
1. Introduction
Neck cutoff is fundamental to the planform evolution of meandering rivers, and takes place when a mature 
loop is isolated by the connection of its two adjacent bends. Neck cutoff completes a meander's life cycle by 
isolating it from the active channel (Hooke, 2013; Pannone & De Vincenzo, 2022), and maintains the river's 
steady state planform (Stølum, 1996). Cutoffs generate perturbations in channel slope (and thus bed stresses) as 
the river diverts to a shorter and steeper path, as well as in sediment supply due to neck failure (Monegaglia & 
Tubino, 2019; Zinger et al., 2011). The two, in turn, typically induce channel widening, faster migration, and clus-
tering of subsequent cutoffs over scales capped by the river's backwater length (Hooke, 1995; Ielpi et al., 2021; 
Schwenk & Foufoula-Georgiou, 2016).

An intriguing facet of river meandering lies in the interplay between channel migration and intervening neck 
cutoff, which together control the age distribution of floodplain sediments (Bradley & Tucker, 2013; Howard 
& Knutson,  1984), with important ramifications for the study of terrestrial organic-carbon fluxes (Torres 
et al., 2017). The pace over which meander bends evolve from inception to neck cutoff ultimately depends on 
the characteristic meander size and the parent channel's migration rate. Through their relationships with the 
channel's hydraulic characteristics (J. A. Constantine et al., 2014; Ielpi & Lapôtre, 2020; Williams, 1986), the 
two are expected to impart predictable floodplain-age distribution. We test this fundamental hypothesis through 
a compilation of ∼2,400 abandoned meanders (i.e., “oxbows”) from natural rivers with global distribution and a 
numerical simulation of timelapse floodplain development. We show that, once a meandering river has reached a 
state of dynamic planform equilibrium prone to reoccurring neck cutoffs, simple metrics based on its meanders' 

Abstract River meandering controls the age of floodplains through its characteristic paces of growth and 
eventual cutoff of channel bends, forming oxbows. Hence, floodplain-age distributions should reflect a river's 
characteristic size and migration rate. This hypothesis has been previously tested in numerical simulations, yet 
without systematic comparisons with natural systems. Here we analyze oxbow spacing and timescales of bend 
evolution and abandonment in natural and numerically simulated meander belts. In both cases, a saturated state 
is achieved whereby oxbows are spaced ∼1 meander radius apart. At saturation, the distribution of floodplain 
ages and probability of sediment-storage time can be constrained from characteristic timescales of bend 
evolution and abandonment. Owing to the similar relationships between floodplain width and characteristic 
timescales in natural and simulated rivers, we postulate that this approach should apply to unconfined 
meandering rivers elsewhere—a hypothesis to be tested with independent geo- or dendrochronological data.

Plain Language Summary Meandering rivers have curvy channels characterized by erosion and 
deposition along their inner and outer banks, respectively. Over time, continued erosion and deposition shuffle 
sediment along the river plain, and lead to channel bends joining each other, through a process—called neck 
cutoff—that isolates a channel segment in between. These processes control the age of sediment and soil in a 
river plain over timespans much longer than human life, such that evolution models of meandering rivers often 
rely on numerical simulations. Here, data from both natural and simulated rivers show that, over time, neck 
cutoffs find themselves in closely spaced arrangements, and that their position can inform typical sediment 
ages once the river's characteristic pace of erosion and deposition are accounted for. These results may be tested 
in the future with direct age determination and, if corroborated, could further inform future studies on river 
organic-carbon budgets.
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location, size, and channel-migration rate control the floodplain-age structure. Our results bear significance 
to our understanding of stratigraphic time in fluvial records, and offer novel testable hypotheses for modeling 
carbon-age structure in floodplains.

2. Materials and Methods
Data from natural systems include the centerlines of 1,209 oxbows from the floodplains of seven freely mean-
dering rivers with channel widths spanning ∼30–∼400  m, found in polar (Mason and Tivteyakha rivers), 
cold-temperate (Chinchaga and Vermilion rivers), and tropical (Juruá, Mamoré, and Mamberamo rivers) climate 
zones (Figures 1a–1c; Table S1 in Supporting Information S1). The banks of the actively migrating channel of 
the parent rivers were digitized using Landsat 7–8 and WorldView/GeoEye constellation satellite imagery and 
then compared over timespans of ∼20–30 years, allowing for a dynamic time warping analysis (Giorgino, 2009) 
of migration rates, 𝐴𝐴 𝐴𝐴r  , based on the timelapse position of the channel centerlines (Text S1 in Supporting Infor-
mation S1). None of the selected natural rivers show evidence for recent avulsion or branching, such that their 
aggradation timescales are likely orders of magnitude longer than their migration timescales (Ielpi et al., 2020; 
Jerolmack & Mohrig, 2007).

A numerical simulation of meandering channels capable of reaching a dynamic steady state prone to neck cutoff 
was conducted by modifying the Fortran code of the freely distributed numerical model of Bogoni et al. (2017) 
(see also Frascati and Lanzoni  (2009)), which is coupled with the hydrodynamic and morphodynamic model 
of Zolezzi and Seminara (2001) (Text S2 in Supporting Information S1). Whereas lateral morphodynamics are 
modeled, vertical aggradation and erosion of the channel and floodplain are neglected for practical comparison 
with the natural rivers (owing, again, to their long aggradation over short migration timescales), and a constant 
floodplain slope is assumed during the simulation instead (Bogoni et al., 2017). The simulation is performed in 
nondimensional space, with an intrinsic distance unit equaling one channel width, 𝐴𝐴 𝐴𝐴  , and with the centerline 
migration rate calculated following the model of Ikeda et al. (1981), whereby:

𝑀𝑀r = 𝐸𝐸 𝐸𝐸b, (1)

where 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴b  are a long-term erosion coefficient and the excess near-bank velocity, respectively (Text S2 in 
Supporting Information S1) (Bogoni et al., 2017). Notably, 𝐴𝐴 𝐴𝐴  can be tuned to adjust migration rates, thereby 
compressing or dilating simulation time (Text S2 in Supporting Information S1). Upon developing a tight channel 
bend whereby neck width equates 𝐴𝐴 𝐴𝐴  , a neck cutoff is recorded. The simulation produced (Figures 1d–1g): (a) a 
final floodplain-age raster map; (b) a channel centerline at fixed time intervals; (c) a vector data set containing 
the oxbows lines that have survived later overprinting by the migrating channel; and (d) a matrix tallying the 
temporal intervals that each floodplain surface-area unit has spent between channel-reworking episodes (Text S2 
in Supporting Information S1).

Morphometric data were extracted from natural and simulated floodplains using an ad-hoc algorithm written in 
R (Supporting Information S1), including: the Euclidean distance of an oxbow from its nearest neighbor (𝐴𝐴 𝐴𝐴n  ), 
based on their respective neck mid-point coordinates, and from the channel's centerline (𝐴𝐴 𝐴𝐴c  ) derived from the 
youngest imagery (for natural systems) or final planform arrangement (for simulated systems); oxbow length (𝐴𝐴 𝐴𝐴x  ) 
and maximum radius inscribed within (𝐴𝐴 𝐴𝐴x  ) (Figures 1b and 1c); the number of preserved oxbows (𝐴𝐴 𝐴𝐴x  ); the total 
floodplain (𝐴𝐴 𝐴𝐴f  ) and channel-belt (𝐴𝐴 𝐴𝐴c  ) surface areas (the latter referring to the rectangular footprint of the active 
centerline as defined by its minimum and maximum latitudinal and longitudinal coordinates); the total centerline 
sinuosity index (i.e., along-channel centerline length over Euclidean distances between its extremities; 𝐴𝐴 𝐴𝐴c  ); and 
an average bend sinuosity index, integrating data from all the individual bends in the active centerline (𝐴𝐴 𝜒𝜒

b
 ) iden-

tified based on local curvature maxima (Schwenk & Foufoula-Georgiou, 2016).

The number of oxbows per surface area is used as a proxy for the spatial density of oxbows in the floodplain 
(𝐴𝐴 𝐴𝐴x = 𝑛𝑛x∕𝐴𝐴f  ). Other extracted information related to temporal trends of floodplain evolution includes the final 
age of individual floodplain parcels at the end of the simulation (𝐴𝐴 𝐴𝐴f  ), the storage time of sediment between 
successive reworking episodes for all floodplain parcels that underwent overprinting at least once (𝐴𝐴 𝐴𝐴s  ), and actual 
oxbow age (𝐴𝐴 𝐴𝐴x  ). The simulation presented here encompasses 500 kyr, with outputs produced at 1 kyr intervals 
(Figures 2a–2f; Table S2 in Supporting Information S1). The first 10 kyr in the numerical simulation are not 
recorded, as this time interval witnesses the initial evolution of the channel centerline from straight to sinuous 
and cutoff-prone.
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Figure 1. Data set. (a) Selected natural rivers, with climate zones from Beck et al. (2018) reported. Centerlines of the Juruá and Mamoré rivers are from Sylvester 
et al. (2019). (b, c) Satellite view of a reach of the Chinchaga River (Alberta, Canada), with illustrations of the main extracted morphometric parameters. See 
“Section 2” for details. (d–g) Maps of numerical simulation outputs at 100 kyr intervals, including relative ages of floodplain and oxbows, and channel centerline.
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Figure 2.
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2.1. Dimensionless Metrics

To explore the spatial distribution of oxbows in a meander belt, a normalized nearest-oxbow distance is defined 
as

𝑑𝑑
∗

n = 𝑑𝑑n ∕ 𝑟𝑟x, (2)

a metric that describes the distance between neck mid-points in units of mean oxbow radius (𝐴𝐴 𝑟𝑟x  ). Then, to explore 
the frequency of cutoff events and related floodplain-age structure, an abandonment timescale is defined as

𝑇𝑇a = 𝑑𝑑c ∕𝑀𝑀r , (3)

that is, a lower bound of oxbow age in a simplified scenario where the channel migrated away from cutoff bends 
orthogonally, and without reversals, at a constant rate 𝐴𝐴 𝐴𝐴r  . Similarly, a cutoff timescale is defined as

𝑇𝑇c = 𝑟𝑟x ∕𝑀𝑀r , (4)

which approximates the time taken by a meander to grow to the point of neck cutoff assuming a steady 𝐴𝐴 𝐴𝐴r  . 
Whereas 𝐴𝐴 𝐴𝐴r  is complexly modulated by curvature (Schwenk et  al.,  2015; Sylvester et  al.,  2019), it tends to 
plateau along sharper bends (Finotello et al., 2019), such that the assumption of steady 𝐴𝐴 𝐴𝐴r  in growing meanders 
is preferred here for simplicity. Dimensionless floodplain (𝐴𝐴 𝐴𝐴

∗ ) and channel-belt (𝐴𝐴 𝐴𝐴
∗ ) widths are respectively 

defined as

𝑊𝑊
∗
=

𝐴𝐴f

𝑙𝑙c 𝑟𝑟x,50
, and (5a)

𝑤𝑤
∗
=

𝐴𝐴c

𝑙𝑙c 𝑟𝑟x,50
. (5b)

where 𝐴𝐴 𝐴𝐴c  is the length of the active centerline. The two metrics provide a proxy for the width of the floodplain and 
channel belt (which scale, respectively, with 𝐴𝐴 𝐴𝐴f ∕𝑙𝑙c  and 𝐴𝐴 𝐴𝐴c∕𝑙𝑙c  ) in units of median meander radii (𝐴𝐴 𝐴𝐴x,50  ). Finally, to 
facilitate the comparison of abandonment timescales and sediment-storage durations between natural and simu-
lated floodplains, we normalize 𝐴𝐴 𝐴𝐴a  and 𝐴𝐴 𝐴𝐴s  by the modal value of cutoff timescale, 𝐴𝐴 𝐴𝐴c,mod  (Torres et al., 2017), as 
follows:

𝑇𝑇
∗

a = 𝑇𝑇a ∕ 𝑇𝑇c,mod, and (6a)

𝑇𝑇
∗
s = 𝑇𝑇s ∕ 𝑇𝑇c,mod. (6b)

3. Results
3.1. Numerical Simulation

A roughly constant 𝐴𝐴 𝐴𝐴r∕𝑤𝑤 ≅ 0.03 is maintained throughout the simulation with 𝐴𝐴 𝐴𝐴 = 10
−9  (Figure 2a); this migra-

tion pace is broadly comparable to that of the natural rivers considered here (Table S1 in Supporting Informa-
tion S1) and of pristine vegetated meanders elsewhere (J. A. Constantine et al., 2014; Finotello et al., 2019; Ielpi 
& Lapôtre, 2020; Sylvester et al., 2019). The total floodplain surface area, 𝐴𝐴 𝐴𝐴f  , grows logarithmically through 
time in the first 50 kyr and then roughly linearly over the following 450 kyr (Figure 2b). The dimensionless 
floodplain and channel-belt widths, 𝐴𝐴 𝐴𝐴

∗ and 𝐴𝐴 𝐴𝐴
∗ , grow through time following similar trends until 50 kyr, and 

diverge later on (Figure 2c). The total centerline sinuosity index, 𝐴𝐴 𝐴𝐴c  , remains roughly constant at ∼2–4 through-
out the simulation (Figure 2d). Notably, the average bend sinuosity index, 𝐴𝐴 𝜒𝜒

b
 , plateaus at ∼1.5–2.0 within the 

first 10 kyr of the simulation, and remains stable afterward (Table S2 in Supporting Information S1). The number 
of preserved oxbows, 𝐴𝐴 𝐴𝐴x  (Figure 2e) and spatial density of oxbows in the floodplain, 𝐴𝐴 𝐴𝐴x  (Figure 2f) also grow 

Figure 2. Results. (a–f) Evolution of the simulated floodplain. Displayed as a function of time are (a) migration rate, (b) total floodplain surface area, (c) dimensionless 
floodplain and channel belt widths, (d) total centerline sinuosity index, (e) number of preserved oxbows, and (f) oxbow density. Solid lines report 10-point moving 
averages. A number of parameters stabilize or grow (near-)linearly since 50 kyr. (g–l) Kernel Density Estimation plots showing the distribution of normalized nearest-
oxbow distance ((g and j) for, respectively, natural and simulated oxbows), abandonment timescale ((h and k) for, respectively, natural and simulated oxbows), and cutoff 
timescale ((i and l) for, respectively, natural and simulated oxbows). Natural rivers are arranged based on timescale distribution-tail lengths.
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logarithmically through time in the first 50 kyr and then follow a roughly linear trend, though with significant 
oscillations.

3.2. Spatial and Temporal Oxbow Distributions

Normalized nearest-oxbow distance, abandonment timescale, and cutoff timescale all show positively skewed 
distributions in both natural and simulated oxbows (Figure 2g–2l, Figure S2, and Table S2 in Supporting Infor-
mation S1). Distributions of normalized near-oxbow distance, 𝐴𝐴 𝐴𝐴

∗

n  , show very little variation across natural and 
simulated oxbows (Figures 2g and 2j), with a pronounced mode at ∼1 (indicating that most oxbows are located 
about 1 meander radius away from each other). The abandonment timescale, 𝐴𝐴 𝐴𝐴a  , shows variable distributions in 
natural rivers, with modes from individual rivers at ∼50–∼600 years (Figure 2h) and long tails for the Chinchaga, 
Juruá, and Tivteyakha rivers. The abandonment timescale of simulated oxbows attains less dispersed modes at 
∼500–1,000  years; these modes slightly increase over longer simulation timespans, a trend that is accompa-
nied by a likewise increasingly positive skew in the distributions (Figure 2k). The cutoff timescale, 𝐴𝐴 𝐴𝐴c  , attains 
dispersed values in natural oxbows, with modes of individual rivers ranging from ∼40 to ∼1,500  years and 
likewise longer tails for the Chinchaga, Juruá, and Tivteyakha rivers (Figure 2i). Simulated oxbows attain overall 
consistent distributions of cutoff timescale, with main modes at ∼150–200 years, and a secondary, poorly defined 
mode at ∼2,000 years (Figure 2l).

Figure 3. Distribution of time metrics in the numerical simulation, and comparison with natural rivers. P-values for regressions refer to the F-test of overall 
significance. (a) Kernel Density Estimation (KDE) plots, color-coded by relative age, of simulated floodplain age, with box plots reporting its summary statistics 
against those of abandonment timescale. (b) Exceedance probability of dimensionless sediment storage time in the simulation, with data from Torres et al. (2017) 
reported. (c) Simulated abandonment timescale as a function of actual age for the final simulation state. The bivariate KDE map shows how most preserved oxbows 
attain actual age of ∼10 3–10 5 and an abandonment timescale of ∼10 2–10 3 yr. (d) Data binning (25-point mean) of oxbow actual versus abandonment timescale, showing 
a strong and statistically significant power-law relationship between the two metrics in the simulation. (e) KDE plots of the ratio between the actual age of oxbows 
and abandonment timescale in the simulation, showing the departure between the two metrics. (f) Dimensionless abandonment timescale plotted as a function of 
dimensionless floodplain width.
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The analysis of floodplain age, 𝐴𝐴 𝐴𝐴f  , reveals a strong skew toward younger ages (Figure 3a), indicating how pres-
ervation of old floodplain swaths becomes less likely with time (Huffman et al., 2022). Dimensionless storage 
time, 𝐴𝐴 𝐴𝐴

∗
s  , is assessed against its exceedance probability, 𝐴𝐴 𝐴𝐴s  (Figure 3b), which decreases through a complex 

pattern defined by a shallowly sloping power-law trend at 𝐴𝐴 𝐴𝐴
∗
s   < 10, an essentially linear trend at 𝐴𝐴 𝐴𝐴

∗
s  ∼10–200, 

and a steeply sloping power-law trend at 𝐴𝐴 𝐴𝐴
∗
s   > 200. Considering the full simulation, the best-fitting power-law 

exponents for the three trends are, respectively, −0.27, −1.03, and −2.17. We find a ∼92% and ∼97% probability 
that any point in the floodplain is younger than 1 and 10 cutoff timescales, respectively (Figure 3b).

Finally, abandonment timescales and actual simulated ages are compared. At the end of the simulation, most 
preserved oxbows have actual ages, 𝐴𝐴 𝐴𝐴x  , of 10 3–10 5 yr, yet they record abandonment timescales, 𝐴𝐴 𝐴𝐴a  , of 10 2–10 3 yr 
(Figure 3c). Despite data scattering, data binning in the {𝐴𝐴 𝐴𝐴x; 𝐴𝐴a  } space reveals a strong and statistically significant 
power-law relationship between the two metrics (Figure 3d). The ratio between the two ages (𝐴𝐴 𝐴𝐴x∕𝐴𝐴a  ) likewise 
shows that, throughout the simulation, 𝐴𝐴 𝐴𝐴a  overall underestimates 𝐴𝐴 𝐴𝐴x  by ∼1–2 orders of magnitude (Figure 3e).

4. Discussion and Conclusions
The numerical simulation conducted here reveals two initial characteristic timescales related to the achievement 
of dynamically stable planform dynamics. Over the first 10 kyr, the channel centerline evolves from linear to 
sinuous and cutoff-prone. Then, until 50 kyr, the simulation is characterized by a floodplain that approximates 
in width the spatial domain occupied by the active centerline (Figure 2c). In such a state, outward migration of 
the centerline is likely to impart growth on both sides of the floodplain, thereby contributing to its fast expansion 
(Figures 2b and 2c). Beyond 50 kyr, the floodplain has become wide enough such that it is likely to grow on one 
hydrographic side at a time only, rather than along both contemporaneously. We interpret this morphodynamic 
transition as the cause of stepwise transitions in floodplain-growth rate (Figures 2b and 2c) and related oxbow 
preservation (Figures 2e and 2f).

Regardless of its growth rate, the simulated floodplain's record of long-term stationarity in channel migration 
rate and sinuosity (Figures 2a and 2d) suggests that morphodynamic comparisons can be explored between the 
latter and natural floodplains. This hypothesis is corroborated by the record of similar distributions of normal-
ized nearest-oxbow distance, 𝐴𝐴 𝐴𝐴

∗

n  , and specifically of matching modes at ∼1 meander radius (Figures 2g and 2j). 
We interpret the matching peaks as an indication that both natural and simulated floodplains have reached what 
we define as oxbow saturation, that is, a saturated state whereby any newly emplaced oxbow will most likely 
overprint previous ones, such that no tighter planform re-arrangement at average distances shorter than ∼1 char-
acteristic meander radius can be attained in the long term. Saturation is further highlighted by plateauing oxbow 
density beyond 50 kyr (Figure 2f), indicating that juvenile floodplains that have not reached saturation yet will 
be characterized by fewer and farther-apart oxbows with 𝐴𝐴 𝐴𝐴

∗

n ≫ 1 . Normalized nearest-oxbow distance could 
therefore be analyzed in natural floodplains that have undergone recent planform adjustments in response to auto-
genic processes or external stressors (Greenberg & Ganti, 2021; Horn et al., 2012; Monegaglia & Tubino, 2019; 
Schwenk & Foufoula-Georgiou, 2016), to test whether a new state of equilibrium was reached.

Remarkably, the mode at 𝐴𝐴 𝐴𝐴
∗

n ∼ 1 is present in both natural and simulated floodplains despite strikingly diverse 
distributions of abandonment and cutoff timescales (Figures  2g and  2j), suggesting that oxbow saturation is 
a geometric phenomenon related to the optimization of space filling (Dodds & Rothman,  2000; Edmonds 
et  al., 2011), and independent of the river's characteristic size and migration rate. The latter two parameters, 
instead, control the diverse distributions of abandonment and cutoff timescales in natural rivers: differences 
in their distributions (Figures 2h and 2i) inform the geomorphic variability arising from the interplay between 
lateral-migration rates and the alluvial plain's characteristic sizes (e.g., lateral floodplain width, which ultimately 
controls the distances of oxbows from an active channel, and meander size) (J. A. Constantine et  al.,  2014; 
Leopold et al., 1964; Williams, 1986). Specifically, natural rivers will attain higher kurtosis and lighter tails in 
their distributions of abandonment and cutoff timescales when smaller meander belts migrate at a comparatively 
fast rate (e.g., Mamoré), and vice versa (e.g., Tivteyakha) (Figures 2h and 2i). As migration rate scales with 
bank erodibility (Equation 1), we note that the broader range in abandonment and cutoff timescales for natural 
floodplains over simulated ones likely reflects natural variability in bank strength (C. R. Constantine et al., 2009), 
which is instead constant and homogenous in the numerical simulation. Finally, since the abandonment-timescale 
distributions of simulated oxbows attain longer tails with time (Figure 2k), we theorize that the different distri-
butions of the same timescale in natural rivers likewise could arise from different durations of meander-belt 
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evolution (e.g., different times since the inception of meandering or, in sharply aggradational systems elsewhere, 
since the last avulsion event).

Our simulation shows how, through channel migration, bend evolution, and meander cutoff efficiently rejuvenate 
older floodplain swaths; the timeseries of floodplain-age distribution presented in Figure 3a show a push-broom 
style of floodplain rejuvenation whereby the floodplain-age mode is remarkably small, and independent of the 
simulation time. Notably, the ±2σ range around the mode of the abandonment timescale captures roughly 2/3 of 
the distribution of floodplain ages (Figure 3a), and its 5th quantile is an accurate predictor of the modal floodplain 
age (with relative errors of 1.2%–3.6%). We therefore posit that, in likewise unconfined natural meandering-river 
floodplains that have reached oxbow saturation, the abandonment timescale may be used as a simple yet useful 
proxy to inform floodplain-age distribution.

The arguments presented above also apply to the predictive analysis of sediment-storage times in a floodplain. 
As older floodplain swaths are less commonly preserved than younger ones, the distribution of dimensionless 
storage time, 𝐴𝐴 𝐴𝐴

∗
s  , is likewise skewed toward short intervals (Figure 3b) (Bradley & Tucker, 2013). We observe an 

increase in the largest 𝐴𝐴 𝐴𝐴
∗
s  recorded with longer simulation runs (Figure 3b), as expected in a scenario where the 

oldest possible storage time increases with meander-belt age. Differences between the individual distributions, 
however, become significant only for 𝐴𝐴 𝐴𝐴

∗
s > 10  , that is, in a scenario with exceedance probability (𝐴𝐴 𝐴𝐴s  ) <∼3% 

even in simulated floodplains that are free to grow laterally without any constriction for 500 kyr. Our results 
accordingly suggest that a simple estimate of the cutoff timescale, through inversion, can be used to inform actual 
storage times (Figure 3b). The distribution of dimensionless sediment storage times broadly compares to what 
obtained by Torres et al. (2017), yet with a departure that is most pronounced at 𝐴𝐴 𝐴𝐴

∗
s ≈ 10  (Figure 3b), for which 

a difference in 𝐴𝐴 𝐴𝐴s  of <0.2 is observed. Assuming otherwise comparable numerical setups, the departure in proba-
bility distribution can be related to differences in the normalization parameter, 𝐴𝐴 𝐴𝐴c  , which, in Torres et al. (2017), 
is calculated using an explicit tracking method (Schwenk et al., 2015) instead of our simpler metric of oxbow 
radius over migration rate (Equation 4).

The abandonment timescale, as expected, underestimates the actual oxbow age, although it does so in a predict-
able fashion. Specifically, albeit data scattering (Figures 3c and 3e), binning shows a strong relationship between 
the two age metrics (Figure 3d). This consideration discloses two important aspects: (a) departures between actual 
age and abandonment timescale of natural oxbows can be investigated through geochronology (e.g.,  14C) (Ishii & 
Hori, 2016; Wren et al., 2008) or dendrochronology (Malik, 2006; Nakamura, 1986) in future studies, allowing 
further tests between natural and simulated meander belts; and (b) the distribution of ratios between oxbow age 
and abandonment timescale (Figure 3e) depicts how much information is lost in a floodplain through reworking. 
Despite aggradation is not modeled herein, the latter aspect may warrant forthcoming comparisons with other 
metrics of stratigraphic completeness in both recent and ancient meander belts (Durkin et al., 2018; Sadler, 1981). 
Whereas natural and simulated floodplains appear to observe similar relationships between dimensionless aban-
donment timescale and their dimensionless width (Figure 3f), simulated floodplains produced herein display 
limited variability in these two parameters. As such, the relationships between floodplain size and characteristic 
abandonment timescale may need further investigation.

Lateral confinement by, for example, terraces or valley flanks has a demonstrated control on meander 
morphodynamics—for example, on their capacity to migrate downstream rather than expand laterally (Ghinassi 
et al., 2016; Ielpi & Ghinassi, 2014), which affects their capacity to develop neck cutoffs (Nicoll & Hickin, 2010) 
and can shorten characteristic sediment-storage timescales (Bradley & Tucker, 2013), as recently demonstrated 
in the confined Powder River of Montana (Huffman et al., 2022). Since negative topography sided by terraces 
can be autogenically generated in meander belts without external perturbations (Lewin & Ashworth,  2014; 
Limaye & Lamb, 2016), our results might broadly apply to slightly incised meanders. Refined numerical simu-
lations able to model variable degrees of channel and floodplain confinement are however necessary to test this 
hypothesis. That being said, our results suggest that—in both natural and simulated systems—meander belts 
evolve toward a state of oxbow saturation whereby oxbows are spaced ∼1 meander radius apart. At saturation, 
simple metrics that include oxbow location, size, and the parent channel's migration rate inform characteris-
tic timescales of bend evolution (cutoff) and abandonment. These timescales, in turn, can be used as simple 
yet accurate proxies for the distributions of ages in a floodplain and the probability of sediment-storage time 
therein.
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Data Availability Statement
Analyzed data are included as Supporting Information S1, or are available in Sylvester et al. (2019). Codes and 
outputs employed herein are original or modified from the numerical models available in Bogoni et al. (2017), 
Frascati and Lanzoni  (2009), and Zolezzi and Seminara  (2001), and available at https://doi.org/10.5281/
zenodo.7419761.

References
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate 

classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
Bogoni, M., Putti, M., & Lanzoni, S. (2017). Modeling meander morphodynamics over self-formed heterogeneous floodplains. Water Resources 

Research, 53(6), 5137–5157. https://doi.org/10.1002/2017WR020726
Bradley, D. N., & Tucker, G. E. (2013). The storage time, age, and erosion hazard of laterally accreted sediment on the floodplain of a simulated 

meandering river. Journal of Geophysical Research: Earth Surface, 118(3), 1308–1319. https://doi.org/10.1002/jgrf.20083
Constantine, C. R., Dunne, T., & Hanson, G. J. (2009). Examining the physical meaning of the bank erosion coefficient used in meander migration 

modeling. Geomorphology, 106(3–4), 242–252. https://doi.org/10.1016/j.geomorph.2008.11.002
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., & Lazarus, E. D. (2014). Sediment supply as a driver of river meandering and floodplain 

evolution in the Amazon Basin. Nature Geoscience, 7(12), 899–903. https://doi.org/10.1038/ngeo2282
Dodds, P. S., & Rothman, D. H. (2000). Scaling, universality, and geomorphology. Annual Review of Earth and Planetary Sciences, 28(1), 

571–610. https://doi.org/10.1146/annurev.earth.28.1.571
Durkin, P. R., Hubbard, S. M., Holbrook, J., & Boyd, R. (2018). Evolution of fluvial meander-belt deposits and implications for the completeness 

of the stratigraphic record. Bulletin of the Geological Society of America, 130(5–6), 721–739. https://doi.org/10.1130/B31699.1
Edmonds, D. A., Paola, C., Hoyal, D. C. J. D., & Sheets, B. A. (2011). Quantitative metrics that describe river deltas and their channel networks. 

Journal of Geophysical Research, 116(4), F04022. https://doi.org/10.1029/2010JF001955
Finotello, A., D’Alpaos, A., Lazarus, E. D., & Lanzoni, S. (2019). High curvatures drive river meandering: COMMENT. Geology, 47(10), e485. 

https://doi.org/10.1130/G46761C.1
Frascati, A., & Lanzoni, S. (2009). Morphodynamic regime and long-term evolution of meandering rivers. Journal of Geophysical Research, 

114(2), 1–12. https://doi.org/10.1029/2008JF001101
Ghinassi, M., Ielpi, A., Aldinucci, M., & Fustic, M. (2016). Downstream-migrating fluvial point bars in the rock record. Sedimentary Geology, 

334, 66–96. https://doi.org/10.1016/j.sedgeo.2016.01.005
Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of Statistical Software, 31(7), 

1–24. https://doi.org/10.18637/jss.v031.i07
Greenberg, E., & Ganti, V. (2021). Fluvial sediment supply controls reach-scale migration rates for meandering rivers globally. In AGU fall 

meeting proceedings (p. EP34A-06).
Hooke, J. M. (1995). River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England. Geomorphology, 

14(3), 235–253. https://doi.org/10.1016/0169-555X(95)00110-Q
Hooke, J. M. (2013). River meandering. In Treatise on geomorphology (Vol. 9). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374739-6.002 

41-4
Horn, J. D., Joeckel, R. M., & Fielding, C. R. (2012). Progressive abandonment and planform changes of the central Platte River in Nebraska, 

central USA, over historical timeframes. Geomorphology, 139–140, 372–383. https://doi.org/10.1016/j.geomorph.2011.11.003
Howard, A. D., & Knutson, T. R. (1984). Sufficient conditions for river meandering: A simulation approach. Water Resources Research, 20(11), 

1659–1667. https://doi.org/10.1029/WR020i011p01659
Huffman, M. E., Pizzuto, J. E., Trampush, S. M., Moody, J. A., Schook, D. M., Gray, H. J., & Mahan, S. A. (2022). Floodplain sediment 

storage timescales of the laterally confined meandering Powder River, USA. Journal of Geophysical Research: Earth Surface, 127, 1– 
21. https://doi.org/10.1029/2021jf006313

Ielpi, A., & Ghinassi, M. (2014). Planform architecture, stratigraphic signature and morphodynamics of an exhumed Jurassic meander plain 
(Scalby Formation, Yorkshire, UK). Sedimentology, 61(7), 1923–1960. https://doi.org/10.1111/sed.12122

Ielpi, A., & Lapôtre, M. G. A. (2020). A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13(1), 82–86. 
https://doi.org/10.1038/s41561-019-0491-7

Ielpi, A., Lapôtre, M. G. A., Finotello, A., & Ghinassi, M. (2021). Planform-asymmetry and backwater effects on river-cutoff kinematics and 
clustering. Earth Surface Processes and Landforms, 46(2), 357–370. https://doi.org/10.1002/esp.5029

Ielpi, A., Lapôtre, M. G. A., Finotello, A., Ghinassi, M., & D’Alpaos, A. (2020). Channel mobility drives a diverse stratigraphic architecture in 
the dryland Mojave River (California, USA). Earth Surface Processes and Landforms, 45(8), 1717–1731. https://doi.org/10.1002/esp.4841

Ikeda, S., Parker, G., & Sawai, K. (1981). Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 112(-1), 
363–377. https://doi.org/10.1017/S0022112081000451

Ishii, Y., & Hori, K. (2016). Formation and infilling of oxbow lakes in the Ishikari lowland, northern Japan. Quaternary International, 397, 
136–146. https://doi.org/10.1016/j.quaint.2015.06.016

Jerolmack, D. J., & Mohrig, D. (2007). Conditions for branching in depositional rives. Geology, 35(5), 463–466. https://doi.org/10.1130/G233 
08A.1

Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. Dover Publications, Inc.. Retrieved from http:// 
pubs.er.usgs.gov/publication/70185663

Lewin, J., & Ashworth, P. J. (2014). The negative relief of large river floodplains. Earth-Science Reviews, 129, 1–23. https://doi.org/10.1016/j.
earscirev.2013.10.014

Limaye, A. B. S., & Lamb, M. P. (2016). Numerical model predictions of autogenic fluvial terraces and comparison to climate change expecta-
tions. Journal of Geophysical Research: Earth Surface, 121(3), 512–544. https://doi.org/10.1002/2014JF003392

Malik, I. (2006). Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: Example of 
the Mała Panew River in southern Poland. Earth Surface Processes and Landforms, 31(10), 1227–1245. https://doi.org/10.1002/esp.1331

Monegaglia, F., & Tubino, M. (2019). The hydraulic geometry of evolving meandering rivers. Journal of Geophysical Research: Earth Surface, 
124(11), 2723–2748. https://doi.org/10.1029/2019JF005309

Acknowledgments
The core analytical setup of this study 
was first developed in the BSc Honours 
thesis of AG under AI's supervision. AI 
and AG were supported by Discovery 
Grant RGPIN-2016-5720 to AI from 
the Natural Sciences and Engineering 
Resource Council of Canada. We thank 
the constructive comments of two anony-
mous reviewers.

 19448007, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101285 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.7419761
https://doi.org/10.5281/zenodo.7419761
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1002/2017WR020726
https://doi.org/10.1002/jgrf.20083
https://doi.org/10.1016/j.geomorph.2008.11.002
https://doi.org/10.1038/ngeo2282
https://doi.org/10.1146/annurev.earth.28.1.571
https://doi.org/10.1130/B31699.1
https://doi.org/10.1029/2010JF001955
https://doi.org/10.1130/G46761C.1
https://doi.org/10.1029/2008JF001101
https://doi.org/10.1016/j.sedgeo.2016.01.005
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1016/0169-555X(95)00110-Q
https://doi.org/10.1016/B978-0-12-374739-6.00241-4
https://doi.org/10.1016/B978-0-12-374739-6.00241-4
https://doi.org/10.1016/j.geomorph.2011.11.003
https://doi.org/10.1029/WR020i011p01659
https://doi.org/10.1029/2021jf006313
https://doi.org/10.1111/sed.12122
https://doi.org/10.1038/s41561-019-0491-7
https://doi.org/10.1002/esp.5029
https://doi.org/10.1002/esp.4841
https://doi.org/10.1017/S0022112081000451
https://doi.org/10.1016/j.quaint.2015.06.016
https://doi.org/10.1130/G23308A.1
https://doi.org/10.1130/G23308A.1
http://pubs.er.usgs.gov/publication/70185663
http://pubs.er.usgs.gov/publication/70185663
https://doi.org/10.1016/j.earscirev.2013.10.014
https://doi.org/10.1016/j.earscirev.2013.10.014
https://doi.org/10.1002/2014JF003392
https://doi.org/10.1002/esp.1331
https://doi.org/10.1029/2019JF005309


Geophysical Research Letters

IELPI ET AL.

10.1029/2022GL101285

10 of 10

Nakamura, F. (1986). Analysis of storage and transport processes based on age distribution of sediment. Transactions of Japanese Geomorpho-
logical Union, 7, 165–184.

Nicoll, T. J., & Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomor-
phology, 116(1–2), 37–47. https://doi.org/10.1016/j.geomorph.2009.10.005

Pannone, M., & De Vincenzo, A. (2022). On the prediction of the characteristic times of river meander cutoff sequence: Theoretical model and 
comparison with laboratory and field observations. Water Resources Research, 58(7), e2021WR031661. https://doi.org/10.1029/2021WR031661

Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89(5), 569–584. 
https://doi.org/10.1086/628623

Schwenk, J., & Foufoula-Georgiou, E. (2016). Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening. 
Geophysical Research Letters, 43(24), 12437–12445. https://doi.org/10.1002/2016GL071670

Schwenk, J., Lanzoni, S., & Foufoula-Georgiou, E. (2015). The life of a meander bend: Connecting shape and dynamics via analysis of a numer-
ical model. Journal of Geophysical Research: Earth Surface, 120(4), 690–710. https://doi.org/10.1002/2014JF003252

Stølum, H. H. (1996). River meandering as a self-organization process. Science, 271(5256), 1710–1713. https://doi.org/10.1126/science.271. 
5256.1710

Sylvester, Z., Durkin, P., & Covault, J. A. (2019). High curvatures drive river meandering. Geology, 47(3), 263–266. https://doi.org/10.1130/
G45608.1

Torres, M. A., Limaye, A. B., Ganti, V., Lamb, M. P., Joshua West, A., & Fischer, W. W. (2017). Model predictions of long-lived storage of 
organic carbon in river deposits. Earth Surface Dynamics, 5(4), 711–730. https://doi.org/10.5194/esurf-5-711-2017

Williams, G. P. (1986). River meanders and channel size. Journal of Hydrology, 88(1–2), 147–164. https://doi.org/10.1016/0022-1694(86)902 
02-7

Wren, D. G., Davidson, G. R., Walker, W. G., & Galicki, S. J. (2008). The evolution of an oxbow lake in the Mississippi alluvial floodplain. 
Journal of Soil and Water Conservation, 63(3), 129–135. https://doi.org/10.2489/63.3.129

Zinger, J. A., Rhoads, B. L., & Best, J. L. (2011). Extreme sediment pulses generated by bend cutoffs along a large meandering river. Nature 
Geoscience, 4(10), 675–678. https://doi.org/10.1038/ngeo1260

Zolezzi, G., & Seminara, G. (2001). Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeep-
ening. Journal of Fluid Mechanics, 438, 183–211. https://doi.org/10.1017/S002211200100427X

References From the Supporting Information
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 

45(2), RG2004. https://doi.org/10.1029/2005rg000183
Richards, D., & Konsoer, K. (2020). Morphologic adjustments of actively evolving highly curved neck cutoffs. Earth Surface Processes and 

Landforms, 45(4), 1067–1081. https://doi.org/10.1002/esp.4763

 19448007, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101285 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.geomorph.2009.10.005
https://doi.org/10.1029/2021WR031661
https://doi.org/10.1086/628623
https://doi.org/10.1002/2016GL071670
https://doi.org/10.1002/2014JF003252
https://doi.org/10.1126/science.271.5256.1710
https://doi.org/10.1126/science.271.5256.1710
https://doi.org/10.1130/G45608.1
https://doi.org/10.1130/G45608.1
https://doi.org/10.5194/esurf-5-711-2017
https://doi.org/10.1016/0022-1694(86)90202-7
https://doi.org/10.1016/0022-1694(86)90202-7
https://doi.org/10.2489/63.3.129
https://doi.org/10.1038/ngeo1260
https://doi.org/10.1017/S002211200100427X
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1002/esp.4763

	How Is Time Distributed in a River Meander Belt?
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. Dimensionless Metrics

	3. Results
	3.1. Numerical Simulation
	3.2. Spatial and Temporal Oxbow Distributions

	4. Discussion and Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


