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Abstract

One of the main goals of transcriptomics is the identification of genes that show

a significant difference between two conditions. Biological processes underlying

the basic functions of a cell involve complex interactions between genes, that

can be represented through a graph where genes and their connections are,

respectively, nodes and edges. Differential network analysis is a statistical tool

to investigate how the network changes between two conditions.

The main research objective of this thesis is to improve some aspects of

differential network analysis, accounting for the nature of the data and the

network structure. To this aim, we propose a correction for the likelihood

ratio test, with application to two-sample inference in decomposable Gaussian

graphical models. We prove that the adjusted statistic leads to valid inference

at different dimensionality regimes. Moreover, we study the necessary and

sufficient conditions for the existence of the estimate in the Kullback-Leibler

importance estimation procedure, with the aim of guiding the practitioner on

the use of this tool in real data analyses and posing the basis for future works

in the context of count data.





Sommario

Uno degli obiettivi principali della trascrittomica è l’identificazione di geni dif-

ferenzialmente espressi in due condizioni. I processi biologici che regolano le

funzioni di base delle cellule sono caratterizzati da complesse interazioni tra i

geni. Tali processi possono essere rappresentati tramite dei grafi, dove i geni

e le loro connessioni sono, rispettivamente, i nodi e gli archi. L’analisi delle

differenze tra reti è un metodo statistico per studiare come cambia la rete tra

diverse condizioni.

Il principale obiettivo di questa tesi è quello di migliorare alcuni aspetti del-

l’analisi delle differenze tra reti, tenendo in considerazione la natura dei dati e

la struttura della rete coinvolta. A tal fine proponiamo una correzione per il

test basato sul rapporto di verosimiglianza, che può essere applicato in proble-

mi a due campioni in modelli grafici Gaussiani scomponibili. Dimostriamo che

la statistica aggiustata porta a un’inferenza valida a diversi regimi di dimen-

sionalità. Inoltre, studiamo le condizioni necessarie e sufficienti per l’esistenza

della stima nella Kullback-Leibler importance estimation procedure (KLIEP),

con l’obiettivo di dare direttive nell’uso di questo strumento nelle analisi di dati

reali e ponendo le basi per futuri lavori nel contesto dei dati di conteggio.
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Introduction

Overview

The interest in the two-sample problems in graphical models is increasing

over the last years, especially in the biological field. In transcriptomic analysis,

the main goal is to identify genes that show a significant difference between

two conditions. Technically, we are in the context of a two-sample problem,

where the aim of the analysis is to highlight differences in distribution between

two conditions. For example, one might be interested in checking which genes

are differently expressed comparing cells from a control group with those from

patients with a certain disease, or one might be interested in comparing different

stages of the same disease, such as cancer. In this type of analysis, common

practice is to assume that genes are independent in order to perform, for each

gene, a simple test on the means. However, this approach does not fully address

the complexity of the data, since the difference in one gene can cause other genes

to change, leading to a dysregulation in the entire gene network.

While it is of interest to identify groups of (marginally) altered genes, it is

even more interesting and challenging to identify genes that are the source of

this difference, conditionally on the others. In this setting, graphical models can

be a useful tool to tackle the problem. The network representing the connections

between genes can be described as a graph, where each node represents a gene

and the connections are the edges. This makes it possible to take into account

the conditional independence relations that occur in the network, leading to a

more informative analysis.

1



2 Overview

When dealing with differential network analysis, we can distinguish two

cases: the network is considered known and the network is unknown. In the

genomic framework, known networks are typically in the form of biological

pathways, which represent a series of interactions among molecules in a cell

that leads to a change in a cell state or process, or to the creation of a new

molecular product. Biological pathways do not always work properly and when

the network is dysregulated, the result can be a disease. Hence, it is of inter-

est to highlight where in that particular network the dysregulation occurred

in the first place. Examples of pathways repositories are the KEGG database

(Kanehisa and Goto, 2000), Reactome (Croft et al., 2010) and WikiPathways

(Pico et al., 2008). However, pathways stored in these databases are a col-

lection of manually drawn networks, based on biological knowledge, and may

not be completely representative of the network underlying the biological phe-

nomenon of the dataset under study. Moreover, one might be interested only in

the differences in connections or distribution of the genes, without referring to a

particular network, but considering it unknown. In this latter case, differences

can be inferred directly.

A further reason for the complexity of the problem is the nature of the

data. The previous technology for measuring gene expression was based on

microarrays (Irizarry et al., 2003a). These data were collected on a continuous

scale and were usually assumed to be normally distributed on a logarithmic

scale. Moreover, many microarray studies were performed on small cohorts of

samples, resulting in the sample size n (typically less than 100) being much

smaller than the dimension p (typically in the order of 104). Hence, most

of the available statistical tools have been developed relying on the normality

assumption of the data and assuming pmuch larger than n. Nowadays, however,

RNA sequencing technology allows the analysis of gene expression at single-cell

resolution (Wang et al., 2009), yielding high dimensional count data, in which

both the dimension p and the sample size n may be large. Furthermore, these

data are characterized by skewed distributions with high variance and over-

abundance of zeros. Methods specifically developed for Gaussian data are no

longer appropriate and need to be adapted to the nature of the variables under

study.



Introduction 3

In this thesis, we contribute to on the field, by accounting for these two

reasons of complexity: the underlying structure of the problem and the count

nature of the data. The outline of the work is as follows. In Chapter 1 we

present the motivating problem and a review of the literature on the predom-

inant approach. Chapter 2 briefly reviews graphical models, with particular

emphasis on Gaussian and Poisson graphical models. In Chapter 3 we propose

our first contribution, a correction for the likelihood ratio test, with applica-

tion to Gaussian graphical models. Chapter 4 deals with the Kullback-Leibler

importance estimation procedure (KLIEP). In particular, we present a study

on the existence of the estimate.Finally, in the last chapter, we draw the main

conclusions from this work and possible directions for future research.

Main contributions of the thesis

The main contributions of the thesis can be summarized as follows.

1. Definition of a new correction factor that improves the asymptotic ap-

proximation of the likelihood ratio test in a two-sample problem to the

chi-square (Banzato et al., 2022). The proposed multiplicative correction

factor is defined to be the ratio between the degrees of freedom of the

asymptotic chi-square approximation and an approximation of the ex-

pected value of the likelihood ratio test statistic, under the null hypoth-

esis. The expected value takes the form of a function of the dimension

p and the sample size n, as defined in Jiang and Qi (2015). We study

the phase transition boundary (He et al., 2021), which characterizes the

approximation accuracy by establishing the necessary and sufficient con-

dition for the chi-square approximation to hold when p increases with n.

We prove that the phase transition boundary of the corrected statistic, Tn,

is equal to 1 so that the chi-square approximation holds in all situations

in which p/n → 0. We study the properties of Tn through a simulation

study and we compared its performances to other competitors.

2. Extension of the new correction to the two-sample problem in decompos-

able Gaussian graphical models. Here, using the properties studied in



4 Main contributions of the thesis

Djordjilović and Chiogna (2022), the problem of testing equality of two

distributions, Markov with respect to a decomposable graph, can be bro-

ken up into testing equality of lower dimensional Gaussian distributions,

at clique level. According to the structure of the graph, these lower di-

mensional problems can have different dimensions, and so it is crucial to

rely on a test statistic that guarantees a good finite sample accuracy even

in extreme cases, where p is close to n. We study the performance of the

corrected statistic through a simulation study and show that the applica-

tion of this correction gives good results in terms of control of the type

I error rate at the clique level. Moreover, the computational time is im-

proved over the original method of Salviato et al. (2019), sourceSet. This

is because the use of the aforementioned correction allows overcoming

the need for a permutation-based approach to control for both the mul-

tiplicity of the tests and the failure in the approximation of the limiting

distribution, drastically reducing the time for computations.

3. Study of the properties of the existence of the KLIEP estimator (Liu et al.,

2017). This estimator is based on the direct estimation of the differences

in parameters, using the ratio of the distributions in the two conditions.

In particular, this is achieved by minimizing a specific loss function. We

show that, for the minimum to be achieved, the sufficient statistic from

one sample, say X, needs to be inside the convex hull generated by the

rows of the sufficient statistics of the other sample, say Y . If the latter is

not satisfied in the sample, the loss function is not strictly convex and the

minimum cannot be achieved. This result gives an important indication

of the possibility of applying the KLIEP algorithm to the sample at hand

and opens possibilities for future developments.



Chapter 1

Motivating problem

1.1 Gene expression

The process that turns the information encoded in a gene into a function

is called gene expression. Through the transcription of RNA molecules, gene

expression controls when and where RNA molecules and proteins are made

and determines how much of those products are made. This process changes

considerably under different conditions and cell types, indeed the set of proteins

synthesized by the cell is important in determining its phenotype. The RNA

and protein products of many genes serve to regulate the expression of other

genes, leading to a complex network of interactions. The protein abundance is

not easily measurable and the measure of RNA content in a cell can be viewed

as a proxy for this quantity.

The differential expression analysis has the primary goal of determining

which genes are expressed at different levels between conditions, e.g. cancer

vs. normal tissues or different stages of the same disease. These genes can offer

biological insight into the processes affected by the conditions of interest. The

idea is to better understand what characterizes a certain disease or which genes

are involved in the development of the disease, in order to use that knowledge

to develop new drugs or treatments that specifically act on that gene.

5



6 Section 1.1 - Gene expression

1.1.1 Microarray and RNA sequencing

A microarray is a laboratory tool used to detect the expression of thousands

of genes at the same time and it has been the technology of choice for high-

throughput gene expression studies in the early 2000’s. DNA microarrays are

microscope slides, printed with thousands of spots in defined positions, with

each spot containing a known DNA sequence or gene. The microarray is then

scanned and the expression of each gene is measured as spot intensity after hy-

bridization. Typically, mRNA molecules for the analysis are collected from both

an experimental sample and a reference sample, supplying a relative measure of

expression. Microarray experiments are usually performed on small cohorts of

samples, resulting in sample sizes (typically less than 100) much smaller than

the dimension (the number of genes is usually in the order of 104).

In recent years, RNA sequencing (RNAseq) technology replaced microarrays

as the assay of choice for measuring genome-wide transcription levels (Nagalak-

shmi et al., 2008; Wang et al., 2009). This technology allows the measurement

of gene expression not only at the bulk level but also at the single-cell level

for millions of cells in a single study, making it possible to characterize and

distinguish each cell at the transcriptome level. Gene expression is measured as

read counts and single-cell transcriptome measurements present low signal-to-

noise ratios, a high abundance of zeroes, and very skewed distributions. Being

possible to study the genome at single-cell resolution provides a huge amount

of data, where both the sample size and the dimension might be large.

1.1.2 Differential expression analysis

In many experiments, a statistical test is performed to identify genes signif-

icantly associated with the experimental conditions, clinical response, or other

sample attributes. The easiest statistical approach to select genes differen-

tially expressed between two groups is to apply a series of t-tests, assuming the

independence of all genes. With the development of techniques, more sophisti-

cated methods for differential expression analysis have emerged, such as limma

(Smyth, 2004), DESeq2 (Anders and Huber, 2010), and edgeR (Robinson et al.,
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2010). The first one is based on linear models and was first developed for mi-

croarray data and further extended to RNAseq data (Ritchie et al., 2015); the

latter two methods were meant for RNA sequencing data and are based on gen-

eralized linear models, assuming a negative binomial distribution. However, all

these methods are based on the assumption that genes are independent. The

resulting list of significant genes may be large and gene set analysis is then used

as a biological summary of results. This approach detects over-representation of

gene sets among the list of significant genes and it is often performed using a χ2

or Fisher’s Exact test (Zeeberg et al., 2003; Boyle et al., 2004; Beissbarth and

Speed, 2004), which rely critically upon the assumption that individual genes,

and their associated test statistics, are independent. However, this assumption

has been shown to be unrepresentative of the real problem and to bring mislead-

ing results (Goeman and Bühlmann, 2007). Since genes are highly connected

to each other, the difference in one gene can cause others to change and the

network complexity should be taken into account in the analysis.

1.2 Biological pathways

Technological advances in high throughput analysis give access to a vast

amount of data that can help enlighten the mechanisms underlying the complex

interplay of different genes. These connections are collected in the form of

diagrams, called biological pathways. Biological pathways consist of a set of

linked biological components interacting with each other over time to generate a

specific biological effect or a change in a cell. There are many types of biological

pathways, the most well-known being the ones involved in metabolism, gene

regulation, and signal transduction. Metabolic pathways make possible the

chemical reactions that occur in our bodies.

Learning biological pathways is a complex task, because most pathways do

not have real boundaries, and might also work together to accomplish tasks,

forming a biological network. Identifying which genes, proteins, and other

molecules are involved in a biological pathway can provide clues about mech-

anisms that generate certain diseases. Pathway analysis, and in particular

identifying which pathways are involved in a disease (even in each patient), can



8 Section 1.2 - Biological pathways

Figure 1.1: Melanoma pathway from the KEGG database.

have an enormous impact on the definition of more personalized strategies for

diagnosing, treating, and preventing disease. This is the main reason why much

emphasis is invested in the identification of where in a particular network the

dysregulation occurred in the first place.

The most used pathway repositories are the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa and Goto, 2000), Reactome (Croft et al.,

2010) and WikiPathways (Pico et al., 2008). Figure 1.1 shows an example of a

pathway from the KEGG repository.

1.2.1 Graphical representation

Friedman et al. (2000) introduced for the first time the idea of modeling gene

networks using directed acyclic graphs (DAGs). Pathways, and gene networks

in general, can be represented as graphs, where nodes and edges represent,

respectively, the genes and the connections between them. A graphical model

framework has the advantage of capturing the variability among variables in the
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biological system, but it also allows learning and formulating new hypotheses

on the relations between genes.

There is a rich literature that exploits graphs for pathway analysis, typically

considering Gaussian graphical models and considering the network is known.

See e.g. Rahnenführer et al. (2004); Draghici et al. (2007); Massa et al. (2010);

Jacob et al. (2012); Grechkin et al. (2016) and Mukherjee et al. (2018) who

adapted the latter to single-cell RNA-Seq data. We also mention the works

of Salviato et al. (2019) and Djordjilović and Chiogna (2022), which will be

further considered in Chapter 3.

Although pathways represent a useful tool for statistical analysis, they can-

not be always assumed to be the best structure of a graphical model (Djord-

jilović, 2015). In fact, pathways represent the joint work of the scientific com-

munity and have been discovered through laboratory studies of cultured cells,

bacteria, and other organisms. Thus, every graphical representation of a signal-

ing pathway should be seen as a compromise between accuracy and complexity.





Chapter 2

Statistical background

2.1 Fundamentals of graphical models

This section is a review of key concepts and main terminology in graphical

modeling. For a detailed treatment, we refer the interested reader to Lauritzen

(1996) and Whittaker (1990).

Let G = (V,E) be a graph, where V is a finite set of vertices, also called

nodes, and E is the set of edges. The set of edges, E = {(v, t) : v ̸= t, (v, t) ∈
V × V }, is a set of pairs of nodes, subset of V × V . Edges can be directed,

if exactly one of the edges {(v, t), (t, v)} is in E and undirected, if both (v, t)

and (t, v) are in E. If a graph G has only undirected edges is called undirected

graph, whereas if it has only directed edges, the graph is said to be directed. If

there is an edge between v and t, v and t are said to be adjacent or neighbors.

The set of neighbors of a vertex v is denoted as ne(v), for instance in Figure 2.1,

ne(1) = {2, 3}. If there is an arrow from t pointing to v, t is said to be a parent

of v and v a child of t. The set of parents of v is denoted by pa(v) and the set of

children of t as ch(t), e.g in Figure 2.3 pa(3) = {1, 2} and ch(1) = ch(2) = {3}.
If A ⊆ V is a subset of the vertex set, it induces a subgraph GA = (A,EA),

where the set of edges EA = E ∩ A × A is obtained from G by keeping only

edges with both endpoints in A. An undirected graph is said to be complete if

all vertices are joined by an edge. A subset is complete if it induces a complete

subgraph. A complete subset that is maximal (with respect to ⊆) is called a

11
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clique. For instance, in Figure 2.1, we can recognize two cliques: {1, 2, 3} and
{3, 4, 5}.

1 4

3 52

Figure 2.1: Example of an undirected graph with 5 nodes and 6 edges.

We say that a set of vertices S separates sets A and B in an undirected

graph G if every path from a node in A to a node in B contains at least one

node in S. In Figure 2.1, if A = {1, 2}, B = {4, 5} and C = {3}, C separates

A from B.

A path of length n from v to t is a sequence of distinct nodes v = v0, . . . , vn =

t, such that (vi−1, vi) ∈ E, for all i = 1, . . . , n. A path can never cross itself

and it can never go against the direction of the arrows. Paths can be defined as

undirected, partially directed, and directed. An undirected path has all edges

undirected, whereas if all edges are directed, we call it a directed path. A

partially directed path is one that contains both directed and undirected edges.

A chain of length n from v to t is a sequence of distinct nodes v = v0, . . . , vn = t,

such that vi−1 → vi or vi ← vi−1 for all i = 1, . . . , n. An n-cycle is a path of

length n that begins and ends at the same point, such that v = t. The cycle is

said to be directed if it contains an arrow.

Chain graphs contain both directed and undirected edges and can be seen as

a generalization of both directed and undirected graphs. The vertex set V of the

chain graph is partitioned into numbered subsets, forming the dependence chain

V = V1∪· · ·∪VT such that all edges between nodes belonging to the same subset

are undirected while all edges between different subsets are directed, pointing

from the set with a lower number toward the set with a higher number. Such

graphs are characterized by having no partially directed cycles. An undirected

graph is a special case of a chain graph when there is a single chain component,

while a directed acyclic graph (DAG) is a special case of a chain graph when

all chain components consist of a single vertex. For a chain graph G, we define

its moral graph GM as the undirected graph with the same vertex set but with
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v and t adjacent in GM if and only if either v → t or t→ v or if there are z1, z2

in the same chain component such that v → z1 and t→ z2.

1 2

3

Figure 2.2: Example of a graph with V-structure.

In the special case of a DAG, a moral graph is used to find its equivalent

undirected form. The moralization consists of first adding undirected edges

between unmarried parents and then dropping directions by replacing arrows

with undirected edges. As an example, the moralized version of the graph in

Figure 2.3 consists of first marrying the nodes 1 and 2 and then replacing the

arrows with undirected edges.

Definition 2.1. An undirected graph G is said to be decomposable if it is

complete, or if there exists a proper decomposition (A, B, C) into decomposable

subgraphs GA∪C and GB∪C .

Definition 2.2. A triangulated graph is an undirected graph with the property

that every cycle of length n ≥ 4 has a chord, which means two non-consecutive

vertices that are neighbors.

Definition 2.3. Let C = (C1, . . . , Ck) be the set of cliques of the undirected

graph G. Let Jj = C1 ∪ · · · ∪ Cj, Rj = Bj \ Jj−1 and Sj = Jj−1 ∩ Bj. If for

all i > 1 there is a j < i such that Si ⊆ Bj, the sequence is said to follow the

running intersection property.

In this thesis, we focus on undirected graphs, without considering direction-

ality, such that the presence of edges can be interpreted as a connection between

the two vertices.
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2.1.1 Conditional independence

In many statistical applications, graphs represent useful tools to describe

interactions between variables. In fact, the set of conditional independence re-

lations among a collection of random variables can be intuitively represented

by connections among the set of vertices of a graph induced by a certain sepa-

ration criterion. From the late ’70s, the conditional independence of variables

have started to be studied with the help of graphs, assigning a node to each

variable, and using edges to encode the conditional dependencies (Speed, 1978;

Knuiman, 1978; Pearl and Paz, 1987). This application of graphical methods

gives rise to the so-called graphical models.

Definition 2.4. Let X, Y, Z be random variables with a joint distribution P.

We say that the random variables X and Y are conditionally independent given

the random variable Z and write X ⊥⊥ Y |Z if and only if

P(X ∈ A, Y ∈ B|Z) = P(X ∈ A|Z) P(Y ∈ B|Z), (2.1)

for any A and B measurable in the sample space of X and Y , respectively.

Z YX

Figure 2.3: Example of conditional independence.

Equivalently, we can say that X and Y are conditionally independent given

Z if and only if P(X ∈ A|Y, Z) = P(X ∈ A|Z). This alternative definition has

an intuitive interpretation: knowing the value of Z makes the distribution of

X not further depending on Y . If Z is trivial we say that X is independent of

Y and write X ⊥⊥ Y .

When X, Y, Z are discrete random variables, condition (2.1) simplifies as

P(X = x, Y = y|Z = z) = P(X = x|Z = z) P(Y = y|Z = z),

where the equation holds for all z with P (Z = z) > 0. When X, Y, Z are

continuous random variables, the condition (2.1) can be written as

fXY |Z(x, y|z) = fX|Z(x|z) fY |Z(y|z),
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where equality holds almost surely. The definition of conditional independence

can be extended to random vectors. Let A, B and C be three subsets of V . For

discrete random vectors, we say that XA ⊥⊥XB|XC if

P(XA = xA,XB = xB|XC = xC) = P(XA = xA|XC = xC) P(XB = xB|XC = xC)

for any value of the realizations xA, xB, xC of XA,XB,XC respectively. For

continuous random vectors, we have conditional independence if

fXAXB |XC
(xA,xB|xC) = fXA|XC

(xA|xC) fXB |XC
(xB|xC)

for all xA,xB,xC . The equation must hold almost surely with respect to P.

2.1.2 Markov properties on undirected graphs

In this section, we briefly review three Markov properties in the context of

undirected graphs, see Lauritzen (1996) for a detailed presentation.

In what follows, we consider a p−dimensional random vectorX = (X1, . . . , Xp)

such that each random variable Xs corresponds to a node of the graph G =

(V,E) with index set V = {1, 2, . . . , p}. In an undirected graph G = (V,E), an

edge between two nodes, say v and t, is denoted by (v, t). Let X = {Xi : i ∈ V }
be a random vector associated with the graph G = (V,E) and let XA = {Xj :

j ∈ A ⊂ V } be the random vector of the variables in A ⊂ V . A probability

distribution of X is said to satisfy the

1. pairwise Markov property with respect to G if for any pair (v, t) of non-

adjacent vertices

Xv ⊥⊥ Xt|XV {v,t},

2. local Markov property with respect to G if for any vertex v ∈ V

Xv ⊥⊥XV \{ne(v)∪{v}}|Xne(v)
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3. global Markov property with respect to G if for any triple (A, B, C) of

disjoint subsets of V such that C separates A from B in G

XA ⊥⊥XB|XC .

It can be shown that the global Markov property implies the local Markov

property, which in turn implies the pairwise Markov property. Figure 2.4 shows

an example of the Markov properties applied to a graph. From left to right:

pairwise, local, and global Markov property. Let Xi, i = 1, . . . , 5 be a set of

random variables, the left panel shows the pairwise Markov property, where

X1 ⊥⊥ X5|{X2, X3, X4}. In the middle panel, for the local Markov property,

we have that X3 ⊥⊥ X5|{X2, X4} and X1 ⊥⊥ {X3, X5}|X2. The panel on the

right shows the global Markov property, where X1 ⊥⊥ {X3, X4}|{X2, X5}. The

1

2

3
4

5

1

2

3
4

5

1

2

3
4

5

Figure 2.4: Example of the Markov properties applied to a graph. From
left to right: pairwise, local, and global Markov property.

global Markov property gives a general criterion for deciding when two sets

of variables, say A and B are conditionally independent given a third set C.

Markov properties and conditional independence, are closely related to the fac-

torization of the joint density. The latter in fact can be expressed as a product

of clique-wise functions.

Definition 2.5. Let X = (X1, . . . , Xp) be a vector of random variables. A

probability measure P on the sample space of X, is said to factorize according



Chapter 1 - Statistical background 17

to G = (V,E) if for all complete subset a ⊆ V there exists non-negative func-

tions ψa that depend on x only through xa and there exists a product measure

µ = ⊗a∈V µa on the sample space of X, such that X has density f with respect

to µ where f has the form

f(x) =
∏

a complete

ψa(x). (2.2)

The functions ψa are not uniquely determined and groups of functions ψa can

be multiplied together or split up in different ways. Without loss of generality,

one can assume that only cliques appear as sets a. Let C be the set of cliques

of G, (2.2) can be rewritten as

f(x) =
∏
c∈C

ψc(x).

It can be shown that for any undirected graph G and any probability distri-

bution on the sample space of X, it holds that if f factorizes according to G
then it satisfies the global Markov property (and thus the local and pairwise

Markov properties). If X has a positive and continuous density, all the Markov

properties are equivalent.

Proposition 2.6. The random vector X (or its density function) is decom-

posable if and only if its independence graph is triangulated. See Whittaker

(1990).

A benefit of these conditional models is that a graphical model can be under-

stood as an exponential family distribution. The exponential family is specified

by a vector of sufficient statistics, say T (x) = {T1(x), . . . , Tm(x)}, the log-base
measure B(x) and the domain of the sample space, D. The generic exponential
family is defined as

PEF (x|η) = exp

{
ηTT (x) +B(x)− A(η)

}
,

where η is the vector of canonical parameters of the distribution and A(η) is

called the log normalization constant that normalizes the distribution over the
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domain D. By the Hammersley-Clifford theorem (Clifford, 1990), any distribu-

tion satisfying the global Markov property can be written as

P(x|η) = exp

{∑
c∈C

TC(xC)− A(η)
}
, (2.3)

where C is the set of cliques of the undirected graph G and TC(xC) are the

clique-wise sufficient statistics. A special case is a pairwise graphical model,

where for a graph G = (V,E), C consists of merely V and E, with cliques

|C| = {1, 2}, ∀C ∈ C, so that we have

P(x|η) = exp

{∑
i∈V

ηiTi(xi) +
∑

(i,j)∈E

ηijTij(xi, xj)− A(η)
}
. (2.4)

2.2 Gaussian graphical models

Gaussian graphical models are the undirected graphical models for the mul-

tivariate normal distribution. Gaussian distributions are probably the most

known and used when analyzing network data, especially in the biological field,

where microarray was the most used technique to collect gene expression data

(Irizarry et al., 2003a).

Given an undirected graph, G, the Gaussian graphical model for the random

vector X = (X1, . . . , Xp) assumes that X follows a p-variate normal distribu-

tion under the conditional independence properties implied by the graph. The

density is continuous and strictly positive, hence, the three Markov properties,

as well as the factorization property, are all equivalent. Conditional indepen-

dence relations implied by the graph G are easily represented by parameters of

the multivariate normal distribution, through zero restrictions on the inverse

of the covariance matrix. Let S+
G be the set of all the p × p symmetric and

positive definite matrices with null entries corresponding to missing edges in G.
The family of Gaussian graphical models can be defined as follows

MG = {X ∼ Np(µ,K
−1) : µ ∈ Rp, K−1 ∈ S+

G }.
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The density of the multivariate normal distribution with mean vector µ ∈ Rp

and covariance matrix Σ = K−1 is

f(x) =
1

(2π)
p
2 |K| 12

exp

{
−1

2

p∑
i=1

p∑
j=1

κij(xi − µi)(xj − µj)

}
,

where K is called precision matrix with elements κij. The entries in the con-

centration matrix K have a simple interpretation. The diagonal elements κii

are the reciprocal of the conditional variances given the remaining elements,

κii = Var(Xi|XV \{i})
−1,

whereas the off-diagonal values κij represent the interactions between variables,

Cov(Xi, Xj|XV \{i,j}) =
−κij

κiiκjj − κ2ij
.

From the latter, it follows that

κij = 0 ⇐⇒ Xi ⊥⊥ Xj|XV \{i,j}.

Whenever one of κij is zero, this represents a missing edge in the corresponding

graph and the joint density factorizes into two components: one containing xi

and the other containing xj. According to the factorization criterion, the two

variables Xi and Xj are conditionally independent given the others. Thus, we

can use a graph G based on the concentration matrix, also called concentration

graph (Cox and Wermuth, 1996), to represent a multivariate Gaussian distribu-

tion. This fundamental relation is the basis of the Gaussian graphical models

and follows from the interpretation of the concentration matrix. The pairwise

Markov property for the random vector X with respect to G is satisfied if and

only if κij = 0 for all pairs (Xi, Xj) non-adjacent in G. At the same time,

also the global Markov property is satisfied since the distribution of a normal

random variable is positive.

The class of multivariate normal density functions is closed with respect to

the operations of marginalization and conditioning, in fact, both the marginal

and the conditional density functions of the multivariate normal are themselves
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multivariate normal. The conditional distribution of Xi|XV \{i} is univariate

normal. When no conditional independence restrictions are assumed to hold,

the model is called the saturated model. Let A and B be two partitions of the

random vector X, such that X = (XA,XB). If the partitioned vector has a

normal distribution parameterized by mean vector µ = (µA,µB) and variance

ΣA∪B =

(
ΣA ΣAB

ΣBA ΣB

)

then the marginal distribution of XA is normal with mean µA and variance

ΣA, and the conditional distribution of XB given XA = xA is normal with

mean vector EB|A(XB) = µB +ΣBAΣ
−1
A (xA − µA) and variance ΣB|A(XB) =

ΣB −ΣBAΣ
−1
A ΣAB.

2.2.1 Decomposable models

When interaction graphs are decomposable, the model shows special fea-

tures. These models are built up from saturated models by successive direct

joins and this makes it possible to break down the statistical analysis into

smaller analyses of saturated submodels. The density itself can be decomposed

in a clique-wise manner. Let C be the set of cliques of a decomposable graph G.
Cliques can be ordered to form a perfect sequence, i.e. C1, . . . , Ck, where each

combination of subgraphs induced by Jj−1 = C1∪, C2,∪, . . . , Cj−1 and Cj is a

decomposition. Let Sj = Jj−1 ∩ Cj be the sequence of separators. The density

decomposes accordingly as follows

f(x) =

∏k
j=1 f(xCj

)∏k
j=1 f(xSj

)
. (2.5)

The distribution of the maximum likelihood estimate obeys fundamental con-

ditional independence. Whenever there are three sets A, B and C, such that

C separates A from B in G, we have

Σ̂A∪C ⊥⊥ Σ̂B∪C |Σ̂C .
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This property is called hyper Markov property and was studied by Dawid and

Lauritzen (1993).

2.3 Poisson-type graphical models

The Poisson distribution is widely used to model univariate count-valued

data and its multivariate generalizations to account for dependencies are start-

ing to increase in popularity. In the last years, in fact, new technologies in-

troduced new complexities in data measurement. Real-world high-dimensional

data are more and more often expressed as counts. For example, word counts,

crime statistics, and genomics. For the latter, the introduction of RNAseq

technologies (Wang et al., 2009) permits to measure gene expression as counts

and in this case, variables are usually modeled according to a Poisson or a

negative binomial distribution (Anders and Huber, 2010). These types of data

are characterized by rich dependencies, highlighting the need for multivariate

distributions to appropriately model these data.

The univariate Poisson distribution is the classical model for a count-valued

random variable. AssumeX is a random variable with sample space {0, 1, 2, . . . },
its probability distribution is

P(x|λ) = λ exp{−λ}/x!, (2.6)

where λ is the mean parameter of the Poisson distribution.

Inouye et al. (2017) reviewed multivariate distributions derived from the

univariate Poisson distribution. Based on their primary modeling assumptions,

these models can be divided into three classes. The first one assumes that

the univariate marginal distributions are derived from the Poisson. This as-

sumption is based on the fact that in the multivariate Gaussian distribution,

the marginals are univariate Gaussian distributed, see e.g. Teicher (1954). This

marginal Poisson property can also be achieved in a more general way using cop-

ulas (Nikoloulopoulos and Karlis, 2009; Nikoloulopoulos, 2013; Xue-Kun Song,

2000). However, copula models paired with discrete marginal distributions are
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theoretically and computationally more challenging than the corresponding de-

veloped for continuous distributions. The second class is derived as a mixture

of independent multivariate Poisson distributions. Mixture models are often

used to provide more flexibility by allowing the parameter to vary according

to a mixing distribution. Moreover, mixture models can model overdispersion,

which occurs when the variance is larger than the mean. In these cases, assum-

ing distributions such as the log-normal or log-gamma give flexible dependency

structures. Another key benefit of Poisson mixtures is that they permit both

positive and negative dependencies. An extensive review of Poisson mixture

distributions can be found in Karlis and Xekalaki (2005). The third class as-

sumes that the univariate conditional distributions are derived from the Poisson

distribution and they can be studied in the context of graphical models. In the

multivariate Gaussian setting, the node-conditional distributions are univariate

Gaussian and these models can be seen as an extension of this property to the

Poisson case. These conditional models can be seen as undirected graphical

models or Markov Random Fields, and they can be parameterized in a sim-

ple way. Estimation of these models generally reduces to estimating simple

node-wise regressions (Allen and Liu, 2013; Yang et al., 2015).

In this section, we mainly focus on these models, due to their relation to the

graphical framework. Besag (1974) was the first one to consider the multivariate

extension of the Poisson distribution assuming that conditional distributions are

univariate exponential family distributions. The univariate Poisson distribution

in (2.6) can be rewritten in the exponential family form (eq. 2.4) as

P(x|λ) = exp

{
log(λ)x− log(x!)− λ

}
, (2.7)

where η = log(λ), T (x) = x, B(x) = log(x!) and A(η) = exp(η). Suppose all

node-conditional distributions are univariate Poisson. Then, there is a unique

joint distribution consistent with these node-conditional distributions under

some conditions. This joint distribution is a graphical model distribution that

factors according to a graph specified by the node-conditional distributions. In

particular, assume that the node-wise conditional distribution of every random

variable Xi, i = 1, . . . , p, follows a univariate Poisson distribution in the expo-

nential family form as stated in (2.7). The pairwise Poisson graphical model
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(PGM) is defined as follows

PPGM(x|θ,Φ) = exp

{
θTx+ xTΦx−

p∑
i=1

log(xi!)− APGM(θ,Φ)

}
, (2.8)

where the edge parameters are collected into the symmetric matrix Φ ∈ Rp×p,

such that ϕij = ϕji, ∀(i, j) ∈ E and ϕij = 0, ∀(i, j) /∈ E. For the PGM,

Φ has zero along the diagonal. The major drawback is that this model only

permits negative conditional dependencies between variables, which entails a

highly restrictive parameter space, with limited applicability.

In order to overcome this limitation, several extensions of the PGM have

been proposed. The first one was introduced by Yang et al. (2013) and it is

called the truncated Poisson graphical model (TPGM). Based on the idea in

Kaiser and Cressie (1997), the authors suggested keeping the same parametric

form as in (2.8), but truncating the domain to non-negative integers less or equal

to a pre-specified value R, such that the domain becomes D = {0, 1, 2, . . . , R}.
Hence, the only difference is that the node-conditional distributions belong to

an exponential family that is Poisson-like but with the domain bounded by R,

such that the log partition function only involves a finite number of summations.

This allows having both negative and positive dependences. However, the major

drawback is that as R increases, the pairwise parameters become increasingly

negative or close to zero.

A second extension has been defined by Inouye et al. (2016), by substituting

the sufficient statistics with the square root. This variant is called the square

root Poisson graphical model (sqrPGM) and its density function takes the form

PSQR(x|θ,ϕ) = exp

{
θT
√
x+
√
x
T
Φ
√
x−

p∑
i=1

log(xi!)− ASQR(θ,Φ)

}
,

where ϕii can be non-zero. When there are no edges and θ = 0, it reduces to

the independent Poisson model. The node conditionals of this distribution are

P(xi|x−i) ∝ exp
{
ϕiixi + (θi + 2ϕT

i,−i

√
x−i)
√
xi − log(xi!)

}
,
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where ϕT
i,−i is the i−th column of Φ with the i−th entry removed. The in-

teraction term
√
x
T
ϕ
√
x is linear rather than quadratic and this allows both

positive and negative dependencies.

2.4 Differential network analysis

Differential network analysis has become particularly popular in the last

years, especially in the biological field. In many cases, the interest is focused on

whether and how a particular network changes between two conditions. In this

section we briefly review the literature of differential network analysis (Shojaie,

2021), highlighting the fact that most of the proposed methods are developed

for Gaussian graphical models, exploiting their properties.

Let G = (V,E) be a graph with nodes V = {1, 2, . . . , p} and edge set E ⊂
V × V . Changes in G can be due to changes in the set of nodes, edges or both.

In this section, we focus on settings where the set of nodes V is common to

both graphs G(1) and G(2) and the aim is the comparison of the set of edges E(1)

and E(2), or equivalently, the adjacency matrices A(1) and A(2). Differences

between A(1) and A(2) can be of various nature. One might be interested in the

global difference between the two matrices, i.e. to check the null hypothesis that

A(1) = A(2). For this task, different norms or distances can be considered. The

norm-based approach takes the quantitative values of estimated parameters,

whereas one might be interested in the qualitative differences and considering

the total number of different edges. In many applications, the focus of the

analysis is on the local differences. Identifying local differences between graphs

can also be of interest after a global test of the difference between the two

networks. As in the case of global differences, local differences between two

networks can be assessed qualitatively or quantitatively. For instance, in the

Gaussian graphical models case, a quantitative analysis would ask to identify

node pairs (i, j) such that κ
(1)
ij ̸= κ

(2)
ij . Alternatively, one might be interested

in identifying node pairs (i, j) such that (i, j) ∈ E(1) but (i, j) /∈ E(2). In the

Gaussian case, this would imply comparing the zero and non-zero patterns of

K̂
(1)

and K̂
(2)
. The choice of the most appropriate method depends on the

application. Basically, differences in the structure of the underlying networks
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are better captured by qualitative methods, whereas differences in parameters of

graphical models used to estimate the graph benefit from the use of quantitative

approaches. In the latter case, we should also point out that differences in a

graph may only concern the structure, i.e. connections between nodes, but the

node-level parameters could also change.

2.4.1 Global test

The global null hypothesis of no difference between two Gaussian graphical

models is

H0 : E
(1) = E(2) (2.9)

and can be tested by comparing the covariance matrices, or equivalently the

concentration matrices, in the two populations. In fact, in the Gaussian case,

(2.9) means testing

H0 : Σ
(1) = Σ(2) or, equivalently H0 : K

(1) = K(2). (2.10)

This matrix-based hypothesis can be tested by relying on different methods.

The most traditional one is using the likelihood ratio tests (Anderson, 2003;

Muirhead, 1982). In the high-dimensional case, more recent approaches com-

pare correlation matrix using the Frobenius norm (Schott, 2007; Li and Chen,

2012) or use eigenstructure (Srivastava and Yanagihara, 2010) and leading

eigenvalues (Zhu et al., 2017). However, more recent approaches exploit graph-

ical model properties accounting for the topology of the underlying network

(Khatri et al., 2012). Examples are topologyGSA (Massa et al., 2010) and the

NetGSA framework (Ma et al., 2019).

2.4.2 The likelihood ratio test

The likelihood ratio test is a statistical procedure for testing the equality

of distributions. In particular, in the perspective of testing the equality of
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Gaussian graphical models, it can be used for testing the equality of several co-

variance matrices or for testing that multiple normal distributions are identical,

see e.g. Anderson (2003); Muirhead (1982).

In a two-sample problem, testing the equality of covariance matrices reduces

to test (2.10). For j = 1, 2, let Xj be i.i.d. Np(µj,Σj) distributed random

vectors with sample sizes nj. Let n = n1 + n2 and A =
∑2

j=1Aj, where

Aj =

nj∑
i=1

(xji − x̄j)(xji − x̄j)
T and x̄j =

1

nj

nj∑
i=1

xji, i = 1, 2.

The modified likelihood ratio test with the unbiasedness property is

Λn =

∏2
j=2 det(Aj)

(nj−1)/2

det(A)(n−2)/2
· (n− 2)(n−2)p/2∏2

j=2(nj − 1)(nj−1)p/2
.

In order to ensure Aj is full rank we assume p ≤ ni for all i = 1, 2. When p is

fixed and min{n1, n2} → ∞ the approximation to the chi-square is −2 log Λn
d−→

χ2
f , where f = p(p+ 1)/2 are the degrees of freedom.

Testing the hypothesis that two normal distributions are identical is equiva-

lent to joint testing the equality of the mean vectors and the covariance matrices.

The hypothesis to test is

H0 : µ
(1) = µ(2),Σ(1) = Σ(2) vs. Ha : H0 not true.

For j = 1, 2, letXj be i.i.d. Np(µj,Σj) distributed random vectors with sample

sizes nj. Define

B =
2∑

j=1

nj(x̄j − x̄)(x̄j − x̄)T .

The likelihood ratio test statistic is

Λn =

∏2
j=2 det(Aj)

nj/2

det(A+B)n/2
· nnp/2∏2

j=2 n
njp/2
j

.

In order to ensure the covariance matrices are full rank, we assume p ≤ ni for

all i = 1, 2. When p is fixed and min{n1, n2} → ∞ the approximation to the
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chi-square is −2 log Λn
d−→ χ2

f , where f = p(p+3)/2 are the degrees of freedom.

2.4.3 Direct estimation of the difference

Previous methods require to first estimate the individual networks, or co-

variance matrices, and then compare them in order to estimate the differences.

However, when the primary focus of the analysis is on learning the differences

between the two graphs, a first step of network estimation might be unnecessary

and computationally inefficient. In this case, it is more convenient to directly

estimate the differences between the two graphs. In the Gaussian case, Zhao

et al. (2014) proposed a method based on the work of Cai et al. (2011) that di-

rectly estimates the sparse difference of two precision matrices, ∆ = K(1)−K(2).

This is motivated by the fact that the true covariance and precision matrices

must satisfy the following relation

Σ(1)∆Σ(2) − (Σ(1) −Σ(2)) = 0.

The advantage of this method is that sparsity can be assumed directly for

the differences, i.e. on ∆, and not on the individual networks. To overcome

existence issues when n < p, the author proposed an ℓ1-norm constrained mini-

mization. An estimate of ∆ can be found by solving the following minimization

problem

∆̂ = |∆|1 s.t. |(Σ(1) ⊗Σ(2))vec(∆)− vec(Σ(1) −Σ(2))|∞ ≤ ρn,

where ⊗ is the Kronecker product and | · |∞ indicates the sup-norm. Unlike

global tests of network differences, methods for direct estimation of differences

do not always provide measures of uncertainty, such as confidence intervals

and p-values. This issue limits the utility in scientific applications; however,

these models provide powerful tools for exploratory analysis and hypothesis

generation.

In a similar way, Liu et al. (2014) proposed a method that directly estimates

the differences in the networks without estimating the individual densities and

Kim et al. (2021) developed a bootstrap-based procedure to make inference in
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a high-dimensional context. The idea is to model the differences between two

graphs as the ratio of their density functions, such that the ratio is estimated

directly without estimating the densities themselves. The advantage of this

approach is that it is suited for all distributions belonging to the exponential

family. More details about this algorithm will be discussed in Chapter 4.



Chapter 3

A Bartlett-type correction for

likelihood ratio tests

3.1 Introduction

Testing the equality of distributions in a two sample problem can conve-

niently be done resorting to the likelihood ratio test statistic, Wn = −2 log Λn,

where Λn is the likelihood ratio. In Wilks (1938), it is shown that for samples

coming from p-variate normal distributions, Wn is asymptotically distributed

as a chi-square with f = p(p + 3)/2 degrees of freedom. It is well known

(Muirhead, 1982) that the quality of the asymptotic approximation might be

poor in finite sample problems, even at moderate sample sizes. However, con-

vergence to the asymptotic distribution can be improved by multiplying the

likelihood ratio test statistic by a constant (Van der Vaart, 1998). Under the

low-dimensional setting, where the number of variables p is considered fixed

and n is large, the correction factor ρ proposed in Muirhead (1982) improves

the convergence rate, but when the value of p is close to n or increases with it,

this correction is unable to provide an improvement. In the high-dimensional

setting, where p is assumed to increase with n, Jiang and Qi (2015) proposed a

standardization of the likelihood ratio test statistic that allows to resort to the

central limit theorem and, therefore, to switch to a normal approximation. This

solution, however, proves to be inaccurate for small p, given the asymmetry of

the likelihood ratio test statistic.

29
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In a recent work, He et al. (2021) studied the phase transition boundary, d in

what follows, which characterizes the approximation accuracy by establishing

the necessary and sufficient condition for the chi-square approximation to hold

when p increases with n. The authors showed that the chi-square approximation

holds if and only if p/nd → 0, with d = 1/2 for the raw likelihood ratio test

statistic and d = 2/3 for its ρ-corrected version.

In this Chapter, we propose a new multiplicative correction factor, δn here-

after, defined to be the ratio between the degrees of freedom of the asymptotic

chi-square approximation and an approximation of the expected value of the

likelihood ratio test statistic, under the null hypothesis, as a function of p and

n. We prove that its phase transition boundary d is equal to 1, so that the chi-

square approximation holds in all situations in which p/n → 0. We show the

usefulness of our proposal in the context of Gaussian graphical models. Here,

the problem of testing equality of two distributions, Markov with respect to a

decomposable graph, can be broken up into testing equality of lower dimen-

sional Gaussian distributions. According to the structure of the graph, these

lower dimensional problems can lead to very different values of the p/n ratio.

Hence, it becomes crucial to rely on an approximation that guarantees a good

finite sample accuracy even in extreme cases, where p is close to n. Relying on

the decomposability property of the graph allows both to test problems where

n < p, as long as the dimension of the biggest clique is bigger than the sample

size of the smallest sample, but also, it makes possible the identification of the

source of a difference in the network. Motivating by the work of Djordjilović and

Chiogna (2022), we show how the use of the correction improves the computa-

tion time of their algorithm, allowing for the use of asymptotic approximation.

Note that testing equality of distribution in a high-dimensional regime is not

a simple task and there are other methods that can be used, such as the ones

in Gretton et al. (2012) and Städler and Mukherjee (2016). However, these

latter methods are based on different assumptions on the network and cannot

be directly used to localize the difference.

The outline of this Chapter is as follows. In Section 3.2, we introduce the

likelihood ratio test for testing equality of multivariate normal distributions

in a two-sample problem, and we introduce the most common corrections in
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this setting. In Section 3.3 we propose and characterize a new Bartlett-type

correction. The extension to testing equality of distribution of decomposable

graphical models is described in Section 3.4. Section 3.5 deals with the extension

to the algorithm of Djordjilović and Chiogna (2022), for the identification of

the source of difference in the network. Proof of the theorem in Section 3.3

and some additional simulations are postponed to the Appendices (Sections

3.8, 3.9).

3.2 State of the art

Consider two p-dimensional multivariate normal distributions,Np(µ
(j),Σ(j)),

j = 1, 2, and the problem of testing their equality based on two independent

random samples of size nj. In detail, consider the hypothesis of equality of

distributions

H0 : µ
(1) = µ(2), Σ(1) = Σ(2) vs. Ha : H0 is not true. (3.1)

The likelihood ratio test for testing (3.1), derived inWilks (1938), can be written

as

Λn =

∏2
j=1 det

(
Σ̂

(j)
)nj/2

det
(
Σ̂
)n/2 ,

where n = n1+n2, Σ̂ and Σ̂
(j)
, j = 1, 2 are the maximum likelihood estimates of

the covariance matrices under the null and alternative hypotheses, respectively,

and det(Σ̂) denotes the determinant of Σ̂. Under the null hypothesis in (3.1),

the likelihood ratio test statistic Wn = −2 log Λn, has an asymptotic chi-square

distribution, with f = p(p+ 3)/2 degrees of freedom.

In settings where p is fixed and n is allowed to grow, a first correction of

the statistic Wn was proposed by Bartlett (1937), based on a re-scaling aimed

at making its mean exactly equal to the mean of the asymptotic chi-square

distribution, i.e., equal to f . The corrected statistic,WB
n say, takes the following
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form

WB
n =

f

EH0(Wn)
Wn, (3.2)

where EH0(Wn) is the expected value of Wn under the null hypothesis; see for

example Van der Vaart (1998); Pace and Salvan (1997). Later, Muirhead (1982)

proposed a version of Bartlett correction that leverages on an expansion of the

correction factor, leading to the following correction

ρ = 1− 2p2 + 9p+ 11

6(p+ 3)n

(
2∑

j=1

n

nj

− 1

)
. (3.3)

The author showed that the resulting corrected statistic, W ρ
n say, where W ρ

n =

−2ρ log Λn, has a chi-square limit, with an improved approximation rate with

respect toWn. Both corrections, however, fail when p and n grow at comparable

rates.

Recent studies have considered the problem when the dimension p changes

with the sample size n. In these settings, Jiang and Yang (2013) and Jiang and

Qi (2015) established the following result based on the central limit theorem

(CLT):

log Λn − µn

nσn

d−→ N (0, 1), (3.4)

where µn and σn > 0 are functions of both n and p and are the asymptotic

mean and standard deviation of log Λn, respectively. The use of the central

limit theorem has the advantage of being appropriate in a high-dimensional

setting; however, it is less accurate when p is small, due to the asymmetric

shape of the likelihood ratio test statistic distribution.

3.3 Our proposal

In this Section, we propose a Bartlett-type correction of the likelihood ratio

test statistic, under the assumption that p changes with the sample size n. This

correction replaces the denominator of (3.2) with a function of the approximated
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mean given in equation (3.4). In a two sample problem, the term µn defined by

Jiang and Qi (2015) is

µn =
1

4

[
−4p−

2∑
j=1

p

nj

+ nr2n(2p− 2n+ 3)−
2∑

j=1

njr
2
n′
j
(2p− 2nj + 3)

]
, (3.5)

where n′
j = nj − 1 and rx = (− log(1 − p/x))1/2, for x > p, and n = n1 + n2.

Let µwn = −2µn, we define the adjusted statistic Tn as

Tn = δnWn, δn =
f

µwn

, (3.6)

where f = p(p + 3)/2 are the degrees of freedom of the chi-square asymptotic

null distribution of Wn. We now prove that Tn is asymptotically chi-square

distributed.

Theorem 3.1. Let p = (pn)n∈N be a sequence of integers 1 ≤ pn < nj − 1.

Under H0, for Tn defined as in (3.6), minj=1,2 nj → ∞ and p/n → 0, we have

that

sup
−∞<x<∞

|P (Tn < x)− P (χ2
fn < x)| → 0

and the phase transition boundary of Tn is d = 1.

Proof. See Appendix 3.8.

In Theorem (3.1), the condition nj > p+1 is assumed to ensure the existence

of the likelihood ratio test. Moreover, the condition p/n→ 0 defines the phase

transition of the adjusted statistic, as introduced in He et al. (2021), which

represents the boundary in which the chi-square approximation starts to fail as

p increases and characterizes the approximation accuracy. This boundary is an

improvement over Wn and W ρ
n , whose approximations hold for p/nd → 0, with

d = 1/2 and d = 2/3, respectively.

3.3.1 Simulation study

In this Section we present a simulation study to compare the performances

of the likelihood ratio test statistics based on four different approximations: the
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classic chi-square approximation, the ρ-adjusted approach of Muirhead (1982),

the CLT approach of Jiang and Qi (2015) and our proposed δ-adjusted ap-

proach.

We study how the correction acts considering a fixed sample size and let-

ting the dimension p change. Data are drawn from a multivariate normal

distribution, with fixed covariance matrix and mean vector and we consider

n1 = n2 = 50 and p = 2, 30, 40. For each scenario, five thousand simulations

are run. Results are shown in Figure 3.1. For each value of p we plot the his-

tograms of the empirical distribution of the four statistics, namely Wn, W
ρ
n , Tn

and W clt
n , and compare them with the chi-square distribution with p(p + 3)/2

degrees of freedom in the first three cases and a standard normal in the last

case. The top row of Figure 3.1 shows how the statistic Wn departs from the

theoretical χ2 distribution as p grows. This is expected and motivates the need

of an adjustment when dealing with testing problems in which the dimension

grows with n. In fact, if 50 observations might be enough for testing a problem

of dimension 2, this is not the case for other values of p, especially when p and

n have comparable values. The second row shows the results for the statistic

corrected with ρ. Note that, also in this case, the approximation to the χ2 fails

as p approaches the group sample size, nj. With respect to the previous case,

however, the departure from the chi-square distribution occurs for higher values

of p. The third row highlights the problem of applying the CLT when p is small.

For example, when p = 2 the approximation to the normal distribution fails,

while improves as p increases. This approach works well also for values of p very

close to nj. Finally, the bottom row shows the accuracy of the approximation

of the proposed adjusted statistic Tn. Note that this correction leads to a good

approximation regardless of the dimension of the testing problem, as long as

p/n → 0, and could be used as a unique tool for correcting Wn at different

values of p and n.

Finally, we run some simulations to examine the phase transition boundary

in Theorem 3.1, under the null hypothesis. We consider p = ⌊nε
1⌋, n1 = n2, n =∑2

j=1 nj and nj ∈ {100, 500, 1000} and finally ε ∈ {6/24, . . . , 23/24, 23.5/24}.
⌊·⌋ denotes the rounding to the nearest integer function. We plot the empirical
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type-I error rate (over 1000 simulations) versus ε, for each chi-square approx-

imation: Wn, W
ρ
n and Tn. Results are plotted in Figure 3.2. The first two

panels confirm the results in He et al. (2021), while the one on the right hand

side shows how the phase transition boundary of the adjusted statistic Tn is

close to 1. The particular case with ε exactly equal to one is excluded, to

ensure the identifiability of the covariance matrix.
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Figure 3.1: Simulation results with n1 = n2 = 50 and p = 2, 30, 40. From
the top to the bottom row: empirical distribution of Wn, W

ρ
n , W clt

n , and
Tn. The solid line in the first, second, and fourth rows shows the nominal
χ2 distribution, with 5, 495 and 860 degrees of freedom (from left to right)
respectively. The solid line in the third row, corresponding to the W clt

n

statistic, shows the standard normal distribution.

3.4 Testing equality of distributions in Gaus-

sian graphical models

Our proposal finds a natural application in the context of decomposable

graphical models. For an overview of the basic theory of (decomposable) undi-

rected graphical models, we refer the reader to Chapter 2. One prominent

advantage of decomposable graphs is that their cliques can be arranged so as to

satisfy the running intersection property, and the joint probability distribution
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Figure 3.2: Chi-square approximation of Wn, W
ρ
n and Tn. Empirical type-

I error rate for nj ∈ {100, 500, 1000}, j = 1, 2 over 1000 simulations. The
vertical dotted lines represents the phase transition boundaries for the three
statistics: 1/2, 2/3 and 1, respectively. The horizontal dashed line represents
the nominal significance level, 0.05.

of the associated random vectors factorizes accordingly. In detail, if a graph

G = (V,E) decomposes into k, say, cliques, let Ci, i = 1, . . . , k, be a sequence

of cliques satisfying the running intersection property and Si = Ci ∩ Ci−1 and

Ri = Ci \ Ci−1, i = 2, . . . , k the set of corresponding separators and residu-

als, respectively. Then, the probability distribution of the random vector XV

factorizes as

f(XV ) = f(XC1)f(XR2|XS2) . . . f(XRk
|XSk

). (3.7)

See Lauritzen (1996) for an exhaustive explanation. Such factorization ren-

ders tractable inference in the setting of large-scale graphical models, where

the dimension p of the problem is higher that the available sample size n. Even

when p < n, using the information on the graphical structure allows us both

to improve the power of detecting a difference between the two distributions

under study (the size of the model is reduced by constraints on the covari-

ance matrix), and to localize that difference, thanks to the modular nature of

graphical models (Djordjilović and Chiogna, 2022). This potential has fed the

increasing prominence of graph–theoretic representations of probability distri-

butions in fields such as statistical and quantum physics, bioinformatics, signal

processing, econometrics and information theory. In our problem setting, this
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factorization assumes a crucial role as it allows to decompose the global prob-

lem of testing equality of distribution in two samples into a sequence of local

tests of equality of distributions defined on a smaller set of variables, as follows

H =
k⋂

i=1

Hi, Hi : X
(1)
Ri
|X(1)

Si

d
= X

(2)
Ri
|X(2)

Si
, i = 1, . . . , k, (3.8)

with S1 = ∅ and R1 = C1. Hence, to test the global hypothesis H, one can

test the k local hypotheses {Hi, i = 1, . . . , k} of equality of the conditional dis-

tributions of XRi
|XSi

. In the case of strong meta Markov models (Lauritzen,

1996; Edwards, 2000), as is the Gaussian case, Djordjilović and Chiogna (2022)

showed that the local hypotheses Hi, i = 1, . . . , k, are independent and that

the likelihood ratio test statistic for testing H also decomposes into k likeli-

hood ratio test statistics, one for testing each local hypothesis. Specifically, the

likelihood ratio test, Wn, factorizes as

Wn =
k∑

i=1

[
WCi

n −W Si
n

]
= WC1

n +
k∑

i=2

WCi|Si
n , (3.9)

where WA
n , A ⊆ V, represents the likelihood ratio test for the hypothesis of

equality of distributions for XA, namely H(A) : µ
(1)
A = µ

(2)
A , Σ

(1)
A = Σ

(2)
A , while

W
A|B
n is the likelihood ratio test for the hypothesis of equality of distributions

for XA|XB, B ⊆ V \ A, namely H(A|B) : µ
(1)
(A|B) = µ

(2)
(A|B), Σ

(1)
(A|B) = Σ

(2)
(A|B),

where µ(A|B) = µA −ΣABΣ
−1
B µB and Σ(A|B) = ΣA −ΣABΣ

−1
B ΣAB.

As proved in Theorem 1 of Djordjilović and Chiogna (2022), the k statistics

WC1
n and W

Ci|Si
n , i = 2, . . . , k, in the right-hand side of (3.9) are all asymp-

totically independent and chi-square distributed, with fC1 and fCi
− fSi

, i =

2, . . . , k, degrees of freedom, respectively, being fCi
and fSi

the degrees of free-

dom associated to the marginal test on the cliques and the separators, respec-

tively. It is worth noting that, since W
A|B
n = WA

n −WB
n , the only quantities

needed to compute Wn are the observed values of the likelihood ratio test on

the marginal distributions defined over cliques and separators. It is easy to see
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that

WA
n =

2∑
j=1

nj log
det(Σ̂A)

det(Σ̂
(j)

A )
(3.10)

for A ∈ {C1, . . . , Ck, S1, . . . , Sk}. Here, Σ̂A is the maximum likelihood estimate

of ΣA, the block submatrix corresponding to the nodes in A in the null covari-

ance matrix Σ = Σ(1) = Σ(2); and Σ̂
(j)

A are the maximum likelihood estimates

of Σ
(j)
A , the block submatrices corresponding to the nodes in A of Σ(j), j = 1, 2.

Moreover, each WA
n has a chi-square limit with fA = pA(pA + 3)/2 degrees of

freedom, where pA is the cardinality of the set A. One remarkable side effect of

the decomposition is that the dimension of each local problem is determined by

the cardinality of the set of variables on which it is defined, so that, for a fixed

sample size n, dimensionality regimes of local problems vary as a function of

their cardinality. Local problems for which p << n might coexist with problems

for which p ≈ n.

Our proposal naturally steps in this context, providing a convenient solution

able to accommodate such a variety of situations. The extension of our correc-

tion to the test statistics of the kindW
C|S
n does not represent an obstacle, result-

ing indeed being straightforward. In fact, being E(W
C|S
n ) = E(WC

n ) − E(W S
n ),

it results µ
C|S
n = µC

n − µS
n. The corrected statistics for the tests relative to the

decomposition (3.8) simply become

TC1
n = δC1

n WC1
n , δC1

n =
fC1

µC1
n

(3.11)

TCi|Si
n = δCi|Si

n WCi|Si
n , δCi|Si

n =
fCi|Si

µ
Ci|Si
n

, i = 2, . . . , k. (3.12)

3.4.1 Simulation study in the graphical setting

In this section, we present a simulation study aimed at showing the perfor-

mances of our corrected likelihood ratio tests versus ordinary likelihood ratio

test statistics when working with Gaussian graphical models. Data are drawn

from a p-variate Gaussian graphical model, Markov with respect to a graph with

p = 14 nodes and k = 4 cliques (Figure 3.4). We consider a RIP-respecting
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sequence C1, C2, C3, C4 of cliques, with cardinalities |C1| = 8, |C2| = 5, |C3| =
3, |C4| = 2, giving rise to the following cardinalities for the corresponding se-

quence of separators: |S2| = 2, |S3| = 1, |S4| = 1. We generate data assuming
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Figure 3.3: Graph for the simulation study. Nodes 1 and 2 (gray) are
affected by a change in the second scenario.

that differences between the two conditions are attributable to nodes 1 and

2, located in C1. In particular, in one condition the means of the two elected

nodes is set to be 1.5 times greater than the means of the same nodes in the

other condition, while the variances are decreased by 50%. It follows that the

null hypothesis of equality of distribution for XC1 is false, since C1 includes the

two altered nodes. All remaining null hypotheses of equality of distribution for

XRi
|XSi

, i = 2, 3, 4, are true, thanks to the Markov properties of the graph. We

run 10, 000 simulations assuming n1 = n2 ∈ {10, 50, 100, 250}. For each sample,

we compute the following statistics: WC1
n , W

Ci|Si
n , TC1

n , T
Ci|Si
n , i = 2, 3, 4. The

nominal Type I error rate is set to be α = 0.05.

Results are reported in Table 3.1 (see also Appendix 3.9 for a simulation

under the global null). Row 1 of Table 3.1 shows the empirical power of the test,

while rows 2-4 show the empirical Type I error rates. For what concerns Wn,

note that for small sample sizes, the empirical Type I error rate is significantly

higher than the nominal one, due to a large number of false rejections. This
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happens for all the local problems, but, for a fixed sample size, the number of

false rejections largely depends on the dimension of the problem. As expected,

this behavior decreases as the sample size increases, and asymptotically, the

distribution of Wn can be approximated with a chi-square. On the other hand,

the adjusted statistic Tn reaches the nominal size of the test for each considered

sample size, regardless of the dimension of the local problems. The power of

the test based on the adjusted statistic Tn on the clique C1 increases with the

sample size. The high power observed for Wn should not be misleading, as it

highly depends on the false rejections due to the approximation issues already

highlighted in Section 3.3.1. The adjusted statistic seems to meet expectations,

being able to identify the altered clique, while controlling the Type I error of

the remaining local tests.

Wn Tn

nj 10 50 100 250 10 50 100 250

C1 0.985 0.730 0.970 1.000 0.066 0.535 0.946 1.000
C2|S2 0.445 0.082 0.065 0.056 0.048 0.051 0.050 0.049
C3|S3 0.167 0.061 0.056 0.051 0.049 0.044 0.048 0.049
C4|S4 0.109 0.060 0.051 0.057 0.047 0.052 0.048 0.055

Table 3.1: Power and Type I error computed for each term of the decompo-
sition. Number of rejected tests out of 10 thousand simulations, for different
sample sizes, with significance level α = 0.05.

3.5 Identifying the location of the difference

A further natural extension of this correction is in the setting of searching for

the source of difference in a graphical model. A further result in the work of

Djordjilović and Chiogna (2022) shows how the decomposability property of

the graph can be used to identify the origin of the differences in the network.

Their method has been also already implemented in an R package, SourceSet,

by Salviato et al. (2019).

In this section, we first introduce the main algorithm behind their method

and the theoretical reasoning, as a continuation of the results in Section 3.4.

Then, we describe how our correction steps into this setting and shows the
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main advantages of using it through a simulation study. We show how using

the corrected statistic Tn as test statistic highly improves the computational

time of the algorithm while maintaining comparable performances in terms of

control of the type I error rate and power of the original version.

3.5.1 SourceSet: theory and algorithm

The main advantage of this method is the possibility to identify the source

of difference in the network by exploiting the structural modularity of decom-

posable graphical models (Lauritzen, 1996; Frydenberg and Lauritzen, 1989).

The set of conditional relevant variables, seed set, can be defined as follows

(Djordjilović and Chiogna, 2022).

Definition 3.2. Consider the hypothesis of equality of distributions in (3.1)

and let θ(1) = (µ(1),Σ(1)) and θ(2) = (µ(2),Σ(2)). We call the set D ∈ V seed

set, if the collection of conditional laws θ
(1)
V \D|D and θ

(2)
V \D|D coincide. D is also

a minimal seed set if no proper subset of it is a seed set itself.

In other words, the source of difference in the network, the seed set D, is the

set of variables for which the conditional distribution of all the other variables

in the network, given D, is equal in the two groups. It is called minimal if

D is the minimal subset of variables explaining the difference between the two

distributions.

This is made possible thanks to the decomposability property of the graph.

The latter translates into the factorization of the density function, as described

in equations (3.7), which leads to the factorization of the test statistic, as shown

in (3.9). In Section 3.4, the decomposition of the test statistic was used to

test the global hypothesis (H) of equality of distributions. Given the set of

independent local hypotheses (Hi) in equation (3.8), the null hypothesis of

equality of distribution is rejected if the null hypothesis is rejected for at least

one local hypothesis. It is easy to see that this decomposition can have an

important role in the determination of the location of the difference. The idea

is to define an estimator, based on the decomposition of the graph, able to

estimate the seed set. By using a clique-grained decomposition, it is not always
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possible to identify the minimal seed set, however, it is possible to identify the

graphical seed set, DG, namely the superset of D.

Definition 3.3. LetD be a minimal seed set and S = {S : S is a separator in G}
the collection of separators in G. The graphical seed set is the set

DG = {v ∈ V |∀S ∈ S, either v ∈ S or S does not separate v from D in G}.

Hence, the graphical seed set DG is the smallest set containing the seed set

D that can be identified by means of set operations on cliques and separators

of G. As seen in Section 3.4, the global null hypothesis can be decomposed into

a set of independent hypotheses, H =
⋂k

i=1Hi. This decomposition is based

on a perfect ordering of the cliques, but this is not unique. In fact, we can

identify k perfect orderings, one for each clique Ci set as root clique. Each

decomposition of the global hypothesis leads to a different factorization of the

probability distribution. To identify the j-th decomposition, obtained with Cj

as root clique, let C1,j, . . . , Ck,j be the sequence of cliques satisfying the running

intersection property and S1,j, . . . , Sk,j, the associated sequence of separators.

The i-th null hypothesis in decomposition j is denoted by Hij. Hence, an

estimator of the graphical seed set is

D̂G =
k⋂

i=1

⋃
{j:Hij rejected}

Cij. (3.13)

Due to the multiplicity of tests needed to compute the estimate, it is necessary

to apply a correction for multiple testing. The implementation of the algorithm

in the SourceSet package applies the maxT or minP procedure to this aim. See

for example Goeman and Solari (2014) for a review of methods for multiple

testing. Both these methods are permutation-based and have the advantage of

controlling for the family-wise error rate avoiding the asymptotic approxima-

tion. The use of permutations however becomes computationally heavy as the

number of tests and the sample size increase. Due to the huge amount of data

available, the possibility of speeding up computations can be attractive. This

is where the correction we defined in Section 3.2 steps in. Using the corrected

test statistics as defined in (3.11) and (3.12) gives asymptotically valid p-values
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for all the tests and permutations can be avoided when controlling for multiple

testing.

3.5.2 Simulation study

In this section, we compare the sourceSet algorithm in its original imple-

mentation with our new proposal that exploits the corrected statistic Tn. For

the simulation, we consider the same setting described in the work of Salviato

et al. (2019). The graph showing the conditional independence structure of

the variables is in Figure 3.4. This can be decomposed into 5 cliques, with 4

separators. Data are drawn from a multivariate normal distribution at differ-

ent sample sizes. For each scenario, we run 1000 simulations. The family-wise

error rate is controlled at a level α = 0.05. To achieve this, for the corrected

statistic Tn, we use the Hommel correction, while for the row likelihood ratio

test statistic Wn we use minP, as implemented in the original algorithm, and

Hommel as a comparison. See Goeman and Solari (2014) for a description of

the multiple correction methods.

1 2

3

4
5

6

7

8

9
10

Figure 3.4: Graph for the simulation study. Nodes 5 and 10 (gray) and
edges 1-2 (light gray) are affected by a change in the second condition of
scenarios (ii), (iii), and (iv), respectively.

We define three simulation scenarios:
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i. no differences in distribution between the two conditions (H0);

ii. the source set is a separator, {5}. The mean and the variance of node 5

differ in the two conditions;

iii. the source set is a clique, {5, 8, 9, 10}. The mean and the variance of node

10 differ in the two conditions;

iv. the source set is a clique, {1, 2, 3}. The edge between nodes 1 and 2 is

removed in the second condition.

Results for scenarios (i) and (ii) are shown in Figures 3.5 and 3.6, respectively,

while results for scenarios (iii) and (iv) are postponed in the Appendix 3.9.3.

Figure 3.5 reports the fraction of times the sourceSet algorithm identifies D̂G

as an empty set, under the null hypothesis of scenario (i). It is worth noticing

that the implementation of the sourceSet algorithm with the corrected statistic

Tn shows comparable results with the permutation-based approach on the Wn

statistic. The gap between the green line (Wn) and the blue one (Tn) highlights

the improvement in terms of control of the type I error rate (at the local level),

arising from the use of the correction. As expected, the number of false rejec-

tions for the raw statistic (blue line) is very high for small values of the sample

size n, as can be seen on the left side of the graph.
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Figure 3.5: Fraction of times the sourceSet algorithm identifies an empty
set, DG under the null hypothesis of scenario (i). Comparison of the statistics
Tn and Wn. The family-wise error rate is controlled at level 0.05 with the
minP and Hommel methods.

Figure 3.6 shows the results for scenario (ii). The plot on the left side shows

the fraction of times the correct set of altered nodes ({5}) is identified as the

source of difference. The one on the right side shows the rate of false positive

discoveries. The corrected statistic Tn shows similar results to the permutation-

based approach, in the case of correct discoveries, while it shows a lower number

of false positives. As expected, usingWn (and thus relying on asymptotic results

when n and p are comparable) leads to a higher number of false discoveries,

as we can see in the plot on the right side, where for small n the statistic Wn

wrongly identifies nodes as different a higher number of times with respect to

the other two cases. The fraction of true set is then higher when n is small, but

this result should not be misleading, since it is strongly related to the number

of false discoveries.
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Figure 3.6: Comparison of the performance of the statistics Tn and Wn in
scenario (ii) considering different multiple testing corrections. On the left-
hand side: the fraction of times the correct set of altered nodes ({5}) is
identified as the source of difference. In the right panel: rate of false positive
discoveries.

3.5.3 Running time

In the previous Section, we showed how the performance of the permutation-

based algorithm and the new version with the corrected statistic Tn presents

similar results in terms of power and control of the number of false positives.

The main advantage deriving from the use of the new methodology rather than

the permutation-based algorithm is in terms of computation time. The number

of computations of the minP approach has an order of magnitude that depends

on n and p. Figure 3.7 shows the mean computation time needed for one run

of the algorithms in the previous examples, as n increases. The computation

time remains stable (and under one second) when the corrected statistic Tn is

used, while it increases with n when using permutations.

It is worth noticing that the example at hand involves a simple small graph,

while in real data, pathways can be much bigger with a high number of cliques.

This leads, in turn, to a high number of tests to compute. It is clear that with

thousands of observations, the computational cost of permutations becomes

excessively time-demanding and in real data applications, it is not unusual that
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data from single-cell RNA sequencing show a sample size in the order of 10000

observations.
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Figure 3.7: Running time for the two procedures, considering a graph with
10 nodes and 5 cliques.

3.6 Real data application

As a final step, the performances of the new method are assessed in a real

data example. In Section 3.6.1 we apply the procedure described in Section

3.4, while in Section 3.6.2 we apply the sourceSet algorithm and compare the

results with the ones obtained with the original implementation in Salviato

et al. (2019). We considered the well-known dataset dealing with the ABL/BCR

chimera in acute lymphocytic leukemia (ALL) patients (Chiaretti et al., 2005),

available from the R package ALL (Li, 2021). Expression values were normalized

according to rma and quantile normalization (Irizarry et al., 2003b). Genes

were annotated using Affymetrix Human Genome U95 Set data and duplicated

Entrez IDs were averaged for each sample. Two groups of ALL patients with and

without ABL/BCR genomic rearrangement (37 and 42 patients, respectively),

were compared.
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3.6.1 Testing equality of distributions

The aim of the analysis presented in this Section is to verify the hypothesis of

equality of distributions of the genes belonging to the chronic myeloid leukemia

pathway, shown in Figure 3.8, whose function is highly impacted by the BCR

and ABL genes. The corresponding graph was obtained using the R package

graphite (Sales et al., 2012). We finally moralized and triangulated the graph

in order to obtain a decomposable graph. The obtained graph consisted of

three unconnected sub-graphs, and for illustration reasons, we restricted the

analysis to the largest connected component, which also included the two genes

of interest, shown in Figure 3.9. The final graph consists of 60 nodes and 30

cliques. We can exploit the decomposability property of the graph and run a

test for each sub-hypothesis, after factorizing the density, as described in Section

3.4. For the analysis, we considered one of the 30 possible decompositions of

the global null hypothesis.

Results are shown in Table 3.2. Values of the corrected test statistic are

reported along with the corresponding degrees of freedom of the test, the p-

value, and the adjusted p-value. Adjusted p-values are obtained using the

Hommel procedure (see e.g. Goeman and Solari (2014)) in order to control the

family-wise error rate. Note that the hypothesis of equality of distribution is

rejected for the clique C1. Hence, we can conclude that the two graphs are

different. The clique C1 consists of three genes, two of which are the ABL

and BCR genes, meaning that this method is able to highlight biologically

meaningful differences between two sets of patients.
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Figure 3.8: Chronic myeloid leukemia pathway from KEGG.
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Figure 3.9: Undirected graph representing the chronic myeloid leukemia
pathway, used for the analysis. Nodes in black represent the ABL and BCR
genes.
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Tn df pvalue adj.pvalue
C1 78.52 9 <0.001 <0.001

C2|S2 49.99 49 0.729 0.985
C3|S3 92.61 69 0.398 0.985
C4|S4 8.33 7 0.408 0.985
C5|S5 22.13 18 0.362 0.985
C6|S6 26.15 11 0.016 0.429
C7|S7 1.85 5 0.892 0.985
C8|S8 42.71 18 0.004 0.125
C9|S9 21.02 11 0.066 0.985

C10|S10 1.47 5 0.932 0.985
C11|S11 3.87 5 0.624 0.985
C12|S12 18.23 22 0.806 0.985
C13|S13 39.44 26 0.128 0.985
C14|S14 4.65 4 0.368 0.985
C15|S15 5.2 4 0.309 0.985
C16|S16 12.46 4 0.022 0.585
C17|S17 0.99 4 0.923 0.985
C18|S18 11.12 7 0.170 0.985
C19|S19 16.68 15 0.451 0.985
C20|S20 19.21 11 0.104 0.985
C21|S21 12.49 9 0.251 0.985
C22|S22 4.09 4 0.438 0.985
C23|S23 3.73 4 0.488 0.985
C24|S24 0.16 3 0.985 0.985
C25|S25 2.33 3 0.534 0.985
C26|S26 5.42 3 0.165 0.985
C27|S27 0.42 3 0.942 0.985
C28|S28 6.57 3 0.104 0.985
C29|S29 1.31 3 0.746 0.985
C30|S30 3.96 3 0.294 0.985

Table 3.2: Results of the local tests on cliques. Values of the statistic Tn

are reported along with the corresponding degrees of freedom (df), the raw
p-values, and the adjusted p-values. Adjusted p-values were obtained using
the hommel procedure in order to control the family-wise error rate.
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3.6.2 Studying the source of difference

In this Section we propose an analysis of the ALL dataset, looking at where

the network is different. For the analysis, we select from KEGG (Kanehisa and

Goto, 2000) all the pathways containing at least one of the chimera genes, and

we used the graphite package (Sales et al., 2012) for retrieving the graphical

structure. In particular, we select the Chronic myeloid leukemia pathway (i.e.,

the target pathway) that describes the impact of the ABL/BCR fusion genes in

the cell. We apply the sourceSet algorithm and compare the permutation-based

version to the one that uses the corrected statistic Tn. Results are shown in

Figure 3.10. The plot on the top shows the dysregulated genes identified using

the corrected statistic Tn, while the bottom one shows the results obtained using

the permutation-based algorithm. Plots are composed of a matrix whose rows

represent pathways and columns represent genes. Given the structure of the

tests needed for the estimate of DG, results can be summarized as primary set

and secondary set. The former is the estimate of DG, the latter represents the

set of nodes (not in the primary set) for which the null hypothesis was rejected

in at least one decomposition. Each cell of the output matrix represents the

result for each gene in the different pathways. In particular, the cell is blue (2) if

the gene is in the primary set of the correspondent pathway; light blue (1) if the

gene is in the secondary set of the correspondent pathway; and gray (0) if the

gene belongs to the pathway, but was not identified as different considering that

specific pathway. If white, the gene does not belong to the pathway. Pathways

are vertically ordered (from top to bottom) according to the number of nodes

in the source set. The genes are horizontally ordered (from left to right) based

on the number of times they appear in a source set.

Results are similar for the two approaches and give a comparable estimate of

the DG. The method based on the corrected statistic identifies a slightly higher

number of genes than the other one. The difference in terms of computational

time is remarkable. Given the small entity of the problem, in terms of number

of pathways and observations, using the corrected statistic gives a result in

around 12 seconds, while using permutations needs almost 8 minutes.
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Figure 3.10: Sourceset results for the statistics Wδ (first panel) and W
(second panel).

3.7 Discussion

In this Chapter, we proposed an adjusted likelihood ratio test, which leads

to valid inference at different dimensionality regimes. Our proposal overcomes

some weaknesses of alternative corrections reported in the literature, that occur

at small sample sizes and, in particular, when the dimension p is close to n. We

showed that the phase transition boundary of the likelihood ratio test statistic

corrected following our proposal is d = 1, indicating that the only condition

needed to work is p/n → 0. Simulations confirmed that the adjusted test

statistic is well approximated by a chi-square distribution both for small and

large values of p.

In the context of decomposable Gaussian graphical models, where the prob-

lem of testing the equality of two networks breaks down into a sequence of

problems defined on smaller sets of variables, our correction can help tackle the
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possibly high heterogeneity resulting from the decomposition in terms of dimen-

sionality regimes. Our simulation study showed that the size of the test was

reached for different configurations of p and n and, in the presence of a differ-

ence in two conditions, the adjusted statistic is able to detect it, still controlling

the Type I error in the other cliques.

This can be extended to the localization of the source of difference in a fixed

network. Exploiting the decomposability property of undirected graphs allows

to define a series of tests on cliques and separators, such that the estimate

of the graphical seed set is identified by means of set operations. Simulations

showed that the results obtained using the corrected statistic Tn are similar and

comparable to the ones obtained using a permutation-based approach. This

drastically improves the computation time for the analysis and makes possible

the analysis of big datasets in a reasonable amount of time.
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3.8 Appendix 1: proof of Theorem 1

First of all, let Tn = δnWn as define in (3.6), with δn = f/µwn and f =

p(p+3)/2. Define now the two main quantities µwn and σwn , respectively mean

and variance of Wn, from the quantities defined in Jiang and Qi (2015), for the

specific case of comparison of two populations. Let

µwn =
1

2

[
4p+

2∑
j=1

p

nj

+ n(2p− 2n+ 3) log
(
1− p

n

)
−

2∑
j=1

nj(2p− 2nj + 3) log

(
− p

nj − 1

)]

σ2
wn

= 2n2

[
−

2∑
j=1

n2
j

n2
log

(
1− p

nj − 1

)
+ log

(
1− p

n

)]

where n = n1 + n2. Hence, E(Tn) = f and Var(Tn) = σ2
Tn

= f2

µwn
σ2
wn
.

We prove Theorem (3.1) under two assumptions:

1. pn = p fixed.

2. limn→∞ pn =∞

Assumption 1 fn = f is a fixed integer, such that f = p(p+3)/2. It suffices

to show that Tn converges in distribution to a χ2
f . First of all, we show that

f/µwn → 1. We use log(1− x) = −x− x2/2− x3/3− x4/4 +O(x5) and write

n(2p− 2n+ 3) log
(
1− p

n

)
= n(2p− 2n+ 3)

(
−p
n
− p2

2n2
− p3

3n3
− p4

4n4
+O

(
p5

n5

))
= 2pn− 3p− p2 − p3

3n
− 3p2

2n
− p4

6n2
− 3p4

4n3
+O

(
p5

n3

)
(3.14)
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Similarly, by using Taylor’s expansion and nj = Θ(n) and using 1/(nj−1) =

1/nj + 1/n2
j + o(n−3

i ) and 1/(nj − 1)a = 1/na
j + o(n−3

i ) for a ≥ 2 we have

nj(2p− 2nj + 3) log

(
1− p

nj − 1

)
=

= nj(2p− 2nj + 3)

(
− p

nj − 1
− p2

2(nj − 1)2
− p3

3(nj − 1)3
+O

(
p4

n4

))
= nj(2p− 2nj + 3)

(
− p

nj

− p

n2
j

− p2

2n2
j

− p3

3n3
j

+O

(
p4

n3

))
= p2 + p− 2pnj +

3p

nj

+
7p2

2nj

+
p3

nj

+
p3

3n2
j

+O

(
p4

n

)
(3.15)

Hence, as n→∞, using (3.14) and (3.15) we have

µwn =
1

2

[
4p− 3p− p2 + 2p2 + 2p+ o(n−1)

]
= p(p+ 3)/2 + o(1) = f + o(1).

(3.16)

Then, Tn = Wn(1 + o(1)) and using Slutsky theorem we have that since Wn
d−→

χ2
f , also Tn

d−→ χ2
f .

Assumption 2 If pn → ∞, as a consequence, also fn = pn(pn + 3)/2 → ∞
and we can write

lim
n→∞

sup
x
|P (Tn < x)− P (χ2

fn < x)| = lim
n→∞

sup
x

∣∣∣∣P (Tn − fnσTn

< x

)
− P

(
χ2
fn
− fn
σTn

< x

)∣∣∣∣
= lim

n→∞
sup
x

∣∣∣∣P (Tn − fnσTn

< x

)
− ϕ(x) + ϕ(x)− P

(
χ2
fn
− fn
σTn

< x

)∣∣∣∣
(3.17)

(Tn − fn)/σTn converges in distribution to a N (0, 1) because (Tn − fn)/σTn =

(−2 log Λ − µn)/σn → N(0, 1) as shown in Jiang and Qi (2015). Moreover,

applying Berry-Esseen theorem to χ2
fn

variable we obtain

lim
n→∞

sup
x

∣∣∣∣P (χ2
fn
− fn√
2fn

< x

)
− ϕ(x)

∣∣∣∣→ 0 (3.18)
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Hence, to show (3.17) it is enough to prove that σ2
Tn
/(2fn) → 1 as n → ∞.

Using (3.14) and (3.15) µwn can be written as

µwn =
1

2

{
4p+

2∑
j=1

p

nj

+ 2pn− 3p− p2 − p3

3n
− 3p2

2n
− p4

6n2
− 3p4

4n3
+O

(
p5

n3

)

2p2 + 2p− 2pn+
2∑

j=1

[
3
p

nj

+ 7
p2

2nj

+
p3

nj

+
p3

3n2
j

+O

(
p4

nj

)]
=
1

2

[
3p+ p2 +O

(p
n

)
+O

(
p2

n

)
+O

(
p3

n

)
+O

(
p3

n2

)]
=
1

2
p(p+ 3) +O

(
p3

n

)
(3.19)

Moreover,

σ2
wn

= 2
2∑

j=1

n2
j

(
p

nj − 1
+

p2

2(nj − 1)2
+O

(
p3

n3
i

))
− 2n2

(
p

n
+

p2

2n2
+O

(
p3

n3

))

= 2
2∑

j=1

n2
j

(
p

nj

+
p

n2
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p2

2n2
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(
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))
− 2

(
pn+

p2

2
+O

(
p3

n

))
= 2np+ 4p+ 2p2 − 2pn− p2 +O

(
p3

n

)
= p2 + 4p+O

(
p3

n

)
(3.20)

Hence, for limn→∞ pn/n = 0, we have

fσ2
wn

2µ2
wn

=
1
2
p(p+ 3)(4p+ p2 +O(p3/n))

2
(
1
2
p(p+ 3) +O(p3/n)

)2 =
4p3 + p4 + 12p2 + 7p3 +O(p5/n)

p4 + 6p3 + 9p2 +O(p5/n)

=
p4(1 +O(p/n))

p4(1 +O(p/n))
→ 1

(3.21)
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3.9 Appendix 2: additional simulations

3.9.1 Phase transition boundary

In this section, we extend the study of the phase transition boundary under

the same assumptions of Figure 3.2, but considering different proportions of the

group sample sizes. We set n1 = 500 and n2 ∈ {1000, 2500, 4000, 10000} such
that n2/n1 ∈ {2, 5, 8, 20}. We take p = ⌊nε

1⌋ and ε ∈ {6/24, . . . , 23/24, 23.5/24},
where ⌊·⌋ denotes the rounding to the nearest integer function. Figure 3.11

shows the results of the empirical type-I error rate (over 1000 simulations) ver-

sus ε, for each chi-square approximation: Wn, W
ρ
n and Tn. Simulations show

that the relative size of the groups sample sizes does not influence the accuracy

of the approximation.
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Figure 3.11: Chi-square approximation ofWn, W
ρ
n and Tn. Empirical type-

I error rate over 1000 simulations for n1 = 500 and n2 such that n2/n1 ∈
{2, 5, 8, 20}. Phase transition boundaries (vertical dashed lines) for the three
statistics respectively: 1/2, 2/3 and 1.

3.9.2 Graphical setting

In this section, we extend the simulation study of Section 3.4.1, showing

the results under the global null hypothesis. Data were generated following

the same scheme used for Table 3.1, but without considering any changes in

the node distribution for the second condition. Results of the empirical type

I error rate are shown in Table 3.3. The nominal Type I error rate was set to
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be α = 0.05. For the clique C1, the empirical Type I error rate of Wn is higher

than the nominal one, especially for low sample sizes. This confirms the lack of

Type I error control of the Wn statistic, while Tn controls the Type I error at

all sample sizes.

Wn Tn

nj 10 50 100 250 10 50 100 250

C1 0.974 0.125 0.085 0.064 0.050 0.049 0.051 0.053
C2|S2 0.446 0.085 0.064 0.055 0.047 0.051 0.050 0.049
C3|S3 0.169 0.059 0.058 0.050 0.048 0.044 0.050 0.048
C4|S4 0.109 0.059 0.050 0.056 0.049 0.050 0.046 0.054

Table 3.3: Type I error computed for each term of the decomposition.
Number of rejected tests out of 10 thousand simulations, for different sample
sizes, with significance level α = 0.05.

3.9.3 SourceSet

This section presents the simulation results of scenarios (iii) and (iv), de-

scribed in Section 3.5.2, respectively reported in Figure 3.12 and 3.13. Plots

on the left side show the fraction of times the correct set of altered nodes

({5, 8, 9, 10} in Figure 3.12 and {1, 2, 3} in Figure 3.13) is identified as the

source of difference. The ones on the right side show the rate of false positive

discoveries. Also in these cases, the corrected statistic Tn shows similar results

to the permutation-based approach, in the case of correct discoveries, while it

shows a slightly lower number of false positives.
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Figure 3.12: Comparison of the performance of the statistics Tn and Wn in
scenario (iii) considering different multiple testing corrections. On the left-
hand side: the fraction of times the correct set of altered nodes ({5, 8, 9, 10})
is identified as the source of difference. On the right-hand panel: rate of false
positive discoveries.
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Figure 3.13: Comparison of the performance of the statistics Tn and Wn in
scenario (iv) considering different multiple testing corrections. On the left-
hand side: the fraction of times the correct set of altered nodes ({1, 2, 3}) is
identified as the source of difference. On the right-hand panel: rate of false
positive discoveries.



Chapter 4

On the existence of the KLIEP

estimator

4.1 Introduction

In this Chapter, we study the problem of learning the differences between

two undirected graphical models. The focus is on learning the differences in the

networks directly, without estimating the individual graphs. This is achieved

by using the density ratio approach. For simplicity, in this Chapter we will

use the term density to indicate both the probability density function and the

probability mass function, following the terminology in Liu et al. (2014).

Differential network analysis using the density ratio approach gives the op-

portunity to study the differences in a network without restricting the analysis

to a specific structure in advance. Using this approach allows considering in the

analysis the connections between variables, without explicitly modeling them.

Moreover, it is useful for studying all those types of data for which we can

assume a data-generating mechanism belonging to the exponential family.

As described in the previous Chapter, the goal of the analysis is to study and

describe if and where the network structure changes between two conditions.

When nothing can be assumed about the structure of the interactions between

the random variables at hand, a two-step approach is a possible way to deal

with the problem. Many statistical approaches have been developed to learn

the graph structure over the last decades, see Drton and Maathuis (2017) for a

61
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recent review. A two-step approach for learning differences in the networks is to

apply one of these methods separately to the two samples, learn the individual

structure, and compare the final models. However, this method can be restric-

tive in those situations where the individual networks are dense, even if the

differences are sparse. In a high-dimensional setting, in fact, an assumption of

sparsity is required in order to have a consistent estimation of the network (Cai

et al., 2011; Ravikumar et al., 2011; Friedman et al., 2008). Hence, a two-step

approach can only work if both individual networks are sparse. Furthermore,

how to deal with the two separate tuning steps in the graph estimation process

is not fully clear.

Moreover, the literature on difference estimation is mainly developed assum-

ing a particular observation model (Xia et al., 2015; Cai et al., 2019; Zhao et al.,

2014). This makes the extension to other parametric models not straightfor-

ward and in some cases computationally intractable due to the normalization

term.

Liu et al. (2014) proposed a method that overcomes these problems by di-

rectly estimating the differences in the networks without estimating the individ-

ual densities. The idea is to tackle the estimation problem by focusing on the

ratio of the two density functions of the two samples, such that the ratio is es-

timated directly without estimating the densities themselves. In this approach,

the parameters of the models represent the difference between the two densities

and this allows to directly impose sparsity constraints on the changes. This

approach has been developed for any distribution belonging to the exponential

family, hence it is suited for general Markov random field, with the advantage

of avoiding developing different methods for different distributions. The prop-

erties of the algorithm have been studied in Liu et al. (2017), where the authors

provided sufficient conditions for successful change detection with respect to

the number of samples in the two groups, the data dimension, and the number

of changed edges. In order to keep the density ratio model well-behaved, the

magnitude of the change should not be too drastic. Recently, Kim et al. (2021)

developed a bootstrap-based method to make inference in a high-dimensional

context, when the number of observed variables increases with the sample size.
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Application of this algorithm can be useful to model differences in gene reg-

ulation when conditions change, or to highlight variations in the brain areas

connectivity due to particular activity the subject is performing.

This methodology, and differential network analysis in general, mostly fo-

cuses on detecting changes in the network structure, but not in the single nodes.

For example, in the Gaussian context, it is common to study the differences in

the concentration matrix, by first centering the variables. However, this is pos-

sible in the Gaussian case due to the orthogonality of the density parameters,

but this is not the case for other distributions, such as Poisson graphical mod-

els. Using the density ratio approach permits extending the analysis to recover

differences in node-wise parameters, simply by treating them as the edge-wise

ones.

Even though in principle it is possible to apply this methodology to any

statistical model, as long as the density belongs to the exponential family, ex-

amples presented in the literature mainly focus on Gaussian or Ising models.

Since nowadays more complex data are available, differential network analysis

needs to be extended to these new kinds of data. In models for counts data (see

Chapter 2) it is not possible to study only the differences in the network struc-

ture, and assuming node-wise differences are all zero might be too restrictive.

Thus, it is important to study the behavior of this method in this setting.

This Chapter aims to study the performance of the density ratio method

when applied to models for count data and in general to any distribution in

the exponential family. In particular, we study the necessary and sufficient

conditions for the estimate to exist, in finite sample problems. We consider

the particular case where changes in both the network structure and node-wise

parameters are of interest, leading to a more flexible model.

4.2 Statement of the problem

Consider two independent samples, X and Y , from probability distributions

P and Q on Rm. Assume they belong to the family of pairwise Markov networks
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and that their densities p and q belong to the exponential family, expressed by

p(x;θ(p)) =
1

Z(θ(p))
exp

(
m∑
v=1

θ(p)
v tv(xv) +

m∑
u,v=1,v≥u

θ(p)
uv tuv(xu, xv)

)
(4.1)

where m is the dimension of the random variable X, Z(θ(p)) is the normaliza-

tion constant and θ(p)=(θv)
m
v=1 ∪ (θuv)1≤u≤v≤m is the set of parameters. The

normalization factor is defined as

Z(θ(p)) =

∫
exp

(
m∑
v=1

θ(p)
v tv(xv) +

m∑
u,v=1,v≥u

θ(p)
uv tuv(xu, xv)

)
dx.

The density q(Y ;θ(q)) is defined analogously. The idea in Liu et al. (2014) is

to look at the ratio between the two densities P and Q,

p(x;θ(p))

q(x;θ(q))
∝ exp

(
m∑
v=1

(θ(p)v − θ(q)v )tv(xv) +
m∑

u,v=1,v≥u

(θ(p)uv − θ(q)uv )tuv(xu, xv)

)
.

Note that the difference between the two densities is represented directly through

∆ = θ(p) − θ(q), such that θ
(p)
j − θ(q)j is zero if there is no change in the corre-

sponding factor tj(·). Since the distributions come from the same parametric

exponential family, the density ratio still has the exponential form and can be

modeled as

r(x;∆) =
1

N(∆)
exp

(
∆T t(x)

)
, (4.2)

where t(x) = (tv(xv), tuv(xv, xu)), v, u = 1, . . . ,m, v ≥ u. The term N(∆) is

the normalization constant, which fulfills

N(∆) =
Z(θ(p))

Z(θ(q))

=

∫ exp
(
θ(q)T t(x)

)
Z(θ(q))

·
exp

(
θ(p)T t(x)

)
exp

(
θ(q)T t(x)

)dx
=

∫
q(x)r(x;∆)dx.
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An estimate of N(∆) can be obtained by the sample average over y1, . . . ,yny

iid∼
q(θ(q)) of

N̂(∆;y1, . . . ,yny
) =

1

ny

ny∑
i=1

exp
(
∆T t(yi)

)
. (4.3)

Remark 4.1 The setting in Section 4.2 refers to distributions that only allow

pairwise interactions between variables. However, it is worth noticing that any

other interaction of three or more nodes can be considered. The density ratio

in equation (4.2) is rather general and can tackle any difference of parameters,

as long as they linearly enter in equation (4.1).

4.2.1 Direct density ratio estimation

The Kullback-Leibler importance estimation procedure (KLIEP) minimizes

the distance between p(x) and p̂(x;∆) = q(x)r(x;∆). Let DKL(p ∥ q) be

the Kullback-Leibler divergence for probability densities p and q. It holds that

DKL(p ∥ q) ≥ 0, with equality if and only if p = q almost everywhere and we

can write

DKL(p ∥ r∆ q) =
∫
p(x) log

p(x)

q(x)r(x;∆)
dx (4.4)

= Const.−
∫
p(x) log r(x;∆)dx. (4.5)

Hereafter, log(·) is the natural logarithm. An estimate of ∆ can be obtained

by minimizing the negative empirical approximation of the rightmost term in

equation (4.5), such that

∆ = argmin
∆

DKL(p ∥ r∆ q)

= argmin
∆

(
−Ep[∆

T t(x)] + log Eq[exp{∆T t(y)}]
)
,

where Ep and Eq represent the expectation with respect to P and Q. The

empirical KLIEP loss function (ℓKL) is obtained by replacing each expectation
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with the corresponding sample average, such that

∆̂ = argmin
∆

ℓKL(∆;x1, . . . ,xnx ,y1, . . . ,yny
) (4.6)

= argmin
∆

(
− 1

nx

nx∑
i=1

∆T t(xi) + log

[
1

ny

ny∑
j=1

exp{∆T t(yj)}
])

. (4.7)

Since the log-sum-exp function is convex (see e.g. Boyd and Vandenberghe

(2004)), the loss function ℓKL itself is a convex function in ∆ and its global

minimizer can be found using standard optimization techniques. However, in a

finite sample problem, the existence of a minimum is subject to some conditions

on the samples. Liu et al. (2017) discussed some practical advices on choosing

P and Q when datasets are given. In order to guarantee the boundedness of

the density ratio, Q should be wide and more spread out compared to P . The

density ratio approach is in fact asymmetric and the performances can be easily

affected by the choice of samples. Besides that, even when P and Q are chosen

accordingly to the latter indications, the existence of the estimate is subject to

more strict conditions on the characteristic of the samples, which are described

in the next section.

4.3 On the existence of the estimate of ∆

In this section, we study the properties of the samples that guarantee the

possibility of reaching the minimum when it exists. We already know from Liu

et al. (2017) that the sample chosen to be from Q should be wider than the

one from P . However, this result is vague; even when it is satisfied, reaching

the minimum is not guaranteed. Hence, assuming the minimum for the param-

eter ∆ exists, we study the necessary and sufficient conditions of the sufficient

statistics for the samples X and Y that ensure the minimum, and thus that the

estimate is reached.

To ease the notation, let S = (R, T ) be the set of sufficient statistics for

(4.7), from the samples X and Y , respectively. In particular, R = (R1, . . . , Rm)

is a vector 1 ×m, where m is the dimension of ∆, of sample means such that
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Rk = 1
nx

∑nx

i=1 tk(xi), k = 1, . . . ,m. T is a matrix of dimension ny ×m, where

each entrance is Tik = tk(yi), k = 1, . . . ,m and i = 1, . . . , ny.

Example 4.1. Two-dimensional square root Poisson graphical model.

Let θ = (η,Φ), with η = (η1, η2) and Φ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
be the parameters. The

distribution function for the single observation xi is

f(xi,θ) ∝ exp{ηT√xi +
√
xi

T
Φ
√
xi −

2∑
k=1

log(xki)}

and for the entire sample of dimension n is

f(x,θ) ∝ exp

{
η1

n∑
i=1

√
x1i + η2

n∑
i=1

√
x2i + ϕ11

n∑
i=1

x1i + ϕ22

n∑
i=1

x2i+

+ 2ϕ12

n∑
i=1

√
x1i
√
x2i −

n∑
i=1

2∑
k=1

log(xki)

}
.

Let θ = (η1, η2, ϕ
2
11, ϕ12, ϕ

2
22, ϕ12) be the vector of parameters of the model.

The parameters of interest of the density ratio model are ∆ = θ(p) − θ(q) =

(∆1, . . . ,∆m), m = 5. Assume the sample X comes from the distribution P

and the sample Y is from the distribution Q. The sufficient statistics for the

sample X are R = (R1, . . . , R5), where R1 and R2 are 1
nx

∑nx

i=1

√
xki, with

k = 1, 2 respectively; R3 and R4 are 1
nx

∑nx

i=1 xki with k = 1, 2 respectively; and

R5 = 2
nx

∑nx

i=1

√
x1i
√
x2i. The sufficient statistics for the sample Y are repre-

sented by the ny × 5 matrix T , with columns (
√
x1,
√
x2,x1,x2, 2

√
x1
√
x2).

If the minimum of the loss function ℓKL exists, the following result needs to

be satisfied.

Theorem 4.1. Let X and Y be two samples, and let S = (R,T ) be the suffi-

cient statistics for (4.7) from the samples X and Y respectively. Where R ∈ Rm

and T 1, . . . ,T n ∈ Rm. If the minimum of the loss function ℓKL exists, then R

needs to lie inside the relative interior of the rows of T.
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Proof. Let us writing (4.7) as function of the sufficient statistics S = (R, T ).

ℓKL(∆) = −∆TR+ log

(
1

ny

ny∑
i=1

exp{∆TT i}
)

= −
d∑

k=1

∆kRk + log

(
1

ny

ny∑
i=1

exp

{
d∑

k=1

∆kTik

})
.

The function is convex (see Boyd and Vandenberghe (2004); Sugiyama et al.

(2012)). To ensure the existence of a minimum, it is required that the vector

of the first derivatives is a zero vector. Let the gradient be ∇ℓKL(∆), with j-th

component, k = 1, . . . ,m,

∂ℓKL(∆)

∂∆k

= −Rk +

∑ny

j=1 exp
{
∆TT j

}
Tjk∑ny

i=1 exp
{
∆TT i

}
= −Rk +

ny∑
j=1

exp
{
∆TT j

}∑ny

i=1 exp
{
∆TT i

}Tjk
= −Rk +

ny∑
j=1

αjTjk,

where

αj =
exp

{
∆TT j

}∑ny

i=1 exp
{
∆TT i

} , for j ∈ [ny].

Note that αj > 0, ∀j ∈ [ny] and
∑ny

j=1 αj = 1.

Now let ∆ be a minimizer of the loss function ℓKL. Then the gradient needs

to be zero such that the following is satisfied

∂ℓKL(∆)

∂∆
=


−R1 +

∑ny

j=1 αjTj1

−R2 +
∑ny

j=1 αjTj2
...

−Rm +
∑ny

j=1 αjTj m

 =


0

0
...

0

 .

Hence, if it exists a minimum of ∆, then R must lie in the relative interior of

the convex hull of the rows of T . In other words, R is a point in the relative

interior of the polytope that is the convex hull of the rows of T .
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To better understand the reasoning, we now analyze the one-dimensional

case. Figure 4.1 shows the function in the one-dimensional case when R lies

inside, on the boundary, and outside the convex hull of T . The x-axis reports

the possible values for the parameter ∆, while the y-axis the values of the loss

function ℓKL. As can be seen from the picture, when R is a point in the interior

of the polytope generated by T , the function is strictly convex, meaning that

the minimum, when achieved is also a global minimum. In the other two cases,

when either R lies on the boundary or outside the convex hull of the points in

T , the function is convex but not strictly convex and a global minimizer cannot

be found.
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Figure 4.1: The loss function ℓKL when R lies inside, on the boundary,
and outside the convex hull of T , in the one-dimensional case.

In fact, in the one-dimensional case, ∆ is of dimension 1. The sufficient

statistics take the form R =
∑nx

i=1 t(xi), while T is of dimension 1× ny.

Following the result in Theorem 4.1, if the minimum is achieved, R needs to

be a convex combination of T , see equation (4.3). That is R =
∑n

j=1 αjTj. To

study the convexity of the function ℓKL we refer to the second derivative, that

is

∂2

∂∆2
ℓKL =

ny∑
j=1

[
αjT

2
j − αjTj ·

ny∑
k=1

αkTk

]
.
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A function is strictly convex if the second derivative is strictly positive, that is

ny∑
j=1

αjT
2
j >

ny∑
j=1

αjTj ·
ny∑
k=1

αkTk.

Using the result in Theorem 4.1, if the minimum is achieved, thenR =
∑ny

i=1 αiTi

and we can write

ny∑
j=1

αjT
2
j >

ny∑
j=1

(αjTj)R = R2

This is always verified, with the exception of trivial cases. In fact, using the

Cauchy-Schwartz inequality we know that(
ny∑
j=1

αj

)(
ny∑
j=1

αjT
2
j

)
≥
(

ny∑
j=1

√
αj
√
αj Tj

)2

=

(
ny∑
j=1

αjTj

)2

= R2

ny∑
j=1

αjT
2
j ≥ R2

The equality is verified if and only if αj = kαjTj for a non-zero constant k ∈ R.
This would imply k = 1/Tj. Hence the equality holds if and only if all Tj are

equal, that is a trivial case and we can conclude

ny∑
j=1

αjT
2
j > R2.

Hence, strict convexity is ensured if and only if R is in the interior of T .

4.4 Discussion

In this chapter, we studied the properties of the estimate existence when

using the KLIEP algorithm for direct estimation of the differences in a network.

The methodology was first introduced by Liu et al. (2014) and recently Kim

et al. (2021) proposed a bootstrap routine to make inference in this context.

The advantage of using the density ratio estimation is derived from the fact that
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the differences in the network can be directly estimated without estimating the

single networks. This allows relaxing the hypothesis of independence between

variables that are usually assumed for example when analyzing transcriptomic

data. In this kind of setting, it is known that variables interact with each

other, but the underlying network is not always available and known. If in

many situations it is possible to restrict the analysis to a subset of variables,

for which the connections are studied and known, in many others this is not

possible or of interest. Moreover, this methodology is also very flexible due to

the fact that it can be applied to any distribution belonging to the exponential

family.

Although it is a promising technique, KLIEP shows some limitations in

finite samples. It is known (Liu et al., 2017) that this method works well

when differences are sparse and relatively small and that the assignment of

the samples X and Y to the distributions P and Q plays an important role.

In order to ensure the density ratio behaves well, the sample assigned to the

distribution Q should be wider and more spread out than the other one. This

is a vague indication and the aim of the work presented in this Chapter was to

characterize more in detail this statement.

We showed that when the minimum is achieved, the sufficient statistics from

the sample X needs to lie inside the polytope generated by the rows of the

sufficient statistics of the sample Y . This result is related to the indication in

Liu et al. (2017), to assign Y to be the widest sample between the two. In fact,

in many cases, this would ensure the latter property is satisfied.

This result can be very useful in real data applications, to check in advance

if the samples at hand are suitable for having an estimate of the differences,

and for choosing which of the two samples to assign to the sample X and which

to the sample Y .





Conclusions

Discussion

Differential network analysis plays an important role in studying biological

data, especially in transcriptomics, where the main goal is to identify genes

that show a significant difference between two conditions. Two-sample problem

inference in the context of graphical models has become widely popular in the

last decades.

When the first data on gene expression became available, statistical analysis

of this type of data was based on the assumption of independence of genes. How-

ever, biological processes in a cell involve complex interactions between genes,

and these dependencies can be usefully represented by a graph, where nodes

and edges represent the genes and their connections, respectively. The state-of-

the-art inference procedures usually assume that data arise from a multivariate

Gaussian distribution. However, high-throughput omics data are usually dis-

crete, high-dimensional, show a large number of zeros, and come from skewed

distributions.

In this thesis, we addressed and studied some problems arising in two-sample

problems for graphical models. First of all, we proposed an adjusted likeli-

hood ratio test, useful in differential network analysis of decomposable Gaus-

sian graphical models. We proved that the corrected statistic leads to valid

inference at different dimensionality regimes and overcomes some weaknesses

of alternative corrections reported in the literature, in particular, when the di-

mension p is close to n. In the context of decomposable Gaussian graphical

models, where the problem of testing the equality of two networks breaks down

into a sequence of problems defined on smaller sets of variables, we showed that
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the corrected statistic can help tackle the possibly high heterogeneity resulting

from the decomposition.

Secondly, we studied the properties of the existence of the estimate in the

Kullback-Leibler importance estimation procedure (KLIEP). This approach

permits direct estimation of the differences in a network when data are as-

sumed to come from any distribution belonging to the exponential family. In

finite sample problems, we studied the characteristics of the samples that need

to be satisfied in order to ensure the existence of the estimate. We showed that

when the minimum is achieved, the sufficient statistics from sample X needs

to lie inside the relative interior of the polytope generated by the rows of the

sufficient statistics of sample Y . This result can be very useful in real data

applications, to check in advance if the samples at hand are suitable for having

an estimate of the differences, and for choosing which of the two samples to

assign to sample X and which to sample Y .

Future directions of research

The implementation of the corrected statistic in the context of the sourceSet

algorithm showed promising results in terms of accuracy and computation time.

Future work might be the implementation of the new version of the algorithm

in the package, as a first step in the analysis. When dealing with real data,

it might be more reliable to use the permutation-based approach anyway, but

since it is a time-demanding routine, the asymptotic adjusted procedure might

be used as a first step to make an initial selection of pathways and genes to

analyze. Moreover, the extension of the algorithm to non-Gaussian data is still

an open question. A popular choice for adapting the results available under the

Gaussian assumption to non-Gaussian data is data transformation. It would

be interesting to study and compare different transformations for count data

to better understand which one is the most suited for real data application.

Following a recent work of Ahlmann-Eltze and Huber (2022), more popular

and simple transformations such as the logarithm and the square root might

be compared to more complex ones, such as the copula (Liu et al., 2009) or the

randomized quantile residuals (Dunn and Smyth, 1996).
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The results on the Kullback-Leibler importance estimation procedure can be

seen as a basis for the future development of the algorithm. In fact, given the

result stated in Theorem 4.1, improvements of the algorithm can try to solve this

finite sample problem. Future directions will be the implementation of a penalty

that has to be tuned to account for the convexity problem. In a recent work,

Kim et al. (2021) suggested the use of a penalty to account for sparsity, but in

some cases, this might not be enough if not tuned in the right way. Another

direction might be the implementation of a data augmentation step to meet

the necessary conditions to guarantee the existence of the estimate. Connected

to the latter proposal, it would also be interesting to study the accuracy of

the estimate as sufficient statistic progressively approaches the boundary of the

polytope.
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