follows from (I]) by passing to the inverse limit over m. Finally, relation (3)) is a
consequence of Lemma and the equivariance of the twisted Kummer map with respect to the
action of U,. d

8.2. The operators T;. Let ¢ > 1 be an integer prime to N. Fix an integer m > 0 and a prime
number ¢ { Np™c which is inert in K. As done before when proving explicit formulas for the
operators Ty, in this subsection we assume for simplicity that (’)Cxpm = {%1}.

Proposition 8.3. The equality
Té(Pcym) = COI‘Hdpm /Hcpm (Pd,m)
holds in H° (gc, Din) .

Proof. Similar to that of Proposition Bl Choose a set S C Gal(C/Hcm) of extensions of
Gal(Hcgpm /Hepm) such that every o € S acts trivially on p,,.. Proposition gives

(46) > Pl =Ti(Pem)
ogesS

in DI, Applying €k+j_260rd and calculating corg,, .. /i, . by choosing the elements 7 of @3)) in

S yields the desired result. O

Corollary 8.4. There are equalities
(1) Te(Pesn) = corpr,,/m,(Petm) in H(Ge, D) ;
(2) To(Pe) = corgy,/p.(Pee) in HO (QC, DT);
(3) To(ke) = corp,, . (kee) in H (Gng), TT).
Proof. Same proof as for Corollary [82] but this time to obtain relation () one uses the equality

COTH ,/H:. © COYH pm /Hoy = COYH m /He © COTH pm /H ym >

and for relation (3)) one uses the equivariance of the twisted Kummer map with respect to the
action of Tj. O

8.3. The Eichler—Shimura congruence relation. Throughout this subsection we restrict to
the indefinite case. Let ¢ + Npc be a prime which is inert in K. By class field theory, ¢ splits
completely in the extension H./K. Fix a prime A of H. above ¢. Note that \ is totally ramified
in Hep,s0 A-Op,, = XL for a prime ideal A of the ring of integers Om,, of H.y above (. For every
prime number ¢ and every integer k > 1 denote by F x the field with ¢" elements, and for every
number field H and every prime ideal q of the ring of integers of H denote by Froby a Frobenius
element at q and by Fp 4 the residue field of H at q. Then there are canonical isomorphisms

FgQ ~ FKJ ~ FHC,)\ ~ FHcl,S\'

Write )Z'm,g for the canonical (smooth, proper) integral model of )Z'm over Zy. By the valuative

criterion of properness, any point x € X,, extends uniquely to a point in X, ¢, which will be
denoted in the same fashion. As in §82, we assume that O;m = {£1}.
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Lemma 8.5. Let £1 Npc be a prime number which is inert in K. Then in )Zm,g we have:
P.s.m = Froby (Pc,m) (mod 5\)
Proof. Choose S,, as in the proof of Proposition 83l For any o € S, there is a congruence
Pl m =Peum mod A
because A is totally ramified in H.. Therefore, by (46, it follows that
Ty(Pem) = (£ +1)Por, mod A

The Eichler—Shimura congruence relation (see, e.g., [0, §10.3]) shows that 7, = Frob, + Frobj
(mod /), hence at least one of the points in the divisor T (Pc,m) is congruent to Froby (Pcm)

modulo \. Thus the same holds for all the points in the divisor Ty (Pc,m), and in particular for
Pcﬁ,m- O

Remark 8.6. See [18| Proposition 3.7] for the same argument applied in the context of Heegner
points on (classical) modular curves.

Proposition 8.7. Let {1 Npc be a prime number which is inert in K. Then k. and Froby (k)
have the same image in H' (Hd X,TT).

Proof. Proceed as in the proof of [25] Proposition 2.3.2], using Lemma O

9. ARITHMETIC APPLICATIONS AND CONJECTURES: THE DEFINITE CASE

From here to the end of the paper, fix a modular form f of weight k as in (27) and let
Joo h(o)éd — R

be the primitive morphism associated with f. If p is an arithmetic prime of R then f, is the
modular form introduced in (B3Il). Recall that R is a complete local noetherian domain which is
finitely generated as a A-module (Proposition [5.2]) and that if p is an arithmetic prime of R and
P :=pNA then Ap C R, is an unramified extension of discrete valuation rings (see [21, Corollary
1.4] or [34], §12.7.5]).

The purpose of the following sections is to apply our constructions of big Heegner points and
classes to various arithmetic situations. While so far we have strived to adopt a uniform approach
to the definite and indefinite cases, at this point it is inevitable to distinguish between these two
settings. In fact, the philosophy behind the so-called “parity conjectures” suggests that the
definite case deals with even rank (most typically, rank zero) situations while the indefinite case
takes care of odd rank (most notably, rank one) contexts.

Throughout this section we assume that we are in the definite case, i.e. that the quaternion
algebra B is definite.

9.1. Algebraic results. Let m > 0 be an integer. Since )Z'm is a disjoint union of fl(m) curves

of genus 0, we can fix an isomorphism of Op-modules between Hj (Xm((C), (’)F) and .J,, where

H, denotes singular homology. The above isomorphism endows H ()Zm((C), O F) with a canonical
Hecke action. Passing to the ordinary parts, one thus obtains an isomorphism of Hecke modules

(47) HS(X0(C), OF) := €24 Hy (X (C), Op) ~ Jo.



QUATERNION ALGEBRAS, HEEGNER POINTS AND THE ARITHMETIC OF HIDA FAMILIES 35

The cohomology module H° ()Z'm((C), F/Op) with coefficients in F/Op is also equipped with a
canonical Hecke action, and its ordinary part is defined in the usual way. For any Op-module M
let

M* := Homp, (M, F/OF)
denote its Pontryagin dual, with induced Hecke action whenever M is a module over the Hecke
algebra. Then (see, e.g., [23], §1.9]) there is a canonical isomorphism of Hecke modules

H°(X,,(C), F/OF)" =~ Hy(Xn(C),OF)
which induces an isomorphism of Op-modules

(48) H (X0 (C), F/OF)" ~ HE"(X,,(C), OF).

[®)

Following [22] Definition 8.5], set
Vi=lim H 4 (Xn(C), F/Or), V=V~

Then (A7) and (@8] yield isomorphisms of Op-modules

V = Homo, (13 0 (Xm(C), F/OF), F/OF>
(49) =~ lim Hoya (X (€). F/Op)’
NL ord( OF) @J%rd — Jgéd'

m

Recall that I' := 1 + pZ,, and define I',,, := 1 + p""Z,; in particular,
A= OF[[F]] = l'LInOF[P/Pm].

The group I' acts on BX via multiplication on the p-component, and this induces an Op-linear
action of T'/T,, on Jy,. Thus J& is endowed with an action of A which is, of course, the one
induced by its ngd—module structure. Furthermore, isomorphisms (49]) are A-equivariant, the
structure of A-module of V' being defined as in [22], §9]. By [22 Corollary 10.4], the A-modules
V and J3 are free of finite rank. It follows immediately that J&¢ is a finitely generated T%d-
module, hence

J = J2¢ @poa R
is a finitely generated R-module. If p (respectively, P) is an arithmetic prime of R (respectively,
A) and M is an R-module (respectively, a A-module) then we set M, := M @z R, (respectively,
Mp := M ®, Ap), where R, (respectively, Ap) is the localization of R at p (respectively, of A at
P). To lighten the notation, put also

T := T
Proposition 9.1. Let p be an arithmetic prime of R. The Ry-module Jy, is free of rank one.

Proof. By [22, Theorem 12.1], there are isomorphisms of T p-modules Vp ~ Tp for all arithmetic
primes P of A. Since there are isomorphisms of Rp-modules Jp ~ Vp @1 R and Rp ~ Tp 1R,
we conclude that

(50) JP:RP
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as R p-modules. Fix an arithmetic prime p of R and let P := p N A be the arithmetic prime of A
which lies below p. There is a canonical map of rings Rp — R, defined by the composition

Rp: =R Ap —)R@ARP — R@RRP ZRP.

There are isomorphisms of Ry-modules

(51) JpOr, Ry =2V @Ry~ (V@ R) R Rp =J Qr Ry = Jp.
Furthermore, thanks to (B0), Jp ®%, Ry ~ R, as Rp-modules. Comparing this with (&]) yields
the result. O

From here until the end of the section we make the following assumption, which is coherent
with the result proved in Proposition

Assumption 9.2. Let mz be the maximal ideal of the local ring R and let Fr := R/mg be its
residue field. The Fg-vector space J/mzJ has dimension one.

With this condition in force, we can prove
Proposition 9.3. The R-module J is free of rank one.

Proof. Since J is finitely generated over R and Assumption holds, Nakayama’s lemma ensures
that there is a surjective homomorphism R — J of R-modules. If this map is not an isomorphism,
there is a non-zero ideal I C R such that R/I ~ J as R-modules. By [28, Theorem 6.5], the
localization (R/I), is non-zero only for a finite number of arithmetic primes p of R. Hence J, = 0
for almost all arithmetic primes p, contradicting Proposition (of course, the local vanishing at
just one such prime p would suffice). Thus I is the zero ideal, and the proposition is proved. [

In light of Proposition 0.3 fix an isomorphism
(52) J =R

of R-modules. If H/K is a finite abelian extension then composing the canonical map H°(Gal(K**/H),DT) —
D with the surjection D — J and isomorphism (52]) produces a map

(53) ng : H°(Gal(K**/H), D) — R.

To simplify notations, for every integer d > 0 set 74 := ng,, with the convention (introduced at
the beginning of Section [7]) that Hy = K. These maps will be used in the next subsection to
state our results on Selmer groups. In particular, §9.2] and §9.3] are motivated by [2, Theorems
A and B] and [I], Corollary 4], respectively, where classical Heegner (or, better, Gross) points on
definite Shimura curves are used to control certain Selmer groups.

9.2. Root numbers and bounds on Selmer groups. To begin with, for later reference we
point out the following algebraic result.

Proposition 9.4. If x € R is non-zero then there are only finitely many prime ideals p of R
such that x € p, i.e., such that m,(x) = 0.

Proof. Since it is an integral extension of A, the local domain R has Krull dimension 2. It follows
that the height of a prime ideal p # 0 of R is either 1 or 2, the latter possibility occurring if
and only if p is the maximal ideal of R. To prove the proposition it thus suffices to show that
an intersection I := Npesp of infinitely many height one prime ideals of R (indexed by a set S)
is necessarily trivial. If this were not the case then every p € S, having height one, would be
minimal among the prime ideals of R containing /. But the set of prime ideals of R containing
I has only finitely many minimal elements by [28], Exercise 4.12], and we are done. O
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Recall the class P, € H (gc, DT) introduced in Definition [(.3l For every integer d > 0 define
G4 = Gal(Hy/K)
with the convention that Hy = K as before. Set
Jo:=» mP)ER, o= n(PH®o ' eR[G] ife>1.

Ueél O'Eéc

Fix a character x : éc — O* where O is a finite extension of Op and ¢ > 1 is an integer. After
enlarging F' if necessary, without loss of generality we can assume that O = Op. Extend x to an
R-linear homomorphism ¥ : R[GC] — R, then define

(54) L(fo/K.X) =X(T) €R,  L(foo/ K, x,0) =7 (L(foo/ K, X)) € F

where p is an arithmetic prime of R. In particular, if y = 1 is the trivial character of Gy then
L(foo/K,1) = To. 3

Since the critical character © introduced in §5.4 is trivial on Gal(Q/Q(p <)), there is an
induced map © : Gal(Q(ptp)/Q) — R*. As in [26] Section 2], for every arithmetic prime p of
R denote by 6, the composition

€ ©
Op : Z, AN Gal(Q(py)/Q) — R — F,
then set
(55) fl=fro0t
The form fg has trivial nebentype, and the twisted representation VpT is the representation at-
tached to fJ by Deligne.

We make two conjectures, the first of which concerns the non-vanishing of £(f /K, x). To
formulate them, let p be an arithmetic prime of R and write wy for the root number (i.e., the
sign in the functional equation) of the L-function of the modular form fg . Except for finitely
many primes p (which were explicitly determined by Mazur, Tate and Teitelbaum in [31] and

correspond to the exceptional primes of §5.6]), the number wy is constant as p varies (see, e.g.,
[35, §3.4.4] for details); we denote this common root number by w.

Conjecture 9.5. If w =1 then L(fx/K,x) # 0. In particular, if w = 1 then Jy # 0.

In light of Proposition and Conjecture 0.5 we expect that if w = 1 then L£(foo/K, X, )
does not vanish for all but finitely many p. As anticipated in the introduction, Conjecture
can be justified as follows. Suppose for simplicity that ¢ = 1 and x = 1 is the trivial character.
The element Jy € R is the analogue in our Hida setting of the divisor ¢y introduced by Gross
in [I7, §11], hence it is natural to expect that it encodes, via the “specialization” maps m,, the
(non-)vanishing of the special values of the classical L-functions of the modular forms fg in the
family. When w = 1 the functional equations of the L-functions suggest that these special values
are non-zero for almost all arithmetic primes p, so in this analytic situation it is natural to predict
(cf. Proposition @.4]) the non-triviality of Jy. We refer the reader to §9.4 for conjectures a la
Greenberg on the vanishing of the special values of twisted L-functions over K of the forms in
the Hida branch of f. N

The next conjectural statement is about the size of Nekovai’s Selmer groups H} (K , VJ) and
their y-twists. If € is the quadratic character of the extension K/Q then the generic root number
of the twisted forms pr ® € is —€(N)w, hence is w in the definite case and —w in the indefinite
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case (see, e.g., [19, Ch. IV]). In particular, if we are in the definite case (which is the situation
considered in this section) and w = —1 then we expect that
dimp, ﬁ} (Q, V;r) = dimg, ]?I}(Q, V;[ ® e) =1
with only finitely many exceptions. In light of the factorization
(56) H (K, V) = H} QW) @ HHQ V' @),
it follows that the equality
dimp, H} (K, V) = dimp, H}(Q,Vy) + dimp, H}(Q,V{ @ ¢€) =2

should hold for all but finitely many arithmetic primes p. For analogous reasons, when w = 1 it
is expected instead that

1

H(K, V) =0
for almost all arithmetic primes p. 3

As a piece of notation, if M is a Z[GC] -module then set

MX = M ®Z[éc} OF

where the tensor product is taken with respect to x : Z[éc] — Op.
In accordance with the above discussion, we can thus state the following

Conjecture 9.6. Let d > 0 be an integer and fiz a character x : Gq — Or.
(1) If w =1 then
dimp, H} (Hg, V;)* =0

for all but finitely many arithmetic primes p of R. In particular, if w = 1 then H} (Hd, VpT)X =
0 for almost all arithmetic primes p such that L(fs/K, x,p) # 0.
(2) If w = —1 then
dimp, H} (K, Vy) =2
Jor all but finitely many arithmetic primes p of R.
(3) If w=1 then rankRH}(Hd,TT) =0.

Remark 9.7. 1. We expect that when w =1 and d = 0 part (1) of Conjecture for p of weight
2 can be proved by extending the techniques and the results of [3]. Similarly, if w = 1 then the
general weight 2 case may be dealt with by extending the techniques of [27].

2. Let w = —1. For most (non-trivial) characters y of Gy there is no factorization of
ﬁ} (Hd, V;JT)X analogous to (56); in this situation, the behaviour of PNI} (Hd, VJ)X is not, at present,
sufficiently clear to us to formulate a conjecture on its F,-dimension (however, the referee has
pointed out that it is reasonable to expect that these Selmer groups should have generic dimension
0 as p varies, and that Conjecture is probably true for most x even if w = —1).

In the case of root number w = 1 and d = 0 we can prove that if Jy # 0 then part (1) of
Conjecture implies part (3) of the same conjecture.

Theorem 9.8. Suppose that w = 1 and assume part (1) of Conjecture [9.6. If Jy # O then the
R-module H} (K, TT) 1s torsion.
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Proof. Since Jy is non-zero, Proposition implies that m,(Jy) # 0 for all but finitely many

arithmetic primes p of R. Thus, by part (1) of Conjecture [0.6] we get that ﬁ} (K ) V;JT) = 0 for
almost all arithmetic primes p.
If p is an arithmetic prime of R then there is a short exact sequence

1 1 71 f 772
0— H(K, TT)p/pr(K, TT)p — H{(K,V,") — H}(K, TT)p[p] —0
(see the proof of [25] Corollary 3.4.3]), which shows that
7l rrl _

(57) Hj(K,T) /pH}(K,T"), =0

for all but finitely many arithmetic primes p of R. As pointed out at the beginning of the proof
of loc. cit., the R-module H} (K, TT) is finitely generated, hence if some x € H} (K, TT) were
non-torsion then, by [25, Lemma 2.1.7], we would have that = ¢ pﬁ} (K ) TT) . for all but finitely
many arithmetic primes p. This contradicts (57]), whence PNI} (K , TT) is R-torsion. O
Remark 9.9. Taking the first part of Conjecture [0.06] for granted when w = 1 and d > 1, one could

presumably derive the second part by using arguments which are similar to those employed in
the proof of Theorem for d = 0.

9.3. Iwasawa theory. The goal of this subsection is to formulate a “main conjecture” of Iwasawa
theory for Hida families (Conjecture @.12]) in our definite setting.

Set Hpoo := Uy>1Hpm, denote by Ko, C Hpe the anticyclotomic Z,-extension of K and for
every integer n > 0 let K, be the n-th layer of K, i.e. the (unique) subfield of K, such that

G, = Gal(K,/K)~7Z/p"Z.
For every integer n > 1 set
d(n) :=min{m € N | K,, C Hym }.

For example, if p does not divide the class number of K then d(n) = n+1 for all n > 1. Let
G = Gal(K/K) (so that Goo > Z,, the isomorphism depending on the choice of a topological
generator of G,) and define the completed group algebra

where the inverse limit is computed with respect to the canonical maps. Throughout this sub-
section we make the following

Assumption 9.10. The local ring R is regular.

In our Iwasawa-theoretic context, this simplifying hypothesis is a natural condition to require
(see, e.g., [25] §3.3] and [I1, Ch. X]) and gives us some control on the behaviour of R and R
under localizations. For any finitely generated Ro.-module M let

MY = Homgz, (M, Q,/Z,)

be its Pontryagin dual, M, its torsion submodule and Charg_ (M) its characteristic ideal.
Recall that, by definition, Charg__ (M) is the ideal of Ro, given by

Hht(m)ZI mlength(ng) it M = Mtors
Charg_ (M) =
{0} otherwise
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where the product is made over all height one prime ideals of R,,. Note that, thanks to the
assumption that R is regular, the localization R is a discrete valuation ring for every prime
ideal P of height one in R.

Finally, define the R,,-module

Hj 1y (Koo, T') := lim H} (K, T'),
n

where the inverse limit is taken with respect to the corestriction maps, and the R,,-module

];NI},IW (Koo, AT) = %nﬁ} (Kn, AT),

where the direct limit is taken with respect to the restriction maps.
As before, for all integers n > 1 take the element Pp» € H 0 (g,,n, DT) and set

Qn 1= €Oy, /K, (Pyaen) € H°(Gal(K*/K,,), DT).

In other words, consider the classes P,z with ¢ varying in the set of powers of the prime p
and take their traces on the anticyclotomic Zp-extension K., of K. For every integer n > 1 we
introduce the theta-element

On = 0," > 1, () @' € RIG].
ocGn
Here 1k, is the map of (B3]) with H = K,, and «;, € R* is the image of the Hecke operator U,
under the morphism f., : h2¢ — R. Thanks to the compatibility relations enjoyed by big Heegner
points (see §8.1]), for all integers m > n > 1 one has vy, ,(0,,) = 0y, where vy, , : R[Gr] — R[G)]
is the map induced by the natural surjection G,, = Gy, so one can define

Ooo := anQn € Roo-

Note that the element 6., is not entirely canonical, since it is independent of the choice of the
compatible system of big Heegner points {Ppn}n>1 only up to multiplication by an element of
Goo. To get rid of this ambiguity, we proceed as follows. Denote by z ~ z* the canonical
involution of R4, acting as o — o1 on group-like elements. We associate a two-variable p-adic
L-function with the primitive morphism f,, and the imaginary quadratic field K.

Definition 9.11. The two-variable p-adic L-function attached to fo, and K is the element
Ly(foo/K) =0 0% € Reo.

Always assuming that R is regular, now we formulate our “main conjecture” relating £,(foo /K)
to the characteristic ideal of the Pontryagin dual of H} Tw (Koo, AT).

Conjecture 9.12. The group ﬁ}’lw (Koo, AT) 1s a finitely generated torsion module over R and
there is an equality

(£p(foo/ ) = Charg,, (Hjp, (Kw, AD))
of ideals of Reo.
The reader should compare Conjecture [0.12] with the Main Conjecture of Iwasawa theory for
elliptic curves in the ordinary and anticyclotomic setting that was partially proved by Bertolini

and Darmon in [3] and with the main conjectures over the weight space formulated by Delbourgo
in [I1}, §10.5].
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9.4. Vanishing of special values in Hida families. The aim of this subsection is to formulate
two conjectures on the vanishing at the critical points of the L-functions over K of (twists of) the
modular forms in the Hida family of f living on the same branch as f. As in the previous section,
we work in the definite case. In fact, our conjectures will involve the elements L(fs /K, x,p) € Fj
and the p-adic L-function £,(fs/K) € R introduced in §9.21and §9.3] respectively. We remark
that results on the vanishing of special values were obtained by Howard in [26], where it is shown
that if there exists a weight 2 form in a Hida family whose L-function vanishes to exact order one
at s = 1 then all but finitely many weight 2 forms in the family enjoy this same property (see [20,
Theorem 8]; see also [26], Theorem 7] for the analogous result for order of vanishing zero, which
is a consequence of work of Kato, Kitagawa and Mazur).

To begin with, recall the fixed isomorphism C ~ C,, which induces an embedding Qp — Cofan
algebraic closure of @@, into the complex field, and choose embeddings F, — @p for all arithmetic
primes p of R, so that we can view the g-expansion coefficients of the forms fg (introduced in
(B5)) as (algebraic) complex numbers. Next, fix a character x : G. — O* < C*, where ¢ > 1
is an integer and O is a finite extension of O, and for every arithmetic prime p let Ly ( fg X 8)
be the L-function of pr over K twisted by x (see, e.g., [19, p. 268] for the definition). Finally,
recall the element L£(fs/K, x,p) € F, defined in (54)) and, as in §9.2] denote by w the common
root number of the L-functions of (almost all) the modular forms fg . As explained in [I9, Ch.
IV], one can check that w is also the root number of the twisted L-functions Ly ( pr 2 X s) for all
but finitely many arithmetic primes p.

Motivated by [10, Theorem 1.11] and [47, Theorem 1.3.2] (which extend [I7, Proposition 11.2]
and [2, Theorem 1.1]), we propose the following

Conjecture 9.13. Let p be a non-exceptional arithmetic prime of R of weight ky > 2 and let

x be as above. Assume that w = 1. The special value Ly (fg,x, k‘p/2) is mon-zero if and only if
L(fso/K, x,p) is non-zero.

In other words, we conjecture that Lx ( fg X s) vanishes at the critical point s = k, /2 precisely
when the element £(fw/K,x) € R introduced in (54) lies in p. In particular, the L-function

Ly ( fg X s) is expected not to vanish at s = ky/2 for all but finitely many p. The Bloch-Kato
conjectures ([]) predict that the L-function of the form f, is related to the Selmer group of the
associated representation Vj, and the L-function of fg should be related to the Selmer group of
V;r; in this sense, Conjecture is consistent with Conjecture The reader is suggested to
compare the above statement with the conjectures on the generic analytic rank of the forms f,
made by Greenberg in [I5], of which Conjecture can be viewed as a refinement.

Now we want to formulate an analogous conjecture for twists by characters of the Galois group
Goo ~ Zy,. Thus let x : Goo — O be a finite (i.e., p-power) order character of G, where O is a
finite extension of Op. If p is an arithmetic prime of R then the canonical map R — F, gives a
map Reo — Fp[Goo]; composing this with the map F,[Goo] — Q, induced by x yields a map

Xp i Roo — @p.
The analogue of Conjecture @.13]in this Iwasawa-theoretic context is the following

Conjecture 9.14. Let p be a non-exceptional arithmetic prime of R of weight ky > 2 and let

x be as above. Assume that w = 1. The special value Ly (fg,x, k:p/2) is non-zero if and only if
Xp (ﬁp(foo/K)) is mon-zero.
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10. ARITHMETIC APPLICATIONS AND CONJECTURES: THE INDEFINITE CASE

In this section we assume that we are in the indefinite case, i.e. that the quaternion algebra
B is indefinite.

Results in the vein of some of those which follow were also obtained by Fouquet in [12] and [13]
over totally real fields. However, our perspective is different, and (as apparent in the previous
sections) the Jacquet—Langlands correspondence plays a much more prominent role in our paper
than in the work of Fouquet.

Throughout this section we suppose that Assumptions and hold.

10.1. Galois representations. Let /| N~ be a prime number. Since ¢ is inert in K, the comple-
tion Ky of K at the prime (¢) is the (unique, up to isomorphism) unramified quadratic extension
of Q;. By [34, Proposition 4.2.3], the group H'(K,, T) is a finitely generated R-module, hence
(since R is noetherian) the R-torsion submodule H* (K ‘5 TT) tors OF H ! (K ’5 TT) is a finitely gen-

erated R-module too. Define ag to be the annihilator in R of the finitely generated torsion
R-module HZ\N* H! (Kg, TT) .+ Recall the big Heegner class r. € H! (Gng), TT) introduced in

to

Definition [74] and denote by the same symbol its image in H! (Hc, TT) under inflation. The next
result is a variant of [25, Proposition 2.4.5], to the proof of which we refer for the details we omit.

Proposition 10.1. If A € ag and c is prime to N then A - k. € Sela, (Hc, TT).
Proof. For any place v of H. and any Gal(Q/H,)-module M let us denote by
ves, : H'(H., M) — H'(H,,, M)

the restriction map. Fix an integer ¢ > 1 prime to N. If v t Np then k. satisfies the Greenberg
local condition at v because of its unramifiedness at v.

Now let us assume that v|Np and choose a place w of Q above v. Let p be an arithmetic
prime of R of weight 2 and recall the integer m := m, defined in (B0). Then the natural map

Ta%d — V, factors through Ta;rd (Jac()zm)). Let kcp denote the image of k. in H 1 (Hc, V;JT).
After restriction to Hepm (p,m), we see that V, =~ V;r. Furthermore, the restriction of ., to
H'(Hepm (pym), V) is contained in the image of the classical (untwisted) Kummer map

Jac(Xp) (Hepm (pym)) — H* (Hepm, Tay(Jac(Xon))) — H' (Hepm (ptm ), Vi ).

Therefore, by [5, Example 3.11], the restriction of k., to H 1 (Hc m(,upm), Vp) lies in the Bloch—
Kato Selmer group H} (Hcpm (,upm), Vp) of V;,. Thus, by Proposition B the isomorphic image in
H'(Hpm (ptym), V) of the restriction of ke to H (Hepm (p,m ), V) belongs to Selar (Hepm (pym ), V;JT).
Following the arguments in the proof of |25 Proposition 2.4.5], we thus conclude that

Kep € Selgr (Hc, VpT)
for all arithmetic primes p of R of weight 2.
Once again by [25, Proposition 2.4.5], if v|pN* then res,(r.) belongs to HE, (HC,U, TT), while
if v)|N~ one can only show that res,(k.) is an R-torsion element in H 1 (Hcﬂ), TT). In the latter

case, let £ be the rational prime below v. As ¢ is inert in K, the prime (¢) of K splits completely
in He, so H.,, = K¢ and H'(H,,, TT) = H' (K, T). Since A € ag, the result follows. a

Remark 10.2. As clear in the proof of Proposition 0.1, the obstacle towards proving that x.
belongs to Selgy (Hc, TT) is the lack of control on the restriction of k. at places dividing N ™.
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With notation as above, fix once and for all a non-zero A € ag. Thanks to [25] (21)], for every
integer ¢ > 1 prime to N the class A - k. defines a class

(58) Xe =\ ke € Sel, (He, TV) ~ Hy(H,, T7).

These cohomology classes are the arithmetic objects in terms of which we will formulate our
results and conjectures in this indefinite setting.

10.2. Bounding Selmer groups. Define the two cohomology classes

Ko := corg, /(K1) € Hl(K, TT), 30 = corg, /i (X1) = A+ ko € ﬁ}(K, TT).
The following conjecture is the counterpart of [25] Conjecture 3.4.1].
Conjecture 10.3. The class 3g is not R-torsion.

Note that Conjecture [[0.3] is equivalent to the assertion that kg is not R-torsion. The Euler
system relations satisfied by the classes k. (proved in Section [) yield a proof of the following

Theorem 10.4. Let p be a non-exceptional arithmetic prime OJNCR with trivial character and even
weight. If 39 has non-trivial image in H} (K, VJ) then dimp, H} (K, V;;r) =1.

Proof. Our Euler system of big Heegner classes specializes to an Euler system for VpT which enjoys
the same properties as the system of cohomology classes considered, in a different arithmetic
context, by Nekovar in [33]. Then, as in the proof of [25, Theorem 3.4.2], the results in [33]
§86—13] yield the theorem. d

Remark 10.5. The definition of the class 3¢ depends on the choice of A € ar, which is not made
explicit in the notation. It might be possible that for different A; and Ag in ag the class A - kg is
trivial in ﬁ} (K , VpT) while the class As - k¢ is not. However, since ag is contained in only finitely
many arithmetic primes p, this occurrence can happen only for a finite number of p. Furthermore,
if Conjecture [[0.3] is true then for any choice of A € ar the class A - k9 has non-trivial image
in I;T} (K ) VpT) for all but finitely many primes p, by [25, Lemma 2.1.7]. Thus, under Conjecture
[I0.3] the different choices of A € ar are essentially equivalent.

The next result is a consequence of Theorem [10.4]

Theorem 10.6. Assume Conjecture [I0.3. The R-module ﬁ} (K, TT) has rank one.

Proof. Mimic the arguments in the proof of [25, Corollary 3.4.3], replacing [25, Theorem 3.4.2]
with Theorem [I0.4] O

10.3. Iwasawa theory. We formulate an Iwasawa-theoretic “main conjecture” (Conjecture [I0.8])
which is the counterpart of Conjecture in the indefinite setting. The reader is referred to
[37] for results of Ochiai on the cyclotomic Iwasawa main conjecture for Hida families.

Resume the notation of §9.3t in particular, for every integer n > 1 the field K, is the n-th layer
of the anticyclotomic Zy-extension K, of K and d(n) is the smallest natural number such that
Ky, is a subfield of H ). As in Assumption [0.10] we suppose that the local ring R is regular.
For every integer n > 1 define the cohomology class

3n = COTH _i(n) /Kn (Uz}_d(n)%pd(”)) < ﬁll” (Ko, TT)'

Since the classes 3, are compatible with respect to corestriction, we can give the following



44 MATTEO LONGO AND STEFANO VIGNI

Definition 10.7. The two-variable p-adic L-function attached to the family {3”}n>1 is the
element B

300 i= lim 3, € Hj 1, (Koo, TT).

Recall that if M is a finitely generated Ro-module then MV is the Pontryagin dual of M. Now
we propose our two-variable “main conjecture”. Since the class 3., % depends on the element
A € ag appearing in (B8], in order to state our conjecture we need to assume an additional
condition.

Conjecture 10.8. The group ﬁ}JW (KOO,TT)/(BOO) is a finitely generated Roo-module. More-

over, suppose that kym belongs to ﬁ} (Hpm, TT) and set Xpm = kpm for all m > 0. There is an
equality

~ 2 ~
(59) ChaI'Roo (H}”Jw (Kom TT) /(500)) = Cha‘rRoo (H}JW (KOO’ AT)ZOI‘S)
of ideals of Roo.

Conjecture [I0.8 extends both [25] Conjecture 3.3.1] and the classical Heegner point main
conjecture for elliptic curves formulated by Perrin-Riou in [39]. Observe that in the special
case where N~ =1 (or, more generally, for quaternion algebras over totally real number fields
satisfying suitable conditions) Fouquet shows in [I3] Theorem A] that the right-hand side divides
the left-hand side in (59).
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