
fnins-16-732156 June 2, 2022 Time: 15:54 # 1

ORIGINAL RESEARCH
published: 02 June 2022

doi: 10.3389/fnins.2022.732156

Edited by:
Haoyong Yu,

National University of Singapore,
Singapore

Reviewed by:
Toshihiro Kawase,

Tokyo Denki University, Japan
Shi Xiaohua,

Shanghai Jiao Tong University, China

*Correspondence:
Zhisheng Zhang

oldbc@seu.edu.cn
Haiying Wen

wenhy@seu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuroprosthetics,
a section of the journal

Frontiers in Neuroscience

Received: 28 June 2021
Accepted: 04 May 2022

Published: 02 June 2022

Citation:
Zhao K, Wen H, Zhang Z,

Atzori M, Müller H, Xie Z and Scano A
(2022) Evaluation of Methods

for the Extraction of Spatial Muscle
Synergies.

Front. Neurosci. 16:732156.
doi: 10.3389/fnins.2022.732156

Evaluation of Methods for the
Extraction of Spatial Muscle
Synergies
Kunkun Zhao1†, Haiying Wen1,2*†, Zhisheng Zhang1* , Manfredo Atzori3,4,
Henning Müller3,5, Zhongqu Xie1 and Alessandro Scano6

1 School of Mechanical Engineering, Southeast University, Nanjing, China, 2 Engineering Research Center of New Light
Sources Technology and Equipment, Ministry of Education, Nanjing, China, 3 Information Systems Institute, University of
Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland, 4 Department of Neuroscience, University of
Padova, Padua, Italy, 5 Medical Faculty, University of Geneva, Geneva, Switzerland, 6 UOS STIIMA Lecco –
Human-Centered, Smart and Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy

Muscle synergies have been largely used in many application fields, including
motor control studies, prosthesis control, movement classification, rehabilitation,
and clinical studies. Due to the complexity of the motor control system, the full
repertoire of the underlying synergies has been identified only for some classes of
movements and scenarios. Several extraction methods have been used to extract
muscle synergies. However, some of these methods may not effectively capture the
nonlinear relationship between muscles and impose constraints on input signals or
extracted synergies. Moreover, other approaches such as autoencoders (AEs), an
unsupervised neural network, were recently introduced to study bioinspired control and
movement classification. In this study, we evaluated the performance of five methods
for the extraction of spatial muscle synergy, namely, principal component analysis
(PCA), independent component analysis (ICA), factor analysis (FA), nonnegative matrix
factorization (NMF), and AEs using simulated data and a publicly available database.
To analyze the performance of the considered extraction methods with respect to
several factors, we generated a comprehensive set of simulated data (ground truth),
including spatial synergies and temporal coefficients. The signal-to-noise ratio (SNR)
and the number of channels (NoC) varied when generating simulated data to evaluate
their effects on ground truth reconstruction. This study also tested the efficacy of
each synergy extraction method when coupled with standard classification methods,
including K-nearest neighbors (KNN), linear discriminant analysis (LDA), support vector
machines (SVM), and Random Forest (RF). The results showed that both SNR and
NoC affected the outputs of the muscle synergy analysis. Although AEs showed better
performance than FA in variance accounted for and PCA in synergy vector similarity and
activation coefficient similarity, NMF and ICA outperformed the other three methods.
Classification tasks showed that classification algorithms were sensitive to synergy
extraction methods, while KNN and RF outperformed the other two methods for all
extraction methods; in general, the classification accuracy of NMF and PCA was
higher. Overall, the results suggest selecting suitable methods when performing muscle
synergy-related analysis.

Keywords: autoencoder (AE), muscle synergy, non-negative matrix factorization (NMF), independent component
analysis (ICA), factor analysis (FA), principal component analysis (PCA)
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INTRODUCTION

Muscle synergy theory assumes that the central nervous system
(CNS) achieves a variety of motor tasks by combining a few sets
of synergies rather than controlling each muscle individually.
Although the hypothesis is debated, an increasing number of
studies in human and animals using stimulation and behavior
experiments have verified the theory in the last decades (d’Avella
et al., 2003; Cheung, 2005; Torres-Oviedo et al., 2006). Muscle
synergies are usually estimated from electromyogram (EMG)
recordings according to corresponding models. Several synergy
models have been proposed, such as the time-invariant model
(Tresch et al., 2006), the time-varying model (D’Avella et al.,
2006), and the space-by-time model (Delis et al., 2018; Hilt et al.,
2018), while most studies extracted muscle synergies based on the
time-invariant spatial model (Clark et al., 2010; Israely et al., 2018;
Scano et al., 2019; Cheung et al., 2020) using the non-negative
matrix factorization (NMF) (Lee and Seung, 2001), in which
time-invariant synergies with fixed weights among muscles were
modulated by time-varying activation coefficients. Commonly
used factorization methods to extract spatial muscle synergies
also include principal component analysis (PCA) (Ranganathan
and Krishnan, 2012), factor analysis (FA) (Tresch et al., 2006;
Kieliba et al., 2018), and independent component analysis (ICA)
(Rasool et al., 2016). A few variants of ICA such as a combination
of PCA and ICA (ICAPCA), fast ICA (fICA) and probabilistic
ICA (pICA), and second-order blind identification (SOBI) were
also applied in some studies (Tresch et al., 2006; Steele et al., 2015;
Ebied et al., 2018).

Despite the availability of these factorization methods in
the literature, the most appropriate method for muscle synergy
extraction was not clearly defined (Rabbi et al., 2020). Several
studies have compared the performance of factorization methods
for the identification of spatial muscles or kinematic synergies
under various scenarios. Tresch et al. (2006) evaluated the
performance of five matrix factorization methods (i.e., FA, ICA,
NMF, ICAPCA, and pICA) using simulated data. The results
showed that the performance of factorization methods was
affected by the signal characteristics and the noise type. They
reported that ICAPCA and pICA were the best methods; FA,
ICA, and NMF had similar performance, followed by PCA.
By comparing the performance of three factorization methods
(i.e., PCA, ICA, and NMF) in identifying kinematic and muscle
synergies in human reaching data, Lambert-Shirzad and Van
der Loos (2017) found that PCA and NMF had a comparable
performance on both EMG and joint motion data and both
outperformed ICA. When FA, ICA, and NMF were used to
extract muscle synergies in locomotor tasks (Ivanenko et al.,
2005), similar weighting coefficients and temporal structures
were reported among the three methods. Ebied et al. (2018)
evaluated three factors [i.e., muscle synergy sparsity, level of the
noise, and the number of channels (NoC)] on the effects of
factorization methods (i.e., PCA, ICA, NMF, and SOBI) in the
extraction of spatial muscle synergy. They found that, although
SOBI had a better performance when a limited NoC was available,
NMF had the best performance when the NoC was higher.
Furthermore, Rabbi et al. (2020) reported that NMF was the

most appropriate extraction method in walking and running
conditions by comparing four extraction methods (i.e., NMF,
PCA, ICA, and FA). By comparing the results of previous studies,
we learned that the performance of factorization methods was not
always consistent under various settings and scenarios. Although
these methods can reconstruct a high variance accounted for
(VAF) with a proper number of synergies, they cannot represent
non-linear relations between muscles in the extracted synergies,
such as the agonist-antagonist relationships (Spüler et al., 2016).
Besides, the studies were limited to synergy extraction analysis
(input space); other desired tasks (task space), such as synergy-
based classification, were less explored.

In the past decades, neural networks and deep learning-
based methods have used surprisingly well in physiological
and biomedical applications (Buongiorno et al., 2019b).
Autoencoders (AEs) as a type of unsupervised neural network
have also been used in myoelectric control and pattern
recognition. Lv et al. (2018) reported that the AE was not
sensitive to the electrode shift compared with time-domain
and autoregressive features in classification tasks and achieved
a lower classification error. Muhammad et al. also found that
the stacked sparse AE outperformed the linear discriminant
analysis (LDA) in hand motion classification whether in
within-day or between-day analysis (Zia ur Rehman et al.,
2018). In myoelectric control, Yu et al. (2019) achieved a
promising wrist torque estimation under isometric contraction
based on a stack-AE, with the potential of providing intuitive
and dexterous control of artificial limbs (Vujaklija et al.,
2018). In terms of synergy extraction, Spüler et al. (2016)
first used AEs to extract muscle synergies and described
the agonist-antagonist relationships among muscles using
simulated data and real EMG data. They found that AEs
had a significantly better fit to the data than other methods,
including NMF, ICA, and PCA. De Feudis et al. (2021) used
AEs to extract kinematic synergies and reported a comparable
result with the PCA. By comparing with the NMF, the most
frequently used method for muscle synergy extraction in the
literature, Buongiorno et al. (2019a, 2020) showed that the AEs
outperformed the state-of-art synergy-based force/moment
estimation methods at the expense of the EMG reconstruction
quality. These studies described the potential of the AEs in
myoelectric control as a bioinspired approach (Camardella
et al., 2019) for muscle synergy extraction. To the best of our
knowledge, few articles systematically compared and analyzed
the performance of the AEs in muscle synergy extraction with
other commonly used methods.

From the preliminary studies comparing several methods for
extracting synergies (Tresch et al., 2006; Ebied et al., 2018), we
noted a growing interest in the identification of the most suitable
methods for extracting synergies and their properties also in
the recent literature. These approaches include recent algorithms
such as AEs (Spüler et al., 2016) and mixed-matrix factorization
(Scano et al., 2022). In this study, we focused on comparing
the capabilities of five factorization methods (i.e., PCA, ICA,
FA, NMF, and AE) used for the extraction of spatial muscle
synergy. Specifically, we evaluated the performance of AE in
synergy extraction to the other four commonly used methods in
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the literature. We further explored the influence of the signal-to-
noise ratio (SNR, i.e., noise) and the NoC on synergy extraction
methods based on simulated data. Considering the wide usage
of the synergy-based methods in myoelectric control, robotic
control, and rehabilitation, we expanded toward comparisons
between extraction methods to evaluate their performance in
classification tasks. Muscle synergies extracted from a publicly
available NinaPro dataset (Atzori et al., 2014, 2015), already
employed previously for synergy extraction (Pale et al., 2020),
were input into four classification algorithms, namely, K-nearest
neighbor (KNN), LDA, support vector machine (SVM), and
random forest (RF). Classification accuracy was used to assess the
performance of each extraction method in the task space.

MATERIALS AND METHODS

An overview of the study design is reported in Figure 1.
In this study, simulated data were generated to represent the
ground truth of synergy vectors W and temporal coefficients
c according to specific criteria (see “Simulated Data” section).
Ground truth data also spanned across varying NoC and
SNR. Then, the performance analysis was performed. We
first evaluated the performance of synergy extraction methods
with simulated data. In this step, synergies extracted using
five methods were compared with the original ground truth
(simulated synergies and temporal coefficients). The VAF and
similarity were used as indices to assess the performance.
Then, we assessed the performance of extraction methods in
classification tasks using a publicly available dataset (NinaPro).
Similarly, we first extracted the synergies from public data using
five extracting methods. Extracted synergies were then input into
four classification algorithms (i.e., KNN, LDA, SVM, and RF) to
identify movements. Classification accuracy was used to assess
the performance.

Simulated Data
Simulated data were generated to evaluate the performance of
the synergy extraction methods (Figure 1). According to previous
studies, EMG activations are the combination of synergy vectors
and activation coefficients, as shown in the following equation:

M = g

(
k∑

i=1
wici + e

)
, (1)

where M is an m-by-n matrix, indicating m muscles and n
samples, wi (m-by-1) is the ith synergy vector, and ci (1-by-
n) is the corresponding activation coefficient. e is the Gaussian
noise matrix. y = g(x) is a threshold function with y = 0 for
x < 0 and y = x for x ≥ 0, which ensures the non-negativity of
the simulated data.

Our simulation began with the generation of the ground truth
W and c. Synergy vectors W were randomly drawn from an
exponential distribution [with a mean value of 10, similar to a
previous study that reported that synergy vectors were roughly
similar to the distribution observed in previous experimental
data (Tresch et al., 2006)]. To hold the statistical properties of

the EMG signals, the activation coefficients c were selected from
the real EMG envelope signals randomly assigned from a set of
reaching movements, in which ten upper limb muscle activities
were recorded (Zhao et al., 2019). The raw EMG signals were
preprocessed by moving the root mean square with a window
size of 100 samples with 75% overlap, resampled to 1,000 sample
points, and normalized to [0, 1] (y = (x− xmin)/(xmax − xmin)).
Each synergy vector was also normalized to have a unit norm.
Then, we obtained simulated muscle activations according to
Eq. 1, which were later used to evaluate the performance of
extraction methods.

Meanwhile, to evaluate the performance of extraction
methods in different settings, two types of constraints were set
when generating simulated data. We first randomly generated
a set of synergies with varying dimensions [NoC, i.e., number
of muscles (m)] by fixing the number of synergies (n), i.e., a
matrix with dimension m-by-n. This setting was used to evaluate
the performance of extraction methods when a limited number
of EMG signals were recorded. In this study, four types of
channels (i.e., Ch6, Ch8, Ch10, and Ch12) were evaluated. This
setting covered the studies in which 8–12 muscle recordings were
measured in their experiments. When generating the ground
truth, four synergies were fixed in this study because previous
studies in upper limb reaching movements reported that four
synergies were sufficient to explain most of the variability of
muscle activations (Israely et al., 2017). We, in this study, remark
that any reasonable number of synergies could be chosen in
principle. Then, Gaussian noise was added to the original signal
with a specified the signal-to-noise ratio [SNR = 10·lg(Ps/Pn),
Ps and Pn are signal and noise power, respectively] when each
dataset was generated. Three types of noise (with SNR 10, 15, and
20 dB) were covered in this study. We finally generated 24,000
(20 × 4 × 3 × 100) trials that consisted of 20 datasets, and each
dataset consisted of 100 trials for each setting.

Extraction Methods
Although the computation process of these extraction methods
is different, they can be represented by the linear combination of
a set of synergy vectors and corresponding activation coefficients
as follows:

M = c ·W + e , (2)

where M represents muscle activations (the processed EMG)
and W and c are muscle synergies and activation coefficients,
respectively. Although sharing the same model, each extraction
method imposes different constraints on the input signals and
extracted synergies. PCA constrains W to be orthogonal, and
the first component has the largest variance. Both PCA and
FA assume that the data are from Gaussian distributions, while
ICA is designed to analyze non-Gaussian data. The number of
common factors that can be assessed using FA is limited by the
degrees of freedom in the model, that is

[
(m− k)2

− (m+ k)
]

>
0 (e.g., when four common factors are identified, the data
have at least eight dimensions). NMF can be used for both
Gaussian and non-Gaussian data but imposes a non-negativity
constraint on the components of the extracted synergies. PCA,
FA, and NMF were performed using the Matlab functions pca,
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FIGURE 1 | Overview of the study design.

factoran, and nnmf, respectively. Singular value decomposition
was used to identify the components in PCA. For FA, the
weighted least-squares method was used to estimate the factor
scores. Multiplication update rules proposed by Lee and Seung
(2001) were applied in NMF. ICA was performed using the
function fastica in the FastICA package (Hyvärinen and Oja,
1997; Hyvarinen, 1999).

Autoencoders consists of two main parts, namely, an encoder
that captures the representative features contained in the input
data and a decoder that reconstructs the input. According to
different internal structures, five types of AEs are proposed,
namely, undercomplete AE, regularized AE, sparse AE, denoising
AE, and variational AE (De Feudis et al., 2021). In this study, an
undercomplete AE (denoted as AE below) was used to learn some
non-linear coupling information among muscles. The topology
structure of the undercomplete AE is shown in Figure 2.

The Matlab function trainscg was used to train the AE. The
training process was based on the optimization of a cost function,
msesparse, which measured the error between the input and the
output. The transfer functions of encode and decode were satlin
and purelin, respectively (Buongiorno et al., 2019a, 2020).

We defined the weights and biases of the encoder (i.e., IW and
Ib) and decoder (i.e., OW and Ob) (Figure 2). Muscle synergies

are defined as OW, and activation coefficients c and reconstructed
muscle activation M̃ are as follows:{

c = IW ×M + Ib
M̃ = OW × c+ Ob

(3)

Performance Analysis
Two indices were used to assess the performance of the
employed extraction methods, i.e., (1) variance accounted for
calculated by each extraction method under various settings
and (2) the similarity between original synergy vectors (and
activation coefficients) and the synergies identified using the
extraction methods.

First, we decided to extract four synergies from the simulated
data using each extraction method. This choice was followed
based on a previous study: when comparing several algorithms
for synergy extraction, Tresch et al. (2006) reported that, in all
cases, the algorithms were examined using four basis vectors
to reconstruct each data set. More recently, Ebied et al. (2018)
also reported that, in all settings, the number of synergies was
fixed to four. This choice was also in line with the ground
truth dimensionality. Moreover, fixing the number of synergies
allowed us to compare synergies that have low influence from
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FIGURE 2 | Schematic representation of the extraction methods considered in this study. Principal component analysis (PCA), independent component analysis
(ICA), factor analysis (FA), and non-negative matrix factorization (NMF) follow a similar procedure for synergy extraction, which factorizes muscle activations (M) into a
set of muscle synergies and corresponding activation coefficients. The topology structure of the autoencoders used in this study is also shown.

merging or fractionation. The VAF from each extraction method
was compared to assess the difference caused due to the
varying settings.

Then, we matched the synergy vectors between the original
simulated and the extracted ones by pairing together the two
vectors from the original ground truth synergy vectors and
the extracted, which has the largest absolute value of the dot
product. In case that the largest value was negative, we reversed
the sign of the synergy vectors identified using the extracting
methods as in a previous study (Tresch et al., 2006). Then,
the synergy vector similarity (SVS) and activation coefficient
similarity (ACS) were computed by averaging the dot products
among all matched synergy vectors and activation coefficients.
We further calculated the principal angle (PA), which quantified
the similarity between subspaces identified by original synergy
vectors and the extracting methods. If the two subspaces are
identical, the PAs between them will be zero.

Finally, to evaluate the influence of chance, 24,000 sets
of synergy vectors and activation coefficients were randomly
generated according to the same constraints used to generate
the simulated data. We calculated and compared the similarity
between the randomly generated synergy vectors and activation
coefficients and the extracted ones.

Classification Tasks
As a further step in our study that is linked to the promising
results of muscle synergy-based applications in classification and
intuitive prosthetic control (Jiang et al., 2009, 2012, 2014; Ma
et al., 2015), we were interested in quantifying the classification
accuracy that can be achieved with classification algorithms
when synergies extracted with different methods were used as
inputs. We questioned which synergy extraction method can

be suggested for classification problems when using standard
classification algorithms. The NinaPro dataset 1 (Atzori et al.,
2014, 2015) was used as the dataset for this study. It includes
53 movements from 27 intact subjects with ten muscles from the
upper limb. Eight electrodes were uniformly placed beneath the
elbow at a fixed distance from the radio-humeral joint, labeled
incrementally counterclockwise starting from the flexor carpi
ulnaris muscle (Pale et al., 2020), while the other two were placed
on the flexor and extensor muscles (Atzori et al., 2012). These
muscles cover the main forearm muscle groups involved in upper
limb reach-to-grasp movements. Considering the importance
of wrist movements in daily living and implementation in
prosthesis control (Ma et al., 2015), a set of wrist-related
movements (Ninapro dataset 1, Exercise B, Movement 11–
16) were considered as classification movements in this study
(Atzori et al., 2014), i.e., wrist supination/pronation, wrist
flexion/extension, and wrist radial/ulnar deviation.

We first separated the EMG signals for each movement and
each trial from the dataset for each subject. In this study, each trial
represents the movement in the positive or negative direction
of one degree of freedom, such as wrist flexion or extension.
According to previous studies (Jiang et al., 2014; Vujaklija et al.,
2018), thus, one synergy was extracted from each trial, while a
total of two synergies were extracted for each degree of freedom,
basically representing flexion and extension. Then, all extracted
synergies were used to train four commonly used classification
algorithms, namely, KNN (with five nearest neighbors and
Euclidean distance was used for distance measurement; Matlab
function, fitcknn) (Ebied et al., 2018), LDA (Matlab function,
fitcdiscr) (Zia ur Rehman et al., 2018), SVMs (with linear
kernel function; Matlab function, fitcecoc) (Atzori et al., 2012),
and RFs (with 50 weak learners; Matlab function, TreeBagger)
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(Atzori et al., 2014). The program performed a 5-fold cross-
validation. The classification accuracy was computed to evaluate
the performance of synergy extracting methods in the task space.

Statistical Analysis
To test if extraction methods and different settings affected the
VAF and the similarity of synergies and activation coefficients,
a statistical analysis was conducted. One-way ANOVA was first
used to test the effect of SNR and NoC on VAF identified by each
extraction method. A post hoc test (t-test) was run to quantify
the statistical difference among settings (three types of SNR and
four types of NoC).

Furthermore, one-way ANOVA and the Tukey-Kramer
post hoc test were used to examine statistically significant
differences of similarity obtained with different settings. We then
used one-way ANOVA and the Tukey-Kramer post hoc test to
test if classification algorithms had a significant influence on
the classification accuracy for each extraction method. Matlab
R2020b was used for statistical analysis. The significance level was
set at p = 0.05.

RESULTS

Variance Accounted for Analysis
Figure 3 shows the VAF of five extraction methods under
different SNR and NoC. We observed that NMF and ICA had
a higher VAF value under both settings (i.e., SNR and NoC),
followed by PCA. AE and FA both had an average VAF lower
than 0.8. Statistical analysis showed that both SNR and NoC
had a significant influence on VAF (p < 0.001). The VAF of
four commonly used methods (i.e., PCA, ICA, FA, and NMF)
showed an increasing trend with the increase of the SNR (i.e.,
the decrease in the noise level) while the VAF of AE decreased
with the increase of the SNR. In contrast, the VAF of PCA, ICA,
NMF, and AE decreased with the increase of the NoC. VAF of FA
showed an apparent increase with the increase of both factors.

In terms of SNR, the post hoc test showed that the difference
was significant (p < 0.001) for any two different SNR settings
except AE, in which the significance level between 10 and 15 dB
was p = 0.128. In contrast, for different NoC settings, there was no
significant difference when the NoC was 10Ch and 12Ch for PCA,
ICA, and NMF. In terms of FA and AE, statistical differences were
observed for any two different NoC settings.

Synergy Similarity Analysis
Similarity analysis among extraction methods is shown in
Figures 4–7. First, SVS, ACS, and PA were significantly better
(p < 0.001) than those obtained by random generation (Figure 4)
except for the SVS calculated by PCA, which was significantly
lower than the chance level (0.58± 0.016 vs. 0.63± 0.009).

The influence of different settings on the similarity and PA
is shown in Figures 5–7. NMF and FA had higher SVS under
both settings, followed by ICA and AE, while PCA had the
lowest similarity value (Figure 5). Besides, SVS increased with the
increase of SNR and NoC for each extraction method. The SNR
had a significant influence (p < 0.001) on the SVS. The post hoc

FIGURE 3 | The variance accounted for (VAF) of the five extraction methods
under different settings: SNR (A) and NoC (B). For FA, when four synergies
are extracted, at least eight muscles should be included. Thus, three bars are
shown for FA. “∗”, “∗∗”, and “∗∗∗” indicate the significance levels are 0.05,
0.01, and 0.001, respectively.

test showed that, when SNR was larger than 10 dB, there was no
statistical difference in SVS for FA (p = 0.209) and AE (p = 0.283).
In terms of the influence of NoC on SVS, a significant difference
was observed among settings for FA. In contrast, there was no
statistical difference among NoC settings for ICA (p = 0.801) and
AE (p = 0.454). For PCA and NMF, when the NoC was higher
than 6Ch, there was also no significant difference in SVS.

Similar results were observed in the ACS (Figure 6). NMF
and FA had higher ACS under both settings, followed by ICA
and AE, and PCA had the lowest similarity value. The SNR had
a significant influence (p < 0.001) on the ACS. In contrast, the
NoC had a different influence on ACS among extraction methods.
ACS of FA was significantly influenced by the NoC (p < 0.001).
For the other four extraction methods (i.e., PCA, ICA, NMF, and
AE), in general, when the NoC was higher than 6Ch, there was
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FIGURE 4 | The synergy similarity of the extraction methods and random
data. Three panels from top to bottom are synergy vector similarity (SVS),
activation coefficient similarity (ACS), and principal angle (PA). The last bar in
each panel “Rand” is the similarity between randomly generated data and the
simulated data. The star shows the significance level between methods and
Rand. “∗∗∗” indicate the significance levels are 0.05, 0.01, and 0.001,
respectively.

no significant difference among different settings, while the ACS
between 8Ch and 12Ch of NMF was p = 0.04.

For the PA (Figure 7), in general, FA and AE had a larger PA
under both settings, followed by NMF, PCA, and ICA. SNR had a
significant influence on five extraction methods (p < 0.001). NoC
had no statistical influence on PA calculated by PCA (p = 0.142)
and ICA (p = 0.159). The post hoc test showed that the PA
of NMF was not affected by the NoC, while it affected the
results of FA and AE.

Classification Accuracy
The results of the classification accuracy of different
classification algorithms based on the extracted synergies
from five extracting methods are shown in Figure 8. In
general, synergies extracted by NMF and PCA had higher
classification accuracy. This was followed by FA and AE,
and ICA had the lowest classification accuracy. For each
extraction algorithm, RF and KNN had higher classification
accuracy than LDA and SVM. Statistical analysis showed that
classification algorithms had a significant influence (p < 0.001)
on the classification accuracy for each extraction method.
The post hoc test showed that the classification accuracy
obtained by KNN and RF was significantly higher than that
by LDA and SVM. When the synergies extracted by ICA
were as input, LDA and SVM showed a statistically different
classification accuracy.

DISCUSSION

In this study, we evaluated the performance of five synergy
extraction methods using a set of simulated and experimental
data. With respect to previous studies, this study introduced

FIGURE 5 | The SVS of extraction methods under different settings, (A) SNR
and (B) NoC. The fine line on the bar is the standard error between trials. “∗”,
“∗∗”, and “∗∗∗” indicate the significance levels are 0.05, 0.01, and 0.001,
respectively.

several novel aspects, including the performance analysis of
an AE with the other four well-established synergy extraction
methods under different settings and the coupling with
classification tasks to link our results to real applications.

Several studies have used simulated and real data to evaluate
the performance of commonly used factorization methods in
spatial synergy extraction (Tresch et al., 2006; Ebied et al., 2018).
However, these commonly used methods not only had specific
constraints on input signals but also considered the variable
reconstruction rate of the EMG signals as the only performance
index. Besides, these methods did not incorporate the knowledge
of the mechanical actions of muscles (Tresch et al., 2006),
such as the agonist/antagonist activities and task performance
(Spüler et al., 2016).

Among these methods, NMF is usually the most popular
method for synergy extraction used in the majority of the studies.
NMF imposes a non-negative constraint on the inputs (processed
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FIGURE 6 | Activation coefficient similarity of extraction methods under
different settings, (A) SNR and (B) NoC. The fine line on the bar is the
standard error between trials. “∗”, “∗∗”, and “∗∗∗” indicate the significance
levels are below 0.05, 0.01, and 0.001, respectively.

EMG signals) and outputs (synergies and activation coefficients).
In a non-negative space, the basis vectors (extracted synergies)
are not constrained to be orthogonal but are constrained to be
independent (Lambert-Shirzad and Van der Loos, 2017). The
non-negative property makes the extracted synergies particularly
appropriate for clinical explanations because it reflects the non-
negative nature of neural commands and muscle contraction.

Independent component analysis decomposes a multivariate
signal into independent non-Gaussian signals by maximizing
the statistical independence of the estimated components
(Hyvärinen and Oja, 2000). ICA is designed to analyze non-
Gaussian data and is substantially affected by the noise structure.
Tresch et al. (2006) showed that ICA had a better performance
when the signals were corrupted by constant variance Gaussian
noise. However, the results of ICA depend heavily on the
independency and data distribution of the latent variables
(muscle synergies). Due to the difference of the simulated or

FIGURE 7 | Principal angles of extracting methods under different settings,
(A) SNR and (B) NoC. The fine line on the bar is the standard error between
trials. “∗”, “∗∗”, and “∗∗∗” indicate the significance levels are 0.05, 0.01, and
0.001, respectively.

experimental data in the current study from previous studies,
this study showed a better performance using ICA. Besides,
some studies (Tresch et al., 2006; Steele et al., 2015) compared
the performance of several variants of the ICA such as pICA
and PCAICA and reported that PCAICA was one of the most
computationally efficient methods (Tresch et al., 2006). However,
if the datasets with different muscle activations correlations were
considered, similarity analysis dramatically changed (Steele et al.,
2015). Thus, the results were limited to this study, and extensions
to other implementations are required in future studies.

Both NMF and ICA extract independent components from
the input data and have specific constraints on the inputs.
Other methods employed in this study such as PCA and FA
have instead different constraints on the inputs and outputs.
PCA uses the muscle activation matrix covariance to identify
components that best describe the variance of the input data
while minimizing the covariance of the basis vectors and
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FIGURE 8 | Classification accuracy of different classification algorithms for
each synergy extraction method. “∗∗” and “∗∗∗” indicate the significance levels
are 0.01 and 0.001, respectively.

constrains the components to be orthogonal (Abdi and Williams,
2010). While PCA accepts negative inputs, it constrains the
synergies to be orthogonal, and this is not supported at any
level in previous findings in experimentations with physiological
systems that were modeled with PCA. This makes PCA very
versatile and adaptable to negative data (such as kinematics)
but probably not the best algorithm to describe neural control
at the muscle level (Weiss and Flanders, 2004) because the
components yielded using PCA impose a constrain that is
not found at the physiological organization level and may not
represent underlying “constructs.” In contrast, the underlying
constructs can be labeled and readily interpreted using FA (Suhr,
2005). In a way similar to PCA, which tries to reproduce the
total variable variance by a transformation of the input data,
FA is also modeled as linear combinations of the factors and
latent variables. However, FA is designed to identify a set of
unobservable factors from the observed variables and attempts to
reproduce the intercorrelations among variables, and the results
were affected by the dependencies among activation coefficients
(Tresch et al., 2006). In this study, the activation coefficients
were from a set of experimental data that were randomly selected
and grouped, which made the simulated muscle activations more
independent and with few correlations among muscles. This
might be one explanation that FA had a worse performance
in reconstructing the variance of the muscle activations (VAF
analysis) and quantifying spanned subspace (PA).

For the AEs, if only a single sigmoid hidden layer is used,
the optimal solution is strongly related to PCA (Bourlard and
Kamp, 1988; Chicco et al., 2014). The weights of AEs with a single
hidden layer of size p (where p is less than the size of the input)
span the same vector subspace as the one spanned by the first p
principal components, and the output of the AE is an orthogonal
projection onto this subspace. The potential of the AEs is their
non-linearity, which allows the model to learn more powerful

generalizations compared with PCA and FA and to reconstruct
the input data with significantly lower information loss (Hinton
and Salakhutdinov, 2006). From this perspective, the AEs are
more appropriate for physiological signals analysis because they
are usually non-linear and non-stationary.

In general, this study reported that NMF and ICA have
better performance than the other methods. This finding
is consistent with the abovementioned technical analysis of
extraction methods. EMG signals are usually non-Gaussian data
and exist with large non-linear and non-stationary components,
which makes the NMF and ICA (non-Gaussian data input)
outperform the PCA and FA (Gaussian data input) in muscle
synergy extraction. Therefore, higher performance was observed
when NMF and ICA were used to extract muscle synergies.
Furthermore, our simulated data lack correlations among signals,
thus FA lost priority in reproducing intercorrelations among
variables. For the AEs, although some studies reported promising
results in synergy extraction and force estimation using AEs
(Spüler et al., 2016; Buongiorno et al., 2020), our results did not
confirm this conclusion. One explanation is that AEs can achieve
a trade-off between input space (muscle synergy extraction)
and task space (force/moment reconstruction), while this study
focused on synergy extraction not exploiting all the potential of
this method. Moreover, several setups and design choices can be
adopted for an AE, and the study did not test systematically all
the possible configurations. Thus, even though AEs outperform
FA and PCA in some settings, in our specific scenarios, NMF and
ICA perform better.

Four synergies account for over 90% of the variability for NMF,
ICA, and PCA in this study. Furthermore, 90% is often used as a
“high” threshold to identify the optimal number of synergies in
previous large studies, even though lower VAF values are used in
some studies. Further analysis showed that VAF computed using
FA was variable among different settings, and FA had the smallest
VAF (78.91%) followed by AE (79.35%). This implies that, in our
simulation, AE and FA could not capture the variance of muscle
activation as well as the other methods when extracting the same
number of synergies. On the contrary, NMF, ICA, and PCA had
larger VAF among the five methods (98.53, 98.48, and 93.13%,
respectively). The results were consistent with previous studies
(Tresch et al., 2006; Ebied et al., 2018).

Similarity analysis first showed that all extraction methods had
a better performance than random level except SVS of PCA. This
exception can be explained as the structureless of the simulated
data. In this study, randomly generated data were used to assess
the performance of extraction methods, while muscles usually
were activated in coordination manners. Some studies have used
PCA to extract synergies from muscle activities and reported
meaningful coordinated patterns among muscles.

Furthermore, the results showed that SNR and NoC had
different influences on the performance of the extraction
methods. In terms of SNR, all extraction methods performed
better with the decrease of the noise (the increase of the
SNR), i.e., SVS and ACS increased but PA decreased with the
increase of the SNR, and differences were statistically significant.
Similar results were reported in the previous work (Ebied et al.,
2018; Kieliba et al., 2018). However, extraction methods had
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different performances when varying the NoC. First, SVS and
ACS increased with the increase of the NoC for each extraction
method. Similar results were observed for PA, especially for
FA and AE. However, a high PA means worse performance.
This indicates that PA has opposite performance with another
two similarity indices. Remarkably, there was no statistical
difference in the PA under different NoC settings for PCA,
ICA, and NMF. Thus, we concluded that the performance
of these three extraction methods (PCA, ICA, and NMF) is
consistent under varying NoC. Second, the results showed that,
when NoC was larger than 6Ch, SVS, ACS, and PA were less
affected by NoC for PCA, ICA, NMF, and AE. The results
suggest that, in the future muscle synergy analysis, it is not that
more muscles are better. A limited number of muscles (eight
muscles in this study) are enough to depict the variability of
synergy structure.

In general, the results revealed that the noise and NoC
affected the outputs of muscle synergy analysis, especially
for noise. This has been proven by previous studies
(Steele et al., 2013; Banks et al., 2017; Kieliba et al., 2018).
They showed that signal preprocessing methods, synergy
extraction methods, and the number and choice of muscles
all affected the output of muscle synergies. AEs though
showed better performance than FA in VAF and PCA in
SVS and ACS, while losing priority compared with NMF
and ICA. For the classification tasks, the results showed
that synergies extracted from NMF and PCA had a higher
classification accuracy, which indicates that these two
extraction methods are suitable for classification tasks. In
contrast, classification algorithms were sensitive to extraction
methods. KNN and RF outperformed LDA and SVM in
the current study for each extraction method. It suggests
selecting the most suitable combinations of extraction
methods and classification algorithms under different scenarios
in future studies.

We did not investigate the influence of cross talk among
muscles in this study. Cross talk influences the EMG signals
and alters the components of muscle synergies. In this study, a
publicly available dataset was used, in which the EMG signals
were measured with Delsys double-differential EMG electrodes,
and particular care was taken when placing the electrodes on the
muscles (Atzori et al., 2014), which both reduce the influence
of cross talk (Hug, 2011). Otherwise, previous studies showed
that the number of independent motor command signals is not
affected by cross talk, and muscle synergy analysis can identify
whether a muscle is activated independently from an adjacent
muscle even in the presence of cross talk (Chvatal and Ting,
2013). Besides, other synergy-related studies seldom considered
the influence of cross talk while achieving simultaneous and
intuitive myoelectric prosthetic control (Jiang et al., 2009, 2012,
2014; Zhang et al., 2017) and higher classification accuracy (Ma
et al., 2015; Afzal et al., 2017). Thus, the results are limitedly
influenced by cross talk in this study, so further studies are
needed in the future.

Some limitations are worth noting. The study fixed the
number of synergies to four. It is appropriate to study the
dimension reduction capability of the extraction methods, and

previous research pointed out that the number and choice of
muscles impact the muscle synergy analyses (Steele et al., 2013).
However, we also wish to mention that selecting a different
number of synergies may lead to other sources of bias. In
fact, if the very same method would be used for all algorithms
to select the number of synergies (linear fit with a selected
RMSE or selected VAF threshold), one may compare more
“dense synergies” (when fewer synergies are extracted) to “more
sparse ones,” leading to inconsistent matching because a different
number of synergies were selected due to a very small amount
of reconstruction of the overall variation. Finally, the transfer
function and type of AEs may influence the performance of AEs
in synergy extraction. In future studies, these problems will be
further explored. We also plan to consider more settings to verify
the feasibility and strength of these extracting methods in spatial
synergy extraction.

CONCLUSION

This article compared the performance of five muscle synergy
extraction methods by the simulation analysis and classification
tasks of a publicly available dataset. The results showed that
the performance of synergy extraction methods was affected by
the noise and NoC, and classification algorithms were sensitive
to the extraction methods. Even though AEs outperformed FA
and PCA in some settings, in general, NMF and ICA had better
performance in the current research.
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