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Abstract
For a finite set X ⊂ Zd that can be represented as X = Q ∩Zd for some polyhedron
Q, we call Q a relaxation of X and define the relaxation complexity rc(X) of X
as the least number of facets among all possible relaxations Q of X . The rational
relaxation complexity rcQ(X) restricts the definition of rc(X) to rational polyhedra
Q. In this article, we focus on X = �d , the vertex set of the standard simplex, which
consists of the null vector and the standard unit vectors inRd . We show that rc(�d) ≤
d for every d ≥ 5. That is, since rcQ(�d) = d + 1, irrationality can reduce the
minimal size of relaxations. This answers an open question posed by Kaibel and
Weltge (Math Program 154(1):407–425, 2015). Moreover, we prove the asymptotic
statement rc(�d) ∈ O(d/

√
log(d)), which shows that the ratio rc(�d )/rcQ(�d ) goes to 0,

as d → ∞.
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1 Introduction

Finding compact representations of a large set of integer points in a high-dimensional
space is a recurring theme in combinatorial optimization, where these points usually
describe the feasible solutions to a discrete problem. A classical approach is, given
a set of points of interest X ⊆ Zd , to find a polyhedron Q ⊆ Rd whose integer
points are exactly those in X , i.e., such that Q ∩Zd = X . Such a polyhedron is called
a relaxation of X . By feeding a relaxation of X to an integer programming solver,
one can optimize a linear objective function over X . The relaxation complexity of X ,
denoted by rc(X), is the smallest number of facets of a relaxation of X . This concept
was introduced by Kaibel and Weltge [1] (see also Weltge [2]) as a measure of the
complexity of a set of integer points.

A basic question is to determine the relaxation complexity of simple sets like the
vertices of a hypercube or a simplex. For instance, one has rc({0, 1}d) ≤ 2d by
counting the number of facets of the 0/1 hypercube. However, a relaxation with only
d + 1 facets exists [1]. Moreover, it is easy to see that any bounded relaxation of a
full-dimensional set X ⊆ Zd must have at least d + 1 facets, and one can further
show that the 0/1 hypercube does not admit any unbounded relaxation [1], implying
rc({0, 1}d) = d+1. In general, however, a finite set of points can admit an unbounded
relaxation. Notice that such a relaxation must have irrational rays only (assuming
X �= ∅): indeed, starting from a point of X and applying a rational ray would produce
infinitely many integer points. As a prominent example, the authors of [1] describe a
5-dimensional simplex (that is unimodularly equivalent to the standard simplex) and
an unbounded, irrational relaxation of its vertex set, which however has at least six
facets. Inspired by this result, they pose the following questions.

Questions 1 Let �d be the set consisting of the null vector and the canonical unit
vectors in Rd , and let rcQ(·) be the restriction of rc(·) to rational relaxations.
(Q1) Does rc(�d) = rcQ(�d) = d + 1 hold for all positive integers d?
(Q2) If X ⊆ Zd is finite, does rc(X) ≥ dim(X) + 1 hold? Here, dim(X) is the

dimension of the affine hull of X.
(Q3) If X ⊆ Zd is finite, does rc(X) = rcQ(X) hold?

In this paper, we show that rc(�d) < rcQ(�d) for d ≥ 5. This gives negative
answers to all the three questions above. The starting point is an example in dimen-
sion 5.

Theorem 1 We have rc(�5) = 5.

From this example, we can easily show that irrationality helps to reduce the
relaxation complexity also in higher dimensions. Thus, Questions (Q1)–(Q3) have
a negative answer for every d ≥ 5.

Corollary 1 For every d ∈ Z>0, one has

rc(�d) ≤ 5

⌊
d + 1

6

⌋
+

(
(d + 1) mod 6

)
,
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where . � denotes the rounding-down operation and (d + 1) mod 6 is the remainder
of the division of (d + 1) by 6.

Since the relaxation complexity and rational relaxation complexity differ, onemight
wonder about the ratio rc(�d)/ rcQ(�d) of these two quantities. By Corollary 1, this
ratio is bounded from above by 5

6 + o(d), as d → ∞. With a significantly more
involved construction, we can show that rc(�d)/ rcQ(�d) → 0, as d → ∞, by
providing the following asymptotic estimate:

Theorem 2 We have rc(�d) ∈ O
(

d√
log d

)
.

The remainder of this article is structured as follows. First, we mention related
literature (Sect. 1.1) and introduce the notation and terminology that we use throughout
the article (Sect. 1.2). In Sect. 2, we prove Theorem 1 and Corollary 1, and, based on
the proof of Theorem 1, we derive our strategy for proving Theorem 2. The proof of
the latter theorem is then presented in Sect. 4. Finally, we list some open problems in
Sect. 5.

1.1 Related literature

The relaxation complexity has been formally introduced by Kaibel and Weltge in [1],
where it is also shown how to derive lower bounds for it. Among others, this lower
bound shows that any relaxation of a natural encoding ofHamiltonian cycles via binary
vectors needs exponentially many inequalities in general. For X ⊆ {0, 1}d , an upper
bound on the minimal number of inequalities needed to separate X and {0, 1}d \ X has
been derived by Jeroslow [3]. Complementing the upper and lower bounds, Averkov
andSchymura [4] derived criteria that guarantee that rc(X) can be computed by solving
a mixed-integer program. More sophisticated mixed-integer programming techniques
to compute rc(X) have been discussed recently by Averkov, Hojny, and Schymura
[5]. Independently from the criteria in [4] that guarantee computability in arbitrary
dimensions, Weltge [2] shows that rc(X) for X ⊆ Zd is computable if d = 2, and [4]
extends this result to d = 3. Averkov, Hojny, and Schymura [6] showed that, if d = 2,
then rc(X) can be found in polynomial time. Furthermore, [6] also addresses issues
behind the computability of rc(X) and rcQ(X) for an arbitrary dimension and reveals
that having rc(X) < rcQ(X) is an additional obstacle on the way to computing rc(X)

and rcQ(X), as certain natural computational procedures fail to stop and so do not give
finite algorithms in this case. For more details, see Sect. 5.

Extension complexity is a related, but more well studied concept than relaxation
complexity (see [7] for a survey). The extension complexity of a polyhedron P ⊆ Rd is
the minimum number of facets of a polyhedron Q ⊆ Rd+d ′

that projects down to P . If
P is the convex hull of our set of integer points X , the extension complexity of P mea-
sures how compactly one can describe X using a linear formulation with additional
variables, while the relaxation complexity of X allows to use integer formulations,
but with no additional variables. The existence of small extended formulations for a
given polyhedron P is related to the existence of small non-negative factorizations of a
matrix related to P by the celebrated Yannakakis’ Theorem [8]. Finding non-negative
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factorizations of (non-negative) matrices is a problem of independent interest, and in
1993 it was asked [9] whether using irrational numbers could lead to smaller factor-
izations of rational matrices. This was recently answered in [10] and [11]: irrational
numbers indeed help, as there are rational matrices whose minimum size factoriza-
tions require irrational numbers. As far as the authors know, the examples given in the
aforementioned papers do not correspond to polyhedra, hence it is open whether using
irrational numbers leads to smaller extended formulations for rational polyhedra.

Despite the lower bounds and the computability results mentioned above, the
existence of small relaxations for a given set of points does not have a general
characterization similar to what is known for extended formulations in terms of
non-negative factorizations and communication protocols [8, 12]. Moreover, we lack
general approaches to construct relaxations, while several efficient constructions for
extended formulations are known [13–17]. This paper can be seen as one step forward
in this direction.

Interestingly, sets of points like those corresponding to the spanning trees of a graph
do not admit relaxations of subexponential size [1], but do admit polynomial-sized
extended formulations [18–20]; the opposite happens for other sets, for instance those
corresponding to stable sets or matchings in a graph, which admit simple, linear-sized
relaxations, but no extended formulation of subexponential size [21, 22].

1.2 Notation, terminology, and background

We use ⊆ and ⊂ to denote inclusion and strict inclusion, respectively. As usual,
we define [m]:={1, . . . ,m} for m ∈ Z>0 and [m]:=∅ for m = 0. We denote by 0a
(resp. 0a,b) the all-zero vector (resp. all-zeromatrix) of size a (resp. a×b), writing only
0when the dimension is clear from the context. We denote the standard unit vectors in
Rd by e1, . . . , ed . Using this notation, �d = {0, e1, . . . , ed}. The dimension dim(X)

of X ⊆ Rd is the dimension of its affine hull. The cardinality of X is denoted by |X |
and its convex hull is denoted by conv(X). For two sets X and Y , we denote by Y X the
set of all maps from X to Y . If X is finite, then RX is a |X |-dimensional vector space
over R and, thus, it has the standard Euclidean topology. As usual, for φ : X → Z
and Y ⊆ X , the notation φ|Y is used to denote the restriction of the map φ to Y .

We call elements of Zd integer points/vectors and we call elements of Zd × Rm

mixed-integer points/vectors. An affine transformation φ : Rd → Rd is said to be
unimodular if it maps the integer lattice onto itself, that is, φ(Zd) = Zd . It is known
and easy to check (see, e.g., [23]) thatφ is unimodular if and only if it can be represented
as φ(x) = Ux + v where v ∈ Zd and U ∈ Zd×d is a unimodular matrix, which is an
integer matrix with determinant equal to one in absolute value.

The recession cone rec(P) of a nonempty polyhedron P ⊆ Rd is the set of all
u ∈ Rd satisfying p + u ∈ P for each p ∈ P . The recession cone of a polyhedron
P �= ∅ given by an inequality description Ax ≤ b is a polyhedral cone, which can be
given by the inequality description Ax ≤ 0.

For X ⊆ Y ⊆ Rk , a polyhedron P satisfying X = P ∩ Y is called a (polyhedral)
relaxation of X within Y . By rc(X ,Y ) we denote the minimal k such that X =
P ∩ Y holds for some polyhedron P with k facets. If such k does not exist, we let
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rc(X ,Y ) = ∞.We call rc(X ,Y ) the relaxation complexity of X withinY . It is clear that
rc(X ,Y ) is monotonically non-decreasing with respect to Y in the sense that X ⊆ Y ⊆
Z implies rc(X ,Y ) ≤ rc(X , Z). For X ⊆ Zd , we call rc(X):= rc(X ,Zd) the (integer)
relaxation complexity while, for X ⊆ Zd × Rn , we call rc(X ,Zd × Rn) the (d, n)-
mixed-integer relaxation complexity or the mixed-integer relaxation complexity with
respect to d integer and n real variables. Similarly, a (d, n)-mixed-integer relaxation
of X is a relaxation of X within Zd × Rn .

We also provide some necessary background from the theory of irrational numbers.
The field R is a vector space over Q and it can be seen in different ways that R is
infinite-dimensional over Q. One easy non-constructive way to see this is to observe
that R is uncountable, whereas Q and by this also every finite-dimensional vector
space overQ is countable. This observation shows that for every k ∈ Z>0 there exists
numbers a1, . . . , ak ∈ R that are linearly independent over Q. As a consequence,
we also see that for every k ∈ Z>0 there exist numbers b1, . . . , bk ∈ R such that
1, b1, . . . , bk are linearly independent over Q. To show the latter, one can start with
numbers a0, . . . , ak ∈ R linearly independent over Q and fix bi :=ai/a0 for i ∈ [k]0.
Alternatively, the sequence b0 = 1, b1, . . . , bk of numbers linearly independent over
Q can also be obtained by choosing an arbitrary algebraic number c ∈ R of algebraic
degree k + 1 and fixing bi = ci for i ∈ [k]0. See [24, Sect. 4] for more details.

2 The projection approach

In this section, we prove Theorem 1 and Corollary 1. Then, we will discuss how our
proof strategy can be generalized to show Theorem 2.

2.1 The counterexample in dimension five

Define

�:={0, e1, e2, e3, (1, 0, 1, 1, 0), (0, 1, 1, 0, 1)} ⊂ Z5.

� is the vertex set of a 5-dimensional simplex and is unimodularly equivalent to
�5. We work with � instead of �5 because this simplifies the calculations: giving a
relaxation of � will imply the existence of a relaxation of �5 of the same size.

Let � ⊂ R5 be the line spanned by the vector (0, 0, 0, 1,
√
2). In [1] it is shown that

conv(�) + � is an (unbounded) relaxation of �. However, such a relaxation has more
than five facets. In order to give our relaxation, it is easier to reduce ourselves to a
4-dimensional space by projecting on a suitable hyperplane along line �, and looking
for a relaxation of the projection of � within the projection of Z5. In particular, we
use the following observation:

Observation 1 Let π : R5 → R4 be the projection

π(x1, x2, x3, x4, x5):=
(
x1, x2, x3, x4 − 1√

2
x5

)
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Fig. 1 The projection of �′ onto the first three components, with the fourth component of the elements
of �′ indicated in the boxes (left), and the sets of elements of �′ on which inequalities (1)–(5) are active
(right). The colors indicate that (1)–(3) provide upper bounds on x4, while (4)–(5) provide lower bounds
on x4. Inequalities (1), (2) and (4) are facet-defining for conv(�′), as each of them is active on four affinely
independent vertices. Inequalities (3) and (5) define two-dimensional faces of conv(�′)

and P ⊆ R4 be a polyhedron satisfying P∩(Z3×R) = π(�). Then Q:=(P×{0})+�

is a relaxation of �. In other words, one has rc(�,Z5) ≤ rc(π(�),Z3 × R).

Proof By the choice of π , π(Z5) is a subset of Z3 × R. Moreover, � is the kernel of
π and Q is the pre-image of P under π .

We show that Q ∩ Z5 = �. If q ∈ Q ∩ Z5, then π(q) ∈ P ∩ (Z3 × R) = π(�).
The condition π(q) ∈ π(�) implies q ∈ � + �. But since � is an irrational line, its
only integer point is 0. Hence the points of � are the only integer points in � + �.
As q ∈ Z5, we conclude that q ∈ �. Conversely, if q ∈ �, then π(q) ∈ π(�) ⊆ P .
Thus, q is in the pre-image of P under π , that is, q ∈ Q. This shows Q ∩ Z5 = �

and yields the assertion. ��
Based on Observation 1, for deriving rc(�,Z5) ≤ 5 it is sufficient to find a (3, 1)-

mixed-integer relaxation of π(�) with five facets. To this end, let ε ∈ (0, 1) and
consider the inequalities

x1 ≥ x4, (1)

x3 ≥ x4, (2)

εx1 + x2 + 1 − ε

1 + √
2
x3 + (1 − ε)

√
2

1 + √
2

x4 ≤ 1, (3)

x3 + √
2x4 ≥ 0, (4)

x1 − (1 + ε)x2 + x3 − x4 ≤ 1. (5)

We use these inequalities to define the polyhedron Pε:={x ∈ R4 : x satisfies (1)–(5)}.
Moreover, let

�′:=π(�) =
{
0, e1, e2, e3, (1, 0, 1, 1),

(
0, 1, 1,− 1√

2

)}
.

Proposition 1 The polyhedron P1/8 satisfies P1/8 ∩ (Z3 × R) = �′.
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Proof We only provide a sketch of the proof and refer the reader to Appendix 1 for all
details. An illustration of the geometry behind our proof is given in Fig. 1. Moreover,
a computer-assisted proof can be found at github.1

Consider the coordinate projectionmapφ(x1, x2, x3, x4):=(x1, x2, x3). The inequal-
ity description of the polytope T :=φ(P1/8) can be determined from the inequality
description of P1/8 via Fourier-Motzkin elimination, see, e.g., the book [23]. Inspecting
this inequality description, we show T∩Z3 = {(0, 0), (1, 0), (0, 1)}×{0, 1} = φ(�′).
Once this verification is done, by plugging in an arbitrary (x1, x2, x3) ∈ T ∩ Z3

into the system (1)–(5) one obtains a system of linear constraints for x4. These con-
straints provide lower and upper bounds on x4. It turns out that for each choice
of (x1, x2, x3) ∈ T ∩ Z3, the respective best lower and upper bound on x4 match
and thus give exactly one choice of x4 corresponding to (x1, x2, x3, x4) ∈ �′. That
is, for (x1, x2, x3) ∈ {(0, 0, 0), e1, e2, e3}, one obtains inequalities x4 ≤ 0 and
x4 ≥ 0, for (x1, x2, x3) = (1, 0, 1), one obtains x4 ≤ 1 and x4 ≥ 1, while for
(x1, x2, x3) = (0, 1, 1), one obtains x4 ≤ − 1√

2
and x4 ≥ − 1√

2
. This shows the

asserted equality P1/8 ∩ (Z3 × R) = �′. ��
Weobserve that the sequence of the values rc(�d) ismonotonically non-decreasing.

Proposition 2 rc(�d) ≤ rc(�d+1).

Proof A relaxation of �d+1 with k inequalities restricted to the coordinate subspace
Rd × {0} gives a relaxation of �d with at most k inequalities. This shows the desired
assertion. ��

Our use of Proposition 2 is two-fold. We need it as an ingredient in the proof of
Theorem 1, on the one hand. On the other hand, since rc(�d) grows with respect to
d, we are justified to study the asymptotic growth of this quantity.

We are ready to prove Theorem 1,

Proof of Theorem 1 By Proposition 1 and Observation 1, (P1/8×{0})+� is a relaxation
of �. Since P1/8 is defined by five inequalities, we have rc(�) ≤ 5. On the other hand,
by Proposition 2 we have rc(�) = rc(�5) ≥ rc(�4) = 5, where rc(�4) = 5 has been
verified in [4]. ��
Remark 1 (Computer-assisted studies) The system (1)–(5) has been discovered and
validated using a computer. For the separation of �′ from Z4 with five inequalities, a
mixed-integer programming model has been established, akin to the model suggested
in [4]. In the established model, instead of Z4 a finite sufficiently large subset of
Z4 has been used as an “approximation” of Z4. The model was represented and
solved in floating-point arithmetic. The values that have been produced as a result
have been inspected and manually converted to exact algebraic numbers in the field

Q[√2]:=
{
a + b

√
2 : a, b ∈ Q

}
; for values that were very close to 0 or 1 but could

1 https://github.com/christopherhojny/relaxation_complexity/blob/master/computer-aided-proofs/
polyhedral_check_Delta_5.sage githash 7804b47c17.
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not be rounded to integerswithout losing the exactness of the relaxation, we introduced
the value ε > 0.

As a post-processing step, for the validation of the system, along with the manual
verification, we also used the computer algebra system SageMath [25]. Notably, Sage-
Math can carry out exact polyhedral computations over the field of algebraic numbers.
So, in SageMath it is possible to carry out all of the computational steps described in
the above proof by working with polyhedra over the algebraic numbers. In particular,
we used SageMath to determine an appropriate choice of ε > 0 in (1)–(5).

2.2 Extensions of the five-dimensional counterexample

To prove Corollary 1, we show that rc(�d) is sub-additive in the cardinality d + 1
of �d . To this end, we introduce the free join of non-empty finite sets X ⊂ Zk and
Y ⊂ Z� and study its properties. For k, � ∈ Z>0, we define the free join by

X ∗ Y := {(x, 0, 0) : x ∈ X} ∪ {(0, y, 1) : y ∈ Y } ⊂ Zk × Z� × Z.

This operation corresponds to the free join of polytopes, as conv(X ∗Y ) is the free join
of the polytopes conv(X) and conv(Y ), as defined in [26, 15.1.3]. It is also useful to
define the free join in the case when k or � is zero, which means that one takes the free
join with �0:={0} ⊆ R0. This is naturally defined as X ∗ �0:=(X × {0}) ∪ {ek+1} ⊂
Zk × Z and �0 ∗ Y :={0} ∪ (Y × {1}) ⊂ Z� × Z. The analogy for passing from X
to X ∗ �0 within the theory of polyhedra is building a pyramid over a given polytope.
Note that (X + u) ∗ (Y + v) coincides with X ∗ Y up to a unimodular transformation
for all u ∈ Zk and v ∈ Z�. Indeed, (X + u) ∗ (Y + v) is the image of X ∗ Y under the
affine unimodular map φ(x, y, z):=(x + (1 − z)u, y + zv, z).

In order to handle special cases uniformly, it will we also be convenient to fix
X ∗ ∅:=X , ∅ ∗ Y :=Y , rc(�0):=1, �−1:=∅ and rc(�−1):=0.

Lemma 1 Let k, � ∈ Z≥0 with k > 0 or � > 0. Then, for non-empty finite sets X ⊂ Zk

and Y ⊂ Z� with dim(X) = k and dim(Y ) = �, one has rc(X ∗ Y ) ≤ rc(X) + rc(Y ).

Proof We may assume w.l.o.g. that both X and Y admit a relaxation, i.e., rc(X)

and rc(Y ) are finite, as otherwise the statement holds trivially. We first consider the
case k > 0, � > 0.Without loss of generalitywemay assume that both X andY contain
the null vector. Let Ax ≤ b and Cy ≤ d be inequality systems defining relaxations P
and Q of X and Y , respectively, having rc(X) and rc(Y ) inequalities, respectively.
Since both X and Y contain the origin, b and d are non-negative vectors. In particular,
there needs to be at least one strictly positive entry in b and d, as otherwise, P or Q
would be a full-dimensional cone and would contain infinitely many integer points.

To verify the inequality, it suffices to show that the polyhedron

R = {(x, y, z) ∈ Rk × R� × R : Ax ≤ b · (1 − z), Cy ≤ d · z},

defined by rc(X) + rc(Y ) inequalities, is a relaxation of X ∗ Y .
Let (x, y, z) ∈ R ∩ Zk+�+1. If z = 0, then y is contained in the recession

cone rec(Q) of Q. Since Q is a relaxation of Y , we conclude y = 0 as otherwise
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there are infinitely many integer points in Q. Moreover, setting z = 0 gives the orig-
inal system Ax ≤ b, i.e., x ∈ X follows. Analogously, if z = 1, then x ∈ rec(P)

and y ∈ Y . Thus, (x, y, z) ∈ X ∗ Y follows in both cases.
If z ≤ −1, then {y ∈ R� : Cy ≤ d · z} is a subset of rec(Q), since decreasing

the right-hand side makes the system more restrictive as d is non-negative. Since
there exists at least one entry of d that is positive, Cy ≤ d · z excludes the null
vector if z < 0. Hence, {y ∈ R� : Cy ≤ d · z} does not contain any integer point.
Since we can argue analogously for z ≥ 2 and the system Ax ≤ b · (1 − z), we
conclude R ∩ Zk+�+1 ⊆ X ∗ Y . The reverse inclusion X ∗ Y ⊆ R ∩ Zk+�+1 is
straightforward.

When k or � is zero, the argument is similar. Without loss of generality, let � = 0.
Then Y = �0 and X ∗ Y = (X × {0}) ∪ {ek+1}. Again, we can assume that 0 ∈ X
and fix a system Ax ≤ b of rc(X) inequalities that defines a relaxation of X . One
can see that the system Ax ≤ b · (1 − z), z ≥ 0 of rc(X) + 1 = rc(X) + rc(Y )

inequalities defines a relaxation of X ∗ Y following the proof strategy we used in the
case k > 0, � > 0. ��

Using Lemma 1, Corollary 1 follows easily.

Proof of Corollary 1 Note that rc(�k+�+1) = rc(�k∗��) because�k+�+1 and�k∗��

are unimodularly equivalent.
Let m and r be the quotient and the remainder of the division of d + 1 by 6.

By the above observation, �d is equivalent to the free join of m copies of �5 and
one copy of �r−1 for r > 0. Thus, using Lemma 1 and Theorem 1, we obtain
rc(�d) ≤ m rc(�5) + rc(�r−1) ≤ 5m + r . ��
Remark 2 Combining Proposition 2 and the inequality rc(�d+1) ≤ rc(�d ∗ �0) ≤
rc(�d) + 1, which follows from Lemma 1, we conclude that, for any given d ∈ Z>0,
the value rc(�d+1) either stays equal to rc(�d) or grows with respect to rc(�d) by
exactly one unit. Thus, for the determination of the exact behavior of rc(�d) in d, the
frequency of the jumps by one unit would have to be estimated from below and above.

As a consequence of our proof approach for Theorem 1, we also obtain the follow-
ing.

Corollary 2 For every dimension d ∈ Z≥5, up to identification with respect to uni-
modular transformations, there exist infinitely many sets X ⊂ Zd with dim(X) = d
and rc(X) < d + 1.

Proof Wefirst settle the cased = 5. For eacha ∈ Z>0,weconsider the one-parametric
generalization

Xa :={0, e1, e2, e3, (1, 0, 1, 1, 0), (0, 1, 1, 0, a)}

of the set �, with � = Xa for a = 1. The projection of Xa along the irrational line
�a spanned by (0, 0, 0, 1, a

√
2) under the map πa : R5 → R4,

πa(x1, x2, x3, x4, x5) =
(
x1, x2, x3, x4 − 1

a
√
2
x5

)
.
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is the same set �′ as the projection of � under the projection map π considered in
the analysis of �. It is clear that πa maps Z5 into Z3 ×R. Consequently, in the same
way as we showed that π−1(P1/8) is a five-facet relaxation of � within Z5 relying
on Observation 1 and Proposition 1, we can also show that π−1

a (P1/8) is a five-facet
relaxation of Xa withinZ5 relying on a straightforward generalization ofObservation 1
(with � and π replaced by Xa and πa , respectively) and Proposition 1.

Distinct sets Xa′ and Xa′′ with a′, a′′ ∈ Z>0 and a′ �= a′′ do not coincide up to
unimodular transformations when a′ �= a′′, since Xa is the vertex set of a simplex
of volume 1

5!a and unimodular transformations preserve volume. This completes the
proof of the assertion for d = 5.

For higher dimensions d ≥ 6, we use Ya :=Xa ∗ �d−6. The set Ya is the vertex set
of a simplex of volume 1

d!a. Thus, all of the sets Ya with a ∈ Z>0 are pairwise distinct
up to unimodular transformations. Lemma 1 yields rc(Ya) ≤ rc(Xa) + rc(�d−6) ≤
5 + d − 5 = d < d + 1. ��

3 The project-lift-relax approach

In this section, we set preliminary grounds for the proof of Theorem 2 by general-
izing our approach to proving Theorem 1. The core steps to find our 5-dimensional
counterexample consist of a projection of (a unimodular transformation of) �5 to a
lower dimensional space and a determination of a (3, 1)-mixed-integer relaxation of
the projection. As we will see below, the continuous coordinate of such a relaxation
can be interpreted as a lifting from a 3-dimensional space. For this reason, to be able
to generalize our proof strategy to prove Theorem 2, we provide two lemmas that
explain how the relaxation complexity behaves under these two operations: projection
and lifting. Afterwards, we will review our approach to prove Theorem 1 in the light
of these two lemmas, which will motivate our strategy to prove Theorem 2.

The following can be seen as a generalization of Observation 1.

Lemma 2 (On injective projections) Let X ⊆ Z ⊆ Rd and let π : Rd → Rn be an
affine map such that π |Z is injective. Then,

rc(X , Z) ≤ rc(π(X), π(Z)).

Proof Let k = rc(π(X), π(Z)). We may assume that k is finite, as otherwise the
assertion is trivial. Consider a polyhedron Q with k facets, which is a relaxation of
π(X) within π(Z), which means that Q ∩ π(Z) = π(X) holds. It is clear that the
polyhedron P = π−1(Q) has at most k facets. For verifying the asserted inequality, it
suffices to show that P is a relaxation of X within Z , which means that P ∩ Z = X .

To check the inclusion P ∩ Z ⊆ X , we consider an arbitrary y ∈ P ∩ Z . From the
definition of P , we see that π(y) ∈ Q ∩ π(Z). In view of Q ∩ π(Z) = π(X), we
obtain π(y) ∈ π(X). As π |Z is injective and X ⊆ Z , we conclude that y ∈ X .

For showing the converse inclusion X ⊆ P ∩ Z , we consider an arbitrary y ∈ X .
Since X ⊆ Z , we have y ∈ Z . The condition y ∈ P , which remains to be verified,

123



The role of rationality in integer-programming…

is equivalent to π(y) ∈ Q. Since Q ∩ π(Z) = π(X) and π(y) ∈ π(X), we see that
π(y) is indeed in Q. ��

Next, we show how we can derive upper bounds on the (k, 1)-mixed-integer relax-
ation complexity of finite sets by means of lifting. To formalize this, we introduce, for
h : X → R,

lifth(X):= {(x, h(x)) : x ∈ X} ,

clifth(X):= conv(lifth(X)),

and call these sets the lift (resp. convex lift) of X with respect to the height function h.
Consider a (k+1)-dimensional polytope P inRk+1. The facet-defining inequalities

for this polytope are inequalities in (x, y) ∈ Rk × R, which can be brought into one
of the three forms y ≤ u�x + v, y ≥ u�x + v or 0 ≤ u�x + v, where u ∈ Rk and
v ∈ R. We call the respective facets of Q the upper facets, the lower facets, and the
lateral facets.

Proposition 3 Let P ⊂ Rk+1 be a full-dimensional polytope, h : T → R be a function
from a finite non-empty set T ⊂ Zk . Then P is a relaxation of lifth(T ) withinZk ×R

if and only if

1. every p ∈ lifth(T ) is contained in an upper and lower facet of P, and
2. the projection of P onto the first k components is a relaxation of T within Zk .

Proof First, suppose that P is a relaxation of lifth(T ) within Zk × R. If, by con-
tradiction, there is (x, h(x)) ∈ lifth(T ) that is not contained in any upper facet of
P , then there is some y > h(x) such that (x, y) ∈ P , contradicting the fact that
P ∩ (Zk × R) = lifth(T ). Arguing similarly for lower facets, one checks Condition
1. Condition 2 follows immediately from the definition of relaxation.

For the opposite direction, let P satisfy Conditions 1 and 2. Condition 1 easily
implies that P ∩ (Zk × R) ⊇ lifth(T ). For the reverse inclusion, let (x, y) ∈ P ∩
(Zk × R). We need to show that (x, y) ∈ lifth(T ). By Condition 2, one has x ∈ T .
If (x, y) were not in lifth(T ), one would have y �= h(x). Then, if y > h(x) (resp.
y < h(x)), we conclude that (x, y) violates every upper facet (resp. lower facet)
inequality of P , in particular those that are active on (x, h(x)), a contradiction. ��

Motivated by a free-sum operation for polytopes [26, 15.1.3], we introduce the free
sum of X ⊆ Zm and Y ⊆ Zn as

X ⊕ Y := {(x, 0) : x ∈ X} ∪ {(0, y) : y ∈ Y } .

This operation will be useful, because �k ⊕ �m = �k+m .

Lemma 3 Let X ,Y be two disjoint finite subsets of Zk with 0 ∈ X and |Y | = m.
Let h : X ∪ Y → R be such that h(p) = 0 for every p ∈ X and the values h(p) with
p ∈ Y are linearly independent overQ. Then rc(X⊕�m) ≤ rc(lifth(X∪Y ),Zk×R).

123



M. Aprile et al.

Fig. 2 Visualization of the reductions in the proof of Theorem 1

Proof Let Y = {p1, . . . , pm}. The map φ : Rk ×Rm → Rk ×Rm which is defined as
φ(a, b):= (

a + ∑m
i=1 bi pi , b

)
is unimodular (because it is associated with an upper-

triangular matrix with only 1 s on the diagonal) and it satisfies

φ(X ⊕ �m) = {(x, 0) : x ∈ X} ∪ {(pi , ei ) : i ∈ {1, . . . ,m}} . (6)

We combine this map with the map ψ(a, b):= (
a,

∑m
i=1 h(pi )bi

)
. Since h(p1),

. . . , h(pm) are linearly independent overQ, themapψ |Zk+m is injective. Consequently
(ψ ◦ φ)|Zk+m is injective as well, so we obtain

rc (X ⊕ �m,Zk+m) ≤ rc(ψ(φ(X ⊕ �m)), ψ(φ(Zk+m)) (by Lemma 2).

= rc(lifth(X ∪ Y ), ψ(Zk+m)) by (6) and unimodularity of φ

≤ rc(lifth(X ∪ Y ),Zk × R). (sinceψ(Zk+m) ⊆ Zk × R)

��
Having Lemmas 2 and 3 in mind, the summary of the proof of the upper bound

rc(�5) ≤ 5 is as follows. First, we find it convenient to go from �5 to �. One
can represent these two sets as columns of two matrices (see Fig. 2a and b), which
easily allows to check that they are unimodularly equivalent. Second, we apply the
projection π on R4 along line �, as defined in Observation 1. This corresponds to
applying Lemma 2, where X = �, Z = Z5. The points in π(�) are listed as columns
of thematrix in Fig. 2c. Now, in light of Lemma 3, we see the points inπ(�) as coming
from a lift of points in Z3. Let X = �3 and Y = {(1, 0, 1), (0, 1, 1)}, and h such that
h(p) = 0 for p ∈ X , h(1, 0, 1) = 1, and h(0, 1, 1) = −1/

√
2. Then, by Lemma 3,

we have that rc(�5) = rc(X ⊕ �2) ≤ rc(lifth(X ∪ Y ),Z3 × R).
In order to obtain Theorem 1, it now remains to show that P , defined as in Sect. 2.1,

is a relaxation of lifth(X∪Y )withinZ3×R. One can do that by setting T = X∪Y and
verifying Conditions 1 and 2 in Proposition 3. Condition 1 can be easily verified by the
reader (notice that inequalities (1), (2), (3) define upper facets of P , and inequalities
(4),(5) define lower facets). Verifying Condition 2 can be done directly via Fourier-
Motzkin elimination, as mentioned in the proof of Theorem 1.

In summary, our proof of Theorem 1 consists of three steps: project (a unimodular
transformation of) the simplex to a lower dimensional space; lift the projection into
a space with one continuous coordinate; relax the mixed-integer point set by finding
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a small relaxation. To prove Theorem 2, we once again utilize this project-lift-relax
strategy. That is, the steps of our proof are:

S1 Find a suitable unimodular copy of�d and project this copy ontoZk via amapπ .
S2 Construct a suitable height function h : π(�̃d) → R

S3 Derive a relaxation P of lifth(π(�̃d)) within Zk × R.

By a variation of Lemma 3, which we formulate below as Lemma 5, the number of
facets of P will provide an upper bound on rc(�̃d) and thus on rc(�d) since�d and �̃d

are unimodularly equivalent, provided the height function h satisfies all assumptions.
In the following subsections, we discuss each of these three steps in detail.

4 The Proof of Theorem 2

This section is devoted to proving Theorem 2.

4.1 Project: Selecting the Right Simplex and Its Projection

Step S1 requires us to select a set �̃d that is unimodularly equivalent to �d as well as
a projection π : Rd → Rk . To this end, consider the following d × (d + 1) matrix

M =
(

0k Ik B
0d−k 0d−k,k Id−k

)
,

where Ik denotes the identity matrix of order k, and B is the k × (d − k) matrix
whose columns are all the vectors in {0, 1}k with at least two 1-entries. Note that this
definition requires d = 2k − 1. Although this assumption might look restrictive, we
can reduce the proof of Theorem 2 to this special case as we will see later.

Let �̃d ⊂ Rd be the set of columns of M . It is easy to see that �̃d and �d are
unimodularly equivalent. We select π to be the orthogonal projection of Rd onto the
first k coordinates. In the spirit of Lemma 3, we then let X ⊂ Zk be the set containing
the first k + 1 columns of M (truncated to the first k coordinates), i.e., X = �k ,
and Y ⊂ Zk be the set containing the truncation of the other columns of M , so that
T :=X ∪ Y = {0, 1}k .

4.2 Lift: finding the right height function

Our next goal is to find a suitable height function h for Step S2. In view of Step S3, we
need to select h in such a way that the we can easily derive a mixed-integer relaxation
of lifth(T ). By Proposition 3, such a relaxation can be obtained by taking the 2k box
constraints z ∈ [0, 1]k ×R and selecting upper and lower facets of clifth(Y ) that cover
all points (z, h(z)) for z ∈ T . Our strategy for finding a small relaxation is thus

S3a to find a small covering of the points (z, h(z)) for z ∈ T consisting of upper
and lower facets, respectively.
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To be able to quantify the minimum size of a covering by upper and lower
facets, respectively, we need to derive combinatorial properties of the facet struc-
ture of clifth(T ). In our analysis in the next subsection, it will thus be convenient to
have a function h that satisfies h(z) ∈ Q for all z ∈ T . In view of Lemma 3, however,
we require that the values h(y) for all y ∈ Y are linearly independent over Q. To
achieve this, we will slightly perturb h, but note that this may change the combinato-
rial structure of the facets of clifth(T ). As we show next, simplicial facets of clifth(T )

remain simplicial after small perturbations of h. Thus, we can still pursue our strategy
if we restrict ourselves to cover the points (z, h(z)) in Step S3a by simplicial facets.

Therefore, we define the simplicial upper (resp. lower) covering numbers of
lifth(T ), denoted by sucnh(T ) (resp. slcnh(T )), as the minimum number of simplicial
upper (resp. lower) facets that cover all vertices of the upper (resp. lower) part of
clifth(T ). If no covering by simplicial facets exist, the respective number is set to be
∞.

Lemma 4 (On semi-continuity) Let T be an m-dimensional subset of {0, 1}m.
Then, for every h ∈ RT which is not a restriction of an affine function, there exists

an open neighborhood U ⊆ RT of h with the property that for every h̃ ∈ U one has

sucnh̃(T ) ≤ sucnh(T ),

slcnh̃(T ) ≤ slcnh(T ).

Proof We only prove the first inequality, since the proof of the second inequality is
completely analogous. Let Q:= clifth(T ). Notice that Q is full-dimensional, since
h ∈ RT is not a restriction of an affine function. Every simplicial upper facet of Q is
given by

Fh := conv

{(
v0

h(v0)

)
, . . . ,

(
vm

h(vm)

)}
,

where v0, . . . , vm ∈ T are affinely independent. By standard linear algebra, with an
appropriate ordering of v0, . . . , vm , the respective facet-defining inequality for Q is
given by

det

⎛
⎝ 1 · · · 1 1

v0 · · · vm x
h(v0) · · · h(vm) y

⎞
⎠ ≤ 0. (7)

By expanding the determinant with respect to the last column, one can see that the
fact that Fh is an upper facet can be expressed as

det

(
1 · · · 1
v0 · · · vm

)
> 0
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and the strict validity of the inequality on vert(Q)\
{(

vi
h(vi )

) : i ∈ {0, . . . ,m}
}
:

det

⎛
⎝ 1 · · · 1 1

v0 · · · vm x
h(v0) · · · h(vm) h(x)

⎞
⎠

︸ ︷︷ ︸
=:φh(x)

< 0 for all x ∈ T \ {v0, . . . , vm}. (8)

Since φh(x) is linear in h, the set

H :=
{
h̃ ∈ RT : φh̃(x) < 0 for all x ∈ T \ {v0, . . . , vm}

}

is open (it is the interior of a polyhedron) and it satisfies h ∈ H . By construction, for
every h̃ ∈ H , the set Fh̃ is an upper facet of clifth̃(T ).

Thus, whenever t simplicial upper facets F1
h , . . . , Ft

h cover the vertex set of
clifth(T ) we see there exist t respective open sets H1, . . . , Ht with h ∈ Hi for
every i ∈ {1, . . . , t}. It follows that, for every h̃ in the open set H1 ∩ · · · ∩ Ht , the
sets F1

h̃
, . . . , Ft

h̃
are simplicial upper facets of clifth̃(T ) that cover the vertex set of

clifth̃(T ). In particular, the latter holds for every h̃ in a sufficiently small neighborhood
of h. ��

Another difficulty arises in the tools that we have available for Step S2, because
Lemma 3 requires a height function h with h(x) = 0 for all x ∈ X . We were not able
to find such a height function that allows us to find a small relaxation in Step S3a.
For this reason, we need a strengthening of Lemma 3, which we give in Lemma 5
below. In preparation for this, we provide the following proposition, which is actually
a classical observation used in the theory of regular polyhedral subdivisions. For the
sake of completeness, we give a short proof.

Proposition 4 Let X ⊆ Zm and h, h̃ : X → R be such that h(x) − h̃(x) = f (x) for
every x ∈ X, where f : Rm → R is an affine function. Then

rc(lifth(X),Zm × R) = rc(lifth̃(X),Zm × R).

Proof The affine map φ(x, y) = (x, y + f (x)) maps both Rm × R and Zm × R

bijectively onto themselves and it satisfies φ(x, h̃(x)) = (x, h(x)), which means that
φ maps lifth̃(X) bijectively onto lifth(X). Thus every relaxation of lifth̃(X) within
Zm × R is bijectively mapped to a relaxation of lifth(X) within Zm × R and vice
versa. This yields the desired assertion. ��
Lemma 5 Let X be an affinely independent subset of Zk with 0 ∈ X, let Y be a finite
m-element subset of Zk disjoint with X, and let h : X ∪ Y → R be such that

(a) h(x) ∈ Q for every x ∈ X and
(b) the values h(y) with y ∈ Y together with 1 are linearly independent over Q.

Then rc(X ⊕ �m) ≤ rc(lifth(X ∪ Y ),Zk × R).
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Proof Since X is affinely independent, there exists an affine function f that coincides
with h on X . Since h(x) ∈ Q for every x ∈ X , we can choose f with rational
coefficients. Then the function h − f is equal to 0 on X .

We now verify that the assumptions of Lemma 3 are fulfilled by checking that the
values h(y) − f (y) with y ∈ Y are linearly independent over Q. By the choice of f ,
we have f (y) ∈ Q for every y ∈ Y . Hence, since the values h(y) with y ∈ Y together
with 1 are linearly independent over Q, it follows the values h(y) − f (y) with y ∈ Y
are linearly independent over Q. Thus, using Lemma 3 and then Proposition 4, we
obtain

rc(X ⊕ �m) ≤ rc(lifth− f (X ∪ Y ),Zk × R) = rc(lifth(X ∪ Y ,Zk × R).

��
Equippedwith these tools, we are able to provide a statement that allows us to bound

the relaxation complexity in terms of simplicial upper and lower covering numbers.

Lemma 6 Let X ⊆ {0, 1}k , let Y be an m-element subset of {0, 1}k disjoint with X,
and let h : X ∪ Y → R be any function which is not a restriction of an affine function
and satisfies h(x) ∈ Q for all x ∈ X. Then

rc(X ⊕ �m) ≤ rc(X ∪ Y ) + sucnh(X ∪ Y ) + slcnh(X ∪ Y ).

Proof One can approximate h arbitrarily well by h̃ : X ∪ Y → R for which h̃(x) =
h(x) ∈ Q for every x ∈ X and the values h̃(y) with y ∈ Y , together with 1, are
linearly independent over Q. Thus, the assertion follows by combining Proposition 3
with T = X ∪ Y and Lemmas 5 and 4. ��

Recall from the previous subsection that we want to apply a lifting to the set T =
X ∪ Y with X = �k and Y = {0, 1}k\X . Due to Lemma 6, we can use in Step S2
of our strategy any height function h such that h|T is not the restriction of an affine
function and such that h(x) ∈ Q for all x ∈ X . Towards proving Theorem 2, we select

h : {0, 1}k → R, h(x1, . . . , xk) = (2xk − 1) · r(x1, . . . , xk−1),

where r : {0, 1}k−1 → R is defined by r(x1, . . . , xk−1) = (
∑k−1

i=1 xi )2.

Remark 3 Function r is the height function that defines the so-called staircase triangu-
lation of [0, 1]k−1, see, e.g., [27, Sect. 16.7.2]. That is, the statements about simplicial
facets of lifth(X ∪ Y ,Zk × R), which we will make in the following section, can be
related to a triangulation of [0, 1]k−1 if we fix xk to 0 or 1.

4.3 Relax: constructing a small mixed-integer relaxation

To complete Step S3a, we use the height function h from the preceding subsection
and bound sucnh({0, 1}k) and slcnh({0, 1}k) from above. First, we show that the two
values are equal, i.e., it is sufficient to investigate the upper or lower facets.
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Proposition 5 One has

slcnh({0, 1}k) = sucnh({0, 1}k).

Proof The affine map φ(x1, . . . , xk, y):=(x1, . . . , xk−1, 1− xk,−y) is an affine invo-
lution on Rk+1. Furthermore, φ can be restricted to an involution on lifth({0, 1}k)
since

φ
(
x1, . . . , xk−1, xk, (2xk − 1) · r(x1, . . . , xk−1)

)
=(

x1, . . . , xk−1, 1 − xk,−(2xk − 1) · r(x1, . . . , xk−1)
)
,

=(
x1, . . . , xk−1, 1 − xk, (2(1 − xk) − 1) · (r(x1, . . . , xk−1)

)
∈ lifth({0, 1}k)

for each (x1, . . . , xk) ∈ {0, 1}k . This implies that a subset F ⊆ clifth({0, 1}k) defines
a facet of clifth({0, 1}k) if and only if the set φ(F) does. Now, in order to obtain the
identity in the thesis it thus suffices to show that F is an upper facet if and only if φ(F)

is a lower facet. Indeed, let f : Rk+1 → R be the affine function defining an upper
facet F of clifth({0, 1}k), so that f (x) ≤ 0 is valid for each x ∈ clifth({0, 1}k), equality
is attained for x ∈ F , and the coefficient of xk+1 is positive. Then f (φ(x)) ≤ 0 is valid
for each x ∈ clifth({0, 1}k), with equality attained for x ∈ φ(F), and the coefficient of
xk+1 is negative, hence the facet φ(F) given by the affine function f (φ(x)) is a lower
facet of clifth({0, 1}k). The reverse implication holds by an analogous argument. ��

Proposition 5 allows us to focus on the upper facets of clifth({0, 1}k). We will
consider two families of simplicial (upper) facets: one will cover vertices with xk = 0
and the other will cover vertices with xk = 1. For simplicity we denote a vertex of
clifth({0, 1}k) by (x, xk+1), where x ∈ {0, 1}k and xk+1 = h(x). We now define the
facets that we will use in our covering. Let π be a permutation of [k−1], B ⊆ [k−1],
b = |B|, and let π ′ : [k − 1 − b] → [k − 1]\B be a bijection. Let

Fπ = conv

(
{(0, 0), (ek, 0)} ∪

{
(ek +

t∑
i=1

eπ(i), t
2) : t ∈ {1, . . . , k − 1}

})
,

and

FB,π ′ = conv
(
{(e(B),−b2), (e(B) + ek, b

2)} ∪ {(e(B \ j),−(b − 1)2), j ∈ B}

∪
{
(e(B) + ek +

t∑
i=1

eπ ′(i), (b + t)2) : t ∈ {1, . . . , k − 1 − b}
})

,

where e(B) = ∑
i∈B ei .

Proposition 6 Fπ and FB,π ′ as defined above are simplicial upper facets of
clifth({0, 1}k).
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Proof Fπ can be easily seen to contain exactly k + 1 affinely independent vectors,
hence in order to show that it is a facet, it suffices to exhibit a valid inequality for
clifth({0, 1}k) that is satisfied at equality precisely by the points of Fπ . One can argue
in the same way for FB,π ′ .

Consider the inequality

xk+1 ≤
k−1∑
i=1

(2i − 1)xπ(i). (9)

Let (x, xk+1) be a vertex of clifth({0, 1}k). If xk = 0, then (9) is trivially satisfied, as the
left-hand side is non-positive and the right-hand side would be non-negative, and it is
satisfied with equality only if x = 0. Now, let xk = 1, hence xk+1 = (

∑k−1
i=1 xi )2 = �2

for some � ∈ Z≥0. Then the right-hand side of (9) is the sum of � odd numbers, i.e.,
at least

∑�
i=1(2i − 1) = �2 = xk+1, and equality holds exactly when (x, xk+1) ∈ Fπ .

Now, consider the inequality

xk+1 ≤ b2 − b − (2b − 1)x(B) +
k−1−b∑
i=1

(2b + 2i − 1)xπ ′(i) + 2b2xk, (10)

where x(B) = ∑
i∈B xi similarly as before. Let h1 = x(B) and h2 = x([k − 1] \ B).

Suppose xk = 1. Then xk+1 = (h1 + h2)2 and the right-hand side of (10) becomes

b2 − b − (2b − 1)h1 +
k−1−b∑
i=1

(2b + 2i − 1)xπ ′(i) + 2b2 ≥ b2 − b − (2b − 1)h1

+2bh2 + h22 + 2b2

by lower bounding the summation
∑k−1−b

i=1 (2i − 1)xπ ′(i) with the sum of the first h2
odd numbers. The expression above is at least (h1 + h2)2 if and only if

h21 + 2h1h2 + (2b − 1)h1 − 2bh2 ≤ 3b2 − b.

The latter is easily seen to hold, since h1 ≤ b.
The case xk = 0 follows from the previous case by noticing that the left-hand side of

(10) decreases by 2(h1+h2)2 and the right-hand side decreases by 2b2 ≤ 2(h1+h2)2.
Finally, one can easily verify that the inequality is satisfied with equality exactly

when (x, xk+1) ∈ FB,π ′ , which concludes the proof. ��
We now give our covering. The idea is to cover all vertices of clifth({0, 1}k) that

have xk = 1 with facets of the form Fπ , and the other vertices with facets of the form
FB,π ′ .

Proposition 7 There is a set �k of O(2k/
√
k) permutations on [k − 1] such that the

facets in F1:={Fπ : π ∈ �k} cover all vertices of clifth({0, 1}k) with xk = 1.
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ToproveProposition 7,wederive anupper boundon the number of simplices needed
in a triangulation of the hypercube [0, 1]k . Specifically, we consider the triangulation
arising from permutations contained in the symmetric group Sk of the set [k]. This
triangulation is Tk = {�π : π ∈ Sk} with �π = {x ∈ Rk : 1 ≥ xπ(1) ≥ · · · ≥
xπ(k) ≥ 0}.
Proposition 8 The minimum number of simplices from Tk needed to cover all vertices
of [0, 1]k is ( k

k/2�
)
.

Proof With each vertex x of [0, 1]k , we associate the set A(x) = {i ∈ [k] : xi = 1}.
Moreover, let a(x) = |A(x)|. Then, a simplex �π ∈ Tk contains x if and only
if A(x) = {π(1), . . . , π(a(x))}. The minimum number of simplices needed to cover
all vertices of [0, 1]k is thus equivalent to the minimum cardinality of a set � ⊆ Sk
of permutations such that, for each vertex x of [0, 1]k , there is a permutation π ∈ �

with A(x) = {π(1), . . . , π(a(x))}.
To characterize such a minimum set �, consider the poset of all subsets of [k]

ordered by inclusion. Note that there is a one-to-one correspondence between per-
mutations π of [k] and chains ∅ ⊆ {i1} ⊆ {i1, i2} ⊆ · · · ⊆ {i1, . . . , ik} in this
poset via π(1) = i1, . . . , π(k) = ik . Consequently, since subsets of [k] correspond
to vertices of [0, 1]k , the minimum number of simplices needed to cover all vertices
of [0, 1]k is the same as theminimum number of chains needed to cover all elements of
the poset. By Dilworth’s theorem, see, e.g., the book [28], this number is the same as
the length of a largest antichain in the poset. Since all subsets of [k] of cardinality  k

2�
are pairwise incomparable, the length of a largest antichain is at least

( k
k/2�

)
. Moreover,

this bound is tight due to a result by Sperner [29]. ��
Proposition 7 thus follows, because

( k
 k
2 �

) ∈ 	( 2k√
k
), see [30, Sect. 4].

Now, to cover the vertices of clifth({0, 1}k)with xk = 0, we will select facets of the
form FB,π ′ . Notice that only the choice of the set B determines which vertices with
xk = 0 are in FB,π ′ , hence the choice of the bijection π ′ is irrelevant. We then fix one
such bijection πB for each B, and simply write FB :=FB,πB .

Proposition 9 There is a family B of O(2k log(k)k ) subsets of [k−1] such that the facets
in F0:={FB : B ∈ B} cover all vertices of clifth({0, 1}k) with xk = 0.

Proof Notice that a vertex of clifth({0, 1}k) with xk = 0 is in FB if and only if the
support of (x1, . . . , xk−1) is either equal to B or to a subset of B of size b − 1 (where
again b = |B|). Consider the Hasse diagram D = (V , A) of the poset 2[k−1], ordered
by inclusion. It suffices to give a family B of vertices of D with the property that,
for any set X ⊆ [k − 1], either X ∈ B or X “points” to a set in B, i.e., (X , B) ∈
A for some B ∈ B. We construct this family, which we call “dominating”, using
the probabilistic method, similarly as done in [31, Theorem 1.2.2] for bounding the
domination number of undirected graphs.

LetX ⊆ V be formed by picking each subset of [k−1]with a probability pi (to be
specified later) that depends on its size i . Let Y ⊆ V contain the sets of V \X that do
not point to any set in X . Notice that the family X ∪Y is dominating. We now bound
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its expected size. We have that

E(|X |) =
k−1∑
i=1

(
k − 1

i

)
pi ,

E(|Y|) ≤
k−1∑
i=1

(
k − 1

i − 1

)
(1 − pi )

k−i ,

where for the latter we used the fact that a set of size i − 1 points to exactly k − i sets,
none of which has to be picked in X . We now set pi = ln(k−i)

k−i , and use the fact that
1 − p ≤ e−p for all reals p. We then get

E(|X ∪ Y|) ≤
k−1∑
i=1

((
k − 1

i

)
ln(k − i)

k − i
+

(
k − 1

i − 1

)
1

k − i

)

≤ 2 ln(k)
k−1∑
i=1

(k
i

)
k − i

= 2 ln(k)
k−1∑
i=1

( k
k−i

)
k − i

= 2 ln(k)
k−1∑
i=1

( k+1
k−i+1

)
k + 1

· k − i + 1

k − i
≤ 4

ln(k)

k + 1

k−1∑
i=1

(
k + 1

k − i + 1

)
≤ 2k+3 ln(k)

k + 1
,

where the second equality follows from the known identity (k�)
�+1 = (k+1

�+1)
k+1 , and the last

inequality from the binomial expansion. ��
We can now obtain our bound on sucnh({0, 1}k) (hence, on slcnh({0, 1}k)) by

putting together Propositions 7 and 9.

Corollary 3 We have sucnh({0, 1}k) ∈ O( 2k√
k
).

4.4 Putting all pieces together

With the preparatory work of the preceding sections, we are able to provide a proof
of Theorem 2.

Proof of Theorem 2 First, assume that there is a positive integer k such that d = 2k −1.
Let m = d − k. Furthermore, let �̃d as well as T = X ∪ Y be defined as in Sect. 4.1.
Then, X = �k and Y = {0, 1}k \ X . Moreover, as defined at the end of Sect. 4.2,
let h : {0, 1}k → R be given by h(x1, . . . , hk) = (2xk − 1) · r(x1, . . . , rk−1). By
Lemma 6,

rc(�d) = rc(�k ⊕ �m) ≤ rc(X ∪ Y ) + sucnh(X ∪ Y ) + slcnh(X ∪ Y ).

As X∪Y = {0, 1}k and rc({0, 1}k) ≤ 2k, we derive fromProposition 5 andCorollary 3

the upper bound rc(�d) ∈ O( 2k√
k
). Because k = log2(d + 1), the assertion follows.
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If there is no positive integer k with d = 2k − 1, then let d ′ be the smallest
integer greater than d that admits such a representation. Note that d < d ′ ≤ 2d
and rc(�d) ≤ rc(�d ′). Thus, by the above argumentation,

rc(�d) ≤ rc(�d ′) ∈ O

(
d ′√
log(d ′)

)
= O

(
d√
log(d)

)
. ��

5 Outlook

In light of our new results, we formulate the following open problems:

(P1) For given d ∈ Z>0, characterize all finite subsets X of Zd satisfying rc(X) <

rcQ(X). The first open case is d = 5.
(P2) Improve the asymptotic upper bound on rc(�d). The best known lower bound

on rc(�d) is of asymptotic order 
(log d), see [4]. In contrast, our asymptotic
upper bound O( d√

log d
) is only mildly sublinear in d. It is widely open what

asymptotic behavior for rc(�d) one should expect, but it is quite likely that our
upper bound is not tight.

(P3) As rc(X) and rcQ(X) do not coincide in general, there are two algorith-
mic problems that one can ask, for every fixed dimension d as well as for
an unspecified d: Determine whether rc(X) and rcQ(X) are algorithmically
computable. The existence of sets X satisfying rc(X) < rcQ(X) is an addi-
tional complication that makes an algorithmic computation of these two values
quite an intricate task, as explained in [5]. The authors of [6] introduce a
non-increasing sequence (uk)k∈N of upper bounds on rcQ(X), which are com-
putable for each given k. This sequence stabilizes by attaining the value rcQ(X)

after finitely many steps. However, it is open whether one can decide for
fixed k whether uk = rcQ(X). One way to decide this is by providing a com-
putable matching lower bound. In [1], a mechanism to derive lower bounds
via so-called hiding sets is presented. Deriving a lower bound � via hiding
sets yields � ≤ rc(X) ≤ rcQ(X) ≤ uk . Thus, this approach can only work
if rc(X) = rcQ(X). In [4] it is shown that rc(X) = rcQ(X) for any X ⊆ Zd

when d ≤ 4, and for other special cases. In this case, one might wonder about
a computable lower bound on rc(X) that is tight. Due to Corollary 1 and Theo-
rem 2, however, rc(X) can be strictly smaller than rcQ(X), and thus, matching
upper bounds on rcQ(X) and lower bounds on rc(X) do not exist in general.

(P4) Determine the minimum of rc(X) over all sets X ⊆ Zd of dimension d =
dim(X). This quantity can be analyzed asymptotically, for d → ∞, as well
as for concrete choices of d. It would be interesting to see if the minimum is
attained for X = �d .

(P5) Study the relaxation complexity with respect to arbitrary sub-fields of R. One
can introduce the relaxation complexity rcF(X) of X ⊆ Zd with respect to
relaxations of X described by inequalities with coefficients in F. It is clear that
rcF(X) is monotone in F with respect to inclusion. Our arguments show that
the estimate rcF(X) ∈ O( d√

log(d)
) holds for every field of dimension at least
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d+1 overQ, as we only need d+1 numbers inR that are linearly independent
over Q to prescribe appropriate heights. For d = 5, our construction shows
rcQ[√2](�5) = 5, where the fieldQ[√2] has dimension two overQ. This is the
smallest dimension of F overQwith rcF(�5) = 5, as the only one-dimensional
field overQ isQ itself. It is likely that rcF(�5) = 5 holds for every field F ⊂ R

of dimension two overQ, which just means that rcQ[r ](�5) = 5 should be true
for every r ∈ R \ Q.

(P6) WhenF is the field of real algebraic numbers, determine if rcF(X) is computable
for a given finite X ⊂ Zd and if the equality rcF(X) = rc(X) holds for every
finiteX ⊂ Zd . Indeed, our results show that the choice between rationals and
arbitrary reals makes a difference, but the reals in their whole generality include
numbers that one cannot even approximate algorithmically, so it makes sense
to ask if some reasonably constructive subfield of the reals would be enough
for computing the relaxation complexity. The field of algebraic numbers could
be a good candidate.
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Appendix: Proof of Proposition 1

In this appendix, we provide the missing details to prove Proposition 1. For ε = 1
8 ,

System (1)–(5) describing the polyhedron P1/8 can be compactly written as Ax̄ ≥ 0,
where

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 −1
0 0 0 1 −1
1 −1/8 −1 −7/8

√
2 + 7/8 7/8

√
2 − 7/4

0 0 0 1
√
2

1 −1 9/8 −1 1

⎞
⎟⎟⎟⎟⎠

and x̄ = (1, x1, x2, x3, x4)�. Our proof consists of two steps. First, we show that
any x ∈ Z3 × R satisfying (1)–(5) satisfies (x1, x2, x3)� ∈ �2 × {0, 1}. That is,
the first three coordinates of any mixed-integer point in P1/8 correspond to the first
three coordinates of a point in �′. Second, we prove that, for every of the six possible
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Fig. 3 The projection on the first
three components of �′ (convex
hull in orange) and the
polytope P1/8 (green). The
inequality description of the
projection of P1/8 can be derived
from the inequality description
(1)–(5) of P1/8 using
Fourier-Motzkin elimination,
which combines the three upper
bounds (1)–(3) on x4 with the
two lower bounds (4)–(5) on x4.
As a result, one obtains
3 × 2 = 6 inequalities for
x1, x2, x3, and it turns out that
each of these inequalities defines
a facet of the projected polytope

combinations for the first three coordinates, there is a unique fourth coordinate such
that x ∈ P1/8, and that this coordinate is such that x ∈ �′.

To prove the first part, we used Fourier-Motzkin elimination (FME) to project P1/8

onto a polyhedron in 3-dimensional and 2-dimensional space, respectively. Inspecting
these systems, we could show that indeed every x ∈ P1/8 satisfies (x1, x2, x3)� ∈
�2 × {0, 1}. For the sake of conciseness, we do not provide all details of FME.
Instead, we only provide systems of linear inequalities that can be derived using FME
and which suffice to prove our claim, namely B1 x̄ ≥ 0 and B2 x̄ ≥ 0 with

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√
2 0 1 0

0 0 0 1 0√
2 −1/8

√
2 −√

2 0 0
1 0 9/8 −1 0
1 −1 9/8 0 0

−7/8
√
2 + 11/4 7/8

√
2 − 15/8 −63/64

√
2 + 31/32 −7/8 0

⎞
⎟⎟⎟⎟⎟⎟⎠

B2 =
(
1/8

√
2 + 2 0 9/64

√
2 − 2 0 0

1 0 9/8 0 0

)
.

Both systems can be derived from Ax̄ ≥ 0 by combining some non-negative multiples
of these inequalities. Concretely, B1 = C1A and B2 = C2A for the non-negative
matrices
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C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2 0 0 1 0
0

√
2/(

√
2+1) 0 1/(

√
2+1) 0

0 0
√
2 −7/8

√
2 + 7/4 0

1 0 0 0 1
0 1 0 0 1
0 0 1 0 −7/8

√
2 + 7/4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C2 =
(
1/8

√
2 + 1/4 0 2 15/8

√
2 − 7/4 1/8

√
2

1 −√
2 + 2 0

√
2 − 1 1

)
,

respectively. That is, B1 x̄ ≥ 0 and B2 x̄ ≥ 0 are conic combinations of the inequalities
in Ax̄ ≥ 0.

From system B2 x̄ ≥ 0, we derive

−8

9
≤ x2 ≤ 2 + 1

8

√
2

2 − 9
64

√
2
.

Since we require x2 ∈ Z, rounding the bounds yields x2 ∈ {0, 1} as desired. This
observation allows us to find the possible values for x1 and x3 based on a case distinc-
tion.

Lemma 7 For any x ∈ P1/8 ∩ Z3 × R with x2 = 0, we have x1, x3 ∈ {0, 1}.
Proof Substituting x2 = 0 in B1 x̄ ≥ 0, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√
2 1

0 0 1√
2 −1/8

√
2 0

1 0 −1
1 −1 0

−7/8
√
2 + 11/4 7/8

√
2 − 15/8 −7/8

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ 1
x1
x3

⎞
⎠ ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This system contains inequalities 0 ≤ x3 ≤ 1 and the inequality x1 ≤ 1. For providing
a lower bound on x1 we can combine

√
2x1+x3 ≥ 0 with x3 ≤ 1, yielding x1 ≥ − 1√

2
.

Taking integrality of x1 into account,we conclude x1 ≥ 0,which proves the assertion.��
Lemma 8 For any x ∈ P1/8 ∩ Z3 × R with x2 = 1, we have x1 = 0 and x3 ∈ {0, 1}.
Proof Substituting x2 = 1 in B1 x̄ ≥ 0, we get

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√
2 1

0 0 1
0 −1/8

√
2 0

17/8 0 −1
17/8 −1 0

−119/64
√
2 + 119/32 7/8

√
2 − 15/8 −7/8

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ 1
x1
x3

⎞
⎠ ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The second and the fourth inequality provide bounds on x3. Combining the bounds
with x3 ∈ Z yields x3 ∈ {0, 1, 2}. The third inequality gives x1 ≤ 0. In order to
obtain a lower bound on x1, we combine the first inequality

√
2x1 + x3 ≥ 0 with the

bound x3 ≤ 2 and obtain x1 ≥ − 2√
2
. By integrality of x1, we thus have x1 ≥ −1.

Consequently, (x1, x3)� ∈ {−1, 0}×{0, 1, 2}. Inserting all points in the above system
shows that only the choices with x1 = 0 and x3 ∈ {0, 1} are valid. ��

Combining these two lemmata and x2 ∈ {0, 1} shows the first part of our proof,
i.e., any x ∈ P1/8 satisfies (x1, x2, x3)� ∈ �2 × {0, 1}.

For the secondpart,we investigate the implications of inserting x̄ with (x1, x2, x3)� ∈
�2 × {0, 1} into system Ax̄ ≥ 0. To this end, let A′ be the matrix consisting of the
first four columns of A and let A′′ be the matrix containing the last column of A.
System Ax̄ ≥ 0 is thus equivalent to

A′

⎛
⎜⎜⎝

1
x1
x2
x3

⎞
⎟⎟⎠ + A′′x4 ≥ 0.

For any x ′ = (1, x1, x2, x3)� ∈ {1} × �2 × {0, 1}, the vector g = A′x ′ is one of the
six columns of matrix

G = A′

⎛
⎜⎜⎝
1 1 1 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1 0
0 0 0 1 1 1
1 7/8 0 −7/8

√
2 + 15/8 −7/8

√
2 + 7/4 −7/8

√
2 + 7/8

0 0 0 1 1 1
1 0 17/8 0 −1 9/8

⎞
⎟⎟⎟⎟⎠ .

Denote by g0, . . . , g5 the columns of G. To show that, for any x ′, there is a unique
choice for the missing coordinate x4, we analyze g + A′′x4 ≥ 0. Straightforward
calculations show that x4 = 0 is valid when g ∈ {g0, . . . , g3}, that x4 = 1 is valid for
g = g4, and x4 = − 1√

2
is valid for g = g5. That is, every point in�′ is also contained

in P1/8. To conclude the proof, we need to show that the choice for x4 is unique. This
is done in a straightforward manner by finding a pair of matching upper and lower
bounds, which we derive from Ax̄ ≥ 0:

g = g0: first and fourth inequality confirm that x4 = 0
g = g1: second and fourth inequality confirm that x4 = 0.
g = g2: second and fourth inequality confirm that x4 = 0.
g = g3: first and fifth inequality confirm that x4 = 0
g = g4: first and the fifth inequality confirm that x4 = 1.
g = g5: third and the fourth inequality confirm that x4 = − 1√

2
.
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This concludes the proof of Proposition 1.
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