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A B S T R A C T   

In this paper, we review and meta-analyze the findings of experimental studies published between 
2006 and 2022 that examined the effects of coding and programming interventions on children’s 
core and higher order executive functions (response inhibition, working memory, cognitive 
flexibility, planning and problem solving). The systematic review and meta-analysis aimed to 
address three research questions: 1) Which executive functions are most impacted by the teaching 
of CT? 2) Which instructional modality (educational robotics/virtual coding/unplugged coding) 
is most effective in enhancing executive function skills in learners aged 4–16 years? and 3) Does 
the cognitive effectiveness of coding vary with children’s age? A total of 19 studies with 1523 
participants met the selection criteria for the systematic review. The meta-analysis included 11 of 
those studies. The results reveal beneficial effects of structured virtual and tangible coding 
(educational robotics) activities for preschoolers and first graders, and significant effects of more 
unstructured virtual coding activities (e.g., Scratch-based) for older students. A multivariate 
fixed-effects model meta-analysis shows that the teaching of coding significantly improves 
problem-solving with the highest effect (dppc2 = 0.89), but also planning (dppc2 = 0.36), and inhi-
bition and working memory with lower effects (dppc2 = 0.17, dppc2 = 0.20).   

1. Introduction 

Computation thinking (CT) is the mental ability to apply the concepts and reasoning typical of computing and computer science to 
solve problems (Wing, 2006). Thinking computationally entails developing four main component skills (a) the ability to analyze 
problems and decompose them into elements or parts (analytical thinking); (b) the ability to plan a sequence of actions or steps to get to 
the problem solution (algorithmic thinking); (c) the ability to monitor and correct errors in the execution of the plan (debugging, Flórez 
et al., 2017; Román-González et al., 2017; Strawhacker & Bers, 2019); and (d) the ability to identify the most relevant aspects of the 
problem and generalizable algorithms (abstraction), which allow applying to other problems what has been learned (Moreno-León 
et al., 2016; Román-González et al., 2017; Yaşar, 2018). 

Since computational thinking encompasses not only proficiency in computer science methods but also domain-general problem- 
solving abilities, such as analyzing problems and planning, the development of computational thinking skills intersects with that of 
21st-century competencies such as digital literacy skills(e.g., programming or coding) and with foundational cognitive skills like 
analytical thinking, planning, and the ability to inhibit impulsive responses (Arfé et al., 2020). The growing spread of CT and 
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programming into compulsory education (Zhang & Nouri, 2019) is thus supported by the idea that learning to think computationally is 
important not only for preparing students in the field of computer science (Nardelli, 2019; Wing, 2006) but also, more broadly, for 
providing them with a general cognitive toolkit to approach and solve everyday problems (Chen et al., 2017; Feurzeig & Papert, 2011; 
Nardelli, 2019; Wing, 2006). 

Computer programming and code writing are two means of CT and two instrumental skills through which CT is taught and 
practiced in schools (Lye & Koh, 2014). They include the skills to create, modify, and evaluate codes and the knowledge about pro-
gramming concepts and procedures. In school settings, children are commonly taught CT through educational robotics (ER), or virtual 
coding activities, which both involve programming and coding by means of technologies, or through unplugged coding without the use 
of technology. ER consists in developing a program or code string to give instructions to a robot, so that it can perform specific actions 
or achieve goals in a physical environment (Di Lieto et al., 2020a,b; Chen et al., 2017; Keren & Fridin, 2014). Unplugged coding 
consists of tangible, paper and pencil or physical activity, by which children learn the basic concepts and procedures of CT and 
programming, whereas, virtual coding involves the development of a computer program to teach a computer, or a virtual character, to 
achieve a goal in a virtual environment (Arfé et al., 2019; Fessakis et al., 2013; Kalelioglu, 2015; Zhang et al., 2014). Although in this 
systematic review and meta-analysis we will refer to programming and coding as two means through which CT is introduced and 
taught in schools, this does not imply assuming that coding and programming equal computational thinking nor that they always 
involve it. However, when children in school learn to develop programs for “instructing” a computer, another child or a robot to solve a 
problem, they also learn to solve CT problems themselves, articulate and clarify their thoughts and plans, generate a clear sequence of 
commands (the code) and test their hypotheses, processes that can stimulate the development of other cognitive and metacognitive 
skills (Clements & Nastasi, 1999; Fessakis et al., 2013). 

Past studies have reported positive cognitive effects of these CT activities especially in the domain of children’s executive functions 
(EFs, Arfé et al., 2019; Di Lieto, Pecini, et al., 2020). EFs are a complex set of cognitive skills related to goal setting and the performance 
of goal-directed behaviors, and thus crucial for self-regulation and academic achievement. Although models of EFs may differ in the EF 
skills they focus on, there is general consensus on the distinction between core EFs (working memory, response inhibition and shifting 
or cognitive flexibility), and complex or higher-order EF skills, like planning and problem solving (Diamond & Ling, 2016). 

Children’s command over, or inhibition, of impulsive responses, their working memory (WM) capacities, encompassing their 
ability to monitor and update temporarily stored information, and their cognitive flexibility which entails switching perspectives, 
shifting attention between mental sets or tasks, and readily adjusting behavioral responses to different tasks or environments represent 
core executive functions (Anderson, 2002; Gioia et al., 2000; Miyake et al., 2000) from which higher-order executive functions, such as 
planning, problem-solving, and reasoning develop (Diamond & Ling, 2016; Miyake et al., 2000; Thayer & Lane, 2000). Welsh and 
Pennington (1988), for instance, focusing on higher order EF skills, describe executive functioning as the ability to maintain an 
appropriate problem-solving set for achieving a goal, and define it as a complex skill set that encompasses not only planning skills and a 
mental representation of the task and of the outcome, but also inhibitory control, that is, the capacity to inhibit or defer prepotent 
responses. 

As higher order EF skills like problem solving involve core EFs, practicing and enhancing these higher order skills through 
computational thinking (CT) can impact on their core EF components too. In addition, since core EFs also underpin the ability to 
achieve academic outcomes in reading (Meixner et al., 2019; Nouwens et al., 2021), writing (Altemeier et al., 2008; Salas & Silvente, 
2020), and mathematics (Welsh et al., 2010), improvements in problem solving skills could have transfer effects on academic skills 
(Scherer et al., 2019). 

Although recent experimental studies provide evidence of a causal link between the teaching of CT and the improvement of EF skills 
in children (e.g., Arfé et al., 2019; Arfé et al., 2020; Di Lieto, Pecini, et al., 2020), there remains uncertainty regarding the consistency, 
robustness, and generalizability of these effects across different (higher order and core) executive functions. Moreover, it remains 
unclear whether the different instructional tools employed to teach CT skills, such as educational robotics (ER), virtual coding or 
unplugged coding, yield different effects. At this early stage of research, there are very few experimental studies that have directly 
compared the efficacy of these different types of intervention (e.g., Çınar & Tüzün, 2021). Thus, the only way to compare the efficacy of 
these types of CT programs is through systematic reviews or meta-analyses, which are now urgent because several countries are 
currently integrating CT into their school curriculum. Discussing evidence coming from experimental studies is important to allow 
educators and policymakers to make informed instructional decisions. 

Attempts to conduct rigorous systematic reviews or meta-analyses on the cognitive effects of CT have been limited. What is even 
more important is that, to the best of our knowledge, none of the existing systematic reviews or meta-analyses have examined the 
causal relationship between CT and executive functions. Most of the current systematic reviews and meta-analyses have focused on one 
hand on studies that did not allow to draw robust inferences on causal effects, on the other hand they focused on a rather large and 
heterogeneous set of cognitive functions and academic skills (see Liao, 2000; Liao & Bright, 1991; Scherer et al., 2019; Scherer et al., 
2020). The present study contributes to filling this literature gap and advancing our understanding of the beneficial effects of CT on 
executive functions, a set of cognitive skills that are especially crucial for academic performance and adaptive behavior. This inves-
tigation can increase our theoretical comprehension of CT, as observing transfer effects between different domains, like CT and EFs, 
provides insights into the shared cognitive foundations that underpin their connection. Determining the impact of CT interventions on 
children’s EFs has also practical implications. By identifying the executive functions that are most influenced by computational 
thinking (CT), we can determine the optimal age or grade level for implementing CT programs within the school curriculum. Indeed, 
different EF skills have different windows of plasticity (e.g., Davidson et al., 2006; Ganesan & Steinbeis, 2022). 
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1.1. The causal link between CT and cognitive abilities 

Recent years have witnessed a steady increase in the number of studies exploring the association between CT and children’s 
cognitive abilities (e.g., Arfé et al., 2019; Finke et al., 2022; Polat et al., 2021; Román-González et al., 2017). The research is divided 
into correlational and intervention studies. Correlational studies identify an association between CT and cognitive functions, but only 
intervention studies can bring causal evidence on the cognitive effects of CT. 

Unfortunately, most of the studies published on the topic are correlational. They have documented associations between CT and a 
wide range of cognitive and academic skills, including nonverbal intelligence (Marinus et al., 2018), visuo-spatial skills (Finke et al., 
2022; Román-González et al., 2017; Tsarava et al., 2019), and mathematical cognition and mathematical skills (Gerosa et al., 2021; Liu 
et al., 2019; Román-González et al., 2018; Tsarava et al., 2019). The correlations observed are generally moderate (e.g., Román--
González et al., 2017) or weak (e.g., Román-González et al., 2018). although stronger associations are reported between CT and 
problem-solving (Polat et al., 2021; Román-González et al., 2017). The limitation of these studies is that, although correlational studies 
are sometimes discussed as if they show causality, causality cannot be determined by correlations. 

To investigate the causal effects of CT researchers have carried out intervention studies (see Arfé et al., 2019, 2020; Di Lieto, Pecini, 
et al., 2020). In general, these studies report positive effects of ER and virtual coding activities on first graders’ EFs, specifically 
working memory (Di Lieto, Pecini, et al., 2020), inhibitory control (Arfé et al., 2019, 2020; Di Lieto, Pecini, et al., 2020), and planning 
(Arfé et al., 2020). However, findings vary between studies, particularly when higher order EFs, like problem-solving, are considered. 
For instance, Çakır et al. (2021) and Nam et al. (2019) found that experiencing coding improved preschoolers and first graders’ 
problem solving, whereas Çiftci and Bildiren (2020) reported insignificant effects of coding on the problem-solving skills of 
4–5-year-old preschool children. 

One of the problems in comparing the results of these studies is, however, that the instructional tools used in the interventions were 
different: to train children’s problem solving skills, Çakır et al. (2021) and Nam et al. (2019) used ER, whereas Çiftci and Bildiren 
(2020) employed game-based drag-and-drop exercises from the code.org platform, https://code.org/, that is, virtual coding. In ER 
interventions, children are engaged in tangible hands-on coding activities, and they materially interact with robots designing, 
assembling, and programming them to perform actions in a physical learning environment (Kazakoff & Bers, 2014). This experience is 
more closely related to children’s everyday sensorimotor and concrete experience of the world than virtual coding, which involves 
children learning to program sprites (virtual objects) to perform actions in a virtual world presented on a screen, typically using 
block-based visual programming and a computing device (e.g., Kalelioğlu, 2015; Sáez-López et al., 2016). This second learning 
experience implies greater abstraction and perspective-taking skills: to drive the sprite toward the objective, the child must take the 
perspective of the virtual character on the bi-dimensional screen. From the age of 3 to 6, children’s reasoning and problem solving are 
more closely related to their concrete experience of objects and the physical world (Barrouillet, 2015; Ping & Goldin-Meadow, 2008). 
However, with the beginning of schooling they increasingly use mental representations to test their hypotheses; therefores their 
problem solving becomes more abstract (Novack et al., 2014). These developmental changes may affect also their ability to learn CT 
concepts through different tools, allowing more or less tangible or concrete experiences. 

Another dimension across which CT intervention programs vary is the degree to which coding or programming activities are 
structured (Lee et al., 2013; Socratous & Ioannou, 2021). Some instructional interventions ask children to solve structured compu-
tational problems, often consisting in logic games with a single correct solution (e.g., code.org, Arfé et al., 2019; Çiftci & Bildiren, 
2020), whereas other interventions focus on unstructured and ill-defined problems (e.g., Erol & Çırak, 2022) such as creating a story or 
designing a video-game. These problems involve several possible solutions and steps (Zhang & Nouri, 2019). 

It is unclear whether these different instructional methods have similar effectiveness on the development of children’s EFs and 
whether it depends on children’s age. Although all EFs have an extended window of developmental plasticity that span from early 
childhood to late adolescence, core and higher order EFs have different developmental trajectories and developmental peaks. 
Consequently, they could also be more sensitive to the effects of interventions during different time periods. For instance, the most 
intensive changes in core EFs-inhibitory control, working memory and cognitive flexibility- occur during the preschool period, from 3 
to 6 years (Carlson, 2005; Scionti et al., 2020; Traverso et al., 2015) and in the transition to elementary school (Garon et al., 2008; 
Macdonald et al., 2014; Zelazo et al., 2003), although they continue to develop until adolescence (Brocki & Bohlin, 2004; Huizinga 
et al., 2006). 

For higher order EFs, such as planning, the greatest developmental changes occur later. Planning, for example, begins to develop 
between the ages of 5 and 6 (Usai et al., 2014), with a steep developmental growth curve from the age of 6 to 9 (McGuckian et al., 2023) 
and a second remarkable developmental shift from the age of 9 to 15–17 years, related to the development of prefrontal regions 
(Luciana et al., 2009). Stimulating the child’s EFs through CT within these developmental windows may lead to the largest effects. On 
the other hand, a certain development of EF skills may be necessary to perform CT tasks, or benefit from CT interventions. For instance, 
problems whose solution requires more steps, or longer algorithms, require sufficient command over impulsive responses and working 
memory skills. 

1.2. Prior meta-analytic studies on the cognitive effects of CT/programming 

The meta-analytic studies evaluating the cognitive effects of CT and programming are very few (Liao, 2000; Liao & Bright, 1991; 
Scherer et al., 2019, 2020). To our knowledge, only three meta-analyses have addressed the cognitive effects of coding/computer 
programming. Liao and Bright (1991) examined 65 studies targeting the relationship between computer programming and cognitive 
skills such as planning, reasoning skills, and metacognition, without restrictions on grade level (age) or study design (experimental or 
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not). They included both experimental and nonexperimental studies in their meta-analysis and did not differentiate between cognitive 
functions, but considered only a general cognitive effect of computer programming. Their meta-analysis reports a moderate effect of 
learning computer programming on students’ cognitive skills (d = 0.41). Liao (2000) performed a second, updated meta-analysis 
summarizing the results of 22 studies, with participants from preschoolers to college students, targeting a rather heterogenous set 
of cognitive skills, such as critical thinking, creative thinking, metacognitive skills, problem solving, spatial skills, and conceptual 
transfer. Their meta-analysis revealed large effects of computer programming on programming skills (d = 2.48), but only moderate 
effects on critical thinking, reasoning, and spatial skills (d = 0.37–0.58), and insignificant effects on creative thinking (d = − 0.13). 
Scherer et al. (2019) obtained similar findings in a meta-analysis of 105 studies, selecting studies published since 1965. Also this 
meta-analysis considered a broad range of cognitive skills and age levels, covering an age span from preschool to university years. 
Based on the idea that learning computer programming can bring cognitive benefits in several domains, the authors examined the 
effects of programming on a broad range of skills, assessing both near transfer and far transfer effects. Near transfer effects are those of 
computer programming interventions on programming or coding, whereas far transfer effects are those of computer pro-
gramming/coding interventions on cognitive skills less strongly related to coding, such as spatial skills, reasoning and metacognition, 
or academic achievements, like achievements in mathematics or literacy. Similar to Liao and Bright (1991), also in this meta-analysis 
the participants in the primary studies varied in agefrom preschool years to university. Moreover, although Scherer et. applied stricter 
criteria for study inclusion than Liao and Bright (1991), they considered eligible both standard experimental studies with a pre-posttest 
randomized control trial design and quasi-experimental studies that reported posttest only measures. 

Scherer et al.’s (2019) meta-analytic study confirmed an averagely moderate effect of programming on cognitive abilities (g =
0.49). The findings revealed larger near transfer effects (e.g., to programming, g = 0.75) than far transfer effects (e.g., to different 
cognitive abilities, g = 0.47) . There considerable variation in far transfer effect sizes, which could be explained by the various cognitive 
skills assessed. Separate meta-analyses for each cognitive skill revealed the beneficial effects of learning computer programming, with 
effect sizes ranging from g = 0.73 for creative thinking to g = 0.37 for spatial skills. Moderator analyses revealed no significant 
moderating effect of age. 

This meta-analysis has significantly contributed to advancing our knowledge on the effects of CT, revealing that certain cognitive 
functions are more responsive to coding/programming interventions compared to others. However, the inclusion of several quasi- 
experimental studies with nonequivalent pretest-posttest measures or posttest-only measures in the computation of the effect sizes 
may have affected the findings obtained. Without equivalent pretest and posttest measures, it is difficult to determine whether the 
observed improvement is a result of the intervention or is influenced by the different tasks performed or type of skills assessed in the 
posttest and pretest. It may indeed be that the posttest tasks or skills are simply easier than the pretest ones. These quasi-experimental 
studies provide weaker and less reliable evidence of the causal link between the learning of computer programming and cognitive 
development. 

In a subsequent meta-analysis, Scherer and coll. (2020) explored also the effectiveness of different instructional approaches or 
programming tools (visual programming and robotics) on the acquisition of programming knowledge and skills. Yet, in this study they 
did not examine the cognitive effects of the different instructional methods. 

2. The systematic review and meta-analytic study 

In instructional research, systematic-reviews and meta-analyses provide the best evidence to support instructional practice (Cro-
cetti, 2016). Combining data from several independent studies increases the statistical power of the analysis and the precision of the 
effect estimates. The reliability of a meta-analysis relies, however, not only on the on the quantity of studies included but also on the 
robustness and reliability of their original findings from those studies. For instance, when the aim is to assess instructional effects, 
including in the meta-analysis studies that lack experimental rigor may represent, as noted earlier, an important limitation. If the 
research focus is on causality, rigorous hypotheses testing requires controlled experimental studies, consisting of randomized or cluster 
randomized trials (CRTs; CONSORT guidelines, Campbell et al., 2004). 

Although a substantial number of studies in the field of CT report that learning to code improves CT (see, for example, Bers et al., 
2014, or Özcan et al., 2021) and EFs (e.g., Arfé et al., 2019; Di Lieto, Pecini, et al., 2020; Çakır et al., 2021), only some of these are 
experimental or (cluster) randomized trials (Arfé et al., 2019; Di Lieto, Pecini, et al., 2020; Özcan et al., 2021). In contrast to Scherer 
et al. (2019), in the present systematic review and meta-analysis we thus consider only the experimental trials that effectively 
controlled for the potential impact of repeated testing and practice effects when evaluating the effectiveness of the intervention. 

This systematic review and meta-analysis also focus on a narrower set of cognitive skills than those considered by Liao (2000) and 
Scherer et al. (2019): core and higher order EFs, like response inhibition, WM, cognitive flexibility, planning, and problem solving. 
Since these skills underpin children’s performance across several complex cognitive and academic tasks, determining the effects of CT 
and programming on these EFs can help explain why the benefits of CT/programming documented by prior meta-analyses are so broad 
but also vary across tasks. A further goal of the present systematic review and meta-analysis is to compare the effects of using different 
instructional tools (e.g., ER and virtual coding) in the teaching of CT/programming. 

Unlike previous meta-analytic studies that have explored the effects of computational thinking and coding across a wide age range, 
spanning from preschool to university years (Liao & Bright, 1991; Scherer et al., 2019), the focus of this systematic review and 
meta-analysis is on the preschool and school years (a range from 4 to 16 years of age), a time period which represents a critical window 
for investigating the effects of EF-focused interventions (Luciana & Nelson, 2002; Traverso, Viterbori, & Usai, 2015). 
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Fig. 1. Flow diagram describing the literature search and the selection of eligible studies (adapted from the PRISMA Statement; Page et al., 2021).  
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2.1. Research questions 

We addressed three research questions:  

1) Which EFs are most impacted by the teaching of CT/coding?  
2) Does the cognitive effectiveness of CT vary with children’s age?  
2) Which instructional modality (educational robotics/unplugged coding/virtual coding) is the most effective in enhancing EF skills 

in learners aged 4–16 years? 

The first research question (Which EFs are most impacted by the teaching of CT?) was addressed both through a systematic-review and 
meta-analysis, whereas the second and third research questions (Does the cognitive effectiveness of CT vary with children’s age? and Which 
instructional modality is most effective?) were addressed only by a systematic review of the literature, because the number of studies 
considered in the meta-analysis was insufficient to statistically test the effects of age and intervention type through moderator 
analyses. 

2.2. Method 

The systematic review and meta-analysis were conducted in accordance with the guideline of the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA 2020; Page et al., 2021). 

2.2.1. Literature search, screening and eligibility criteria 
Studies were selected according to the following keywords: ("executive functions" OR "cognitive control" OR "cognitive abilities" OR 

"planning" OR "inhibition" OR "working memory" OR "cognitive flexibility" OR "shifting" OR "problem solving”) AND ("computational 
thinking"* OR "coding" * OR "programming" OR "educational robotics") using Scopus, ERIC, Web of Science, PsychInfo, Google 
Scholar, ACM Digital Library, and IEEE Xplore as databases. Both research articles and conference papers were included in the study, 
provided they were peer reviewed. 

To perform our literature search and identify eligibility criteria we followed the Population, Intervention, Comparison, Outcome 
(PICO) guidelines (Methley et al., 2014). The following eligibility criteria were applied:  

● Participants (P): the study participants had to be children or adolescents, between 4 and 16 years old. 
● Interventions (I): CT and coding interventions could be based on tangible (ER, unplugged coding) or virtual coding (visual pro-

gramming) instructional activities.  
● Comparison (C): the study had to be an experimental, randomized trial or a cluster randomized trial (CRT), or a matched group 

trial. Thus, only studies involving equivalent pretests-posttests and an experimental and a control/comparison group randomly 
assigned to an experimental or control condition, or matched based on specified criteria, were considered eligible.  

● Outcomes (O): dependent measures (outcomes) were executive functions (e.g., WM, response inhibition, shifting, planning or 
problem-solving). Fluid intelligence, which relies on cognitive flexibility, was also considered, but only for the systematic review 
because just one study was found for this outcome. Additional eligibility criteria were:  
• only papers written in English were considered.  
• only peer reviewed publications ranging from 2006 (when Wing provided the first definition of computational thinking) to 2022 

were considered.  
• the studies should report sufficient information about the intervention tested (e.g., structure, kind of activities).  
• to be included in the meta-analysis all studies should specify sample size, participants’ age, and provide effect sizes or means and 

standard deviations of the pretest and posttest performance. 

The PRISMA diagram (Page et al., 2021) in Fig. 1 shows the literature selection process. A total of 479 records were identified based 
on our literature search. An open-source software for systematic reviews, ASReview (https://asreview.nl/), was used for the initial 
screening of this literature. Two examiners (the first author and a master’s student) checked all the abstracts of the records removed by 
ASReview. After removing duplicates and the records marked as irrelevant by ASRview, the abstracts of all remaining records (n =
218) were independently screened by the same two judges. Based on this further screening, 166 publications were excluded as they did 
not meet one or more eligibility criteria. There were 52 papers (53 studies, as one paper presented two studies) assessed for eligibility, 
after the initial screening; 22 (mainly conference papers) were subsequently excluded because they were not peer-reviewed studies, 
and 12 were excluded due to insufficient information on participants (e.g., age or grade level), interventions or the outcomes assessed 
(specific measures, effect sizes means or standard deviations). From this selection process, 18 papers (19 studies) were included in the 
systematic review. Due to the strict eligibility criteria, only 10 publications (corresponding to 11 studies) were included in the 
meta-analysis. Of the eight studies included in the systematic review and excluded from the meta-analysis, seven were excluded due to 
lack of statistical data (i.e., means and standard deviations: Brown et al., 2008; Çakır et al., 2021; Çiftci & Bildiren, 2020; Çınar & 
Tüzün, 2021; Demir, 2021; Lai & Yang, 2011; Oluk & Saltan, 2015), and one study was excluded because it was the only one assessing 
fluid intelligence (Özcan et al., 2021). Although meta-analyses normally involve a larger number of studies, meta-analyses on few 
studies (10 studies or less) are not uncommon, especially in some research areas, like the assessment of new interventions (Mathes & 
Kuss, 2018). 
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Disagreements between the two examiners were solved via discussion with the last author of the study, to reach a consensus. There 
are various methods for calculating IRR (Belur et al., 2021); we used the percentage of agreement between coders (90% agreement) 
and the κ statistic measure (κ = 0.85). 

2.2.2. Studies coding and data extraction 
Coding for study descriptors and quality indicators was performed by the first author and, subsequently and independently by the 

last author. The first author read all 19 studies that met the inclusion criteria and classified the studies by intervention type into one of 
the three following categories: (1) virtual/plugged coding, (2) unplugged coding, and (3) educational robotics. Instructional activities 
were further coded as: (a) structured, when children were asked to solve well-defined problems with a clear, given goal and correct 
solution, e.g., giving instruction to a sprite or robot to reach a specific target, or (b) unstructured, when children solved open-ended (or 
creative) problems with no predefined solution, such as developing a project or designing a new game. There were only two cases of 
disagreement between the first and last author, which were resolved through discussion. 

Each study was coded for thirteen study characteristics, as reported in Table 1: (1) study design (randomized control, matched 
design), (2) participants’ grade level and (3) age group (younger or older), (4) sample size, (5) participants (i.e., with typical 
development or atypical development), (6) intervention modality (virtual coding, ER, unplugged coding), (7) intervention tool (e.g., 
code.org, Scratch, LEGO), (8) whether the intervention was structured or unstructured, (9) intervention activities (the specific ac-
tivities performed during the intervention), (10) type of control group (i.e., passive or active control group), (11) control group ac-
tivities (e.g., business-as-usual activities or other types of STEM or programming activities), (12) overall intervention length (in 
minutes), and (13) main outcomes (with effect sizes when available), coded in five categories: problem-solving, planning, working 
memory, inhibition, and cognitive flexibility. Some studies reported intervention duration in hours, some in minutes, and some in 
hours per week. Thus, all durations were converted to minutes to have the same unit of measurement across studies. 

2.2.3. Quality assessment 
Study quality was assessed by means of a checklist (see supplemental material, Quality indicators checklist in the extended table) 

across seven indicators: (1) quality of the experimental design, (2) presence/absence of an active control group, (3) pretest equivalence 
or pretest scores controlled in analyses, (4) same pre-posttest measures (5) reliability of the assessment tool (6) method clarity (7) 
intervention clarity (see Table 1). Each quality indicator was scored as 1 (met) or 0 (not met). If information concerning a specific 
quality indicator was not provided, it was assumed the indicator was not met, and the study scored 0. A synthesis of the quality 
assessment is reported in the tables folder of the supplemental material (Table quality assessment extended). 

2.2.4. Meta-analysis: data extraction 
Data extraction was performed by the two examiners who also performed the literature screening. Once the final pool of studies was 

Table 1 
Definitions for study characteristics and quality indicators.   

Definition 

Study characteristics 
Study design Type of experimental design: experimental or matched design 
Grade level Participants’ grade level. If not provided, age was used to determine likely grade 
Age group Younger or older participants 
Sample size per condition Total number of participants in each condition 
Participants Participants’ characteristics: typical or atypical development 
Intervention modality Type of intervention: i.e., virtual/plugged coding, unplugged coding, educational robotics 
Intervention tool Type of tool used in the intervention (e.g., code.org, Scratch, KIBO robot) 
Interventionstructure Structured or unstructured (e.g., structured games with one solution, or open ended or creative problem-solving activities) 
Intervention activities Specific activities carried out during each intervention session: e.g., game-design, code.org games 
Type of control group Type of control condition (i.e., passive or active) 
Control groupactivities Specific activities in which the control group was engaged: e.g., business-as-usual activities or other types of STEM or 

programming activities 
Intervention length Overall intervention length in minutes. Wherever minutes could not be determined, the most informative length unit, such as 

number of sessions, was used 
Main outcome(s) The dependent measure(s) 

Quality indicators 
Quality of the experimental 

design 
True random experiment or matched-group experiment (i.e., random assignment of individual participants or classes to 
conditions) 

Control condition Is an active or business-as-usual control group present? 
Pretest equivalence Intervention and control participants showed equivalence in the dependent measure (outcome) at the pretest or pretest 

measures were covaried 
Pre-posttest measures Intervention and control group’s dependent measures were assessed at pre and posttest with the same assessment tools 
Reliability of the assessment 

tool 
Reliability coefficients for all dependent/outcome measures are reported or the reliability can be inferred by the use of a 
standardized and validated assessment tool 

Method clarity The study description provides sufficient information on the procedure and the instruments used for cognitive assessment 
Intervention clarity The intervention is explained in detail with reference to its duration, tools used, and the specific activities performed in each 

session  
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Table 2 
Studies Included in the Systematic review and Meta-analysis (Effect Sizes or Significant Effects are Reported).  

Author(s)/ 
year 

Age 
group 

Grade Sample 
size 

Intervention 
type 

Coding tool Structured/ 
Unstructured 

Intervention 
length 

Included 
SR/MA 

Effects sizes or 
Sign. effects 

Akcaoglu and 
Koehler 
(2014) 

Older Grades 5- 
8 

44 Virtual 
coding 

Microsoft Kubo U 900 min SR/MA Problem- 
solving (d =
1.05) 

Brown et al. 
(2008) 

Older Grades 5- 
6 

113 Virtual 
coding 

Scratch U 180 min SR Problem- 
solving 

Çınar and 
Tüzün 
(2021) a 

Older Grade 10 81 Educational 
robotics 

LEGO 
Mindstorms 
NXT 2.0 

S 2160 min SR Problem- 
solving n.s. 

Demir (2021) 
a 

Older Grades 9- 
11 

34 Coding 
unplugged 

Algorithm 
cards 

S – SR Problem- 
solving 

Erol and Çırak 
(2022) a 

Older Grade 6 34 Virtual 
coding 

Scratch U 1680 min SR/MA Problem- 
solving (η2 =

0.26) 
Lai and Yang 

(2011) 
Older Grade 6 130 Virtual 

coding 
Scratch U – SR Problem- 

solving 
La Paglia et al. 

(2017) 
Older Grades 5- 

6 
60 Educational 

robotics 
LEGO 
Mindstorms 

S 1800 min SR/MA Problem- 
solving 

Nam et al. 
(2010) 

Older Grade 6 60 Virtual 
coding 

Scratch U 480 min SR/MA Problem- 
solving 

Oluk and 
Saltan 
(2015) a 

Older Grade 6 65 Virtual 
coding 

Scratch U 720 min SR Problem- 
solving n.s. 

Özcan et al. 
(2021) 

Older Grade 4 174 Virtual 
coding 

Code.org +
Scratch 

S + U 1200 min SR Fluid 
intelligence 
(cognitive 
flexibility) n.s. 

Pardamean 
et al. 
(2011) 

Older Grade 5 85 Virtual 
coding 

Logo 
programming 

S 640 min SR/MA Problem- 
solvingb 

Arfé et al. 
(2019) 

Younger Grade 1 80 Virtual 
coding 

Code.org S 480 min SR/MA Inhibition (d =
− 0.65) 
Planning (d =
0.95) 
Problem- 
solving (NT, d 
= 1.62) 

Arfé et al. 
(2019) 

Younger Grade 2 38 Virtual 
coding 

Code.org S 480 min SR/MA Inhibition (d =
− 1.05) 
Planning (d =
0.93) 
Problem- 
solving (NT, d 
= 1.91) 

Arfé et al. 
(2020) 

Younger Grade 1 179 Virtual 
coding 

Code.org S 480 min SR/MA Inhibition (d =
− 0.71) 
Planning (d =
1.27) 
Problem- 
solving (NT, d 
= 1.31) 

(Çakir et al., 
2021) 

Younger Preschool 40 Educational 
robotics 

LEGO WeDo 
2.0 

S 1920 min SR Problem- 
solving 

Çiftci and 
Bildiren 
(2020) 

Younger Preschool 28 Virtual 
coding 

Code.org S 480 min SR Problem- 
solving n.s. 

Di Lieto, 
Pecini, 
et al. 
(2020a,b) 

Younger Grade 1 187 Educational 
robotics 

Bee Bot S 1200 min SR/MA Inhibition (d =
0.69) 
Working 
memory (d =
0.65) 
Cognitive 
flexibility n.s. 

Di Lieto, 
Castro, 
et al. 
(2020a,b) 

Younger Grade 1 42 Educational 
robotics 

Bee Bot S 1200 min SR/MA Inhibition 
Working 
memory n.s. 
Cognitive 
flexibility n.s. 

(continued on next page) 
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selected, one extracted all data (i.e., sample size, means and standard deviations or effect sizes) for the meta-analysis, and the other 
checked the data extraction subsequently. 

In case of papers with missing data, we contacted the study authors before excluding them from the meta-analysis. One paper (Arfé 
et al., 2019) contained two studies with a different pool of participants. To simplify the data structure, the two experiments were 
treated as different studies (2019a and 2019b). In the data folder of the supplemental material, the full table summarizing the data and 
outcomes of all included studies is presented (i.e., meta table cleaned). 

Table 2 summarizes all included studies, distinguishing between those included in the systematic review only, and those included 
both in the systematic review and meta-analysis. In the Results section, we provide detailed descriptions for each study. 

2.3. Statistical analysis 

2.3.1. Effect size computation 
We used in the MA the dppc2 effect size measure as Morris (2008) proposed, where the difference between pre-means and 

post-means for the experimental and control groups is standardized using the pretest standard deviations. The dppc2 has been 
demonstrated to be the most appropriate measure for this research design. Despite being called d, the effect is computed by default 
(Morris, 2008) by applying the Hedges’ correction for small samples. For measures where lower values correspond to better perfor-
mance (e.g., number of errors) we changed the sign of the effect, thus, positive values always mean that the CT is effective. For 
computing the effect size sampling variance, we imputed the pre–post correlation because this was missing from the majority of 
included papers. We decided to use a pre–post correlation of 0.7. We also included a sensitivity analysis using different correlation 
values (0.5, 0.7, and 0.9) in the supplementary materials. 

Between and within studies the same underlying psychological construct could be measured with different instruments. We thus 
decided to assign the same label to effects referring to the same underlying psychological construct. For example, measures derived 
from WM, the Backward Corsi Block Tapping subtest (BVN test; Bisiacchi et al., 2005) and Matrix Path (BVS Corsi; Mammarella et al., 
2008) were all coded as WM. Similarly, scores at standardized tests, ad hoc problem solving tasks and self-report scales assessing 
problem solving were coded as problem solving. In this way, we classified the reported outcomes according to the underlying EF: 
inhibition, WM, shifting, planning, and problem solving. Thus, multiple effect sizes referred to the same construct were aggregated to 
obtain a single measure. Aggregating multiple statistically dependent effect sizes requires imputing the correlation between different 
measures. Following Borenstein et al. (2009, pp. 225–233), we used a correlation of 0.5, but with an inverse-variance weighted 
average (Viechtbauer, 2010). A sensitivity analysis using different correlation values (0.3, 0.5, and 0.7) is presented in the supple-
mental material. 

2.3.2. Statistical model 
When multiple outcomes are collected from the same pool of participants, a situation of statistical dependency emerges, which, if 

ignored, brings strongly biased meta-analytic estimations (Cai & Fan, 2020; Cheung, 2019; Van den Noortgate et al., 2015). The most 
appropriate approach is to consider the correlation between multiple outcomes using a multivariate meta-analytic (MA) model (Cai & 
Fan, 2020). Given the limited number of papers, we decided to use a fixed-effect model as Cai and Fan (2020) suggest. Despite the 
random-effects model allowing to generalize conclusions at population level, the between-papers variability estimation (i.e., the focus 
of the random-effects model) can be strongly biased with a limited number of papers (Cheung, 2013; Veroniki et al., 2016). The 
multivariate fixed-effect model estimates the average effect size for each outcome and requires considering the correlation between 
different measures. Again, the included papers did not report this correlation, thus, we imputed a value of 0.5. As before, we conducted 
a sensitivity analysis using different values (0.3, 0.5, and 0.7), again presented in the supplemental material. 

The MA model was implemented in R (R Core Team, 2021) using the metafor package (Viechtbauer, 2010). For hypothesis testing, 
we used the omnibus Wald χ2 test. For each outcome, we reported the average effect size, standard error, the 95% confidence interval, 
and the associated Wald z test. Further details about the analytic approach can be found in the supplemental material. All code and 
data to reproduce the analysis (supplemental material) are available online in the Open Science Framework repository (https://osf.io/ 
uvbcd/). 

Table 2 (continued ) 

Author(s)/ 
year 

Age 
group 

Grade Sample 
size 

Intervention 
type 

Coding tool Structured/ 
Unstructured 

Intervention 
length 

Included 
SR/MA 

Effects sizes or 
Sign. effects 

Nam et al. 
(2019) 

Younger Preschool 53 Educational 
robotics 

TurtleBot S 720 min SR/MA Problem- 
solving (η2 =

0.17) 

Note: Age group = the category by which results are reported; Effect sizes = Significant major effects; S = Structured; U = unstructured; NT = near 
transfer effects; n.s. = non-significant. 

a The comparison group was an active control group exposed to coding/programming activities (e.g., visual programming tool, learning pro-
gramming and algorithms during Information Computer Technology class). 

b Non-equivalent pretest scores were not covaried in the analyses. 
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3. Results 

3.1. Characteristics of included studies 

The sample comprised 19 studies included in the systematic review, for a total of 1527 participants. Of the primary 19 studies, 11 
were also included in the meta-analysis (see Table 2 and Fig. 1). The overall sample size of the MA was of 862 participants (n = 433 in 
experimental conditions and n = 429 in control conditions). 

The study samples included participants from 4 to 16 years, with a predominance of preschoolers or primary school children (12 
studies, 63%). Five studies (26%) involved children from grade 5 to grade 8, and only one study involved older students (10th graders). 
The sample size of the included studies ranged from 28 to 187, with a majority of studies with samples > 50. Among the studies 
selected, 12 tested the effects of virtual coding interventions with children from preschool to grade 8, and seven tested the efficacy of 
tangible coding interventions (ER or unplugged coding activities) with preschoolers and students from grade 1 to grade 10. Only 31% 
of the interventions consisted of unstructured coding/programming activities (n = 6). They were all addressed to older students 
(grades 5 to 8) and involved virtual coding. Among the outcome measures, problem solving skills were the most frequently assessed (13 
studies, 68%), inhibition skills were assessed in 5 studies, planning was assessed in 3, working memory in 2, cognitive flexibility in 2, 
and fluid intelligence in one study only. 

3.1.1. Quality of the studies 
A synthesis of the studies’ quality is reported in the extended Table Studies characteristics and quality indicators in supplemental 

material. The overall quality was high. When all seven quality indicators were considered, the studies satisfied on average 78.20% of 
the quality criteria, with 8 studies meeting 100% of quality indicators. 

3.2. Results of the systematic review 

Table 2 summarizes the characteristics of the selected studies and their main outcomes; effect sizes are also reported if available. As 
in Scherer et al. (2019), we distinguished between near transfer effects (i.e., transfer between similar/closely related tasks or skills) and 
far transfer effects (i.e., the transfer between dissimilar tasks, which require different skills or strategies; Perkins & Salomon, 1992). As 
shown by Table 2, the majority of the studies assessed far transfer effects. In the following sections, the results are presented with 
reference to the three research questions of the study. 

3.2.1. Which EFs are most impacted by the teaching of CT? 
The systematic review revealed that CT interventions are generally effective in boosting children’s EFs. Of the 19 studies examined 

in this systematic review, only four reported non-significant effects of CT interventions (Oluk & Saltan; 2015; Çiftci & Bildiren, 2020; 
Çınar & Tüzün, 2021; Özcan et al., 2021). 

3.2.1.1. Problem solving. Sixteen out of 19 studies examined the effects of CT programs on children’s problem solving, assessed by 
problem solving tests or ad hoc tasks (e.g., Akcaoglu & Koehler, 2014; Brown et al., 2008; Lai & Yang, 2011; Nam et al., 2010) or 
self-report problem solving measures (Erol & Çırak, 2022; Oluk & Saltan, 2015). Six of these studies tested the effects of game-design or 
project-development activities, while the remaining 10 studies explored the efficacy of more structured virtual coding or educational 
robotics programs. 

3.2.1.2. Game-design and project-development interventions. Significant and positive effects of game-design and project-development 
interventions were found in studies in which students’ problem solving skills were assessed by the Program for International Stu-
dent Assessment (PISA) of the Organisation for Economic Co-operation and Development (OECD, 2013; Akcaoglu & Koehler, 2014; 
Nam et al., 2010). Akcaoglu and Koehler (2014) proposed to 11-14-year-old students a 15-h game-design activities in which students 
had to design digital games through Kodu Game Lab, a 3D game development environment for visual programming. The authors found 
a large effect of the intervention program, Cohen’s d = 1.05, on participants’ problem solving. 

Similar findings are reported by Nam et al. (2010), despite their intervention program, based on project-development activities, 
was approximately half the time that of Akcaoglu and Koehler’s (2014): 8-h versus 15-h. The authors engaged 12-year-old students in 
four weeks project-development activities based on Scratch, an open-source block-based visual programming tool used to create 
interactive stories and games, finding significant improvements of the participants on PISA problem solving assessment. 

Project-development activities based on Scratch result effective also when compared with other experimental trainings (active 
control groups) and for students with diverse background. Lai and Yang (2011) assessed the efficacy of visual programming activities 
based on Scratch on sixth grade students’ problem solving and reasoning skills assessed by a problem-solving test. During the inter-
vention, the students received instruction on the basic operations and tools of Scratch, scaffolding in problem solving and subsequently 
developed their own project. The problem-solving skills of the students in the Scratch-based program improved significantly more than 
those of an active control group, participating in Adobe Flash learning activities. 

Brown et al. (2008) tested the effects of four 45-min lessons (approximately 4-h program) based on Scratch on fifth and sixth 
graders’ mathematical problem-solving. All students, predominantly African-American, were from disadvantaged backgrounds and 
low-income families. The Scratch lessons, designed to introduce the students to efficient and inefficient mathematical problem-solving 
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methods, were focused on learning debugging and loops, two key operations in CT and programming. Students’ problem-solving 
strategies were assessed by ad-hoc designed problem-solving exercises, consisting of mathematics problems that could be solved 
using an efficient (e.g., multiplication or loop) or inefficient (e.g., repeated addition) strategy. The results again showed that the 
students in the experimental group improved in solving mathematical problems more than the control group, addressed to standard 
instructional activities. 

Other studies have examined the effects of CT programs on students’ self-reported problem-solving. Erol and Çırak (2022) used the 
Problem-Solving Inventory for Children (PSIC, Serin et al., 2010) to assess changes in the problem-solving of a group of Turkish sixth 
graders after a 12-week game-design intervention (24-h) with Scratch. The students addressed to the game-design intervention were 
first introduced to programming basics (e.g., operations, control structures) and the use of Scratch, and then to semi-structured and 
free game-design activities. Their problem-solving scores were compared against those of an active control group who were also 
introduced to programming and asked to develop algorithms that solved problems during Information Technologies and Software 
classes. The findings revealed a significantly larger improvement in the students’ approach to problem-solving for the experimental 
compared to the active control group (η2 = 0.26). 

Only one study, by Oluk and Saltan (2015), reported unsignificant effects of Scratch-based programs. The authors tested the effects 
of a 12-h algorithm development Scratch-based instructional program on sixth-grade students’ self-reported problem solving. The 
students in the experimental group (31 participants) learned algorithms with the help of Scratch, whereas the control group (34 
participants) received standard curricular instruction on algorithm development. Their approach to problem-solving was assessed by 
the same problem-solving inventory used by Erol and Çırak (the PSIC, Serin et al., 2010). Neither of the two groups showed 
improvement in problem solving scores. It must be noted, however, that differently from Erol and Çırak’s study, the instructional 
program tested in this study did not focus on game-design or project-design activities, which are comprehensive problem-solving tasks, 
but targeted only one of the components of problem solving: algorithmic thinking. 

3.2.1.3. Other visual programming/educational robotics and unplugged coding interventions. Other CT interventions based on different 
visual programming tools, such as code.org or Logo programing, unplugged coding, or educational robotics are more structured than game- 
design or project-development interventions, and for this reason were primarily addressed to younger children, preschoolers, or first or 
second graders. These interventions too have been proven effective in stimulating children’s problem-solving skills. 

Five studies tested the effects on problem solving of structured visual programming (i.e., virtual coding) activities (Arfé et al., 2019 
Arfé et al., 2020; Çiftci & Bildiren, 2020; Pardamean et al., 2011). In three studies (Arfé et al., 2019; Arfé et al., 2020), involving a total 
of 297 children, 1st and 2nd graders, Arfé et al. found consistent and significant near transfer effects on problem solving of a short, 8-h, 
structured visual programming intervention based on code.org. Like Scratch, code.org is a visual programming platform in which 
children write their code by moving programming blocks. This way,they construct sequences of commands that give instructions to a 
sprite or a character (Angry bird, a bee, a zombie), which executes them. Differently from Scratch, however, the games typically have a 
predefined structure and aim at a given objective (e.g., getting to a target or performing a specific action). Although structured, in Arfé 
et al.’s studies the intervention was designed to cause children to switch between scenarios, programming functions (e.g., loops, 
debugging) and types of problems to force children to maintain a problem-solving approach. Children’s problem-solving abilities were 
assessed by asking children to solve new code.org games, similar to those solved during the instructional program. The performance of 
the children who received the intervention was compared to that of a wait-list group receiving standard STEM instruction. Effect sizes 
were large, ranging between d = 1.31 to 1.91. 

Different results were obtained by Çiftci and Bildiren (2020), who used a problem-solving skill scale (Aydoğan et al., 2012) to test 
the far transfer effects of a structured 8-h virtual coding intervention based on code.org on 28 4- to 5-year-old children’s 
problem-solving abilities. The problem-solving scale aimed to assess the abilities shown by children when facing actual real-life 
problems. Children were shown pictures representing real life problems, explained by short stories that defined the problem, and 
were asked to find the best answer to the problem. The study showed no significant improvement of children’s problem-solving skills. 
The intervention improved though their logical, nonverbal, cognitive abilities measured by the Raven Colored Progressive Matrices 
Test. 

One of the studies examined (Pardamean et al., 2011), yielded unconclusive findings due to a methodological flaw. The authors 
assessed fifth graders’ creativity and problem-solving skills following a 16 40-min lessons course based on Logo programming. Logo is 
a simple programming language by which children learn to program generating commands to control the movements of a turtle, a 
cursor, thereby creating drawings or geometric forms. In the study, the children in the Logo programming intervention worked in peers 
to solve geometric games. Their creative skills were assessed by a creative thinking figural test and their problem-solving skills were 
assessed by a logical word test and figural problem-solving test. The results revealed statistically significant effects of the intervention 
on children’s creativity. At the posttest, children in the Logo program were also better in figural problem solving than the control 
group, who participated in standard ICT (Information and Computer Technology) curricular activities. However, as the experimental 
group outperformed the control group in figural problem solving also at the pretest and pretest scores were not covaried in the an-
alyses, it is not possible to determine whether the outcome reflected true intervention effects or individual differences between the 
groups. 

Other studies have examined the effects of educational robotics (ER) activities on children or early adolescents’ problem-solving 
(Çakır et al., 2021; Çınar & Tüzün, 2021; La Paglia et al., 2017; Nam et al., 2019). La Paglia et al. (2017), involved 30 sixth graders 
(10–12 years old) in an extra-curricular ER laboratory of 10 3-h sessions. The laboratory activities employed a LEGO Mindstorms robot 
kit. Students participating in the laboratories worked in group to build a robot body and generate a program to assign it an artificial 
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intelligence. The effects of the ER intervention were assessed by a metacognitive questionnaire assessing students’ ability to apply 
metacognitive skills to problem solving. The performance of the experimental group was compared to that of a passive control group of 
30 students not participating in any extra-curricular activity. The results revealed that the ER laboratory significantly improved the 
metacognitive control skills related to problem-solving of the experimental group. 

When problem-solving abilities are assessed by self-report measures the results are less clear. Çınar and Tüzün (2021) compared the 
improvement in problem solving of two groups of 10th graders: one participating in ER activities, and the other in object-oriented 
visual programming (active control group). During the experimental ER intervention, which lasted 12-weeks (approximately 36 h), 
the students worked in groups using Lego Mindstorms NXT 2.0 to build robots and then manipulated the program to train their 
programming skills. The comparison, active control, group performed CT activities in a visual programming environment individually 
or in group. During the practical problem-solving sessions guideline questions were used to scaffold the problem solving of both 
groups. Problem solving was assessed through the Problem-Solving Inventory (PSI) developed by Heppner (1988), which provides a 
self-assessment of behaviors and approaches associated with successful problem solving. No significant changes were observed in the 
problem-solving scores of the two groups. 

Only two studies have examined the effects of ER interventions on the problem-solving of preschoolers and first graders (Çakır 
et al., 2021; Nam et al., 2019). Nam et al. (2019) tested the effects of a 90 min -8-sessions- card-coded robotic course on 5–6-year-old 
children’s mathematical problem solving. Children were divided in two groups: the experimental group participated in the card-coding 
robotic course, while the comparison group participated in daily school activities and performed problem-solving activities as outlined 
in the national school curriculum (e.g., board games). A TurtleBot, which is a card-coded robot, was used for the ER intervention. The 
instructional program consisted of several activities: problem identification, planning with the support of worksheets, coding with 
cards and observing or evaluating the program outcomes, followed by debugging. Mathematical problem-solving was assessed by an 
adapted version of the Ward (1993) problem solving instrument. The results revealed that the children in the ER group improved 
significantly more in problem-solving than controls: The dimension of the effect was large (η2 = 0.17). 

Similar findings are reported by Çakır et al., (2021), who evaluated the effect of a 32-h ER intervention in which LEGO Education 
WeDo 2.0 was used to enhance the problem-solving skills of preschoolers. Children in the experimental group were asked to first build 
a robot, and subsequently to write a code for programming the robot through drag-and-drop block-based programming activities. After 
completing and executing the program they had to verify the accuracy of the instructions given to the robot, reflecting on the functions 
of the different code blocks, and on the codes used for the activity. Children in the (active) control group were involved in joint book 
reading activities, reasoned about the stories read, and performed creativity and categorization activities. Children’s problem-solving 
was measured by the Problem Solving Skill Scale (PSSS, Oğuz & Köksal Akyol, 2015) assessing problem-solving applied to real-life 
problems. The results showed a significantly greater improvement of problem-solving in the experimental compared to the active 
control group. 

Only one study (Demir, 2021) tested the effects of unplugged coding activities on problem solving. Participants were 34, 14 to 
18-year-old, students with mild intellectual disabilities. Demir examined the effects of unplugged coding activities on their problem 
solving. Special education classes, of approximately 4–6 students each, were randomly assigned to an experimental or control con-
dition. The experimental intervention required the students to play structured games, based on unplugged activities, such as finding 
solutions to problems presented in stories or Tower of Hanoi problems. Problem-solving skills were assessed by asking to solve 
everyday like problems (e.g., washing dishes or making pasta problems). The results showed significant effects of the unplugged coding 
intervention. 

3.2.1.4. Planning and core EFs. Six studies considered in this systematic review assessed other EF skills, such as core EFs (inhibition, 
working memory and cognitive flexibility or switching), planning or fluid intelligence. They involved primarily younger children, from 
preschool to grade 2, and tested the effects of structured visual programming or ER interventions. 

In their studies, Arfé and colleagues (Arfé et al., 2019; Arfé et al., 2020) examined also the effects of code-org game-based coding 
program on first and second graders’ cognitive inhibition and planning abilities, finding that the 8-h code.org based intervention 
produced significant and moderate to large effects on the planning and cognitive inhibition skills of first and second graders. Cognitive 
inhibition and planning skills were assessed through standardized neuropsychological tests. Inhibition skills were assessed by the 
square and circle NEPSY-II subtests (Korkman et al., 2007) and a Numerical Stroop test (Batteria Italiana ADHD, BIA, Marzocchi et al., 
2010). Planning skills were assessed by the Elithorn maze test (Gugliotta et al., 2009) and the Tower of London, ToL test (Luciana et al., 
2009). The effect sizes ranged from d = 0.65 for response inhibition to d = 1.27 for planning. These results confirmed that even a 
relatively short structured virtual coding intervention (8 h of code.org-based activities) can boost children’s cognitive inhibition and 
planning abilities. 

Virtual coding interventions seem however less effective in stimulating cognitive flexibility. In a randomized trial, Özcan et al.’s 
(2021) compared the effects of a 10-week (20 h) learn-to-code (virtual coding) program to two control instructional conditions: 
another STEM comparison treatment, based on mathematics, and a reading program control condition. One-hundred and seventy-four 
fourth graders from socioeconomically disadvantaged backgrounds were equally distributed and randomly assigned to the three 
conditions. Their fluid intelligence was assessed with the matrix reasoning task from the Wechsler Abbreviated Scale of Intelligence 
Measurement (Wechsler, 2011) at pre and posttest. The virtual coding program combined structured visual programming activities 
with Algo Digital (https://algodijital.com/) and code.org to project-based activities with Scratch. Although computational thinking 
scores improved significantly only for children in the learn-to-code treatment condition, children’s fluid intelligence, a measure of 
cognitive flexibility (Colzato et al., 2006), improved equally in all groups, indicating that children’s gains were unrelated to the 
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intervention. 
The few studies that have tested the effects of ER programs on children EFs have shown beneficial effects of ER on working memory 

and response inhibition skills in younger children (Di Lieto, Pecini et al., 2020). Di Lieto, Pecini, et al. (2020) examined the effects of a 
structured 20-h ER training on 5 and 6-year-old first graders’ inhibition skills, WM, and cognitive flexibility. Cognitive inhibition was 
assessed by three standardized neuropsychological tests, the NEPSY-II circle and square subtest (i.e., Korkman et al., 2007), the Little 
Frogs subtest (i.e., BIA; Marzocchi et al., 2010), and Pippo Says test, a modified version of Simon-Says test assessing both inhibition and 
switching, that is cognitive flexibility (Marshall & Drew, 2014). Working memory was assessed by two visuospatial tasks: the Backward 
Corsi Block Tapping subtest (BVN test; Bisiacchi et al., 2005) and Matrix Path (BVS Corsi; Mammarella et al., 2008). Children were 
randomly assigned to an experimental (ER intervention, n = 96) or a control (wait list, n = 91) group condition, in which children 
participated in daily school activities and received the ER instructional program later. Children in the experimental group were 
introduced to programming through engaging coding activities with Bee-Bot, an interactive robot with a bee shape that can be pro-
grammed to execute movements using buttons on its back. After a familiarization phase with the Bee Bot, children were invited to solve 
complex visuospatial planning tasks with the robot to stimulate their working memory and inhibition skills. In the last sessions, task 
switching and inhibition tasks with Bee Bots were targeted. After the 20-h ER training, the intervention group showed significant 
improvements in WM and inhibition abilities with moderate effect size: d = 0.63 for visuo-spatial WM, and from d = 0.43 to d = 0.69 
for inhibition skills, which is similar to the dimension of the effect reported for children of same grade level when the intervention 
involves virtual coding activities (Arfé et al., 2019; Arfé et al., 2020). Insignificant effects were instead found for children’s cognitive 
flexibility (Di Lieto, Pecini, et al., 2020). 

In a second study, Di Lieto et al. (Di Lieto, Castro et al., 2020) tested the efficacy of similar structured ER activities on the 
visuo-spatial WM and inhibition skills of 42 1st graders with special needs, including language disabilities, attention disabilities and 
cognitive or motor impairments. Like in the previous study, children were assigned to an experimental or wait list group condition. The 
20-h ER program was adapted to meet the motor, cognitive, and social needs of the children. The assessment instruments were the 
same as in the previous study. Again, the results showed an improvement in response inhibition for the children who received the 
training. The training effects were instead insignificant for WM. 

3.2.1.5. Synthesis of the research findings. In summary, the systematic review revealed broad and positive effects of CT interventions on 
children’s problem solving, complex EFs, such as planning, as well as on core EFs, such as cognitive inhibition and working memory 
skills. Remarkably, these significant effects are found for long interventions, lasting up to 32 h (Çakır et al., 2021), as well as for short 
intervention programs of only 4 h (Brown et al., 2008). Moreover, these effects extend also to children with special needs (Demir, 2021; 
Di Lieto, Castro, et al., 2020) or disadvantaged backgrounds (Brown et al., 2008). 

Effect sizes are typically larger for problem solving, both when problem solving skills are assessed by tasks similar to those proposed 
in the intervention programs (near transfer; effect sizes range from d = 1.31 to d = 1.91), and when they are assessed by different tasks, 
like PISA assessment tools (Akcaoglu & Koehler, 2014, d = 1.05) or self-report scales (Erol & Çırak, 2022, η2 = 0.26). Notably, the 
studies are consistent in showing significant effects of CT interventions even in comparison to active control groups, assigned to other 
STEM or programming activities (e.g., Arfé et al., 2019; Erol & Çırak, 2022). 

Exceptions to these findings are represented by intervention studies focused on single components of CT, such as algorithm 
development (Oluk & Saltan, 2015), studies in which intervention effects were assessed by self-reports or problem-solving ques-
tionnaires instead of performance on cognitive tests or ad hoc problem solving tasks (see Oluk & Saltan, 2015; Çiftci & Bildiren, 2020; 
Çınar & Tüzün, 2021), or studies assessing cognitive flexibility (Özcan et al., 2021). 

CT programs appear very effective even when EF skills are concerned. The dimension of the instructional effect is large for complex 
EFs such as planning (e.g., Arfé et al., 2020, d = 1.27) and moderate to large for core EF skills. Again, the only exception is represented 
by shifting or cognitive flexibility. However, evidence is still limited in this latter case, as only two of the studies examined in this 
systematic review assessed cognitive flexibility. 

3.2.2. Does the cognitive effectiveness of CT vary with children’s age? 
As shown in Table 2, we divided the studies in two age-categories based on the age of their participants. The first category 

comprised older children, from grade 4 to grade 10, the second included preschoolers, first and second graders. The distribution of the 
studies across the two age-categories was balanced. Eleven of the studies considered in this systematic review tested CT programs 
addressed to older students, in one case (Demir, 2021) with mild intellectual disabilities. The remaining eight studies involved children 
from preschool to grade two. Based on our systematic analysis of the literature, CT interventions resulted equally effective for older and 
younger children. 

3.2.2.1. Older age-group. The CT programs appear to be generally effective for participants in the older age-group. Among the eleven 
studies including older participants, only three did not report significant positive effects of the CT programs. One was the study by Oluk 
and Saltan (2015), in which, as anticipated, the insignificant effects could be attributed to the narrow nature of the CT intervention that 
focused on a single component of CT, that is algorithm development. The other two studies reporting non-significant effects, by Çınar 
and Tüzün (2021) and Özcan et al. (2021), proposed structured ER and visual programming interventions to 10th and 4th graders 
respectively. 

3.2.2.2. Younger age-group. Also for the younger participants, the studies reported significant positive effects of CT programs. The only 
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exception is the study by Çiftci and Bildiren (2020), in which far transfer effects of a structured virtual coding intervention were 
assessed by a Problem-Solving Skill Scale (Aydoğan et al., 2012). The assessment tool used in this study could however explain the 
finding. The scale consisted of picture items representing various types of real-life problems. Children (4- and 5-year-old) had to 
understand the problem represented and find the best answer to it. The way problems were formulated and understood by the 
participant could have affected the results. 

In synthesis, CT intervention programs yielded to significant and positive far transfer effects both in the older and younger groups. 
In the younger children significant transfer effects, from moderate to large were observed both for complex EF skills and core EFs, such 
as WM and cognitive inhibition skills (Arfé et al., 2019; Arfé et al., 2020; Di Lieto, Pecini, et al., 2020). For the older children, only 
complex EFs like problem solving and fluid intelligence were assessed, but again the effects were significant and effect sizes, when 
available, were large. 

3.2.3. Which instructional modality (educational robotics/unplugged coding/virtual coding) is most effective? 
Differences in the effectiveness of CT programs appear to be related to the nature (structured or unstructured, and comprehensive 

or not) of the intervention more than to its modality (virtual coding, ER, or unplugged coding). Both virtual coding (visual pro-
gramming) and ER intervention programs resulted effective when they addressed the various components of CT, such as problem 
analysis, planning, evaluating and debugging. Conversely, CT interventions focused on just one component or on programming skills 
solely resulted less effective (Oluk & Saltan, 2015). CT interventions were also effective both when they were specifically tailored to 
boost specific EF skills, like in Di Lieto, Pecini, et al. (2020) and when they were more broadly targeting problem solving abilities (Arfé 
et al., 2019; Arfé et al., 2020). 

Game design or project development programs, in which students are allowed to develop their own projects, have been found 
effective in enhancing the problem-solving skills of older participants (Akcaoglu & Koehler, 2014; Erol & Çırak, 2022). These inter-
vention programs were not addressed to younger children, who typically received more structured interventions, based on tasks with 
specific and predefined objectives. In these structured programs both visual programming and ER tools have been used, resulting 
equally effective. For instance, Arfé (Arfé et al., 2019; Arféet al., 2020 and Di Lieto, Pecini, et al. (2020), found very similar effects of 
virtual coding and ER interventions on 5-6 year-old children’s response inhibition skills: d = 0.65 and d = 0.71 (Arfè et al., 2019; Arfé 
et al., 2020) and d = 0.69 (Di Lieto, Pecini, et al., 2020). 

It must be noted, however, that unstructured game-design or project-development programs and structured visual programming 
interventions, although proposed to children of different ages, yielded similar effects on students’ problem solving or planning out-
comes (Akcaoglu & Koehler, 2014; Arfé et al., 2019). Akcaoglu and Koehler (2014) and Arfé et al., for instance, reported similar large 
effect sizes of project-development and virtual coding interventions on the problem-solving skills of students from 5th to 8th grade and 
1st and 2nd graders respectively. 

In synthesis, when comprehensive structured CT interventions, that involve scaffolding and practicing different CT components, 
are proposed to younger children their transfer effects can be similar to that of problem-solving unstructured programs addressed to 
older participants. This does not mean, though, that the effects of CT interventions at a given age can be independent from their 
structured/unstructured nature. We do not have, indeed, evidence in support of this hypothesis. Conversely, the comparison between 
virtual coding and ER interventions provides evidence of the equivalence of these two CT tools in boosting younger children’s problem 
solving and EF skills. 

3.3. Meta-analysis results: effects of CT/coding interventions on problem solving, planning and core EFs 

The meta-analysis allowed to derive quantitative estimates of the cognitive effects of CT/coding interventions across EFs. The 
omnibus test suggests that at least one outcome differs from zero (χ5 = 195.693, p < 0.001). Table 3 summarizes the results of the 
multivariate fixed-effect model. Fig. 2 depicts the multivariate forest plot. 

The results of the meta-analytic study (Fig. 2) show that except for cognitive flexibility (accuracy), all cognitive outcomes improved 
significantly after children performed coding or programming activities. Problem solving is associated with the highest effect (dppc2 =

0.89), planning with a moderate effect (dppc2 = 0.36), and response inhibition and WM, despite being statically significant, associated 
with lower effect sizes (dppc2 = 0.17, dppc2 = 0.20). 

As explained in the previous sections, due to lack of information from published papers and the impossibility to have always access 

Table 3 
Multivariate fixed-effect model summary.  

Outcome dppc2 SE 95% CI z p 

Cognitive Flexibility Acc. 0.118 0.096 [-0.07, 0.306] 1.227 0.22 
Inhibition Acc. 0.168 0.057 [0.057, 0.279] 2.956 0.003 
Planning Acc. 0.364 0.072 [0.222, 0.505] 5.047 <0.001 
Problem Solving 0.890 0.064 [0.764, 1.016] 13.816 <0.001 
Working Memory Acc. 0.199 0.079 [0.045, 0.353] 2.530 0.011 

Omnibus Test χ5 = 195.7 p < 0.001; ρpre-post = 0.7, ρagg = 0.5, ρmulti = 0.5. 
Note. Each outcome is summarized with the estimated mean effect (dppc2), the standard error, the 95% confidence interval, the z value, and the p- 
value. 
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to raw data, we had to impute three correlations measures in order to compute the meta-analytic model. We also assessed the effect of 
imputing these correlations using a multiverse approach (Steegen et al., 2016). The main idea is to present a collection of different 
analytical possibilities. In the supplemental material, we present the effect of choosing a specific meta-analytic model (fixed vs. random 

Fig. 2. Multivariate Forest Plot Note. Each individual effect is represented with the 95% confidence interval. The dotted line represents the null 
effect. For each outcome, the red diamonds depict the estimated average effect and the 95% confidence interval. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Multiverse Analysis for Problem Solving Note. The x-axis represents the pre–post (⍴pre-post) correlation. On the top, there is the correlation 
between multiple effect sizes for the same outcome (⍴agg) and the correlation between different outcomes (⍴multi). The triangle and the bars 
represent the estimated effect and 95% CI. The red shape is the chosen combination for the meta-analysis. On the right are the different MA models. 
For the univariate model, we computed a fixed or random effect model ignoring the statistical dependence between outcomes. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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effect and univariate vs. multivariate) varying also the imputed correlations. As an example, Fig. 3 presents the multiverse analysis for 
problem-solving. The example shows how choosing a certain model and correlations value does not affect conclusions about 
problem-solving. This strengthens the main meta-analytic result. 

Moderator analyses to statistically test the influence of age and intervention type were not possible, due to the reduced number of 
studies for each outcome. 

3.3.1. Publication bias 
Typically, the required number of studies for a publication bias assessment using funnel plot-based analyses is large (Fur-

uya-Kanamori et al., 2020). Sterne et al. (2011) suggest however a minimum of 10 studies, which may increase though in presence of 
heterogeneity. Using selection models (see Hedges, 1984) the number of studies should be event higher (Jin et al., 2015). For these 
reasons we report the publication bias assessment using the Egger regression test (Egger et al., 1997) only for the problem solving 
outcome that is associated with the highest number of effects (N = 9). We assessed the publication bias for the univariate fixed-effects 
model on problem solving with the chosen correlations’ combination for the main meta-analysis model. The Egger regression is a 
meta-regression model estimating the relationship between sampling standard error and effect sizes. In the presence of publication bias 
(i.e., asymmetry in the funnel plot) the slope should be significantly different from zero. Furthermore, the intercept is usually inter-
preted as the estimated effect size with standard error close to zero. We computed the Egger test using the regtest function from the 
metafor package of R. The relationship between standard errors and effect sizes is not significantly different from zero (z = 0.245,  p =

0.807) and the estimated problem solving effect with zero standard error is 0.833 (95% CI = [0.268,1.397]). Overall, the Egger test 
suggests the absence of evidence for publication bias for the problem solving outcome. 

4. Discussion 

The systematic review and meta-analysis aimed to address three key questions regarding the teaching of computational thinking: 1) 
which specific EFs are most influenced by it? 2) does the impact of CT programs differ based on children’s age? and 3) which 
instructional modality (educational robotics, unplugged coding, or virtual coding) is most effective in enhancing EF skills in children 
and adolescents? The first research question was answered both by the systematic review and meta-analysis. The second and third 
research questions were exclusively tackled through the systematic review of the literature. 

Unlike previous meta-analytic studies (Liao, 2000; Scherer et al., 2019), we exclusively focused on experimental trials. This 
approach allowed us to assess the cognitive effectiveness of CT interventions while accounting for potential confounding factors such 
as repeated testing and practice effects. While this decision improved the quality of our overall conclusions regarding the cognitive 
effects of CT, it also restricted the number of studies available for conducting a statistical analysis of the moderating effects of age and 
type of intervention. As a result, the conclusions on age and type of intervention effects are based on a qualitative analysis of the 
literature. 

4.1. Which EFs are most influenced by the teaching of CT? 

The review of the experimental studies showed that CT interventions are generally very effective in boosting children and ado-
lescents’ higher order and core EF skills. The largest effects were observed on children’s problem solving and complex EFs such as 
planning, but significant positive effects emerge also for core EFs, like cognitive inhibition and working memory. 

The meta-analysis provided statistical evidence to the qualitative conclusions of the systematic review, comparing the effectiveness 
of CT interventions across cognitive skills. Its results confirmed that problem-solving and planning were the cognitive skills that CT 
programs most strongly affected, indicating that children’s inhibition and WM skills were influenced too by these interventions, albeit 
to a lesser extent. 

Most studies reported far transfer effects to problem-solving tasks that are different from those trained by the intervention. Our 
meta-analysis provides thus further support for the transferability of the skills acquired through CT programs to situations that require 
problem-solving abilities, finding however a larger transfer effect (dppc2 = 0.89) than in previous meta-analyses (Scherer et al., 2019), 
both in comparison with the near and far transfer effects (respectively, ḡ = . 75 and ḡ = . 47). Planning is the other EF that reflects most 
the cognitive effects of CT interventions (dppc2 = 0.36), and in this case, the effects are similar to those reported for other higher order 
EFs (i.e., reasoning) in Scherer et al.’s study (g = 0.37). 

The impact of CT interventions on children’s problem solving skills is large both when children’s problem solving skills are assessed 
by tasks similar to those proposed in the intervention programs, such as coding problems (near transfer, e.g., Arfé et al., 2019), and by 
very different tasks, like the problem solving tasks of PISA assessment or self-report scales (far transfer, e.g., Akcaoglu & Koehler, 2014; 
Erol and Çırak, 2022). In addition, these effects emerge also in studies with active control groups, that is, when the effects of CT 
programs are compared to those of STEM or programming activities (e.g., Arfé et al., 2019; Erol & Çırak, 2022). 

CT programs show also moderate far transfer effects on core EF skills such as cognitive inhibition and working memory, with effect 
sizes that are consistent across intervention studies employing different CT methods and tools (Arfé et al., 2020; Di Lieto, Pecini, et al., 
2020). These transfer effect appear however weaker (dppc2 = 0.17 for cognitive inhibition, dppc2 = 0.20 for working memory) compared 
to those found for higher order EFs, such as planning and problem solving. 

Planning and problem-solving are higher order EFs that closely relate to the kind of problem-solving activities involved in CT 
programs. Thus, they may better reflect improvements related to CT. As reported in other reviews and meta-analyses on the effec-
tiveness of EF training programs (Diamond & Ling, 2016; Scionti et al., 2020), although the benefits of EFs training can transfer to 
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untrained skills, the transfer effects appear to be typically narrow, and more pronounced for abilities similar to those trained. 
On the other hand, foundational EFs such as inhibition and working memory may show less stability over time and be more 

influenced by temporary psychological and physiological states, like fatigue or stress, because they depend more on executive control 
processes than planning and problem solving. For these latter EF skills the acquisition of effective metacognitive strategies can be more 
critical (La Paglia et al., 2017). Other meta-analyses have shown that even when cognitive trainings are specifically focused on core EF 
skills, like WM and response inhibition, intervention effects can be small or non-significant, especially when far transfer effects are 
considered (Kassai et al., 2019; Melby-Lervåg & Hulme, 2013). Inhibitory control in particular seems resistant to EF interventions, 
showing non-significant effects to EF computer-based trainings (Cao et al., 2020), and small effect sizes (g+ = 0.18) even when the 
training focuses on inhibition skills (near transfer, Kassai et al., 2019). 

4.2. Does the cognitive effectiveness of CT vary with children’s age? 

CT interventions seem equally effective for older and younger children. Beneficial effects of CT programs on problem solving are 
consistently reported across studies involving older (4th to 10th graders) or younger (preschoolers-2nd graders) participants who 
received comprehensive CT interventions targeting various components of CT, regardless of the specific type of intervention (virtual 
coding or ER; e.g., Erol & Çırak, 2022; La Paglia et al., 2017). 

Older students participating in CT programs improved in performing problem-solving tasks (Akcaoglu & Koehler, 2014; Lai & 
Yang, 2011), in self-reported problem-solving (Erol & Çırak, 2022), and also developed metacognitive skills involved in problem 
solving (La Paglia et al., 2017). For the younger children, significant transfer effects, from moderate to large, were observed both for 
complex EF skills (Akcaoglu & Koehler, 2014; Nam et al., 2019) and core EFs, such as WM and cognitive inhibition skills (Arfé et al., 
2019; Arfé et al., 2020; Di Lieto, Pecini, et al., 2020), although for the latter effect sizes were small. 

Given that all the studies assessing inhibition and working memory in this systematic review and meta-analysis focused exclusively 
on younger children, aged 5–7, it cannot be excluded that age could account for the limited far transfer effects on these EFs. In our meta- 
analysis the moderating effects of age could not be tested owing to the small sample size. However, other recent meta-analytic studies 
that considered the effects of EF training programs on young children’s (3 to 6-year-old, Scionti et al., 2020) or transfer effects of 
programming across a larger age-span (from prekindergarten to college students, Scherer et al., 2019) suggest that age is not a sig-
nificant moderator of the effects observed. Despite these meta-analytic findings, age related effects remain a pedagogically relevant 
research question that deserves more attention, especially if we consider the different plasticity of core EFs across child development 
(McGuckian et al., 2023; Scionti et al., 2020). 

4.3. Which instructional modality (educational robotics/virtual coding) is most effective in enhancing children and adolescents’ EF skills? 

Based on our systematic review the different effects of CT activities appear not to be strictly related to the method or programming 
tool used (virtual coding, unplugged coding or ER), but rather to the structured or unstructured nature of the intervention and the age 
of the participants. 

4.3.1. Structured versus unstructured interventions 
A qualitative comparison between the effectiveness of structured and unstructured CT intervention programs was possible only for 

the older age group (grades 4 to 10). Game-design or project-development intervention programs, that consist in open-ended problems, 
seem much effective in enhancing the problem-solving skills and self-reported problem-solving abilities of these older learners (Erol & 
Çırak, 2022; Nam et al., 2010). Structured interventions, whether alone or combined with unstructured project development, appear to 
be less effective (Çınar & Tüzün, 2021; Özcan et al., 2021). Exceptions are studies in which the intervention addressed students’ 
mathematical problem solving (La Paglia et al., 2017) or was for students with intellectual disabilities (Demir, 2021). 

Younger children received only structured interventions. For them, structured interventions, based on logic games with a single 
correct solution, proved effective both in boosting problem solving and EF skills (Arfé et al., 2020; Di Lieto et., 2020a). Among the 
structured programs that involved younger children, visual programming and ER tools appear to be equally effective. The specific 
effects of virtual coding and tangible (ER and unplugged) coding interventions are discussed below. 

4.3.2. Virtual coding 
The results of the systematic review show that virtual coding interventions, when appropriately designed, result effective for 

students in a large age span, from grade 1 to 8. Twelve of the experimental studies examined in this systematic review tested the 
cognitive effects of virtual coding interventions, and nine of them (75%) reported significant positive effects on problem-solving and 
other EFs. 

CT involves a complex set of cognitive abilities, such as memory, self-regulation, and planning, which are also involved in problem- 
solving (Frensch & Funke, 1995; Keen, 2011). These skills, as well as the development of higher order EF, including problem-solving 
skills, develop significantly from elementary to middle school (Brocki & Bohlin, 2004; De Luca et al., 2003; Luciana & Nelson, 2002; 
Luna et al., 2004), and further on during adolescence (Hooper et al., 2004; Unterrainer & Owen, 2006; Zelazo et al., 1997). For younger 
students, who are still developing foundational EFs (Gathercole et al., 2004; Jonkman et al., 2003; Klenberg et al., 2001) structured 
virtual coding interventions enhance both problem-solving skills similar to those trained during the intervention (near transfer), and 
EFs less closely related to coding, such as planning and inhibition skills (far transfer). For late elementary school students and ado-
lescents who have already developed the foundational EF skills (e.g., inhibitory control, working memory) and metacognitive abilities 
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that are necessary to manage complex coding tasks (Best & Miller, 2010; Conklin et al., 2007; Gathercole et al., 2004; Jonkman et al., 
2003; Klenberg et al., 2001), practicing with ill-defined, or unstructured, virtual coding or programming problems, such as those 
involved in game-design or creative problem solving activities, results most effective. The finding that unstructured virtual coding 
activities seem to work better with older students should not be surprising. As Diamond and Ling (2016) have emphasized EFs need to 
be challenged, not just used, to promote improvement. 

4.3.3. Educational robotics 
Based on a concrete sensory-motor experience, ER or unplugged coding activities, are more often addressed to younger children, 

that is, preschoolers or first graders, or students with cognitive disabilities (Demir, 2021; Di Lieto et al., 2020b; Nam et al., 2019). Out 
of the 19 studies included in this systematic review, only two experimental studies (Çınar & Tüzün, 2021; La Paglia et al., 2017) 
specifically examined the effects of ER interventions on late elementary school or middle school students, producing contrasting 
findings. La Paglia et al. (2017), found positive far transfer effects of ER on fifth graders’ problem-solving skills. Çınar and Tüzün (2021) 
found no significant far transfer effects of ER to tenth graders’ self-reported problem-solving. 

In the younger, 5–6 year-old children, ER interventions seem to have general positive far transfer effects on EF skills, improving 
significantly children’s problem-solving skills (Çakır et al., 2021; Nam et al., 2019), as well as core EFs (response inhibition and 
working memory, Di Lieto, Pecini, et al., 2020; Di Lieto, Castro, et al., 2020). The benefits of ER seem however reduced for children 
with special educational needs (children with sensory, motor, or cognitive disabilities, or attention deficit hyperactivity disorder, 
and/or specific learning disorders, Di Lieto, Castro, et al., 2020). For these children, tangible, unplugged coding activities, seem more 
effective (Demir, 2021). A possible explanation is that although ER can sustain EF through concrete and tangible activities, it requires 
basic computer skills and memory and cognitive resources that students with intellectual disabilities may lack (Demir, 2021; Di Lieto 
et al., 2020b). 

Since all studies focused on ER interventions also involved structured problem-solving activities, it is also difficult to determine 
whether their beneficial effects for younger children were due to the tangible (ER) or structured nature of the intervention. In fact, 
when narrowing our analysis to younger, 5-6 year-old children, structured virtual coding and ER activities seem to have equivalent far 
transfer effects on core EFs (Arfé et al., 2019, 2020; Di Lieto, Pecini, et al., 2020) and higher order EF skills, like problem solving (Arfé 
et al., 2019; Nam et al., 2019). These findings seem in contrast with those of Scherer et al. (2020), who report larger effects of 
instructional programs based on physicality, such as robotics (ḡ = 0.72) than of virtual coding (ḡ = 0.44), suggesting that the medium 
used in the instructional intervention can play a role. Direct comparisons between structured virtual coding and ER interventions are 
needed to test this hypothesis and could be a goal of future studies. 

5. Conclusions 

Over the last 20 years, computer scientists, experts in education, and psychologists have explored the cognitive effectiveness of CT- 
based activities or instructional programs, primarily in the domain of children’s EFs (e.g., Arfé et al., 2020; Brown et al., 2008; Di Lieto, 
Pecini, et al., 2020; Lai & Yang, 2011). However, there have been very few systematic reviews and meta-analyses that synthetized this 
literature (Liao, 2000; Liao & Bright, 1991; Scherer et al., 2019, 2020). Systematic reviews and meta-analyses constitute comple-
mentary and fundamental tools of evidence-based practice, particularly when the focus of interest is on the evaluation of intervention 
effects, like in this study. 

Overall, the systematic review and meta-analysis presented in this paper confirm that CT programs, that most countries are recently 
integrating in their school curriculum (Lye & Koh, 2014), can be a powerful tool to boost and support the development of EFs, 
particularly higher order EFs like planning and problem solving, but also core EFs, like response inhibition and WM that underpin and 
predict early and late academic achievements (Clark et al., 2010; Jacob & Parkinson, 2015; Spiegel et al., 2021). 

Despite variation in outcomes across EFs, 14 of the 19 studies considered in this systematic review (74%) reported evidence of EF 
benefits. This is a higher percentage than that reported by Diamond and Ling (2016) for cognitive trainings (from 20% to 60%) and 
aerobic exercises (43%). While, it is remarkably similar to the effectiveness of other school programs, such as Montessori and Tools of 
the Mind (75%). As for these programs, an early integration of CT/coding in the school curriculum may be strategic for children’s 
future academic accomplishments. 

School embedded programs are comparatively more effective than cognitive training interventions targeting EFs (Diamond & Ling, 
2016). When the training is part of children’s daily school curriculum its activities become meaningful to children, and children may 
better perceive the importance and utility of the abilities learnt, their social value, and their transferability to other learning situations. 

The finding of a beneficial effect of CT, especially on higher order EFs, is also important for another reason. Although a number of 
intervention studies have focused on improving EFs (e.g., Passolunghi & Costa, 2016; Pozuelos et al., 2019; Schmitt et al., 2015), few 
have demonstrated effects on higher order EFs (Diamond & Ling, 2016; Scionti et al., 2020). Enhancing these higher-order cognitive 
skills, also bears on a child’s adaptive capacities to the social environment (Barkley, 2001; Huepe et al., 2011). 

Our systematic review found that the effects of CT/coding did not seem to vary by the training method or tool (virtual coding/ 
unplugged/ER). Comparisons between training methods is however limited by the fact that different types of interventions have been 
typically addressed to different age-groups. The lack of direct comparisons between virtual coding and ER or structured and un-
structured intervention conditions stands out as a prominent limitation in the existing literature. Another notable gap lies in the 
scarcity of studies examining the efficacy of CT activities in enhancing core executive functions (working memory, response inhibition, 
cognitive flexibility) in older students. CT programs may be particularly suitable to support the development of core EF skills even 
during late elementary schools and adolescence. 
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5.1. Limitations and future directions 

In addition to the limitations inherent in the existing literature, it is important to acknowledge some limitations of the present meta- 
analysis. The first concerns the lack of complete data from published studies. For computing the appropriate meta-analytic model, we 
needed several correlation values often omitted in the papers selected. We addressed this problem by employing the multiverse-like 
sensitivity analysis that clearly shows when a certain imputed correlation has a relevant impact on the meta-analysis model. 

A second limitation of this systematic review and meta-analysis is that, by applying rigorous inclusion criteria, we could include a 
limited number of studies. For instance, as one e of the inclusion criteria for this systematic review was the peer-reviewed status of 
publications, we did not consider grey literature. Consequently, we were not able to robustly assess publication bias or consider 
important moderators, such as age and type of intervention, in the meta-analysis. With the growing number of experimental studies in 
the field of CT, future meta-analyses will be able to compare the effectiveness of different types of CT intervention, or how it varies with 
students’ age. Finally, other variables could influence the effectiveness of a coding training and should be considered in future studies; 
examples are motivational factors like self-efficacy (Tsai, 2019), or gender (Montuori et al., 2022). These variables may have an 
important role in moderating children’s response to coding interventions. The spread of experimental research in the area of CT 
studies, and the interdisciplinary collaboration between computer scientists and psychologists will soon allow to address also these 
factors. 
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Yaşar, O. (2018). A new perspective on computational thinking. Communications of the ACM, 61(7), 33–39. https://doi.org/10.1145/3214354 
Zelazo, P. D., Carter, A., Reznick, J. S., & Frye, D. (1997). Early development of executive function: A problem-solving framework. Review of General Psychology, 1(2), 

198–226. https://doi.org/10.1037/1089-2680.1.2.198 
Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., Chiang, J. K., Hongwanishkul, D., Schuster, B. V., & Sutherland, A. (2003). The 

development of executive function in early childhood. Monographs of the Society for Research in Child Development, 68(3). https://doi.org/10.1111/j.0037- 
976x.2003.00260.x. vii–137. 

Zhang, J. X., Liu, L., Pablos, P. O., & She, J. (2014). The auxiliary role of information technology in teaching: Enhancing programming course using alice. International 
Journal of Engineering Education, 30(3), 560–565. 

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, Article 103607. https://doi. 
org/10.1016/j.compedu.2019.103607 

C. Montuori et al.                                                                                                                                                                                                      

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3214354
https://doi.org/10.1037/1089-2680.1.2.198
https://doi.org/10.1111/j.0037-976x.2003.00260.x
https://doi.org/10.1111/j.0037-976x.2003.00260.x
http://refhub.elsevier.com/S0360-1315(23)00238-5/sref148
http://refhub.elsevier.com/S0360-1315(23)00238-5/sref148
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607

	The cognitive effects of computational thinking: A systematic review and meta-analytic study
	1 Introduction
	1.1 The causal link between CT and cognitive abilities
	1.2 Prior meta-analytic studies on the cognitive effects of CT/programming

	2 The systematic review and meta-analytic study
	2.1 Research questions
	2.2 Method
	2.2.1 Literature search, screening and eligibility criteria
	2.2.2 Studies coding and data extraction
	2.2.3 Quality assessment
	2.2.4 Meta-analysis: data extraction

	2.3 Statistical analysis
	2.3.1 Effect size computation
	2.3.2 Statistical model


	3 Results
	3.1 Characteristics of included studies
	3.1.1 Quality of the studies

	3.2 Results of the systematic review
	3.2.1 Which EFs are most impacted by the teaching of CT?
	3.2.1.1 Problem solving
	3.2.1.2 Game-design and project-development interventions
	3.2.1.3 Other visual programming/educational robotics and unplugged coding interventions
	3.2.1.4 Planning and core EFs
	3.2.1.5 Synthesis of the research findings

	3.2.2 Does the cognitive effectiveness of CT vary with children’s age?
	3.2.2.1 Older age-group
	3.2.2.2 Younger age-group

	3.2.3 Which instructional modality (educational robotics/unplugged coding/virtual coding) is most effective?

	3.3 Meta-analysis results: effects of CT/coding interventions on problem solving, planning and core EFs
	3.3.1 Publication bias


	4 Discussion
	4.1 Which EFs are most influenced by the teaching of CT?
	4.2 Does the cognitive effectiveness of CT vary with children’s age?
	4.3 Which instructional modality (educational robotics/virtual coding) is most effective in enhancing children and adolesce ...
	4.3.1 Structured versus unstructured interventions
	4.3.2 Virtual coding
	4.3.3 Educational robotics


	5 Conclusions
	5.1 Limitations and future directions

	Credit author statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


