
A Reactive Architecture for RoboCup 
Compet i t ion 

E. Pagello 12, F. Montesello 1, A. D'Angelo 3, C. Ferrari 1 

1 Dept. of Electronics and Informatics, Padua University, Italy 
2 Inst. LADSEB of CNR, Padua, Italy 

3 Dept. of Mathematics and Informatics, Udine University, Italy 

Abst rac t .  We illustrate PaSo-Team (The University of Padua Simu- 
lated Robot Soccer Team), a Multi-Agent System able to play soccer 
game for participating to the Simulator League of RoboCup competition. 
PaSo-Team looks like a partially reactive system built upon a number of 
specialized behaviors, just designed for a soccer play game and generating 
actions accordingly with environmental changes. A general description of 
the architecture and a guideline of main ideas is presented in the paper, 
whereas a more detailed description of actual implementation is given in 
the appendix. 

1 Introduction 

We have experienced that  a soccer game should successfully deal with the reac- 
tive phase before any at tempt  to explore the reasoning and planning phase of 
the game. This approach stems from the observation that  at each time of the 
game, scoring a goal can b e  easily recognized by every player to be an individ- 
ual target,  besides a global one. This allows the single agent to try, whenever 
possible, to score the goal directly. This is not the case of a situation such as a 
robot engaged to reach a fixed location in a well structured environment, like a 
floor inside a building with many offices. Before starting any useful action, such 
a robot should acquaint with the world building a map it shall use later to find 
out how to fulfil this task. Thus, it needs a planning phase because it has no 
way to know immediately what action to perform towards the achievement of 
the goal. In the simulated soccer game, instead, at each time of the game every 
player knows how to do to realize its task, by using only perceptive information. 
This means that  it is possible to consider every player to be able to bring to 
completion his own task. In this perspective we have faced the design of a MAS 
starting with a reactive approach. 

In this paper we illustrate how we solve the problem of coordination among 
agents using an implicit communication approach whose motivation stems from 
the simplified assumption that  a number of low level reasoning capabilities can 
be endowed into the system.. 

2 A r b i t r a t i o n  a n d  I m p l i c i t  C o o r d i n a t i o n  

As it has been pointed out in literature [1] a sound arbitration mechanism is 
the base for an appropriate performance of a behavior-based autonomous sys- 



435 

tem. In our case a further difficulty arises, due to the simultaneous presence of 
several playing agents in the same environment. Starting from the pioneristic 
subsumption architecture originally devised by Brooks [3], a number of innova- 
tive behavior-based systems have been proposed in literature (Connell [4], Maes 
[7], Anderson [1], Kaelbling [6]. 

Their proposals are dominated by the concept of arbitration which results 
in an either spatial or temporal ordering of behaviors. The former causes the 
concurrent activation of a set of primitive reflexive behaviors, also referred to as 
static arbitration, the latter brings about a sequential activation of different sets 
of primitive reflexive behaviors, also referred to as dynamic arbitration. 

However, because the inclusion of temporal ordering appears too problematic 
when it is devised within a general multiagent framework, we have implemented 
a static arbitration as a special purpose behavioral module where pre-processed 
sensor data  are always channeled to discriminate a candidate skill to be enabled 
as a response to typical perceived patterns. Every time sensor data  are directly 
channeled between the perception block and the selected behavior, this behavior 
is activated whereas the remaining ones are inhibited. 

The resulting architecture, shown in fig. 1, resembles partly the proposal of 
Anderson and Donath [1] and partly that  of D'Angelo [5] in what the collection 
of boolean values (flags), updated using information supplied from sensor da ta  
pre-processing, defines a coarse- grained global state of an agent which controls 
behavior switches as a rough inhibitor/activation mechanism. 

Vision sent 
server 

Visuel 

and 

Audible 

P~cepton 

Focus of attention 

I 

r t on FLAGS 

Comme¢ld to 
1he ~er "~r 

[ 3 e h a ~  n 

Fig. 1. agent arbitration 

At each time of the game, every team player will be enabled with a behavior 
which depends on both its current position and orientation in the soccer game 
field and the pattern of the objects the agent is aware of. So, though every agent 
has the same cloned structure, it does not need to be activated with the same 
behavior. This means that  is the world that  makes differences among the agents. 

Now how can we get any coordination among agents equipped with this 

aposmau19238
Oval



436 

sketched architecture? A MAS fully distributed architecture that uses a behavior- 
based approach is proposed by Parker [9] that consider only the cooperative 
side of coordination among heterogeneous mobile robots, with attention to fault 
tolerance. 

Another approach is proposed by Rude [10] with the IRoN architecture. He 
considers two kind of cooperation among robots, namely via implicit or ex- 
plicit communication. With implicit and explicit communication we intend, as 
in Rude a passing of information respectively non-intentional and intentional. 
The first is realized "looking" at the external behavior of the other agents, with- 
out those agents "planned" to transmit whatever information. The second is 
realized sending volunteerly explicit coordination massage to the other agents. 
In our approach we intend to fully exploit only the implicit communication to 
perform a higher-level quality of cooperation and competition too. 

3 T h e  B a s i c  B e h a v i o r s  

The behaviors used in building the body structure of the agents have been de- 
veloped to capture the abilities of a real soccer player. We have mainly tried to 
reproduce low-level skills. 

In a soccer game individual skills are the base that every team needs before 
trying any kind of team strategy. Furthermore, we have noticed that the subgoal 
of scoring a goal is performed, at last, by a single player and this means that 
though it is wrong to consider a soccer as a single-player game, the acquisition 
of individual skills becomes a primary task. 

The system implemented by Veloso and Stone [11] allows the players to learn 
low-level skills, as shooting to the goal, or intercept the moving ball, using neural 
networks. On the contrary, we have chosen an analytical approach, using the 
motion laws featured by the server to realize the simulation. The behaviors are 
described in appendix. 

4 T h e  C o o r d i n a t i o n  M o d e l  

To extract significant information useful for coordination and representing a 
sort of global state of the agent or of the system, we use, immediately after every 
received visual or anditive message, a function named estimate_state, that builds 
for each player the data structure representing the world as the player saw it 
last time. Every player needs an individual execution of this function, because 
every player has his own view of the world. This data structure contains the last 
absolute seen positions, speed and orientation information of each mobile object 
in the field and other useful information. Using this data structure a player is able 
to extract, via dedicated functions, the flags used in the arbitration, like kickable, 
ball_stolen, near_ball, passage. Those represent individual states for a single agent. 
Another flag is significant to understand the arbitration: the attack/defence flag. 
This flag, that is one of the descriptors of the global state of the system, beside 

aposmau19238
Oval



437 

that  of the agents, is used to identify the attack or defence states of the team 
(attack/de]ence playmode). The flag is set when a team-mate become owner of 
the ball. Subsequently the same player sends an auditive command to all the 
players presents in the hearing area. This command, sent to the server, causes 
an auditive perception to all the players standing up within a 50 meters radius 
circle, and consequently sets the attack/defence flag. 

The basic coordination mechanisms induced by the arbitration involve usu- 
ally two behaviors at a time. In the attack playmode, such behaviors characterize 
two players belonging to the same team, that  is the ball-holder and a potential 
receiver of the ball. We want to realize the simultaneous activation of the be- 
havior playball for the player with the ball and the behavior smarcamento for 
the next ball-holder candidate. The coordination arises through the simultane- 
ous activation of the pair {bhv_l, bhv_2} for any pair of players, where, during 
attacking, bhv_l = playball, bhv_2 = smarcamento, whereas, during defending, 
bhv_l = bhv_X, bhv_2 = interdict. The behavior bhv_X is not a real implemented 
behavior, but  it is referred to the apparent behavior of the opponent. Actually, 
the opponent estimated behavior is chasing the ball, so our player must compete 
against it. 

To realize this kind of interaction we have built a rigid arbitration which 
choose a candidate behavior looking at the global flags representing particular 
states of the whole team of agents, and at some local flags related to states of 
a single agent. In this way the emerging cooperative behavior appearing during 
the game may be considered as an eusocial behavior, a collective behavior due to 
the interaction of "genetically" determined individual behavior, as discussed in 
McFarland [8]. The proposed arbitration is an hint for the emerging of a social 
behavior, like an ant colony that  seems to be a relatively smart  being even if 
formed by a finite number of pure instinctive individuals. The emergence of some 
sort of intelligent behavior like triangulations or non explicit pass arise mainly 
from the interaction between the single players and the environment, namely 
in our case between our players and the opponents, exploiting advantageously 
their dynamics, as shown in fig. 2. In (1) an enemy defender chase the ball 
(hypothized reasonable behavior assumed by the enemy player nearest to the 
ball) owned by a friend player activated on the playbaU behavior. In this way 
the defender creates a free area in its rear. So in (2) a forward, activated on 
the smareamento behavior, find the new hole (closed dotted line) and go to take 
position. With (3) the coordinated action is closed. The ball's owner see the 
forward in a good position and make the pass. Without  communication. 

There are other two kind of coordination realized, this time only among our 
players. The first concerns the coordination among our player in defence play 
mode. When the opponents are playing the ball, our players apply a negotiation 
mechanism to select the teammate that  must make pressing, chasing for the ball. 
This lets the other teammates free to assume another useful defensive behavior 
like interdict. 

The second one concerns the coordination of the whole team, during the 
game. It is realized changing dynamically the default_pos of every player in the 

aposmau19238
Oval



438 

@ 

@ 
Q ? 

@ 0/(3 

"'~.- .......... / l ..... - 

"4% / '  

............... ) @ ~ t • 
/// i 

@ 

Fig. 2. observed emergent pass 

team, accordingly with the ball position. This drag all the players, according to 
their roles, to follow the ball in case of attack or to back gradually to the defence 
position in case of defence. 

5 T h e  P a S o - T e a m  

A full description of the implementation of PaSo-Team Clients (The University 
of Padua Simulated Robot Soccer Team) is given in [2]. For a brief description 
see the appendix. 

6 Conclusions  

We started by assuming that the main characteristic of soccer game is highly 
reactive, and from the fact that in the robot soccer competition all clients have a 
clear understanding of their task. We solved the problem of coordination among 
agents using an implicit communication approach, without using any form of 
reasoning about agent's intentions. We used this approach for designing PaSo- 
Team, our multi-agent system for RoboCup, relying on the following criteria: 

- The coordination among agents is realized through a cooperative or compet- 
itive interactions respectively with team-mates and opponents. 

- Flags setting gives flexibility to PaSo-Team performance, allowing to gener- 
ate different soccer team able to play games with different ability. 

- Arbitration is done separately over each agent, but cooperative coordination 
is obtained between pair of agents by ball exchanges, among several agents 
by pressing negotiating, and over all team by dynamically changing default 
positions. 

aposmau19238
Oval



439 

- The team architecture really exploits the interaction dynamics among the 
agents and the environment, and if possible exploits the emergent  collective 
behavior, without using explicit communication to realize coordination. 

Acknowledgements 

This research could not be done without the enthusiastic part icipat ion of the 
students of Electronics and Computer  Eng. Undergr. Div. of Padua  University 
Eng. School. Financial support  has been provided by both CNR, under the Spe- 
cial Research Project  on "Real-Time Computing for Real- World" and Murst ,  
under the 60% Grants. A particular thank is due to the Industrial  Fi rm Calearo 
S.R.L., a car aerials and cables manufacturer,  located in Isola, Vicenza(Italy),  
that  have provided coverage of all expenses for part icipating at  I JCAI  Confer- 
ence. We like to thank also Padua Branch (Italy) of Sun Microsystems, tha t  
provided us freely a SUN ULTRA1 for developing PaSo-Team. 

References 

1. T.L. Anderson and M. Donath. Animal behaviour as a paradigm for developing 
robot autonomy. In Pattie Maes, editor, Designing Autonomous Agents, pages 
145-168. The MIT Press, Cambridge (MA), 1990. 

2. F. Bidinotto, A. Bissacco, M. Dal Santo, W. Frasson, S. Griggio, A. F. Grisotto, 
S. Marzolla, F. Montesello, and E. Pagello. Implementing a soccer client team for 
robocup '97 competition. Technical report, LADSEB-CNR, Padua (I), 1997. 

3. R. Brooks. A layered intelligent control system for a mobile robot. IEEE J. on 
Rob. and Aut., RA-2:14-23, Apr. 1986. 

4. J. H. Connell. Minimalist Mobile Robotics. Number 5 in Perspective in Artificial 
Intelligence. Academic Press, 1990. 

5. A. D'Angelo. Using a chemical metaphor to implement autonomous systems. In 
M. Gori and G. Soda, editors, Topics in Artificial Intelligence, volume 992 of Lec- 
ture Notes in A.L, pages 315-322. Springer-Verlag, Florence (I), 1995. 

6. L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In 
Pattie Maes, editor, Designing Autonomous Agents, pages 35-48. The MIT Press, 
Cambridge (MA), 1990. 

7. Pattie Maes. Situated agents can have goals. In Pattie Maes, editor, Designing 
Autonomous Agents, pages 49-70. The MIT Press, Cambridge (MA), 1990. 

8. D. McFarland. Towards robot cooperation. In From Animals to Animats 4, Int. 
Conf. on Simulation of Adaptive Behavior (SAB-94), Brighton, 1994. 

9. L.E. Parker. Alliance: an architecture for fault tolerant, cooperative control of 
heterogeneous mobile robots. In Proc. of IROS'97, pages 776-783, 1994. 

10. M. Rude, T. Rupp, K. Matsumoto, S. Sutedjo, and S. Yuta. Iron: An inter robot 
network and three examples on multiple mobile robots' motion coordiantion. In 
Proc. of IROS'97, pages 1437-1444, Grenoble, Sept. 1997. 

11. P. Stone and M. Veloso. A layered approach to learning client behaviours in the 
robocup soccer server. In h t t p : / / w w w . c s . c m u . e d u / a f s / c s / u s e r / m m v / w w w /  
papers/AAI96.ps.gz, 1997. 

aposmau19238
Oval



440 

Appendix 

Co-authored by F. Bidinotto, A. Bissacco, M. DatSanto, W.Frasson, S. Griggio, 
A.F. Grisotto, S. Marzolla, F. MonteseUo, E. PageUo - Dept. of Electronics and 
Informatics, The University of Padua, Italy 

Client  Structure  

Our software client built for RoboCup competition is composed of various el- 
ements, each working at different steps. An important aspect to care of is the 
reception and transmission of commands from and to the server, that takes place 
using a socket. The communication via socket requires a continuous control of 
the state of the socket itself, because of the unpredictability of the exact in- 
stant of the visual perception sent by the server. Each client controls the socket 
looking at a SIG-IO, given by C++ library, that is activated when messages 
are present in the receiving queue. A signal handler pops the message from the 
queue and sends it to the parser which extracts the suitable information. All 
communication are realized using the UDP/IP protocol. 

Every behavior, activated by a client, generates commands for the server, 
that are stored in another queue, the command list, using the same protocol. 
The timing of reading this list is provided every 100 ms by a timer synchronised 
with the SIG-IO controlling the socket. In such a way, commands are sent to the 
server without loosing a single command. 

Est imators  

When the information are received from the parser, which stores the relative vi- 
sual information for each player, another function, named estimate.state extracts 
from the relative data the absolute ones. These data allow to reason about the 
absolute position, orientation and speed of the players and every other object in 
the field. 

The estimate of the positions and orientation, using the relative information 
sent by the server, is done with a geometrical approach, looking for every fixed 
object and making triangulation to recover the absolute ones. Extracting this 
information is not simple, because sometimes, when the player is in the neigh- 
bourhood of field border, the only visible objects are the side lines, which provide 
too few information to allow to retrieve a reasonable estimate. 

Therefore, tree different situations are evaluated, relatively to the available 
relative visual information: 

- The first case happens when a player watches two fixed objects. This allows 
a good estimate of the absolute position followed by the estimate of the 
absolute orientation 

- The second case happens when a player watches only one fixed object and 
a border line. Then, we estimate first the absolute orientation and later the 
absolute position. The estimate is worse than the previous case. 

aposmau19238
Oval



441 

- The third case, the worst one, happens when no fixed objects are visible, 
or one single fixed object only is available, but  no border lines. Then, it is 
impossible to retrieve whatever kind of estimate. Thus, we use the memory of 
the past sent commands to estimate the current position from the available 
last one. 

For acting in and reacting to the environment we used both absolute and 
relative information. For chasing the ball, turning with ball, we used relative 
information. We used the relative approach for this skills because of the bet ter  
accuracy of the estimated values. With this approach we can evaluate the tra- 
jectory of the moving objects (usually the ball) predicting the future positions 
of the ball itself and trying to intercept or control it. 

B e h a v i o r s  

The following ones are the behaviors implemented to provide the interaction 
with the environment. The only behavior that  does not generate commands for 
the server is the arbitrate behavior. The remaining behaviors are all sending 
commands. 

S~cerS;~ 
HANDLER Cl/ENT 

Fig. 3. agent architecture 

a r b i t r a t e ( )  It is always active. It analyses the flag structure and activates the 
right behavior. It is implemented in a rigid manner, actually using sequences of 
i f  statements. 

p l ayb a l l  0 It provides a player with the commands able to realize the correct 
actions when it owns the ball. 

This means: 

aposmau19238
Oval



442 

- 1. taking the ball in a free from enemies direction 
- 2. deciding if passing or not the ball 
- 3. testing dangerous situations. If running with the ball (or passing it) be- 

comes too dangerous, then the client throws the ball in a free from enemies 
direction. 

chase() It forces the player to chase tile ball. 
This may happen in two ways, named stamina-preserving and stamina-consuming. 

The former is invoked, when the ball is far whereas the latter, when the distance 
to the ball is lower than 7 meters. 

goto_defaul tpos 0 It moves players to the default position according to the 
invoked schema. 

The schema depends on the ball position. This means that for an attacking 
team the player's default positions change with the ball position, so that the team 
itself is lined-up in the right manner to perform a coordinated attack action. 

pressing() Activated in defence playmode, it allows the coordination of a team 
when the problem to be solved is who must chase the ball?.. 

We solved this problem via a negotiation based on visual and auditory infor- 
mation. The selected player makes pressing, chasing the ball that is in possess 
of the opponents. 

defence 0 Activated in defence playmode, it provides the defenders, the wings 
and the midfielder with the skill of controlling and breaking the enemy's play. 

This task is realized in two ways: 

- 1. wings and midfielder: the players move dynamically between the ball and 
the enemies, to interdict the play. A mechanism select which one, among our 
~layers, has to take care of each enemy. 

- 2. defenders: the outsiders dynamically keep a position between the enemy 
forwards and the nearest goalpost, to avoid a direct shoot to goal. The in- 
siders keep symmetrically a position that allows to control an approaching 
central enemy, avoiding field areas to be not defended. 

l ine -up0  It is a defensive behavior for forwards and moves themselves to a 
default position. 

s m a r c a m e n t o  0 It is an attacking behavior for the players without ball. It 
moves dynamically the players toward the most free area, preparing them to 
receive a passage. It is based on a random search algorithm that looks for a 
minimum of a function in a 2-D space. This function represents the degree of 
freedom of the player in the field. 

aposmau19238
Oval


