Distance in Depth: A Comparison of Explicit and Implicit Numerical Distances in the Horizontal and Radial Dimensions.

Arianna Felisatti^{1,2*}, Mariagrazia Ranzini², Samuel Shaki³, and Martin H. Fischer¹

¹ Department of Psychology, University of Potsdam, Germany ² Department of General Psychology (DPG), University of Padua, Italy

³ Department of Behavioral Sciences and Psychology, Ariel University, Israel

Author Note

Arianna Felisatti: https://orcid.org/0000-0003-1703-3784 Mariagrazia Ranzini: https://orcid.org/0000-0001-5877-1973 Samuel Shaki: https://orcid.org/0000-0002-2340-5401 Martin H. Fischer: https://orcid.org/0000-0003-3818-7272

The authors declare no conflict of interest.

*Correspondence concerning this article should be addressed to Arianna Felisatti Email: <u>arianna.felisatti@unipd.it</u>

Data are publicly available at: https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf

©American Psychological Association, 2024. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. The final article is available, upon publication, at: doi.org/10.1037/xge0001537

Abstract

Numbers are a constant presence in our daily lives: A brain devoid of the ability to process numbers would not be functional in its external environment. Comparing numerical magnitudes is a fundamental ability that requires the processing of numerical distances. From magnitude comparison tasks, a comparison distance effect (DE) emerges: It describes better performance when comparing numerically distant rather than close numbers. Unlike other signatures of number processing, the comparison DE has been assessed only implicitly, with numerical distance as non-salient task property. Different assessments permit identification of different cognitive processes underlying a specific effect. To investigate whether explicit and implicit assessment of the comparison DE influence numerical cognition differently, we introduced the Distance classification task, involving explicit classification of numbers as close or far from a reference. N=93 healthy adults classified numbers either by magnitude or by numerical distance. To investigate associations between numerical and physical distance, response buttons were positioned horizontally (Experiment 1) or radially (Experiment 2). In both experiments, there was an advantage for both the closest and farthest numbers with respect to the reference during distance classification, but not during magnitude classification. In Experiment 2, numerically close/far numbers were classified faster with the close/far response button, respectively, suggesting radial correspondence between physical and representational distances. These findings provide new theoretical and methodological insights into the mental representation of numbers.

Keywords

Numerical Distance effect, Physical Distance, Numerical cognition, Spatial-numerical associations.

Public Significance Statement: The comparison distance effect (i.e. better performance when comparing numerically distant rather than close numbers) is a universal manifestation of number representation, and it is impaired in populations with neuropsychological disorders (e.g., visuospatial neglect, dyscalculia). Unlike other signatures of numerical cognition, the ability to process numerical distances has been assessed only implicitly, with numerical distance as non-salient task property. The present study entails a double contribution: First, it documents the influence of the type of assessment (implicit/explicit processing of the numerical distance) on the comparison distance effect; second, it reveals a correspondence between distance in representational (i.e., numerically close/far numbers) and physical space (i.e., close/far response buttons).

Introduction

"All things are made of numbers.". This sentence, attributed to Pythagoras (*c*.570-495 BCE), describes the pervasive role of numbers in the world. Before allowing the comprehension of the language of the universe, processing numbers solves adaptive functions. Indeed, not only human but also non-human animals are evolutionary endowed with numerical capacities (Butterworth, 2022).

In humans, three major behavioral performance signatures are consistently observed across different studies and experimental paradigms, and are thought to reflect the mental representation of numbers: 1) The *magnitude effect*, (identified in the literature also with the term *Numerical size effect*) reflecting better performance at processing smaller rather than larger numbers (e.g., Parkman, 1971); 2) The *spatial-numerical association of response codes* (SNARC), describing better performance at responding to small/large numbers with the button placed on the left/right side, respectively (in Western cultures; Dehaene et al., 1993; Shaki et al., 2009); 3) The *distance effect* (DE), reflecting variation in the quality of performance as a function of the numerical distance between two numbers. Specifically from magnitude comparison tasks, a comparison DE emerges: It describes better performance when comparing numerically distant rather than close numbers (Moyer & Landauer, 1967). Many studies have highlighted the sensitivity of these three effects to a variety of factors such as task instructions and numerical range (Kojouharova & Krajcsi, 2019; 2020; Krajcsi & Kojouharova, 2017; Wood et al., 2008), thus calling for more comprehensive theoretical models of number processing (van Dijck et al., 2012).

An important and diagnostic cognitive manipulation is the type of instruction given to participants: An effect can be assessed *explicitly*, with the target numerical property relevant to complete the task, or *implicitly*, with the target numerical property not relevant for the task. The magnitude effect and the SNARC effect have been assessed both implicitly and explicitly, revealing dissociations based on the type of assessment. Regarding the magnitude effect, such evidence comes from patients with unilateral spatial neglect, an attention disorder consequent to damage of the right hemisphere. When considering numbers close to a reference (e.g., "5"), neglect patients usually report a *reverse* magnitude effect, i.e., worse performance with small numbers (i.e., "4") than large numbers (i.e., "6"; Vuilleumier et al., 2004; Zorzi et al., 2012). Interestingly, the reverse magnitude effect emerges during explicit assessment of numerical magnitude (magnitude classification task) but not during implicit assessment (parity judgment task; also consider Priftis et al., 2006), thus underlining the predominance of visuo-spatial properties in the magnitude effect when assessed explicitly. Additional and complementary insights come from studies on healthy adults, which revealed interactions between numerical magnitude and numerical parity only during implicit assessment through the parity judgment task (Felisatti et al., 2022; Krajcsi et al., 2018; Nuerk et al., 2004), thus indicating the sensitivity of the magnitude effect to the task-relevant number property.

Similarly to the magnitude effect, also the SNARC effect has revealed different underlying processes depending on the type of assessment. Specifically, SNARC seems to tap into visuo-spatial processes when assessed explicitly (i.e., through the magnitude comparison task), but not when assessed implicitly (e.g., through the parity judgment task). Evidence comes from behavioral studies that either tested the contribution of different types of working memory (visuo-spatial vs. verbal; Herrera et al., 2008; van Dijck et al., 2009), or implicit space-magnitude associations (Shaki & Fischer, 2018; but see Pinto et al., 2019), or the role of visuo-spatial attention in number processing (Felisatti et al., 2022; Ranzini et al., 2015; Ranzini et al., 2016).

Further insights come from neuropsychological studies that found in patients with unilateral spatial neglect abnormal performance in explicit but not implicit number processing (Priftis et al., 2006; Zorzi et al., 2002; Zorzi et al., 2012). Moreover, implicit and explicit assessments are differently sensitive to the impact of sensory deprivation (evidence from blind people in Crollen et al., 2013; evidence from deaf people in Buyle et al., 2022).

Importantly, the dissociation between implicit and explicit assessments has also a neuroscientific basis: The use of transcranial magnetic stimulation on healthy individuals documented the causal role of right frontal cortex/posterior parietal areas in the SNARC effect when explicitly/implicitly assessed, respectively (Rusconi et al., 2011; Xu & Chun, 2006). Furthermore, the employment of

transcranial direct current stimulation has recently provided evidence of the differential brain activation underlying the SNARC effect based on the task-relevant information (Schroeder et al., 2017).

Taken together, these observations led van Dijck and colleagues (2013) to elaborate a *Hybrid Account* postulating the existence of multiple numerical representations, which can be selectively recruited depending on task requirements. Documenting signatures of number processing both explicitly and implicitly is therefore of theoretical importance because it clarifies whether we process number meaning automatically (e.g., Zorzi et al., 2012).

It is noteworthy that implicit assessments (with the target number meaning irrelevant to solve the task) and explicit assessments (with the target number meaning relevant for the task) have been compared for the magnitude and the SNARC effects (neuropsychological evidence in Zorzi et al., 2012; behavioral evidence in Shaki & Fischer, 2018) but not for the comparison DE. From a theoretical point of view, the comparison DE is particularly important because, unlike magnitude and SNARC effects, it is present across various age groups (Holloway & Ansari, 2008; Sekuler & Mierkiwicz, 1977) and cultures (Göbel et al., 2011). Thanks to its reliability, the comparison DE is today considered as evidence of semantic processing of numbers (Banks et al., 1976; Dehaene, 1989). On the one hand, the comparison DE has been shown to persist in professional mathematicians (Hohol et al., 2020); on the other hand, the relationship between comparison DE and mathematical abilities is still under debate (Gebuis & Reynvoet, 2015; meta-analysis in Schneider et al., 2017; evidence from dyscalculic children in Mussolin et al., 2010; Decarli et al., 2020).

The theoretical importance of the comparison DE, and the missing direct comparison between its implicit and explicit assessment, motivated the present work. In two experiments we investigate the comparison DE during implicit and explicit processing of numerical distances. Below we elaborate the motivation for our study: We first review the characteristics of the comparison DE; second, we describe its variants depending on the task; and third, we illustrate competing theoretical accounts, inspired and challenged by the discovery of variants of the DE.

The Comparison Distance Effect: Characteristics

Distance effects were first observed when participants were asked to judge physical properties of stimuli (e.g., Henmon, 1906). The landmark study by Moyer and Landauer (1967) demonstrated that comparisons of numerical magnitudes are performed in a similar fashion to comparisons of physical properties. Specifically, they observed that reaction times (RTs) during the comparison of two singledigit numbers were inversely related to the numerical distance between the to-be-compared numbers. This comparison distance effect shows that even perfectly discriminable symbolic numbers are associated with different degrees of uncertainty as a function of the reference number, thus resembling the low-level representation of perceptual stimuli (Henmon, 1906; Cohen Kadosh et al., 2008; Knops, 2019; Lonnemann et al., 2011). The comparison DE has frequently been replicated (e.g., De Smedt et al., 2009; Goffin & Ansari, 2016; Lonnemann et al., 2011; Sasanguie et al., 2012; Vogel et al., 2015), revealing its presence across age (Holloway & Ansari, 2008) and culture (Göbel et al., 2011). Importantly, the comparison DE is widely considered as proof for number processing (Koechlin et al., 1999; Kopiske et al., 2016). The relationship between comparison DE and mathematical abilities is not clear cut. Some studies report negative correlations (i.e., the smaller a person's comparison DE, the better their mathematical performance; Goffin & Ansari, 2016; review in De Smedt et al., 2013; meta-analysis in Schneider et al., 2017), possibly reflecting different degrees of precision in people's symbolic number representation (Holloway & Ansari, 2009). In support of this view, the size of the distance effect drastically increases in individuals with learning disabilities (i.e., developmental dyscalculia, e.g., Ashkenazi et al., 2008; Decarli et al., 2020; Rousselle & Noël, 2007). Other studies highlight the more moderate and indirect nature of the link between comparison DE and mathematical competencies (Bugden & Ansari, 2011; Gebuis & Reynvoet, 2015). Nevertheless, unlike other signatures of numerical cognition, the comparison DE remains robust in people with high mathematical skills, as revealed by individual analyses on a calculation prodigy (Pesenti et al., 1999) and professional mathematicians (Hohol et al., 2020).

Variants of the DE

The classical comparison DE was first discovered in a *magnitude comparison task* that consists of responding to the smaller or larger between two target numbers (Moyer & Landauer, 1967; review in Leth-Steensen & Marley, 2000; meta-analysis in Wood et al., 2008). An alternative version of this task involves the classification of single target numbers as smaller or larger with respect to a previously agreed standard or reference number (for single digits usually number "5"; *magnitude classification task*). While performance signatures are similar for magnitude comparison and magnitude classification, the direction of the DE depends on task requirements. Holyoak (1978) was the first to reveal a DE different from the canonical one in a *distance comparison task* requiring participants to respond to either the *closer* or the *farther* between two numbers with respect to a third number that represented the reference. Overall, a critical role of the instructions emerged: Selection of the *farther* number triggered a comparison DE, with monotonic decrease of RTs as a function of the numerical distance; in contrast, selection of the *closer* number speeded up the processing of stimuli numerically close to the reference. This task has been widely employed in spatial cognition (e.g., judgment of geographic proximity: Holyoak & Mah, 1982; Sadalla et al., 1980) but not in numerical cognition.

Additional variants of the DE result from the administration of other paradigms. For instance, *number-priming experiments* elicit a *priming distance effect*: When the numerical distance between the target number (relevant for the task) and a preceding *prime* number (not relevant for the task) decreases, performance is faster and more accurate (Dehaene et al., 1998; Gilmore et al., 2018). Van Opstal and colleagues (2008) documented dissociations between *comparison* and *priming* distance effects, revealing that the comparison DE originates with various kinds of material (e.g., letters and numbers, Van Opstal et al., 2008) but only in comparison tasks, while the priming DE appears only with numerical stimuli but in different tasks (e.g., naming and readings tasks, den Heyer & Briand, 1986; Brysbaert, 1995).

Patterns similar to the priming distance effects (i.e., faster performance with small compared to large numerical distances) arise also in tasks that focus on the ordinal property of numbers, such as the *relative order judgment task* (requiring participants to judge whether the order in number pairs is ascending or descending; e.g., Turconi et al., 2006) or the *number order verification task* (requiring participants to verify the correctness of order in number pairs or triplets; e.g., Franklin et al., 2009; Lyons & Beilock, 2011). The emerging effect, known as *reverse distance effect*, although present both in children (Lyons & Ansari, 2015; Vogel et al., 2015) and in adults (Vogel et al., 2017; 2019), is more variable across individuals when compared to the comparison DE, possibly due to the involvement of multiple individual strategies, such as long-term memory retrieval and sequential-procedural comparisons (Vogel et al., 2021). Notably, all the above-mentioned methods except Holyoak's (1978) study assessed the DE implicitly, i.e., without explicit processing of the numerical distance between the presented numbers.

Theoretical Accounts of the DE

Two influential theoretical accounts have been advanced to explain the DE, and further developed across the years. Restle (1970) inspired the *Representational overlap view*, according to which numbers are mentally represented as distributions around their true value along a numerical continuum. This continuous, analogue and noisy representation of numerical magnitudes has been related to the *Approximate Number System* (ANS; Dehaene, 2007). Later, the discovery of the tendency to represent numbers across space (expressed in the SNARC signature) has attributed a directionality to the mental representation of numerical magnitudes, thus introducing the concept of a *Mental Number Line* (MNL; Dehaene, 2003; reviews in Fischer & Shaki, 2014; Toomarian & Hubbard, 2018). According to the ANS, the discriminability of two numerosities depends on their ratio, and thus on the distributional overlap of their representations (following Weber's Law). In this view, both the comparison and the priming DE are different aspects of the ratio effect arising at the semantic processing stage: The fact that the distributions of close numbers (e.g., 4 and 5) overlap

more than the distributions of far numbers (e.g., 1 and 5) would lead to faster discrimination between far numbers in comparison tasks, and to faster co-activation of close numbers in priming tasks (Koechlin et al., 1999). However, dissociations and null correlations between the comparison and the priming DE (Krajcsi & Szűcs, 2022; Turconi et al., 2006) have challenged this account and suggested others which emphasize the role of response-related processing in the emergence of the DE.

The *Monotonic connection view* was proposed and implemented in a neural network model (Verguts et al., 2005). It postulates different origins for the different DEs: The comparison DE would derive not from the representational overlap of the stimuli at the semantic processing stage but from cognitive processing during response selection (see also Shaki et al., 2006). Specifically, the more distant the numerical stimuli are, the stronger the activation of the correct response is, leading to a better comparison performance. Instead, the priming DE would result from the spreading of activation between the numerical nodes: A given number would activate a closer numerical concept, represented by an adjacent node, in a shorter time.

This response-related view has recently inspired the conceptual network proposal called *Discrete Semantic System* (DSS), developed and tested by Krajcsi and colleagues (2016; 2022). The DSS model explains hallmark effects in symbolic numerical cognition by postulating the presence of an architecture similar to mental conceptual networks. In this architecture, symbolic numbers (e.g., single digits, number words, multi-digit numbers) and other related concepts (e.g., small, large, odd, even) constitute the nodes. Semantic and/or statistical properties (e.g., co-occurrence of the stimuli) of the nodes determine the type and strength of the connections. The main contribution of the DSS is to differentiate between two types of comparison DE, one emerging with non-symbolic numbers (e.g., patterns of dots, Lonnemann et al., 2011) and the other with symbolic numbers, as reported above. The DSS acknowledges the explanatory power of the ANS but restricts it to the non-symbolic comparison DE: While the non-symbolic comparison DE is rooted in overlapping representations of numbers, the symbolic comparison DE seems to be rooted in the strength of the association between numbers and their response-related properties (e.g., small/large properties in the magnitude comparison task)^I. Critical evidence comes from magnitude comparison studies where some numerical values were omitted (numbers 4,5,6 from the 1-9 numerical range) to manipulate the numerical distance (numerical distance from 3 to 7 = 1). Interestingly, the comparison DE was determined not by the numerical value (numerical distance from 3 to 7 = 4) but by the properties of the session (evidence with artificial notation in Krajcsi & Kojouharova, 2017; evidence with Indo-Arabic digits in Kojouharova & Krajcsi, 2019).

The predictions of the classical ANS account and of the novel DSS account have systematically been tested by Krajcsi and colleagues in a series of experiments (review in Krajcsi et al., 2022). Three findings support the higher explanatory power of the DSS in symbolic numerical cognition: First, the distance and magnitude effects are not two measures of the distributional overlap of number representations as they are independent and dissociable (Kojouharova & Krajcsi, 2019; 2020; Krajcsi et al., 2016; Krajcsi & Kojouharova, 2017); secondly, the symbolic distance effect is rooted in the associations between the numbers and the response nodes (Kojouharova & Krajcsi, 2020; Krajcsi & Kojouharova, 2017); thirdly, the symbolic distance effect is not rigid but highly flexible to the characteristics of the stimuli (Kojouharova & Krajcsi, 2020).

The Present Study

All the above studies have assessed distance effects in an implicit way: The relevant property to solve the task was either the numerical magnitude or the numerical order, but never the numerical distance between stimuli. An exception is represented by Holyoak's (1978) study involving comparative judgments based on the numerical distance. However, in Holyoak's study, the series of manipulations on task instructions (closer vs. farther) and reference points (all numbers in the range between 1 and 9) do not allow to directly compare the implicit and explicit assessment of the DE. This represents a critical theoretical and methodological gap in the literature, since the other major

¹ The extensive formulation of the model is called *Hybrid ANS-DSS* account (Krajcsi et al., 2022).

signatures of numerical cognition (magnitude effect, SNARC) have been investigated both implicitly and explicitly, revealing performance dissociations based on the type of assessment.

Considering the variants of the DE and their functional link to subsequent mathematical abilities, it seems important to assess this effect both implicitly and explicitly. To do so, we introduce here the novel *distance classification task*: It requires participants to classify numbers as numerically close to or far from the reference "5", thus making the numerical distance the relevant property to solve the task. In the present study, both the well-established magnitude classification task and the novel distance classification task were administered to directly compare the numerical distance effects emerging from implicit and explicit assessment. The use of symbolic material was motivated by two reasons: 1) The implicit and explicit assessment of the magnitude-related signatures of numerical cognition (e.g., SNARC) have been extensively compared with Indo-Arabic digits, 2) the DSS model applies to the symbolic distance effect.

The typical horizontal (left – right) arrangement of response buttons was applied. In analogy to what was observed for the magnitude and the SNARC effects, we hypothesized to find two qualitatively different numerical distance effects: A canonical comparison DE (we refer to it as *implicit-DE*), resulting from implicit distance assessment with the magnitude classification task; and a novel *explicit-DE*, resulting from explicit distance assessment with the distance classification task. In particular, we predicted an advantage for numbers *farther* (1,9) as well as for number *closer* (4,6) to the reference "5". Our hypotheses were derived from the characteristics of the symbolic DE as theorized in the DSS model (Krajcsi et al., 2022), according to which distance effects emerge from the strength of the association between numbers and their response-related properties (small/large properties in the magnitude classification task vs. close/far properties in the distance classification task. These predictions are supported by previous findings of facilitation for close numbers during distance comparison tasks, it is noteworthy that also pre-existing associations from counting (i.e., the neighbor advantage) would further facilitate number classification based on distance.

Experiment 1: Implicit and Explicit Numerical Distance Effects in the Horizontal Dimension

In Experiment 1, we compared the DE in the well-established magnitude classification task (implicit-DE) with the DE in the novel distance classification task (explicit-DE). We expected to find a main effect of numerical distance, reflecting significant differences in RTs as the numerical distance between the target and the reference number changes. Importantly, in light of the impact of the task on the DE (Gilmore et al., 2018; Holyoak, 1978; Turconi et al., 2006; Van Opstal et al., 2008) and of the type of assessment (implicit vs. explicit) on other basic numerical effects (e.g., Ranzini et al., 2015; Shaki & Fischer, 2018), we predicted a significant modulation of the DE as a function of task. In particular, we expected to find a classical comparison DE in the magnitude classification task, with increasing RTs as the numerical distance decreased; and a novel, explicit-DE, in the distance classification task, with an RT advantage for numbers close to the reference. Moreover, in line with the literature, we expected to find an overall SNARC effect independently of the task, indicated by faster RTs when responding to small/large numbers with the left/right response button, respectively.

Method

In order to limit the risk of COVID-19 infection, the present study was administered online. It was conducted in accordance with the ethical standards stated in the Declaration of Helsinki. Prior to the experiment, all participants gave their informed consent and completed a sociodemographic questionnaire. The sociodemographic questionnaire included questions on native language, gender, age, country of residence, and diagnosis of dyscalculia/dyslexia. It is publicly available at: https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf.

Transparency and Openness

We report how we determined our sample size, all data exclusions, all manipulations, and all measures in the study. The raw data for Experiment 1 are available in an OSF archive at https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf. Mean individual RTs were

analyzed using SPSS Statistics, Version 27.0 (IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp). The results were obtained using Greenhouse-Geisser corrected analyses of variance and Bonferroni corrected t-tests. This study's design and its analysis were not preregistered.

Participants

Forty-four healthy human adults (13 males, 31 females; mean age = 24.48, SD = 8.9) enrolled at the University of Potsdam (Germany) completed the experiment either for course credit or without any compensation. The sample size was determined prior to the start of data collection, based on previous web-based experiments that found DEs with a minimum of twenty-three participants (Kochari, 2019). Considering the similarities between Kochari's and our paradigms, we planned to collect data of at least twenty-three participants. Seven participants were left-handed (scores below - 50 in the Edinburgh Handedness Inventory, short version; Veale 2014). The average handedness score of our total sample indicated 67.42. All participants reported not to have received any diagnosis of dyscalculia and/or dyslexia.

In light of the influence of counting direction habits on the SNARC effect (Fischer & Shaki, 2016; 2017; Shaki & Fischer, 2021) a *dot counting task* was administered (Fischer & Shaki, 2017; Shaki et al., 2012) after the two number classification tasks. It requires participants to sequentially count the number of four black dots, horizontally displayed, by clicking on each of them with their computer mouse. The Dot counting task is informative about the counting direction habit (from left to right or from right to left). The order of counting was recorded. Among all considered participants, 38 completed the dot counting task. All participants counted the array of dots sequentially from left to right, except for 5 participants who reported a random counting order.

Experimental Setup

The study was conducted online via *Gorilla Experiment Builder*, a dedicated experiment web platform, allowing researchers to build and host psychological and behavioral experiments (Anwyl-Irvine et al., 2019; https://gorilla.sc/). Thus, participants performed the computer-based tasks on their own computer from home. Gorilla Experiment Builder is extensively used across different research fields, leading to high-quality, peer-reviewed, and published research that has replicated genuine, known psychological effects, including RT based signatures of cognition (Anwyl-Irvine et al., 2021; Poort & Rodd, 2019; Ward, 2022; a comprehensive list of publications can be found here https://gorilla.sc/success/publications/). In order to maximize the quality of the data and to standardize the setting, before each task, we adopted several precautions. In particular, we invited participants to: 1) Select a quiet and dimly lit room to perform the experiment; 2) arrange not to be disturbed during the experiment; 3) remove numerical cues around their working space (e.g., wristwatches and phones); 4) align both the screen and the keyboard with their body midline; 5) close all irrelevant browser tabs and windows; 6) go into the full-screen mode. We checked their compliance through a checklist where participants were asked to tick the suggestions they had followed.

Materials and Procedure

In the first part of the experiment, the participants performed two number classification tasks: the magnitude classification and the distance classification tasks. In the second part of the experiment, they were invited to complete two additional tasks: the dot counting task (Fischer & Shaki, 2017; Shaki et al., 2012), and the Brief Mathematical Assessment-3 (BMA-3; Steiner & Ashcraft, 2012). The former informs about the counting direction habits, a variable that has been shown to influence the number representation (Fischer & Shaki, 2016; 2017; Shaki & Fischer, 2021); the latter gives an index of general mathematical abilities, useful to assess correlations with performance on the number classification tasks. At the end of the experiment, the short form of the Edinburgh Handedness

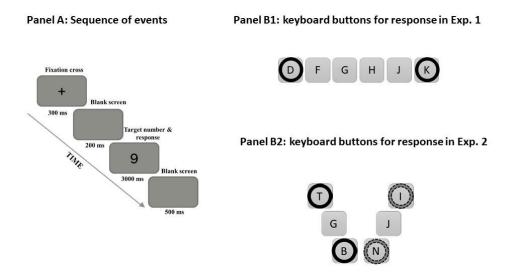
Inventory involving only four items (write, throw, use a toothbrush, use a spoon; Veale, 2014), was administered. The instructions were displayed on the screen in English. The entire experiment lasted approximately 30 minutes.

Magnitude and Distance Classification Tasks

The participants were invited to perform two numerical tasks. The well-established magnitude classification task (Dehaene et al., 1990; review in Leth-Steensen & Marley, 2000; meta-analysis in Wood et al., 2008) and the novel distance classification task. The numerical tasks were identical in all aspects (stimuli and timeline), except for the instructions (see Figure 1, panel A).

Each trial consisted of the following sequence of events: (1) a fixation cross (size: 40 pixels, font Courier) for 300 ms; (2) a blank screen for 200 ms; (3) a digit (size: 80 pixels, font Courier) lasting until the response or at maximum 3000 ms; (4) a blank screen for 500 ms. All stimuli were black and centrally presented over a gray background.

In the magnitude classification task, the participants were instructed to classify the *numerical magnitude* of the visual digits as smaller or larger than the number "5", by pressing one of two response buttons, horizontally aligned on the keyboard (see Figure 1, panel B1). Response keys were labeled with the letters on the keyboard and no reference to the left or right side were made. In one block, smaller numbers (i.e., 1, 2, 3, 4) were associated with the "D" button, and larger numbers (i.e., 6, 7, 8, 9) with the "K" button; in the other block, the stimulus-response association was reversed. Instead, in the novel distance classification task, the participants were instructed to classify the *numerical distance* of the visual digits as close to or far from the number "5", by pressing one of the two response buttons. In one block, numbers close to "5" (i.e., 3, 4, 6, 7) were associated with the "D" button, and numbers far from "5" (i.e., 1, 2, 8, 9) with the "K" button; in the other block the stimulus-response buttons.


In both tasks, participants were instructed about the numbers to assign to each category: In the magnitude classification task, they were told that numbers 1-4 belonged to the "small numbers"

group, whereas numbers 6-9 belonged to the "large numbers" group; in the distance classification task, they were told that numbers 3, 4, 6, 7 belonged to the "close numbers" group, whereas numbers 1, 2, 8, 9 belonged to the "far numbers" group. Before starting the task, the participants were asked to shift the mouse cursor away from the screen and to rest their index fingers on the "D" and "K" buttons of the keyboard. A press on the space bar initialized each block. Participants were encouraged to respond as fast as possible without making errors.

Design

A 2 Tasks (magnitude classification vs. distance classification) X 8 Target numbers (1-9, excluding 5) X 2 Response sides (left button vs. right button) within-subject design was used. Each condition was repeated 10 times, resulting in overall 320 experimental trials. Each task included two blocks with different stimulus-response associations. Each of the two experimental blocks was preceded by a practice block involving 8 trials. Positive and negative feedback was provided for 200 ms, only in the practice blocks.

Both the order of the tasks and the order of the blocks were counterbalanced across participants. Thus, overall, the experiment consisted of four blocks, defined by the starting condition: magnitude classification with small-left and large-right associations, magnitude classification with large-left and small-right associations, distance classification with close-left and far-right associations, distance classification with far-left and close-right associations.

Figure 1. The panel A displays the sequence of events in Experiment 1 and 2. The panel B1 shows the keyboard buttons selected for the Experiment 1. The panel B2 shows the keyboard buttons selected for the Experiment 2: "T" and "B" buttons (black circles) for the diagonal axis incongruent with the MNL, "N" and "I" buttons (dashed circles) for the diagonal axis congruent with the MNL.

Brief Mathematical Assessment-3

The Brief Mathematical Assessment-3 (BMA-3; Steiner & Ashcraft, 2012) consists of 10 mathematical problems of increasing difficulty. During the BMA-3, the participants received English instructions to solve as many problems as possible, without any time pressure. To perform the calculations, they were allowed to use only their own paper and pencil and no other means such as calculators or web. The total of correct answers was considered as an index of general mathematical abilities.

All participants completed the Brief Mathematical Assessment-3. From 0 (no problem correct) to 10 (all problems correct), the mean score was 6.79 (1.73 SD).

Preprocessing

Excluding the practice blocks, the total number of trials was 14,080 (7,040 per task, 100%). Mean accuracy was 95.6% (6,728 trials) in the magnitude classification task, and 90.2% (6,354) in the distance classification task. Participants with less than 4 observations per cell (2 Tasks x 8 Digits x 2 Response sides) and 8 observations per condition of interest (2 Tasks x 2 Magnitudes/2 Distances x 2 Response sides) were discarded.

Nine trials with RTs shorter than 250 ms were removed from the analyses (7 in the magnitude classification, 2 in the distance classification). In addition, for each task separately, trials outside of 3 standard deviations (SD) from the mean were discarded from further analysis (241 trials: 106 in the magnitude classification, 135 in the distance classification). Again, participants with less than 4 observations per cell (2 Tasks x 8 Digits x 2 Response sides) and 8 observations per condition of interest (2 Tasks x 2 Magnitudes/2 Distances x 2 Response sides) were discarded.

The preprocessing procedure led to the exclusion of 5 participants because of accuracy, and of 2 participants based on RTs trimming criteria. In the end, 37 participants and 78.6% of trials (11,074 overall: 5,638 in the magnitude classification, 5,436 in the distance classification) were considered.

Analyses

First, we conducted an omnibus mixed analyses of variance (ANOVA) including 2 Tasks (magnitude classification vs. distance classification), 2 Magnitudes (smaller than "5" vs. larger than "5"), 4 Distances (numerical distance between the target number and the reference number "5": distance 1 vs. distance 2 vs. distance 3 vs. distance 4), 2 Response sides (left response button vs. right response button), and 2 Orders (magnitude classification as first task vs. distance classification as first task). All factors were manipulated within-subject, except for the Order of the tasks.

Second, to better characterize the SNARC effect, for each target number, we subtracted the RTs associated with the left response button from the RTs associated with the right response button. Then, we regressed this difference on the target number (see Fias et al., 1996) and extracted the individual

regression slope with SPSS (Pfister et al., 2013). For each participant, we considered the unstandardized b coefficient as an index of the slope, and we ran a one sample t-test to test whether it differed significantly from zero (Van den Noortgate & Onghena, 2006). A typical SNARC is indicated by negative b coefficients (i.e., negative slopes).

Finally, to better characterize and compare the implicit-DE and the explicit-DE, two indices were computed. The first index was calculated using the formula reported in Goffin and Ansari (2016): $DE = (mean \ RTs \ close \ distances - mean \ RTs \ far \ distances)/mean \ RTs \ all \ distances, where close distances represent numbers 3, 4, 6, and 7; and far distances represent numbers 1, 2, 8, and 9. A second, index (hereafter <math>Delta_distance \ index$) was inspired by Zorzi and colleagues (2012). Specifically, we subtracted the mean RTs associated with numerical distance 2 (i.e., numbers 3 and 7) from the mean RTs associated with numerical distance 1 (i.e., numbers 4 and 6), separately for the two tasks. As in Zorzi et al. (2012), a novel index was computed because it was more sensitive to the difference between two populations (healthy adults and neglect patients); also in the present study, the consideration of this second index was motivated by the need to better capture crucial differences between the two tasks. Both Goffin and Ansari's index and the Delta_distance index were considered to assess the correlation between the implicit-DE and the explicit-DE. The same indexes were considered to analyze the correlations between the implicit-DE/explicit-DE and general mathematical abilities, indicated by the score of the Brief Mathematical Assessment-3 (see Appendix A).

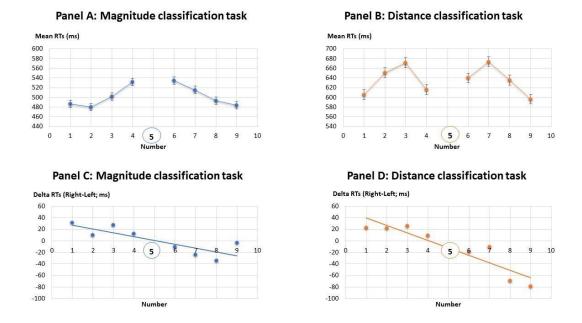
As complementary analyses, we also conducted Bayesian analyses to confirm our main findings. Results from Bayesian analyses are reported in Appendix B.

Results

Magnitude and Distance Classification Tasks

Our initial omnibus mixed ANOVA (including Task, Magnitude, Distance, Response side, and Order) revealed a main effect of Task (F(1,35)=65.46, p<.001, $\eta^2_p=.652$): The magnitude classification task was performed faster (mean=513.42 ms) than the distance classification task

(mean=635.75 ms). Also a main effect of Distance arose (F(3,105)=23.97, p<.001, $\eta^2_p=.406$; see Figure 2). From 2-tailed paired-sample *t*-tests it emerged that all numerical distances differed significantly from each other (p<.001), except for Distance 1 and Distance 2 (p=.1). Neither Magnitude (p=.3) nor Response side (p=.1) reached significance.


Most important for the purpose of the present study, Distance was significantly influenced by Task $(F(3,105)=17.78, p<.001, \eta^2_p=.337;$ see Figure 2). From 2-tailed paired-sample *t*-tests it emerged that in the magnitude classification task all numerical distances differed significantly from each other (p<.001), except for Distance 3 and Distance 4 (p=.7). In the distance classification task, all numerical distances differed significantly from each other (p<.001), except for Distance 3 and Distance 4 (p=.7). In the distance classification task, all numerical distances differed significantly from each other (p<.01), except for Distance 1 and Distance 3 (p=.2). Notably, the direction of the difference between D2 and D1 was opposite in the two tasks, with slower responses for D1 (mean=532.07 ms) than for D2 (mean=508.21 ms) in the magnitude classification task, and faster responses for D1 (mean=629.52 ms) than for D2 (mean=676.30 ms) in the distance classification task.

Order approached significance (F(1,35)=4.04, p=.052, $\eta^2_p=.104$), and entered a triple interaction with Task and Response side (F(1,35)=5.81, p=.021, $\eta^2_p=.142$). Additional two repeated measures ANOVAs, one for each Order, revealed that a Task by Response side interaction emerged only when the magnitude classification was performed as first task (F(1,19)=10.03, p=.005, $\eta^2_p=.346$) and not as second (p=.9). Specifically, after the magnitude classification task, the distance classification task was performed significantly faster with the right response key (mean left minus right=15.97 ms, t(19)=2.890, p=.009) rather than with the left response key (p=.09).

In line with the literature, the significant Magnitude by Response side interaction indicated the presence of a SNARC effect (F(1,35)=12.23, p=.001, $\eta^2_p=.259$). Participants were faster at responding to small numbers with the left button (mean small left minus small right=-18.44 ms, t(36)=-2.289, p=.028, d=-0.376), and to large numbers with the right button (mean large left minus large right=29.43 ms, t(36)=3.761, p=.001, d=0.618). Moreover, responses with the left button were faster for small rather than for large numbers (mean small left minus large left=-27.94 ms, t(36)=-2.289, t=-2.289, t=-2.289, t=-2.289, t=-2.289, t=-0.376, and to large numbers with the right button (mean large left minus large right=29.43 ms, t(36)=-3.761, p=.001, d=0.618). Moreover, responses with the left button were

4.043, p = <.001, d = -0.665), and responses with the right button were faster for large rather than for small numbers (mean small right minus large right=19.92 ms, t(36)=2.274, p=.029, d=0.374). The Task did not modulate the SNARC effect, as revealed by the absence of a triple interaction Magnitude by Response side by Task (p=.2). No other interactions reached significance (p>.05).

The absence of an interaction of Task and SNARC effect was also demonstrated by the analysis of the *b* coefficients. Overall, the mean of the unstandardized *b* coefficient was negative (mean=-9.04; SD=14.66), thus indicating a typical SNARC, and it differed significantly from zero (t(36)=-3.753, p=.001, d=0.617). The best-fitting regression line was described by the equation y=-9.289x+40.77 (R²=.90). A paired-sample *t*-test revealed that the *b* coefficient in the magnitude classification task (mean=-6.547, SD=23.80) and the *b* coefficient in the distance classification task (mean=-12.929, SD=14.19) did not differ significantly (p=.1). A visualization of the regression lines for each task is reported in Figure 2, panels C and D.

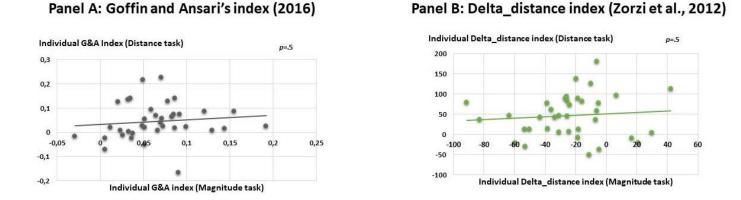


Figure 2. Panels A and B display the mean RTs as a function of the number in the magnitude classification task (panel A) and in the distance classification task (panel B), in Experiment 1. Error bars indicate +/- 1 standard error of the mean. Panels C and D display the observed data and the fitted regression lines representing the RTs differences between right-handed and left-handed responses as a function of the number in the magnitude classification task (panel C) and in the distance classification task (panel D), in Experiment 1.

Implicit-DE and Explicit-DE

When taking into account Goffin and Ansari's index, both the implicit-DE and the explicit-DE were significantly different from zero (implicit-DE: mean=.064, SD=.044, t(36)=8.822, p<.001, d=1.450; explicit-DE: mean=.045, SD=.076, t(36)=3.640, p=.001, d=.598), but they were not correlated (r(37)=.113, p=.5; Figure 3, panel A). The implicit-DE differed statistically also from the mean DE reported by Goffin and Ansari (2016; mean=.097; t(36)=-4.393, p<.001). The consideration of the Delta_distance index corroborated the previous pattern of results: In particular, both the implicit-DE and the explicit-DE were significantly different from zero (implicit-DE: mean=-23.86).

ms, SD=28.123, t(36)=-5.160, p<.001, d=-.848; explicit-DE: mean=46.78 ms, SD=52.645, t(36)=5.406, p<.001, d=.889), and they were not correlated (r(37)=.091, p=.5; Figure 3, panel B).

Figure 3. Panels A and B display the correlation between individual explicit DE-index and implicit DE-index, computed with Goffin and Ansari's formula (2016; panel A) and with the Delta_distance formula (panel B), in Experiment 1.

Discussion Experiment 1

In Experiment 1, the employment of the well-established magnitude classification task together with the novel distance classification task allowed us for the first time to directly compare the implicit-DE (implicit assessment: *numerical magnitude* as task-relevant property) and the explicit-DE (explicit assessment: *numerical distance* as task-relevant property). In line with our hypotheses, the results documented that the type of assessment significantly modulated the DE (confirmed by the Bayesian analysis, see Appendix B). From the magnitude classification task (implicit assessment), the canonical comparison DE appeared (implicit-DE), reflecting faster RTs for numbers numerically far rather than close to the reference "5" (Moyer & Landauer, 1967). Instead, from the distance classification task, a novel explicit-DE emerged, reflecting an advantage for both closest and farthest numerical distances compared to medium distances from number "5" (see Holyoak, 1978, for a similar effect in distance comparison task). In line with the dissociations found between different types of DE (Goffin & Ansari, 2016; Van Opstal et al., 2008; Vogel et al., 2021), implicit-DE and

explicit-DE were not correlated. Consistent with the literature, a significant Magnitude by Response side interaction emerged, indicating the presence of a canonical SNARC effect (meta-analysis in Wood et al., 2008; confirmed by the Bayesian analysis, see Appendix B).

The reliability of the above results was further investigated in Experiment 2. In the second experiment, the employment of radial instead of horizontal response mappings allowed us to additionally address two issues: first, the generalizability of the comparison between implicit-DE and explicit-DE along the radial dimension; and second, the analogy between numerical and peri-personal distance. The general rationale underlying this experimental manipulation concerns the fact that not only magnitude but also distance is a property shared by both the numerical and the spatial domains (e.g., Erb et al., 2018; Song & Nakayama, 2008).

Experiment 2: Implicit and Explicit Numerical Distance Effect in the Radial Dimension

Numbers are strongly related to space: As previously mentioned, the SNARC effect is indicative of a spatial representation of numbers along a horizontal MNL (Dehaene et al., 1993; meta-analysis in Wood et al., 2008; review in Toomarian & Hubbard, 2018). More recent studies have extended previous findings onto the vertical and radial dimensions, thus documenting the presence of a three-dimensional SNARC effect with small/large numbers associated with left-down-close/right-up-far space, respectively (Aleotti et al., 2020; Chen et al., 2015; Felisatti et al., 2022; Gevers et al., 2006; Hesse & Bremmer, 2017; Holmes & Lourenco, 2011; Santens & Gevers, 2008; Sixtus et al., 2019; review in Winter et al., 2015).

To weight the relative contribution of each axis, some studies tested the SNARC effect along diagonal response mappings: Congruent diagonals are defined by Cartesian axes consistent with the MNL, instead, incongruent diagonals consist of at least one axis inconsistent with the MNL. While congruent response mappings always lead to significant SNARC effects, incongruent mappings have led to inconsistent results. When contrasting horizontal and radial dimensions, Holmes and Lourenco (2011, Exp. 1B) found significant *positive* slopes in the incongruent diagonal response mapping (i.e.,

from left-far to right-close), thus indicating a predominance of the radial over the horizontal dimension. Conversely, Gevers et al. (2006a) and Chen et al. (2015) did not find a significant SNARC effect in the incongruent diagonal response mapping, thus highlighting equivalent roles of both radial and horizontal axes. Recently, Aleotti and colleagues (2023) simultaneously manipulated all three Cartesian axes and documented significant SNARC effects whenever two or more dimensions were compatible with the MNL. Notably, most of these studies employed parity judgment task, i.e., implicit number magnitude processing. Only a few studies administered the magnitude classification task, allowing the investigation of spatial-numerical associations driven by the numerical distance. Santens and Gevers (2008) found that the radial location of the buttons evoked an association with numerical magnitude but not with numerical distance; instead, Felisatti et al. (2022) reported that downward attentional shifts speeded up the processing of close numerical distances.

In Experiment 2, we expected to corroborate the findings of Experiment 1, meaning a main effect of numerical Distance and an influence of Task (Gilmore et al., 2018; Holyoak, 1978; Ranzini et al., 2015; Shaki & Fischer, 2018; Turconi et al., 2006; Van Opstal et al., 2008). Moreover, we expected to find a Distance X Response side interaction, indicated by faster RTs at responding to close/far numerical distances with the close/far response button, respectively (Felisatti et al., 2022; but see Santens & Gevers, 2008). Finally, in line with the literature, we expected to find a radial SNARC effect, reflecting faster RTs at responding to small/large numbers with the close/far response button, respectively. Importantly, we predicted a modulation of the SNARC effect depending not on the task but on the diagonal response mapping (Aleotti et al., 2023; Gevers et al., 2006a, Exp. 2; Hesse & Bremmer, 2017; Holmes & Lourenco, 2011). In Experiment 2, the adoption of a diagonal rather than a pure radial mapping was motivated by the online nature of the study and, as a consequence, by the characteristics of international keyboards (the arrangement of the letters on the keyboard does not permit any pure radial mapping). Thus, we counterbalanced the diagonal mapping, and this gave us the possibility to explore the emergence of additive/competing different spatial-numerical associations depending on the in-/congruence of different spatial dimensions with the MNL. So far, the literature on diagonal SNARC (Aleotti et al., 2023; Gevers et al., 2006a, Exp. 2; Hesse & Bremmer, 2017; Holmes & Lourenco, 2011) has provided inconsistent results. This motivated us to explore how properties of the tasks and sensorimotor manipulations contribute to the SNARC effect.

Method

In order to limit the risk of COVID-19 infection, the present study was administered online. It was conducted in accordance with the ethical standards stated in the Declaration of Helsinki. Prior to the experiment, all participants gave their informed consent and completed a sociodemographic questionnaire. The sociodemographic questionnaire included questions on native language, gender, age, country of residence, and diagnosis of dyscalculia/dyslexia. It is publicly available at: https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf.

Transparency and Openness

We report how we determined our sample size, all data exclusions, all manipulations, and all measures in the study. The raw data for Experiment 2 are available in an OSF archive at https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf. Mean individual RTs were analyzed using SPSS Statistics, Version 27.0 (IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp). The results were obtained using Greenhouse-Geisser corrected analyses of variance and Bonferroni corrected t-tests. This study's design and its analysis were not pre-registered.

Participants

Forty-nine healthy human adults (7 males, 37 females, 1 blank answer, 4 non-binary/genderqueers; mean age = 25.02, SD = 7.8) enrolled at the University of Potsdam (Germany) completed the experiment for course credit or without any compensation. Four participants were left-handed, and one was ambidextrous. The average handedness score of our total sample indicated 81.97 (Edinburgh

Handedness Inventory, short version; Veale, 2014). All participants reported not to have received any diagnosis of dyscalculia and/or dyslexia.

As for Experiment 1, the sample size was determined prior to the start of data collection. In Experiment 2, after the two number classification tasks, two versions of the dot counting task (Fischer & Shaki, 2017; Shaki et al., 2012) were administered: In the horizontal version, the four black dots were horizontally displayed; in the vertical version, the four black dots were vertically displayed. Given the technical impossibility to assess counting direction habits along the radial axis remotely, a vertical version of the dot counting task was considered in light of the well-established association between radial and vertical space (Levine & McAnany, 2005; Previc, 1990). In the horizontal version, among all considered participants, 36 completed the task: 30 participants counted from left to right, 4 counted from right to left, and 2 reported a random counting order. In the vertical version, all participants completed the task: 33 counted from top to bottom, 7 counted from bottom to top, and 2 counted in a random order.

Experimental Setup

The experimental setup was identical to Experiment 1.

Materials and Procedure

The tasks and procedure were identical to Experiment 1, with the only difference regarding the spatial layout of the response buttons in the number classification tasks. The details are described below.

Magnitude and Distance Classification Tasks

In Experiment 2, the response buttons were radially located with respect to the participants. Two diagonal axes were considered: incongruent with the horizontal MNL ("T" button=left-far, "B" button=right-close), or congruent with the horizontal MNL ("N" button=left-close, "I" button=right-

far; see Figure 1, panel B2). Twenty-five participants performed the experiment with the MNLincongruent response mapping, twenty-four participants performed the experiment with the MNLcongruent response mapping. As in Experiment 1, the response keys were labeled with the letters on the keyboard and no reference to left/right side or close/far distance were made. During the magnitude classification task, in one block, smaller numbers (i.e., 1, 2, 3, 4) were associated with the "T" ("N") button, and larger numbers (i.e., 6, 7, 8, 9) with the "B" ("I") button; in the other block, the stimulusresponse association was reversed. During the novel distance classification task, in one block, numbers close to "5" (i.e., 3, 4, 6, 7) were associated with the "T" ("N") button, and numbers far from "5" (i.e., 1, 2, 8, 9) with the "B" ("I") button; in the other block, the stimulusresponse association was reversed. Before starting the task, the participants were asked to shift the mouse cursor away from the screen and to rest their index fingers on the "T" ("N") and "B" ("I") buttons of the keyboard. A press on the space bar initialized each block. Participants were encouraged to respond as fast as possible without making errors.

Design

A 2 Tasks (magnitude classification vs. distance classification) X 8 Target numbers (1-9, excluding 5) X 2 Response sides (left button vs. right button) X 2 Diagonal response mappings (diagonal incongruent vs diagonal congruent with the horizontal MNL) mixed-subject design was used: All factors were manipulated within participants, except for the diagonal mapping that was manipulated between participants. Each task included two blocks with different stimulus-response associations. Both the order of the task and the order of the blocks were counterbalanced across participants.

Brief Mathematical Assessment-3

Among the 42 considered participants, all participants completed the Brief Mathematical Assessment-3 (BMA-3; Steiner & Ashcraft, 2012). From 0 (no problem correct) to 10 (all problems correct), the mean score was 6.30 (1.70 SD).

Preprocessing

Excluding the practice blocks, the total number of trials was 15,680 (7,840 per task, 100%). Mean accuracy was 96.5% (7,568 trials) in the magnitude classification task, and 89.9% (7,047) in the distance classification task. Participants with less than 4 observations per cell (2 Tasks x 8 Digits x 2 Response sides) and 8 observations per condition of interest (2 Tasks x 2 Magnitudes/2 Distances x 2 Response sides) were discarded.

One trial with RTs shorter than 250 ms was removed from the analyses (in the magnitude classification). In addition, for each task separately, all trials lying outside of 3 standard deviations from the mean were discarded from further analysis (263 trials: 118 in the magnitude classification, 145 in the distance classification). Again, participants with less than 4 observations per cell (2 Tasks x 8 Digits x 2 Response sides) and 8 observations per condition of interest (2 Tasks x 2 Magnitudes/2 Distances x 2 Response sides) were discarded.

The preprocessing procedure led to the exclusion of 7 participants because of accuracy and of no participant based on RTs trimming criteria. In the end, 42 participants (20 belonging to the MNL-incongruent response mapping, 22 belonging to the MNL-congruent response mapping) and 79.8% of trials (12,516 overall: 6,377 in the magnitude classification, 6,139 in the distance classification) were considered.

Analyses

First, we conducted two omnibus mixed ANOVAs. Both ANOVAs consisted of the following within-subject factors: 2 Tasks (magnitude classification vs. distance classification), 2 Magnitudes

(smaller than "5" vs. larger than "5"), 4 Distances (numerical distance between the target number and the number "5": distance 1 vs. distance 2 vs. distance 3 vs. distance 4), 2 Response sides (close response button vs. far response button). The first ANOVA included the Order of the tasks (magnitude classification as first task vs. distance classification as first task) as a between-subject factor, while the second ANOVA included the Diagonal response mapping (congruent with the MNL vs. incongruent with the MNL) as a between-subject factor.

Second, to better characterize the hypothesized SNARC effect driven by the numerical distance (distance based SNARC, hereafter dSNARC), for each numerical distance, we subtracted the RTs associated with the close response button from the RTs associated with the far response button. Then, we regressed this difference on the numerical distance (De Smedt et al., 2009) and extracted the individual regression slope (Pfister et al., 2013). For each participant, we considered the unstandardized *b* coefficient as an index of the slope, and we ran a one sample *t*-test to test whether it differed significantly from zero (Van den Noortgate & Onghena, 2006). Negative *b* coefficients (i.e., negative slopes) would indicate associations between close/far numerical distance and close/far buttons, respectively.

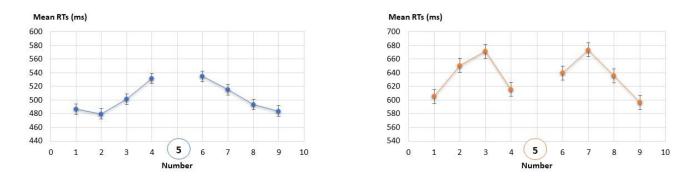
Third, to better characterize the SNARC effect driven by the numerical magnitude (magnitude based SNARC, hereafter mSNARC), for each target number, we subtracted the RTs associated with the close response button from the RTs associated with the far response button. Then, we regressed this difference on the target number (see Fias et al., 1996) and extracted the individual regression slope (Pfister et al., 2013). For each participant, we considered the unstandardized *b* coefficient as an index of the slope, and we ran a one sample *t*-test to test whether it differed significantly from zero (Van den Noortgate & Onghena, 2006). A typical SNARC is indicated by negative *b* coefficients (i.e., negative slopes).

Finally, to better characterize and compare the implicit-DE and the explicit-DE, two indexes were computed (see *Analyses* of Experiment 1). Both indexes were considered to assess the correlation between the implicit-DE and the explicit-DE. The same indexes were used to analyze the correlations

between the implicit-DE/explicit-DE and general mathematical abilities, indicated by the score of the Brief Mathematical Assessment-3 (see Appendix A).

As complementary analyses, we also conducted Bayesian analyses to confirm our main findings (see Appendix B).

Results


Magnitude and Distance Classification Tasks

Our initial omnibus mixed ANOVA (including Task, Magnitude, Distance, Response side, and Order) revealed a main effect of Task (F(1,40)=140.18, p<.001, $\eta^2_p=.778$): The magnitude classification task (mean=509.78 ms) was performed faster than the distance classification task (mean=673.93 ms). Also a main effect of Distance arose (F(3,120)=27.66, p<.001, $\eta^2_p=.409$; see Figure 4). From 2-tailed paired-sample *t*-tests it emerged that all numerical distances differed significantly from each other (p<.001), except for Distance 1 and Distance 2 (p=.4). Neither the Magnitude (p=.4) nor the Response side (p=.7) reached significance.

Most important for the purpose of the present study, Distance was significantly influenced by Task $(F(3,120)=14.57, p<.001, \eta^2_p=.267;$ see Figure 4). From 2-tailed paired-sample *t*-tests it emerged that while in the magnitude classification task all numerical distances differed significantly from each other (*p*<.005), except for Distance 3 and Distance 4 (*p*=.5), in the distance classification task, all numerical distances differed significantly from each other (*p*<.005), except for Distance 1 and Distance 3 (*p*=.9).

Panel B: Distance classification task

Figure 4. Panels A and B display the mean RTs as a function of the number in the magnitude classification task (panel A) and in the distance classification task (panel B), in Experiment 2. Error bars indicate +/- 1 standard error of the mean.

Moreover, a Magnitude by Distance interaction appeared (F(3,120)=5.86, p=.001, $\eta^2_p=.128$). In particular, for numerical distances far from the reference, large numbers were responded faster (mean number "8"=575.33 ms, mean number "9"=558.51 ms) than small numbers (mean number "2"=593.93 ms, mean number "1"=569.0 ms), as revealed by 2-tailed paired-sample *t*-tests (p<.05).

Interestingly, Task modulated the Distance by Magnitude interaction (F(3,120)=8.62, p<.001, $\eta^2_p=.177$). In the magnitude classification task, a significant difference between small and large numbers appeared only at Distance 4 (p=.014), and not at Distances 1, 2 and 3 (p>.1). Instead, in the distance classification task, responses to small and large numbers differed significantly across all the Distances (p<.05), except for Distance 4 (p=.4).

In line with our hypotheses, the numerical distance was influenced by the physical distance of the response buttons (F(3,120)=3.20, p=.026, $\eta^2_p=.074$), although only marginally after applying the Greenhouse Geisser correction (p=.063). Specifically, numbers close/far from the reference were responded faster with the response buttons close/far from the body, respectively. Although a trend was present across all the distances, it turned out to be significant only at Distance 3 (mean D3 far button minus D3 close button=-18.52 ms, t(41)=-2.177, p=.035, d=-0.336).

Order did not reach significance (p=.2) but it approached a significant interaction with Distance (F(3,120)=2.62, p=.053, η^2_p =.062). In particular, performing the distance classification as the first task impacted the responses to numbers 3 and 7 (i.e., Distance 2).

In contrast with the literature, the Magnitude by Response side interaction was not significant, thus indicating the absence of an mSNARC effect along the radial dimension (p=.2).

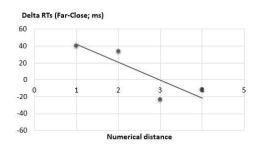
No other interactions reached significance (p>.05).

The second omnibus mixed ANOVA (including Task, Magnitude, Distance, Response side, and Diagonal mapping) corroborated the previous results and, most importantly, it revealed that the radial mSNARC depended on Diagonal mapping (F(1,40)=13.15, p=.001, $\eta^2_p=.247$). Since also a 4-way interaction emerged involving Magnitude X Distance X Response X Diagonal mapping (F(3,120)=3.29, p=.023, $\eta^2_p=.076$), two further repeated measures ANOVAs including Magnitude, Distance and Response were conducted, one for each Diagonal mapping. When considering the diagonal congruent with the horizontal MNL (buttons "N"-"I"), Response interacted significantly with Magnitude (F(1,21)=8.45, p=.008, $\eta^2_p=.287$) but not with Distance (p=.7), indicating a mSNARC effect that was not further modulated by Task (p=.1). Instead, when considering the diagonal incongruent with the horizontal MNL (buttons "T"-"B"), Response interacted significantly with Distance (F(3,57)=4.32, p=.030, $\eta^2_p=.185$) but not with Magnitude (p=.1).

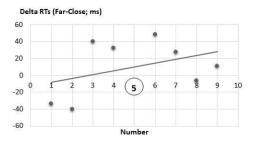
SNARC Effect driven by the Numerical Distance: Slopes.

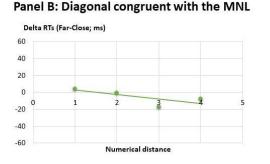
Overall, the mean of the unstandardized *b* coefficient was negative (mean=-12.49; SD=39.79), thus indicating the expected *distance* based *s*patial-numerical association of response codes (dSNARC; faster RTs for close/far numerical distances with the close/far button, respectively). One-Sample *t*-test revealed that it differed significantly from zero (t(41)=-2.035, p=.048, d=-.314). The best-fitting regression line was described by the equation y=-13.03x+34.854 (R²=.70).

When considering the diagonal incongruent with the MNL, the mean of the unstandardized b coefficient was negative (mean=-20.11; SD=34.78), thus indicating the expected dSNARC, and it

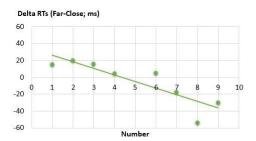

differed significantly from zero (t(19)=-2.586, p=.018, d=-.578). The best-fitting regression line was described by the equation y=-21.152x+62.963 (R²=.74; see Figure 5, panel A).

When considering the diagonal congruent with the MNL, the mean of the unstandardized *b* coefficient was negative (mean=-5.57; SD=43.49), thus indicating the dSNARC in the expected direction, but it did not differ significantly from zero (t(21)=-0.601, p=.5, d=-.128). The best-fitting regression line was described by the equation y=-5.4071x+8.4213 (R²=.54; see Figure 5, panel B).


SNARC Effect driven by the Numerical Magnitude: Slopes. Overall, the mean of the unstandardized *b* coefficient was negative (mean=-1.85; SD=11.64), thus indicating a typical radial *magnitude* based *s*patial-numerical association of response codes (mSNARC; faster RTs for small/large numbers with the close/far button, respectively), but it did not differ significantly from zero (t(41)=-1.034, p=.307, d=-.160). The best-fitting regression line was described by the equation y=-1.8925x+11.743 (R²=.07).

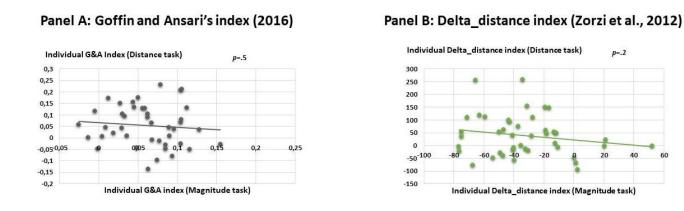

When considering the diagonal incongruent with the MNL, the mean of the unstandardized *b* coefficient was positive (mean=4.53; SD=9.06), thus indicating a reverse radial mSNARC, and it differed significantly from zero (t(19)=2.239, p=.037, d=.501). The best-fitting regression line was described by the equation y=4.5141x-12.529 (R²=.15; see Figure 5, panel C).

When considering the diagonal congruent with the MNL, the mean of the unstandardized *b* coefficient was negative (mean=-7.67; SD=10.78), thus indicating a typical radial mSNARC, and it differed significantly from zero (t(21)=-3.338, p=.003, d=-.712). The best-fitting regression line was described by the equation y=-7.8445x+34.144 (R²=.75; see Figure 5, panel D).



Panel C: Diagonal incongruent with the MNL

Panel D: Diagonal congruent with the MNL


Figure 5. Panels A and B display the observed data and the fitted regression lines representing the RTs differences between far responses and close responses as a function of the numerical distance, in Experiment 2. Panel A reports the results for the diagonal incongruent with the MNL (i.e., from left-far to right-close), Panel B reports the results for the diagonal congruent with the MNL (i.e., from left-close to right-far). Panels C and D display the observed data and the fitted regression lines representing the RTs differences between far responses and close responses as a function of the number, in Experiment 2. Panel C reports the results for the diagonal incongruent with the MNL (i.e., from left-far to right-close), Panel D reports the results for the diagonal incongruent with the MNL (i.e., from left-far to right-close), Panel D reports the results for the diagonal congruent with the MNL (i.e., from left-far to right-close).

Implicit-DE and Explicit-DE

When taking into account Goffin and Ansari's index, both the implicit-DE and the explicit-DE were significantly different from zero (implicit-DE: mean=.061, SD=.041, t(41)=9.503, p<.001, d=1.466; explicit-DE: mean=.053, SD=.089, t(41)=3.907, p<.001, d=.603). The implicit-DE differed statistically also from the mean DE reported by Goffin and Ansari (2016; mean=.097; t(41)=-5.550, p<.001). The implicit-DE and the explicit-DE did not differ significantly from each other, as revealed

Panel A: Diagonal incongruent with the MNL

by a 2-tailed paired-sample *t*-test (*p*=.6), and they were not correlated (r(42)=-.091, *p*=.5; see Figure 6, panel A). A repeated-measure ANOVA including Task (within-subject factor) and Diagonal axis (between-subject factor) showed absence of main effects (*p*>.6) and interaction (*p*=.3). The consideration of the Delta_distance index corroborated the previous pattern of results: In particular, both the implicit-DE and the explicit-DE were significantly different from zero (implicit-DE: mean=-33.42 ms, SD=28.70, *t*(41)=-7.545, *p*<.001, *d*=-1.164; explicit-DE: mean=39.91 ms, SD=80.69, *t*(41)=3.205, *p*=.003, *d*=.495), and they were not correlated (r(42)=-.184, *p*=.2; see Figure 6, panel B). A repeated-measure ANOVA including Task (within-subject factor) and Diagonal axis (between-subject factor) showed a main effect of Task (F(1,40)=28.07, *p*<.001, η^2_p =.412), in absence of other effects and interaction (*p*>.3). A 2-tailed paired-sample *t*-test revealed that while the magnitude classification task led to significantly faster RTs to Distance 2 compared to Distance 1 (mean D2 minus D1=-33.42 ms; *t*(41)=-7.545, *p*<.001, *d*=1.164), the distance classification task led to advantage for Distance 1 compared to Distance 2 (mean D2 minus D1=39.91 ms; *t*(41)=3.205, *p*=.003, *d*=-0.495).

Figure 6. Panels A and B display the correlation between individual explicit DE-index and implicit DE-index, computed with Goffin and Ansari's formula (2016; panel A) and with the Delta_distance formula (panel B), in Experiment 2.

Discussion Experiment 2

In Experiment 2, we compared the implicit-DE and the explicit-DE along the radial dimension: More precisely, we employed two diagonal response mappings, thus contrasting the horizontal and the radial dimensions. In line with our hypotheses, the results corroborated and generalized the findings of Experiment 1, extending the distinction between implicit-DE and explicit-DE from the horizontal to the radial dimension (confirmed by the Bayesian analyses, see Appendix B). As in Experiment 1, the correlation between implicit-DE and explicit-DE was not significant. As hypothesized, the SNARC effect driven by the numerical magnitude was modulated by the diagonal response mappings: Only the diagonal congruent with the MNL (i.e., from left-close to right-far) led to negative and significant regression slopes, indicating an association of small/large numbers with left-close and right-far space (Aleotti et al., 2023; Chen et al., 2015; Gevers et al., 2006a; confirmed by the Bayesian analyses, see Appendix B). Conversely, the diagonal incongruent with the MNL (i.e., from left-far to right-close) led to positive and significant regression slopes (the Bayesian analyses reported inconclusive evidence, see Appendix B). Interestingly, when considering the diagonal incongruent with the mental number line (i.e., from left-far to right-close), spatial-numerical associations driven by the numerical distance appeared: In particular, close/far numerical distances were responded faster with the close/far response buttons, respectively (the Bayesian analyses reported moderate evidence, see Appendix B). These findings indicate a predominance of the *horizontal* dimension over the radial one in the *magnitude*-based SNARC, and a predominance of the radial dimension over the horizontal one in the distance-based SNARC.

Thus, the properties of the task (i.e., explicit focus on magnitude or distance) and the arrangements of the response buttons with respect to the participant's body elicit different number-space mappings. This calls for a distinction between different instances of the SNARC effect based on the numerical property (magnitude or distance) driving them. Furthermore, it informs that it is important to consider the critical role of task properties and sensorimotor aspects in the activation of different spatial organizations of numbers (Fischer, 2012).

General Discussion

The present study focuses on the comparison distance effect, a hallmark effect of numerical cognition emerging in number comparison tasks and reflecting better performance when comparing numerically distant rather than close numbers (Moyer & Landauer, 1967). Its robustness across cultures, ages, and mathematical competencies (Decarli et al., 2020; Göbel et al., 2011; Hohol et al., 2020), together with its sensitivity to properties of the task (Gilmore et al., 2018; Turconi et al., 2006; Van Opstal et al., 2008) call for a better understanding of its nature. The present study aims exactly to do so, first by directly comparing the comparison DE assessed implicitly (with numerical distance as task-irrelevant dimension) and explicitly (with numerical distance as task-relevant dimension); second, by investigating the correspondence between numerical and physical distance. To achieve this dual purpose, we introduced the distance classification task that requires participants to classify symbolic numbers with respect to their numerical distance from the reference 5. In Experiment 1, the response buttons were horizontally aligned, instead, in Experiment 2, they were radially located with respect to the participant, following two diagonals (from left-far to right-close vs. from left-close to right-far). Below, we interpret our main findings, separately for each purpose.

Explicit and Implicit DEs

Overall, the distance classification task was performed significantly slower than the magnitude classification task. This could be due to the fact that, even if participants were always instructed about the number-group associations, in the distance classification task, the categorization of numbers was more arbitrary, thus requiring more cognitive resources to learn and to remember it.

As predicted, in both experiments, the type of assessment significantly modulated the DE. From the magnitude classification task (implicit assessment), the canonical comparison DE appeared, reflecting faster RTs for numbers numerically far rather than close to the reference "5" (Moyer & Landauer, 1967). Instead, from the new distance classification task, a novel pattern of DE emerged, reflecting advantages for both close and far numerical distances compared to medium distances from number "5". One may wonder whether the different patterns of the comparison DE originate from the prototypicality of some stimuli. The literature on spatial cognition provides evidence on the critical role of the categorization and reference points in comparative judgment tasks. As grouping city locations into artificial states reduces/increases the representational distance between cities belonging to the same/different category (Maki, 1982; Hirtle & Jonides, 1985), also clustering numbers into close/far groups may influence their symbolic numerical distance. Furthermore, the proximity to reference points speeds up the localization of adjacent points in space (Sadalla et al., 1980). By applying this reasoning to our findings, the following picture should be expected: 1) comparable RTs for all numbers belonging to the same category (3,4,6,7 vs. 1,2,8,9), and 2) faster RTs for stimuli close to the number reference 5 (3,4,6,7) compared to stimuli far from the reference (1,2,8,9). Instead, our results, revealing an m-shape with nonlinear advantage for numerical stimuli far and close to the reference number 5, shed light on the sensitivity of the symbolic DE to both short-term (e.g., task-specific) and long-term (e.g., learning-related) organizations of numbers, as explained below.

The observation that different numerical representations are activated depending on the implicit vs. explicit processing of numerical distance calls for a distinction between an implicit-DE, resulting from classification of symbolic numbers based on their numerical magnitude; and an explicit-DE, resulting from classification of symbolic numbers based on their numerical distance.

The novel explicit-DE is hard to explain with the *Representational overlap view* and the ANS. If the origin of the comparison DE was the distributional overlap in the number representation, one would have found similar patterns in the implicit-DE and explicit-DE, with a processing advantage for numbers far from the reference. On the contrary, the dissociation between the DE patterns when assessed implicitly and explicitly highlights the modulation of the symbolic DE based on the task properties. This supports accounts that emphasize the role of response-related processes in the DE, such as the *Discrete Semantic System* (Krajcsi et al., 2016; 2022). In line with the DSS model, the modulation of the DE is better explained by the strength of the association between the numbers and the properties that are salient for the current task: small vs. large numerical magnitude in the magnitude classification task, close vs. far numerical distance in the distance classification task. Specifically, according to the DSS, in the magnitude classification task, numbers numerically far from the reference "5" (i.e., 1,2,8,9) are more strongly associated with the response nodes "smaller than 5" and "larger than 5". Instead, numbers closer to the reference "5" (i.e., 3,4,6,7) are more and more weakly associated with the "small" and "large" properties. Differently, in the distance classification task, numbers numerically far from the reference "5" (i.e., 1,9) are more strongly associated with the response nodes "far from 5". Similarly, numbers numerically close to the reference "5" (i.e., 4,6) are more strongly associated with the response nodes "close to 5". Instead, numbers 2,3,7,8 are more and more weakly associated with the task-relevant property.

However, it is worth noting that if the stimuli-response associations of one task are simply overwritten by the new associations of the other task, then flat lines and not a distance effect should be observed. Kojouharova and Krajcsi (2020) gradually changed the associations for the Indo-Arabic digits and found that the associations of the session drove the DE. Importantly, the much larger effect of the session's associations prevented the researchers from discerning whether there was any contribution from the organization of numbers in long-term memory. In the present study, the manipulation of the categories salient for the task (small/large vs. close/far) allowed us to clarify that the DE does not only depend on the categories implied by the task, but also on long-term, stable associations between number and the "small/large" properties. Indeed, the specific shape describing the implicit and the explicit comparison DE and the slower performance characterizing the distance classification task can only be explained by taking into account: 1) An organization of numbers stored in long-term memory, automatically and unconditionally activated (consider the dual route model by Gevers et al., 2006b); and 2) An additional association of numbers with close/far numerical properties, intentionally and conditionally activated in working memory to solve the novel distance classification task. Thus, the results of the present study support predictions made by the DSS model, not previously tested, and document the contribution of both properties reflecting the long-term organization of numbers and properties characterizing the short-term, task-specific, associations of numbers in the comparison distance effect. More generally, while some studies attribute to working memory a unique role in number representation and processing (e.g., van Dijck et al., 2009; Marzola & Cohen, 2023), other studies (reviewed by Fischer, 2012) support the joint contribution of multiple influences from vastly different time scales on numerical cognition. Future experiments are needed to weight the relative contribution of short-term and long-term numerical associations.

In the present study, the absence of correlation between the comparison implicit-DE and the comparison explicit-DE further supports the involvement of different cognitive processes such as long- and short-term memory retrieval. Previous studies have already shown that the *comparison* DE does not correlate with either the *priming* DE (Krajcsi & Szűcs, 2022; Van Opstal et al., 2008) or the *reverse* DE (Goffin & Ansari, 2016; Vogel et al., 2021). This opens the question of whether it is more appropriate to discuss the DE in terms of flexibility of a single effect, or to talk about different effects related to the same property (the numerical distance).

In Experiment 1, the explicit-DE has been shown to predict general mathematical abilities (see Appendix A). Instead, in Experiment 2, the correlation between DE and the BMA-3 was influenced by the diagonal response mappings (see Appendix A). Future studies will need to clarify the relation between mathematical proficiency and the DE when assessed either implicitly or explicitly.

mSNARC and dSNARC

The current study documented the presence of different spatial-numerical associations, driven by the numerical magnitude (*magnitude* based Spatial-Numerical Association of Response Codes; *m*SNARC) and by the numerical distance (*distance* based Spatial-Numerical Association of Response Codes; *d*SNARC). The facts that in Experiment 2: A) The Task (distance classification vs. magnitude classification) did not interact with Distance and Response side, and B) The association between physical and numerical distance selectively emerged only in the diagonal incongruent with the MNL, motivates the consideration of the spatial association driven by the distance as an instance of the SNARC effect rather than a classical compatibility effect (Simon, 1969).

Concerning the well-documented mSNARC (meta-analysis in Wood et al., 2008; review in Toomarian &Hubbard, 2018), it emerged only in Experiment 1, indicating faster RTs at responding to small/large numbers with the left/right button, respectively. As predicted, in Experiment 2, it was modulated by the diagonal response mapping (review in Winter et al., 2015): Only the diagonal congruent with the MNL (i.e., from left-close to right-far) led to negative and significant regression slopes, indicating association between small/large numbers with left-close and right-far space (Aleotti et al., 2023; Chen et al., 2015; Gevers et al., 2006a). Conversely, the diagonal incongruent with the MNL (i.e., from left-close) led to positive and significant regression slopes, indicating predominance of the horizontal dimension over the radial one.

Interestingly, in Experiment 2, regression analyses on mean differences revealed that the diagonal incongruent with the mental number line (i.e., from left-far to right-close), triggered spatial-numerical associations driven by the numerical distance: In particular, when the response mapping was incongruent with the canonical spatial representation of numbers, close/far numerical distances were responded faster with the close/far response buttons, respectively. Previous studies have already reported a correspondence between numerical and physical distance with different experimental paradigms. With hand-tracking methodology, Song and Nakayama (2008) found that, when classifying numbers based on their magnitude, the curve of their participants' manual pointing trajectories decreased as the numerical distance from number "5" increased. More recently, Erb and colleagues (2018) replicated the findings in 5- to 6-year-old children. Zorzi et al. (2012) and Felisatti et al. (2022) highlighted the role of visuospatial attention in the correspondence between numerical and peri-personal distance. Most importantly, Santens and Gevers (2008) were the first to test spatialnumerical associations driven by numerical distance: They found an association of close/far buttons with small/large magnitudes, but not with close/far numerical distances. Considering the methodological differences between the above-mentioned studies and our study, to our knowledge, this is the first time that spatial-numerical associations driven by numerical distance are documented. The fact that, in the present study, the response buttons were named with the keyboard letters, thus

avoiding explicit reference to close and far positions, justifies the consideration of the distance based SNARC as determined by the physical position of the body.

In general, the main findings are confirmed by the Bayesian analyses, i.e., the effect of Task on DE across all experiments, as well as regression analyses on the mSNARC and dSNARC effects. In Experiment 2, Bayesian ANOVAs did not perfectly replicate the results of frequentist ANOVAs concerning the effects of the diagonal layout (see Appendix B). Also in the literature, experiments on SNARC effect along diagonal response mappings revealed inconsistent results. These observations highlight the importance of future studies to replicate and extend these compatibility effects. In particular, it would be of great theoretical importance: 1) to explore whether spatial-numerical associations driven by numerical magnitude and numerical distance depend on the compatibility between the different Cartesian axes with the MNL (Aleotti et al., 2023; review in Winter et al., 2015); and 2) to replicate the current study using non-symbolic stimuli and a "pure" radial dimension.

Constraints on Generality

Our findings were obtained testing students from different fields of study. The participants were of different nationality (70% German, 14% Turkish, 16% Others: English, Italian, Portuguese, Spanish, French, Russian, Bosnian, Arabic), and they were all living either in Germany or in Turkey at the time of the study. The study was conducted online, when access to public spaces was limited due to the COVID-19 pandemic. Despite asking participants to adopt several precautions to maximize the quality of the data, the setting could not be properly controlled, thus leaving open the possible influence of contextual and computer-related characteristics. The fact that the hallmark effects reported in the present article have widely been replicated across different settings and devices leads us to expect our results to generalize to situations in which healthy adults perform number classification tasks in lab-based studies. However, given the higher proportion of participants belonging to cultures with left-to-right counting habits, the pattern of results might hold only for participants with specific nationality. A direct replication would test the role of culture and counting

habits on the implicit/explicit processing of numerical magnitude/distance, along the horizontal/radial dimensions. We have no reason to believe that the results depend on other characteristics of the participants, materials, or context.

Conclusions

The present study focuses on the numerical distance effect, a hallmark effect of numerical cognition that describes changes in performance as a function of the numerical distance between two numbers. The robustness of the DE across ages and cultures, together with its sensitivity to characteristics of the task call for a better understanding of its nature. This study entails a double contribution, at the methodological as well as the conceptual level. First, in Experiment 1 and 2, the introduction of the novel distance classification task allowed the distinction between the classical comparison DE, emerging from implicit processing of the DE, and a novel explicit-DE, resulting from explicit processing of the DE. Second, in Experiment 2, the diagonal displacement of response buttons revealed the presence of spatial-numerical associations driven by numerical distance. Together the impact of implicit/explicit processing of the DE and the correspondence between numerical and physical distance suggest the potential added value of integrating the distance classification task in evaluations of numerical skills in populations with different ages, mathematical and spatial abilities. The persistence of the DE in professional mathematicians, together with the observation of a stronger DE in children with developmental dyscalculia (Decarli et al., 2020), and of an asymmetric DE in patients with unilateral spatial neglect (Zorzi et al., 2012), calls for a more comprehensive understanding of this effect.

Declarations

Funding: This work was partially funded by DFG FI_1915/8-1 "Competing heuristics and biases in mental arithmetic". MR is funded by the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant 839394.

Authors' contributions: Arianna Felisatti: Conceptualization, Data Curation, Formal analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing - Original Draft, Writing- Review & Editing; Mariagrazia Ranzini: Conceptualization, Formal analysis, Writing - Review & Editing; Samuel Shaki: Methodology, Writing- Review & Editing; Martin H. Fischer: Supervision, Methodology, Writing - Review & Editing, Funding acquisition.

Human Ethics: The present study was conducted on healthy human adults, and it did not involve invasive techniques or deception. Thus, it was not subject to ethical review by the local ethical committee. Nevertheless, it was conducted in accordance with the ethical standards stated in the Declaration of Helsinki. Prior to the experiment, all participants gave their informed consent and completed a sociodemographic questionnaire. The sociodemographic questionnaire used is publicly available at: https://osf.io/vs6rw/?view_only=a5464f8f55b54d33a735899385ffe9bf.

References

- Aleotti, S., Di Girolamo, F., Massaccesi, S., & Priftis, K. (2020). Numbers around Descartes: A preregistered study on the three-dimensional SNARC effect. *Cognition*, 195, 104111. https://doi.org/10.1016/j.cognition.2019.104111
- Aleotti, S., Massaccesi, S. & Priftis, K. The SNARC effect: a preregistered study on the interaction of horizontal, vertical, and sagittal spatial–numerical associations. *Psychological Research* 87, 1256–1266 (2023). <u>https://doi.org/10.1007/s00426-022-01721-8</u>
- Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. *Behavior Research Methods*, 52(1), 388-407. https://doi.org/10.3758/s13428-019-01237-x
- Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2021). Realistic precision and accuracy of online experiment platforms, web browsers, and devices. *Behavior Research Methods*, 53(4), 1407-1425. https://doi.org/10.3758/s13428-020-01501-5
- Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2009). Numerical distance effect in developmental dyscalculia. *Cognitive Development*, 24(4), 387-400. https://doi.org/10.1016/j.cogdev.2009.09.006
- Banks, W. P., Fujii, M., & Kayra-Stuart, F. (1976). Semantic congruity effects in comparative judgments of magnitudes of digits. *Journal of Experimental Psychology: Human Perception and Performance*, 2(3), 435. https://doi.org/10.1037/0096-1523.2.3.435
- Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. *Journal of Experimental Psychology: General*, 124(4), 434. https://doi.org/10.1037/0096-3445.124.4.434
- Butterworth, B. (2022). Can Fish Count?: What Animals Reveal about our Uniquely Mathematical Mind. Hachette UK.

- Buyle, M., Vencato, V., & Crollen, V. (2022). Impact of deafness on numerical tasks implying visuospatial and verbal processes. *Scientific Reports*, 12(1), 1-7. https://doi.org/10.1038/s41598-022-14728-3
- Chen, Y. H., Zhou, J. F., & Yeh, S. L. (2015). Beyond the SNARC effect: distance–number mapping occurs in the peripersonal space. *Experimental Brain Research*, 233(5), 1519-1528. <u>https://doi.org/10.1007/s00221-015-4225-9</u>
- Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: What can pitch tell us about the distance effect?. *Cortex*, 44(4), 470-477. https://doi.org/10.1016/j.cortex.2007.08.002
- Crollen, V., Dormal, G., Seron, X., Lepore, F., & Collignon, O. (2013). Embodied numbers: The role of vision in the development of number–space interactions. *Cortex*, 49(1), 276-283. https://doi.org/10.1016/j.cortex.2011.11.006
- De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. *Trends in Neuroscience and Education*, 2(2), 48-55. https://doi.org/10.1016/j.tine.2013.06.001
- De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. *Journal of Experimental Child Psychology*, 103(4), 469-479.
- Decarli, G., Paris, E., Tencati, C., Nardelli, C., Vescovi, M., Surian, L., & Piazza, M. (2020). Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. *PloS One*, 15(12), e0244578. https://doi.org/10.1371/journal.pone.0244578
- Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. *Perception & Psychophysics*, 45(6), 557-566. https://doi.org/10.3758/BF03208063

- Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. *Trends in Cognitive Sciences*, 7(4), 145-147. https://doi.org/10.1016/S1364-6613(03)00055-X
- Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a mathematical theory of number representation and manipulation. *Sensorimotor Foundations of Higher Cognition*, 22, 527-574.
- Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. *Journal of Experimental Psychology: General*, 122(3), 371. https://doi.org/10.1037/0096-3445.122.3.371
- Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. *Journal of Experimental Psychology: Human Perception and Performance*, 16(3), 626–641. https://doi.org/10.1037/0096-1523.16.3.626
- Dehaene, S., Naccache, L., Le Clec'H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., ... & Le Bihan, D. (1998). Imaging unconscious semantic priming. *Nature*, 395(6702), 597-600. https://doi.org/10.1038/26967
- den Heyer, K., & Briand, K. (1986). Priming single digit numbers: Automatic spreading activation dissipates as a function of semantic distance. *The American Journal of Psychology*, 315-340. https://doi.org/10.2307/1422488
- Erb, C. D., Moher, J., Song, J. H., & Sobel, D. M. (2018). Numerical cognition in action: Reaching behavior reveals numerical distance effects in 5-to 6-year-olds. *Journal of Numerical Cognition*, 4(2), 286-296. <u>https://doi.org/10.5964/jnc.v4i2.122</u>
- Faulkenberry, T. J., Ly, A., & Wagenmakers, E. J. (2020). Bayesian inference in numerical cognition: A tutorial using JASP. *Journal of Numerical Cognition*, 6(2), 231-259. https://doi.org/10.5964/jnc.v6i2.288
- Felisatti, A., Ranzini, M., Blini, E., Lisi, M., & Zorzi, M. (2022). Effects of attentional shifts along the vertical axis on number processing: An eye-tracking study with optokinetic stimulation. *Cognition*, 221, 104991. <u>https://doi.org/10.1016/j.cognition.2021.104991</u>

- Felisatti, A., Ranzini, M., Shaki, S., & Fischer, M. (2023, November 6). Distance in Depth: A comparison of explicit and implicit numerical distances in the horizontal and radial dimensions. *Data repository*. <u>https://doi.org/10.17605/OSF.IO/VS6RW</u>
- Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. *Mathematical Cognition*, 2(1), 95-110. doi: 10.1080/135467996387552
- Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. *Cognitive Processing*, 13, 161-164. https://doi.org/10.1007/s10339-012-0477-5
- Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. *Quarterly Journal of Experimental Psychology*, 67(8), 1461-1483. https://doi.org/10.1080/17470218.2014.927515
- Fischer, M. H., & Shaki, S. (2016). Measuring spatial–numerical associations: evidence for a purely conceptual link. *Psychological Research*, 80(1), 109-112. https://doi.org/10.1007/s00426-015-0646-0
- Fischer, M. H., & Shaki, S. (2017). Implicit spatial-numerical associations: Negative numbers and the role of counting direction. *Journal of Experimental Psychology: Human Perception and Performance*, 43(4), 639. https://doi.org/10.1037/xhp0000369
- Franklin, M. S., Jonides, J., & Smith, E. E. (2009). Processing of order information for numbers and months. *Memory & Cognition*, 37(5), 644-654. https://doi.org/10.3758/MC.37.5.644
- Gebuis, T., & Reynvoet, B. 'Number Representations and their Relation with Mathematical Ability', in Roi Cohen Kadosh, and Ann Dowker (eds), The Oxford Handbook of Numerical Cognition, Oxford Library of Psychology (2015; online edn, Oxford Academic, 3 Mar. 2014), https://doi.org/10.1093/oxfordhb/9780199642342.013.035
- Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006a). Automatic response activation of implicit spatial information: Evidence from the SNARC effect. *Acta Psychologica*, *122*(3), 221-233. https://doi.org/10.1016/j.actpsy.2005.11.004

- Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006b). Numbers and space: a computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32. https://doi.org/10.1037/0096-1523.32.1.32
- Gilmore, C., Göbel, S. M., & Inglis, M. (2018). *An introduction to mathematical cognition*. Routledge. https://doi.org/10.4324/9781315684758
- Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. *Journal of Cross-Cultural Psychology*, 42(4), 543-565. https://doi.org/10.1177/0022022111406251
- Goffin, C., & Ansari, D. (2016). Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. *Cognition*, 150, 68-76. https://doi.org/10.1016/j.cognition.2016.01.018
- Henmon, V. A. C. (1906). *The time of perception as a measure of differences in sensations* (No. 8).Science Press.
- Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. *Acta Psychologica*, 128(2), 225-237. https://doi.org/10.1016/j.actpsy.2008.01.002
- Hesse, P. N., & Bremmer, F. (2017). The SNARC effect in two dimensions: Evidence for a frontoparallel mental number plane. *Vision Research*, 130, 85-96. https://doi.org/10.1016/j.visres.2016.10.007
- Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. *Memory & Cognition*, 13(3), 208-217. https://doi.org/10.3758/BF03197683
- Hohol, M., Willmes, K., Nęcka, E., Brożek, B., Nuerk, H. C., & Cipora, K. (2020). Professional mathematicians do not differ from others in the symbolic numerical distance and size effects. *Scientific Reports*, 10(1), 1-12. https://doi.org/10.1038/s41598-020-68202-z

Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children's development of number comparison. *Developmental Science*, 11(5), 644-649. https://doi.org/10.1111/j.1467-7687.2008.00712.x

- Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. *Journal of Experimental Child Psychology*, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001
- Holmes, K. J., & Lourenco, S. F. (2011). Horizontal trumps vertical in the spatial organization of numerical magnitude. In *Proceedings of the Annual Meeting of the Cognitive Science Society* (Vol. 33, No. 33). https://escholarship.org/uc/item/7tq3z4s0
- Holyoak, K. J. (1978). Comparative judgments with numerical reference points. *Cognitive Psychology*, *10*(2), 203-243. https://doi.org/10.1016/0010-0285(78)90014-2
- Holyoak, K. J., & Mah, W. A. (1982). Cognitive reference points in judgments of symbolic magnitude. *Cognitive Psychology*, 14(3), 328-352. https://doi.org/10.1016/0010-0285(82)90013-5
- Knops, A. (2019). Numerical Cognition. Routledge.
- Kochari, A. R. (2019). Conducting web-based experiments for numerical cognition research. *Journal of Cognition*, 2(1). doi: 10.5334/joc.85
- Koechlin, E., Naccache, L., Block, E., & Dehaene, S. (1999). Primed numbers: Exploring the modularity of numerical representations with masked and unmasked semantic priming. *Journal of Experimental Psychology: Human Perception and Performance*, 25(6), 1882.
 https://doi.org/10.1037/0096-1523.25.6.1882
- Kojouharova, P., & Krajcsi, A. (2019). Two components of the Indo-Arabic numerical size effect. *Acta Psychologica*, *192*, 163-171. <u>https://doi.org/10.1016/j.actpsy.2018.11.009</u>
- Kojouharova, P., & Krajcsi, A. (2020). The Indo-Arabic distance effect originates in the response statistics of the task. *Psychological Research*. <u>https://doi.org/10.1007/s00426-018-1052-1</u>

- Kopiske, K. K., Löwenkamp, C., Eloka, O., Schiller, F., Kao, C. S., Wu, C., ... & Franz, V. H. (2016).
 The SNARC effect in Chinese numerals: Do visual properties of characters and hand signs influence number processing?. *PloS One*, 11(9), e0163897.
 https://doi.org/10.1371/journal.pone.0163897
- Krajcsi, A., & Kojouharova, P. (2017). Symbolic numerical distance effect does not reflect the difference between numbers. *Frontiers in Psychology*, 8, 2013. https://doi.org/10.3389/fpsyg.2017.02013
- Krajcsi, A., & Szűcs, T. (2022). Symbolic number comparison and number priming do not rely on the same mechanism. *Psychonomic Bulletin & Review*, 1-9. https://doi.org/10.3758/s13423-022-02108-x
- Krajcsi, A., Kojouharova, P., & Lengyel, G. (2022). Processing symbolic numbers: The example of distance and size effects. In *A Life in Cognition* (pp. 379-394). Springer, Cham.
- Krajcsi, A., Lengyel, G., & Kojouharova, P. (2016). The source of the symbolic numerical distance and size effects. *Frontiers in Psychology*, 7, 1795. <u>https://doi.org/10.3389/fpsyg.2016.01795</u>
- Krajcsi, A., Lengyel, G., & Laczkó, Á. (2018). Interference between number magnitude and parity: Discrete representation in number processing. *Experimental Psychology*, 65(2), 71. https://doi.org/10.1027/1618-3169/a000394
- Leth-Steensen, C., & Marley, A. A. J. (2000). A model of response time effects in symbolic comparison. *Psychological Review*, 107(1), 62. https://doi.org/10.1037/0033-295X.107.1.162
- Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. *Vision Research*, 45(21), 2820-2830. https://doi.org/10.1016/j.visres.2005.04.001
- Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. *Journal of Neurolinguistics*, 24(5), 583-591. https://doi.org/10.1016/j.jneuroling.2011.02.004

Lyons, I. M., & Ansari, D. (2015). Numerical order processing in children: From reversing the distanceeffect to predicting arithmetic. *Mind, Brain, and Education*, 9(4), 207-221. https://doi.org/10.1111/mbe.12094

- Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between numbersense and arithmetic competence. *Cognition*, 121(2), 256-261. https://doi.org/10.1016/j.cognition.2011.07.009
- Maki, R. H. (1982). Why do categorization effects occur in comparative judgment tasks?. *Memory & Cognition*, 10, 252-264. https://doi.org/10.3758/BF03197637
- Marzola, G., & Cohen, D. J. (2023). Mirror numbers activate quantity representations, but show no SNARC effect: A working memory explanation. *Journal of Experimental Psychology: Human Perception and Performance*. <u>http://dx.doi.org/10.1037/xhp0001090</u>
- Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. *Nature*, *215*(5109), 1519-1520. <u>https://doi.org/10.1038/2151519a0</u>
- Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. *Cognition*, 115(1), 10-25. https://doi.org/10.1016/j.cognition.2009.10.006
- Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. *The Quarterly Journal of Experimental Psychology* Section A, 57(5), 835-863. https://doi.org/10.1080/027249803430005
- Parkman, J. M. (1971). Temporal aspects of digit and letter inequality judgments. *Journal of Experimental Psychology*, 91(2), 191. https://doi.org/10.1037/h0031854
- Pfister, R., Schwarz, K., Carson, R., & Jancyzk, M. (2013). Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel. *Tutorials in Quantitative Methods for Psychology*, 9(2), 72-78.
- Pinto, M., Pellegrino, M., Marson, F., Lasaponara, S., & Doricchi, F. (2019). Reconstructing the origins of the space-number association: spatial and number-magnitude codes must be used jointly to

elicit spatially organised mental number lines. *Cognition*, *190*, 143-156. https://doi.org/10.1016/j.cognition.2019.04.032

- Poort, E. D., & Rodd, J. M. (2019). Towards a distributed connectionist account of cognates and interlingual homographs: Evidence from semantic relatedness tasks. *PeerJ*, 7, e6725.
- Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. *Behavioral and Brain Sciences*, 13(3), 519-542. https://doi.org/10.1017/S0140525X00080018
- Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. *Journal of Cognitive Neuroscience*, 18(4), 680-688. doi: 10.1162/jocn.2006.18.4.680
- Ranzini, M., Lisi, M., Blini, E., Pitteri, M., Treccani, B., Priftis, K., & Zorzi, M. (2015). Larger, smaller, odd or even? Task-specific effects of optokinetic stimulation on the mental number space. *Journal of Cognitive Psychology*, 27(4), 459-470.
 https://doi.org/10.1080/20445911.2014.941847
- Ranzini, M., Lisi, M., & Zorzi, M. (2016). Voluntary eye movements direct attention on the mental number space. *Psychological Research*, 80(3), 389-398. <u>https://doi.org/10.1007/s00426-015-0741-2</u>
- Restle, F. (1970). Speed of adding and comparing numbers. *Journal of Experimental Psychology*, 83(2p1), 274. <u>https://doi.org/10.1037/h0028573</u>
- Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. *Cognition*, 102(3), 361-395. https://doi.org/10.1016/j.cognition.2006.01.005
- Rusconi, E., Bueti, D., Walsh, V., & Butterworth, B. (2011). Contribution of frontal cortex to the spatial representation of number. *Cortex*, 47(1), 2-13. https://doi.org/10.1016/j.cortex.2009.08.005

Sadalla, E. K., Burroughs, W. J., & Staplin, L. J. (1980). Reference points in spatial cognition. Journal of Experimental Psychology: Human Learning and Memory, 6(5), 516. https://doi.org/10.1037/0278-7393.6.5.516

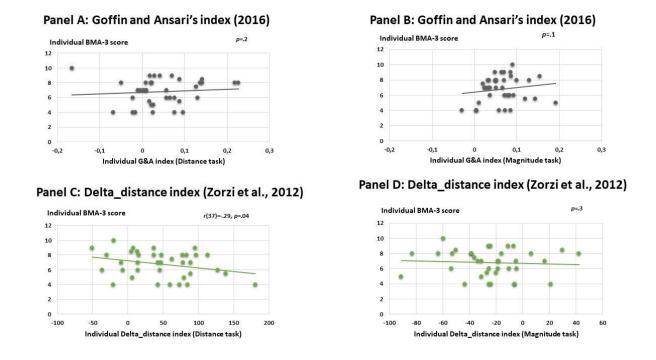
- Santens, S., & Gevers, W. (2008). The SNARC effect does not imply a mental number line. *Cognition*, *108*(1), 263-270. https://doi.org/10.1016/j.cognition.2008.01.002
- Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. *British Journal of Developmental Psychology*, 30(2), 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.x
- Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. *Developmental Science*, 20(3), e12372. https://doi.org/10.1111/desc.12372
- Schroeder, P. A., Nuerk, H. C., & Plewnia, C. (2017). Prefrontal neuromodulation reverses spatial associations of non-numerical sequences, but not numbers. *Biological Psychology*, 128, 39-49. https://doi.org/10.1016/j.biopsycho.2017.07.008
- Sekuler, R., & Mierkiewicz, D. (1977). Children's judgments of numerical inequality. *Child Development*, 630-633. https://www.jstor.org/stable/1128664
- Sella, F., Sasanguie, D., & Reynvoet, B. (2020). Judging the order of numbers relies on familiarity rather than activating the mental number line. *Acta Psychologica*, 204, 103014. https://doi.org/10.1016/j.actpsy.2020.103014
- Shaki, S., & Fischer, M. H. (2018). Deconstructing spatial-numerical associations. *Cognition*, *175*, 109-113. https://doi.org/10.1016/j.cognition.2018.02.022
- Shaki, S., & Fischer, M. H. (2021). Systematic spatial distortion of quantitative estimates. *Psychological Research*, 85(6), 2177-2185. https://doi.org/10.1007/s00426-020-01390-5

- Shaki, S., Fischer, M. H., & Göbel, S. M. (2012). Direction counts: A comparative study of spatially directional counting biases in cultures with different reading directions. *Journal of Experimental Child Psychology*, *112*(2), 275-281. https://doi.org/10.1016/j.jecp.2011.12.005
- Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. *Psychonomic Bulletin & Review*, 16(2), 328-331. https://doi.org/10.3758/PBR.16.2.328
- Shaki, S., Leth-Steensen, C., & Petrusic, W. M. (2006). Effects of instruction presentation mode in comparative judgments. *Memory & Cognition*, 34(1), 196-206. https://doi.org/10.3758/BF03193398
- Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. *Developmental Science*, 20(3), e12372. https://doi.org/10.1111/desc.12372
- Sixtus, E., Lonnemann, J., Fischer, M. H., & Werner, K. (2019). Mental number representations in 2D space. *Frontiers in psychology*, 10, 172. https://doi.org/10.3389/fpsyg.2019.00172
- Song, J. H., & Nakayama, K. (2008). Numeric comparison in a visually-guided manual reaching task. *Cognition*, 106(2), 994-1003. https://doi.org/10.1016/j.cognition.2007.03.014
- Steiner, E. T., & Ashcraft, M. H. (2012). Three brief assessments of math achievement. *Behavior Research Methods*, 44(4), 1101-1107. https://doi.org/10.3758/s13428-011-0185-6
- Toomarian, E. Y., & Hubbard, E. M. (2018). On the genesis of spatial-numerical associations:
 Evolutionary and cultural factors co-construct the mental number line. *Neuroscience & Biobehavioral Reviews*, *90*, 184-199. https://doi.org/10.1016/j.neubiorev.2018.04.010
- Turconi, E., Campbell, J. I., & Seron, X. (2006). Numerical order and quantity processing in number comparison. *Cognition*, 98(3), 273-285. https://doi.org/10.1016/j.cognition.2004.12.002

Van den Noortgate, W., & Onghena, P. (2006). Analysing repeated measures data in cognitive research: A comment on regression coefficient analyses. *European Journal of Cognitive Psychology*, 18(6), 937-952. https://doi.org/10.1080/09541440500451526

- van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. *Cognition*, 113(2), 248-253. https://doi.org/10.1016/j.cognition.2009.08.005
- van Dijck, J. P., Gevers, W., Lafosse, C., & Fias, W. (2012). The heterogeneous nature of number–space interactions. *Frontiers in Human Neuroscience*, 5, 182. https://doi.org/10.3389/fnhum.2011.00182
- van Dijck, J. P., Ginsburg, V., Girelli, L., & Gevers, W. (2015). Linking numbers to space. *The Oxford Handbook of Numerical Cognition*, 89-105.
- Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. *Psychonomic Bulletin & Review*, 15(2), 419-425. https://doi.org/10.3758/PBR.15.2.419
- Veale, J. F. (2014). Edinburgh handedness inventory–short form: a revised version based on confirmatory factor analysis. *Laterality: Asymmetries of Body, Brain and Cognition*, 19(2), 164-177. https://doi.org/10.1080/1357650X.2013.783045
- Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. *Psychonomic Bulletin & Review*, 12(1), 66-80. https://doi.org/10.3758/BF03196349
- Vogel, S. E., Faulkenberry, T. J., & Grabner, R. H. (2021). Quantitative and qualitative differences in the canonical and the reverse distance effect and their selective association with arithmetic and mathematical competencies. In *Frontiers in Education* (p. 274). Frontiers. https://doi.org/10.3389/feduc.2021.655747
- Vogel, S. E., Haigh, T., Sommerauer, G., Spindler, M., Brunner, C., Lyons, I. M., & Grabner, R. H. (2017). Processing the order of symbolic numbers: A reliable and unique predictor of arithmetic fluency. *Journal of Numerical Cognition*, 3(2), 288-308. https://doi.org/10.5964/jnc.v3i2.55

- Vogel, S. E., Koren, N., Falb, S., Haselwander, M., Spradley, A., Schadenbauer, P., ... & Grabner, R. H. (2019). Automatic and intentional processing of numerical order and its relationship to arithmetic performance. *Acta Psychologica*, 193, 30-41. https://doi.org/10.1016/j.actpsy.2018.12.001
- Vogel, S. E., Remark, A., & Ansari, D. (2015). Differential processing of symbolic numerical magnitude and order in first-grade children. *Journal of Experimental Child Psychology*, *129*, 26-39. https://doi.org/10.1016/j.jecp.2014.07.010
- Ward, E. V. (2022). Age and processing effects on perceptual and conceptual priming. *Quarterly Journal of Experimental Psychology*, 17470218221090128. https://doi.org/10.1177/17470218221090128
- Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. *Neuroscience & Biobehavioral Reviews*, 57, 209-219. https://doi.org/10.1016/j.neubiorev.2015.09.005
- Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. *Psychology Science Quarterly*, 50(4), 489.
- Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. *Nature*, 440(7080), 91-95. https://doi.org/10.1038/nature04262
- Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. *Frontiers in Human Neuroscience*, 6, 125. https://doi.org/10.3389/fnhum.2012.00125
- Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. *Nature*, 417(6885), 138-139. <u>https://doi.org/10.1038/417138a</u>


Appendix A

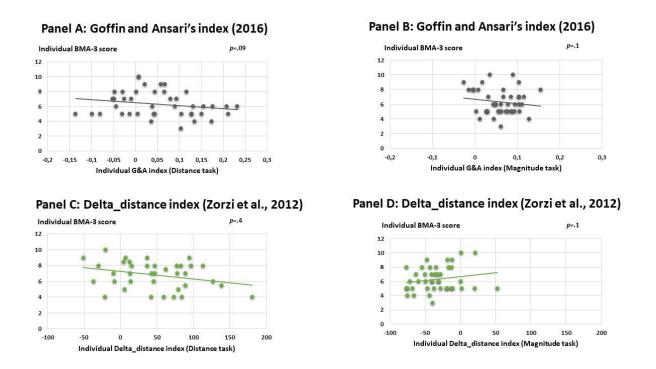
Correlations between Distance indexes and mathematical abilities

In order to investigate whether the performance in the well-established magnitude classification task and in the novel distance classification task could predict general mathematical abilities, we assessed the correlation of the indexes of implicit-DE and explicit-DE with the score of the Brief Mathematical Assessment-3 (BMA-3). However, it is important to consider that these correlations have to be carefully interpreted as they were not corrected for multiple testing.

Experiment 1: Implicit and Explicit Numerical Distance Effect in the Horizontal Dimension

When considering the indexes based on Goffin and Ansari's formula (2016), neither the DE from the distance classification task, nor the DE from the magnitude classification task related to performance in the BMA-3, as revealed by the 1-tailed Pearson's correlations (explicit-DE: r(37)=.098, p=.2; see Figure A1, panel A; implicit-DE: r(37)=.154, p=.1; see Figure A1, panel B). Instead, when considering the Delta_distance indexes (which are arguably more sensitive to the task differences), the implicit-DE did not correlate with general mathematical abilities (r(37)=.062, p=.3; see Figure A1, panel D), but the explicit-DE did (r(37)=.29, p=.04): In particular, the higher the explicit-DE (indicating advantage for numbers closer to the reference "5"), the lower the BMA-3 score (see Figure A1, panel C).

Figure A1. Panels A and B display the correlation between individual BMA-3 scores and individual explicit-DE (panel A) and implicit-DE (panel B) indexes, computed with Goffin and Ansari's formula (2016) in Experiment 1. Panels C and D display the correlation between individual BMA-3 scores and individual explicit-DE (panel C) and implicit-DE (panel D) indexes, computed with the Delta-distance formula in Experiment 1.


Experiment 2: Implicit and Explicit Numerical Distance Effect in the Radial Dimension

When considering the indexes based on Goffin and Ansari's formula (2016), neither the DE from the distance classification task, nor the DE from the magnitude classification task related to performance in the BMA-3, as revealed by the 1-tailed Pearson's Correlations (explicit-DE: r(42)=-.211, p=.09; see Figure A2, panel A; implicit-DE: r(42)=-.145, p=.1; see Figure A2, panel B). The employment of the Delta_distance indexes (which are arguably more sensitive to the task differences) corroborated the previous null correlations (explicit-DE: r(42)=-.036, p=.4; see Figure A2, panel C; implicit-DE: r(42)=.187, p=.1; see Figure A2, panel D).

When taking into account the diagonal incongruent with the MNL, Goffin and Ansari's indexes did not correlate with the BMA-3 score (implicit-DE: r(20)=-.070, p=.3; explicit-DE: r(20)=-.087,

p=.3); while the Delta_distance index for implicit-DE, and not for explicit-DE (r(20)=.267, p>.1), positively correlated with the BMA-3, but this correlation only approached significance (r(20)=.36, p=.059).

When taking into account the diagonal congruent with the MNL, Goffin and Ansari's indexes did not correlate with the BMA-3 score (implicit-DE: r(22)=-.230, p=.1; explicit-DE: r(22)=-.313, p>.07); while the Delta_distance index for explicit-DE, and not for implicit-DE (r(22)=.026, p>.4), negatively correlated with the BMA-3, but this correlation only approached significance (r(22)=..34, p=.058).

Figure A2. Panels A and B display the correlation between individual BMA-3 scores and individual explicit-DE (panel A) and implicit-DE (panel B) indexes, computed with Goffin and Ansari's formula (2016) in Experiment 1. Panels C and D display the correlation between individual BMA-3 scores and individual explicit-DE (panel C) and implicit-DE (panel D) indexes, computed with the Delta-distance formula in Experiment 1.

Discussion

In Experiment 1, the explicit-DE has been shown to predict general mathematical abilities, as indicated by the significant and negative correlation with individual scores in the Brief Mathematical Assessment. Previous studies have documented negative correlations between implicit-DE and mathematical abilities (Goffin & Ansari, 2016; Vogel et al., 2021). However, they all considered simple arithmetic problems, while the BMA-3 questionnaire used in our experiment includes a combination of mathematical problems of increasing difficulty. In Experiment 2, the correlation between DE and the BMA-3 did not emerge. Further analyses shed light on the role played by the diagonal response mappings. The diagonal congruent with the MNL led to an effect in the same direction as the one observed in Experiment 1, reporting a negative correlation between explicit-DE and BMA-3; instead, the diagonal incongruent with the MNL led to a positive correlation between the implicit-DE and the BMA-3. These correlations in Experiment 2 were, however, not significant. Future studies will need to clarify the relation between mathematical proficiency and the DE when assessed either implicitly or explicitly.

Appendix B

Bayesian analyses

In this Appendix we report the results from a series of Bayesian analyses which have been run to verify the strength of the main findings observed by means of frequentist statistical methods. Bayesian analyses were conducted using JASP (version 0.11.1.0) and its default priors (Faulkenberry & Wagenmakers, 2020).

Experiment 1: Implicit and Explicit Numerical Distance Effect in the Horizontal Dimension

Two Bayesian repeated measures ANOVAs were run to substantiate the main findings of Experiment 1. In both analyses, the dependent variable was the mean of response latencies, following the same pre-processing of data used when applying frequentist statistics, as described in the main text.

In the first analysis, Task, Magnitude, Distance, and Response Side were included as withinsubject factors. The best model included Task, Magnitude, Distance, and Response side as main factors, as well as the Task by Distance and the Magnitude X Response side interactions ($BF_{10} =$ 3.814e+111; BF_{incl} for Task = ∞ , BF_{incl} for Magnitude = 7.525, BF_{incl} for Distance = 1.030e+9, BF_{incl} for Response Side = 7.720, BF_{incl} for Task x Distance = 3259.894, BF_{incl} for Magnitude x Response side = 53.053).

From Bayesian 2-tailed paired-sample *t*-tests it emerged that in the magnitude classification task all numerical distances differed from each other (all BF₁₀ > 614.633, extreme evidence for H₁), except for Distance 3 and Distance 4 (BF₁₀ = 0.189, moderate evidence for H₀). Instead, in the distance classification task, Distance 2 differed from Distance 1 (BF₁₀ = 4419.681, extreme evidence for H₁) and from Distance 4 (BF₁₀ = 23507.769, extreme evidence for H₁). Also, the difference between Distance 3 and 4 reached a Bayes factor above 100 (BF₁₀ = 1974.162, extreme evidence for H₁). Moderate evidence emerged for the differences between Distance 1 and 4 (BF₁₀ = 9.674) and between Distance 2 and 3 (BF₁₀ = 5.450). In line with the frequentist analyses reported in the main text, Distance 1 did not differ from Distance 3 (BF₁₀ = 0.326, moderate evidence for H₀).

From Bayesian 2-tailed paired-sample *t*-tests it emerged that participants were faster at responding to small numbers with the left button as compared to the right button ($BF_{10} = 1.765$, anecdotal evidence for H_1), and to large numbers with the right button as compared to the left button ($BF_{10} =$ 49.121, very strong evidence for H_1). Moreover, responses with the left button were faster for small rather than for large numbers ($BF_{10} = 102.217$, extreme evidence for H_1), and responses with the right button were faster for large rather than for small numbers ($BF_{10} = 1.717$, anecdotal evidence for H_1).

Bayesian one sample *t*-test confirmed that overall, the mean of the unstandardized *b* coefficient differed from zero (BF₁₀ = 48.086, very strong evidence for H₁). The *b* coefficient in the magnitude classification task and the *b* coefficient in the distance classification task did not differ (BF₁₀ = 0.499, anecdotal evidence for H₀).

Experiment 2: Implicit and Explicit Numerical Distance Effect in the Radial Dimension

A series of Bayesian repeated measures ANOVA were run to substantiate the main findings of Experiment 2. In both analyses, the dependent variable was the mean of response latencies, following the same pre-processing of data used when applying frequentist statistics, as described in the main text.

In the first analysis, Task, Magnitude, Distance, and Response side were included as within-subject factors. The best model included Task and Distance as main factors, as well as their interaction (BF_{10} = 1.475e+182; BF_{incl} for Task = 1.230e+13, BF_{incl} for Distance = 1.217e+13, BF_{incl} for Task x Distance = 526846.011).

From Bayesian 2-tailed paired-sample *t*-tests it emerged that in the magnitude classification task all numerical distances differed from each other with extreme or strong evidence for H₁ (all BF₁₀ > 20.704), except for Distance 3 vs. Distance 4 (BF₁₀ = 0.195, moderate evidence for H₀). Instead, in the distance classification task, all numerical distances differed from each other with extreme or strong evidence for H_1 (all $BF_{10} > 11.694$), except for Distance 1 vs. Distance 3 ($BF_{10} = 0.168$, moderate evidence for H_0).

Bayesian 2-tailed paired-sample *t*-tests confirmed that in the magnitude classification task, a difference between small and large numbers appeared only at Distance 4 (BF₁₀ = 3.009, moderate evidence for H₁), and not at Distances 1, 2 and 3 (all BF₁₀ < 0.510). Instead, in the distance classification task, responses to small and large numbers differed across all the Distances with anecdotal to moderate evidence (all BF₁₀ > 2.102), except for Distance 4 (BF₁₀ = 0.233, moderate evidence for H₀).

Secondly, a within-subject Bayesian ANOVA was conducted for each Diagonal axis (i.e., MNLincongruent and MNL-congruent). Magnitude, Distance, and Response side were included as withinsubject factors.

When considering the diagonal axis incongruent with the horizontal MNL ("T"- "B" buttons), the best model included Task and Distance as main factors, as well as their interaction ($BF_{10} = 3.657e + 79$; BF_{incl} for Task = ∞ , BF_{incl} for Distance = 5696741.833, BF_{incl} for Task x Distance = 607.758).

When considering the diagonal axis congruent with the horizontal MNL ("N"- "I" buttons), the best model included Task and Distance as main factors, as well as their interaction ($BF_{10} = 3.362e+97$; BF_{incl} for Task = 2.891e+13, BF_{incl} for Distance = 1222888.724, BF_{incl} for Task x Distance = 29.000).

Thus, different to what was found with frequentist analysis, no effect of Response side was observed since the best model included only Task and Distance as main factors, as well as their interaction, regardless of the diagonal axis considered.

SNARC Effect driven by the Numerical Distance: Slopes. Bayesian one sample t-test reported inconclusive evidence with respect to the difference of the mean of the unstandardized b coefficient from zero (BF10 = 1.078, inconclusive evidence for H1). When considering the diagonal incongruent with the MNL, the mean of the unstandardized *b* coefficient differed from zero with moderate evidence (BF₁₀ = 3.136).

When considering the diagonal congruent with the MNL, the mean of the unstandardized *b* coefficient did not differ from zero (BF₁₀ = 0.262, moderate evidence for H₀).

SNARC Effect driven by the Numerical Magnitude: Slopes. Bayesian one sample t-test confirmed that overall, the mean of the unstandardized *b* coefficient did not differ from zero ($BF_{10} = 0.275$, moderate evidence for H_0).

When considering the diagonal incongruent with the MNL, the mean of the unstandardized *b* coefficient differed from zero only with anecdotal evidence (BF₁₀ = 1.750).

When considering the diagonal congruent with the MNL, the mean of the unstandardized *b* coefficient differed from zero with strong evidence (BF₁₀ = 13.369).