
ar
X

iv
:0

90
3.

27
97

v2
  [

m
at

h.
N

T
] 

 1
8 

O
ct

 2
01

0

QUATERNION ALGEBRAS, HEEGNER POINTS AND THE ARITHMETIC

OF HIDA FAMILIES

MATTEO LONGO AND STEFANO VIGNI

Abstract. Given a newform f , we extend Howard’s results on the variation of Heegner points
in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner
points and big Heegner classes in terms of compatible families of Heegner points on towers
of Shimura curves. The novelty of our approach, which systematically exploits the theory of
optimal embeddings, consists in treating both the case of definite quaternion algebras and the
case of indefinite quaternion algebras in a uniform way. We prove results on the size of Nekovář’s
extended Selmer groups attached to suitable big Galois representations and we formulate two-
variable Iwasawa main conjectures both in the definite case and in the indefinite case. Moreover,
in the definite case we propose refined conjectures à la Greenberg on the vanishing at the critical
points of (twists of) the L-functions of the modular forms in the Hida family of f living on the
same branch as f .
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1. Introduction

The purpose of this work is to extend Howard’s results on the variation of Heegner points
in Hida families of modular forms ([25]) to a general quaternionic setting. Analogues of the
constructions by Howard of systems of big Heegner points on towers of classical modular curves
have been proposed by Fouquet ([12], [13]) for Shimura curves attached to indefinite quaternion
algebras over totally real number fields; on the contrary, the case where modular curves need to be
replaced by Shimura curves coming from definite quaternion algebras has never been investigated.
However, the philosophy behind the so-called “parity conjectures” suggests that the definite and
indefinite cases are equally significant from an arithmetic point of view, so it would be desirable
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to have both sides of the quaternionic setting well understood and developed. With this goal in
mind, in this article we offer a systematic construction of big Heegner points and classes attached
to Hida families which treats simultaneously both the definite case and the indefinite case over
Q, and we study the arithmetic of the relevant extended Selmer groups as defined by Nekovář.
Now let us describe the subject of the paper more in detail.

Fix an integer N , a prime p ∤ 6N and an ordinary p-stabilized newform

f(q) =

∞∑

n=1

anq
n ∈ Sk

(
Γ0(Np), ω

j
)

where ω is the Teichmüller character and j ≡ k (mod 2). Let F be a finite extension of Qp

containing all the eigenvalues of the Hecke operators acting on f and let OF denote its ring of
integers. Assume also that the residual representation attached to f is absolutely irreducible.

Fix an imaginary quadratic field K of discriminant prime to Np and consider the factorization
N = N+N− induced by K: a prime number ℓ divides N+ (respectively, N−) if and only if ℓ splits
(respectively, is inert) in K. Assume throughout that N− is square-free and say that we are in the
definite (respectively, indefinite) case if the number of primes dividing N− is odd (respectively,
even). For simplicity, in this introduction we suppose that p does not divide the class number of
K.

Hida’s theory ([20], [21]) incorporates the modular form f and the p-adic Galois representation
ρf : GQ := Gal(Q̄/Q) → GL2(F ) attached to f by Deligne into an analytic family of modular
forms and Galois representations. More precisely, Hida defines the universal ordinary Hecke
algebra h∞ by taking the inverse limit over m of the (classical) Hecke algebras hm over OF acting
on weight 2 cusp forms with coefficients in OF of level Γ1(Np

m) and then projecting to the
ordinary part. Out of h∞ one then constructs a local domain R, finite and flat over the Iwasawa
algebra Λ := OF [[1 + pZp]], such that certain prime ideals p of R (called arithmetic) correspond
to modular forms fp of suitable weight kp, level Γ1(Np

mp) and character ψp with coefficients in
the residue field Fp of the localization of R at p; moreover, fp̄ = f for a certain arithmetic prime
p̄ of weight k. Finally, taking inverse limits over m of the p-adic Tate modules of the Jacobian
varieties of the modular curves X1(Np

m) one can introduce a GQ-representation T which is free
of rank two over R and has the property that Vp := T ⊗R Fp is a twist of the representation
V (fp) associated with fp.

1.1. Big Selmer groups. In recent years, the systematic study of certain Selmer groups at-
tached to the GQ-representation T has been pursued, among others, by Nekovář and Plater
([35]), Nekovář ([34]), Ochiai ([37]), Howard ([25]) and Delbourgo ([11]). More precisely, the
GQ-representation T admits a twist T† which has a perfect alternating pairing T†×T† →R(1),
and for every arithmetic prime p of R the representation V †

p := T† ⊗R Fp is a self-dual twist of
V (fp). Then, using Nekovář’s theory of Selmer complexes ([34]), for any number field L one can

define extended Selmer groups H̃1
f

(
L,T†

)
and H̃1

f

(
L, V †

p

)
, whose arithmetic is the main theme of

the present paper.
Now we briefly sketch the work of Howard which was the original inspiration for our article.

In order to study the arithmetic of Nekovář’s Selmer groups, when all primes ℓ|N split in K (i.e.,
when N− = 1) Howard introduced in [25] canonical cohomology classes

Xc ∈ H̃1
f

(
Hc,T

†
)
,

which he calls “big Heegner points”, where c ≥ 1 is an integer prime to N and Hc is the ring class
field of K of conductor c. These classes are constructed by taking an inverse limit of cohomology
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classes arising from Heegner points in the Jacobians of classical modular curves via Kummer
maps, and satisfy suitable Euler system relations in the sense of Kolyvagin: see [25, §§2.2–2.4].
These objects are used to obtain various results on the arithmetic of the above-mentioned Selmer
groups; in particular, a vertical nonvanishing theorem (generalizing results of Cornut and Vatsal
in [9]) is proved in [25, §3.1 and §3.2], while an horizontal nonvanishing conjecture is formulated
in [25, §3.4]. Moreover, in [25, Conjecture 3.3.1] Howard proposes a two-variable Iwasawa main

conjecture for H̃1
f,Iw

(
K∞,T

†
)
which extends the Heegner point main conjecture formulated by

Perrin-Riou in [39]. Here

H̃1
f,Iw

(
K∞,T

†
)
:= lim←− H̃

1
f

(
Kn,T

†
)

is a module over the Iwasawa algebra R∞ := R[[G∞]] attached to the Galois group G∞ of the
anticyclotomic Zp-extension K∞ of K as described in [25, §3.3], and Kn is the n-th layer of K∞,
i.e. the subfield of K∞ such that Gal(Kn/K) ≃ Z/pnZ.

In this paper we are interested in results and conjectures of the type described above in the
more general case where one allows for the existence of primes dividing N which are inert in K.
In other words, the integer N− is not necessarily equal to 1. In the indefinite case (i.e., when
the number of primes dividing N− is even) our constructions and results should be compared
with those obtained by Fouquet in [12] and [13] for Shimura curves over totally real fields; on
the contrary, as far as we know the definite case (corresponding to an odd number of primes
dividing N−) is considered here for the first time. The ability of performing constructions which
apply equally well to both the two cases is the most significant novelty in our approach, and
we hope that this represents a first step towards the development in a Hida context of a theory
of Bertolini–Darmon type ([1], [2], [3], [4]), where the interplay between definite and indefinite
settings (manifesting itself, for example, via Čerednik’s interchange of invariants, congruences
between special values, explicit reciprocity laws) plays a crucial role for studying the arithmetic
of modular forms.

In the rest of the introduction we give a brief description of the paper, referring to the main
body of the text for all details.

1.2. Families of optimal embeddings on Shimura curves. Let B denote the quaternion
algebra over Q of discriminant N− (thus B is split at the archimedean place ∞ of Q in the
indefinite case and is ramified at ∞ in the definite case) and for every integer m ≥ 0 choose
an Eichler order Rm of B of level N+pm such that Rm ⊂ Rm−1 for all m ≥ 1. If the hat

denotes adelizations, one then defines open compact subgroups Um ⊂ R̂×
m by imposing an extra

Γ1(p
m)-level structure on R̂m and considers the Shimura curves X̃m associated with Um (precise

definitions in terms of double cosets are given in §2.1 and §2.2). In the definite case these are
disjoint unions of genus 0 curves defined over Q, while in the indefinite case they are compact
Riemann surfaces admitting canonical models over Q. For any integer c ≥ 1 prime to N and the

discriminant of K we define the Heegner points of conductor c on X̃m as those pairs [(g, f)] in
the subset

X̃(K)
m := Um

∖(
B̂× ×Hom(K,B)

)/
B× ⊂ X̃m(C)

such that f is an optimal embedding of the order Oc of K of conductor c into the Eichler order

B ∩ (g−1R̂mg) of B and the local component fp of f takes optimally the elements of Oc ⊗ Zp

congruent to 1 modulo pmOK ⊗ Zp to the local component of Um at p (see Definition 3.1 for a
more precise statement). In §3.2 we prove that in the indefinite case these Heegner points are
rational over Hc(µpm), where Hc is the ring class field of K of conductor c and µpm is the group
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of pm-th roots of unity. If a ∈ K̂× and f̂ : K̂× → B̂× is the adelization of f , in both the definite
and the indefinite cases the map

[(g, f)] 7−→
[(
gf̂(a), f

)]

induces a (free) action of Gal(Hc(µpm)/K) on the set of Heegner points of conductor c. Fur-

thermore, the group Div
(
X̃m

)
of divisors on X̃m is endowed with an action of the usual Hecke

operators Tℓ for primes ℓ ∤ Npm and Uℓ for primes ℓ|Npm and of diamond operators 〈ℓ〉 for
ℓ ∈ (Z/pmZ)×. In Section 4 we provide an explicit construction of suitably compatible families
of Heegner points on our tower of Shimura curves. The main features of our system of points are
summarized by the following

Theorem 1.1. For every integer m ≥ 0 and every integer c ≥ 1 prime to N and the discriminant

of K there is a Heegner point P̃c,m ∈ X̃
(K)
m of conductor cpm, rational over Hcpm(µpm) in the

indefinite case, such that the following conditions are satisfied.

(1) Vertical compatibility. If m ≥ 2 then the equality

Up

(
P̃c,m−1

)
= α̃m,∗

(
trHcpm (µpm )/H

cpm−1 (µpm )(P̃c,m)
)

holds in Div
(
X̃m−1

)
, where α̃m,∗ is obtained from the covering map α̃m : X̃m → X̃m−1.

(2) Horizontal compatibility. Let m ≥ 1 and n ≥ 1 be integers. Then the equality

Up

(
P̃cpn−1,m

)
= trH

cpm+n (µpm+n )/Hcpm+n−1 (µpm+n )

(
P̃cpn,m

)

holds in Div
(
X̃m

)
. Furthermore, assuming O×

cpm = {±1}, for primes ℓ ∤ cNp which are
inert in K one has

Tℓ
(
P̃c,m

)
= trHcℓpm (µpm )/Hcpm (µpm)

(
P̃cℓ,m

)
.

(3) Galois compatibility. Set p∗ := (−1)(p−1)/2p, let ǫcyc : GQ → Z×
p be the p-adic cyclotomic

character and let ϑ : Gal
(
Q̄/Q(

√
p∗)
)
→ Z×

p /{±1} be the unique continuous homomor-

phism such that ϑ2 coincides with the restriction of ǫcyc. Then for all σ ∈ Gal(Q̄/Hcpm)
the equality

P̃ σ
c,m = 〈ϑ(σ)〉P̃c,m

holds in Div
(
X̃m

)
.

Proof. Part (1) is Proposition 4.7, part (2) is Proposition 4.8 plus Proposition 4.9 and part (3)
is equality (22). �

The existence of compatible sequences of CM points as in Theorem 1.1 was shown by Howard

in [25] when the X̃m are classical modular curves (using the interpretation of modular curves as
moduli spaces for elliptic curves with suitable level structures) and by Fouquet in [12] for Shimura
curves attached to indefinite quaternion algebras over totally real fields having exactly one split
archimedean place.

As remarked before, in this paper our families of CM points are introduced via a systematic
use of the theory of optimal embeddings as described in [17] and [1], and this approach (although
technically more intricate than those of Howard and Fouquet) has the advantage of offering a
uniform setting for dealing with both the definite case and the indefinite case, as in [1]. The
importance of dealing with the definite case as well when studying the representation associated
with a Hida family stems from the fact that, conjecturally, the indefinite case should take care of
situations in which the rank of the Selmer group is odd, while the definite case should describe
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even rank settings. Observe, moreover, that the definite case cannot be treated by means of the
tools developed in [25], [12] and [13].

We use these families to construct big Heegner points and classes that are the counterparts of
those defined in [25], and then we prove results and formulate conjectures which generalize those
obtained in loc. cit. by Howard. In the rest of the introduction we focus our attention on the
main results obtained in our work. For clarity of exposition, it will be convenient to treat the
definite case and the indefinite case separately.

1.3. The definite case. As already observed, an adequate setting for dealing with arbitrary
quaternion algebras represents the newest contribution of the paper.

The literature on the arithmetic of (extended) Selmer groups attached to modular forms of
arbitrary weight which are associated with forms on definite quaternion algebras via the Jacquet–
Langlands correspondence is not so vast as that on the indefinite case (for instance, no analogue
in rank 0 of the results of Nekovář in [33] is available); as a consequence, the applications of our
Theorem 1.1 we can presently offer are either conjectural or conditional.

Let w ∈ {±1} be the common root number of the L-functions of the twisted forms f †p (see §9.2
for the definition) for all but finitely many arithmetic primes p of R, and for every arithmetic
prime p let Fp be the residue field of the localization of R at p. It is expected that for almost all

arithmetic primes p of R the dimension over Fp of H̃1
f

(
K,V †

p

)
is 0 if w = 1 and is 2 if w = −1.

Let us focus our attention on the case w = 1. We consider the Hecke modules

(1) Jm := OF

[
Um\B̂×/B×

]
≃ Pic

(
X̃m

)
⊗Z OF

and define the inverse limit J∞ := lim←− Jm with respect to the canonical projection maps. By the

Jacquet–Langlands correspondence, the ordinary part Jord
∞ of this OF -module is endowed with

an action of the N−-new quotient T∞ of the universal ordinary Hecke algebra hord∞ . One can
then introduce the finitely generated R-module J := Jord

∞ ⊗T∞
R. Under a reasonable hypothesis

(Assumption 9.2), we prove that J is free of rank one over R and fix an isomorphism

(2) J ≃ R.

The compatible sequence of Heegner points on the tower of definite Shimura curves whose exis-
tence is guaranteed by Theorem 1.1 can be combined with isomorphisms (1) to produce canonical
elements in J. By isomorphism (2) one then obtains an element J0 ∈ R. In light of the con-
jectural formulas for the dimension of Selmer groups that we recalled above, we predict that if
w = 1 then J0 6= 0 (Conjecture 9.5). In fact, the element J0 is the counterpart in our context of
the divisor introduced by Gross in [17, §11], hence it is naturally expected to be related to the

special values of the L-functions over K of the forms f †p . When w = 1 the functional equations
suggest that these special values are non-zero for almost all arithmetic primes p, whence the
(conjectural) non-triviality of J0. We elaborate on this circle of ideas in §9.4, where we propose
general conjectures on the vanishing of the special values of twists of the (classical) L-functions
over K of the modular forms living on the Hida branch of f . These conjectures can be viewed
as a refinement of the conjectures on the generic analytic rank of the forms in the Hida family
made by Greenberg in [15].

For every arithmetic prime p of R let πp : R → Fp be the canonical map. The following is
(part of) Conjecture 9.6.

Conjecture 1.2. Suppose that w = 1. If πp(J0) 6= 0 then H̃1
f

(
K,V †

p

)
= 0.
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We expect that Conjecture 1.2 can be proved (at least for arithmetic primes of weight 2) by
suitably extending the arguments of [3] and [27] to the case of forms with non-trivial character.
In general, we can say that this conjecture plays in our definite setting a similar role to one of
Nekovář’s theorems ([33]) in the context considered by Howard. More precisely, just as Nekovář’s
work extends the classical results of Kolyvagin (see, e.g., [18]), Conjecture 1.2 should be viewed
as a generalization of (a portion of) the theory of Bertolini and Darmon ([2], [3]) to modular
forms of higher weight. In this direction, see work in progress by Chida ([7], [8]). Now Theorem
9.8 can be stated as follows.

Theorem 1.3. Suppose that w = 1 and assume Conjecture 1.2. If J0 6= 0 then H̃1
f

(
K,T†

)
is a

torsion R-module.

Another application of Theorem 1.1 is to the formulation of a conjecture in the Iwasawa theory
of our Hida family. Set Gn := Gal(Kn/K) for all integers n ≥ 1; essentially by corestricting to
the finite layers of K∞, one also gets elements Qσ

n ∈ R for all σ ∈ Gn and all n ≥ 1. The
compatibility properties of these points allow us to define

θn := α−n
p

∑

σ∈Gn

Qσ
n ⊗ σ−1 ∈ R[Gn], θ∞ := lim←−

n

θn ∈ R∞

where αp ∈ R× is the image of the Hecke operator Up under the natural map hord∞ → R. As

in §9.3, one introduces an R∞-module H̃1
f,Iw

(
K∞,A

†
)
where A† := Hom

(
T†,µp∞

)
. Finally,

write x 7→ x∗ for the involution of R∞ given by σ 7→ σ−1 on group-like elements. The following
statement (which is Conjecture 9.12) must be seen as a main conjecture of Iwasawa theory in the
definite setting.

Conjecture 1.4. Assume that the local ring R is regular. The group H̃1
f,Iw

(
K∞,A

†
)
is a finitely

generated torsion module over R∞ and there is an equality
(
θ∞ · θ∗∞

)
= CharR∞

(
H̃1

f,Iw

(
K∞,A

†
)∨)

of ideals of R∞.

Here the symbol ∨ denotes the Pontryagin dual and the product θ∞ · θ∗∞ is interpreted as a
p-adic L-function. Note that these definitions are reminiscent of the constructions performed by
Bertolini and Darmon in, e.g., [1] and [3].

1.4. The indefinite case. This is the direct generalization of the classical modular curves setting
originally studied by Howard in [25], and has also been considered, along a different line of
investigation, in [12] and [13] by Fouquet (who works in the broader context of Shimura curves
attached to indefinite quaternion algebras over totally real fields). The reader is suggested to
compare our approach to Fouquet’s, since the goals and results of his work and of ours are of
different (and, in many respects, complementary) natures.

By taking the inverse limit of the p-adic Tate modules of the Jacobian varieties of X̃m as in [21],
we construct a GQ-representation TSh which is free of rank two over R, and prove isomorphisms of

GQ-modules T ≃ TSh and T† ≃ T
†
Sh. Following [25], the compatible sequence of Heegner points

of Theorem 1.1 can then be used to define cohomology classes κc ∈ H1
(
Hc,T

†
)
. In this general

quaternionic setting, the problem of showing that these classes belong to Nekovář’s Selmer group
presents extra complications. More precisely, due to the possible presence of primes dividing N
which are inert in K and so split completely in Hc/K for all c (prime to N), we are only able

to show that λ · κc ∈ H̃1
f

(
Hc,T

†
)
for any choice of λ ∈ R in the annihilator of the R-torsion
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module
∏

ℓ|N− H1
(
Kℓ,T

†
)
tors

. We fix once and for all a non-zero λ in this annihilator and define,

in analogy with [25], the classes

Xc := λ · κc ∈ H̃1
f

(
Hc,T

†
)
, Z0 := corH1/K(X1) ∈ H̃1

f

(
K,T†

)
.

The following two results generalize theorems of Howard (for the definition of “non-exceptional
primes”, in the sense of Mazur–Tate–Teitelbaum, see §5.6).
Theorem 1.5. Let p be a non-exceptional arithmetic prime of R with trivial character and even

weight. If Z0 has non-trivial image in H̃1
f

(
K,V †

p

)
then dimFp H̃

1
f

(
K,V †

p

)
= 1.

This is Theorem 10.4 in the text.

Theorem 1.6. If Z0 is not R-torsion then H̃1
f

(
K,T†

)
is an R-module of rank one.

We prove this statement in Theorem 10.6, and we expect the condition on the class Z0 to
be always true. We finally remark that a main conjecture of Iwasawa theory is proposed in
Conjecture 10.8; this can be viewed as the counterpart of Conjecture 1.4 in the indefinite setting
and extends both the conjecture [25, Conjecture 3.3.1] of Howard and the classical Heegner point
main conjecture for elliptic curves formulated by Perrin-Riou in [39].

Acknowledgements. We would like to thank Massimo Bertolini, Gaëtan Chenevier, Haruzo Hida,
Ben Howard and Jan Nekovář for helpful discussions and correspondence on some of the topics
of this paper. We are also grateful to Olivier Fouquet for his interest in our work and his helpful
remarks. Last but not least, we especially wish to express our gratitude to the anonymous referee
for the extremely careful reading of earlier versions of this article: his or her constructive criticism
and several valuable suggestions led us to correct a few mistakes, completely rethink some parts
and improve the overall exposition in a significant way.

2. Towers of Shimura curves

For any ring A denote by Â := A ⊗Z
∏

ℓ Zℓ its profinite completion, where the product is
over all prime numbers ℓ, by Aℓ := A ⊗ Zℓ its ℓ-adic completion at a prime number ℓ and by

A∞ := A⊗R its archimedean completion. An element x ∈ Â is denoted by (xℓ)ℓ.
Let N− be a positive square free integer and N+ a positive integer prime to N−. Define

N := N+N−

and let p ∤ N be an odd prime number. Denote by B the (unique, up to isomorphism) quaternion
algebra over Q of discriminant N−. If the number of primes dividing N− is odd (respectively,
even) then B is definite (respectively, indefinite), that is, B∞ is isomorphic to the Hamilton skew
field (respectively, to the matrix algebra M2(R)). Fix once and for all an isomorphism

φp : Bp
≃−→ M2(Qp)

of Qp-algebras. Moreover, for every integer m ≥ 0 let Rm ⊂ B be an Eichler order of level N+pm

such that Rj+1 ⊂ Rj for all j ≥ 0 and

φp(Rm ⊗ Zp) =

{(
a b
c d

)
∈M2(Zp)

∣∣∣ c ≡ 0 (mod pm)

}
.

Finally, for all m ≥ 0 let Um ⊂ R̂×
m be the subgroup of elements (xℓ)ℓ with φp(xp) ≡

(
1 b
0 d

)

(mod pm) for some b ∈ Zp and some d ∈ Z×
p .
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Convention. In order not to burden the notation, in the rest of the paper we will often identify Bp

with M2(Qp) via the isomorphism φp – we will do so according to convenience, without explicit
warning. Thus the reader should always bear in mind that when we write, for example, “the

adele b ∈ B̂ has p-component bp equal to
( α β
γ δ

)
∈ M2(Qp)” we really mean that bp is equal to

φ−1
p

(( α β
γ δ

))
.

2.1. Definite Shimura curves. Let B be definite. Denote by P = PN− the curve of genus 0
defined over Q by setting

P(A) :=
{
x ∈ B ⊗Q A | x 6= 0, Norm(x) = Trace(x) = 0

}/
A×

for any Q-algebra A, where Norm and Trace are the reduced norm and trace of B⊗QA. The group
B× acts on P by conjugation and this action is algebraic and defined over Q. Note that P(C) is
canonically identified with HomR(C, B∞), where HomR denotes homomorphisms of R-algebras.
Explicitly, if z 7→ z̄ denotes complex conjugation then with each embedding f : C → B∞ one
associates the image xf of the uniqueC-line on the quadric

{
x ∈ B⊗C | Norm(x) = Trace(x) = 0}

on which f(C×) acts via the character y 7→ ȳ/y. Observe that xf is one of the two fixed points
of f(C×) acting on P(C). In fact, this recipe allows one to identify P(K) with HomQ(K,B) for
any imaginary quadratic field K (cf. [17, p. 131]). Define the definite Shimura curve of level Rm

(respectively, Um) and discriminant N− to be the double coset space

Xm := R̂×
m\(B̂× × P)/B× (respectively, X̃m := Um\(B̂× × P)/B×),

where R̂×
m and Um act by left multiplication on B̂× and trivially on P, while B× acts by conju-

gation on P and by right multiplication on B̂×.
If K is an imaginary quadratic field write

X(K)
m := R̂×

m

∖(
B̂× × P(K)

)/
B×, X̃(K)

m := Um

∖(
B̂× × P(K)

)/
B×.

As remarked in [17, p. 131], X
(K)
m = Xm(K) and X̃

(K)
m = X̃m(K). However, in the following

we use the above symbols in order to keep our notation uniform with the one adopted in the

indefinite case (see below), where the points in X
(K)
m or X̃

(K)
m are in general rational only over

(abelian) extensions of K.

Choose representatives g1, . . . , gh(m) and g̃1, . . . , g̃h̃(m) of the double cosets R̂×
m\B̂×/B× and

Um\B̂×/B×, respectively. Define the finite arithmetic groups

Γi
m := g−1

i R̂×
mgi ∩B×, Γ̃j

m := g̃−1
j Umg̃j ∩B×

with i ∈ {1, . . . , h(m)} and j ∈ {1, . . . , h̃(m)}. Then Xm and X̃m can be expressed as disjoint
unions

Xm =

h(m)∐

i=1

P/Γi
m, X̃m =

h̃(m)∐

i=1

P/Γ̃i
m

of curves of genus 0.

2.2. Indefinite Shimura curves. Let B be indefinite. In this case, for all m ≥ 0 both

R̂×
m\B̂×/B× and Um\B̂×/B× consist of a single class. Fix an isomorphism φ∞ : B∞

≃−→ M2(R);
then φ∞(R×

m) is a discrete subgroup of GL2(R). Denote by Γm the subgroup of φ∞(R×
m) consist-

ing of matrices with determinant 1 and let Γ̃m be the analogous subgroup of φ∞(Um∩B). Define
the Riemann surfaces

Ym(C) := H/Γm, Ỹm := H/Γ̃m
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where H is the complex upper half plane and the groups Γm and Γ̃m act on H by Möbius (i.e.,

fractional linear) transformations. Let Xm(C) (respectively, X̃m(C)) denote the Baily–Borel

compactification of Ym(C) (respectively, Ỹm(C)). If B 6= M2(Q) then Xm(C) = Ym(C) and

X̃m(C) = Ỹm(C). The Riemann surface Xm(C) (respectively, X̃m(C)) has a model over Q which

will be denoted by Xm (respectively, X̃m) and referred to as the indefinite Shimura curve of level
Rm (respectively, Um) and discriminant N−. Setting P := C − R for the union of the complex
upper and lower half-planes yields

Ym(C) = R̂×
m\(B̂× × P)/B×, Ỹm(C) = Um\(B̂× × P)/B×

where, as above, R̂×
m and Um act by left multiplication on B̂× and trivially on P, while B× acts

by Möbius transformations via φ∞ on P and by right multiplication on B̂×. Observe that there
is a B×-equivariant identification P = HomR(C, B∞) (here B× acts on the homomorphisms by
conjugation): similarly to the definite case, with an embedding f : C → B∞ we associate the
unique fixed point of f(C×) lying in the upper half-plane, i.e., the fixed point xf such that the
induced action of f(C×) on the cotangent space of P at xf is via the character y 7→ ȳ/y. For any
imaginary quadratic field K fix an embedding K →֒ C; so there are injections

X(K)
m := R̂×

m

∖(
B̂× ×HomQ(K,B)

)/
B× −֒→ Xm(C),

X̃(K)
m := Um

∖(
B̂× ×HomQ(K,B)

)/
B× −֒→ X̃m(C)

induced by the map HomQ(K,B) → HomR(C, B∞) which is obtained by extending scalars from

Q to R. Actually, the subsets X
(K)
m and X̃

(K)
m are contained in Xm(Q̄) and X̃m(Q̄), respectively,

where Q̄ is the algebraic closure of Q in C.
As a piece of notation, both in the definite case and in the indefinite case write Div(Xm) and

Div(X̃m) for the groups of divisors on the Riemann surfaces Xm(C) and X̃m(C), respectively.

2.3. The tower of curves. The inclusions Rm+1 ⊂ Rm, Um+1 ⊂ Um and Um ⊂ Rm for m ≥ 0
yield a commutative diagram of curves

(3) . . .
α̃m+1

// X̃m

α̃m
//

βm

��

X̃m−1

α̃m−1
//

βm−1

��

. . .

. . .
αm+1

// Xm
αm

// Xm−1
αm−1

// . . .

in which all maps are finite coverings that are defined over Q.

2.4. Hecke operators. We briefly review the standard description of the Hecke operators Tℓ
and Up in the case of our interest. Let m ≥ 0 be an integer and let ℓ be a prime number which
does not divide Npm. In particular, the case m = 0 and ℓ = p is allowed. For all a ∈ {0, . . . , ℓ−1}
denote by λ̂a ∈ B̂× the idele whose ℓ-component is equal to

(
1 a
0 ℓ

)
and whose components at all

other places are equal to 1. Similarly, let λ̂∞ be the idele whose ℓ-component is equal to
(
ℓ 0
0 1

)

and all other components are 1. Then

R̂×
mλ̂0R̂

×
m =

ℓ−1⋃

a=0

R̂×
mλ̂a ∪R×

mλ̂∞, Umλ̂0Um =

ℓ−1⋃

a=0

Umλ̂a ∪ Umλ̂∞.
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The action of Tℓ on Div(Xm) and Div(X̃m) can be defined as

Tℓ
(
[(g, f)]

)
:=

ℓ−1∑

a=0

[(
λ̂ag, f

)]
+
[(
λ̂∞g, f

)]
.

The action of the Hecke operator Up on Div(Xm) and Div(X̃m) for m ≥ 1 will be especially

important for us. For all a ∈ {0, . . . , p − 1} denote by π̂a ∈ B̂× the idele whose p-component is
equal to

(
1 a
0 p

)
and whose components at all other places are equal to 1. Then

R̂×
mπ̂0R̂

×
m =

p−1⋃

a=0

R̂×
mπ̂a, Umπ̂0Um =

p−1⋃

a=0

Umπ̂a.

The action of Up on Div(Xm) and Div(X̃m) is given by

Up

(
[(g, f)]

)
:=

p−1∑

a=0

[(π̂ag, f)].

Observe that, as pointed out also in [1, §1.5], the single terms in the sums expressing Tℓ and Up

depend on the choice of representative for [(g, f)], but their collections do not.

3. Heegner points

Let K be an imaginary quadratic field of discriminant D = DK prime to pN and denote by
OK its ring of algebraic integers. Assume that the following Heegner hypothesis is satisfied:

• a prime number ℓ divides N+ (respectively, N−) only if ℓ splits (respectively, is inert) in
K.

No conditions are imposed on p.

3.1. Heegner points. Denote by OK the ring of integers of K. For any integer c ≥ 1 prime to
N let Oc := Z + cOK be the order of K of conductor c and let Hc denote the ring class field of
K of conductor c.

For any order O ⊂ K and any Eichler order R ⊂ B, a morphism f ∈ HomQ(K,B) is said to
be an optimal embedding of O in R if

f(O) = R ∩ f(K) (i.e., f−1(R) = O).

We say that a point P = [(g, f)] ∈ X(K)
m for some integer m ≥ 0 is a Heegner point of conductor

c on Xm if f is an optimal embedding of Oc into the Eichler order g−1R̂mg ∩B. Note that both
in the definite and in the indefinite case Heegner points are contained in Xm(Q̄). More precisely,
suppose that P is a Heegner point of conductor c on Xm: if B is definite then P ∈ Xm(K), while
if B is indefinite then P ∈ Xm(Hc). In the indefinite case Heegner points on Xm are well known
to satisfy Shimura’s reciprocity law ([44, Theorem 9.6]) describing the action of Gal(Hc/K).

For the next definition, for all integers m ≥ 0 let Um,p denote the p-component of Um.

Definition 3.1. We say that a point P̃ = [(g, f)] ∈ X̃(K)
m is a Heegner point of conductor c on

X̃m if βm
(
P̃
)
∈ X(K)

m is a Heegner point of conductor c and

f−1
p

(
fp
(
(Oc ⊗ Zp)

×
)
∩ g−1

p Um,pgp
)
= (Oc ⊗ Zp)

× ∩ (1 + pmOK ⊗ Zp)
×.
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In other words, Heegner points on X̃m are lifts of Heegner points on Xm satisfying a suitable
local condition at p. This condition will be used to study the field of rationality of Heegner points

on X̃m.

3.2. Fields of rationality. Define an action of Gal(Kab/K) ≃ K̂×/K× on X̃
(K)
m by the formula

P a :=
[(
gf̂(a), f

)]

for all a ∈ K̂×/K× and all P = [(g, f)] ∈ X̃(K)
m . Define

Zm :=
{
a = (aℓ) ∈ Ô×

cpm | ap ≡ 1 mod pm(OK ⊗ Zp)
}
.

If [(g, f)] ∈ X̃(K)
m is a Heegner point of conductor cpm then it follows directly from Definition 3.1

that

(4) Zm = f̂−1
(
f̂(Ô×

cpm) ∩ g−1Umg
)
.

For any number field F denote by IF its idele group (so F̂× is the finite part of IF ). Write H̃cpm

for the class field of Zm,∞ := Zm × C×, so that

Gal(H̃cpm/K) ≃ K̂×/K×Zm.

Proposition 3.2. Let P ∈ X̃(K)
m be a Heegner point of conductor cpm. Then

(1) P ∈ H0
(
Gal(Kab/H̃cpm), X̃m(K)

)
in the definite case;

(2) P ∈ X̃m

(
H̃cpm

)
in the indefinite case.

Proof. Use the fact that P is fixed by the action of Gal(Kab/H̃cpm) and that in the indefinite

case P is rational over Kab by, for example, [9, Lemma 3.11]. �

We give a more explicit description of H̃cpm. As a general notation, for every integer n ≥ 1 let

µn be the n-th roots of unity. Set p∗ := (−1)(p−1)/2p.

Proposition 3.3. H̃cpm = Hcpm(µpm).

Proof. Write Gal(K/Q) ≃ IQ/Q×C where C := NormK/Q IK is the norm group of K. Define

Wm :=
∏

ℓ 6=p

Z×
ℓ × {α ∈ Z×

p | α ≡ 1 (mod pm)}

and set Wm,∞ := Wm × R+ where R+ is the group of positive real numbers. The extension
K(µpm)/Q is abelian, and since Gal(Q(µpm)/Q) ≃ IQ/Q

×Wm,∞ it follows by global class field
theory (cf. [36, Ch. IV, Theorem 7.1]) that

Gal(K(µpm)/Q) ≃ IQ/Q×(C ∩Wm,∞).

Now Gal(K(µpm)/K) ≃ K̂×/K×Vm where Vm denotes the finite part of the norm group NormK(µpm)/K

(
IK(µpm)

)
.

Hence

(5) Gal(Hcpm(µpm)/K) ≃ K̂×/K×(Vm ∩ Ô×
cpm).

Since the finite part of NormK(µpm )/Q

(
IK(µpm )

)
equals NormK/Q(Vm) and

Q×NormK(µpm )/Q

(
IK(µpm )

)
= Q×(C ∩Wm,∞),

it follows that
Vm ⊂

{
x ∈ K̂× | NormK/Q(x) ∈ Q×Wm

}
.
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Let x ∈ Vm ∩ Ô×
cpm and write x = α + cpmβ with α ∈ Ẑ and β ∈ ÔK . Then NormK/Q(x) ∈

Q×Wm ∩ Ẑ× =Wm. On the other hand, locally at p one has the congruence

NormKp/Qp
(xp) ≡ α2

p (mod pm).

It follows that αp ≡ ±1 (mod pm), and we get the inclusion K×(Vm ∩ Ô×
cpm) ⊂ K×Zm. Isomor-

phism (5) finally yields

(6) H̃cpm ⊂ Hcpm(µpm).

It is easily seen that the Galois group Gal(Hcpm(µpm)/Hcpm) is isomorphic to Ô×
cpm/O×

cpmZm.

Since Ô×
cpm/Zm is isomorphic to (Z/pmZ)× via the map which sends a = (aq)q ∈ Ô×

cpm to ap
(mod pm) ∈ (Z/pmZ)×, and O×

cpm = {±1} for m ≥ 1, we get that

(7)
[
H̃cpm : Hcpm

]
= ϕ(pm)/2.

The result follows from (6) and (7) upon noticing that [Hcpm(µpm) : Hcpm] ≤ ϕ(pm)/2 because

Q(
√
p∗) ⊂ Hcpm. �

In light of Proposition 3.3, from now on we adopt the explicit notation Hcpm(µpm) in place of

the shorthand H̃cpm. The reason for doing so is that whenever p|c we have H̃cpm 6= H̃(c/p)pm+1 ,
so the previous notation would be ambiguous.

3.3. Hecke relations on X̃m. Let r, s ≥ 1 be integers. Then

Gal
(
Hcps(µpr)/K

)
≃ K̂×

/
K×
(
Vr ∩ Ô×

cps
)

where Vr is the finite part of the norm group NormK(µpr )/K

(
IK(µpr )

)
. Hence for every pair of

integers t, u with t ≥ s and u ≥ r there is an isomorphism

K×
(
Vr ∩ Ô×

cps
)/
K×
(
Vu ∩ Ô×

cpt

) ≃−→ Gal
(
Hcpt(µpu)/Hcps(µpr)

)
.

As pointed out in the proof of Proposition 3.3, every element x = α + cpsβ ∈ Vr ∩ Ô×
cps (with

α ∈ Ẑ and β ∈ ÔK) satisfies the local conditions

NormKp/Qp
(xp) ≡ α2

p (mod pr), NormKp/Qp
(xp) ≡ 1 (mod pr).

Let σ ∈ Gal
(
Hcpn+1(µpn+1)/Hcpn(µpn+1)

)
be represented by the idele aσ ∈ Ô×

cpn . By the above
discussion, we have

(8) aσ = α+ cpnβ, αp ≡ 1 (mod pn).

Proposition 3.4. Let P̃ be a Heegner point of conductor cpn on X̃m for some n ≥ m ≥ 1 and

let Q̃ ∈ X̃(K)
m belong to the support of Up(P̃ ). Then

Up

(
P̃
)
= trH

cpn+1 (µpn+1 )/Hcpn (µpn+1 )

(
Q̃
)

in Div
(
X̃m

)
.

Proof. Let P̃ = [(g, f)], so that Q̃ = [(π̂ag, f)] for a certain a ∈ {0, . . . , p − 1}. Hence, with

notation as above, Q̃σ =
[(
π̂agf̂(aσ), f

)]
. Since P̃ is a Heegner point of conductor cpn and

n ≥ m, it follows from (4) and (8) that f̂(aσ) ∈ g−1Umg. Thus there esists x ∈ Um such that

Q̃σ = [(π̂axg, f)], whence

(9) Q̃σ ∈ Up

(
P̃
)
.
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Since the fields Hcpn+1 and Hcpn(µpn+1) are linearly disjoint over Hcpn, the projection

Gal
(
Hcpn+1(µpn+1)/Hcpn(µpn+1)

)
−→ Gal(Hcpn+1/Hcpn)

is an isomorphism. Therefore the order of Gal
(
Hcpn+1(µpn+1)/Hcpn(µpn+1)

)
is p, and the claim

of the proposition follows from (9). �

For simplicity, for the next proposition assume that O×
cpm = {±1} (this excludes only the cases

where c = 1, m = 0 and K = Q(
√
−1) or K = Q(

√
−3)).

Proposition 3.5. Let m ≥ 0. Fix a prime ℓ ∤ Npmc which is inert in K. Let P̃ be a Heegner

point of conductor cℓpm on X̃m and let Q̃ ∈ X̃(K)
m belong to the support of Tℓ(P̃ ). Then

Tℓ
(
P̃
)
= trHcℓpm(µpm)/Hcpm (µpm )

(
Q̃
)

in Div
(
X̃m

)
.

Proof. Arguing exactly as in the proof of Proposition 3.4, it can be shown that if σ ∈ Gal
(
Hcℓpm(µpm)/Hcpm(µpm)

)

then

(10) Q̃σ ∈ Tℓ
(
P̃
)
.

On the other hand, since the fields Hcℓpm and Hcpm(µpm) are linearly disjoint over Hcpm, the
canonical projection induces an isomorphism

(11) Gal
(
Hcℓpm(µpm)/Hcpm(µpm)

) ≃−→ Gal
(
Hcℓpm/Hcpm

)
.

The claim of the proposition follows by combining (10) and (11) because the two divisors are
both sums of ℓ+ 1 points. �

4. Families of Heegner points

The purpose of this section is to construct a family of Heegner points on the tower of Shimura
curves which satisfies suitable compatibility properties with respect to the natural covering maps
in the tower. These points will be the building blocks in our definition of big Heegner points and
classes that will be performed in Section 7. Unlike what is done in [25], to achieve our goal we
systematically adopt the language of optimal embeddings, and this approach allows us to treat
in a uniform way both the definite and the indefinite case.

4.1. Choice of local conditions. In order to introduce the systems of Heegner points that
we shall work with, we need to recall some auxiliary results and definitions. As a preliminary
remark, the Heegner hypothesis and [38, Theorems 1 and 2] ensure that the set of Heegner points
of conductor cpm on Xm is not empty.

Let O be an order of K and R an order of B. Let ℓ be a prime number. Define Kℓ := K ⊗Z Zℓ

and Bℓ := B ⊗Z Zℓ. An injective homomorphism ϕ : Kℓ →֒ Bℓ of Qℓ-algebras is said to be an
optimal embedding of O ⊗ Zℓ into R⊗ Zℓ if

ϕ(O ⊗ Zℓ) = ϕ(Kℓ) ∩ (R⊗ Zℓ) (i.e., ϕ−1(R⊗ Zℓ) = O ⊗ Zℓ).

Two optimal embeddings ϕ and ψ of O ⊗ Zℓ into R⊗ Zℓ are said to be equivalent if there exists
an element u ∈ (R⊗ Zℓ)

× such that ϕ = u−1ψu.
If f : K →֒ B is an injective homomorphism of Q-algebras and ℓ is a prime number, denote by

fℓ = f ⊗ idZℓ
: Kℓ →֒ Bℓ the homomorphism which is obtained from f by extension of scalars.

The next lemma says that, for a global injection, the property of being an optimal embedding is
local.
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Lemma 4.1. An injective homomorphism of Q-algebras f : K →֒ B is an optimal embedding of
O into R if and only if fℓ is an optimal embedding of O ⊗ Zℓ into R⊗ Zℓ for all primes ℓ.

Proof. A routine verification; see [41, Lemma 4.9] for a quick proof using the elementary divisor
theorem. �

Let R be an Eichler order of B, let I1, . . . , Ih be representatives of all the distinct classes of
left R-ideals and denote by Ri the right order of Ii for i = 1, . . . , h. The number h depends only
on the level of R and the discriminant of the quaternion algebra, and the set {R1, . . . , Rh} is a
system of representatives for all the R-conjugacy classes of Eichler orders in B with the same

level as R. For every i ∈ {1, . . . , h} fix an element γi ∈ B̂× such that R̂i = γ−1
i R̂γi and write γi,ℓ

for the ℓ-component of γi at a prime ℓ.

Proposition 4.2. Let O be an order of K and R an Eichler order of B, and let {ϕℓ}ℓ be a
collection of optimal embeddings of O ⊗ Zℓ into R ⊗ Zℓ for all primes ℓ. Then there exists an
optimal embedding f : K →֒ B of O into Ri for some i ∈ {1, . . . , h} such that γi,ℓfℓγ

−1
i,ℓ is

equivalent to ϕℓ for all ℓ.

Proof. This is essentially a consequence of Eichler’s trace formula ([46, Ch. III, Théorème 5.11]).
For later use, we give here a direct proof (see [46, Ch. III, §5] or [40, §3] for more details). By
the construction of B, there exists an injective homomorphism g : K →֒ B of Q-algebras. By the
Skolem–Noether theorem, for every prime ℓ there exists aℓ ∈ B×

ℓ such that gℓ = a−1
ℓ ϕℓaℓ. For

almost all primes ℓ which do not divide the discriminant of B, the level of R and the conductor of
O the map gℓ is an optimal embedding of O⊗Zℓ into R⊗Zℓ: this is so because g(O) is contained
in a maximal order whose ℓ-adic completion is equal to R ⊗ Zℓ for almost all ℓ. Hence we can
assume that aℓ ∈ (R ⊗ Zℓ)

× for almost all ℓ; in fact, by [46, Ch. II, §3], if ℓ does not divide the
discriminant of B and the level of R there is only one equivalence class of optimal embeddings of
O⊗Zℓ into R⊗Zℓ. Write a for the idele (aℓ)ℓ. By the strong approximation theorem, there exist

a unique index i ∈ {1, . . . , h}, a global element b ∈ B× and a unit u ∈ R̂× such that a = uγib.
Then f := bgb−1 is a global embedding of K into B such that fℓ is conjugate to ϕℓ for all primes
ℓ. In fact, for every prime ℓ one has

γi,ℓfℓγ
−1
i,ℓ = γi,ℓbgℓb

−1γ−1
i,ℓ = (γi,ℓba

−1
ℓ )ϕℓ(γi,ℓba

−1
ℓ )−1 = u−1

ℓ ϕℓuℓ,

which shows that γi,ℓfℓγ
−1
i,ℓ is equivalent to ϕℓ. In particular, fℓ is an optimal embedding of O⊗Zℓ

into γ−1
i,ℓ (R⊗ Zℓ)γi,ℓ = Ri ⊗ Zℓ for every prime ℓ, hence f is an optimal embedding of O into Ri

by Lemma 4.1. �

For all integers k,m ≥ 0 define the Eichler order R
(m)
k of level N+pk by the following local

conditions:

R
(m)
k ⊗ Zℓ = R0 ⊗ Zℓ for all ℓ 6= p;

R
(m)
k ⊗ Zp =

( Zp pk−mZp

pmZp Zp

)
=
(

0 1
−pm 0

)
(Rk ⊗ Zp)

(
0 −p−m

1 0

)
.

In particular, we have Rm = R0 ∩R(m)
0 and R

(m)
m = Rm.

Proposition 4.2 reduces the construction of global optimal embeddings to that of local ones.
In the following the local component at p is studied. Let ph be the power of p dividing c exactly
(i.e., ph|c but ph+1 ∤ c). Write K = Q(

√
−D) with D > 0, so Kp = Qp(

√
−D) if p is inert in K

and Kp = Qp⊕Qp if p is split in K. Then we consider the following embeddings ψ
(c)
p : Kp →֒ Bp:
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1) p inert

Kp −→ Bp

α+
√
−Dβ 7−→

(
α −Dβph

β/ph α

)
;

2) p split

Kp −→ Bp

(α, β) 7−→
(

α 0
(α−β)/ph β

)
.

Recall that Un,p denotes the p-component of Un. For all integers n ≥ 0 an easy calculation shows
that

• ψ(c)
p is an optimal embedding of Ocpn ⊗ Zp into Rn ⊗ Zp;

• (ψ
(c)
p )−1

(
ψ
(c)
p

(
(Ocpn ⊗ Zp)

×
)
∩ Un,p

)
= (Ocpn ⊗ Zp)

× ∩ (1 + pnOK ⊗ Zp)
×.

Define

(12) ϕ(c,m)
p :=

(
0 1

−pm 0

)
ψ(c)
p

(
0 −p−m

1 0

)

and

U (m)
n,p :=

(
0 1

−pm 0

)
Un,p

(
0 −p−m

1 0

)
.

For all integers m,n ≥ 0 it follows from the above equations for ψ
(c)
p and the definition of R

(m)
n

that

• ϕ(c,m)
p is an optimal embedding of of Ocpn ⊗ Zp into R

(m)
n ⊗ Zp;

• (ϕ
(c,m)
p )−1

(
ϕ
(c,m)
p

(
(Ocpn ⊗ Zp)

×
)
∩ U (m)

n,p

)
= (Ocpn ⊗ Zp)

× ∩ (1 + pnOK ⊗ Zp)
×.

Lemma 4.3. Fix an integer m ≥ 0. Then

(1) ϕ
(c,m)
p is an optimal embedding of Ocpm ⊗ Zp into Rm ⊗ Zp.

(2) (ϕ
(c,m)
p )−1

(
ϕ
(c,m)
p

(
(Ocpm ⊗ Zp)

×
)
∩ Um,p

)
= (Ocpm ⊗ Zp)

× ∩ (1 + pmOK ⊗ Zp)
×.

Proof. Since R
(m)
m = Rm and

ϕ(c,m)
p

(
(Ocpm ⊗ Zp)

×
)
∩ Um,p = ϕ(c,m)

p

(
(Ocpm ⊗ Zp)

×
)
∩ U (m)

m,p ,

both claims are immediate consequences of the above formulas for n = m. �

For every prime ℓ 6= p choose an optimal embedding ϕℓ,0 : Kℓ →֒ Bℓ of OK⊗Zℓ into Rm⊗Zℓ =
R0⊗Zℓ: this can be done by [38, Theorem 2]. If ℓ ∤ Np then for all integers n ≥ 1 fix also optimal
embeddings ϕℓ,n : Kℓ →֒ Bℓ of Oℓn⊗Zℓ into R0⊗Zℓ. For any prime ℓ set πℓ :=

(
1 0
0 ℓ

)
. If ℓ is inert

in K and ℓ ∤ Np then choose ϕℓ,0 and ϕℓ,1 in such a way that ϕℓ,1 = πℓϕℓ,0π
−1
ℓ (for example, this

can explicitly be done by adopting definitions analogous to those of ϕ
(c,1)
p and ϕ

(c,0)
p ). Suppose

that we have fixed ϕℓ,n for prime ℓ 6= p and integers n ≥ 0 so that all the above conditions are
fulfilled. Let c ≥ 1 be an integer prime to N and the discriminant of K. For primes ℓ 6= p set

ϕ
(c)
ℓ := ϕℓ,n(ℓ) where ℓn(ℓ) is the maximal power of ℓ dividing c. We remark that, with these

choices, ϕ
(c)
ℓ = ϕ

(c′)
ℓ whenever ℓ ∤ cc′.
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4.2. Compatible families of Heegner points. We now use the proof of Proposition 4.2 to
globalize the local choices performed in §4.1. To begin with, fix an injection g : K →֒ B of

Q-algebras. Choose elements aℓ,n ∈ B×
ℓ and a

(c,m)
p ∈ B×

p such that

• gℓ = a−1
ℓ,nϕℓ,naℓ,n for ℓ 6= p and n ≥ 0;

• gp = (a
(c,m)
p )−1ϕ

(c,m)
p a

(c,m)
p .

We can perform the above choices at p and at primes ℓ ∤ Npc which are inert in K as follows.

First, assume that p ∤ c. Let a
(c,0)
p be an arbitrary element satisfying the above relation for m = 0.

Since ϕ
(c,m)
p = πpϕ

(c,m−1)
p π−1

p , we can define inductively

(13) a(c,m)
p := πpa

(c,m−1)
p

for all m ≥ 1. Keeping the condition p ∤ c, since ϕ
(cph−1,m+1)
p = ϕ

(cph,m)
p for all integers m ≥ 0

and h ≥ 1, we can also define inductively

(14) a(cp
h,m)

p := a(cp
h−1,m+1)

p

for all m ≥ 0 and h ≥ 1. The two conditions above define a
(c,m)
p for all c ≥ 1 and m ≥ 0. Next,

as in the rest of the paper, let c ≥ 1 be an integer prime to N . Suppose the prime ℓ is inert in
K and ℓ ∤ Npc. In this case, recall that we have chosen ϕℓ,1 and ϕℓ,0 so that ϕℓ,1 = πℓϕℓ,0π

−1
ℓ .

Therefore we can fix an arbitrary aℓ,0 so that gℓ = a−1
ℓ,0ϕℓ,0aℓ,0 and define aℓ,1 := πℓaℓ,0.

Fix an integer c ≥ 1 as before and recall that if ℓ is a prime then ℓn(ℓ) denotes the exact power

of ℓ dividing c. Fix also an integer m ≥ 1 and define global elements a(c,m) ∈ B̂× by the following
local conditions:

• the ℓ-component of a(c,m) is equal to aℓ,n(ℓ) for all ℓ 6= p;

• the p-component of a(c,m) is equal to the a
(c,m)
p chosen before.

Thus for primes ℓ ∤ Npc which are inert in K there is an equality

(15) a
(cℓ,m)
ℓ = πℓa

(c,m)
ℓ .

Observe that if ℓ ∤ cc′ or ℓ divides both c and c′ to the same power then a
(c,m)
ℓ = a

(c′,m)
ℓ for all

m ≥ 0. Recall the idele π̂0 ∈ B̂× introduced in §2.4, with p-component equal to πp and all other

components equal to 1; then combining the definition of a(c,m) with (13) and (14) yields equalities

(16) a(c,m) = π̂0a
(c,m−1)

and

(17) a(cp
h,m) = a(cp

h−1,m+1)

for all m ≥ 0 and h ≥ 1. Similarly, if ℓ ∤ Npc and λ̂0 ∈ B̂× is the idele of §2.4 with all components
equal to 1 except the ℓ-component which is equal to πℓ then (15) gives the equality

(18) a(cℓ,m) = λ̂0a
(c,m)

for all m ≥ 0.
Denote by Rm,1, . . . , Rm,h(m) the right orders of a set of representatives of the left Rm-ideals

and take γm,1, . . . , γm,h(m) ∈ B̂× such that R̂m,i = γ−1
m,iR̂mγm,i for all i ∈ {1, . . . , h(m)}. The set

Sm :=
{
γm,1, . . . , γm,h(m)

}
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is a complete set of representatives for the double coset space R̂×
m\B̂×/B×. Write

(19) a(c,m) = uc,mγ
(c,m)bc,m

with uc,m ∈ R̂×
m, γ(c,m) ∈ Sm and bc,m ∈ B×. Then define

f (c,m) = bc,mgb
−1
c,m.

Note in particular that we obtain the equality

(20) g = b−1
c,mf

(c,m)bc,m = b−1
c′,m′f

(c′,m′)bc′,m′

for all c, c′,m,m′. Now the local embedding

γ
(c,m)
ℓ f

(c,m)
ℓ (γ

(c,m)
ℓ )−1

is equivalent to ϕ
(c)
ℓ for every ℓ 6= p and to ϕ

(c,m)
p for ℓ = p.

Proposition 4.4. Fix an integer m ≥ 0. Then

(1) f (c,m) is an optimal embedding of Ocpm into B ∩ (γ(c,m))−1R̂mγ
(c,m);

(2) We have the equality:

(f (c,m)
p )−1

(
f (c,m)
p

(
(Ocpm ⊗ Zp)

×
)
∩ (γ(c,m)

p )−1Um,pγ
(c,m)
p

)
= (Ocpm ⊗ Zp)

× ∩ (1 + pmOK ⊗ Zp)
×.

Proof. Part (1) is just a restatement of the definition of f (c,m). For (2), observe that there exists

an element u ∈ (γ
(c,m)
p )

−1
(Rm ⊗ Zp)

×γ
(c,m)
p such that

(21) f (c,m)
p = u−1(γ(c,m)

p )
−1
ϕ(c,m)
p γ(c,m)

p u.

The second statement in the proposition follows from part (2) of Lemma 4.3 combined with
equation (21) and the fact that Um,p is a normal subgroup of (Rm ⊗ Zp)

×. �

Corollary 4.5. The class
[(
γ(c,m), f (c,m)

)]
is a Heegner point of conductor cpm both on X

(K)
m

and on X̃
(K)
m .

Proof. Both statements are immediate consequences of Proposition 4.4. �

Define the family of points

Pc,0 = P̃c,0 :=
[(
γ(c,0), f (c,0)

)]
∈ X(K)

0 = X̃
(K)
0

Pc,m :=
[(
γ(c,m), f (c,m)

)]
∈ X(K)

m , P̃c,m :=
[(
uc,mγ

(c,m), f (c,m)
)]
∈ X̃(K)

m .

The point P̃c,m is a suitable lift of Pc,m to X̃
(K)
m . We first note the following property enjoyed by

these points.

Proposition 4.6. The point Pc,m (respectively, P̃c,m) is a Heegner point of conductor cpm on

Xm (respectively, X̃m).

Proof. A direct consequence of Corollary 4.5, where for P̃m,c we use again the fact that Um,p is a
normal subgroup of (Rm ⊗ Zp)

×. �
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4.3. Hecke relations in compatible families. The results we prove in this subsection justify

our choice of the lifts P̃c,m of the points Pc,m. Write

α̃m,∗ : Div(X̃m) −→ Div(X̃m−1)

for the map between divisor groups induced by α̃m by covariant functoriality. In other words,

α̃m,∗(P1 + · · ·+ Ps) := α̃m(P1) + · · ·+ α̃m(Ps) for all points P1, . . . , Ps on X̃m.

Proposition 4.7. Let m ≥ 2. Then

Up

(
P̃c,m−1

)
= α̃m,∗

(
trHcpm (µpm )/H

cpm−1 (µpm )(P̃c,m)
)

in Div
(
X̃m−1

)
.

Proof. The image of P̃c,m ∈ X̃(K)
m in X̃

(K)
m−1 is given by

α̃m(P̃c,m) =
[(
π̂0uc,m−1γ

(c,m−1)bc,m−1b
−1
c,m, f

(c,m)
)]

=
[(
π̂0uc,m−1γ

(c,m−1), f (c,m−1)
)]
,

where the first equality comes from (16) and (19) and the second from (20). So α̃m(P̃c,m) belongs

to the support of Up(P̃c,m−1), and the result follows from Proposition 3.4. �

Proposition 4.8. Let m, r ≥ 1. Then

Up

(
P̃cpr−1,m

)
= trH

cpm+r (µpm+r )/Hcpm+r−1 (µpm+r )

(
P̃cpr,m

)

in Div
(
X̃m

)
.

Proof. We compute:
[(
π̂0ucpr−1,mγ

(cpr−1,m), f (cp
r−1,m)

)]
=
[(
ucpr−1,m+1γ

(cpr−1,m+1)bcpr−1,m+1b
−1
cpr−1,m

, f (cp
r−1,m)

)]

=
[(
ucpr,mγ

(cpr,m)bcpr,mb
−1
cpr−1,m

, f (cp
r−1,m)

)]

=
[(
ucpr,mγ

(cpr,m), f (cp
r,m)

)]
= P̃crr ,m,

where the first equality comes from (16) and (19), the second from (17) and the third from

(20). We conclude that P̃crr,m belongs to the support Up(P̃cpr−1,m), and the result follows from
Proposition 3.4. �

For the next proposition assume that O×
cpm = {±1}.

Proposition 4.9. Let m ≥ 0 and fix a prime ℓ ∤ Npmc which is inert in K. Then

Tℓ
(
P̃c,m

)
= trHcℓpm(µpm)/Hcpm (µpm )

(
P̃cℓ,m

)

in Div
(
X̃m

)
.

Proof. Observe that
[(
λ̂0uc,mγ

(c,m), f (c,m)
)]

=
[(
ucℓ,mγ

(cℓ,m)bcℓ,mb
−1
c,m, f

(c,m)
)]

= P̃cℓ,m,

where the first equality follows from (18) and (19) and the second from (20). Hence P̃cℓ,m belongs

to the support of Tℓ(P̃c,m), and the result follows from Proposition 3.5. �
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4.4. Galois relations in compatible families. Set GQ := Gal(Q̄/Q) and let

ǫcyc : GQ −→ Z×
p

be the p-adic cyclotomic character. Since the restriction of ǫcyc to Gal(Q̄/Q(
√
p∗)) takes values

in (Z×
p )

2 (recall that Q(
√
p∗) is the unique quadratic extension of Q contained in the p-adic

cyclotomic field), there is a unique continuous homomorphism

ϑ : Gal
(
Q̄
/
Q(
√
p∗)
)
−→ Z×

p /{±1}
such that ϑ2 = ǫcyc. Fix σ ∈ Gal(Hcpm(µpm)/Hcpm) withm ≥ 1. The Galois group Gal(Hcpm(µpm)/Hcpm)

is isomorphic to Ô×
cpm/O×

cpmZm via the Artin map, so σ can be represented by an element x ∈ Ô×
cpm

such that xℓ = 1 for ℓ 6= p. Write xp = α + pmβ with α ∈ Z×
p and β ∈ OK ⊗ Zp. The image σ̄

of σ via the natural map Gal(Hcpm(µpm)/Hcpm)→ Gal
(
Q(µpm)/Q(

√
p∗)
)
is represented via the

Artin map by NormK/Q(x) and, by class field theory, we have NormKp/Qp
(xp)

−1 = ǫcyc(σ̄). Hence

ǫcyc(σ̄) ≡ α−2 (mod pm) and ϑ(σ̄) ≡ ±α−1 (mod pm). Thus, observing that ϑ(σ) ≡ 1 (mod pm)
if σ ∈ Gal(Q̄/Q(µpm)), we may write

P̃ σ
c,m = 〈±ϑ(σ)〉P̃c,m

for every σ ∈ Gal(Q̄/Hcpm), where, for any a ∈ Z×
p , the symbol 〈a〉 denotes the diamod operator

and, with a slight abuse of notation, we understand that Gal(Q̄/Kab) acts trivially on P̃c,m in

the definite case. Since the action of 〈−1〉 on Div(X̃m) is trivial, it follows that for all σ ∈
Gal(Q̄/Hcpm) there is an equality

(22) P̃ σ
c,m = 〈ϑ(σ)〉P̃c,m

in Div(X̃m).

5. Hida theory on GL2

Throughout this paper we choose an (algebraic) isomorphism C ≃ Cp where Cp is the comple-
tion of an algebraic closure of Qp, and view any subring of Cp as a subring of C via this fixed
isomorphism.

5.1. Ordinary Hecke algebras. In the next few lines we use Shimura’s notations T (n) and
T (n, n) (with n an integer) for the (abstract) Hecke operators defined as in [44, §3.1–§3.3] by
double cosets.

Define ∆ := µp−1 and Γ := 1 + pZp, so that we have a canonical isomorphism Z×
p ≃ Γ ×∆.

Define the two Iwasawa algebras

Λ := OF [[Γ]], Λ̃ := OF [[Z
×
p ]]

where F is a finite extension of Qp (which will eventually contain the Fourier coefficients of our

modular form f) and OF is its ring of integers, so that we have a natural inclusion Λ ⊂ Λ̃. Finally,

denote by z 7→ [z] the inclusions of group-like elements Γ →֒ Λ and Z×
p →֒ Λ̃.

For any ring A, any congruence subgroup G ⊂ SL2(Z) and any character ψ : G → Q̄×
p let

Sk(G,ψ,A) be the A-module of cusp forms of level G, weight k and character ψ with coefficients
in A. We follow [25] for the presentation of Hida’s Hecke algebras. Define

Γ0,1(N, p
m) := Γ0(N) ∩ Γ1(p

m)
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and write hk,m for the Hecke algebra with OF -coefficients acting on Sk
(
Γ0,1(N, p

m),C
)
. The OF -

algebra hk,m is a finite product of complete local rings. Let hordk,m be the ordinary part of hk,m, i.e.,
the product of those local factors on which the image of Up is a unit. Define the Hecke algebras

of weight k as hk,∞ := lim←−
m

hk,m and hordk,∞ := lim←−
m

hordk,m, the projective limits being taken with

respect to the canonical maps. The OF -algebras hk,∞ and hordk,∞ can be endowed with structures

of Λ̃ and Λ-algebras in such a way that if a is an integer prime to Np and T (a, a)k denotes the
image of T (a, a) in hk,m then the image of [a] in hk,m is the diamond operator 〈a〉k defined by

the formula T (a, a)k = ak−2〈a〉k (here we adopt the conventions of [25] rather than those of [20]).
The Λ-algebra hordk,∞ is finite and flat over Λ. For all weights k, k′ there is a unique isomorphism
of algebras

(23) ρk,k′ : h
ord
k,∞

≃−→ hordk′,∞

taking the images of T (ℓ) and T (ℓ, ℓ) in hordk,∞ to the images of the same operators in hordk′,∞. It

will usually be convenient to identify the Hecke algebras hordk,∞ for all weights k by means of the

isomorphisms (23), so we simply set hord∞ := hord2,∞.

5.2. New quotients. We are especially interested in the C-vector space Snew
k

(
Γ0,1(N, p

m),C
)

consisting of those forms which are new at all the primes dividing N−. Write Tk,m for the image

of hk,m in the endomorphisms ring End
(
Snew
k

(
Γ0,1(N, p

m),C
))

and set

Tk,∞ := lim←−
m

Tk,m, Tord
k,m := eordm · Tk,m, Tord

k,∞ := eord · Tk,∞ = lim←−
m

Tord
k,m

where eordm and eord are Hida’s ordinary idempotent projectors. Isomorphisms (23) yield isomor-
phisms of Λ-modules Tord

k,∞ ≃ Tord
k′,∞ for all weights k, k′, so we identify the algebras Tord

k,∞ for all

weights k and set Tord
∞ := Tord

2,∞.

5.3. Maximal ideals of Hecke algebras. Following [35, §1.4.4], we briefly describe the de-
compositions of our Hecke algebras into products of local components. Since hord∞ and Tord

∞ are
finitely generated Λ-modules, they split as finite products

(24) hord∞ =
∏

m̃

hord∞,m̃, Tord
∞ =

∏

m

Tord
∞,m

of their localizations at their (finitely many) maximal ideals m̃ and m. Every summand appearing
in these decompositions is a complete local ring, finite over Λ. If L is the fraction field of Λ then
hord∞,m̃⊗ΛL and Tord

∞,m⊗ΛL are finite-dimensional artinian algebras over L, so they are sums of local

artinian algebras. If m̃ (respectively, m) is a maximal ideal of hord∞ (respectively, of Tord
∞ ) then

hord∞,m̃ ⊗Λ L (respectively, Tord
∞,m ⊗Λ L) is a direct factor of hord∞ ⊗Λ L (respectively, of Tord

∞ ⊗Λ L).
There are splittings of L-algebras

(25) hord∞ ⊗Λ L =

(
∏

i∈I

Fi

)
⊕
M, Tord

∞ ⊗Λ L =

(
∏

j∈J

Kj

)
⊕
N

where Fi and Kj are finite field extensions of L while M and N are nonreduced. In Hida’s

terminology, the Fi and the Kj are called the primitive components of hord∞ ⊗Λ L and Tord
∞ ⊗Λ L,

respectively. As explained in [20, §3], one has I = J and there are canonical isomorphisms

(26) Fi
≃−→ Ki
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for all i ∈ I. We say that Fi (respectively, Ki) belongs to m̃ (respectively, m) if it is a direct
summand of hord∞,m̃ ⊗Λ L (respectively, of Tord

∞,m ⊗Λ L).
Now fix a modular form

(27) f =
∑

n≥1

anq
n ∈ Sk

(
Γ0(Np), ω

j ,OF

)

with j ≡ k mod 2, where ω : (Z/pZ)× → µp−1 is the Teichmüller character (here µp−1 is the
group of (p − 1)-st roots of unity). Assume that f is a normalized eigenform for the Hecke
operators Tℓ (with ℓ ∤ Np) and Uℓ (with ℓ|Np). Here, as before, F is a finite extension of Qp and
OF is its ring of integers. Let ρf : GQ → GL2(F ) be the p-adic Galois representation attached to
f by Deligne.

Assumption 5.1. Throughout this article we assume that

i) the modular form f is an ordinary p-stabilized newform in the sense that ap ∈ O×
F and

the conductor of f is divisible by N (cf. [16, Definition 2.5]), i.e., f arises from a newform
of level N or Np (this implies, in particular, that ρf is ramified at all the primes dividing
N);

ii) the residual representation ρ̄f is p-distinguished and absolutely irreducible.

Here we recall that ρ̄f is said to be p-distinguished if its restriction to the decomposition group
GQp := Gal(Q̄p/Qp) at p can be put in the shape ρ̄f |GQp

=
( ε1 ∗

0 ε2

)
for characters ε1 6= ε2 (see,

e.g., [14, §2]).
Duality between modular forms and Hecke algebras yields morphisms

θf : Tord
∞ −→ OF , θ̃f : hord∞ −→ OF

such that θf factors through Tord
k,1 and is characterized by θf (T (ℓ)) = aℓ for all primes ℓ, θf ([δ]) =

δk+j−2 for δ ∈ ∆, θf ([γ]) = γk−2 for γ ∈ Γ, while θ̃f is the composition of the canonical projection

hord∞ → Tord
∞ with θf . Let m̃f and mf be the maximal ideals corresponding to the unique local

factors of hord∞ and Tord
∞ through which θ̃f and θf factor. Since f satisfies i) in Assumption 5.1,

we can consider the unique primitive component K of hord∞,m̃f
⊗Λ L appearing in (25) to which f

belongs in the sense of [20, Corollary 3.7] or [22, pp. 316–317] (see also [25, p. 95] for the more
general type of arithmetic groups we are working with here). Thanks to isomorphisms (26), there
is a unique primitive component of Tord

∞,mf
⊗Λ L (appearing in (25)) which is isomorphic to K:

denote this component by the same symbol K. Finally, let R be the integral closure of Λ in K.
Proposition 5.2. The ring R is a complete local noetherian domain which is finitely generated
as a Λ-module.

Proof. See, e.g., [45, Theorem 4.3.4]. �

Observe that R is an hord∞,m̃f
-algebra. Indeed, the field K is an hord∞,m̃f

-algebra; moreover, hord∞,m̃f

identifies by (24) with a Λ-subalgebra of hord∞ , hence it is integral over Λ by (23), and this implies
that hord∞,m̃f

preserves the subring R of K. Analogous arguments show that R is a Tord
∞,mf

-algebra.

Now consider the composition
f∞ : hord∞ −։ hord∞,m̃f

−→ R
in which the first arrow is the natural projection and the second arrow is the structure map of
R as an hord∞,m̃f

-algebra. The map f∞ is uniquely determined by the primitive component K to

which f belongs.
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Definition 5.3. The local Λ-algebra hord∞,m̃f
is the Hida family of f and R is the branch of the

Hida family on which f lives. We call the map f∞ the primitive morphism associated with f .

5.4. Critical characters. Factor ǫcyc : GQ → Z×
p as a product ǫcyc = ǫtameǫwild with ǫtame :

GQ → µp−1 and ǫwild : GQ → Γ and define the critical character Θ : GQ → Λ× by

Θ := ǫ
(k+j−2)/2
tame

[
ǫ
1/2
wild

]

where ǫ
1/2
wild is the unique square root of ǫwild taking values in Γ. If i ∈ Z/(p − 1)Z then the

idempotent

ei :=
1

p− 1

∑

δ∈∆

ω−i(δ)[δ] ∈ OF [[Z
×
p ]]

satisfies the relation

(28) ei[ζ] = ζ iei for all ζ ∈ µp−1.

Since f(ei) = 0 if i 6= k + j − 2, we have ek+j−2(h
ord
k,∞)m̃f

= (hordk,∞)m̃f
. Therefore

(29) ek+j−2(T
ord
k,∞)mf

= (Tord
k,∞)mf

,

and it follows that in (Tord
k,∞)mf

we have

[ǫtame(σ)] = ǫk+j−2
tame (σ)

for all σ ∈ GQ. Furthermore, by definition of Θ, in (Tord
k,∞)mf

there are also equalities

Θ2(σ) = ǫk+j−2
tame (σ)[ǫwild(σ)] = [ǫcyc(σ)]

for all σ ∈ GQ.

5.5. Arithmetic primes and Galois representations. For every integer m ≥ 0 denote by
X0,1(N, p

m) the compactified modular curve of level structure Γ0,1(N, p
m), viewed as a scheme

over Q, by Jac
(
X0,1(N, p

m)
)
its Jacobian variety and by Tap

(
Jac
(
X0,1(N, p

m)
))

the p-adic Tate

module of the Jacobian. As in [25, §2.1], for every integer m ≥ 1 we define the hord∞ -modules

Taordp,m := eordm

(
Tap
(
Jac
(
X0,1(N, p

m)
))
⊗Zp OF

)
, Taord := lim←−

m

Taordp,m,

Taordm̃f
:= Taord ⊗hord

∞

hord∞,m̃f
, T := Taordm̃f

⊗hord
∞,m̃f

R.

All these modules are endowed with hord∞ -linear actions of the Galois group GQ. The R-module
T is free of rank two. Let R† denote R viewed as a module over itself with GQ acting through
Θ−1 and define the critical twist of T to be the GQ-module

T† := T⊗R R† = Taordm̃f
⊗hord

∞,m̃f

R†.

The GQ-module T is unramified outside Np and the arithmetic Frobenius at a prime ℓ ∤ Np
acts with characteristic polynomial X2 − TℓX + [ℓ]ℓ. For a proof of these facts see, e.g., [25,
Proposition 2.1.2] and [32, Théorème 7].

Write mR for the maximal ideal of the local ring R and set

FR := R/mR, Fhord
∞,m̃f

:= hord∞,m̃f

/
m̃fh

ord
∞,m̃f
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for the residue fields of R and hord∞,m̃f
. Since R is finite over Λ by Proposition 5.2, the map

hord∞,m̃f
→ R is also finite, hence integral. Thus FR is naturally a finite extension of Fhord

∞,m̃f

and

hence of Fp. The next result will be exploited in Section 10.

Proposition 5.4. The residual GQ-representation T/mRT is equivalent up to finite base change
to the residual representation ρ̄f of f . In particular, it is absolutely irreducible.

Proof. First of all, if the claimed equivalence of representations is true then the absolute ir-
reducibility follows from condition ii) in Assumption 5.1. With notation as above, there is a
canonical isomorphism of GQ-modules

T/mRT ≃
(
Taordm̃f

/
m̃fTa

ord
m̃f

)
⊗F

hord
∞,m̃f

FR.

As explained in [20, p. 251], all modular forms in the Hida family hord∞,m̃f
have residual repre-

sentation equivalent to ρ̄f . On the other hand, by [25, Proposition 2.1.2], the local ring hord∞,m̃f

is a Gorenstein Λ-algebra, and then [21, §9] (see also [32, §3]) shows that the residual GQ-

representation Taordm̃f

/
m̃fTa

ord
m̃f

is equivalent (up to finite base change) to ρ̄f . �

Now recall that Γ := 1 + pZp. If A is a finitely generated commutative Λ-algebra then a
homomorphism of OF -algebras κ : A→ Q̄p is said to be arithmetic if the composition of κ with
the canonical map Γ → A× has the form γ 7→ ψ(γ)γr−2 for some integer r ≥ 2 and some finite
order character ψ of Γ. The kernel of an arithmetic homomorphism, which is a prime ideal of
A, is said to be an arithmetic prime of A. If p is an arithmetic prime of A and, as usual, Ap

is the localization of A at p then the residue field Fp := Ap/pAp is a finite extension of F . The
composition Γ→ A× → F×

p has the form γ 7→ ψp(γ)γ
rp−2 for a finite order character ψp : Γ→ F×

p

and an integer rp, and we call ψp and rp the wild character and the weight of the arithmetic prime

p, respectively. The homomorphisms of OF -algebras θ̃f and θf that were attached in §5.3 to the
modular form f are arithmetic.

Let p be an arithmetic prime of R of weight rp and character ψp, and set

(30) mp := max
{
1, ordp

(
cond(ψp)

)}
.

By [21, Corollary 1.3], the morphism obtained by composing the maps

hord∞
f∞−−→ R −→ Fp

factors through hordrp and determines, by duality, an ordinary p-stabilized newform

(31) fp =
∑

n≥1

an(fp)q
n ∈ Srp

(
Γ0,1(N, p

mp), ζp, Fp

)

where, for simplicity, we put ζp := ψpω
k+j−rp.

Denote by V (fp) the GQ-representation over Fp attached to fp by Deligne. Thanks to a result
of Ribet ([42, Theorem 2.3]), it is known that V (fp) is (absolutely) irreducible. Define the GQ-

modules Tp := T⊗RRp and Vp := T⊗R Fp = Tp/pTp and their critical twists T†
p := T† ⊗RRp

and V †
p := T† ⊗R Fp. Then V †

p is a twist of the classical representation attached to fp. See [25,

§2.1] and [35, §1.5 and §1.4] for details. Let now v be a place of Q̄ above p, let Dv ⊂ GQ be a
decomposition group at v and let Iv ⊂ Dv be the inertia subgroup. Denote by ηv : Dv/Iv →R×
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the character defined by sending the arithmetic Frobenius to Up. Then [25, Proposition 2.4.1]
ensures that there is a short exact sequence of R[Dv ]-modules

0 −→ F+
v (T) −→ T −→ F−

v (T) −→ 0

where F+
v (T) and F−

v (T) are free R-modules of rank one and Dv acts on F+(T) (respectively,
on F−

v (T)) through η−1
v ǫcyc[ǫcyc] (respectively, through ηv). Furthermore, if M denotes one of

Tp, Vp, T
†
p and V †

p then twisting by Θ−1 and tensoring the above exact sequence by Rp or Fp

yields another short exact sequence of Dv-modules

0 −→ F+
v (M) −→M −→ F−

v (M) −→ 0,

where F+
v (M) and F−

v (M) are free modules of rank one over either Rp or Fp, depending on

whether M ∈
{
Tp,T

†
p

}
or M ∈

{
Vp, V

†
p

}
, respectively. Finally, the Galois group GQ acts on

F+
v (M) and F−

v (M) either by η−1
v ǫcyc[ǫcyc] and ηv or by Θ−1η−1

v ǫcyc[ǫcyc] and Θ−1ηv, depending

on whether M ∈
{
Tp, Vp

}
or M ∈

{
T

†
p, V

†
p

}
, respectively.

5.6. Selmer groups. We recall the definitions of the various Selmer groups that are relevant for
our purposes. The reader may also wish to consult [25, §2.4] and [35, §2.1].

Let L be a number field and for any prime v of L let Lv the completion of L at v and Lunr
v the

maximal unramified extension of Lv. Let M be one of the left R[GQ]-modules T, T†, Tp, T
†
p, Vp,

V †
p where R denotes the ring R in the first two cases, the ring Rp in the middle two cases and

the field Fp in the last two cases. Fix a prime v of L and define the Greenberg local subgroup at
v by

H1
Gr(Lv,M) :=




ker
(
H1(Lv,M) −→ H1(Lunr

v ,M)
)

if v ∤ p,

ker
(
H1(Lv,M) −→ H1(Lv, F

−
v (M))

)
if v | p.

Then the Greenberg Selmer group is by definition the group

SelGr(L,M) := ker
(
H1(L,M) −→

∏

v

H1(Lv,M)/H1
Gr(Lv,M)

)
.

Let A† := HomZp

(
T†,µp∞

)
. For M = T†, A† or V †

p one can also consider the Nekovář Selmer

group H̃1
f (L,M), which for M = T† or V †

p sits in the short exact sequence

(32) 0 −→
⊕

v|p

H0
(
Lv, F

−
v (M)

)
−→ H̃1

f (L,M) −→ SelGr(L,M) −→ 0,

the direct sum being extended over the primes of L above p. The reader is referred to [34, Ch.
6] for definitions and to [34, Lemma 9.6.3] for a proof of (32).

If M = Vp or V †
p one has the Bloch–Kato Selmer group H1

f (L,M) as well, whose definition (in

terms of Fontaine’s ring Bcris) can be found in [5, §3 and §5]. If M = V †
p and p has even weight

then, by [34, Proposition 12.5.9.2], this group fits into the short exact sequence

(33) 0 −→
⊕

v|p

H0
(
Lv, F

−
v (V †

p )
)
−→ H̃1

f

(
L, V †

p

)
−→ H1

f

(
L, V †

p

)
−→ 0.

An arithmetic prime p of R is said to be exceptional if rp = 2, the character ψp is trivial and the
image of Up under the map R → Fp is equal to ±1. The relations between the Selmer groups that
we introduced above are then summarized by exact sequences (32) and (33) and the following
result.
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Proposition 5.5. (1) If p is a non-exceptional arithmetic prime of R then H̃1
f

(
L, V †

p

)
and

SelGr

(
L, V †

p

)
are isomorphic.

(2) If p is an arithmetic prime of even weight then H1
f

(
L, V †

p

)
and SelGr

(
L, V †

p

)
are isomor-

phic.

Proof. The first assertion is [25, (22)], which follows from [25, Lemma 2.4.4]. The last claim is
[25, (23)], which is immediate from (32) and (33). �

6. Hida theory on quaternion algebras

Recall the quaternion algebra B over Q of discriminant N− introduced at the beginning of
the paper. In the following (in slight conflict with the conventions of Section 5) we use Hida’s
notations T (n) and T (n, n) for the (abstract) Hecke operators defined as in [22, p. 309] by double
cosets. In this section we always assume that B is a division algebra, the theory for the split case
B ≃ M2(Q) having been considered earlier.

Fix an integer m ≥ 0. Recall that Div(X̃m) and Div0(X̃m) denote the groups of divisors and

of degree zero divisors, respectively, on X̃m. Let Pr(X̃m) be the group of principal divisors on

X̃m and define, as usual, the Picard groups

Pic(X̃m) := Div(X̃m)/Pr(X̃m), Pic0(X̃m) := Div0(X̃m)/Pr(X̃m).

The groups Pic(X̃m) and Pic0(X̃m) are connected by the short exact sequence

(34) 0 −→ Pic0(X̃m) −→ Pic(X̃m)
deg−−→ Z −→ 0,

where deg is the degree map.

6.1. Hecke modules in the definite case. Assume that B is definite and fix an integer m ≥ 0.

As pointed out in [1, §1.4] and [17, §4], in this case Pic(X̃m) can be identified with the free abelian

group Z
[
Um\B̂×/B×

]
on the finite set of double cosets Um\B̂×/B× and Pic0(X̃m) corresponds

to the degree zero elements in this group. With notation as in §2.1, the sequence m 7→ h̃(m)
is unbounded because the same is true, by [40, Theorem 16], of the sequence m 7→ h(m), and

h(m) ≤ h̃(m). Hence the ranks of the free abelian groups Pic(X̃m) and Pic0(X̃m) are unbounded
as m varies. Now define

Jm := Pic(X̃m)⊗Z OF , J0
m := Pic0(X̃m)⊗Z OF .

Tensoring (34) with OF over Z yields a short exact sequence of OF -modules

(35) 0 −→ J0
m −→ Jm

deg−−→ OF −→ 0.

By what has been said a few lines before, there is an identification of OF -modules

(36) Jm = OF

[
Um\B̂×/B×

]
,

which will usually be viewed as an equality. The abelian group Pic(X̃m) is finitely generated,

so, by [28, Theorem 7.11], it follows that EndZ
(
Pic(X̃m)

)
⊗Z OF is canonically isomorphic to

EndOF
(Jm). A similar remark also applies to J0

m.
In [1, §1.4] (see also [17, §4]) it is explained how equality (36) can be used to define an Hecke

algebra with OF -coefficients, which we denote by Bm, acting (via Brandt matrices) on Jm and
J0
m.
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Let us now assume m ≥ 1. Since Bm is a finitely generated OF -module, we can define an
idempotent eordm ∈ Bm attached to the Hecke operator Up and introduce the ordinary parts

X ord := eordm · X for X ∈
{
Bm, Jm, J

0
m

}
. So Jord

m is a Bord
m -module. Since Up has degree p, exact

sequence (35) implies that there is an isomorphism of Bord
m -modules

Jord
m ≃ J0,ord

m .

The maps α̃m : X̃m → X̃m−1 induce (by covariant functoriality) maps α̃m,∗ : Jm → Jm−1 and
α̃m,∗ : J

0
m → J0

m−1 preserving the ordinary parts, so one can consider the projective limits

J∞ := lim←−
m

Jm, J0
∞ := lim←−

m

J0
m, Jord

∞ := lim←−
m

Jord
m

with respect to these maps. Define

B∞ := lim←−
m

Bm, Bord
∞ := lim←−

m

Bord
m

with respect to the canonical maps. Then Jord
∞ is a Bord

∞ -module, while J∞ and J0
∞ are B∞-

modules.

6.2. Hecke modules in the indefinite case. Now suppose that B is indefinite and fix an

integer m ≥ 0. Then Pic0(X̃m) can be identified with the Jacobian variety Jac(X̃m) of X̃m,

which is an abelian variety defined over Q whose dimension equals the genus of X̃m, while (34)

shows that Pic(X̃m) is an extension of Z by Pic0(X̃m). More precisely, Pic(X̃m) identifies with

the Q̄-points of the Picard scheme of X̃m and Pic0(X̃m) with the identity component of this

scheme. If L is an extension of Q then we denote by Pic(X̃m)(L) and Pic0(X̃m)(L) the L-rational

points of Pic(X̃m) and Pic0(X̃m), respectively. Unlike what was done in the definite case, in
the indefinite case by Jm and J0

m we mean the functor from the category of Q-algebras to the
category of OF -modules which associate with any field extension L/Q the OF -modules

Jm(L) := Pic(X̃m)(L)⊗Z OF , J0
m(L) := Jac(X̃m)(L)⊗Z OF ,

respectively. These modules are endowed with a canonical action of a Hecke OF -algebra Bm,
which is induced by the Hecke action on divisors via Albanese functoriality.

Let L be an algebraic extension of Q and set GL := Gal(Q̄/L). Since Jac(X̃m) is defined over
Q, the OF -module J0

m(L) has a natural left GL-action and so is canonically a left Bm[GL]-module.
Furthermore, the ordinary part

J0,ord
m (L) := eordm · J0

m(L)

inherits a canonical structure of left Bord
m [GL]-module, where eordm denotes as above Hida’s ordinary

projector.
Suppose that L is a number field. Tensoring (34) (with values in L) by OF over Z yields, as

above, a short exact sequence of left OF [GL]-modules

(37) 0 −→ J0
m(L) −→ Jm(L)

deg−−→ OF −→ 0.

Since Jm(L) is a finitely generated OF -module, it makes sense to introduce the idempotent eordm

in Bm attached to the Hecke operator Up and define the ordinary part of Jm(L) to be

Jord
m (L) := eordm · Jm(L).

Now observe that, since Up has degree p, sequence (37) shows that

(38) Jord
m (L) = J0,ord

m (L)
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for every m ≥ 0 and every number field L. Let now L/Q be an algebraic field extension and write
it as a direct limit L = lim−→Li of finite extensions. Since the Jm(Li) have ordinary parts which

are compatible with direct limits, we can define the ordinary part of Jm(L) as

Jord
m (L) := lim−→

i

Jord
m (Li).

Thanks to (38), and the fact that J0
m(L) = lim−→J0

m(Li) because direct limits commute with tensor
products, we see that

Jord
m (L) = J0,ord

m (L)

for every m ≥ 0 and every extension L/Q. Thus Jord
m (L) is a Bord

m -module for every m and every
extension L/Q, where Bord

m := eord · Bm.
As above, for every extension L/Q and every m ≥ 1 we can define by covariant functoriality

maps α̃m,∗ : Jm(L)→ Jm−1(L) and α̃m,∗ : J0
m(L)→ J0

m−1(L) which preserve the ordinary parts,
so we can form the projective limits

J∞(L) := lim←−
m

Jm(L), J0
∞(L) := lim←−

m

J0
m(L), Jord

∞ (L) := lim←−
m

Jord
m (L)

with respect to these maps. Form the OF -modules

B∞ := lim←−
m

Bm, Bord
∞ := lim←−

m

Bord
m .

In particular, J0
∞(L) is a left B∞[GL]-module and Jord

∞ (L) is a left Bord
∞ [GL]-module. Write

Tap
(
Jac(X̃m)

)
for the p-adic Tate module of Jac(X̃m) and define

Tm := Tap
(
Jac(X̃m)

)
⊗Zp OF , T∞ := lim←−

m

Tm

where the inverse limit is with respect to the canonical projection maps. Then T∞ and Tm are
B∞ and Bm-modules, respectively, and one can define the ordinary parts

T ord
m := eordm · Tm, T ord

∞ := eord · T ord
∞ ,

which are left Bord
m [GQ] and Bord

∞ [GQ]-modules, respectively.

6.3. Jacquet–Langlands correspondence. In order to simplify notations, set T⋆ := T2,⋆ and

Tord
⋆ := Tord

2,⋆ for ⋆ an integer m ≥ 0 or the symbol ∞: this is an extension of the convention
introduced at the end of §5.2.

The Jacquet–Langlands correspondence (see [24, §2.4]) gives an isomorphism of OF -algebras

(39) JLm : Tm
≃−→ Bm

taking T (ℓ)2 and T (ℓ, ℓ)2 to the analogous operators in Bm. We define a continuous structure of

Λ̃-algebra on B∞ and Bord
∞ as in [24, §3.2.8], and denote [z] 7→ 〈z〉 the image of group-like elements

of Λ̃. We normalize this action so that if n is an integer coprime with Np then T (n, n) = 〈n〉
as operators in Bm (as in the case of elliptic modular forms, we adopt the normalization in [25]
instead of the one usually found in Hida’s papers).

Proposition 6.1 (Jacquet–Langlands). There is a canonical isomorphism of Λ̃-algebras

JLord
∞ : Tord

∞
≃−→ Bord

∞ .
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Proof. For m ≥ 1 there are commutative diagrams

Tord
m

JLord
m

//

��

Bord
m

��

Tord
m−1

JLord
m−1

// Bord
m−1

where the vertical arrows are the canonical projections. The claim of the proposition then follows
by taking inverse limits and noticing that the two Λ̃-algebra structures agree on the set of integers
prime to Np, so (by a continuity argument) they must be equal. �

In light of (39) and Proposition 6.1, from here on we identify the algebras B⋆
• with the corre-

sponding T⋆
•, and use the latter symbols to denote both Hecke algebras. Similarly, we identify

the maximal ideal mf and the ring R with their images via JLord
∞ .

Finally, we write Tord,†
∞ and Tord,†

m for the twisted GQ-modules Tord
∞ and Tord

m , respectively,
where the action of GQ is via Θ−1.

6.4. Galois representations in the indefinite case. In this subsection, as in [12], we work
under the following assumption, whose analogue for the Hida family hord∞,m̃f

is true by [25, Propo-

sition 2.1.2].

Assumption 6.2. The Λ-algebra Tord
∞,mf

is Gorenstein, that is Tord
∞,mf

≃ HomΛ

(
Tord
∞,mf

,Λ
)
as

Tord
∞,mf

-modules.

Define

T ord
∞,mf

:= T ord
∞ ⊗Tord

∞

Tord
∞,mf

, TSh := T ord
∞,mf

⊗Tord
∞,mf

R, T
†
Sh := TSh ⊗R R†.

Let p be an arithmetic prime of R and set

TSh,p := TSh ⊗R Rp, T
†
Sh,p := TSh,p ⊗R R†,

VSh,p := TSh,p/pTSh,p, V †
Sh,p := VSh,p ⊗R R†.

All these groups are endowed with GQ and Heche actions. As before, let mR be the maximal
ideal of the local ring R. The next assumption plays the role of [12, Hypothèse 1.4.26].

Assumption 6.3. The residual GQ-representation TSh/mRTSh is absolutely irreducible.

We keep Assumptions 6.2 and 6.3 for the rest of this subsection. We first recall the basic
properties of the representations TSh.

Proposition 6.4. (1) The R-module TSh is free of rank two.
(2) The GQ-representation TSh is unramified outside Np and the arithmetic Frobenius at a

prime ℓ ∤ Np acts with characteristic polynomial X2 − TℓX + [ℓ]ℓ.
(3) For any arithmetic prime p of R denote by V (fp) the GQ-representation over Fp attached

to fp. Then the GQ-representation VSh,p is equivalent to the dual V ∗(fp) of V (fp), hence

to V (fp)(rp − 1)⊗ [ζ−1
p ].

Proof. Keeping our assumptions on the form f in mind, it can be checked that the hypotheses
made in [12, §1.4.5] and used in the proof of [12, Théorème 1] are verified. We just remark that,
in our context, [12, Hypothèse 1.4.28] is the analogue for Shimura curves of the main result of
[30], whose generalization to Shimura curves when N+ = 1 and N− = pq (with p, q distinct
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primes) is provided by [43, Theorem 2]. Assuming that the representation associated with f is
ramified at all primes dividing N−, we expect that this result holds in our more general situation
as well (details will be given elsewhere). Since all assumptions are verified, the statements of the
proposition follow from [12, Théorème 1]. �

Now recall the R-module T defined in §5.5. The following consequence of Proposition 6.4 will
be crucial for our arguments.

Corollary 6.5. There are isomorphisms of GQ[T
ord
∞,mf

]-modules T ≃ TSh and T† ≃ T
†
Sh.

Proof. First of all, by §5.5 and part (1) in Proposition 6.4, both T and TSh are free R-modules
of rank two. Moreover, Proposition 5.4 and Assumption 6.3 guarantee that the residual GQ-
representations T/mRT and TSh/mRTSh are absolutely irreducible. Finally, by §5.5 and part
(2) in Proposition 6.4, the arithmetic Frobenius at a prime ℓ ∤ Np acts on T and TSh with the
same characteristic polynomial. Putting all these statements together, the isomorphisms of GQ-

modules T ≃ TSh and T† ≃ T
†
Sh follow from, e.g., [29, §5, Corollary]. The Hecke equivariance is

immediate from the definitions. �

Corollary 6.5 implies that for every arithmetic prime p ofR there are isomorphisms ofGQ[T
ord
∞,mf

]-

modules Tp ≃ TSh,p, T
†
p ≃ T

†
Sh,p Vp ≃ VSh,p, V

†
p ≃ V †

Sh,p, so in the following we will unify these

notations and write T in place of TSh, and analogously for the other Galois and Hecke-modules.

7. Big Heegner points and classes

In this section we introduce big Heegner points and big Heegner classes, and prove their main
compatibility properties. Note that the first three subsections apply both to the definite and to
the indefinite case. These results generalize the construction of Galois cohomology classes out of
Heegner points on classical modular curves achieved by Howard in [25]. The reader is also referred
to the work of Fouquet ([12], [13]) for an extension of some of Howard’s results to the broader
setting of Shimura curves attached to indefinite quaternion algebras over totally real fields.

For every integer d ≥ 0 we introduce the notation

Gd := Gal(Kab/Hd)

where, with a slight abuse, we set H0 := K, so that G0 = Gal(Kab/K) is the abelianization Gab
K

of the absolute Galois group GK = Gal(Q̄/K) of K.

Recall the subsets X̃
(K)
m defined in §2.1 (definite case) and §2.2 (indefinite case), where K is

an imaginary quadratic field admitting injections K →֒ B. In both cases, let us denote by

Dm := Div
(
X̃(K)

m

)

the submodule of Div(X̃m) supported on points in X̃
(K)
m , endowed with natural Hecke and Gab

K -
actions. Define

Dord
m := Dm ⊗Tm Tord

m .

For m ≥ 2, the maps α̃m : X̃
(K)
m → X̃

(K)
m−1 induce, by covariant functoriality, maps α̃m : Dm →

Dm−1 that respect the ordinary parts, so we can define

Dord
∞ := lim←−

m

Dord
m .

This group is naturally endowed with actions of Tord
∞ and Gab

K . In the indefinite case, when we

want to emphasize the field of rationality H ⊂ Kab of a divisor or a limit of divisors we write
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Dord
⋆ (H), for ⋆ = m or∞. (In the definite case, all the points in Dm are rational over K, so there

is no need to specify fields of rationality.) Observe that R is naturally a Tord
∞ -module through

the composition Tord
∞ → Tord

∞,mf
→ R. Define

Dm := Dord
m ⊗Tord

∞

R, D†
m := Dm ⊗R R†

(the structure of Tord
∞ -module on Dord

m is via the projection Tord
∞ → Tord

m ) and

D := Dord
∞ ⊗Tord

∞

R, D† := D⊗R R†.

All these groups are endowed with Hecke and Gab
K -actions. Of course, in the indefinite case they

are more generally endowed with GQ-actions.

7.1. Galois relations. Fix an integer m ≥ 1 and let σ ∈ Gal(Q̄/Hcpm). The inclusion Q(
√
p∗) ⊂

Hcpm implies that σ is the identity on Q(
√
p∗), so it follows that there exists ξσ ∈ µp−1 such that

ξ2σ = ǫtame(σ). Hence

(40) ξσǫ
1/2
wild(σ) = ±ϑ(σ),

with ϑ as in §4.4. By definition, Θ(σ) = ξk+j−2
σ

[
ǫ
1/2
wild(σ)

]
. From (28) it follows that

(41) Θ(σ)ek+j−2 = ξk+j−2
σ

[
ǫ
1/2
wild(σ)

]
ek+j−2 = ek+j−2

[
ξσǫ

1/2
wild(σ)

]

in Λ. Equations (29), (40) and (41) imply that

(42) Θ(σ)P = [±ϑ(σ)]P = 〈ϑ(σ)〉P
for all P ∈ Dm, where 〈ℓ〉 is the diamond operator at ℓ as in §4.4.

Recall the point P̃c,m ∈ X̃
(K)
m defined in §4.2 and write Pc,m for its image in Dm. For all

σ ∈ Gal(Q̄/Hcpm), equations (22) and (42) give the equality Pσ
c,m = Θ(σ)Pc,m in Dm, from

which it follows that

Pc,m ∈ H0
(
Gcpm,D†

m

)
.

7.2. Hecke relations. For any integers s, t ≥ 1 write corHst/Hs
for the corestriction map from

Hst to Hs. Explicitly, for all η ∈ Gal(Hst/Hs) choose an extension η̃ ∈ Gal(Kab/Hs) of η; if

Q ∈ H0
(
Gst,D†

m

)
then

(43) corHst/Hs
(Q) =

∑

η∈Gal(Hst/Hs)

Θ(η̃−1)Qη̃.

As usual, the maps α̃m : X̃m → X̃m−1 induce maps

α̃m = α̃m,∗ : H
0
(
Gcpm ,D†

m

)
−→ H0

(
Gcpm,D†

m−1

)

by covariant functoriality.

Proposition 7.1. The equality

α̃m

(
corHcpm/H

cpm−1
(Pc,m)

)
= Up(Pc,m−1)

holds in H0
(
Gcpm−1 ,D†

m−1

)
for all m ≥ 1.
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Proof. Since Hcpm and Hcpm−1(µp∞) are linearly disjoint over Hcpm−1 , we can fix a finite set

Sm ⊂ Gal(Kab/Hcpm−1) of extensions of the elements in Gal(Hcpm/Hcpm−1) such that every

σ ∈ Sm acts trivially on µp∞ . Applying ek+j−2e
ord to the equation of Proposition 4.7 yields the

analogous relation

α̃m

( ∑

σ∈Sm

Pσ
c,m

)
= Up(Pc,m−1).

Now we calculate the corestriction corHcpm/H
cpm−1

by choosing the elements η̃ of (43) in Sm, and

this yields

α̃m

(
corHcpm/H

cpm−1
(Pc,m)

)
= α̃m

( ∑

σ∈Sm

Pσ
c,m

)
.

The result follows. �

For all m ≥ 1 define

Pc,m := corHcpm/Hc
(Pc,m) ∈ H0

(
Gc,D†

m

)
.

Corollary 7.2 (Hecke relations). The equality

α̃m(Pc,m) = Up(Pc,m−1).

holds in H0
(
Gc,D†

m−1

)
for all m ≥ 1.

Proof. Straightforward from Proposition 7.1 on applying corH
cpm−1/Hc

. �

7.3. Big Heegner points. Thanks to Corollary 7.2 and the isomorphism

lim←−
m

H0
(
Gc,D†

m

)
≃ H0

(
Gc,D†

)
,

the following definition makes sense.

Definition 7.3. The big Heegner point of conductor c is the element

Pc := lim←−
m

U−m
p

(
Pc,m

)
∈ H0

(
Gc,D†

)
.

7.4. Big Heegner classes in the indefinite case. Suppose we are in the indefinite case. Let

H
(Np)
c be the maximal extension of Hc unramified outside Np and set

G(Np)
c := Gal

(
H(Np)

c /Hc

)
.

If, with the above notations and conventions, we set J†
m := Jord

m ⊗T∞
R†, then we may define the

twisted Kummer map

δm : H0
(
Hc,J

†
m

(
Hcpm(µpm)

))
−→ H1

(
G(Np)

c ,T†
m

)

as in [25, p. 101]. Write

P̄c,m ∈ H0
(
Hc,J

†
m

(
Hcpm(µpm)

))

for the image of Pc,m ∈ H0
(
Gc,D†

m

)
under the natural map and set κc,m := δm(P̄c,m). Be-

cause of the Up-equivariance of the Kummer map, the Hecke relations of Corollary 7.2 imply the
corresponding relations

(44) α̃m(κc,m) = Up(κc,m−1).
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Thanks to (44) and the isomorphism of Tord,†
∞ -modules

(45) lim←−
m

H1
(
G(Np)

c ,T†
m

)
≃ H1

(
G(Np)

c ,T†
)
,

we can give the following

Definition 7.4. The big Heegner class of conductor c is the element

κc := lim←−
m

U−m
p

(
κc,m

)
∈ H1

(
G(Np)

c ,T†
)
.

Put Hcp∞(µp∞) := ∪m≥1Hcpm(µpm) and, as above, define

J† := Jord
∞ ⊗Tord

∞

R†.

By isomorphism (45), taking the inverse limit with respect to the maps δm yields a twisted
Kummer map

δ∞ : H0
(
G(Np)

c ,J†
(
Hcp∞(µp∞)

))
−→ H1

(
G(Np)

c ,T†
)
.

Write
P̄c ∈ H0

(
Gc,J†

(
Hcp∞(µp∞)

))

for the image of Pc ∈ H0
(
Gc,D†

)
under the natural map. The next lemma will be used in the

proof of Corollary 8.2.

Lemma 7.5. δ∞(P̄c) = κc.

Proof. Recall that, by definition, δm(P̄c,m) = κc,m and pass to the inverse limit over m. �

Remark 7.6. In the special case where N− = 1 (i.e., when B ≃ M2(Q)) we expect that our system
of big Heegner classes essentially coincides with the system of big Heegner points considered by
Howard in [25]. On the contrary, we have not investigated the existence of an explicit relation
between our indefinite cohomology classes and the specialization to the base field F = Q of the
ones introduced by Fouquet in [12].

8. Euler system relations

This section is devoted to the proof of the “Euler system” relations satisfied by the classes
Pc,m and Pc introduced above. The formulas obtained, which are the counterparts in our defi-
nite/indefinite quaternionic setting of the results in [25, §2.3], will be used in §10.2 to control the
size of certain Selmer groups.

8.1. The operator Up. We begin with an analysis of the action of the Hecke operator Up.

Proposition 8.1. For all m ≥ 1 the equality

Up

(
Pc,m

)
= corH

cpm+1/Hcpm

(
Pcp,m

)

holds in H0
(
Gcpm ,D†

m

)
.

Proof. The proof is similar to that of Proposition 7.1. Applying ek+j−2e
ord to the equation of

Proposition 4.8 yields the analogous relation
∑

σ∈Sm
Pσ

cp,m = Up(Pc,m) in D
†
m, and calculating

corestriction corH
cpm+1/Hcpm

by choosing the elements η̃ of (43) in Sm+1 gives the result. �

Corollary 8.2. The following relations hold for all integers c,m ≥ 1:

(1) Up(Pc,m) = corHcp/Hc
(Pcp,m) in H0

(
Gc,D†

m

)
;
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(2) Up(Pc) = corHcp/Hc
(Pcp) in H0

(
Gc,D†

)
;

(3) Up(κc) = corHcp/Hc
(κcp) in H

1
(
G

(Np)
c ,T†

)
.

Proof. Relation (1) follows easily from Proposition 8.1 and the equality

corHcp/Hc
◦ corH

cpm+1/Hcp
= corHcpm/Hc

◦ corH
cpm+1/Hcpm

.

Relation (2) follows from (1) by passing to the inverse limit over m. Finally, relation (3) is a
consequence of Lemma 7.5 and the equivariance of the twisted Kummer map with respect to the
action of Up. �

8.2. The operators Tℓ. Let c ≥ 1 be an integer prime to N . Fix an integer m ≥ 0 and a prime
number ℓ ∤ Npmc which is inert in K. As done before when proving explicit formulas for the
operators Tℓ, in this subsection we assume for simplicity that O×

cpm = {±1}.
Proposition 8.3. The equality

Tℓ(Pc,m) = corHcℓpm/Hcpm
(Pcℓ,m)

holds in H0
(
Gc,D†

m

)
.

Proof. Similar to that of Proposition 8.1. Choose a set S ⊂ Gal(C/Hcpm) of extensions of
Gal(Hcℓpm/Hcpm) such that every σ ∈ S acts trivially on µp∞ . Proposition 4.9 gives

(46)
∑

σ∈S

Pσ
cℓ,m = Tℓ

(
Pc,m

)

in D
†
m. Applying ek+j−2e

ord and calculating corHcℓpm/Hcpm
by choosing the elements η̃ of (43) in

S yields the desired result. �

Corollary 8.4. There are equalities

(1) Tℓ(Pc,m) = corHcℓ/Hc
(Pcℓ,m) in H0

(
Gc,D†

m

)
;

(2) Tℓ(Pc) = corHcℓ/Hc
(Pcℓ) in H0

(
Gc,D†

)
;

(3) Tℓ(κc) = corHcℓ/Hc
(κcℓ) in H

1
(
G

(Np)
c ,T†

)
.

Proof. Same proof as for Corollary 8.2, but this time to obtain relation (1) one uses the equality

corHcℓ/Hc
◦ corHcℓpm/Hcℓ

= corHcpm/Hc
◦ corHcℓpm/Hcpm

,

and for relation (3) one uses the equivariance of the twisted Kummer map with respect to the
action of Tℓ. �

8.3. The Eichler–Shimura congruence relation. Throughout this subsection we restrict to
the indefinite case. Let ℓ ∤ Npc be a prime which is inert in K. By class field theory, ℓ splits
completely in the extension Hc/K. Fix a prime λ of Hc above ℓ. Note that λ is totally ramified

in Hcℓ, so λ ·OHcℓ
= λ̃ℓ+1 for a prime ideal λ̃ of the ring of integers OHcℓ

of Hcℓ above ℓ. For every
prime number q and every integer k ≥ 1 denote by Fqk the field with qk elements, and for every
number field H and every prime ideal q of the ring of integers of H denote by Frobq a Frobenius
element at q and by FH,q the residue field of H at q. Then there are canonical isomorphisms

Fℓ2 ≃ FK,ℓ ≃ FHc,λ ≃ FHcℓ,λ̃
.

Write X̃m,ℓ for the canonical (smooth, proper) integral model of X̃m over Zℓ. By the valuative

criterion of properness, any point x ∈ X̃m extends uniquely to a point in X̃m,ℓ, which will be

denoted in the same fashion. As in §8.2, we assume that O×
cpm = {±1}.
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Lemma 8.5. Let ℓ ∤ Npc be a prime number which is inert in K. Then in X̃m,ℓ we have:

Pcℓ,m ≡ Frobλ
(
Pc,m

)
(mod λ̃).

Proof. Choose Sm as in the proof of Proposition 8.3. For any σ ∈ S, there is a congruence

Pσ
cℓ,m ≡ Pcℓ,m mod λ̃

because λ is totally ramified in Hcℓ. Therefore, by (46), it follows that

Tℓ(Pc,m) ≡ (ℓ+ 1)Pcℓ,m mod λ̃.

The Eichler–Shimura congruence relation (see, e.g., [6, §10.3]) shows that Tℓ = Frobℓ + Frob∗ℓ
(mod ℓ), hence at least one of the points in the divisor Tℓ

(
Pc,m

)
is congruent to Frobλ

(
Pc,m

)

modulo λ̃. Thus the same holds for all the points in the divisor Tℓ
(
Pc,m

)
, and in particular for

Pcℓ,m. �

Remark 8.6. See [18, Proposition 3.7] for the same argument applied in the context of Heegner
points on (classical) modular curves.

Proposition 8.7. Let ℓ ∤ Npc be a prime number which is inert in K. Then κcℓ and Frobλ(κcℓ)
have the same image in H1

(
Hcℓ,λ̃,T

†
)
.

Proof. Proceed as in the proof of [25, Proposition 2.3.2], using Lemma 8.5. �

9. Arithmetic applications and conjectures: the definite case

From here to the end of the paper, fix a modular form f of weight k as in (27) and let

f∞ : hord∞ −→ R
be the primitive morphism associated with f . If p is an arithmetic prime of R then fp is the
modular form introduced in (31). Recall that R is a complete local noetherian domain which is
finitely generated as a Λ-module (Proposition 5.2) and that if p is an arithmetic prime of R and
P := p∩Λ then ΛP ⊂ Rp is an unramified extension of discrete valuation rings (see [21, Corollary
1.4] or [34, §12.7.5]).

The purpose of the following sections is to apply our constructions of big Heegner points and
classes to various arithmetic situations. While so far we have strived to adopt a uniform approach
to the definite and indefinite cases, at this point it is inevitable to distinguish between these two
settings. In fact, the philosophy behind the so-called “parity conjectures” suggests that the
definite case deals with even rank (most typically, rank zero) situations while the indefinite case
takes care of odd rank (most notably, rank one) contexts.

Throughout this section we assume that we are in the definite case, i.e. that the quaternion
algebra B is definite.

9.1. Algebraic results. Let m ≥ 0 be an integer. Since X̃m is a disjoint union of h̃(m) curves

of genus 0, we can fix an isomorphism of OF -modules between H0

(
X̃m(C),OF

)
and Jm where

H⋆ denotes singular homology. The above isomorphism endows H0

(
X̃m(C),OF

)
with a canonical

Hecke action. Passing to the ordinary parts, one thus obtains an isomorphism of Hecke modules

(47) Hord
0

(
X̃m(C),OF

)
:= eordm ·H0

(
X̃m(C),OF

)
≃ Jord

m .
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The cohomology module H0
(
X̃m(C), F/OF

)
with coefficients in F/OF is also equipped with a

canonical Hecke action, and its ordinary part is defined in the usual way. For any OF -module M
let

M∗ := HomOF
(M,F/OF )

denote its Pontryagin dual, with induced Hecke action whenever M is a module over the Hecke
algebra. Then (see, e.g., [23, §1.9]) there is a canonical isomorphism of Hecke modules

H0
(
X̃m(C), F/OF

)∗ ≃ H0

(
X̃m(C),OF

)

which induces an isomorphism of OF -modules

(48) H0
ord

(
X̃m(C), F/OF

)∗ ≃ Hord
0

(
X̃m(C),OF

)
.

Following [22, Definition 8.5], set

V := lim−→
m

H0
ord

(
X̃m(C), F/OF

)
, V := V∗.

Then (47) and (48) yield isomorphisms of OF -modules

V = HomOF

(
lim−→m

H0
ord

(
X̃m(C), F/OF

)
, F/OF

)

≃ lim←−
m

H0
ord

(
X̃m(C), F/OF

)∗

≃ lim←−
m

Hord
0

(
X̃m(C),OF

)
≃ lim←−

m

Jord
m = Jord

∞ .

(49)

Recall that Γ := 1 + pZp and define Γm := 1 + pmZp; in particular,

Λ := OF [[Γ]] = lim←−
m

OF [Γ/Γm].

The group Γ acts on B̂× via multiplication on the p-component, and this induces an OF -linear
action of Γ/Γm on Jm. Thus Jord

∞ is endowed with an action of Λ which is, of course, the one
induced by its Tord

∞ -module structure. Furthermore, isomorphisms (49) are Λ-equivariant, the
structure of Λ-module of V being defined as in [22, §9]. By [22, Corollary 10.4], the Λ-modules
V and Jord

∞ are free of finite rank. It follows immediately that Jord
∞ is a finitely generated Tord

∞ -
module, hence

J := Jord
∞ ⊗Tord

∞

R
is a finitely generated R-module. If p (respectively, P ) is an arithmetic prime of R (respectively,
Λ) and M is an R-module (respectively, a Λ-module) then we set Mp := M ⊗RRp (respectively,
MP :=M ⊗Λ ΛP ), where Rp (respectively, ΛP ) is the localization of R at p (respectively, of Λ at
P ). To lighten the notation, put also

T := Tord
∞ .

Proposition 9.1. Let p be an arithmetic prime of R. The Rp-module Jp is free of rank one.

Proof. By [22, Theorem 12.1], there are isomorphisms of TP -modules VP ≃ TP for all arithmetic
primes P of Λ. Since there are isomorphisms of RP -modules JP ≃ VP ⊗TR and RP ≃ TP ⊗TR,
we conclude that

(50) JP ≃ RP
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as RP -modules. Fix an arithmetic prime p of R and let P := p∩Λ be the arithmetic prime of Λ
which lies below p. There is a canonical map of rings RP →Rp defined by the composition

RP := R⊗Λ ΛP −→ R⊗Λ Rp −→ R⊗R Rp = Rp.

There are isomorphisms of Rp-modules

(51) JP ⊗RP
Rp ≃ V ⊗T Rp ≃ (V ⊗T R)⊗R Rp = J⊗R Rp = Jp.

Furthermore, thanks to (50), JP ⊗RP
Rp ≃ Rp as Rp-modules. Comparing this with (51) yields

the result. �

From here until the end of the section we make the following assumption, which is coherent
with the result proved in Proposition 9.1.

Assumption 9.2. Let mR be the maximal ideal of the local ring R and let FR := R/mR be its
residue field. The FR-vector space J/mRJ has dimension one.

With this condition in force, we can prove

Proposition 9.3. The R-module J is free of rank one.

Proof. Since J is finitely generated over R and Assumption 9.2 holds, Nakayama’s lemma ensures
that there is a surjective homomorphismR։ J of R-modules. If this map is not an isomorphism,
there is a non-zero ideal I ⊂ R such that R/I ≃ J as R-modules. By [28, Theorem 6.5], the
localization (R/I)p is non-zero only for a finite number of arithmetic primes p of R. Hence Jp = 0
for almost all arithmetic primes p, contradicting Proposition 9.1 (of course, the local vanishing at
just one such prime p would suffice). Thus I is the zero ideal, and the proposition is proved. �

In light of Proposition 9.3, fix an isomorphism

(52) J
≃−→ R.

ofR-modules. IfH/K is a finite abelian extension then composing the canonical mapH0
(
Gal(Kab/H),D†

)
→

D with the surjection D ։ J and isomorphism (52) produces a map

(53) ηH : H0
(
Gal(Kab/H),D†

)
−→ R.

To simplify notations, for every integer d ≥ 0 set ηd := ηHd
, with the convention (introduced at

the beginning of Section 7) that H0 = K. These maps will be used in the next subsection to
state our results on Selmer groups. In particular, §9.2 and §9.3 are motivated by [2, Theorems
A and B] and [1, Corollary 4], respectively, where classical Heegner (or, better, Gross) points on
definite Shimura curves are used to control certain Selmer groups.

9.2. Root numbers and bounds on Selmer groups. To begin with, for later reference we
point out the following algebraic result.

Proposition 9.4. If x ∈ R is non-zero then there are only finitely many prime ideals p of R
such that x ∈ p, i.e., such that πp(x) = 0.

Proof. Since it is an integral extension of Λ, the local domain R has Krull dimension 2. It follows
that the height of a prime ideal p 6= 0 of R is either 1 or 2, the latter possibility occurring if
and only if p is the maximal ideal of R. To prove the proposition it thus suffices to show that
an intersection I := ∩p∈Sp of infinitely many height one prime ideals of R (indexed by a set S)
is necessarily trivial. If this were not the case then every p ∈ S, having height one, would be
minimal among the prime ideals of R containing I. But the set of prime ideals of R containing
I has only finitely many minimal elements by [28, Exercise 4.12], and we are done. �
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Recall the class Pc ∈ H0
(
Gc,D†

)
introduced in Definition 7.3. For every integer d ≥ 0 define

G̃d := Gal(Hd/K)

with the convention that H0 = K as before. Set

J0 :=
∑

σ∈G̃1

η1(Pσ
1 ) ∈ R, Jc :=

∑

σ∈G̃c

ηc(Pσ
c )⊗ σ−1 ∈ R

[
G̃c

]
if c ≥ 1.

Fix a character χ : G̃c → O× where O is a finite extension of OF and c ≥ 1 is an integer. After
enlarging F if necessary, without loss of generality we can assume that O = OF . Extend χ to an
R-linear homomorphism χ : R

[
G̃c

]
→R, then define

(54) L(f∞/K,χ) := χ(Jc) ∈ R, L(f∞/K,χ, p) := πp
(
L(f∞/K,χ)

)
∈ Fp

where p is an arithmetic prime of R. In particular, if χ = 1 is the trivial character of G̃1 then
L(f∞/K,1) = J0.

Since the critical character Θ introduced in §5.4 is trivial on Gal(Q̄/Q(µp∞)), there is an

induced map Θ : Gal(Q(µp∞)/Q) → R×. As in [26, Section 2], for every arithmetic prime p of
R denote by θp the composition

θp : Z
×
p

ǫ−1
cyc−−→ Gal(Q(µp∞)/Q)

Θ−→ R× −→ F×
p ,

then set

(55) f †p := fp ⊗ θ−1
p .

The form f †p has trivial nebentype, and the twisted representation V †
p is the representation at-

tached to f †p by Deligne.
We make two conjectures, the first of which concerns the non-vanishing of L(f∞/K,χ). To

formulate them, let p be an arithmetic prime of R and write wp for the root number (i.e., the

sign in the functional equation) of the L-function of the modular form f †p . Except for finitely
many primes p (which were explicitly determined by Mazur, Tate and Teitelbaum in [31] and
correspond to the exceptional primes of §5.6), the number wp is constant as p varies (see, e.g.,
[35, §3.4.4] for details); we denote this common root number by w.

Conjecture 9.5. If w = 1 then L(f∞/K,χ) 6= 0. In particular, if w = 1 then J0 6= 0.

In light of Proposition 9.4 and Conjecture 9.5, we expect that if w = 1 then L(f∞/K,χ, p)
does not vanish for all but finitely many p. As anticipated in the introduction, Conjecture 9.5
can be justified as follows. Suppose for simplicity that c = 1 and χ = 1 is the trivial character.
The element J0 ∈ R is the analogue in our Hida setting of the divisor c1 introduced by Gross
in [17, §11], hence it is natural to expect that it encodes, via the “specialization” maps πp, the

(non-)vanishing of the special values of the classical L-functions of the modular forms f †p in the
family. When w = 1 the functional equations of the L-functions suggest that these special values
are non-zero for almost all arithmetic primes p, so in this analytic situation it is natural to predict
(cf. Proposition 9.4) the non-triviality of J0. We refer the reader to §9.4 for conjectures à la
Greenberg on the vanishing of the special values of twisted L-functions over K of the forms in
the Hida branch of f .

The next conjectural statement is about the size of Nekovář’s Selmer groups H̃1
f

(
K,V †

p

)
and

their χ-twists. If ǫ is the quadratic character of the extension K/Q then the generic root number

of the twisted forms f †p ⊗ ǫ is −ǫ(N)w, hence is w in the definite case and −w in the indefinite
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case (see, e.g., [19, Ch. IV]). In particular, if we are in the definite case (which is the situation
considered in this section) and w = −1 then we expect that

dimFp H̃
1
f

(
Q, V †

p

)
= dimFp H̃

1
f

(
Q, V †

p ⊗ ǫ
)
= 1

with only finitely many exceptions. In light of the factorization

(56) H̃1
f

(
K,V †

p

)
≃ H̃1

f

(
Q, V †

p

)
⊕ H̃1

f

(
Q, V †

p ⊗ ǫ
)
,

it follows that the equality

dimFp H̃
1
f

(
K,V †

p

)
= dimFp H̃

1
f

(
Q, V †

p

)
+ dimFp H̃

1
f

(
Q, V †

p ⊗ ǫ
)
= 2

should hold for all but finitely many arithmetic primes p. For analogous reasons, when w = 1 it
is expected instead that

H̃1
f

(
K,V †

p

)
= 0

for almost all arithmetic primes p.
As a piece of notation, if M is a Z

[
G̃c

]
-module then set

Mχ :=M ⊗Z[G̃c]
OF

where the tensor product is taken with respect to χ : Z
[
G̃c

]
→ OF .

In accordance with the above discussion, we can thus state the following

Conjecture 9.6. Let d ≥ 0 be an integer and fix a character χ : G̃d → O×
F .

(1) If w = 1 then

dimFp H̃
1
f

(
Hd, V

†
p

)χ
= 0

for all but finitely many arithmetic primes p of R. In particular, if w = 1 then H̃1
f

(
Hd, V

†
p

)χ
=

0 for almost all arithmetic primes p such that L(f∞/K,χ, p) 6= 0.
(2) If w = −1 then

dimFp H̃
1
f

(
K,V †

p

)
= 2

for all but finitely many arithmetic primes p of R.
(3) If w = 1 then rankRH̃

1
f

(
Hd,T

†
)
= 0.

Remark 9.7. 1. We expect that when w = 1 and d = 0 part (1) of Conjecture 9.6 for p of weight
2 can be proved by extending the techniques and the results of [3]. Similarly, if w = 1 then the
general weight 2 case may be dealt with by extending the techniques of [27].

2. Let w = −1. For most (non-trivial) characters χ of G̃d there is no factorization of

H̃1
f

(
Hd, V

†
p

)χ
analogous to (56); in this situation, the behaviour of H̃1

f

(
Hd, V

†
p

)χ
is not, at present,

sufficiently clear to us to formulate a conjecture on its Fp-dimension (however, the referee has
pointed out that it is reasonable to expect that these Selmer groups should have generic dimension
0 as p varies, and that Conjecture 9.5 is probably true for most χ even if w = −1).

In the case of root number w = 1 and d = 0 we can prove that if J0 6= 0 then part (1) of
Conjecture 9.6 implies part (3) of the same conjecture.

Theorem 9.8. Suppose that w = 1 and assume part (1) of Conjecture 9.6. If J0 6= 0 then the

R-module H̃1
f

(
K,T†

)
is torsion.
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Proof. Since J0 is non-zero, Proposition 9.4 implies that πp(J0) 6= 0 for all but finitely many

arithmetic primes p of R. Thus, by part (1) of Conjecture 9.6, we get that H̃1
f

(
K,V †

p

)
= 0 for

almost all arithmetic primes p.
If p is an arithmetic prime of R then there is a short exact sequence

0 −→ H̃1
f

(
K,T†

)
p

/
pH̃1

f

(
K,T†

)
p
−→ H̃1

f

(
K,V †

p

)
−→ H̃2

f

(
K,T†

)
p
[p] −→ 0

(see the proof of [25, Corollary 3.4.3]), which shows that

(57) H̃1
f

(
K,T†

)
p

/
pH̃1

f

(
K,T†

)
p
= 0

for all but finitely many arithmetic primes p of R. As pointed out at the beginning of the proof

of loc. cit., the R-module H̃1
f

(
K,T†

)
is finitely generated, hence if some x ∈ H̃1

f

(
K,T†

)
were

non-torsion then, by [25, Lemma 2.1.7], we would have that x 6∈ pH̃1
f

(
K,T†

)
p
for all but finitely

many arithmetic primes p. This contradicts (57), whence H̃1
f

(
K,T†

)
is R-torsion. �

Remark 9.9. Taking the first part of Conjecture 9.6 for granted when w = 1 and d ≥ 1, one could
presumably derive the second part by using arguments which are similar to those employed in
the proof of Theorem 9.8 for d = 0.

9.3. Iwasawa theory. The goal of this subsection is to formulate a “main conjecture” of Iwasawa
theory for Hida families (Conjecture 9.12) in our definite setting.

Set Hp∞ := ∪m≥1Hpm, denote by K∞ ⊂ Hp∞ the anticyclotomic Zp-extension of K and for
every integer n ≥ 0 let Kn be the n-th layer of K∞, i.e. the (unique) subfield of K∞ such that

Gn := Gal(Kn/K) ≃ Z/pnZ.

For every integer n ≥ 1 set

d(n) := min
{
m ∈ N | Kn ⊂ Hpm

}
.

For example, if p does not divide the class number of K then d(n) = n + 1 for all n ≥ 1. Let
G∞ := Gal(K∞/K) (so that G∞ ≃ Zp, the isomorphism depending on the choice of a topological
generator of G∞) and define the completed group algebra

R∞ := lim←−
n

R[Gn] = R[[G∞]],

where the inverse limit is computed with respect to the canonical maps. Throughout this sub-
section we make the following

Assumption 9.10. The local ring R is regular.

In our Iwasawa-theoretic context, this simplifying hypothesis is a natural condition to require
(see, e.g., [25, §3.3] and [11, Ch. X]) and gives us some control on the behaviour of R and R∞

under localizations. For any finitely generated R∞-module M let

M∨ := HomZp(M,Qp/Zp)

be its Pontryagin dual, Mtors its torsion submodule and CharR∞
(M) its characteristic ideal.

Recall that, by definition, CharR∞
(M) is the ideal of R∞ given by

CharR∞
(M) :=





∏
ht(P)=1 P

length(MP) if M =Mtors

{0} otherwise
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where the product is made over all height one prime ideals of R∞. Note that, thanks to the
assumption that R is regular, the localization R∞,P is a discrete valuation ring for every prime
ideal P of height one in R∞.

Finally, define the R∞-module

H̃1
f,Iw

(
K∞,T

†
)
:= lim←−

n

H̃1
f

(
Kn,T

†
)
,

where the inverse limit is taken with respect to the corestriction maps, and the R∞-module

H̃1
f,Iw

(
K∞,A

†
)
:= lim−→

n

H̃1
f

(
Kn,A

†
)
,

where the direct limit is taken with respect to the restriction maps.
As before, for all integers n ≥ 1 take the element Ppn ∈ H0

(
Gpn ,D†

)
and set

Qn := corH
pd(n)/Kn

(
Ppd(n)

)
∈ H0

(
Gal(Kab/Kn),D

†
)
.

In other words, consider the classes Pc,R with c varying in the set of powers of the prime p
and take their traces on the anticyclotomic Zp-extension K∞ of K. For every integer n ≥ 1 we
introduce the theta-element

θn := α−n
p

∑

σ∈Gn

ηKn

(
Qσ

n

)
⊗ σ−1 ∈ R[Gn].

Here ηKn is the map of (53) with H = Kn and αp ∈ R× is the image of the Hecke operator Up

under the morphism f∞ : hord∞ →R. Thanks to the compatibility relations enjoyed by big Heegner
points (see §8.1), for all integers m ≥ n ≥ 1 one has νm,n(θm) = θn, where νm,n : R[Gm]→R[Gn]
is the map induced by the natural surjection Gm ։ Gn, so one can define

θ∞ := lim←−
n

θn ∈ R∞.

Note that the element θ∞ is not entirely canonical, since it is independent of the choice of the
compatible system of big Heegner points

{
Ppn

}
n≥1

only up to multiplication by an element of

G∞. To get rid of this ambiguity, we proceed as follows. Denote by x 7→ x∗ the canonical
involution of R∞ acting as σ 7→ σ−1 on group-like elements. We associate a two-variable p-adic
L-function with the primitive morphism f∞ and the imaginary quadratic field K.

Definition 9.11. The two-variable p-adic L-function attached to f∞ and K is the element

Lp(f∞/K) := θ∞ · θ∗∞ ∈ R∞.

Always assuming thatR is regular, now we formulate our “main conjecture” relating Lp(f∞/K)

to the characteristic ideal of the Pontryagin dual of H̃1
f,Iw

(
K∞,A

†
)
.

Conjecture 9.12. The group H̃1
f,Iw

(
K∞,A

†
)
is a finitely generated torsion module over R∞ and

there is an equality (
Lp(f∞/K)

)
= CharR∞

(
H̃1

f,Iw

(
K∞,A

†
)∨)

of ideals of R∞.

The reader should compare Conjecture 9.12 with the Main Conjecture of Iwasawa theory for
elliptic curves in the ordinary and anticyclotomic setting that was partially proved by Bertolini
and Darmon in [3] and with the main conjectures over the weight space formulated by Delbourgo
in [11, §10.5].
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9.4. Vanishing of special values in Hida families. The aim of this subsection is to formulate
two conjectures on the vanishing at the critical points of the L-functions over K of (twists of) the
modular forms in the Hida family of f living on the same branch as f . As in the previous section,
we work in the definite case. In fact, our conjectures will involve the elements L(f∞/K,χ, p) ∈ Fp

and the p-adic L-function Lp(f∞/K) ∈ R∞ introduced in §9.2 and §9.3, respectively. We remark
that results on the vanishing of special values were obtained by Howard in [26], where it is shown
that if there exists a weight 2 form in a Hida family whose L-function vanishes to exact order one
at s = 1 then all but finitely many weight 2 forms in the family enjoy this same property (see [26,
Theorem 8]; see also [26, Theorem 7] for the analogous result for order of vanishing zero, which
is a consequence of work of Kato, Kitagawa and Mazur).

To begin with, recall the fixed isomorphism C ≃ Cp which induces an embedding Q̄p →֒ C of an
algebraic closure of Qp into the complex field, and choose embeddings Fp →֒ Q̄p for all arithmetic

primes p of R, so that we can view the q-expansion coefficients of the forms f †p (introduced in

(55)) as (algebraic) complex numbers. Next, fix a character χ : G̃c → O× →֒ C×, where c ≥ 1

is an integer and O is a finite extension of OF , and for every arithmetic prime p let LK

(
f †p , χ, s

)

be the L-function of f †p over K twisted by χ (see, e.g., [19, p. 268] for the definition). Finally,
recall the element L(f∞/K,χ, p) ∈ Fp defined in (54) and, as in §9.2, denote by w the common

root number of the L-functions of (almost all) the modular forms f †p . As explained in [19, Ch.

IV], one can check that w is also the root number of the twisted L-functions LK

(
f †p , χ, s

)
for all

but finitely many arithmetic primes p.
Motivated by [10, Theorem 1.11] and [47, Theorem 1.3.2] (which extend [17, Proposition 11.2]

and [2, Theorem 1.1]), we propose the following

Conjecture 9.13. Let p be a non-exceptional arithmetic prime of R of weight kp ≥ 2 and let

χ be as above. Assume that w = 1. The special value LK

(
f †p , χ, kp/2

)
is non-zero if and only if

L(f∞/K,χ, p) is non-zero.

In other words, we conjecture that LK

(
f †p , χ, s

)
vanishes at the critical point s = kp/2 precisely

when the element L(f∞/K,χ) ∈ R introduced in (54) lies in p. In particular, the L-function

LK

(
f †p , χ, s

)
is expected not to vanish at s = kp/2 for all but finitely many p. The Bloch–Kato

conjectures ([5]) predict that the L-function of the form fp is related to the Selmer group of the

associated representation Vp, and the L-function of f †p should be related to the Selmer group of

V †
p ; in this sense, Conjecture 9.13 is consistent with Conjecture 9.6. The reader is suggested to

compare the above statement with the conjectures on the generic analytic rank of the forms fp
made by Greenberg in [15], of which Conjecture 9.13 can be viewed as a refinement.

Now we want to formulate an analogous conjecture for twists by characters of the Galois group
G∞ ≃ Zp. Thus let χ : G∞ → O× be a finite (i.e., p-power) order character of G∞, where O is a
finite extension of OF . If p is an arithmetic prime of R then the canonical map R → Fp gives a
map R∞ → Fp[[G∞]]; composing this with the map Fp[[G∞]]→ Q̄p induced by χ yields a map

χp : R∞ −→ Q̄p.

The analogue of Conjecture 9.13 in this Iwasawa-theoretic context is the following

Conjecture 9.14. Let p be a non-exceptional arithmetic prime of R of weight kp ≥ 2 and let

χ be as above. Assume that w = 1. The special value LK

(
f †p , χ, kp/2

)
is non-zero if and only if

χp

(
Lp(f∞/K)

)
is non-zero.
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10. Arithmetic applications and conjectures: the indefinite case

In this section we assume that we are in the indefinite case, i.e. that the quaternion algebra
B is indefinite.

Results in the vein of some of those which follow were also obtained by Fouquet in [12] and [13]
over totally real fields. However, our perspective is different, and (as apparent in the previous
sections) the Jacquet–Langlands correspondence plays a much more prominent role in our paper
than in the work of Fouquet.

Throughout this section we suppose that Assumptions 6.2 and 6.3 hold.

10.1. Galois representations. Let ℓ|N− be a prime number. Since ℓ is inert in K, the comple-
tion Kℓ of K at the prime (ℓ) is the (unique, up to isomorphism) unramified quadratic extension
of Qℓ. By [34, Proposition 4.2.3], the group H1(Kℓ,T) is a finitely generated R-module, hence
(since R is noetherian) the R-torsion submodule H1

(
Kℓ,T

†
)
tors

of H1
(
Kℓ,T

†
)
is a finitely gen-

erated R-module too. Define aR to be the annihilator in R of the finitely generated torsion

R-module
∏

ℓ|N− H1
(
Kℓ,T

†
)
tors

. Recall the big Heegner class κc ∈ H1
(
G

(Np)
c ,T†

)
introduced in

Definition 7.4 and denote by the same symbol its image in H1
(
Hc,T

†
)
under inflation. The next

result is a variant of [25, Proposition 2.4.5], to the proof of which we refer for the details we omit.

Proposition 10.1. If λ ∈ aR and c is prime to N then λ · κc ∈ SelGr

(
Hc,T

†
)
.

Proof. For any place v of Hc and any Gal(Q̄/Hc)-module M let us denote by

resv : H1(Hc,M) −→ H1(Hc,v,M)

the restriction map. Fix an integer c ≥ 1 prime to N . If v ∤ Np then κc satisfies the Greenberg
local condition at v because of its unramifiedness at v.

Now let us assume that v|Np and choose a place w of Q̄ above v. Let p be an arithmetic
prime of R of weight 2 and recall the integer m := mp defined in (30). Then the natural map

Taord → Vp factors through Taordp

(
Jac(X̃m)

)
. Let κc,p denote the image of κc in H1

(
Hc, V

†
p

)
.

After restriction to Hcpm(µpm), we see that Vp ≃ V †
p . Furthermore, the restriction of κc,p to

H1
(
Hcpm(µpm), Vp

)
is contained in the image of the classical (untwisted) Kummer map

Jac(X̃m)
(
Hcpm(µpm)

)
−→ H1

(
H̃cpm,Tap

(
Jac(X̃m)

))
−→ H1

(
Hcpm(µpm), Vp

)
.

Therefore, by [5, Example 3.11], the restriction of κc,p to H1
(
Hcpm(µpm), Vp

)
lies in the Bloch–

Kato Selmer group H1
f

(
Hcpm(µpm), Vp

)
of Vp. Thus, by Proposition 5.5, the isomorphic image in

H1
(
Hcpm(µpm), Vp

)
of the restriction of κc,p toH

1
(
Hcpm(µpm), Vp

)
belongs to SelGr(Hcpm(µpm), V

†
p ).

Following the arguments in the proof of [25, Proposition 2.4.5], we thus conclude that

κc,p ∈ SelGr

(
Hc, V

†
p

)

for all arithmetic primes p of R of weight 2.
Once again by [25, Proposition 2.4.5], if v|pN+ then resv(κc) belongs to H

1
Gr

(
Hc,v,T

†
)
, while

if v|N− one can only show that resv(κc) is an R-torsion element in H1
(
Hc,v,T

†
)
. In the latter

case, let ℓ be the rational prime below v. As ℓ is inert in K, the prime (ℓ) of K splits completely
in Hc, so Hc,v = Kℓ and H

1
(
Hc,v,T

†
)
= H1

(
Kℓ,T

†
)
. Since λ ∈ aR, the result follows. �

Remark 10.2. As clear in the proof of Proposition 10.1, the obstacle towards proving that κc
belongs to SelGr

(
Hc,T

†
)
is the lack of control on the restriction of κc at places dividing N

−.
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With notation as above, fix once and for all a non-zero λ ∈ aR. Thanks to [25, (21)], for every
integer c ≥ 1 prime to N the class λ · κc defines a class

(58) Xc := λ · κc ∈ SelGr

(
Hc,T

†
)
≃ H̃1

f

(
Hc,T

†
)
.

These cohomology classes are the arithmetic objects in terms of which we will formulate our
results and conjectures in this indefinite setting.

10.2. Bounding Selmer groups. Define the two cohomology classes

κ0 := corH1/K(κ1) ∈ H1
(
K,T†

)
, Z0 := corH1/K(X1) = λ · κ0 ∈ H̃1

f

(
K,T†

)
.

The following conjecture is the counterpart of [25, Conjecture 3.4.1].

Conjecture 10.3. The class Z0 is not R-torsion.
Note that Conjecture 10.3 is equivalent to the assertion that κ0 is not R-torsion. The Euler

system relations satisfied by the classes κc (proved in Section 8) yield a proof of the following

Theorem 10.4. Let p be a non-exceptional arithmetic prime of R with trivial character and even

weight. If Z0 has non-trivial image in H̃1
f

(
K,V †

p

)
then dimFp H̃

1
f

(
K,V †

p

)
= 1.

Proof. Our Euler system of big Heegner classes specializes to an Euler system for V †
p which enjoys

the same properties as the system of cohomology classes considered, in a different arithmetic
context, by Nekovář in [33]. Then, as in the proof of [25, Theorem 3.4.2], the results in [33,
§§6–13] yield the theorem. �

Remark 10.5. The definition of the class Z0 depends on the choice of λ ∈ aR, which is not made
explicit in the notation. It might be possible that for different λ1 and λ2 in aR the class λ1 ·κ0 is

trivial in H̃1
f

(
K,V †

p

)
while the class λ2 · κ0 is not. However, since aR is contained in only finitely

many arithmetic primes p, this occurrence can happen only for a finite number of p. Furthermore,
if Conjecture 10.3 is true then for any choice of λ ∈ aR the class λ · κ0 has non-trivial image

in H̃1
f

(
K,V †

p

)
for all but finitely many primes p, by [25, Lemma 2.1.7]. Thus, under Conjecture

10.3, the different choices of λ ∈ aR are essentially equivalent.

The next result is a consequence of Theorem 10.4.

Theorem 10.6. Assume Conjecture 10.3. The R-module H̃1
f

(
K,T†

)
has rank one.

Proof. Mimic the arguments in the proof of [25, Corollary 3.4.3], replacing [25, Theorem 3.4.2]
with Theorem 10.4. �

10.3. Iwasawa theory. We formulate an Iwasawa-theoretic “main conjecture” (Conjecture 10.8)
which is the counterpart of Conjecture 9.12 in the indefinite setting. The reader is referred to
[37] for results of Ochiai on the cyclotomic Iwasawa main conjecture for Hida families.

Resume the notation of §9.3; in particular, for every integer n ≥ 1 the field Kn is the n-th layer
of the anticyclotomic Zp-extension K∞ of K and d(n) is the smallest natural number such that
Kn is a subfield of Hpd(n). As in Assumption 9.10, we suppose that the local ring R is regular.
For every integer n ≥ 1 define the cohomology class

Zn := corH
pd(n)/Kn

(
U1−d(n)
p Xpd(n)

)
∈ H̃1

f

(
Kn,T

†
)
.

Since the classes Zn are compatible with respect to corestriction, we can give the following
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Definition 10.7. The two-variable p-adic L-function attached to the family
{
Zn

}
n≥1

is the

element

Z∞ := lim←−
n

Zn ∈ H̃1
f,Iw

(
K∞,T

†
)
.

Recall that ifM is a finitely generated R∞-module thenM∨ is the Pontryagin dual ofM . Now
we propose our two-variable “main conjecture”. Since the class Z∞,R depends on the element
λ ∈ aR appearing in (58), in order to state our conjecture we need to assume an additional
condition.

Conjecture 10.8. The group H̃1
f,Iw

(
K∞,T

†
)/

(Z∞) is a finitely generated R∞-module. More-

over, suppose that κpm belongs to H̃1
f

(
Hpm,T

†
)
and set Xpm := κpm for all m ≥ 0. There is an

equality

(59) CharR∞

(
H̃1

f,Iw

(
K∞,T

†
)/

(Z∞)
)2

= CharR∞

(
H̃1

f,Iw

(
K∞,A

†
)∨
tors

)

of ideals of R∞.

Conjecture 10.8 extends both [25, Conjecture 3.3.1] and the classical Heegner point main
conjecture for elliptic curves formulated by Perrin-Riou in [39]. Observe that in the special
case where N− = 1 (or, more generally, for quaternion algebras over totally real number fields
satisfying suitable conditions) Fouquet shows in [13, Theorem A] that the right-hand side divides
the left-hand side in (59).
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