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Chapter 1

Introduction

1.1 Is the Standard Model truly a good model?

The course of theoretical particle physics has been very successful in the last decades. The
Standard Model, based on Quantum Mechanics and Special Relativity principles, proved to
be faithfully up to the scale proven at LHC, namely order ten Tev. It has received different
confirmations and proofs from various experiments, and thus it is an excellent model that
describes gauge interactions so far. Fermions come in three families of leptons that differ
only by masses. The standard model has been confirmed numerous times and also provides
a good amount of predictions. On the other hand, it has several drawbacks. There are a
number of free parameters, such as coupling constants, mixing angles, and masses in the
model, which have to be measured from experiments and there is no known principle to
fix them. There is an even larger degree of arbitrariness in the choice of the Gauge group,
namely SU(3)× SU(2)×U(1), which corresponds to the strong, weak, and hypercharge
interactions, respectively. This is only one single choice of field theory out of the infinite
class of possible local quantum field theories. Another issue that arises, studying the Standard
Model of particle physics, regards naturalness, or in other words, the problem of fine tuning.
Indeed, some parameters (Higgs mass and θ term) necessitate fine-tuning at tree level in
order to obtain the correct experimental results, in light of the great quantum corrections
these quantities receive. The list of problems is not yet finished, huge complications arise
when trying to couple the Standard Model with gravity. Indeed, approaching the quantisation
of gravity around a flat background results in infinities in the related Feynman diagrams.
The latter cannot be tamed by the usual renormalisation techniques [1]. This feature is in
common with all the other theories in the framework of local quantum field theories, it is
not possible to quantise General Relativity with the usual well-known method of QFT. Fine
tuning is related also to this last issue, indeed without new interactions beyond the Standard
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Model, there would not be any fine tuning problem. One last, pending puzzle is the one
regarding the Cosmological Constant. The Standard Model predicts its values to be various
(order 70) orders of magnitude higher than the observed value [2]. Other small problems also
arise when considering the lack of particles to serve as dark-matter candidates or the lack of
a first-order phase transition needed for baryogenesys.
On the other hand, a truly fundamental theory should be able to include gravity at a quantum
level and possibly solve the previous puzzles. There have been many attempts to address
some of these problems over the years.
Supersymmetric extensions of the Standard Model have been considered to solve the fine
tuning issue regarding the SM parameters, but they do not solve any of the fundamental
problems related to the shortcomings of quantum field theories, in particular supersymmetric
extensions of gravity, supergravity theories, do not appear to be perturbatively renormalizable
either (even though there have been extensive studies that show divergences in N = 8
supergravity do not show up before five loops, and current consensus is that the first counter-
term appears at seven loops, though it is still possible that its coefficient is vanishing [3]).
This may be due to the fact that space-time itself should lose its continuous nature at Planck
length scale and its geometry be no more smooth. For example, an option could be changing
the smoothness of the spacetime itself at small Planckian distance scales and discretising in
some manner. Another possibility is non-commutative geometry, which assumes that the
spacetime coordinates do not commute and instead obey an uncertainty principle, leads to a
description of quantum gravity, these formulations have been ruled out by experiments at
Fermilab [4], where possible variations of photon speed with energy have been tested up
to energy scales beyond the Planck scale. Similarly, the approach of loop quantum gravity
leads to quantisation of space-time at very small distances. Still, this approach lacks a
unifying framework between gravity and the other sectors (matters), it fails to reproduce
General Relativity in some limit and its perturbative expansion, and it also fails to describe
how divergences [1] are cured by the quantisation procedure and all the elementary tests
about black holes. In addition, their formulation is not yet at a level where it is possible to
perform tests on the theory. An interesting approach is the one proposed by Weinberg on the
asymptotic safety of gravity [5], which prescribes the existence of a safe UV fixed point for
General Relativity. At the time of writing this thesis, there were no clues about the existence
of such a fixed point.
String theory, on the other hand, starts from a different perspective. Particles are not anymore
fundamental objects and not even space-time is; instead 1-dimensional objects called strings
become the new fundamental constituent of the theory. These objects have an intrinsic length
ℓs, so they cannot be used to prove physics at scales smaller than this length. Basically, there
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is no meaning to the geometry of space-time below this scale. In addition, fields, particles,
and space-time are emergent phenomena coming out of strings excitations. This provides a
unifying framework for gravity and the other forces.
The theory possesses many useful and relevant features. In order to be unitary, preserve
local Lorentz invariance and be anomaly-free, the bosonic string theory must live in 26
space-time dimensions, if we add supersymmetric partners and write down a supersymmetric
theory the number of dimensions falls down to 10. The perturbative expansion of superstring
theory is finite [6, 7], and explicit computations have been performed up to 2 loops order
[8–16]. Implying that individual loops are free of UV divergences. On the other hand,
the convergence of the perturbation series and the completeness of the theory is still under
debate. Obviously, the theory contains both open and closed strings, the latter give rise
to the degrees of freedom of gravity, while the former provide the degrees of freedom of
gauge theories. In addition, it was soon shown that the various string theories were all linked
and that are different realisations of an eleven-dimensional theory, called M-Theory (or the
theory of everything). The number of dimensions is related to the fact that 11 is the maximal
space-time dimension where it is possible to have a supergravity theory without higher spin
fields (with linear realisation of supersymmetry and with a single time-like direction).

Fig. 1.1 Relations among various String Theories and M-Theory

From the first years, after it was discovered that String Theory encapsulated both gauge
theories and gravity, people soon realised that there were too many space-time dimensions
with respect to the ones we can sense in our universe. This brought back to the stage
the old concept of dimensional reduction and compactification. The idea first came to
Theodor Kaluza in 1919 and then was perfected by Klein in 1926. They started with a
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pure gravitational theory in five dimensions, namely the Hilbert–Einstein term, with a 15-
components metric, and assuming 1 space-like dimension is curled upon itself, forming a
circle, they deduced, using the so-called cylinder conditions (fields do not depend on this
fifth coordinate) a four-dimensional theory which contained the usual General Relativity
term plus Maxwell theory and a scalar. However, this reduction presented many problems
when applied to string theory. Most of the problems arose because, by using Kaluza–Klein
reduction (KK reduction) on a torus in supergravity, it was not possible to have theories with
broken supersymmetry in lower dimensions. This was a great issue, because in our world we
do not observe supersymmetry at the energy scales we have tested so far, so supersymmetry
should be a broken symmetry in the current phase of our universe. Another problem was
the presence of a huge amount of massless scalar fields, parameterizing the geometry of
the internal space-time (the compactification manifold). Being massless, they may be the
mediator of long-range forces not observed in nature; therefore, they need to be stabilised
(gain mass). In order to solve these problems, in 1979 Scherk and Schwarz identified a new
method of dimensional reduction called generalised reduction. In Appendix A there is a
detailed description of the KK and Scherk and Schwarz reductions. The latter used internal
and spacetime simmetries to give the fields a particular dependence on the compactified
coordinates, this would result in mass terms for the various field, and therefore solving
the problem of moduli stabilisation (at least partly). In addition, if we make explicit the
dependence on the compactified coordinates for the gravitino(s) and not for the graviton, we
would also be able to break supersymmetry in lower dimensions.
In the late 90ies, people realised that string theory wasn’t only a theory of strings, but it
encompassed higher-dimensional objects where the ends of open strings could move, namely
D-branes. These objects can be charged under some gauge groups. Other higher-dimensional
objects were also introduced later, such as O-planes. These concepts made possible the
development of other ways to solve the moduli stabilisation problems and create a potential
for those scalar fields. Soon, people realised that internal manifolds could support ’fluxes’∫

Σ

F p =CΣ,

where F p is the field strength of a q-form (which are present in type IIA, IIB, and 11
dimensional supergravity) and CΣ are constants. Fluxes with all indices in the internal
manifold do not break Lorentz invariance and so are allowed, in addition, fluxes along the
external directions that are proportional to the Lorentz-invariant tensor are also allowed. They
give rise to a potential as well, just as the electric and magnetic fields stored in a volume give
rise to a non-vanishing Hamiltonian and, therefore, to a non-vanishing potential.
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In this thesis, we will be interested in compactifications that preserve supersymmetry. It is
also possible to obtain perfectly reasonable models with supersymmetry broken at the string
scale, but usually these constructions suffer from instabilities. From the point of view of
the low-energy theory in lower dimensions (except N = 1), all these possible reductions are
encapsulated in a unique tensor, the Embedding Tensor. Namely, it contains all the possible
deformations of the theory, Fluxes, Twists of the internal Geometries, non-Geometrical
fluxes, etc.

1.2 One tensor to rule them all: the Embedding Tensor

Studying the string theory low-energy effective theory in 10-dimensions or the low-energy
effective theory of M-Theory, one always ends up with a supergravity theory. Either type
IIA or IIB supergravity or 11-dimensional supergravity, which is unique and corresponds to
the highest-dimensional supergravity theory. Indeed, it is not possible to build supergrav-
ities in more than 11 dimensions (with linear realisation of supersymmetry, a single time
direction, and without particles with spin greater than 2). By compactifying these theories on
some internal manifold, it is possible to obtain supergravity theories in lower dimensions,
usually with extended supersymmetry. All the possible deformations that one can imagine
to apply to the compactification manifold, when analysed from the point of view of the
lower-dimensional supergravity, are encapsulated in one single supersymmetric deformation,
the gauging.
Gauging is the only known deformation of extended supergravities so far 1, it comprises
possible p-form fluxes as well as geometric fluxes that act by twisting the internal com-
pactification manifold. It also includes some parameters with no clear higher-dimensional
origin. The gauging procedure, among its effects, also has the creation of a scalar potential, is
completely encoded in a single tensor, called the embedding tensor. The general idea is best
illustrated in Fig.1.2. N-dimensional ungauged (maximal) supergravities are obtained from
11D/IIA/IIB supergrivities compactified on an n-torus. Among their peculiarities, there are
large global symmetry groups and abelian gauge group, e.g. the maximal four-dimensional
theory [17] has a global E7(7) and a local U(1)28 group. Matter fields are uncharged under the
local symmetry group, which gives them the name. They only have a maximally symmetric
Minkowski ground state due to the absence of a scalar potential, therefore, all fields are
massless. On the other hand, as shown in Fig. 1.2, there are other less trivial ways to reduce
the number of dimensions, for example, with an internal manifold with more structures

1This is strictly speaking incorrect, as there exist also massive deformations in some cases (see e.g. the
Romans’ mass in D=10, N=2A).
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than the torus. Following the diagonal arrow in the image, thus turning on possible p-form
fluxes, torsion, or non-geometric fluxes, one ends up with more complicated effective field
theories. Now, non-Abelian gauge symmetries are present in the theory, and matter fields

Fig. 1.2 General behaviour of gauged supergravities under compactification2

are charged under those. Consequently, these theories are called gauged supergravities in
contrast to the ungauged ones. They also come with a scalar potential, resulting from a
more complicated internal geometry, making them more interesting. As already explained
before, a scalar potential can give rise to masses for the scalar particles (and other fields in
the model), thus stabilising the moduli or providing mechanisms for spontaneous supersym-
metry breaking. These are highly desired phenomenological properties. The scalar potential
can also provide a non-vanishing cosmological constant. This has triggered the attention
towards gauged supergravity, in addition, the supergravity regime of the bulk theory in the
AdS/CFT conjecture is described by a gauged supergravity [18], [19], [20]. Indeed, the scalar
potential can support a negative cosmological constant and thus an AdS ground state. The
corresponding gauge groups of these models are usually compact and contain, in general,
the R-symmetry groups of the boundary theories. The most prominent example [18], [19] is
given by the five-dimensional maximal SO(6) gauged supergravity, which describes type IIB
supergravity truncated on AdS5 ×S5. The scalar potential encodes non-trivial information
about the four-dimensional SYM boundary theory, such as holographic RG flows and the
anomalous conformal dimensions of operators.
From a pure low-dimensional point of view, one first obtains the ungauged theory by com-

2Note that known compactifications only cover a small part of the set of all possible gauged supergravities
in lower dimension
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pactifing on an n-torus and then, following the horizonatal line in Fig. 1.2, gauges the
theory. Gauging proceeds by choosing a subgroup G0 of the global symmetry group G
of the ungauged theory and make it a local gauge group coupling it to the vector fields of
the theory, recall that previously the vector fields supported an abelian gauge group. The
first case where this happened was the SO(8) gauge theory in four space-time dimensions
[21], which describes the compactification on an S7 internal manifold of eleven-dimensional
supergravity. SO(8) is therefore embedded in the global symmetry group of 4 dimensional
N = 8 supergravity, which is E7(7). The embeddings of the possible gauge groups are all
described by one single tensor, which, unsurprisingly, takes the name of embedding tensor.
Its features can be completely described group theoretically and the Lagrangian of gauged
supergravities is completely parametrised by it. Indeed, the scalar potential, the mass terms
for the various fields, and the new terms in the supersymmetry transformations are all given
in terms of the embedding tensor. In addition, if we look at the higher-dimensional origin
of the theory, the embedding tensor represents a compact way of encoding the presence of
fluxes (p-form, geometrical and non-geometrical, etc.) in the lower-dimensional effective
theory. In fact, while, for example, it was “easy” to construct geometrically N=8, SO(8)
gauged supergravity, the power of the embedding tensor allowed Dall’Agata, Inverso and
Triggiante to prove that this theory is only a point in an infinite family of theories [22].
In this thesis, we studied the vacua of maximal supergravity theories in 5 and 7 spacetime
dimensions, both with analytical and numerical techniques. We have been able to discover
new vacua and develop new tools that can be used for the research of vacua in other theories,
with different space-time dimensions or different amounts of supersymmetry.





Chapter 2

Gauged Supergravities

2.1 Ungauged Supergravities

Before dealing with gauged supergravity theories, it is a wise idea to review what ungauged
supergravities are and how to deal with them. In order to discuss vacua of gauged supergravi-
ties, we do not need to deep down in the vast topic of ungauged theories, we will only need
to discuss the bosonic sector. The discussion is based on [23]
These theories contain always the metric gµν , vector fields AM

µ , each of them with an abelian
redundancy and scalar fields φ i. In addition, there can also be anti-symmetric q-forms BJ

ν1...νq
,

these are generalisations of vector fields, each of them carry a gauge redundancy as well.
The Lagrangian is given by

e−1Lbos =−1
2

R− 1
2

Gi j(φ)∂µφ
i
∂

µ
φ

j − 1
4
MMNFM

µνFµνN + ..., (2.1)

where e =
√

|detgµν |, and the abelian field strengths are given in terms of the vector
potentials by FM

µν = ∂µAM
ν −∂νAM

µ . We omitted the kinetic terms for the q-forms and also
the topological terms. In this thesis we are gonna deal only with maximal supergravities, the
reason is that the field content is completely fixed by supersymmetry and there is no freedom
of choice, in addition Lagrangian and couplings are also restricted for the same reason.
The global symmetry group determines the Lagrangian, q-forms transform linearly under the
global symmetry group G, while scalar fields transform non-linearly. The metric is invariant
under G-transformations.
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D Gmax Kmax

9 GL(2) SO(2)

8 SL(2)× SL(3) SO(2)× SO(3)

7 SL(5) SO(5)

6 SO(5,5) SO(5)× SO(5)

5 E6(6) USp(8)

4 E7(7) SU(8)

3 E8(8) SO(16)

Table 2.1 Global symmetry groups G with their maximal compact subgroup K in maximal
supergravity in all dimensions

2.1.1 Scalar Fields

Scalar fields in extended supergravity theories (at least for all N≥ 3 theories) are coordinates
of a coset space G/K sigma-model [24]. G is the global symmetry group, in table 2.1 the
groups for maximal supergravities in various dimensions are shown with their maximal
compact subgroups which appear in the coset space G/K. In Appendix A it is shown how
these coset spaces arise. It is possible to describe the scalar fields as a G-valued matrix V,
but considering equivalent two group elements whenever they are multiplied on the right by
an element in K. So the effective number of scalars is equal to the number of parameters
in the coset space. The Lagrangian, therefore, has to remain invariant under any gauge
transformation of the form

V(x)→ V(x)(k(x))−1. (2.2)

Obviously, it also has to stay invariant for any global transformation given by

V(x)→ gV(x), (2.3)

with k(x)∈ K and g ∈ G. To write a Lagrangian that is invariant under gauge transformations,
we also need a gauge field Qµ , which lies in the Lie algebra of K and that transforms under
gauge transformations 2.2 as

Qµ → kQµk−1 −∂µkk−1. (2.4)

Thanks to it, it is possible to construct the covariant derivative
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DµV(x) = ∂µV(x)−V(x)Qµ . (2.5)

This transforms just like the vielbein V(x), so that

V−1DµV → kV−1DµVk−1.

On the other hand, V−1DµV is invariant under global transformations 2.3. A Lagrangian
invariant under both symmetries is given by

L=−1
2

eTr
(
V−1DµV

)2
. (2.6)

In this Lagrangian, Qµ appears without derivatives, and varying it keeping V fixed gives its
equations of motions:

δL= eTrδQµ((V)−1
∂µV−Qµ).

Since δQµ , analogously to Qµ , is in the Lie algebra of K, then Pµ ≡ V−1∂µV−Qµ lies in
the orthogonal complement. Equivalently, we can define the left-invariant current as

Jµ = V−1
∂V ∈ g≡ Lie G, (2.7)

lying in the Lie algebra of G, and Jµ can be decomposed as

Jµ = Qµ +Pµ , Qµ ∈ t, Pµ ∈ p, (2.8)

where t≡ Lie K and p is its complement within g and they are orthogonal with respect to the
Cartan–Killing form. Thus, it is obvious that Pµ can be rewritten as

Pµ = V−1DµV,

and, consequently, the Lagrangian takes the form

L=−1
2

TrPµPµ . (2.9)

Since Qµ behaves as a gauge field under K, it will act as a connection in the covariant
derivatives for the fermionic fields, which transform in some linear representation under the
local K symmetry:

D[µψ
i
ν ] ≡ ∂[µψ

i
ν ]−

1
4

ω
ab
[µ γabψ

i
ν ]− (Q[µ)k

i
ψ

k
ν ]. (2.10)
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Another important feature of Pµ is that it can be used to construct K-invariant interactions
terms for fermions. Usually, global g transformations can be expanded as Λ = Λαtα into
a basis of generators tα . Note also that Qµ is not a truly propagating gauge field, it is a
composite field, whose presence is due to only taking care of any redundancy that arises
in the parametrisation of the coset space. The vielbein V can be used instead to describe
the couplings between bosons and fermions. Explicitly computing the transformation of the
scalar matrix, one gets

δVR
S = Λ

β (tβ )R
NVN

S −VR
NkN

S, (2.11)

where the underlined indices S, N refer to transformations under K, while the generators for
the group G are represented by (tβ )R

N . An example of interaction term, built from the scalar
matrix, is FSVS

R(ψψ)R, where FS
µν is the field strength for some vector. In the next section,

the transformation of the gauge fields under G is given, providing a demonstration that this
term is also invariant under global symmetries.

2.1.2 Vectors and Anti-symmetric q-forms

Vectors and q-forms in ungauged supergravity transform linearly under the global symmetry
group G. Taking into consideration only the vectors, their transformation under the global
symmetry group is

δAR
µ =−Λ

β (tβ )S
RAS

µ , (2.12)

where, as usual, (tβ )S
R are the generators for g. This transformation is valid only for

D > 4, indeed, in D = 4 space-time dimensions one needs to take into consideration that
vector fields are dual to vector fields. Similar transformations exist for higher-rank q-
forms. Supersymmetry defines the field content in the various dimensions, therefore, it
also gives which q-forms are present and in what representation of the global symmetry
group G they transform. In table 2.2 the q-forms and their representations in each dimension
are sketched. Physical scalars are determined by eliminating (dim K) scalars from the
Adjoint representation of G. Underlined representations are subject to the self-duality relation
concerning the (D/2−1)-forms in D-dimensions. Only half of these (D/2−1)-forms are
propagating d.o.f. and appear in the Lagrangian.

To write down a kinetic term for the vectors, we need to introduce a manifestly K-invariant
object. Indeed, the scalar fields can also be well described by a symmetric positive-definite
scalar matrix, M given by

M≡ V∆VT , (2.13)
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D G 0 1 2 3

9 GL(2) 10 +30 −1 1−4 +2+3 2−1 1+2

8 SL(2)× SL(3) (3−1,1,8−3) (2,3′) (1,3) (2,1)

7 SL(5) 25−15 10′ 5

6 SO(5,5) 45−30 16c 10

5 E6(6) 78−36 27′

4 E7(7) 133−63 56

3 E8(8) 248−120

Table 2.2 q-form field content in ungauged maximal supergravity and their G-representations

where ∆ is a constant K-invariant positive definite matrix. On the other hand, M transforms
under G as:

δM= ΛM+MΛ
T , (2.14)

where we suppressed the indices. In terms of M the scalar kinetic term becomes

Lscalars =
1
8

Tr(∂µM∂
µM−1). (2.15)

Now, thanks to this K-invariant object, it is possible to write down an invariant action for the
vector fields as well, namely

Lvectors =−1
4
MRSFR

µνFµνS, (2.16)

where FR
µν = ∂µAR

ν −∂νAR
µ is the abelian field strength tensor. The action is manifestly G-

invariant, but it is only valid in any spacetime dimension D > 4. In 4 space-time dimensions,
vectors are dual to vectors and therefore there are complications arising due to that. In this
thesis we will not deal with 4-spacetime dimensions explicitly, therefore these complications
will not bother us anymore. Kinetic terms for higher-rank q-forms with q < (D−1)/2, follow
analogously

Lq− f orms =− 1
2(q+1)!

MIJF I
ν1...νq+1

Fν1...νq+1J. (2.17)

Dualities are very important in string theory and their low-energy effective theories,
supergravities. There are some on-shell duality relations concerning q-forms that are very
relevant in the construction of supergravities. Indeed, in D spacetime dimensions, on-shell
q-forms and (D− q− 2)-forms are dual, due to the fact that they transform in the same
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representation under the little group SO(D−2). To lowest order, from eq. 2.17 the equations
of motions for a q-form BI are

∂
µ(MIJFJ

µν1...νq
) = 0, (2.18)

while the Bianchi identity for the field strength is given by

∂[ν1F I
ν2...νq+2]

= 0. (2.19)

It is possible to write them in terms of dual field strength, defined by

Gµ1...µD−q−1I ≡
e

(p+1)!
εµ1...µD−q−1ν1...νq+1MIJFν1...νq+1J. (2.20)

Consequently, equations of motions and the Bianchi Identity take, respectively, the new form

∂[µ1Gµ2...µD−q]I = 0 ∂
µ(MIJGµν1...νD−q−2J) = 0. (2.21)

Thus, equations of motions and Bianchi identities exchange among each other, and therefore
it is possible to define the dual (D−q−2)-forms CI , given by

Gµ1...µD−q−1J ≡ (D−q−1)∂[µ1Cµ2...µD−q−1]I. (2.22)

The duality extends to higher order in the fields in the E.O.M and Bianchi identities, thus
providing a mechanism for exchange of q forms into (D−q−2) forms. It follows trivially
then, that there are many off-shell versions of an ungauged supergravity Lagrangian, which
become on-shell equivalent using the duality relations just derived. Not always is it possible
to dualise all the q-forms, given that some topological terms will force the presence of
some gauge fields in the action. In any case, a Lagrangian with all the q-forms dualised to
the lowest possible degree always exists, and gauged supergravities arise as deformations
of this version of the theory. The latter is also the only theory where the G-action is a
manifest symmetry. Now we have all the ingredients needed to deal with gauged extended
supergravities.

2.2 The Gauging Procedure

The idea behind the gauging mechanism for supergravity theories is quite simple, it only
consists in choosing a subgroup G0 of G and making it local. This will consist in deforming
the ungauged supergravity and will introduce new couplings and terms in the Lagrangian. In
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this chapter, the embedding tensor will be extensively explained. We will mostly deal with
maximal supergravities in various dimensions.

2.2.1 The One Tensor

The global symmetry group G defines and organises the field content of ungauged supergrav-
ities. Bosonic fields transform as

δV = Λ
β tβ V,

δAS
µ =−Λ

β (tβ )R
SAR

µ ,

where Λβ are constant parameters and β = 1, ...,dimG. We already noted that ungauged
supergravities possess a U(1)nv gauge symmetry, where nv is the number of vectors in the
theory and none of the matter fields is charged under it.

δU(1)A
R
µ = ∂µΛ

M(x). (2.23)

The U(1)-symmetry also acts on the higher-rank q-forms as an abelian tensor gauge symmetry.
To select a subgroup G0 ⊂ G, we pick a subset of generators of the Lie algebra of G, g. These
new generators are denoted by XM throughout this thesis, and they enter in the covariant
derivatives as

∂µ → Dµ ≡ ∂µ −gAM
µ XM, (2.24)

where g is a new coupling constant representing the gauge coupling. The question arises
naturally, how one selects the generators of this new gauge group? The answer is the
embedding tensor. Indeed, given the generators of g, one gets

XM ≡ ΘM
β tβ ∈ g. (2.25)

The embedding tensor, ΘM
α , provides the linear combinations of generators of g that become

the new local gauge symmetry generators. It is a (nv× dim G) matrix, and consequently the
rank of Θ provides the dimension of the gauge group. If Θ is treated as a spurionic object
that transforms under G according to its indices structure, then it preserves the G covariancy
of the theory. Claiming that the theory is invariant under gauge symmetries implies the
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following transformations for the bosonic fields:

δV = gΛ
RXRV, (2.26)

δAS
µ = ∂µΛ

S +gAR
µXRQ

S
Λ

Q = DµΛ
S, (2.27)

where Λ depends on the coordinates and we have defined XRQ
S ≡ ΘR

β (tβ )Q
S. What it

has been just written is not consistent in all the cases, indeed the Θ-tensor must satisfy
some consistency constraints. The constraints are of two types: a linear and a quadratic
constraint. Once these constraints are solved one would obtain a consistent gauge symmetry
and consequently a consistent gauged Lagrangian. The quadratic constraint arises from the
demand that the Θ-tensor stays invariant under the action of the local symmetry generators.
From the form of its indices (one in the fundamental and one in the adjoint representation of
the group G), one can immediately see that, in general, Θ is not invariant under G. In D = 3,
the vectors transform in the adjoint representation, and therefore it is an exception. In any
case, requiring, on the other hand, invariance under the action of G0 leads to the quadratic
constraint:

0 !
= δRΘS

α ≡ ΘR
β

δβ ΘS
α = ΘR

β (tβ )S
Q

ΘQ
α +ΘR

β fβγ
α

ΘS
γ , (2.28)

where we first noted that the action of G0 is defined by the projection under Θ and then
we used the fact that generators in the adjoint representation are given in terms of the
structure constants (tα)β

γ =− fαβ
γ . It is possible to contract this equation with a generator

tα achieving
[XR,XS] =−XRS

QXQ, XRS
Q = ΘR

β (tβ )S
Q. (2.29)

So basically, this equation tells us that the gauge invariance of the embedding tensor implies
the closure of the algebra for the generators 2.25. On the other hand, we can see that eq. 2.28
implies more than just the closure of an algebra. By symmetrising eq. 2.29 one obtains that
what at first sight may seem as structure constants for the gauge algebra g0 behave like those
only when contracted with XQ (in general X(RS)

Q does not vanish).
The linear constraint, instead, arises as a supersymmetry consistency condition. Sometimes,
however, it is possible to obtain the linear constraint from the (deformed) tensor gauge algebra.
The embedding tensor, considering its index structure, lives in the tensor product of Rv and
Rad j, and this tensor product can be expanded as a direct sum of several representations

Rv ⊗Rad j =Rv∗⊕ ..., (2.30)
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D G Rad j Rv ΘM
α

9 GL(2) 10 +30 1−4 +2+3 2−3 + 3+4

8 SL(2)× SL(3) (3,1)+(1,8) (2,3′) (2,3) + (2,6′)

7 SL(5) 24 10′ 15+40′

6 SO(5,5) 45 16c 144c

5 E6(6) 78 27′ 351′

4 E7(7) 133 56 912

3 E8(8) 248 248 1+3875

Table 2.3 Representations of the Embedding Tensor

then the linear constraint acts to remove some of the representations on the right-hand side of
eq. 2.30. For what concerns maximal supergravities, the explicit representations where the
embedding tensor lies are given in table 2.3. In this thesis, we will work only with maximal
supergravities in 5 and 7 dimensions. Therefore, the relevant representations are 351′ for
what concerns the five dimensions and 15+40′ for what concerns the seven dimensions.

By solving these consistency constraints, it is possible to classify all possible gaugings.
The quadratic constraint, unlike the linear representation one, is very difficult to solve, and
it is not know any closed form for it in any dimension. Therefore, counting in-equivalent
gaugings is still an unsolved problem.

2.2.2 The new tensor gauge algebra

Minimal couplings, introduced in the previous section are not the only deformation that has
to be done in order to describe the new non-abelian nature of the gauge group we introduced.
Field strengths for the vector fields have to be modified accordingly. Once this is done,
consistency of gauge interactions will require a modification of the gauge algebra for the
higher-rank q-forms and thus lead to an intertwining between q-forms and (q+1)-forms. One
is naturally led to guess the following form for the vector field strength:

FS
µν = ∂µAS

ν −∂νAM
µ +gX[RQ]

SAR
µAQ

ν , (2.31)

but eventually this will fail. Indeed, as we already pointed out, the gauge algebra does not
behave properly as it should.

[XR,XS] =−XRS
QXQ, (2.32)
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with the "structure constants" given by

XRS
Q ≡ ΘR

α(tα)S
Q ≡ X[RS]

Q +ZQ
RS, (2.33)

where the tensor Z is symmetric in its lower indices, and therefore there is a non-vanishing
symmetric contribute for the structure constants. In particular, it is possible to show that
maximal theories with irreducible theta tensor have no gauging with vanishing Z. On the
other hand, the commutator is completely anti-symmetric in its indices, therefore it is clear
that

ZQ
RSXQ = 0. (2.34)

This follows directly from the quadratic constraint. One can think that this issue can be
solved simply by claiming that the true structure constants are simply given by X[RS]

Q, but a
little more thought shows that this is also wrong. Indeed, the latter fail to satisfy the Jacobi
identity:

X[MN]
PX[QP]

R +X[QM]
PX[NP]

R +X[NQ]
PX[MP]

R =−ZR
P[QXMN]

P, (2.35)

but it will be satisfied when contracted with XR due to the quadratic constraint. The lack
of closure of the Jacobi identity implies a non-covariance of the vector field strength 2.31.
Indeed, under the new gauge transformations, it behaves as

δFR
µν =−gΛ

QXQS
RFS

µν +2gZR
QS(Λ

QFS
µν −AQ

[µ
δAQ

ν ]
). (2.36)

The second term is not what one would expect for the transformation of the field strength
under gauge transformations. In any case, it immediately appears at first sight that due to the
presence of the Z-tensor in the second term, the latter will vanish when contracted with XR.
Therefore, the product FM

µνXM, which is what compare, for example, in the commutator of
covariant derivatives, is a covariant object:

[Dµ ,Dν ] =−gFR
µνXR.

However, it is not possible to use FM
µνXM in the Lagrangian, because a possible kinetic term

of the form Tr[FR
µνXRFµνSXS] is not a smooth deformation of the ungauged kinetic term.

Similar troubles arise when one tries to deform the kinetic terms of higher-rank q-forms.
The true problem, that is hidden behind this, is that we are trying to build a G-covariant
formalism, thus we are writing everything in terms of nv generators, while only a subset of
them will gauge the group G0. The Theta-tensor has not maximal rank on a general basis
and, therefore, some of the XM will depend on others. In general, the vector fields split into
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two different types

AN
µ →


An

µ → transforming in the adjoint of G0

Ai
µ → transforming in some other reps. of G0

(2.37)

In the case where the Ai
µ transform in some non-trivial representation of G0 it is im-

possible to construct a consistent gauge theory. Zm
RS will vanish while Zi

RS will not. One
may try to dualise these fields to solve this problem. This is what was done in the maximal
SO(6) gauging, which involves only 15 of the 27 vector fields present in the theory [25]. The
remaining has been dualised to 2-forms which during the gauging procedure become massive
self-dual two forms. However, this procedure, while avoiding the non-covariance of the
field-strength tensor, did not preserve explicit G-covariance. Thus, with this method, one first
chooses the gauge group and consequently how the degrees of freedom are organised, and
then one can construct the gauged Lagrangian. In addition, this procedure has been tried only
in 5 and 7 space-time dimensions [25], [26] and with the highest rank gauge groups, thus
it is not clear how to export the method to smaller groups and other spacetime dimensions.
One, on the other hand, would like to have a general G-covariant Lagrangian without the
need of first specifying the gauge group. This is what has been achieved with the covariant
construction carried out by using the embedding tensor.
Indeed, recalling that the non covariant terms in the vector field strength gauge transforma-
tions, eq. 2.36, contain the tensor ZR

QS, one can define ([27], [28]) a full covariant field
strength as

HR
µν = FR

µν +gZR
QSBQS

µν . (2.38)

Where, BQS
µν = B(QS)

[µν ]
are a two-form tensor fields, which will absorb the non-covariant terms

in 2.36. The covariance of HR
µν is ensured by the following gauge transformations

δAR
µ = DµΛ

R −gZR
QSΞ

QS
µ , (2.39)

δBRS
µν = 2D[µΞ

RS
ν ] −2Λ

(RHS)
µν +2A(R

[µ
δAS)

ν ]
, (2.40)

where ΞRS
µ are the tensor gauge transformation parameters for the 2-forms. Therefore, it is

possible to spot here a Stückelberg coupling between the vectors and the 2-forms, which
arise specifically due to the presence of a non-vanishing Z-tensor. Here, it may seem that
some totally new 2-forms have been added to the theory, but this is not the case, they
cannot be added because the number of degrees of freedom is regulated and balanced by
supersymmetry. Therefore, these 2-forms are provided by the ones already present in the
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ungauged theory. Taking into account their index structure, one can see that 2-forms transform
into some representation contained in the symmetric product of two vector representations
(Rv ⊗Rv)sym. This very simple fact, constraints the ZR

SQ-tensor which should project, by
means of its lower indices, only on those representations filled by the 2-forms of the theory.
Being Z expressed in terms of the embedding tensor Θ, this projection will lead to the linear
constraints. Here we can see how supersymmetry, which dictates the field content of the
theory and their representation, implies the linear constraint.
For instance, it is possible to show how this works in maximal supergravity in four dimensions
[29], where the Z-tensor can be expressed as:

ZQ
RS = X(RS)

Q =
1
2

ΘR
β (tβ )S

Q +
1
2

ΘS
β (tβ )R

Q

=−1
2

Θ
Qβ (tβ )RS +

3
2

X(RST )Ω
QT ,

where the indices are raised and lowered using the symplectic matrix ΩPQ = ΩPQ with
the north-west south-east conventions. Note that for D=4 dimensions, G-generators are
embedded into the symplectic group (this is related to the vector-vector duality in 4 spacetime
dimensions), therefore (tβ )[RS] = 0. Once this form of the Z-tensor is inserted into the
definition of the new vector field-strength tensor 2.38, it implies that the embedding tensor
must satisfy the linear constraint X(RST ) = 0. Indeed, the 2-forms in the definition of the field
strength appear always under the projection

ZQ
RSBRS

µν ≡−1
2

Θ
Qβ Bµνβ , with Bµνβ = BRS

µν(tβ )RS. (2.41)

Consequently, two-forms in D=4 dimensions carry indices in the adjoint representation of G.
This is indeed what one would expect from 2-forms in D=4, because 2-forms are on-shell
dual to scalar field isometries which transform in the adjoint representation of G. Thus, we
derived the linear constraint from bosonic considerations. If X(QRS) ̸= 0 would imply to
include more 2-forms in the gauging procedure against supersymmetry, which fixes the field
content of the theory.
It is important to know that the gauge variation of the 2-forms, given in 2.40 is exact only
after a projection with the Z-tensor.
The previous mechanism, which induces Stückelberg types interactions between vector fields
and 2-forms, is extended to include higher-rank q-forms if they are present. In this case, the
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gauge transformations take the form

δV = gΘΛV,

δAµ = DµΛ−gΘΞµ ,

δBµν = 2D[µΞν ]+ ...−gΘΦµν ,

δCµνρ = 3D[µΦνρ]+ ...−gΘΣµνρ ,

etc.

(2.42)

Therefore, the intertwining also extends between the (q-1) forms and the q forms, with the
same Stückelberg mechanism. This also gives us a way to analyse the representations under
which the field content of the theory transforms, which, for maximal supergravities, agree
with what is expected once the embedding tensor is taken to lie in the representations given
in Table 2.3.

2.2.3 Summary

In this chapter we reviewed the constructions of the ungauged supergravity theories, above
all their bosonic sector, made by scalars, vectors, and higher-rank q-forms and organised
by the global symmetry group G. The group G is obtained through torus-compactification
from higher-dimensional supergravities. We also discussed the gauging procedure and
how it is possible to have a completely G-covariant mechanism to accomplish it. The
mechanism necessitates the use of a fundamental object, the embedding tensor, in terms of
which it is possible to entirely construct the deformations of the ungauged Lagrangian. The
embedding tensor can be defined group-theoretically and has to satisfy two constraints. The
linear constraint determines the representation content of the embedding tensor and follows
from supersymmetry. We also showed how one can deduce the linear constraint by simple
considerations regarding the consistency of the tensor algebra on the lowest-rank tensor
fields with the field content of the theory. The quadratic constraint instead arises by the
requirement that the embedding tensor itself is invariant under a gauge transformation and it
implies the existence of a gauge algebra for the new generators. Once these two constraints
are solved, we obtain the most general, consistent, completely G-covariant formulation of
gauged supergravity.
We also showed how, to have a covariant theory, one has to introduce a new field strength for
the vectors (as well as for higher-rank q-forms) which will cause a Stückelberg intertwining
between (q-1)-forms and q-forms. We are now ready to apply this method to specific cases.





Chapter 3

The Fifth and Seventh Dimension

3.1 The interesting 5 and 7

Five and seven are interesting numbers for physicists; apart from being the number of human
senses and a happy number, respectively, they possess some peculiar characteristics once
studied as the number of space-time dimensions. Indeed, this thesis will focus exactly on
these dimensions for their properties. Conformal Field Theory (CFT) will be crucial in the
following discussion. Indeed, the five dimensions have been the testbed for the AdS/CFT
conjecture since its very beginning [18], [19], [20]. This conjecture relates a gravity theory
(in particular, it has been formulated and extensively used within the framework of String
Theory) living on an anti-de Sitter (AdS) background in D-dimensions to a Conformal Field
Theory, living at the boundary of this spacetime, therefore on a (D-1) dimensional manifold.
Conformal Field Theories are fundamental in High-Energy Physics because every Quantum
Field Theory (QFT) can be thought of as a deformation starting from a related CFT, where
to reach a QFT we add marginal and relevant couplings to the theory. So, by studying
theory with an AdS background in 5-dimensions and using the AdS/CFT conjecture, it will
be possible to obtain useful information about the Conformal Field Theories living on a 4-
dimensional background and therefore about the possible QFT deformations. The AdS/CFT
conjecture has been extensively analysed in five dimensions, and several examples exist here,
so it is possible to compare our results with previous ones in the literature. Similar reasons
led to the study of the seven dimensions. It has been proven that 6 is the maximum number
of spacetime dimensions supporting the existence of a Conformal Field Theory (Super-
Conformal actually) [30], so always by means of the AdS/CFT conjecture it is possible to
study the possible CFTs in 6 dimensions by scrutinising the possible AdS backgrounds in
7 dimensions. In addition, being supergravity type IIA/IIB living in 10 dimensions and the
low-energy limit of M-Theory living in 11 dimensions, 7 is not far from these numbers to



24 The Fifth and Seventh Dimension

be a good testbed for some of the recent Swampland conjectures such as the de Sitter(dS)
conjecture [31], which claims that it is very difficult (impossible) to have de Sitter Vacua
in String Theory. In the following sections, we will first review the 5-dimensional gauged
maximal supergravities [32], and then we will proceed to the analysis of the 7-dimensional
case [33].

3.2 The Maximal D=5 Supergravities

Let us start by analysing the embedding tensor group theoretically. In the ungauged version,
the vector fields transform in the 27 representation of E6(6), which is the global symmetry
group of the Lagrangian. We will label the 78 generators by (tα)M

N and therefore the
variation of Aµ

P is given by δAµ
R =−Λβ (tβ )Q

RAµ
Q. Then, as usual, the gauge generators

are given by XR = ΘR
β tβ , where β and R run, respectively, from 1 to 78 and from 1 to

27, therefore the theta-tensor lives in the 27×78 representation of E6(6). Now we need to
identify what are the constraints the embedding tensor has to satisfy. The new generators
must define a Lie algebra

[XP,XQ] = fPQ
RXR, (3.1)

where the structure constants are not yet known. The previous relation can also be written as

ΘP
α

ΘQ
β fαβ

γ = fPQ
R
ΘR

γ , (3.2)

where fαβ
γ are the E6(6) structure constants: [tα , tβ ] = fαβ

γtγ . As already shown, the new
structure constants fPQ

R must satisfy the Jacobi identity projected by the Theta tensor:

f[PQ
R fS]R

T
ΘT

β = 0. (3.3)

The gauge fields involved in the gauging (which are a subset of the 27 vector fields) must
transform in the adjoint representation of the gauge group, as expected from gauge connec-
tions, but the gauge field charges coincide with XR in the 27 representation. Consequently,
the new generators (XP)Q

R have a decomposition consisting of the adjoint representation of
the gauge group plus other terms that vanish once contracted with the embedding tensor:

(XP)Q
R
ΘR

α ≡ ΘP
β tβQ

R
ΘR

α =− fPQ
R
ΘR

α . (3.4)

This is the same as 3.2 in the 27 representation, and together they state the gauge invariance
of the embedding tensor. Indeed, by putting them together, we can obtain the quadratic
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constraint
CPQ

α ≡ fβγ
α

ΘP
β

ΘQ
γ + tβQ

R
ΘP

β
ΘR

α = 0. (3.5)

This is equivalent to 2.28. Instead, the linear constraint states that the theta tensor is limited
to the 351 representation of E6(6):

27×78 = 27+351+1728. (3.6)

This implies that

tβP
Q

ΘQ
β = 0, (tβ tα)P

Q
ΘQ

β =−2
3

ΘP
α (3.7)

where the Greek indices are raised with the inverse of the E6(6)-invariant metric ηαβ =

tr(tαtβ ). From these relations, it is possible to project the quadratic constraint as

tβP
QCRQ

β = 0, (tβ tα)P
QCRQ

β =−2
3

CPR
α , tβP

QCQR
β = tβR

QCQP
β . (3.8)

The previous projections simply imply that the quadratic constraint belongs to the representa-
tions in 27×351. But, obviously, the product of two embedding tensors lies in the symmetric
product of two 351 representations. Explicitly illustrating both these representation products,
one gets

(351×351)s = 27+1728+351′+7722+17550+34398,

27×351 = 27+1728+351+7371,
(3.9)

Consequently, CPQ
α lies in the 27+1728 representation. XPQ

R belongs to the same E6(6)

representation of the theta tensor, because the E6(6) generators are invariant tensors under
E6(6) transformations.
In general, it is also true that the product of three 27 representations has a singlet, labelled by
dPQR that is completely symmetric in all three indices. This is also valid for the product of
three 27 representations, so there exists also an invariant dPQR tensor. These facts imply that

XPQ
Q = 0 = XQP

Q XP(Q
RdST )R = 0 = XPQ

(RdST )Q, (3.10)

The first equation kills the 27 representation inside XPQ
R and is equivalent to the first of

3.7, the second instead, just states the invariance of the d-tensor. It is possible, in principle,
to decompose the new generators XPQ

R into their symmetric and anti-symmetric parts,
XPQ

R = X(PQ)
R +X[PQ]

R, but they cannot transform into two irreducible representations
because X lies in a unique representation, namely 351. This can be checked by analysing
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the product of a 27 representation with the symmetric and antisymmetric product of two 27
representations,

27× (27×27)s = 27× (27+351′) = 351+2(27)+351′+1728+7722,

27× (27×27)a = 27×351 = 351+27+1728+7371.
(3.11)

We can see from the last relation that it is possible to build two contractions of the XPQ
R

tensor with the d-tensor, these will produce some tensor of the form ZPQ which from the
index structure belongs to the 27×27 representation and must be antisymmetric in its indices
in order to contain the 351 representation. In addition, obviously, the two contractions must
produce the same tensor.

XPQ
RdSPQ = ZRS,

2XPQ
RdPST dQUV dSUR = ZTV .

(3.12)

This is in accordance with the second equation of 3.10, which guarantees that Z (as given
by the first relation) is antisymmetric because the symmetric part vanishes. The coefficients
agree perfectly as long as

dPQRdSQR = δ
S
P . (3.13)

In addition, another useful relation can be identified once one recalls that the product of four
27 representations gives one 27 representation:

dS(MNdPQ)T dST R =
2
15

δ
R
(MdNPQ). (3.14)

Due to the latter, the inverse of 3.12 can be deduced:

X(PQ)
R = dPQSZRS, X[PQ]

R = 10dPST dQUV dRSU ZTV . (3.15)

Some other formulations of the quadratic constraint can be deduced. Indeed, among them,
there is the form of the quadratic constraint that we are going to use. Taking into account the
tensor ZPQΘQ

α , this transforms into 27×78 = 27+351+1728, which is equivalent to the
square of the theta tensor and therefore must also be contained in the representations in the
first line of 3.9. But the only representations they have in common are 27 and 1728, which
vanish because of the Quadratic Constraint, so

ZPQ
ΘQ

α = 0 =⇒ ZPQXQ = 0. (3.16)
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Similarly, considering the second relation in 3.11 and the tensor XPQ
[RZS]Q, one sees that the

latter transforms into the 351+27+1728+7371 representation. By comparing always with
the square of the embedding tensor (symmetric), one ends up with the same representations
put to 0 by the quadratic constraint, thus

XPQ
[RZS]Q = 0. (3.17)

What we just obtained are equivalent versions of the quadratic constraint:

XMP
RXNR

Q −XNP
RXMR

Q +XMN
RXRP

Q = 0,

ZPQXQ = 0,

XPQ
[RZS]Q = 0.

(3.18)

3.2.1 The Scalar Sector

In order to discuss the vacua of the theory, which is of uttermost interest to us, we need
to introduce the T-tensor. The scalars live on a coset manifold, which for the case of D=5
dimensions is given by E6(6)/USp(8), so it is possible to parameterize them as V(x) ∈ E6(6)

in the fundamental 27 representation. The coset representative transforms from the right
under a global E6(6) transformation and from the left under local USp(8). The T-tensor is
nothing more than a dressed embedding tensor, namely, a theta tensor contracted with the
scalar coset representative:

TPQ
R[Θ,φ ] = V−1

P
PV−1

Q
QVR

RXPQ
R. (3.19)

Here, the underlined indices transform under USp(8). The theta tensor is treated as a spurionic
object that transforms under G as ΘP

β tβ → gP
QΘQ

β (gtβ g−1), where g is a global E6(6)

transformation. Once one picks the gauging and fixes the Θ-tensor, the duality invariance
is broken. The constraints on the Θ-tensor transfer to a set of equivalent constraints on
the T-tensor. Indeed, it is possible to express every variation of V as a (field dependent
when needed) E6(6) transformation acting from the right, e.g. considering a global E6(6)

transformation

V → V′ = gV = Vξ
−1 with ξ

−1 = V−1gV ∈ E6(6). (3.20)
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Thus, every possible transformation, even supersymmetry, can be parametrised in this form
and consequently have an effect on the T-tensor, described by

TPQ
R → T ′

PQ
R = ξP

S
ξQ

T (ξ−1)U
RTST

U . (3.21)

Therefore, the T-tensor varies under any transformation with a (possibly field-dependent)
E6(6) transformation. The maximal compact subgroup of E6(6), namely USp(8), corresponds
to the R-symmetry, and therefore the fermionic fields must transform under it. The gravitinos
lie in the 8 representation, whereas fermions are in the 48 representation. The product of
two 8 representations contains a singlet of the symplettic group, namely the skew-symmetric
ΩAB = (ΩAB)

∗ with A,B, ..= 1, ...,8, which satisfies the relation ΩACΩCB =−δ A
B . Therefore,

once the fermionic content is introduced, it is more natural to switch to a notation in which
the vector indices P,Q,R are replaced by a couple of indices [AB], A,B = 1, ...,8, which are
antisymmetric and symplectically traceless. For example, the 27 representation is written in
terms of a pseudo-real tensor xAB.

xP ≡ xAB = (xAB)
∗ = Ω

AC
Ω

BDxCD, Ω
BCxBC = 0. (3.22)

Therefore, raising and lowering indices are obtained through complex conjugation. An
infinitesimal E6(6) transformation is written as

δxAB =−2Λ[A
CxB]C +ΣABCDxCD,

δyAB = 2ΛC
[AyB]C −Σ

ABCDyCD.
(3.23)

By doing so, we ensure that xAByAB is E6(6) invariant. Under USp(8) the adjoint repre-
sentation of E6(6) decomposes as 78 → 36+ 42, which is equivalent to the split in 3.23,
where ΛA

B represents an USp(8) transformation and ΣABCD the remaining transformations
(non-compact) within E6(6). This implies some properties concerning the parameters of the
E6(6) transformations:

ΛA
B ≡ (ΛA

B)
∗ =−ΛB

A, Λ[A
C

ΩB]C = 0, ΛA
A = 0, ΣABCD = Σ[ABCD],

ΣABCD ≡ (ΣABCD)∗ = ΩAEΩBFΩCGΩDHΣ
EFGH , Ω

AB
ΣABCD = 0.

(3.24)

Furthermore, since ΣABCD lies in the irreducible 42 representation of USp(8), it must also be
true that Ω[ABΣCDEF ] = 0 (this should, in principle, lie in the 28 representation). Thanks to
the latter equation, one obtains that ΩAByBCΩCDyDEΩEFyFA remains unchanged under any
E6(6) transformation, therefore, it is the equivalent of the dPQR tensor. The notation that we
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use will mix the vectorial E6(6) notation with the symplectic one just presented. Indeed, local
USp(8) indices P,Q,etc. will be denoted by symplectic traceless, antisymmetric pairs [ij].
The latter are also the indices labelling the fermionic fields. The coset representative then
becomes VP

i j, with VP
i jΩi j = 0. In addition, coset representatives are pseudoreal, meaning

VPi j ≡ (VP
i j)∗ = ΩkiΩl jVP

kl . The inverse of the coset representative VP
i j is given by Vi j

P

and the following relations are valid:

VP
i jVi j

Q = δ
Q
P ,

Vi j
PVP

kl = δ
kl
i j −

1
8

Ωi jΩ
kl.

(3.25)

As has already been pointed out, any variation of the coset representative is given in terms
of a right multiplication by a possibly field-dependent E6(6) transformation. With the new
notation, this is given by

∆VP
i j = VP

kl(2δ
[i
k Q

j]
l +P i jpq

ΩpkΩql) (3.26)

where, again, Q lies in the 36 representation of USp(8) and P in the 42 and satisfies the
previous conditions 3.24. It is possible to invert 3.26 and obtain an expression for Qi

j and
P i jkl:

Qi
j =

1
3

Vil
P
∆VP

jl,

P i jkl = Vpq
P
∆VP

[i j
Ω

k|p|
Ω

l]q.
(3.27)

These expressions are valid for any ∆, even for space-time derivatives and gauge transforma-
tions. When ∆ is given by the gauge-covariant derivative Dµ = ∂µ −gAµ

PXP, the previous
relations define the USp(8) composite connection Qµi

j for USp(8), while Pµ
i jkl represents

the USp(8)-covariant tensor, which will enter the scalar kinetic term as it has been extensively
explained in the second chapter:

Qµi
j =

1
3

Vil
P
∂µVP

jl −gAµ
PQPi

j,

Pµ
i jkl = Vmn

P
∂muVP

[i j
Ω

k|m|
Ω

l]n −gAµ
PPP

i jkl.
(3.28)

Having defined:

QPi
j =

1
3

Vil
QXPQ

RVR
jl,

P i jkl
P = Vmn

QXPQ
RVR

[i j
Ω

k|m|
Ω

l]n.
(3.29)
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Thanks to these relations, we see that the T-tensor can be decomposed under USp(8), as

T i
jkl =QP j

iVkl
P,

T i jkl
mn = PP

i jklVmn
P.

(3.30)

It is also obvious that Ωk[iT j]
kmn = Ωk[iT k

j]mn = 0. In fact, by reversing the relation 3.19,
one obtains the form of the generators in terms of the T-tensor:

XPQ
R = VP

klVQ
mnVi j

R[2δ
i
mT j

nkl +T i jpq
klΩpmΩqn]. (3.31)

Now, let us discuss the formulation of the consistency constraints in terms of the T-tensor.
The linear constraint forced the embedding tensor to live in the 351 representation of E6(6).
Once the branchings of this representation under USp(8) are computed, we will obtain
36+315. The T-tensor must, consequently, lie in these representations of USp(8). Indeed:

T i
jkl : 36×27 = 36+315+27+594,

T i jkl
mn : 42×27 = 315+27+792.

(3.32)

We can give a description of these 2 representations, 36 and 315 of USp(8),by means of
two pseudoreal, symplectic traceless, tensors Ai j

1 and A2
i, jkl with the properties A[i j]

1 = 0,
A2

i, jkl = A2
i,[ jkl] and A2

[i, jkl] = 0. Thus, the previous branching decomposition of the T-tensor
representations explicitly gives:

T klmn
i j = 4A2

q,[klm
δ

n]
[iΩ j]q +3A2

p,q[kl
Ω

mn]
Ωp[iΩ j]q,

Ti
jkl =−ΩimA2

(m, j)kl −Ωim(Ω
m[kAl] j

1 +Ω
j[kAl]m

1 +
1
4

Ω
klAm j

1 ),
(3.33)

Consider now a variation of the coset representative, which, as usual, can be described as
an E6(6) transformation from the right, this implies that once the transformation acts on
the T-tensor, it gives back something proportional to the T-tensor again. Being the USp(8)
transformations straightforward (and the Lagrangian invariant under those), we concentrate
only on the remaining variations, namely variations of the type

δVP
i j =−VP

kl
ΩkmΩlnΣ

i jmn. (3.34)
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This kind of variation determines the variations of the composite connection Q, the USp(8)
covariant tensor P , and the T-tensor, just by using their definitions:

δQµi
j =−1

3
PµiklmΣ

jklm +
1
3

ΣiklmPµ
jklm,

δPµ
i jkl =−DµΣ

i jkl,

δT i
jmn =

1
3

Σ jpqrT ipqr
mn −

1
3

Ω
iv

Ω jwΣvpqrT wpqr
mn +ΣmnpqΩ

pr
Ω

qsT i
jrs,

δT i jkl
mn =−4T [i

pmnΣ
jkl]p +ΣmnpqΩ

pr
Ω

qsT i jkl
rs.

(3.35)

Now, applying these variations to 3.33 and making use of Ω[i jΣklmn] = 0 for any Σ in the 42
representation of USp(8), one obtains the variations for the tensors A1 and A2.

δA1
i j =

4
9

Ω
p(i

Σ
k)klmA2p,klm,

δA2
i, jkl =

3
2

(
Ω

mi
Σ

jkln +Ω
m[ j

Σ
kl]in
)

A1mn

−
(

Ω
i[ j

Ω
k|m|

Σ
l]npq −3Ω

ni
Ω

m[ j
Σ

kl]pq − 1
6

Ω
im

Ω
[kl

Σ
j]npq

+
1
6

Ω
m[ j

Ω
kl]

Σ
inpq
)

A2m,npq.

(3.36)

The previous relations are useful for obtaining the equation of motion for the scalars on a
fixed Lorentz-invariant background. From these variations, we can also show that

Zi j,kl ≡ Ω
[i[kA1

l] j]+A2
[i, j]kl, (3.37)

which is an antisymmetric and symplectic traceless tensor in the indices couples [ij] and [kl],
transforms as

δZi j,kl =−Σ
i jmn

ΩmpΩnqZpq,kl −Σ
klmn

ΩmpΩnqZi j,pq, (3.38)

implying that this is nothing more than the dressed version of the ZPQ tensor that we have
already introduced before.

Zi j,kl =
1√
5

VP
i jVQ

klZPQ. (3.39)
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Here, we used the definition of ZRS in terms of XPQ
R and dSPQ, with X expressed in terms of

the T-tensor and the following definitions for the invariant three-rank tensor

dPQR =
2√
5

VP
i jVQ

klVR
mn

Ω jkΩlmΩni,

dPQR =
2√
5

Vi j
PVkl

QVmn
R
Ω

jk
Ω

lm
Ω

ni.

(3.40)

These latter tensors have the expected form for an invariant USp(8) tensor, as we have already
shown. Now, having defined all the useful quantities, we can express the quadratic constraint
in an USp(8) covariant form, namely, choosing the second relation in 3.18 as the form of the
quadratic constraint to use, we get

T i
jklZkl,mn = 0 = T i jkl

mnZmn,pq. (3.41)

This is the formulation of the quadratic constraint we will be using to study the vacua of the
theory, once the linear constraint has been imposed, so working with the tensor A1 and A2 in
the 36 and 315 representation, respectively.

3.2.2 The D=5 Lagrangian

For completeness, we add some information about the fermionic field content and the other
bosonic fields present in the theory before writing down the Lagrangian.
The gravitinos ψµ

i lie in the 8 representation of USp(8), and the spinors χ i jk, on the other
hand, transform in the 48 representation. The covariant field strength tensor, instead, is given
by

Hµν
i j =Hµν

PVP
i j =

(
Fµν

P +gZPQBµνQ

)
VP

i j, (3.42)

where BµνQ are the two forms that ensure the gauge covariance of the transformations.
This is the classic St"uckelberg interaction that we expect from gauged supergravities. The
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supersymmetry transformations are given by

δSeµ
a =

1
2

ε iγ
a
ψµ

i,

δSVP
i j =iVP

kl
[

4Ωp[kχ lmn]ε
p +3Ω[klχmn]pε

p
]

Ω
mi

Ω
n j,

δSAµ
P =2

[
iΩik

εkψµ
j + εkγµ χ

i jk
]

Vi j
P,

δSBµνP =
4√
5

VP
i j
[

2ψ [µiγν ]ε
k
Ω jk − iχ i jkγµνε

k
]
+2dPQRA[µ

Q
δSAν ]

P,

δSψµ
i =

(
∂µδ

i
j −Qµ j

i − 1
4

ωµ
ab

γabδ
i
j

)
ε

j

+ i
[

1
12

(
γµνρHνρi j −4γ

νHµν
i j
)
−gγµA1

i j
]

Ω jkε
k,

δSχ
i jk =

1
2

iγµPµ
i jkl

Ωlmε
m − 3

16
γ

µν

[
Hµν

i j
ε

k]− 1
3

Ω
[i jHµν

k]m
Ωmnε

n
]

+gA2
l,i jk

Ωlmε
m,

(3.43)

The Lagrangian is then:

e−1L=− 1
2

R− 1
2

ψµiγ
µνρDνψρ

i − 1
16

Hµν
i jHµνkl

ΩikΩ jl −
2
3

χ i jk /Dχ
i jk − 1

12

∣∣∣∣Pµ
i jkl
∣∣∣∣2

+
2
3

iPµ
i jkl

χ i jkγ
ν
γ

µ
ψν

m
Ωlm +Hρσ i j

[
1
8

iψµiγ
[µ

γρσ γ
ν ]

ψν
k
Ωk j −

1
4

χ i jkγ
µ

γρσ ψµ
k

− 1
2

iχ iklγρσ χ
mkl

Ωm j

]
+

√
5

64e
iεµνρστ

{
gZMNBµνM

[
DρBστN+

+4dNPQAρ
P
(

∂σ Aτ
Q +

1
3

gX[RS]
QAσ

RAτ
S
)]

− 8
3

dMNP

[
Aµ

M
∂νAρ

N
∂σ Aτ

P

+
3
4

gX[QR]
MAµ

NAQ
ν Aρ

R
(

∂σ Aτ
P +

1
5

gX[ST ]
PAσ

SAτ
T
)]}

− 3
2

igA1
ik

Ωk jψµiγ
µν

ψν
j

− 4
3

gΩmlA2
l,i jk

χ i jkγ
µ

ψµ
m +2giΩkpΩlq

[
−4A2

i, jpq +A1
[i[p

Ω
q] j]
]

χ i jmχ
klm

+g2
[

3
∣∣∣∣A1

i j
∣∣∣∣2 − 1

3

∣∣∣∣A2
i, jkl
∣∣∣∣2],

(3.44)
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where the covariant derivatives of the fermionic fields are given by

Dµψν
i =∂µψν

i −Qµ j
i
ψν

j − 1
4

ωµ
ab

γabψν
i,

Dµ χ
i jk =∂µ χ

i jk −3Qµl
[i
χ

jk]l − 1
4

ωµ
ab

γabχ
i jk.

(3.45)

This is all we need to know about the D=5 gauged supergravity theories; further information
about the scalar potential and the mass matrices will be provided in the following chapters,
when dealing with the vacua.

3.3 The Maximal D=7 Supergravities

The global symmetry group in seven spacetime dimensions is E4(4) = SL(5), therefore, there
are 24 generators tP

Q labelled with indices P,Q = 1, ...,5 satisfying tP
P = 0. The generators

obey an algebra
[tP

Q, tR
S] = δ

R
QtP

S −δ
P
S tR

Q. (3.46)

The ungauged formulation of the theory possesses vector fields with abelian redundancies in
the 10 representation of SL(5), namely APQ

µ = A[PQ]
µ , so a G-transformation can be written

δAPQ
µ = 2ΛR

[PAµ
Q]R. The theory also possesses two forms BµνP that lie in the 5 representa-

tion of SL(5). The new generators for the gauge group G0 are identified by XMN = X[MN],
and, of course, there may be as many gauge generators as vector fields in the theory. The
generators are given by

XPQ = ΘPQ,R
StR

S. (3.47)

Therefore, the gauge-covariant derivatives act as

Dµ = ∇µ −gAPQ
µ ΘPQ,R

StR
S, (3.48)

To find the consistency constraints, we first identify the representations contained in the most
general embedding tensor:

10⊗24 = 10+15+40+175. (3.49)

Consistency with supersymmetry implies that only the 15 and 40 representations are present.
This means that the embedding tensor can be decomposed into a symmetric matrix YPQ =

Y(PQ) and a tensor ZPQ,R = Z[PQ],R such that Z[PQ,R] = 0:

ΘPQ,R
S = δ

S
[PYQ]R −2εPQRTU ZTU,S. (3.50)
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The gauge group generators in the 5 representation take the form

(XPQ)R
S = ΘPQ,R

S = δ
S
[PYQ]R −2εPQRTU ZTU,S. (3.51)

Where, the generators that satisfy 3.46 are chosen such that (tP
Q)I

J = δ P
I δ J

Q − 1
5δ I

J δ P
Q ,

these indeed satisfy tP
P = 0. The gauge generators in the 10 representation are given

by (XPQ)RS
TU = 2(XPQ)[R

[T δ
U ]
S] , in addition note that

(XPQ)RS
TU +(XRS)PQ

TU = 2ZTU,W dW,[PQ][RS]. (3.52)

The d-tensor just defined is the invariant tensor of SL(5), explicitly defined as dW,[PQ][RS] =

εWPQRS. As usual, by demanding the closure of the gauge algebra or the invariance of the
embedding tensor under gauge transformations, one attains the quadratic constraint:

(XMN)PQ
TU

ΘTU,R
S +(XMN)R

T
ΘPQ,T

S − (XMN)T
S
ΘPQ,R

T = 0. (3.53)

Using the previous relations, it is possible to express this constraint in terms of the Y and Z
tensors:

YMQZQN,P +2εMRSTU ZRS,NZTU,P = 0. (3.54)

The quadratic constraint has some irreducible projections on the 5, 45 and 70 representations
of SL(5), giving rise to

ZPQ,RYRS = 0, ZPQ,RXPQ = 0, (3.55)

with XPQ that can lie in any representation. Another particular form of the quadratic con-
straints, equivalent to the invariance of the Θ-tensor and showing the closure of the algebra,
is given by

[XPQ,XRS] =−(XPQ)RS
TU XTU . (3.56)

The seven-dimensional theory possesses some q-forms in its field content, in particular there
are the vector fields APQ

µ , the 2-forms BµνP transforming in the 5 representation of SL(5)
and the 3-forms SP

µνρ belonging to the 5 of SL(5). The Θ tensor will project only on the
components of these fields that are involved in the gaugings. The vector field strength, given
by

FPQ
µν = 2∂[µAPQ

ν ]
+g(XRS)TU

PQARS
[µ ATU

ν ] , (3.57)

does not behave as expected under gauge transformations, as was explained in the general
description of the gauging procedure. Therefore, we introduce the covariant field strength
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tensor
HPQ

µν = FPQ
µν +gZPQ,RBµνR, (3.58)

creating the usual Stückelberg type coupling between 1 and 2-forms. In an analogous manner,
one introduces the covariant field strength for the 2-forms

HµνρM = 3D[µBνρ]M +6εMNPQRANP
[µ

(
∂νAQR

ρ]
+

2
3

gXST,U
QARU

ν AST
ρ]

)
+gYMNSN

µνρ . (3.59)

3.3.1 The Scalar Sector

The scalars, in seven dimensions, live on the coset manifold SL(5)/SO(5), where SO(5)∼
USp(4) is the R symmetry of the theory. Therefore, the scalars are described by a matrix
V ∈ SL(5), which transforms from the left under rigid SL(5) transformations and from the
right under local SO(5) transformations. We will be using indices a,b,... = 1,...,4 for the 4
representation of USp(4). As usual, we introduce the antisymmetric, invariant, symplectic
tensor Ωab, satisfying (Ωab)

∗ = Ωab and ΩabΩcb = δ c
a . Some useful USp(4) representations

are given by:

1 : V1

5 : V ab
5 =V [ab]

5 , ΩabV ab
5 = 0,

10 : V ab
10 =V (ab)

10 ,

14 : V ab
14 cd =V [ab]

14 [cd], V ab
14 cb = 0, ΩabV ab

14 cd = 0 = Ω
cdV ab

14 cd,

35 : V ab
35 cd =V [ab]

35 (cd), V ab
35 cb = 0, ΩabV ab

35 cd = 0.

(3.60)

In addition, objects that transform in these representations are pseudoreal, which means that

(V1)
∗ =V1, V5ab = (V ab

5 )∗ = ΩacΩbdV cd
5 , V14ab

cd = (V ab
14 cd)

∗ = ΩaeΩb f Ω
cg

Ω
dhV e f

14 gh,

(3.61)
so that we can raise and lower indices with complex conjugation or with the Ω tensor. SL(5)
branches under its USp(4) subgroup as 24 → 10+ 14, representing the compact and non-
compact part of the group. SL(5) vector indices P,Q,R,... are substituted by the index pairs
[ab] of USp(4). Then an element in the algebra of SL(5): L = LP

QtP
Q decomposes as

Lab
cd = 2Λ[a

[c
δ

d]
b] +Σ

cd
ab. (3.62)
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where Λ and Σ have the following properties:

Λ[a
c
Ωb]c = 0, Σ

ab
cb = 0, Σ

ab
cdΩ

cd = 0 = ΩabΣ
ab

cd, (3.63)

in order to transform in the 10 and 14 representations, respectively. Consequently, the coset
representative has the following index structure VP

ab = VP
[ab], such that VP

abΩab = 0. Its
inverse is given by the matrix Vab

P such that:

VP
abVab

Q = δ
Q
P , Vab

PVP
cd = δ

cd
ab − 1

4
ΩabΩ

cd. (3.64)

Just as before, any variation of V can be equivalently described by a right multiplication with
an element of the algebra of SL(5) (possibly dependent on the coordinates):

δVP
ab = VP

cdLcd
ab(x) = VP

cd
Σ

ab
cd(x)−2VP

c[a
Λc

b](x). (3.65)

The last piece is just an USp(4) transformation, which leaves the Lagrangian invariant.
Therefore, we will only be concerned with variations of the type δΣVP

ab = VP
cdΣab

cd(x),
which correspond to variations along the coset space SL(5)/SO(5). The USp(4) composite
gauge field Qµ and the Pµ tensor that enters the kinetic term for the scalars in the Lagrangian
are given by

Vab
M(∂µVM

cd −gAPQ
µ XPQ,M

NNcd)≡ Pµab
cd +2Qµ[a

[c
δ

d]
b] . (3.66)

The T-tensor is defined as the dressed version of the embedding tensor, explicitly

T(e f )[ab]
[cd] ≡

√
2VM

egVN
f hΩ

ghVP
abΘMN,P

QVQ
cd

=
√

2Ω
h[c

δ
d]
(e VM

f )hVN
abYMN −2

√
2εMNPQRZPQ,SVM

egVN
f hVR

abVS
cd

Ω
gh.

(3.67)

Given that YMN and ZMN,P of Θ belong to the 15 and 40 of SL(5), respectively, once they are
decomposed under USp(4) one gets

15+40 → (1+14)+(5+35). (3.68)
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Therefore, the T-tensor can be expressed in terms of these USp(4) representations, which we
will label B, B[ab]

[cd], C[ab] and C[ab]
(cd), respectively:

T(e f )ab
cd =

1
2

BΩa(eδ
[c
f )δ

d]
b − 1

2
BΩb(eδ

[c
f )δ

d]
a +δ

[c
(eΩ f )gBd]g

ab

+
1
2

Ca(eδ
[c
f )δ

d]
b − 1

2
Cb(eδ

[c
f )δ

d]
a − 1

8
Ω

cdCa(eΩ f )b +
1
8

Ω
cdCb(eΩ f )a

+
1
4

ΩabCg(eδ
[c
f )Ω

d]g +
1
2

Ωe[aCcd
b] f +

1
2

Ω f [aCcd
b]e +

1
4

ΩabCcd
e f .

(3.69)

An explicit USp(4) parameterisation can also be achieved for the tensor YPQ and ZPQ,R:

YPQ = VP
abVQ

cdYab,cd, ZPQ,R =
√

2Vab
PVcd

QVe f
R
Ω

bdZ(ac)[e f ], (3.70)

where

Yab,cd =
1√
2

[
(ΩacΩbd −

1
4

ΩabΩcd)B+ΩaeΩb f B[e f ]
[cd]

]
,

Z(ab)[cd] =
1

16
Ω

a[cCd]b +
1

16
Ω

b[cCd]a − 1
8

Ω
ae

Ω
b fCcd

e f .

(3.71)

To compute the equation of motion for the scalars in a Lorentz-invariant background, we
also need the variations of the scalar fields, now represented by the tensors B, Bab

cd , Cab and
Cab

cd . These are given by

δΣB =− 2
5

Σ
ab

cdBcd
ab,

δΣBab
cd =−2BΣ

ab
cd −Σ

ab
ghBgh

cd −Σ
gh

cdBab
gh +

2
5

(
δ

ab
cd − 1

4
Ω

ab
Ωcd

)
Σ

e f
ghBgh

e f ,

δΣCab =
1
2

Σ
ab

cdCcd +2Ω
e[a

Σ
b] f

cdCcd
e f ,

δΣCab
cd = 4Ω

g[a
Σ

b]h
g(cCd)h +Ω

g[a
δ

b]
(c Σ

kh
d)gCkh +Ω

gh
δ
[a
(c Σ

b]h
d)gCkh +Σ

ab
ghCgh

cd

+Σ
k[a

ghδ
b]
(cCgh

d)k +4Σ
km

l(cΩd)kΩ
n[aCb]l

mn −δ
[a
(c Ωd)kΩ

b]n
Σ

km
lgCgl

mn.

(3.72)

The quadratic constraint, in the formulation 3.55, can also be expressed in terms of irreducible
representations of USp(4), obtaining the following:

Z(ab)[e f ]
[

ΩceΩd f B+ΩegΩ f hB[gh]
[cd]

]
= 0, Z(ab)[cd]T(ab)e f

gh = 0. (3.73)
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We can now write down, for completeness, the supersymmetry transformation and the
Lagrangian.

3.3.2 The D = 7 Lagrangian

The fermionic field content of the lgrangian is given by the gravitinos ψµ
a, transforming

in the 4 (the fundamental) representation of the R-symmetry group USp(4) and the spinors
χabc belonging to the 16 representation of Usp(4). This means that the spinors satisfy the
following relations

χ
abc = χ

[ab]c, Ωabχ
abc = 0, χ

[abc] = 0. (3.74)

The fermions of this theory are symplectic Majorana, namely, they behave as

χ
T = ΩadΩbeΩc fCχ

de f , ψ
T
µa = ΩabCψ

b
µ , (3.75)

where C is the charge conjugation matrix with the property C =CT =−C−1 =−C†. The
local supersymmetry transformations are

δSeµ
p =

1
2

εaΓ
p
ψ

a
µ ,

∆SAPQ
µ =−Vab

[PVcd
Q]

Ω
bd
(

1
2

Ω
ae

εeψ
c
µ +

1
4

εeΓµ χ
eac
)
,

∆SBµνP =VP
ab
(
−ΩacεbΓ[µψ

c
ν ]+

1
8

ΩacΩbdεeΓµν χ
cde
)
,

∆SSP
µνρ =Vab

P
(
− 3

8
Ω

ac
εcΓ[µνψ

b
ρ]−

1
32

εeΓµνρ χ
abe
)
,

δSψ
a
µ =Dµε

a − 1
5
√

2
H(ab)

νρ Ωbc

(
Γ

νρ
µ +8Γ

ν
δ

ρ

µ

)
ε

c

− 1
15

HνρΛ[bc]Ω
ab
(

Γ
νρλ

µ +
9
2

Γ
νρ

δ
λ
µ

)
ε

c −gΓµAab
1 Ωbcε

c,

δSχ
abc =2Ω

cdPµde
ab

Γ
µ

ε
e −

√
2
(
Hc[a

µνΓ
µν

ε
b]− 1

5
(Ωab

δ
c
g −Ω

c[a
δ

b]
g )ΩdeHgd

µνΓ
µν

ε
e
)

− 1
6

(
Ω

ad
Ω

beHµνρ[de]Γ
µνρ

ε
c − 1

5
(Ωab

Ω
c f +4Ω

c[a
Ω

b] f )Hµνρ[ f e]Γ
µνρ

ε
e
)

+gAd,abc
2 Ωdeε

e,

δSVP
ab =

1
4

VP
cd
(

Ωe[cεd]χ
abe +

1
4

Ωcdεeχ
abe +ΩceΩd f εgχ

e f [a
Ω

b]g +
1
4

ΩceΩd f Ω
ab

εgχ
e f g
)
.

(3.76)



40 The Fifth and Seventh Dimension

The variation for the q-forms is given in terms of the so-called covariant variations, which
are defined by

∆APQ
µ ≡δAPQ

µ ,

∆BµνP ≡δBµνP −2εPQRST AQR
[µ

δAST
ν ] ,

YMN∆SN
µνρ ≡YMN

(
δSN

µνρ −3B[µνPδAPN
ρ] +2εPQRST ANP

[µ AQR
ν δAST

ρ]

)
.

(3.77)

The latter are valid for any transformation, and in particular are useful for showing how the
covariant field strengths transform covariantly. In addition, we have introduced the fermion
shifts in the fermionic supersymmetry transformations. Those are defined by

Aab
1 ≡− 1

4
√

2

(
1
4

BΩ
ab +

1
5

Cab
)
, (3.78)

Ad,abc
2 ≡ 1

2
√

2

[
Ω

ec
Ω

f d(Cab
e f −Bab

e f )+
1
4
(Cab

Ω
cd +

1
5

Ω
abCcd +

4
5

Ω
c[aCb]d)

]
, (3.79)

It will be useful when we determine the masses of the fermionic fields and the residual
supersymmetry on the vacuum. We are now in a position to describe the full Lagrangian, it is
divided into two pieces

L7D = L0 +LV T , (3.80)

where LV T is the topological vector tensor Lagrangian that is needed to have a gauge-invariant
Lagrangian. When the coupling constant g → 0, the topological Lagrangian LV T reduces to
the SL(5) invariant Chern-Simons term of the ungauged theory.
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e−1L=− 1
2

R−ΩacΩbdHab
µνHcdµν − 1

6
Ω

ac
Ω

bdHµνρabH
µνρ

cd − 1
2

Pµab
cdPµ

cd
ab

− 1
2

ψµaΓ
µνρDνψ

a
ρ −

1
8

χabc /Dχ
abc − 1

2
Pµab

cd
ΩceψνdΓ

µ
Γ

ν
χ

abe

+

√
2

4
Hab

µν

(
−ψ

ρ
a Γ[ρΓ

µν
Γλ ]ψ

λc
Ωcb +ψρcΓ

µν
Γ

ρ
χ

cde
ΩadΩbe +

1
2

χacdΓ
µν

χ
edc

Ωeb

)
+

1
12

Habµνρ

(
−Ω

ac
ψ

λ
c Γ[λ Γ

µνρ
Γσ ]ψ

σb +
1
2

ψλcΓ
µνρ

Γ
λ

χ
abc +

1
4

Ω
ae

χcdeΓ
µνρ

χ
cdb
)

− 5
2

gAab
1 ΩbcψµaΓ

µν
ψ

c
ν +

1
4

gAd,abc
2 ΩdeχabcΓ

µ
ψ

e
µ

+
g

4
√

2

(
3

32
δ

b
d δ

c
e B+

1
8

δ
b
d Ωe fC f c +Bbc

de −Cbc
de

)
χabcχ

ade

+
g2

128

(
15B2 +2CabCab −2Bab

cdBcd
ab −2C[ab]

(cd)C[ab]
(cd)
)

(3.81)

The topological Lagrangian is given by:

e−1LV T =− 1
9

ε
µνρλστκ×

×
[

gYMNSM
µνρ

(
Dλ SN

στκ +
3
2

gZNP,QBλσPBτκQ +3FNP
λσ

BτκP

+4εPQRST ANP
λ

AQR
σ ∂τAST

κ +gεPQRWX XST,UV
WX ANP

λ
AQR

σ AST
τ AUV

κ

)
+3gZMN,P(DµBνρM)BλσNBτκP −

9
2
FMN

µν BρλMDσ BτκN

+18εMNPQRFMV
µν ANP

ρ

(
∂λ AQR

σ +
2
3

gXST,U
QARU

λ
AST

σ

)
BτκV

+9gεMNPQRZMV,W ANP
µ

(
∂νAQR

ρ +
2
3

gXST,U
QARU

ν AST
ρ

)
BλσV BτκW

+
36
5

εMPQTU εNRSVW AMN
µ APQ

ν ARS
ρ (∂λ AσTU )(∂τAVW

κ )

+8gεMPQRSεNTUZAXVW,XY
ZAAMN

µ APQ
ν ATU

ρ AVW
λ

AXY
σ ∂τARS

κ

− 4
7

g2
εMPQBCεNVWDEXRS,TU

BCXXY,ZA
DEAMN

µ APQ
ν ARS

ρ ATU
λ

AVW
σ AXY

τ AZA
κ

]
.

(3.82)

The topological Lagrangian provides a linear (in the derivatives) kinetic term for the three-
form fields SP

µνρ , they appear contracted by the Y-tensor, and this will also be relevant
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when computing the mass spectrum for those. After this brief introduction to the five- and
seven-dimensional gauged supergravities, we can start looking for the vacua of these theories.

3.4 Summary

In this section, we provided the relevant features for the D = 5, 7-dimensional maximal
gauged supergravities, comprising the Θ and T tensor representations, the fermion shifts and
the Lagrangian, in some detail. We also provided explicit forms of the quadratic constraints
we use in the following computations; more information about these theories can be found in
[32] and [33] for 5 and 7 dimensions, respectively.



Chapter 4

Residual Gauge Symmetry and Analytical
Results

4.1 Old and new vacua of 5D maximal supergravity

Charting and analysing vacua of supergravity theories is a fundamental task to find which
models can be related to string theory as well as to understand supersymmetry breaking, the
possible mechanisms to generate critical points with a positive value of the cosmological
constant and which supergravities lead to Anti-de Sitter (AdS) vacua with an interesting
holographic dual. Among all possible theories, the maximally supersymmetric ones stand
out for their fixed matter content and the limited number of possible deformations. For these
reasons there has been an active interest in their gaugings and in the analysis of the resulting
scalar potentials to understand their critical points, with a special emphasis on the theories
obtained by reducing string or M-theory on spheres, which give models with vacua dual to
maximally supersymmetric Conformal Field Theories (CFT).

The main challenges one faces when dealing with this problem are associated with the
very complicated structure of the scalar potential, a function of 70 or 42 scalars in the
maximal theory in 4 and 5 dimensions, respectively, which also depends on a large number
of parameters (912 and 351, respectively) that fix the structure of the gaugings and therefore
of the full Lagrangian, according to the rules specified in [32, 17]. Clearly such a large space
of parameters makes the search for critical points complicated and attempts at a general
classification extremely difficult. However, there has been some interesting progress in
the last few years that expanded a lot our knowledge of this particular aspect of maximal
supergravity theories.
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There are mainly three techniques that have been used so far to find and analyse critical
points of (maximal) supergravity theories. The first one relies on using symmetries to
consistently truncate a particular theory to a subset of fields containing a limited number of
scalars and then extremising the resulting simplified potential. Pioneered in [34, 35], this
technique allowed for the first and only analytical results for the maximal theories from the
1980s until recent years. For what concerns maximal supergravity in 5 dimensions, this
technique allowed the discovery of 5 vacua [25, 36–38] of the SO(6) and SO(3,3) gauged
models in addition to the maximally symmetric one in [39], although often only partial results
were available on the spectrum about these vacua. More recently, a new numerical approach,
based on Machine Learning software libraries was developed and employed in a series of
papers [40–47] where many new vacua of the maximal supergravities in 4 and 5 dimensions
had been found. This also allowed to find precise information about the spectrum of scalar
fluctuations, residual gauge groups, and residual supersymmetry. In particular, 27 new AdS
vacua were found in the SO(6) maximal supergravity in 5 dimensions, with a detailed analysis
in [45, 46]. While these approaches are very interesting and gave promising results, so far they
have only been used to produce critical points for a fixed scalar potential, which results from
a single specific gauging within the large infinite family of possible deformations. This leaves
open the possibility that other vacua with the same residual symmetries appear in different
gaugings. The approach we are going to show instead uses the power of the embedding
tensor formalism in a way that allows for the search of critical points independently of the
choice of gauging. This approach was pioneered in a very different context in [48]and was
used in the context of maximal 4-dimensional supergravity in [49, 22, 50–54], as well as in
half-maximal supergravity in four and three dimensions [55, 56]. In addition to the power of
investigating in a single sweep all deformations of maximal supergravity, this approach has
so far produced analytic results for the critical points and their full spectrum, also providing
information on the gauging, the residual gauge symmetry and supersymmetry of the vacua.
Moreover, for Minkowski vacua this led to understanding the moduli space of these theories
[53] as well as their uplift to string theory [57]. Finally, since the vacua are obtained without
specifying the gauging first, this means that we can exhaustively classify vacua with a given
residual symmetry for all possible consistent gaugings.

In this thesis, we show this last technique by investigating critical points of maximal
gauged supergravities in 5 and 7 dimensions with residual U(2) and U(1) symmetry, respec-
tively. We recover all previously known vacua and find four new ones in five dimensions,
with different gauge groups and cosmological constants. We also provide analytical results
for their full mass spectra, thus completing partial results for old vacua as well as fully
analysing new ones. We did not find new AdS vacua, so that the only such vacua with U(2)
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symmetry are those appearing in the maximal supergravity with SO(6) gauge group, but
we have new Minkowski and de Sitter vacua. A particularly interesting result is that two of
the vacua appear in the same theory with SO∗(6) =SU(3,1) gauge group, providing the first
example in 5 dimensions where a single gauging of a maximal supergravity theory produces
vacua in different classes of the cosmological constant, one having a positive cosmological
constant and the other a vanishing cosmological constant and residual supersymmetry1.

In what follows, we will discuss in some detail our technique in section 4.1.2 and then
proceed with a detailed analysis of the U(2) invariant sector in section 4.1.3. We tried to
summarise all our results in tables that could be easily consulted and used for future reference.

4.1.1 Some Useful Notation for D=5

We have already established in the previous chapter the Lagrangian and supersymmetry
transformations for the maximal supergravity theories in five space-time dimensions, we also
briefly reviewed the bosonic sector, paying particular attention to the scalar field content. In
order to facilitate reading, we collected in this section the main formulas and properties of
the tensors relevant for our work. The centre of our analysis will be the scalar potential and
the mass matrices. While everything can be defined in terms of the fermion shifts, for the
scalar masses we preferred to use a convenient expression, which is valid only at the selected
point of the scalar manifold we use as a basis for our analysis. As we shall see, we are not
going to lose generality by this assumption.

Following a well-known general rule of gauged supergravity theories, the scalar potential
is the square of the fermion shifts:

V = 3Ai jAi j −
1
3

Ai, jklAi, jkl. (4.1)

We are looking for maximally-symmetric vacua, where all fields are vanishing except for the
scalar fields, which could have a constant vacuum expectation value and for the metric, which
either describes a de Sitter, Minkowski or anti-de Sitter spacetime. The scalar equations of
motion are solved by the critical point condition

Ui jkl −
3
2

Ω[i j Ukl]pq Ω
pq +

1
8
(
Umnpq Ω

mn
Ω

pq)
Ω[i jΩkl] = 0 , (4.2)

where the tensor Ui jkl is

Ui jkl =
4
3

A1
mq A2m,[i jk Ωl]q +2A2

m,npq A2n,m[i j Ω|p|k Ωl]q . (4.3)

1There is a similar instance in maximal supergravity in 3 dimensions [58]
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Once we find a critical point, we derive the masses of the various fields by computing the
eigenvalues of the respective mass matrices. For what concerns the gravitini ψ i

µ , the mass
matrix is directly proportional to the shift matrix Ai j.

M(3/2)
i j =

3
2

Ai j. (4.4)

The masses of the other fermions χ i jk are then fixed by the eigenvalues of (indices i jk and
pqr are fully anti-symmetrised).

M(1/2)
i jk,pqr = 8A[i, j[pqΩr]k]+2A[i[pΩq jΩk]r]−

10
3

Al, i jkAlm(Am,stuAn,stu)−1An,pqr. (4.5)

This mass matrix is the result of subtracting from the Lagrangian mass the appropriate term to
remove the goldstinos from the spectrum for susy-breaking vacua. It is understood that in the
case of a degenerate matrix Am,stuAn,stu, we only compute the inverse for its non-degenerate
part, as this is the part related to the goldstino directions, which in the original Lagrangian
mix the gravitinos and the spin-1/2 fields. The proof that such an additional term correctly
produces M1/2

i jk,pqrA
s,pqr = 0 follows once one takes into account the equations of motion

(4.2) and uses repeatedly the quadratic constraints (3.41). In particular, the matrix we are
inverting is related to the shift of the gravitinos by means of the quadratic identity known as
supersymmetric Ward identity

1
3

A j,stuAi,stu =
1
8

δ
i
j V +3AipAp j, (4.6)

which also tells us that the expression is explicitly dependent on the value of the cosmological
constant at the vacuum. This expression generalises previous similar formulae for maximal
theories in 4 dimensions, which were obtained in particular instances where the cosmological
constant was vanishing [59] or when the squared shifts had already been diagonalized [54].
A simple way to understand this expression can also be obtained by comparing it with the
analogous expression for N = 1 supergravity presented in [60].

In addition, the masses of the bosonic degrees of freedom can be expressed in terms of
the same tensors. The vector mass matrix is

M(v)M
N =

1
3

Vi j
M T mnpq

i jTmnpq
klVN

kl, (4.7)

while the squared masses of the tensor fields follow from the eigenvalues of the matrix

M(t)M
N = Vi j

M Zi j mnZmnklVN
kl. (4.8)
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These mass matrices are clearly redundant because the sum of vector and tensor fields present
in the theory is fixed, given that the tensor fields appear by dualization of the vector fields.
This means that both M(v) and M(t) are degenerate and contain zeros in the directions where
the fields have been dualised.

All the above expressions have general validity and should be evaluated at the critical
points that satisfy (4.2). For the scalar fields, on the other hand, following [49] we provide
an expression that is valid only when the critical point is the base point of the manifold,
i.e. when all scalars are vanishing. While this could seem a restriction, as we will explain
in the next section, it allows us to obtain the full spectrum for any critical point in any
arbitrary gauging. This is given in terms of the embedding tensor, the e6(6) generators, the
e6(6) structure constants fαβ

γ and the e6(6) Cartan–Killing metric ηαβ :

Mα
β =

16
5

(
ΘM

σ (tαtβ )M
N

ΘN
γ(δ

γ

σ +5ησγ)+ΘM
σ (tα)M

N
ΘN

γ f β
γ

σ

+ΘM
σ (tβ )M

N
ΘN

γ f αγ
σ +ΘM

σ
ΘM

γ fαγ
δ f β

δ
σ

)
.

(4.9)

The matrix is non-zero only in the non-compact directions, i.e. along the generators tα ∈
e6(6) \usp(8). Moreover, all goldstone fields appear with a zero eigenvalue.

4.1.2 Extrema of the scalar potential

The procedure used to find and analyse the scalar potential has been developed in the case of
maximal supergravities in [49], developing an old idea presented in a very different context
[48]. The main point is that the scalar potential is a function of the scalar fields through the
coset representatives Vi j

M and the embedding tensor ΘM
α

V (φ) =V (V(φ),Θ) . (4.10)

As explained above, the vacua of the theory follow as solutions of the minimisation condition
(4.2). This is generally a rather complicated expression of the scalar fields (at best ratios of
polynomials and exponentials of the scalar fields). This is the reason why the task of finding
solutions to such complicated systems of equations has always been very challenging, and
researchers usually focus on restricted sets of scalar fields in order to simplify the task, which
in any case is often performed only numerically.

The alternative proposed in [49] maps the problem to a coupled set of second- and
first-order algebraic conditions on the gauging parameters. This is possible because the scalar
manifold is homogeneous, and therefore each point on the manifold can be mapped to any
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other by an E6(6) transformation and at the same time the scalar potential is invariant under
the simultaneous action of these transformations on both the coset representatives and on
the embedding tensor. This implies that we can always map any critical point of the scalar
potential to the “origin” at φ = 0. At such a point, the scalar potential is a simple quadratic
function of the embedding tensor

V =
2

15
ΘM

α
ΘM

β
(
δαβ +5ηαβ

)
(4.11)

and the minimisation conditions become quadratic conditions on the embedding tensor,
which should be solved together with the quadratic constraints (3.41). The result is that rather
than fixing the gauge group and then performing a scan of all possible critical points of the
scalar potential and then scanning among all possible gaugings, one can simply solve a set of
quadratic conditions on the embedding tensor and then read the resulting values of Θ that fix
at the same time the gauge group, the value of the cosmological constant and the masses at the
critical point. Clearly any choice of point on the scalar manifold is equivalent, but choosing
φ = 0 has the advantage that it is a fixed point under the action of the maximal compact
subgroup of the isometries, namely USp(8), and therefore we can consider modifications
of the embedding tensor related only to the non-compact transformations, so that there is a
one-to-one correspondence between the parameters in Θ related to the scalar fields and the
independent directions on the scalar manifold, as shown in fig. 4.1. We advise the reader
to consult [49] for more details. As we mentioned in the introduction, all of our results are
fully analytic. The reason we are able to produce such results is related to the procedure
we used to solve the quadratic conditions that come from the minimisation of the scalar
potential and from the quadratic constraints. Although, in fact, we reduced our problem to a
set of quadratic equations, we still generically have a very large number of parameters and
quadratic equations. This implies that one does not always see a straightforward analytic
solution, because the equations are coupled, and they could become very high in order in
terms of a single variable.

We used mainly two techniques. The first one is based on a simplification of the set
of quadratic equations by employing a choice of a more convenient Gröbner basis for the
polynomial generating the same solutions. This has been done with the aid of the computer
algebra system for polynomial computations SINGULAR [61]. Unfortunately, when the
number of variables is very large, this can be extremely costly in time and therefore one
has to resort to a different way of reducing the set of equations. We found a very effective
procedure by borrowing an algorithm developed in the context of cryptography, where the
solution of quadratic equations on finite fields is a common problem. In particular, we
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Fig. 4.1 En(n) transformations (U) mapping any point to the origin of homogenous space
En(n)/H

used the so-called XL algorithm [62], or extended linearisation. The idea is rather simple.
Rather than solving directly the given set of quadratric equations, one produces sets of linear
equations in the monomials appearing in the equations and in all equations obtained by
multiplying the original set of equations by the variables and by their products up to a fixed
order. This produces sets of linear equations that can be solved rapidly, and, once interpreted
in terms of the original variables, they may reduce to equations in a single variable or in
simpler sets of polynomial equations (like equality between different monomials). This
allows to fix and eliminate some of the variables from the problem and then face a simpler
set of equations, which could be solved directly or further simplified by another iteration of
the same procedure, or by a more convenient choice of Gröbner basis. More information can
be found in Appendix D.



50 Residual Gauge Symmetry and Analytical Results

4.1.3 Vacua with residual U(2) symmetry

In this work we decided to scan gauged maximal supergravity in 5 dimensions for vacua
with a residual U(2) symmetry. Asking for a residual U(2) invariance of the vacuum (with
respect to a gauged or global symmetry) imposes restrictions on the allowed coefficients of
the embedding tensor and consequently of the fermion shift tensors, which should be singlets
with respect to this residual symmetry. To perform a full analysis, we therefore looked at all
the inequivalent embeddings of SU(2) in USp(8) and then singled out all possible inequivalent
charge assignments for the remaining U(1)s, if any. We then performed the branching of
the 36 and 315 representations of USp(8) specifying the fermion shifts with respect to the
chosen embedding and classified all inequivalent cases. When the commutant of the residual
symmetry group in USp(8) was non-trivial we used the commuting symmetries to further
reduce the number of inequivalent variables by removing those that could be generated by the
action of the commutant. Once the non-vanishing components of the fermion shifts had been
identified, we then proceeded to solve the set of quadratic algebraic conditions coming from
the scalar equations of motion (4.2) and the quadratic constraints (3.41) and then collected
all solutions, which may still be related by duality transformations. Finally, we analysed
their properties and computed their mass spectrum, as we shall discuss momentarily. In the
summary tables, we collected all inequivalent vacua and reported the most general mass
spectra for each of them. Unfortunately, two of the branchings still present a very large
number of singlets (≥ 48) and even combining all the techniques mentioned above we have
not been able to fully scan and solve their equations for all the allowed parameters, though
for all solutions we recovered the same vacua we found in other branchings.

As a first step, we list the branchings we analysed by the inequivalent decompositions of
the 8-dimensional representation of USp(8) under SU(2) and then give one of the branching
routes leading to this decomposition. For each case, we also give a table with the subcases
based on possible different choices of the U(1) factor, when present. We also list the number
of singlets in the fermion shifts, which are going to be the variables to be fixed by the
quadratic conditions in order to find vacua.

Branchings

We find 13 different branchings of the fundamental representation of USp(8) under SU(2),
which we therefore analyse separately. The labels on the various factors are self-explanatory:
we use letters from the beginning of the alphabet to keep track of the various factors in the
decompositions and we use S and diag to specify the symmetric and diagonal embedding of
the group.
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Case 1: 8 → 8.
The branching path is

USp(8)→ SU(2)S. (4.12)

This case leaves no singlets to discuss, so no vacua are possible for this choice.

Case 2: 8 → 6+2.
The branching path is

USp(8)→ SU(2)A ×USp(6)→ SU(2)A ×SU(2)S → SU(2)diag (4.13)

There is only one singlet in Ai, jkl . Clearly, this is never going to give any vacuum because
the critical point condition (4.2) would fix this parameter to zero.

Case 3: 8 → 6+1+1.
The branching path is

USp(8)→ SU(2)A ×USp(6)→ 1A ×SU(2)S (4.14)

There are 3 singlets in Ai j and no singlets in Ai, jkl .

Case 4: 8 → 4+4.
The branching path is

USp(8)→ USp(4)2 → USp(4)diag → SU(2)S (4.15)

We have one singlet in Ai j and three singlets in Ai, jkl .

Case 5: 8 → 4+2+2.
The branching path is

USp(8)→ USp(4)A ×USp(4)B → [SU(2)×U(1)]A ×SU(2)S → SU(2)diag (4.16)

We find just one singlet in Ai j and 8 in Ai, jkl .

Case 6: 8 → 4+2+1+1.
The branching path is

USp(8)→ USp(4)×USp(4)→ [SU(2)A ×SU(2)B]×SU(2)S → SU(2)B+S (4.17)
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There are 3 singlets in Ai j and 5 singlets in Ai, jkl .

Case 7: 8 → 4+4 ·1.
The branching path is

USp(8)→ USp(4)A ×USp(4)B → [SU(2)S]A × [SU(2)×U(1)]B

→ SU(2)S ×U(1)A ×U(1)B
(4.18)

In this case, we have two inequivalent choices of U(1) ⊂ U(1)A× U(1)B, which we list in
the following table.

# 8 charges 36 315

decomposition choice singlets singlets

7 8 → 400 +1±1±1 (qA,qB)

7a 8 → 40 +2 ·1±1 qA 4 7

7b 8 → 40 +1±1 +2 ·10
qA+qB

2 4 5

Table 4.1 Branchings for case 7.

Case 8: 8 → 2 ·3+2.
The branching path is

USp(8)→ SU(2)A ×USp(6)→ SU(2)A × [SU(3)×U(1)]B

→ SU(2)A ×SO(3)B → SU(2)diag
(4.19)

The decomposition contains 3 singlets for Ai j and 6 singlets for Ai, jkl .

Case 9: 8 → 2 ·3+2 ·1.
The branching path is

USp(8)→ SU(4)×U(1)B → SU(3)×U(1)A×U(1)B → SU(2)s×U(1)A×U(1)B. (4.20)

This case already has 21 SU(2) singlets overall, therefore, we distinguish various subcases
according to the choices of a U(1) factor, which we report in Table 4.2.
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# 8 charges 36 315

decomposition choice singlets singlets

9 8 → 311 +3−1−1 +1−31 +13−1 (qA,qB) 2 1

9a 8 → 3±1 +1±3 qA 2 3

9b 8 → 3±1 +1±1 qB, qA+qB
2 2 5

9c 8 → 2 ·30 +1±1
qA−qB

4 4 3

9d 8 → 3±1 +2 ·10
qA+3qB

4 4 1

Table 4.2 Branchings for case 9.

Case 10: 8 → 4 ·2.
The branching path is

USp(8)→ SU(2)A ×SU(2)B ×SU(2)C → SU(2)C ×U(1)A ×U(1)B (4.21)

This case has 51 singlets of SU(2) and therefore we classify various subcases according to a
remaining U(2) symmetry. We collect all different branchings in Table 4.3.

# 8 charges 36 315

decomposition choice singlets singlets

10 8 → 2±1±1 (qA,qB) 2 3

10a 8 → 2 · [2±1] qA 4 15

10b 8 → 2 · [20]+2±1
qA+qB

2 2 11

10c 8 → [2±3]+ [2±1] 2qA +qB 2 7

Table 4.3 Branchings for case 10.
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# 8 charges 36 315

decomposition choice singlets singlets

11 8 → 211 +200 +2−1−1 +12−1 +1−21 (qA,qB) 2 5

11a 8 → 2±1 +20 +1±2 qA 2 5

11b 8 → 2±1 +20 +1±1 qB 2 7

11c 8 → 2±2 +20 +1±1 qA +qB 2 7

11d 8 → 3 ·20 +1±1
qA−qB

3 4 23

11e 8 → 2±1 +20 +2 ·10
qA+2qB

3 4 7

Table 4.4 Branchings for case 11.

Case 11: 8 → 3 ·2+2 ·1.
The branching path is

USp(8)→ SU(2)×USp(6)→ SU(2)× [SU(3)×U(1)]

→ SU(2)× [SU(2)×U(1)×U(1)]→ SU(2)diag ×U(1)A ×U(1)B

(4.22)

This case has 39 singlets of SU(2) and therefore we classify various subcases according to a
remaining U(2) symmetry. The results are collected in Table 4.4.

Case 12: 8 → 2 ·2+4 ·1.
The branching path is

USp(8)→ USp(4)A ×USp(4)B → [SU(2)×U(1)]A × [SU(2)×SU(2)]B

→ SU(2)A ×U(1)A ×U(1)B ×U(1)C
(4.23)

This case has 64 singlets of SU(2) and therefore we classify various subcases according to a
remaining U(2) symmetry, which we list in Table 4.5.
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# 8 charges 36 315

decomposition choice singlets singlets

12 8 → 2±100 +10±10 +100±1 (qA,qB,qC) 3 5

12a 8 → 2±1 +4 ·10 qA 11 21

12b 8 → 2 ·20 +1±1 +2 ·10 qB 5 19

12c 8 → 2±1 +2 ·1±1 qA +qB +qC 5 19

12d 8 → 2±1 +1±1 +2 ·10 qA +qB 5 9

12e 8 → 2 · [20 +1±1] qB +qC 5 27

12f 8 → 2±1 +1±2 +2 ·10 qA +2qB 5 15

Table 4.5 Branchings for case 12.

Case 13: 8 → 2+6 ·1.
The branching path is

USp(8)→ SU(2)×USp(6)→ SU(2)× [SU(2)A ×USp(4)]

→ SU(2)× [SU(2)A ×SU(2)B ×SU(2)C]→ SU(2)×U(1)A ×U(1)B ×U(1)C
(4.24)

This case has 124 singlets of SU(2) and therefore we classify various subcases according to a
remaining U(2) symmetry. Here, we list only the cases that are inequivalent and produce
different sets of singlets. Note that cases 13e and 13f have only a subset of the singlets present
in the other cases, so it is enough to solve cases 13a–13d. Case 13c has only Minkowski
vacua: (M3), (M0) with m4 = 0 and (M2). The results are presented in Table 4.6.

The branchings 13a and 13d present more than 48 singlets, and this hampered the
simplification of the problem with any of the techniques used in this work in a reasonable
amount of time. Anyway, all solutions we have been able to find for these branchings were
already present in one of the other branchings.
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# 8 charges 36 315

decomposition choice singlets singlets

13 8 → 2000 +1±100 +10±10 +100±1 (qA,qB,qC) 3 9

13a* 8 → 20 +1±1 +4 ·10 qA 11 37

13b 8 → 20 +2 · [10 +1±1] qA +qB 7 27

13c 8 → 20 +1±2 +1±1 +2 ·10 2qA +qB 5 17

13d* 8 → 20 +3 ·1±1 qA +qB +qC 9 47

13e 8 → 20 +2 ·1±1 +1±2 qA +qB +2qC 3 9

13f 8 → 20 +1±1 +2 ·1±2 qA +2qB +2qC 3 19

Table 4.6 Branchings for case 13.

Vacua

The search for vacua has been carried out by solving the sets of quadratic equations for the
singlets in the tables above. Once we found solutions, we checked for each candidate vacuum
the rank of the embedding tensor, the signature of the resulting Cartan–Killing matrix and the
full mass spectrum. In general, we found 5 different Anti-de Sitter vacua, 5 Minkowski vacua,
and 2 de Sitter vacua. The vacua with negative cosmological constant are all pertaining to
the same gauging, namely the maximal SO(6) theory of [39], and were all already known
[36–38]. Among the Minkowski vacua there are the Cremmer–Scherk–Schwarz gaugings
[63, 64] with various mass parameters and a supersymmetric vacuum for the SO∗(6) theory
discovered in [65], but we also find three new vacua with a non-abelian gauge group (like
those in [53] for the analogous analysis of maximal supergravity in 4 dimensions). Finally,
we also find 2 de Sitter vacua, resulting from gauging of the semisimple groups SO(3,3)
[25] and SO∗(6), the latter being new. All vacua are reported in table 4.7, together with the
number of supersymmetry they preserve, the original gauging, the residual gauge group, and
the reference where they were first discovered. In Appendix B we provide for each vacuum
one instance of fermion shift values reproducing the critical point mentioned in the table.
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vacuum susy Ggauge Gres ref. branching

A1 8 SO(6) SO(6) [39, 38] 4,9,10,12

A2 0 SO(6) SO(5) [36–38] 4, 10, 12ce f

A3 0 SO(6) SU(3) [36–38] 9a, 12e f

A4 2 SO(6) SU(2) × U(1) [38] 12ce f

A5 0 SO(6) SU(2) × U(1) × U(1) [38] 12be

M1 0,2,4,6 U(1)⋉R16 U(1) [64]
5,6,7,10

11,12,13

M2 2 SO∗(6)=SU(3,1) SU(3) × U(1) [65]
8,9,11

12abce f , 13b

M3 4 SO∗(4) ⋉R8 U(2) [66]
12abce f

11, 13bc

M4 0 [SO(3,1) × SO(2,1)] ⋉R8 U(2) [66] 10b

M5 4 SO*(4) ⋉R8 SO(3) [66] 12be

D1 0 SO(3,3) SO(3)2 [25] 9b,10ab

D2 0 SO∗(6)=SU(3,1) SU(2) [66] 9b

Table 4.7 Summary of vacua found in this work.

Given the nature of the gaugings generating such vacua, we can also see how some of
these could be obtained from string theory reductions. All AdS vacua appear in the SO(6)
theory, which is a consistent truncation of type IIB supergravity compactified on S5 [67]. A
subset of CSS gaugings and their vacua M1 are known to be the result of a twisted torus
reduction [63], while the most general gauging and vacuum in this class may admit an
uplift through a generalised Scherk–Schwarz Ansatz analogous to the ones described for
four-dimensional CSS gaugings in [57].

It is interesting to notice that for the first time in a maximal 5 dimensional theory we find
a gauging that produces at the same time vacua with different types of cosmological constants.
This is the SO∗(6) = SU(3,1) gauging, which contains at the same time a Minkowski and a de
Sitter vacuum. Our claim that they reside in the same model follows both from the analysis of
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the embedding tensors that generate them, and the direct identification of a truncated scalar
potential for the SU(3,1) theory where both vacua are easily found. From the embedding
tensors we find which generators of e6(6) are involved in their corresponding model, and
analysing the commutants we find in both cases that the representation 27 decomposes into
the representations 15+6+6 of the gauge group. This corresponds to the correct branching
under SU(3,1) and since the adjoint is unique in the branching, we argue that the gaugings
are the same. Moreover, if we directly decompose the 351 representation of e6(6) from the
branching above for the 27 we see that there is a unique singlet with respect to SU(3,1) and
therefore there is a unique possible form of embedding tensor leading to this gauging up to
duality transformations.

Fig. 4.2 scalar potential for the two common scalars invariant under the residual symmetries
of the vacua (M2) and (D2). We see a Minkowski vacuum at the centre of the picture,
surrounded by a family of de Sitter vacua with a massless modulus.

Actually, for this specific model, we can provide a truncated scalar potential, where we
make explicit the dependence on the two scalar fields that are singlets of both symmetry
groups. Furthermore, both vacua arise as different solutions of the 9b case and the commutator
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of the residual U(2) group with the non-compact generators of e6 leaves only two generators
g1 and g2, for which we can provide a truncated scalar potential where both vacua can be
found. We construct the coset representative

L(x,y) = exp(g1 x+ g2 y) , (4.25)

which induces the scalar potential

V =−27
16
(
12−16cosh(2x)cosh(2y)+4cosh2(2x)cosh2(2y)

)
, (4.26)

where x and y are canonically normalised scalar fields. The scalar potential has two vacua, a
Minkowski one at x = y = 0 and a line of unstable de Sitter vacua at cosh(2x)cosh(2y) = 2.
At any point in the family of de Sitter vacua, we see that the masses of the two fluctuations
are, in fact, zero and m2/Λ =−24. These coincide with one of the moduli and one of the
unstable directions of the full scalar spectrum about the de Sitter vacuum (see table 4.14).

A similar discussion could apply to the vacua (M3) and (M5). They both have the same
gauge group, though in this case they do not belong to the same model. In fact, there are four
U(2) invariant scalar fields in both models, but the scalar potentials show only a single vacua
in each of the potentials constructed from (M3) and (M5) by introducing the appropriate
coset representatives. For example, using canonically normalised fields, the potential of (M3)
is
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(4.27)

This shows a single critical point at xi = 1, where the scalars x1,2,4 are moduli, while the
scalar x3 is massive with mass m2. In fact, x1 is a modulus that simply rescales the mass
parameters. While the gauge group is the same, the two vacua indeed pertain to two different
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gaugings. This is possible because the decomposition of the 351 of E6(6) under SO*(4) shows
6 singlets and therefore one could find inequivalent embeddings of the same gauge group.

Mass spectra

In this final section, we present the mass spectra of all of the vacua listed in the previous table.
The masses for backgrounds with a non-vanishing cosmological constant are normalised
in terms of the (A)dS radius squared L2 = |6/V | , so that supersymmetric gravitinos have a
normalised squared mass of 9/4.

For the AdS vacua, which are not new, most of these spectra were already known from
previous work, though the spectrum of the non-supersymmetric ones (A2), (A3) and (A5)
was lacking some states that we provide.
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Table 4.8 Masses for the AdS vacuum A1
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Table 4.9 Masses for the AdS vacuum A2
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Table 4.10 Masses for the AdS vacuum A3
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The spectrum of the vacuum (A4) is particularly interesting in the context of the AdS/CFT
correspondence, as it fixes the anomalous dimensions of the operators of the corresponding
N=1 deformation of super-Yang–Mills in 4 dimensions [68].
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Table 4.11 Masses for the AdS vacuum A4

L2m2
3/2

[81
25

]
×4,
[18

5

]
×4

L2m2
vec [0]×4 ,

[24
5

]
×1 ,

[96
25

]
×8 ,

[24
25

]
×2

L2m2
tens

[44
5

]
×2 , [4]×2 ,

[16
25

]
×8

L2m2
1/2 [0]×8,

[
22
5 ±4

√
2
5

]
×4

,
[34

25

]
×8 ,

[2
5

]
×4 ,

[ 1
25

]
×12, [161

25 ± 4
5

√
34]×4

L2m2
scal

[52
5

]
×2 ,

[84
25

]
×2 ,

[48
5

]
×1 ,

[
−136

25

]
×6 , [−4]×4 ,

[
−64

25

]
×8 ,

[
−12

5

]
×6 , [0]×13

Table 4.12 Masses for the AdS vacuum A5.

The supersymmetric AdS vacua, (A1) and (A4), are perturbatively stable, respecting the
Breitenlohner–Freedman bound [69, 70]

m2 ≥−(d −1)2

4
, (4.28)

for scalar degrees of freedom in AdSd . On the other hand, (A2), (A3), and (A5) are all pertuba-
tively unstable, thus corroborating the hypotesis about the instability of non-supersymmetric
AdS spacetimes formulated in the contest of the Swampland programme [71]. The full
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spectra of the de Sitter vacua (D1) and (D2) are new and show that such vacua are unstable
with very large instabilities, of the order of the cosmological constant, or larger.

L2m2
3/2 [0]×8

L2m2
vec [0]×6, [8]×9

L2m2
tens [2]×12

L2m2
1/2 [0]×16, [8]×32

L2m2
scal

[−8]×1, [−6]×2,

[0]×11, [10]×18, [16]×10

Table 4.13 Masses for the dS vacuum D1.

L2m2
3/2

[9
2

]
×2,

[81
2

]
×6

L2m2
vec [0]×3, [24]×1, [96]×11

L2m2
tens [32]×6, [56]×6

L2m2
1/2

[0]×8,
[25

2

]
×6,
[121

2

]
×10,[169

2

]
×6,
[225

2

]
×8,

[289
2

]
×10

L2m2
scal

[−24]×1, [0]×14,

[4(29±
√

433)]×5,

[40]×3, [112]×12, [120]×2

Table 4.14 Masses for the dS vacuum D2.

For what concerns the Minkowski vacua, since there is no intrinsic scale associated with
the vacuum, we parametrised all masses in terms of the ones of the gravitini. We easily
reproduced the expected spectrum for the CSS vacua, whereas the results for all the other
vacua are new.

By also looking at the fermion shifts collected in Appendix B, is interesting to notice
that all the vacua we found show spectra that do not depend on additional parameters except
for a few masses (or the cosmological constant, if different from zero). This means that for
all the gaugings considered the vacua appear in a unique theory with that gauge group and
there are no continuous families of models with the same gauge group containing such vacua.
This differs from what was discovered in the 4-dimensional case [22, 72], where it was found
that one can have infinite families of gaugings with the same gauge group and vacua whose
existence and value of the cosmological constant may depend on the parameter specifying
the family of gaugings.
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m2
3/2

[
m2

1
]
×2 ,

[
m2

2
]
×2 ,

[
m2

3
]
×2 ,

[
m2

4
]
×2

m2
vec [0]×1, [(m1 ±m3)

2]×2, [(m1 ±m4)
2]×2, [(m2 ±m3)

2]×2, [(m2 ±m4)
2]×2

m2
tens [0]×2, [(m1 ±m2)

2]×2, [(m3 ±m4)
2]×2

m2
1/2

[0]×8, [m2
i ]×2, [(m3 ±m1 ±m2)

2]×2, [(m4 ±m1 ±m2)
2]×2,

[(m1 ±m3 ±m4)
2]×2, [(m2 ±m3 ±m4)

2]×2

m2
scal [0]×18,

[
(m1 ±m2)

2]
×2,
[
(m3 ±m4)

2]
×2,
[
(m1 ±m2 ±m3 ±m4)

2]
×2

Table 4.15 Masses for the CSS vacuum M1.

m2
3/2 [0]2, [m2

1]2, [m
2
2]2, [m

2
3]2

m2
vec [0]3, [(m1 ±m2)

2]2, [(m1 ±m3)
2]2, [(m2 ±m3)

2]2,

m2
tens [m2

1]4, [m
2
2]4, [m

2
3]4,

m2
1/2

[0]10, [m2
1]2, [m

2
2]2, [m

2
3]2, [(m1 ±m2)

2]4, [(m1 ±m3)
2]4,

[(m2 ±m3)
2]4, [(m1 ±m2 ±m3)

2]2

m2
scal [0]14, [m2

1]4, [m
2
2]4, [m

2
3]4, [(m1 ±m2 ±m3)

2]4,

Table 4.16 Masses for the Minkowski vacuum M2.

The other interesting fact that emerges from the spectra is that also in 5 dimensions, like
in 4, Minkowski vacua have moduli. In fact, once we remove the scalars that are eaten by
the massive vectors in the usual Higgs mechanism, we see that the vacuum (M2) has two
additional massless fields, the vacuum (M3) has 6 additional moduli, the vacuum (M4) 7 and
the vacuum (M5) again 6. Like in the 4-dimensional case [53], it may be worth investigating
if these gaugings can be connnected to each other by infinite distance limits along their
moduli spaces. Quite possibly, the most general such limits may also generate novel gaugings
with new Minkowski vacua and residual symmetries other than U(2).
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m2
3/2 [0]×4, [m2

1]×2, [m2
2]×2

m2
vec [0]×4, [m2

1]×4, [m2
2]×4, [(m1 ±m2)

2]×2

m2
tens [0]×3, [m2

1]×4, [m2
2]×4

m2
1/2 [0]×12, [m2

1]×10, [m2
2]×10, [(m1 ±m2)

2]×8

m2
scal [0]×18, [m2

1]×4, [m2
2]×4, [(m1 ±m2)

2]8

Table 4.17 Masses for the Minkowski vacuum M3.

m2
3/2 [m2]×4, [3m2]×4

m2
vec [0]×4, [4m2]×10, [8m2]×3

m2
tens [0]×2, [4m2]×8

m2
1/2 [0]×8, [m2]×8, [3m2]×12, [7m2]×8, [9m2]×12

m2
scal [0]×20, [4m2]×10, [8m2]×6, [12m2]×6

Table 4.18 Masses for the Minkowski vacuum M4.

m2
3/2 [0]×4, [m2

1]×2, [m2
2]×2

m2
vec [0]×3, [m2

1]×4, [m2
2]×4, [m2

1 +m2
2 ±m2

3]×2

m2
tens [0]×4, [m2

1]×4, [m2
2]×4

m2
1/2 [0]×12, [m2

1]×10, [m2
2]×10, [m2

1 +m2
2 ±m2

3]×8

m2
scal [0]×18, [m2

1]×4, [m2
2]×4, [m2

1 +m2
2 ±m2

3]×8

Table 4.19 Masses for the Minkowski vacuum M5.
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4.2 Vacua of 7D maximal supergravity

In the case of maximal 7-dimensional supergravities, the number of scalar degrees of freedom
is small with respect to the companion theories in 4 or 5 dimensions. In fact, the scalar
potential becomes a function of 14 scalars, which depends on 55 parameters. Still, the large
space of parameters makes the analysis of vacua very difficult. Employing numerical methods
described in the following chapters, we have discovered some new vacua, in addition, by
means of the same analytical methods as for the 5 dimensional case, we have been able to
restrict the analysis to vacua with at least U(1) residual gauge symmetries and confirm our
numerical results. Thus, an analytical scan of these vacua has been possible; in the following,
we show a detailed analysis of the U(1) invariant sector and summarise the results in tables
that could be easily consulted for future reference.

4.2.1 Some Useful Notation for D=7

In the previous chapter, we made clear some facts about the 7-dimensional maximal super-
gravity theories, we gave the Lagrangian and the supersymmetry transforations, and reviewed
briefly the scalar content of the theory. Just as it has already been shown for the 5 dimensional
theories, the scalar potential can be expressed as the square of the fermion shifts:

V =
1
8
|A2|2−15|A1|2 =− 1

128
(15B2+2CabCab−2Bab

cdBcd
ab−2C[ab]

(cd)C[ab]
(cd)). (4.29)

Where, B, Bab
cd , Cab and Cab

cd are the 1, 14, 5 and 35 representations of SO(5)≡ Usp(4),
respectively, which make up the T-tensor of the theory. The equations of motion needed to
discover the minima of the scalar potential are obtained by varying the latter under a scalar
transformation of the form δΣVM

ab = Σab
cdVM

cd:

δΣV =− 1
16

B[ab]
[cd]B

[cd]
[e f ]Σ

[e f ]
[ab]+

1
32

BB[ab]
[cd]Σ

[cd]
[ab]−

1
64

C[ab]C[cd]Σ
[cd]

[ab]

+
1
32

C[ab]
(e f )C[cd]

(e f )
Σ
[cd]

[ab]−
1
8

C[ce]
(a f )C

[d f ]
(be)Σ

[ab]
[cd].

(4.30)

Once the minima of the scalar potential are found, we proceed to identify the masses of some
of the fields by computing the eigenvalues of the squared mass matrices.

For what concerns the gravitini ψc
µ , the mass matrix is proportional to the fermion shift

A1:

M3/2
ab =

3
2

A1ab. (4.31)
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The vector mass matrices are contained in the scalar kinetic term 1
2Pµab

cdPµ

cd
ab, where

Pµab
cd is defined by the gauge covariant space-time derivative of the scalar fields

Vab
M(∂µVM

cd −gAPQ
µ XPQ,M

NVcd)≡ Pµab
cd +2Qµ[a

[c
δ

d]
b] . (4.32)

The Pµab
cd lies in the 14 representation of usp(4), while Qµa

c in the 10, (these must be
imposed before computing the masses). Analogously, the mass term for the 2-forms arises
from the kinetic term of the vectors, namely ΩacΩbdHµν

abHcdµν , where Hµν
ab is given

in 3.58. Similarly, the mass term for the 3-forms, SN
µνρ , arises from the kinetic term of the

2-forms, ΩacΩbdHµνρabH
µνρ

cd . The covariant field strength for the 2-forms is given by:

HµνρM = 3D[µBνρ]M +6εMNPQRANP
[µ

(
∂νAQR

ρ +
2
3

gXST,U
QARU

ν AST
ρ]

)
+gYMNSN

µνρ .

Note that the kinetic term for the 3-forms in 3.82 is linear in the derivative, so what
one really obtains from this procedure is the mass matrix and not the square mass matrix.
Furthermore, this kinetic term is not canonically normalised; indeed, it is in the schematic
form YMNSMDSN , so the true masses are obtained once one multiplies the mass matrix that
arises from the kinetic term of the 2-forms by Y−1

MN . For the scalar masses, we note that
it is possible to parameterise the scalar fields in terms of the USp(4)-invariant, symmetric
unimodular matrix MMN defined by

MMN ≡ VM
abVN

cd
ΩacΩbd. (4.33)

The scalar potential, written in terms of MMN , is

V =
1

64

(
2MMNYNPMPQYQM −

(
MMNYMN

)2
)

+ZMN,PZQR,S (MMQMNRMPS −MMQMNPMRS) .
(4.34)

Therefore, by means of δΣVM
ab = Σab

cdVM
cd , it is possible to calculate the second variation

of the potential and, therefore, the scalar mass matrix, always recalling that Σab
cd belongs

to the 14 representation of USp(4). Eq. 3.64 has been extensively used to calculate the
masses. To check for the residual supersymmetries of the vacua, one has to verify how many
non-vanishing εa spinors exist that satisfy:

A2a,bcdε
a = 0. (4.35)
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We have already explained the procedure for finding the extrema of the scalar potential in
the 5 dimensional case, including the XL-Algorithm or extended linearisation (Appendix D)
and the use of Grobner Basis, so in the following we will directly deal with the vacua with
residual U(1) gauge symmetry.

4.2.2 Vacua with residual U(1) symmetry

Requesting a residual U (1) invariance of the vacuum restricts the allowed coefficients of the
embedding tensor. To perform this analysis, we looked at all the in-equivalent embeddings of
U(1) in SO(5)∼ Usp(4) and singled out all the different charge assignments. The branchings
of the 1, 14, 5 and 35 of Usp(4) under this decomposition have been obtained, therefore
classifying all in-equivalent cases. When the commutant of the residual symmetry group in
USp(4) was non-trivial we used the commuting symmetries to further reduce the number
of in-equivalent variables by removing those that could be generated by the action of the
commutant. We then proceeded to solve the set of quadratic constraints 3.55, 3.73, and the
equations of motion 4.30, and then collected the solutions that could be related by duality
transformations. Then we continued by analysing the residual supersymmetry and some of
their masses. We first list the possible U(1) branchings, listing also the number of singlets in
the T-tensor irreducible USp(4) representations, which are going to be the variables to be
fixed by the quadratic constraints and equations of motion.

Branchings

We find 3 different branchings of the fundamental representation of USp(4)∼ SO(5) under
U(1), which has been studied separately. The labels on the various factors are self-explanatory:
we use letters from the beginning of the alphabet to keep track of the various factors in the
decompositions and we use S to specify the symmetric embedding of the group.

Case 1: 4 → (±1,0)+(0,±1).
The branching path is

USp(4)→ SU(2)A ×SU(2)B →U(1)A ×U(1)B (4.36)

we classify the branchings by how we choose the embedding of U(1) inside U(1)A× U(1)B
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# 4 charges 5 14 35

decomposition choice singlets singlets singlets

1 4 → (±1,0)+(0,±1) (qA,qB) 1 2 3

1a 4 → (±1)+2 · (0) qA/qB 1 4 7

1b 4 → 2 · (±1) qA +qB 3 6 11

1c 4 → (±1)+(±3) qA +3qB 1 2 5

Table 4.20 Branchings for case 1.

Case 2: 4 → (±1,±1).
The branching path is

USp(4)→ SU(2)A ×SU(2)B →U(1)A ×U(1)B (4.37)

we classify the branchings by how we choose the embedding of U(1) inside U(1)A× U(1)B

# 4 charges 5 14 35

decomposition choice singlets singlets singlets

2 4 → (±1,±1) (qA,qB) 1 2 3

2a 4 → 2 · (±1) qA/qB 3 6 11

2b 4 → 2 · (0)+(±2) qA +qB 1 4 7

2c 4 → (±1)+(±3) qA +2qB 1 2 5

Table 4.21 Branchings for case 2.

All these cases were already contained in the first case.

Case 3: 4 → (±3)+(±1).
The branching path is

USp(4)→ SU(2)S →U(1) (4.38)
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There is 1 singlet in C[ab], 2 in B[ab]
[cd] and 5 in C[ab]

(cd), respectively the 5, 14 and 35
representations of USp(4). Also, this case was contained in the first case. Therefore, we have
only three branchings to analyse.

Vacua

The search for vacua has been carried out by solving the sets of quadratic equations for the
singlets in the tables above. Once we found solutions, we checked for each candidate vacuum
the rank of the embedding tensor, which gives us the dimensions of the gauge group, the
signature of the resulting Cartan–Killing matrix, which provides us with the compact and
non-compact directions of the gauge group, and some of the masses. Overall, we found 2
different Anti-de Sitter vacua and 5 Minkowski vacua. The vacua with negative cosmological
constant are all pertaining to the same gauging, namely the maximal SO(5) theory, and
were already known [73]. All vacua are reported in table 4.22, together with the number
of supersymmetry they preserve, the original gauging, the residual gauge group, and the
reference where they were first discovered. In Appendix C we provide for each vacuum one
instance of fermion shift values reproducing the critical point mentioned in the table.

vacuum susy Ggauge Gres ref. branching

A1 4 SO(5) SO(5) [73] 1a, 1b, 1c

A2 0 SO(5) SO(4) [74] 1a, 1b, 1c

M1 0 U(1)⋉R6 U(1) [33] 1a, 1b, 1c

M2 0 U(1)⋉R4 U(1) here 1a

M3 0 U(1)⋉R6 U(1) here 1b

Table 4.22 Summary of vacua with at least U(1) residual gauge symmetry in 7 dimensions.

All AdS vacua appear in the SO(5) theory, which is a consistent truncation of M-theory
compactified on S4.
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Mass spectra

In this section we present some of the masses for all the vacua listed in table 4.22. The masses
for the AdS backgrounds are normalised in terms of the AdS radius squared L2 = |15/V |, so
that supersymmetric gravitinos have a normalised squared mass of 25/16.

L2m2
3/2

[25
16

]
×4

L2m2
vec [0]×10

L2m2
2− f orms [0]×5

L2m2
3− f orms [1]×5

L2m2
1/2

[ 9
16

]
×16

L2m2
scal [8]×14

Table 4.23 Masses for the AdS vacuum A1

L2m2
3/2

[27
16

]
×4

L2m2
vec

[3
4

]
×4, [0]×6

L2m2
2− f orms [0]×5

L2m2
3− f orms

[3
4

]
×4, 3×1

L2m2
1/2 [0]×4,

[ 3
16

]
×12

L2m2
scal [−12]×1, [12]×9, [0]×4

Table 4.24 Masses for the AdS vacuum A2

(A1) results stable according to the Breithenloner–Freedman bound [69, 70] while (A2) is
perturbatively unstable, as already shown in [74]. For what concerns the Minkowski vacua,
since there is no intrinsic scale associated with the vacuum, we parametrised all masses in
terms of the ones of the gravitini. More information about these vacua and their spectra can
be found in [75].

m2
3/2 [m2

1]×2, [m2
2]×2

m2
vec [(m1 +m2)

2]×2, [4m2
1]×2, [4m2

2]×2, [0]×4

m2
2− f orms [0]×3, [(m1 −m2)

2]×2

m2
3− f orms [(m1 +m2)

2]×2, [0]×3

m2
scal [0]×8, [±16(m1 +m2)

2], [±16(m1 −m2)
2], [±4(m1 −m2)

2]

Table 4.25 Masses for the Minkowski vacuum M1
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m2
3/2 [m2]×2, [0]×2

m2
vec [(2m)2]×2, [(m)2]×2, [0]×6

m2
2− f orms [0]×3, [m2]×2

m2
3− f orms [m2]×2, [0]×3

m2
scal [−(4m)2]×4, [-(2m)2]×2, [0]×8

Table 4.26 Masses for the Minkowski vacuum M2

m2
3/2

[1
4(m

2
1 −m2

2)
]
×4

m2
vec [(m1)

2]×2, [(m1 ±m2)
2]×2, [0]×4

m2
2− f orms [0]×3, [m2

2]×2

m2
3− f orms [m2

1]×2, [0]×3

m2
scal [0]×8, [−(4m1)

2]×2, [−(4m2)
2]×2, [−(2m2)

2]×2

Table 4.27 Masses for the Minkowski vacuum M3





Chapter 5

Exceptionality in Supergravity

5.1 Introduction

Various techniques have been adopted during the course of this thesis to tackle the problem
of finding and analysing the vacua of supergravity theories. Some of them, which either
have been reported previously or will be described in the next chapter, are designed to solve
directly the system of quadratic equations. In this chapter, on the other hand, we will focus
on certain constraints that may be imposed on the embedding tensor of gauged supergravities
in order to reduce the number of parameters in the equations and ease the computational
effort to solve the systems. The constraints that we are going to impose are dictated by the
principle of upliftability. This concept has gained much attention in recent years, due to the
extensive adoption of effective field theory analysis [76–79] and of the Swampland criterion
[80–82] by the scientific community. Nowadays, effective field theories which, by the time at
which their energy scale reaches the Planck scale, cannot be embedded in String Theory (or
more generally in a theory of Quantum Gravity) are considered to be part of the swampland
and therefore are ruled out from the set of "good effective field theories".
Driven by this principle, we are going to impose that the possible gaugings of a supergravity
theory arise from configurations in String Theory or M-Theory. As we shall see, this will
imply further constraints on the embedding tensor.
In order to understand the origin of these constraints, it is necessary to introduce a powerful
tool, namely Exceptional Field Theory. These can be seen as natural generalisations of
supergravity theories, which relate a specific ungauged theory with M/IIA/IIB theory, by
casting 11-dimensional supergravity in an En(n) covariant form.
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5.2 Exceptional Field Theory at Work

This paragraph is devoted to the explanation of Exceptional Field Theories (EFT) and how
they work, in order to achieve this result, we are going to use extensively the example of E6(6)-
EFT, which relates 5-dimensional ungauged supergravity to M-theory and type IIB string
theory, following [83]. EFT is an approach that takes the steps from Double Field Theory
(DFT), the latter was created to make the O(d,d) T-duality group of string theory manifest
[84, 85]. DFT consists in doubling the number of space-time coordinates, imposing a ’section
constraint’ or ’strong constraint’ and organising the fields into O(d,d) tensors [84–93]. DFT
has been used for bosonic string theory, heterotic string [94], and their supersymmetric
extensions [95–97]. The fields of M-theory (or better 11-dimensional supergravity) do not
organise into tensors of any of En(n) groups, unlikely the fields of DFT which naturally
combine in tensors under O(10, 10). This problem has been overtaken by extending the
’internal’ derivatives to transform in the vector representation of En(n), by imposing the
analogue of the DFT’s ’strong constraint’, by gauge fixing some of the Lorentz symmetry in
the 11-D theory, and decomposing the fields as in a Kaluza-Klein complexification (if needed,
one also has to dualise some of the fields). In this way, fields can finally be organised as En(n)

tensors. So we achieve a full En(n) covariance at the cost of sacrificing some of the Lorentz
gauge symmetry [77]. For instance, the E6(6) EFT, while maintaining the same fields and the
same multiplet structure of the 5-dimensional supergravity, enlarges the coordinate space to
a 5 + 27 dimensional space, with coordinates (xµ ,Y M), where Y M has dual derivatives ∂M,
which lie in the fundamental representation 27 of E6(6). The number of ’effective’ coordinates
is restricted by the analogue of the section constraint, though, which can be stated by

Y MN
PQ∂M ⊗∂N = 0. (5.1)

Where, Y MN
PQ is an En(n) invariant tensor. In the case of E6(6) EFT, this translates into

Y MN
PQ = dMNRdRPQ, and the section constraint becomes

dPQR
∂Q∂RA = 0, dPQR

∂QA∂RB = 0. (5.2)

Where A and B are fields or gauge parameters. This section constraints, unlikely from DFT
where it descends from a strong version of the level-matching condition, is a consequence of
the closure of the Jacobi identity of the generalised Lie derivative. Indeed, in EFT, the local
gauge transformations (diffeomorphisms and q-forms gauge transformations) are all encoded
in the ’generalised diffeomorphisms’, an infinite set of transformations parametrised through
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the parameter ΛP, whose action is given by the generalised Lie derivative:

LΛV P ≡Λ
Q

∂QV P −V Q
∂QΛ

P +Y PQ
RS∂QΛ

RV S +(λ −ω)∂QΛ
QV P

=Λ
Q

∂QV P +αPP
Q

R
S∂RΛ

SV Q +λ∂QΛ
QV P.

(5.3)

Where, λ is a weight in order to take into consideration also fields that transform as densities,
and PP

Q
R

S ≡ (tα)Q
P(tα)S

R is the projector onto the adjoint representation and is related to
Y PR

QS by
Y PQ

RS = δ
P
R δ

Q
S +ωδ

Q
R δ

P
S −αPP

R
Q

S. (5.4)

In the case of E6(6), the fundamental representation is 27, and it contains 2 cubic invariant
tensors (fully symmetric), dPQR and dPQR, normalised as dPQRdSQR = δ S

P , so that Y PQ
RS =

10dRST dPQU , in addition ω ≡ 1
(D−2) =

1
3 , with D the number of spacetime dimensions of the

ungauged supergravity, and α =−6.
So that the generalised Lie derivative for the E6(6) case is

δV P = LΛV P ≡ Λ
Q

∂QV P −6PP
Q

R
S∂RΛ

SV Q +λ∂QΛ
QV P. (5.5)

Some useful properties of the cubic invariants are

dP(QRdST )U dPUV =
2
15

δ
V
(QdRST ),

dST RdS(MNdPQ)T =
2
15

δ
(M
R dNPQ).

(5.6)

d-symbols are obviously invariant tensors of weight λ = 0,

LΛdPQR = 0. (5.7)

Another very useful property is that if VP is a covariant vector of weight λ (V ) = 2ω = 2
3 , then

W P ≡ dPQR∂QVR is a controvariant vector of weight λ (W ) = ω = 1
3 . To better understand

the EFT, specifically in the case of E6(6), we note that there are some gauge parameters with
trivial gauge transformations δΛV P = 0:

Λ
P = dPQR

∂QχR. (5.8)

In order to show this, one has to use the section constraint and eq. 5.6. This relation can be
generalised to other En(n) EFT, just by inserting the right Y MN

PQ tensor. Thanks to all these
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properties, it is now possible to study the gauge algebra:

[LΛ,LΣ]V P = L[Λ,Σ]EV P. (5.9)

Where we have introduced the ’E-bracket’:

[Λ,Σ]PE = Λ
Q

∂QΣ
P −Σ

Q
∂QΛ

P − 1
2

Y PQ
RS(Λ

R
∂QΣ

S −Σ
R
∂QΛ

S) (5.10)

Requiring 5.9 implies, as already stated, the section constraint to hold, as well as other
constraints:

Y PQ
RS∂P ⊗∂Q = 0, (5.11a)

(Y PQ
RSδ

T
U −Y PQ

VUYV T
RS)∂(Q ⊗∂T ) = 0, (5.11b)

(Y MP
T NY T Q

[SR]+2Y MP
[R|TY T Q

S|N −Y MP
[RS]δ

Q
N −2Y MP

[S|Nδ
Q
R])∂(P ⊗∂Q) = 0 (5.11c)

(Y MP
T NY T Q

(SR)+2Y MP
(R|TY T Q

S)N −Y MP
(RS)δ

Q
N −2Y MP

(S|Nδ
Q
R))∂[P ⊗∂Q] = 0. (5.11d)

In all the cases, which encompass all the EFT built so far, in which Y PQ
RS can be

expressed as in 5.4 and the section constraint 5.11a is solved, the previous constraints
simplify. Terms with multiplicative coefficients 1 and 2 in eq. 5.11c and 5.11d combine into
symmetrisations in three indices, which is also what is needed for eq. 5.11b to hold:

Y (PQ
RSY T )R

UV −Y (PQ
UV δ

T )
S = 0 (5.12)

Then the indices can be cycled so that the indices of the derivatives correspond to the indices
on the Y PQ

RS and thus all the other constraints become equivalent to the section constraint,
once this is solved. Therefore, the section constraints guarantee that the generalised Lie
derivatives satisfy the Lie Algebra 5.9. On the other hand, the E-bracket does not respect the
Jacobi Identity, it has a non-vanishing ’Jacobiator’:

J(Γ1,Γ2,Γ3)≡ [[Γ1,Γ2]E ,Γ3]E +[[Γ2,Γ3]E ,Γ1]E +[[Γ3,Γ1]E ,Γ2]E . (5.13)

However, it can be shown that the jacobiator is in the form of a trivial gauge parameter 5.8.
In fact, let us define the Dorfman product among vectors of weight ω

(Γ1 ◦Γ2)
P ≡ (LΓ1Γ2)

P = Γ
Q
1 ∂QΓ

P
2 −Γ

Q
2 ∂QΓ

P
1 +Y PQ

RS∂QΓ
R
1 Γ

S
2 (5.14)
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in the specific case of E6(6), this is given by

(Γ1 ◦Γ2)
P ≡ (LΓ1Γ2)

P = Γ
Q
1 ∂QΓ

P
2 −Γ

Q
2 ∂QΓ

P
1 +10dPQT

RST ∂QΓ
R
1 Γ

S
2. (5.15)

The difference between the Dorfman product and 5.10 is given by a term symmetric in
the two arguments, which we call Γ:

(Γ1 ◦Γ2)
P = [Γ1,Γ2]

P
E +Y PQ

RS∂Q(Γ
(R
1 Γ

S)
2 ). (5.16)

We can see that the last factor of the previous relation has the form of a trivial gauge
parameter 5.8, so that the Dorfman product and the E-bracket generate the same generalised
Lie derivative. Now, we need to prove that the Dorfman product obeys the Jacobi identity:

Γ1 ◦ (Γ2 ◦Γ3)−Γ2 ◦ (Γ1 ◦Γ3)− (Γ1 ◦Γ2)◦Γ3 = 0. (5.17)

Indeed:

Γ1 ◦ (Γ2 ◦Γ3)−Γ2 ◦ (Γ1 ◦Γ3) = Γ1 ◦ (LΓ2Γ3)−Γ2 ◦ (LΓ1Γ3)

= LΓ1LΓ2Γ3 −LΓ2LΓ1Γ3

= L[Γ1,Γ2]E Γ3

= L(Γ1◦Γ2)Γ3

= (Γ1 ◦Γ2)◦Γ3.

(5.18)

then we can compute [[Γ1,Γ2]E ,Γ3]E :

[[Γ1,Γ2]E ,Γ3]
P
E = ([Γ1,Γ2]E ◦Γ3)

P −Y PQ
RS∂Q([Γ1,Γ2]

(R
E Γ

S)
3 ) (5.19)

= ((Γ1 ◦Γ2)◦Γ3)
P −Y PQ

RS∂Q([Γ1,Γ2]
(R
E Γ

S)
3 ), (5.20)

Then using the just proven fact that the Dorfman product satisfies the Jacobi identity, one
gets for the Jacobiator of the E-bracket:

JP(Γ1,Γ2,Γ3) =
1
3

Y PQ
RS∂Q

(
[Γ1,Γ2]

(R
E Γ

S)
3 +[Γ3,Γ1]

(R
E Γ

S)
2 +[Γ2,Γ3]

(R
E Γ

S)
)
. (5.21)

Which in the case of E6(6) becomes:

JP(Γ1,Γ2,Γ3) =
5
3

dPQT
∂Q

(
dT RS([Γ1,Γ2]

R
EΓ

S
3 +[Γ3,Γ1]

R
EΓ

S
2 +[Γ2,Γ3]

R
EΓ

S)
)
. (5.22)
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Proving that the E-bracket Jacobator is indeed a trivial gauge parameter.

5.2.1 Tensor Hierarchy

The gauge parameters used in the EFT depend on both the internal coordinates Y P (note that
the physical internal coordinates Y p are a subset of these, chosen by the section constraint)
and the external coordinates xµ . Therefore, there is the need to covariantize the external
derivatives and their curvatures, introduce gauge connections and, as we will see, introduce
higher-form intertwinings, just as it happens for gauged supergravities. The field content of
each En(n) EFT is fixed by the underlying ungauged supergravity in 11−n dimensions, but
they all contain vector fields, in particular, for the case of E6(6) we can introduce the gauge
field AP

µ , in order to define the covariant derivative:

Dµ ≡ ∂µ −LAµ
(5.23)

Consequently, the covariant derivative of a vector of weight λ becomes

DµV P = ∂µV P −AQ
µ ∂QV P +6PP

Q
R

S∂RAS
µV Q −λ∂QAQ

µV P. (5.24)

= DµV P −λ∂QAQ
µV P. (5.25)

As usual, gauge transformations for gauge fields AP
µ can be obtained by demanding the gauge

covariance of covariant derivatives:

δAP
µ = ∂µΛ

P −AQ
µ ∂QΛ

P +Λ
Q

∂QAP
µ −10dPQRdST RΛ

T
∂QAS

µ

= DµΛ
P − 1

3
(∂QAQ

µ )Λ
P

≡DµΛ
P.

(5.26)

This also shows that the gauge parameters Λ have weight λ = ω = 1
3 . We introduce a first

version of the field strength tensor for gauge fields, we will see that we need to modify it
later to introduce higher q-form intertwinings.

FP
µν = 2∂[µAP

ν ]− [Aµ ,Aν ]
P
E

= 2∂[µAP
ν ]−2AQ

[µ
∂QAP

ν ]+10dPQRdST RAS
[µ∂QAT

ν ].
(5.27)

We showed before that the E-bracket does not satisfy the Jacobi identity, so this field strength
does not transform covariantly. Computing its variation under an arbitrary δAP

µ , that is a
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controvariant vector with weight λ = 1
3 one gets

δFP
µν = 2D[µδAP

ν ]+10dPQRdST R∂Q(AS
[µδAT

ν ]). (5.28)

It is possible to see, from this expression, that the last term is not covariant and has the form
of a trivial gauge parameter 5.8. Therefore, we modify the expression for the gauge field
strength in

FP
µν ≡ FP

µν +10dPQR
∂RBµνQ (5.29)

in such a way that
δFP

µν ≡ FP
µν +10dPQR

∂R∆BµνQ, (5.30)

with
∆BµνQ ≡ δBµνQ +dQRSAR

[µδAS
ν ]. (5.31)

Where δBµνQ comprises the gauge-symmetry transformations of the 2-forms, parametrised
by ΞµQ. Summarising the gauge transformations are given by

δAP
µ = DµΛ

P − 1
3
(∂QAQ

µ )Λ
P −10dPQR

∂RΞµQ, (5.32)

∆BµνP = 2DµΞν ]P −
4
3
(∂QAQ

[µ
)Ξν ]P +dPQRΛ

QFR
µν +OµνP, (5.33)

with O unspecified but satisfying:

dPQR
∂ROµνQ = 0. (5.34)

Under this gauge transformation, the field strength FP
µν transform as a controvariant vector

with weight λ = ω = 1
3 . From an explicit, tedious computation, one can show that the

covariant field strength satisfies the Bianchi identity:

2D[µFP
νρ] = 10dPQR

∂RHµνρQ, (5.35)

where, the 3-form field strenght HµνρQ, defined from this equation, up to terms that vanish
once contracted with dPQR, is given by

HµνρQ = 3D[µBνρ]Q −3dQRSAR
µ∂νAS

ρ]+2dQRSAR
µAT

ν ∂T AS
ρ]

−10dQRSdSTU dUV PAR
[µAV

ν ∂T AP
ρ]+ ...

(5.36)
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5.2.2 The E6(6) Exceptional Field Theory

The field content of the E6(6) EFT is dictated by its underlying ungauged supergravity content,
which, for what concern the bosonic field sector has already been extensively described before
and contains the graviton ea

µ , the scalar fields parametrised by a matrix MPQ, the gauge
bosons AP

µ and the two forms BµνP. The Lagrangian is written in such a way as to be invariant
under the internal generalised diffeomorphisms as well as the (covariantized) 5-dimensional
external diffeomorphisms. The latter relate the various terms of the Lagrangian and fix the
relative coefficients, a job usually done by supersymmetry, in this case, supersymmetry has
the only job of fixing the field content. The final Lagrangian is given by

SEFT =
∫

d5xd27Ye
(

R̂+
1

24
gµνDµMPQDνMPQ

− 1
4
MPQFµνPFQ

µν + e−1Ltop −V (MPQ,gµν)

)
.

(5.37)

Where, the scalar potential is given by

V =− 1
24

MPQ
∂PMRS

∂QMRS +
1
2
MPQ

∂PMRS
∂SMQR −

1
2

g−1
∂Pg∂QMPQ

− 1
4
MPQg−1(∂Pg)g−1

∂Qg− 1
4
MPQ

∂Pgµν
∂Qgµν .

(5.38)

And the topological Lagrangian can be written as an integral of an exact 6-form over a
6-dimensional manifold

Stop =
∫

d5xd27YLtop

=−
√

5
32

∫
d27Y

∫
M6

(dPQRFP ∧FQ ∧FR −40dPQRHP ∧∂QHR).

(5.39)

We will not show that each of these terms separately is invariant under generalised internal
diffeomorphisms, but in order to get a sense for how it works, we will illustrate some
examples. For what concerns the kinetic term of the graviton, we note that there is an hat
on the Ricci scalar, this is due in order to have appropriate generalised diffeomorphisms
transformations. The fünf-bein is a scalar density under generalised diffeomorphisms and
has weight λ = ω = 1

3 , its gauge covariant derivative is given by

Dµea
ν ≡ ∂µea

ν −AP
µ∂PeA

ν −
1
3

∂PAP
µea

ν . (5.40)
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The latter enters in the spin connection ωµ
ab, which is a scalar under generalised diffeo-

morphisms (namely λ = 0), and consequently the Riemann tensor Rµν
ab is also a scalar

under generalised diffeomorphisms. One problem arises, the covariant derivatives Dµ do not
commute among themselves, therefore the Riemann tensor does not transform covariantly
under local Lorentz transformations δωµ

ab =−Dµλ ab. This is the reason why, in the gravity
Lagrangian, the Ricci tensor is modified, indeed, we can write an improved Riemann tensor
as

R̂µν
ab ≡ Rµν

ab +FP
µνeaρ

∂Peρ
b, (5.41)

which again is a scalar under generalised diffeomorphisms and transforms covariantly under
local Lorentz transformations, so the Hilbert–Einstein term

SEH =
∫

d5xd27Yeea
µeb

ν R̂µν
ab, (5.42)

is a scalar with weight one, thus transforming as

δL= Λ
P
∂PL+L∂PΛ

P = ∂P(LΛ
P), (5.43)

namely, as a total derivative. The weight of the Lagrangian is composed of the sum of the
weights of each term, the determinant of the funfbein contributes as λ = 5

3 , while each inverse
funf-bein contributes with λ =−1

3 giving λ (LEH) = 1.
For the scalar kinetic term, we have that the matrix MPQ is a symmetric 2-tensor with weight
λ = 0. Then the scalar kinetic term

Lscal =
1

24
egµνDµMPQDνMPQ (5.44)

has total weight 1, indeed, the inverse metric has weight λ =−2
3 , the fünf-bein determinant

has always weight λ = 5
3 giving the expected result for the Lagrangian. Analogously,

recalling that FP
µν has weight λ = 1

3 , then the kinetic Lagrangian for gauge bosons

Lvec =−1
4

eMPQFP
µνF

Q
ρσ gµρgνσ (5.45)

is also generalised diffeomorphic invariant. The proof of the invariance under generalised
diffeomorphism for the topological Lagrangian and the potential are more involved and so
we will not report these here, in particular the coefficients for each term in the potential are
fixed by this invariance.
The relative coefficients of the various terms in the Lagrangian are fixed by the external
diffeomorphism invariance, this is due to the Y-dependence of the gauge parameter ξ µ(x,Y ).
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These transformations are given by

δea
µ = ξ

νDνea
µ +Dµξ

νea
ν ,

δMPQ = ξ
µDµMPQ

δAµ
P = ξ

νFνµ
P +MPQgµν∂Qξ

ν ,

∆BµνP =
e

2
√

10
ξ

ρ
εµνρστFστQMPQ.

(5.46)

They may seem odd, but indeed are equivalent to the conventional covariantized (with respect
to the internal diffeomorphism) external diffeomorphisms. This Exceptional Field Theory
has 2 inequivalent solutions to the section constraints (besides the trivial one which sets all
the internal coordinates to 0 obtaining 5-D ungauged supergravity), corresponding to 11-D
and type II-B string theory. In order to show this equivalence, there is the need to decompose
the fields of these theories in a Kaluza-Klein-like way(Appendix A), but unlikely from K–K
compactifications we retain all the dependance on all the 11/10 coordinates. Let us sketch
how this works for 11-dimensional supergravity.

5.2.3 Decomposition of 11-D supergravity

The bosonic sector of 11-dimensional supergravity is formed by the elf-bein Eµ̂
â and a

3-form Cµ̂ ν̂ ρ̂ , with all the hatted indices going from 0 to 10. The action is given by

S11 =
∫

d11xE
(

R− 1
12

F µ̂ ν̂ ρ̂σ̂ Fµ̂ ν̂ ρ̂σ̂ +
1

12 ·216
e−1

ε
µ̂1...µ̂11Fµ̂1...µ̂4Fµ̂1...µ̂8Cµ̂9µ̂10µ̂11

)
,

(5.47)
where the abelian field strength is Fµ̂ ν̂ ρ̂σ̂ = 4∂[µ̂Cν̂ ρ̂σ̂ ]. In addition to being invariant under
local Lorentz transformations and 11-dimensional diffeomorphisms, the theory is also invari-
ant under gauge transformations of the 3-form δCµ̂ ν̂ ρ̂ = 3∂[µ̂Λν̂ ρ̂]. As we already anticipated,
we need a K–K decomposition in order to show the equivalence between 11-D supergravity
and E6(6) EFT, so we will split the hatted indices as

µ̂ = (µ,m), â = (a,α), (5.48)

with µ = 1, ...,5 and m = 1, ...,6 etc. where D = d +n = 6+5. Then one partially fixes the
local Lorentz invariance SO(1,10) to SO(1,4)× SO(6), by picking a specific form of the
elf-bein:

Eµ̂
â =

φ γeµ
a Aµ

mφm
α

0 φm
α

 (5.49)
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With φ = det(φm
α) and the inverse given by

Eâ
µ̂ =

φ−γea
µ −φ−γea

νAν
m

0 φα
m

 (5.50)

The parameter γ is fixed by demanding that the 5-dimensional theory is in the Einstein frame,
obtaining γ =− 1

n−2 =−1
3 . Inserting this form of the elf-bein into the Hilbert–Einstein term,

we end up with the desired form.

SEH =
∫

dDxEEâ
µ̂Eb̂

ν̂Rµ̂ ν̂
âb̂

=
∫

d5xd6ye
[

R̂− 1
4

φ
−2γ

φmnFµνmFµν
n − 1

2
φ

mngµνDµφm
αDνφnα

− γ
2(n−2)φ−2gµνDµφDνφ − 1

2
gµν(φ αmDµφm

γ)(φγ
nDνφnα)−V (φ ,e)

]
.

(5.51)

With n=5, φmn = φαmφ α
n and

Dµeν
a = ∂µeν

a −Aµ
m

∂meν
a + γ∂nAµ

neν
a, (5.52)

Dµφm
α = ∂µφm

α −Aµ
n
∂nφm

α −∂mAµ
n
φn

α , (5.53)

Fµν
m = ∂µAν

m −∂νAµ
m −Aµ

n
∂nAν

m +Aν
n
∂nAµ

m, (5.54)

that are covariant under "internal" diffeomorphism. Indeed, the 11-dimensional Lagrangian
is invariant under 11-D diffeomorphisms, which act on the elf-bein as

δEµ̂
â = ξ

ν̂
∂ν̂Eµ̂

â +∂µ̂ξ
ν̂Eν̂ â. (5.55)

Splitting the gauge parameter into ξ µ̂ = (ξ µ ,Λm) one obtains for the internal diffeomor-
phisms acting on the fields describing the elf-bein:

δΛeµ
a = Λ

n
∂neµ

a − γ∂nΛ
neµ

a,

δΛφm
α = Λ

n
∂nφm

α +∂mΛ
n
φn

α ,

δΛφ = Λ
n
∂nφ +∂nΛ

n
φ ,

δΛAµ
m = ∂µΛ

m −Aµ
n
∂nΛ

m +Λ
n
∂nAµ

m.

(5.56)
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In addition, we define the improved Riemann tensor, just as we did before for the EFT

R̂µν
ab = Rµν

ab +Fµν
meaρ

∂meρ
b. (5.57)

This again ensures that ˆRµν
ab preserves local SO(1,4) Lorentz invariance. The scalar

potential in 5.51 is given by

VEH(φ ,e) =−φ
2γ

(
R(φ)+

1
4

φ
mn(DmgµνDngµν +g−1Dmgg−1Dng)

)
, (5.58)

with

R(φ) =
1
2

φ
mn

φ
kl

φ
pq

∂kφmq∂pφnl −
1
4

φ
mn

φ
kl

φ
pq

∂pφmk∂qφnl −
2
3

∂mφ
mn

φ
−1

∂nφ

− 21
9

φ
mn(φ−1

∂mφ)(φ−1
∂nφ)+∂mφ

mne−1
∂ne+2φ

mn(e−1
∂me)(φ−1

∂nφ).

(5.59)

Analogously, one proceeds for the other terms of the 11-dimensional Lagrangian. In general,
the procedure is first to flatten all hatted indices and then to ’un-flatten’ with the fünf-bein
Eµ

a, for instance, for the 3-forms and its field strength, one gets

Aµmn ≡ Eµ
aEa

ν̂Cν̂mn. (5.60)

Expanding each component, one arrives at

Amnk =Cmnk,

Aµmn =Cµmn −Aµ
kCkmn,

Aµνm =Cµνm −2A[µ
nCν ]mn +Aµ

nAν
kCmnk,

Aµνρ =Cµνρ −3A[µ
mCνρ]m +3A[µ

mAν
nCρ]mn −Aµ

mAν
nAρ

kCmnk.

(5.61)

Similarly, for the field strengths

Fmnkl = 4∂[mAnkl],

Fµnkl = DµAnkl −3∂[nAµkl],

Fµνmn = 2D[µAν ]mn +Fµν
kAkmn +2∂[mAµνn],

Fµνρm = 3D[µAνρ]m +3F[µν
nAρ]mn −∂mAµνρ ,

Fµνρσ = 4D[µAνρσ ]+6F[µν
mAρσ ]m.

(5.62)

Then the next steps are inserting these in the kinetic and topological 11-D Lagrangian for
the 3-forms and carrying out all the computation to have the explicit terms of the Lagrangian
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necessary for the comparison, just as we did before for the Einstein–Hilbert term. Having
sketched how to K–K decompose 11-dimensional supergravity, we can move to solve the
section constraint of the EFT, in order to obtain this subcase.

5.2.4 GL(6) invariant reduction of EFT

In order to obtain the equivalence of EFT with 11-D supergravity in the formulation described
above, one has to solve the section constraint in a specific manner. In particular, for 11-
dimensional supergravity, we need to break E6(6) to GL(6). GL(6) is embedded in E6(6)

as
GL(6) = SL(6)×GL(1)⊂ SL(6)×SL(2)⊂ E6(6), (5.63)

such that the fundamental E6(6) representation breaks as

27 → 6+1 +15′0 +6−1, (5.64)

while the adjoint decomposes as

78 → 1−2 +20−1 +(1+35)0 +20+1 +1+2, (5.65)

and the subscripts refer to the GL(1) charges. We can solve the section constraint by asking
the internal coordinate to lie only in the 6+1 representation of GL(6). Indeed, we have:

{Y P}→ {yp,ypq,yp}, (5.66)

where the indices p,q = 1,...,6. Then, using the summation convention ΓP
1 Γ2P = Γ

p
1Γ2p +

Γ1pqΓ
pq
2 +Γ

p
1Γ2p, one learns the non-vanishing components of the d-symbol (the Y PQ

RS

components in the general case)

dPQR : dpq
rs =

1√
5

δ
p
[rδ

q
s], dpqrstu =

1
4
√

5
εpqrstu,

dPQR : dpq
rs =

1√
5

δ
r
[pδ

s
q], dpqrstu =

1
4
√

5
ε

pqrstu,

(5.67)

as usual, the other non-vanishing components are related by the symmetries of the d-symbol
dPQR = d(PQR). GL(1) charges imply that all the other components vanish, then the section
constraint can be solved by choosing the coordinates in such a way that

{∂pΓ1 = 0, ∂
pq

Γ1 = 0} ⇐⇒ Γ1(xµ ,Y P)→ Γ1(xµ ,yp). (5.68)
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The vector fields in the EFT, transforming in the 27, now decompose as in 5.64, while the
2-forms enter the theory, only under the projection with the d-symbol dPQR∂QBµνR, therefore
it immediately follows that only Bµν p and Bµν

pq enter the Lagrangian, in addition, they enter
with the specific combinations

∂pBµνq −∂qBµν p and ∂pBµν
pq, (5.69)

so that there is an additional local shift symmetry in the theory, given by

δBµν p = ∂pΓµν , δBµν
pq = ∂rΓµν

[pqr], (5.70)

for arbitrary Γµν , Γµν
[pqr]. Once decomposed, the q-forms content is

{Aµ
p,Aµ pq,Aµ

p}, {Bµν p,Bµν
pq}, (5.71)

modulo the additional local gauge shifts for the 2-forms. The q-form field content can be
linked to the field content of 11-D supergravity in the K–K decomposition we obtained above.
We can identify Aµ

p with the K-K vector lying in the 11-D metric, while {Aµ pq,Bµν p}
with the corresponding components sitting in the 11-dimensional 3-form 5.61. For what
concerns, instead, {Bµν

pq,Aµ
p}, one can relate them to the components of the 11-D 6-form,

namely, describing the degrees of freedom dual to {Aµ pq,Bµν p}. Let us give an explicit
example of these identifications. The six vector fields Aµ

p transform under a generalised
gauge transformation 5.26, as

δΛAµ
p = ∂µΛ

p −Aµ
q
∂qΛ

p +Λ
q
∂qAµ

p, (5.72)

and they remain invariant under higher tensor gauge transformations 5.32, due to the solu-
tion of the section constraints that kills the derivative ∂pq, ∂p. The algebra for this gauge
transformation is

[δΛ1,δΛ2] = δΛ12, with Λ12
p = Λ

q
2∂qΛ

p
1 −Λ

q
1∂qΛ

p
2 , (5.73)

which is the algebra for the six-dimensional diffeomorphisms, embedded in the E-bracket.
This guarantees that the theory is invariant under 6-dimensional internal diffeomorphisms
with parameter Λp. The covariant derivative for the internal diffeomorphisms is defined, just
as before, as

Dµ = ∂µ −LAµ
. (5.74)
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The covariant field strength, evaluated from the E6(6) field strength Fµν
P coincides with the

field strength in 5.54, corroborating our identification with the K–K vector field that sits in
the 11-D metric,

Fµν
p = 2∂[µAν ]

p −Aµ
p
∂pAν ]

p −Aµ
q
∂qAν

p +Aν
q
∂qAµ

p = Fµν
p (5.75)

For the other components of Fµν
P, one gets

Fµν pq = 2D[µAν ]pq +∂pBµνq −∂qBµν p,

Fµν
p = 2D[µAν ]

p −2(∂qA[µ
q)Aν ]

p − 1
2

ε
pqrstuA[µ|rs∂q|Aν ]tu +2∂qBµν

qp,
(5.76)

with,

Bµν p =
√

5Bµν p +A[µ
qAν ]qp,

Bµν
pq =

√
5Bµν

pq +
1
2
(A[µ

pAν ]
q −A[µ

qAν ]
p).

(5.77)

The scalar fields contained in MPQ decompose according to the section constraint, namely,
by choosing a parametrisation M= VVT , with

VT ≡ exp[Φt(0)]V6exp
[
cpqrt

pqr
(+1)

]
exp
[
ϕt(+2)

]
. (5.78)

Where, t(0) is the E6(6) generator associated with GL(1), V6 is a general SL(6) matrix
and t(+n) represents the E6(6) generators of positive grading in 5.65. Defining the matrix
mpq ≡ (V6VT

6 )pq, built with the SL(6) vielbein, we can identify the combination

φpq = e−Φ/3mpq, (5.79)

that corresponds to the internal part φpq = φ α
p φqα of the 11-D metric. This combination

can be proved to transform as a tensor of vanishing weight under 6-dimensional internal
diffeomorphisms. Therefore, the set of scalar fields contained in the theory is given by

{φpq,cpqr,ϕ}. (5.80)

In order to compare this field content to the 11-D supergravity one in the K–K decomposition
we performed, we need to dualise the field ϕ into a 3-form and eliminate the fields Aµ

p and
Bµν

pq. In doing so, one also introduces a kinetic term for the 2-form Bµν p as expected for
the comparison. The dualization procedure is quite long, and can be found in [83], and in
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the end one finds that the 2 theories are effectively equivalent. There is another solution to
the section constraint that reduces E6(6) to SL(6)×SL(2), which, on the other hand, shows
the equivalence of the EFT with the full 10-D type IIB string theory. So what we showed is
that by means of an EFT, subject to a section constraint, we can always relate d-dimensional
maximal supergravity to 11-D supergravity and type II (massless) string theory. This result is
depicted in fig. 5.1 for the E6(6) case.

Fig. 5.1 Relation between the E6(6) EFT, 11-D/IIB supergravity and 5-D maximal supergravity.
1

We are now in a good position to discuss the massive deformations, indeed, we have just
shown that it is possible to obtain 11-D and type IIB supergravity, but we could not obtain
massive IIA supergravity as a solution of the section constraint. We will now see how to
obtain it by adding a deformation to the generalised Lie derivative.

1Image taken from [83]
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5.2.5 Exceptional IIA supergravity

We will start with an excursus on massless type IIA supergravity [98, 99], which, on the
other hand, could be obtained as a solution of the section constraint (it is a subcase of the
11-D supergravity solution). First of all, let us note that the generalised gauge variation for
the vectors is usually written as

δΛAµ
P =DµΛ

P = ∂µΛ
P −LAµ

Λ
P, (5.81)

can also be written
δΛAµ

P = ∂µΛ
P +LΛAµ

P. (5.82)

Indeed, this follows from the fact that {ΛP,Aµ
Q}E is a trivial gauge parameter (by explicit

computation), and the difference between the two transformations for the vectors is eaten up
by the higher q-forms gauge transformations. To be more concrete, in this case we will use
the example of 7 + 3 EFT. The q-form fields of the theory are Aµ̂ , Aµ̂ ν̂ and Aµ̂ ν̂ ρ̂ with gauge
transformations given by

δAµ̂ = ∂µ̂λ , δAµ̂ ν̂ = 2∂[µ̂Ξν̂ ], δAµ̂ ν̂ ρ̂ = 3∂[µ̂θν̂ ρ̂]−3A[µ̂ ν̂∂ρ̂]λ . (5.83)

Just as we did before, for 11-D supergravity, we decompose the fields following a K–K
like decomposition in 7+3 dimensions, with coordinates xµ and yα , with α = 1,2,3 and
µ = 0, ...,6, but retaining the dependence on all the 10 dimensional coordinates, for instance,
the vectors that arise from the q-form fields are

AKK
µ = Aµ −Bµ

γAγ , AKK
µα = Aµα −Bµ

γAγα , AKK
µαβ

= Aµαβ −Bµ
γAγαβ . (5.84)

Where Aγ , Aγα and Aγαβ are the respective scalars and Bµ
γ is the K–K vector field contained

in the 10-dimensional vielbein, analogously to 5.61. By performing the redefinition

Cµ = AKK
µ , Cµβ = AKK

µβ
, Cµβγ = AKK

µβγ
+AKK

µ Aβγ , (5.85)
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one obtains the following gauge and internal diffeomorphisms (ξ α ) transformations:

δBµ
α =(∂µ −Bµ

γ
∂γ)ξ

α +ξ
γ
∂γBµ

α ,

δCµ =ξ
γ
∂γCµ +(∂µ −Bµ

γ
∂γ)λ ,

δCµα =ξ
γ
∂γCµα +Cµγ∂αξ

γ +(∂µ −Bµ
γ
∂γ)Ξα +Bµ

γ
∂αΞγ ,

δCµαβ =ξ
γ
∂γCµαβ +2Cµγ[β ∂α]ξ

γ +(∂µ −Bµ
γ
∂γ)θαβ +2Bµ

γ
∂[αθ|γ|β ]

+2Cµ∂[αΞβ ]−2Cµ[α∂β ]λ .

(5.86)

We can compare this with the E4(4) ≡ SL(5) EFT, where generalised vectors ΓP live in the
10′ representation, respecting Γpq = −Γqp, with p,q = 1, ...,5 living in the fundamental
representation of SL(5). The Y PQ

RS tensor is then given by

Y mn pq
rstu = ε

mnpqv
εrstuv, (5.87)

in such a way that the section constraint can be written as

ε
pqrst

∂pq ⊗∂rs = 0. (5.88)

Two solutions for this constraint arise, up to SL(5) transformations

M-theory: ∂α4 ̸= 0, ∂45 ̸= 0 ∂α5 = ∂αβ = 0,

type IIB: ∂αβ ̸= 0, ∂α4 = ∂α5 = ∂45 = 0.
(5.89)

Massless type IIA is achieved by imposing in the first case ∂45 = 0, thus going from 11 to 10
physical coordinates. The EFT contains 10′ vectors Aµ

P ≡ Aµ
pq, by means of the solution of

the section constraint for type IIA, namely ∂α4 ̸= 0, we can compare the vector field content
of the EFT with the one of 10-D IIA supergravity:

Aµ
pq =

(
Aµ

α5, Aµ
α4, Aµ

αβ , Aµ
45)= (1

2
ε

αβγCµβγ , Bµ
α , ε

αβγCµγ , Cµ

)
,

Λ
pq =

(
Λ

α5, Λ
α4, Λ

αβ , Λ
45) =

(1
2

ε
αβγ

θβγ , ξ
α , ε

αβγ
Ξγ , λ

)
,

(5.90)

Thus, we can see that the EFT generalised Lie derivative comprises internal diffeomorphisms
as well as q-form gauge transformations, as we also showed before for the E6(6) case. Taking
now into consideration the massive case for type IIA [100–102], so adding the Romans mass
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parameter mR (the field strength ’dual’ to the 9-form), the gauge transformations 5.86 become

δBµ
α =(∂µ −Bµ

γ
∂γ)ξ

α +ξ
γ
∂γBµ

α ,

δCµ =ξ
γ
∂γCµ +(∂µ −Bµ

γ
∂γ)λ −mRBµ

γ
Ξγ ,

δCµα =ξ
γ
∂γCµα +Cµγ∂αξ

γ +(∂µ −Bµ
γ
∂γ)Ξα +Bµ

γ
∂αΞγ ,

δCµαβ =ξ
γ
∂γCµαβ +2Cµγ[β ∂α]ξ

γ +(∂µ −Bµ
γ
∂γ)θαβ +2Bµ

γ
∂[αθ|γ|β ]

+2Cµ∂[αΞβ ]−2Cµ[α∂β ]λ −2mRCµ[αΞβ ].

(5.91)

The first observation that should come up to the reader’s mind while looking at these new
gauge transformations is that the new factors do not contain any partial derivatives. This is a
problem, because we cannot obtain these transformations from the generalised Lie derivative
δΓP = LΓP, given that the latter contain only terms with partial derivatives. On the other
hand, it is well known that massive type IIA supergravity is a geometrically well-defined
theory, so there should be an EFT describing it. The problem that we just discovered is
also pointing to the solution, indeed a modification to the generalised Lie derivative with a
non-derivative term will solve it [103], and defining a new L̃ such that limmR→0 L̃ = L. The
new generalised Lie derivative is given by

L̃ΛΓ
P = LΛΓ

P −FQR
P
Λ

Q
Γ

R, (5.92)

with a constant object FQR
P, which, as we will see, must satisfy the same constraints of the

embedding tensor, this formula is completely general for every En(n) EFT. First of all, we
note that, taking into account En(n) global transformations, consistency requirements imply
that FPQ

R = ΘP
α(tα)Q

R, with Θ a constant object selecting the linear combinations of the
generators of En(n), in addition the linear constraint arises from the consistency conditions
when taking into considerations the tensor hierarchy.
A number of constraints, instead, arise by demanding the closure of the algebra of the new
generalised Lie derivatives:

[L̃Γ1, L̃Γ2 ] = L̃[Γ1,Γ2]X , (5.93)

where we introduced the X-bracket (it is called X because in [103] the deformation took the
name XPQ

R)
[Γ1,Γ2]

R
X = [Γ1,Γ2]

R
E −F[PQ]

R
Γ

P
1 Γ

Q
2 . (5.94)

Being Γ1 and Γ2 arbitrary parameters, the closure of the algebra gives rise to a system of
equations, one for each set of terms with different number of derivatives, for instance, terms
containing 2 derivatives must vanish by themselves and cannot be used to reduce equations
with a different number of derivatives. Indeed, the terms containing 2 derivatives do not
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contain FPQ
R, so they reduce to the section constraint as before. Computing it explicitly, we

arrive at the following expression

[L̃Γ1 , L̃Γ2]Γ
P
3 − L̃[Γ1,Γ2]X Γ

P
3 = AP

QRSΓ
Q
1 Γ

R
2 Γ

S
3 +F[QR]

S
Γ

Q
1 Γ

R
2 ∂SΓ

P
3

+BPQ
RST (Γ

R
1 ∂QΓ

S
2Γ

T
3 −∂QΓ

S
1Γ

R
2 Γ

T
3 ),

(5.95)

with

AP
QRS =2F[Q|T ]

PFR]S
T −FT S

PF[QR]
T ,

BPQ
RST =F(RS)

P
δ

Q
T −FRT

Q
δ

P
S +Y PQ

SU FRT
U

−YUQ
ST FRU

P +Y PQ
UT F[RS]

U − 1
2

YUQ
SRFUT

P.

(5.96)

Therefore, the new constraints read

AP
QRS = 0, F[PQ]

R
∂R = 0, BPQ

RST ∂Q = 0. (5.97)

One immediately notices that the A-constraint is the antisymmetric part of the quadratic
constraint:

FPQ
RFSR

T −FSQ
RFPR

T −FPS
RFRQ

T = 0. (5.98)

However, there is another condition we need to impose, indeed, just as it happened for
the E-bracket, also the X-bracket does not respect Jacobi identity.

[[Γ1,Γ2]X ,Γ3]X + cycl.=
1
3
{[Γ1,Γ2]X ,Γ3}X + cycl (5.99)

with
{Γ1,Γ2}P

X ≡ 1
2
(L̃Γ1Γ2 + L̃Γ2Γ1) = {Γ1,Γ2}P

E −F(QR)
P
Γ

Q
1 Γ

R
2 . (5.100)

Therefore, we need to impose that the Jacobiator is a trivial gauge parameter, L̃{Γ1,Γ2} = 0.

L̃{Γ1,Γ2}X Γ
P
3 =CPQ

RST (Γ
T
1 ∂QΓ

S
2Γ

R
3 +∂QΓ

S
1Γ

T
2 Γ

R
3 )−F(ST )

Q
Γ

S
1Γ

T
2 ∂QΓ

P
3 +F(ST )

QFQR
P
Γ

S
1Γ

T
2 Γ

R
3 ,

(5.101)
where we used 5.100 and

CPQ
RST = F(ST )

P
δ

Q
R −Y PQ

URF(ST )
U − 1

2
YUQ

ST FUR
P. (5.102)

Therefore, in order for the Jacobiator to be a trivial gauge parameter, we need the following
to hold

F(PQ)
RFRS

T = 0, F(PQ)
R
∂R = 0, CPQ

RST ∂Q = 0. (5.103)
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The first equation is the symmetrization of the quadratic constraint, so together with the
A-constraint they produce exactly the quadratic constraint. The second equations of 5.103
and 5.97 combine to form the X-constraint FPQ

R∂R = 0. It is also possible to prove that in
this case the B and C-constraints are competely equivalent to the X-constraint. In conclusion,
the new generalised lie derivative has two sets of constraints that can be summarised as

Y PQ
RS∂P ⊗∂Q = 0 Section Constraint,

FPQ
R
∂R = 0 X-constraint,

(5.104)

Furthermore, FPQ
R must satisfy the quadratic constraint of the embedding tensor. The X-

constraint reduces further the variable dependance, only to those coordinates that remain
invariant under the En(n) transformations generated by FPQ

R. Let us now apply this to an
example that is of interest to us.

SL(5) X-exceptional

We have already given before in 5.87, 5.88 and 5.89 the Y PQ
RS tensor, the related section

constraints and its solutions, respectively, we will report here the solutions for the comfort of
the reader:

M-theory: ∂α4 ̸= 0, ∂45 ̸= 0, ∂α5 = ∂αβ = 0,

type IIB: ∂αβ ̸= 0, ∂α4 = ∂α5 = ∂45 = 0.
(5.105)

The Roman mass, which was the reason behind our modification of the generalised Lie
derivative, is obtained by choosing the following X-deformation

Fpqrs
tu = 2Fpq[r

[t
δ

u]
s] (5.106)

with the only non-vanishing entries provided by

Fαβγ
5 =−2mRεαβγ , (5.107)

then, the X-constraint reads
mR∂α5 = mR∂45 = 0. (5.108)

Inserting this solution into the section constraint 5.88 reduces to

ε
αβγ

∂α4 ⊗∂βγ = 0. (5.109)
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The two most obvious solutions to the section constraints are now given by

1)∂α4 ̸= 0,∂αβ = 0 Type IIA, 4)∂αβ ̸= 0,∂α4 = 0 Type IIB. (5.110)

However, there are other solutions with α ̸= β ̸= γ:

2)∂α4, ∂β4, ∂αβ ̸= 0, ∂γ4 = ∂βγ = ∂γα = 0 Type IIB,

3)∂α4, ∂αβ , ∂γα ̸= 0, ∂β4 = ∂γ4 = ∂βγ = 0 Typer IIA.
(5.111)

In each of the different solutions, the X deformation has a different higher energy interpreta-
tion: in solution 1) it corresponds to the Romans mass, in solution 2) it is identified with the
flux of the RR type IIB 1-form F(1) along the coordinate yαβ , in solution 3) it corresponds to
the background flux of the RR type IIA 2-form F(2) along the two coordinates {yαβ ,yγα}
and in solution 4) it is identified with the type IIB background flux for the RR 3-form F(3). It
is known that these solutions are related by T-dualities:

1) massive IIA
Tγ−→ 2) IIB with F(1)

Tβ−→ 3) IIA with F(2)
Tα−→ 4) IIB with F(3), (5.112)

with Tα changing yα4 ↔ yβγ , such that α ̸= β ̸= γ , as T-duality exchanges coordinates
in the extended space (this also happens in Double Field Theory). Obviously, modifying
the generalised Lie derivative and consequently the diffeomorphisms algebra has some
consequences on the Lagrangian. One needs to modify the field strengths for vectors of
the EFT by adding terms with 2-form potentials in order to make contact with the related
gauged supergravity, in addition, there is also the necessity to modify the scalar potential and
introduce terms proportional to XPQ

R (both linear and quadratic) in order for it to be again
invariant under the new gauge transformations. An example of this can be found at [103].
Now we are in a good position to introduce the Uplifting constraints.

5.2.6 The Uplifting Constraints

The section constraint of every EFT

Y PQ
RS∂P ⊗∂Q = 0, (5.113)

can be solved in terms of a constant rectangular matrix of maximal rank that selects the
physical coordinates from the sets of d-coordinates, with d equal to the dimension of the
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vector representation for En(n), namely

∂P ≡ EP
p
∂p, (5.114)

with small letters labelling the physical coordinates after the section constraint has been
solved. Just as we did before, for the Romans mass, we could include more general fluxes
inside the deformations of the generalised Lie derivative, therefore by defining the generalised
flux FPQ

R, which also lies in the same representation of the embedding tensor (in each EFT),
we can now write the deformed generalised Lie derivative as

L̃ΛΓ
P = Λ

q
∂qΓ

P −Γ
q
∂qΛ

P +Y Pq
RS∂qΛ

R
Γ

S −Λ
Q

Γ
RFQR

P. (5.115)

Where, contraction with EQ
q is intended whenever small letters appear. Unlike before,

now we will not assume that FPQ
R is constant and that FPQ

Q = 0 (which will exclude the
Trombone symmetry, a scaling symmetry of the equations of motion of Supergravity and
General Relativity [104]), in this case, the constraints that arises from the closure of the
algebra and of the Jacobi identity are no more all equivalent to the X-constraint. Indeed, the
new constraints are

FPQ
RER

r = 0, (5.116)

C[F ]PQ
RSTEQ

q ≡
(
F(ST )

P
δ

Q
R −Y PQ

URF(ST )
U − 1

2
YUQ

ST FUR
P)EQ

q = 0, (5.117)

FPQ
T FRT

S −FRQ
T FPT

S +FPR
T FT Q

S

−EP
p
∂pFRQ

S −2E[Rr
∂rF|P|Q

S −Y ST
UQET

t
∂tFPR

U = 0.
(5.118)

The first constraint guarantees that FPQ
R does not affect the algebra of internal diffeomor-

phisms generated by Λp, the last one instead is the extension of the quadratic constraint to
a non-constant generalised flux (when forcing the derivatives to vanish we go back to the
usual quadratic constraint). Consequently, the generalised flux induces deformations of the
internal gauge symmetry due to mass parameters, background q-form fluxes, twists of the
field content by coordinate-dependent En(n)×R+

0 transformations (R+
0 being the Trombone

scaling) analogous to the Scherk and Schwarz procedure and gaugings presented in Appendix
A.
Some components of the generalised flux FPQ

R, can be reabsorbed into a twist of the covariant
tensors (contracted with the generalised flux) by some matrix C(y)P

Q with the property

CP
QEQ

q = EP
q. (5.119)
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Now, let us suppose that we have a gauged supergravity, with an embedding tensor XPQ
R,

satisfying the linear and quadratic constraint. To allow the theory to be upliftable, we need to
find a frame ÊA

P, analogous to the matrix Uβ

α in A.21 in Appendix A introduced to obtain
the Scherk and Schwarz dimensional reduction:

W P(x,y) =W A(x)ÊA
P(y). (5.120)

Torsion TAB
C induced by a frame EA

P in En(n)×R+ is defined by

LEAEB
P ≡−TAB

CEC
P, (5.121)

and is in general y-dependent. We can explicitly state this in terms of the Weitzenböck
connection coefficients WAB

C:

WAB
C ≡EA

pEB
Q

∂pEQ
C (5.122)

TAB
C ≡2W[AB]

C +YCD
EBWDA

E . (5.123)

A generalised flux F̂0
PQ

R is also needed together with the frame ÊA
P for upliftability, and they

have to satisfy the “generalised” Scherk-Schwarz condition:

LÊA
ÊB

P − ÊA
QÊB

RF̂0
QR

P =−XAB
CÊC

P. (5.124)

Some part of ÊA
P can be absorbed in the generalised flux, which must still satisfy all

the consistency constraints, through a twisting matrix C(yp)P
Q satisfying CP

QEQ
p = EP

p.
Consequently, we can study the equivalent condition:

L̃EAEB
P =−XAB

CEC
P, with ÊA

P ≡ EA
QCQ

P. (5.125)

Now, we will assume that, after a solution to the section constraint EP
p has been found, a

frame ÊA
Q that satisfies 5.124 exists. Then, the vectors KA

p ≡ ÊA
PEP

p have the standard Lie
bracket (L̃EAEB

P =−XAB
CEC

P):

[KA,KB] =−XAB
CKC. (5.126)

Defining a Lie algebra for a gauge group G. The non-vanishing vector components of ÊA
P

are the vectors Ka (this is true in the absence of central charge extension of the algebra, the
generalisation including them is straightforward and can be found in [105]), then, given an
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algebra with generator Ta:
[TA,TB] =−XAB

CTC, (5.127)

its vector representation is by definition given by RV (TA) = ΘA
ata, so that ÊA

PEP
p = ΘA

aKa
p,

being the KA respecting the same algebra 5.127. Because ÊA
P is in En(n), and therefore

its columns are linearly independent, it is everywhere non-vanishing, and there are always
d linearly independent vectors among the Ka, with d being the dimension of the internal
manifold. This evidence shows the presence of a homogeneous space H\G, with Ka generating
the transitive action of G on the manifold. The coset representative L(y) of H\G has the
following transformation property

L(y)g = h(y′)L(y′), with g ∈ G, h(y) ∈ H. (5.128)

Infinitesimally, it is possible to write

g =1+ ε
ata, ta ∈ G (5.129)

h =1− ε
aWa

iti, ti ∈ H (5.130)

y′m =ym + ε
aKa

m(y), (5.131)

where Wa
i is the H-compensator, and Ka

m are the components of our Killing vector fields:

Ka(y)≡ Ka
m

∂m. (5.132)

Expanding 5.128 in terms of the infinitesimal parameter, we have

Ka
p
∂pL = Lta +Wa

itiL (5.133)

then, multiplying this last equation by L−1 on the right, one achieves

Ka
p(∂pL)L−1 = LtaL−1 +Wa

iti (5.134)

The Maurer-Cartan form is defined by

Ωp ≡ (∂pL)L−1 =Vp
mtm +Qp

iti, (5.135)

using it and projecting 5.134 onto the generators of the Coset space, labelled by underlined
indices m, p, etc.

Ka
pVp

m = (LtaL−1)|m = L−1
a

b
δ

m
b , (5.136)
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where, in the last line, L−1 is in the adjoint representation and we used the definition of
adjoint representation: Adg(ta) = gtag−1. Multiplying everything on the left by ΘA

a and
using its gauge invariance, we arrive at

ΘA
aKa

pVp
m = L−1

A
B
ΘB

m (5.137)

which can also be written as:

ÊA
PEP

pVp
p = L−1

A
B
ΘB

p. (5.138)

Note that, because ÊA
P is an En(n) matrix, it ‘passes through’ Y PQ

RS, thus the left-hand side
satisfies the section constraint, consequently also the right-hand side must satisfy it, again, L
is also in En(n) leaving Y PQ

RS invariant. This implies that ΘA
p can only differ from EP

p by
an En(n)×R+ transformation, which can be reabsorbed in ÊA

P, EP
p = δ A

P δ
p
p ΘA

p , and that it
has to satisfy the section constraint:

Y PQ
RSΘP

p
ΘQ

q = 0. (5.139)

Note that this equation is only valid when the indices of the embedding tensor running on
the adjoint representation are projected along the directions of the coset generators tm, so
one first has to pick the group H, project the embedding tensor along it and then check that
the latter projection fulfils the section constraint. The latter equation tells us whether given
a frame and a group H we can uplift it to higher-dimensional theories. Further discussions
about it can be found in [105]. From now on we will treat as equivalent EA

p and ΘA
p.

Let us now note that the matrix Vp
p and its inverse are elements of GL (d) and therefore

have a natural embedding in En(n)×R+:

VP
A ∈ GL(d)⊂ En(n)×R+. (5.140)

It is also possible to observe that any two frames ÊA
P, equal to the vector components Ka can

differ only by terms that can be absorbed by the generalised flux FPQ
R through the matrix

CP
Q, therefore we can solve 5.125 with EA

P instead of 5.124. The generalised flux that solves
5.125 is

FPQ
R = EP

AEQ
B(XAB

C −TAB
C)EC

R, (5.141)
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however, there is also the need to check that this flux satisfies the consistency conditions
5.118, which generate another linear constraint on the embedding tensor:

C[X ]PQ
RST ΘQ

p +
1
4
(
Y PU

ST δ
V
R −Y PV

MRY MU
ST
)(

XVU
Q +2Θ(V

qtqU)
Q)

ΘQ
p = 0 (5.142)

with C[X ]PQ
RST defined in 5.117. Note that this constraint is also valid only after a projection

on the generators of the group H. We are going now to ask ourselves a different question,
namely, given a solution of the section constraint EA

p (it can correspond to IIB, IIA or 11-D
supergravity) we demand whether an embedding tensor ΘA

a exists such that the generators
XA ≡ ΘA

ata can be decomposed into a set of generators for a coset group H\G and a set of
generators for H [106, 107]:

XA = EA
ptp +ΘA

iti. (5.143)

Where we have used the fact that a necessary condition for uplifting is that ΘA
m satisfies

the section constraint and therefore we can always write EA
m instead of Θ. The embedding

tensor must satisfy the quadratic constraint and, therefore, must obey

[ΘA
ata,ΘB

btb] =−XAB
C

ΘC
ctc. (5.144)

Now, we define a projector ΠA
B on the space orthogonal to EA

p by

ΠA
BEB

m = 0 ΠA
B
ΠB

C = ΠA
C, (5.145)

There may be obviously many projectors solving the previous conditions, for instance 0 is
one of them, but we are looking for the maximal projector that comprehends all of the other.
If a group H exists, then

[ΘA
iti,ΘB

jt j] =−ΘA
i
ΘB

j fi j
ktk, (5.146)

is a necessary condition for an uplifting to exist. Therefore, projecting 5.144 we get

[ΘA
iti,ΘB

jt j] = ΠA′AΠB′B[ΘA
ata,ΘB

btb] =−ΠA′AΠB′BXAB
C(EC

ptp +ΘC
iti). (5.147)

Defining fi j
k by the relation

ΘA
i
ΘB

j fi j
k = ΠA

A′
ΠB

B′
XA′B′CΘC

k,
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we see that a necessary condition for H to be a group, and to an uplift to exist is [107]2.

ΠA′AΠB′BXAB
CEC

ptp = 0, (5.148)

which is a linear relation for the embedding tensor. There is actually another linear constraint
that the embedding tensor has to solve in order for an uplifting to exist:

C[X ]PQ
RSTEQ

p +
1
4
(
Y PU

ST δ
V
R −Y PV

MRY MU
ST
)(

XVU
Q +2E(V qtqU)

Q)EQ
p = 0. (5.149)

Solving the two previous constraints, for a given solution of the section constraint EA
m

guarantees that the embedding tensor contains only parameters that give rise to upliftable
gaugings. For example, in the 11-D case for SL(5) EFT, we know that the section constraint
εPQRST ∂PQ ⊗∂RS = 0 is solved by

EPQ =



0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

−1 −1 −1 −1 0


, (5.150)

note that we suppressed the index that runs over the physical coordinates in EPQ
a because it

is a spectator index in 5.148 and 5.149. It may seem that we need EUV
qtq in 5.149, but that

term is given by
EUV

qtq = Π//UV
U ′V ′

XU ′V ′, (5.151)

where Π//UV
U ′V ′

is the projector on the space generated by εUV
q that can always be built

once E is known. Using the solution 5.150 of the section constraint in 5.148 and 5.149, with
a generic, unconstrained embedding tensor, leads to

2Similar results, in a more mathematical formulation are present in [108, 109]
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YMN =



Y1,1 0 0 0 Y1,5

0 Y2,2 0 0 Y2,5

0 0 Y3,3 0 Y3,5

0 0 0 Y4,4 Y4,5

Y1,5 Y2,5 Y3,5 Y4,5 Y5,5


,

ZMN,5
εMNQRS = 0,

ZMN,P
εMNabc = 0 with P = 1, ...,5 and a,b,c = 1, ...,4.

(5.152)

Here, we used SO(4) ∈ GL(4) to diagonalize the 4×4 block in YMN . For type IIA supergrav-
ity, defining BP

QRS = ZMN,PεMNQRS, we have

YMN =



Y1,1 0 0 0 Y1,5

0 Y2,2 0 0 Y2,5

0 0 Y3,3 0 Y3,5

0 0 0 0 Y4,5

Y1,5 Y2,5 Y3,5 Y4,5 Y5,5


,

Bm
np5 → geometric flux,

Bm
n45 → locally geometric flux,

B4
mnp → Romans mass,

B4
mn5 → Vector flux,

(5.153)

with m,n, p = 1, ...,3, and we used SO(3) to diagonalize the 3×3 block in YMN .
Analogously, one can solve the uplifting constraint for type IIB supergravity in the SL(5)
EFT, now the splitting of the variables must respect GL(3)× SL(2) ∈ SL(5), thus we label
them with indices m, p,q = 1, ...,3 and α,β = 1,2. The results in this case are given by

YMN = εnpq fm
pq all the other components vanishing,

Bα
mnp = F3

α ,

Bm
npq = εnpq fr

mr,

Bα
βmn = εmnq( jq)α

β ,

(5.154)
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where fm
pq are the traceless geometric fluxes, whose trace is fm

mq and represents the flux
of the Trombone, F3

α is the SL(2)-doublet of 3-fluxes (H3,F3) for the 3-forms and ( jq)α
β

is the SL(2) axio-dilaton current. Furthermore, these components satisfy Bα
αmn =−Bp

pmn

and δ n
mBm

npα = 0.



Chapter 6

Supergravity Wars, A New Hope:
Artificial Intelligence

6.1 Introduction

This chapter will be devoted to the development of tools and methods useful to tackle the
problem of finding vacua of supergravity theories directly. We have already seen how the
problem of looking for Lorentz invariant vacua can be stated, from the mathematical point
of view, as searching for the physically in-equivalent solutions of a system of quadratic
equations. If we had to consider the full theory in 5 and 7 dimensions, we would need to
solve 1756 equations in 351 variables and 121 equations in 55 variables, respectively (the
number of equations is obtained by the representations the quadratic constraints belong
to plus 1 corresponding to the minimisation condition for the scalar potential, the number
of variables represents just the free parameters of the embedding tensor). Both cases are
out of the capabilities to find analytical solutions of any computers (with an appropriate
suite that allows such analytical computations, like Wolfram Mathematica). This was
the main reason that led us to introduce residual gauge symmetries in the vacua, or to
demand for upliftability constraints in the previous chapters. Requiring this sort of further
linear constraints on the embedding tensor reduced the number of independent variables
and equations down to a feasible system, allowing us to perform analytical computations,
even with the use of cryptographic techniques (Appendix D). Sometimes, as in 5 and 4
dimensions, even after having imposed the upliftability constraints, the number of equations
and variables is big enough to forbid any advance in the computations. This has led us
to dig into the realm of Artificial Intelligence to search for a possible numerical solution
to the problem. In recent years, there has been a great deal of interest in the Theoretical
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Physics community for applications of Machine Learning techniques and related Artificial
Intelligence tools to problems in String Theory and Supergravity [40, 42, 43, 46, 47, 110–
119]. Indeed, Artificial Intelligence is a subject that goes back to 1958, when the first
perceptron algorithm was invented by Frank Rosenblatt [120], many years before the first
papers in String Theory appeared [121–123], but only recently AI developments rendered it
appealing to the Theoretical Physics community. The reason behind it lies in the extreme
complexity of performing computations in String Theory. Before deepening into it, let us
introduce a very well-known problem in the IT community, one of the Millennium problems,
P vs NP. The computational complexity is usually estimated by the number of “steps” and
the amount of memory used to perform an algorithm. Intermediate steps can be stored in
memory and speed up the computations, so let us concentrate only on the number of steps
involved in carrying out the algorithms. Problems can be divided mainly into two class of
complexity (there are many sublcasses, but they are irrilevant for our discussion), Polynomial
running time (P) and Non-deterministic Polynomial running time (NP), we will clarify these
with some examples. Imagine one wants to compute the multiplications among two n×n
matrices, then we will need to perform n2 scalar products, each of the latter consisting of n
addition and products of 2 scalar numbers, therefore, the complexity for this computation is
O(n3). Actually, there are better algorithms to perform this with O(n2.376) steps, but this will
not change the membership of this problem to the class of problems solvable in a polynomial
running time. On the other hand, imagine now that you are a salesman that has to visit n
houses and you want to know the lowest amount of road you need to travel to visit them all.
What one can do is computing the length of every possible trajectory and compare them,
this would take at least O(n!) steps. The running time consequently grows faster than any
possible polynomials in n; we thus say that this problem belongs to the NP class. If we
put some numbers in these formulas, we will note the huge difference among these kinds
of computations. Let us suppose we have a computer that performs 1000 operations per
second, then the multiplication of two 10×10 matrices takes 1

10 of second, multiplying two
100×100 matrices takes 10 seconds, two 10000×10000 matrices takes 28 hours and two
105×105 matrices takes 115 days, and if we want to speed up our computations we can
always use a faster computer or parallelise on more computers. On the other hand, if we
want to solve the travel salesman problem (TSP) for 10 houses with our computer, it takes 1
hour, if instead we have a 100 houses it takes 3×10137 times the age of the Universe, and
already for 27 houses would take 2 human lives on the fastest supercomputer in the world
(nowadays running at 2 quintillion operations per second). We immediately see that for NP
problems there is nothing we can do, neither using faster computers nor parallelising that
can help us in tackling the computations, at a certain point in scaling with the number of
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houses, we will always be overwhelmed by the number of resources needed to perform the
algorithm. At the moment of writing of this thesis it is still debated whether each problem in
the NP class can be solved in polynomial time, therefore proving that NP=P, this is actually
one of the Millennium Problems and if one would be able to show that TSP can be solved
in polynomial time, then any NP problem is in P, because each NP problem can be mapped
to TSP. It is interesting, at this point, to note that there is yet another category, which is the
class of undecidable problems. The halting problem is one of the most famous puzzles in
this category, we can state it as: “Design an algorithm that takes any computer programme
as input and decide whether the programme will run forever or will halt at some point”.
There is no algorithm that can be designed to perform such task, so it is impossible to
decide between the two options, and the puzzle therefore lies in the category of undecidable
problems. Finding a solution to a system of coupled non-linear Diophantine equations is
also an undecidable problem, which has also more relevance for String Theorists. Indeed,
finding a physically consistent string vacuum is made up of different tasks which are either
NP or undecidable. For instance, finding configurations of fields, branes, planes and fluxes
and imposing the tadpole and anomaly cancellation conditions lead to a system of coupled,
non-linear Diophantine equations, which is undecidable, or finding the critical points of the
scalar potential and controlling if they are minima is in NP. This has led physicists to look
for different methods to solve those tasks; obviously Optimisation and Machine Learning
algorithms do not change the membership of a problem to one of the previous class, as any
other algorithm they are subject to the same complexity rules, but they can be useful when
looking at the problems from a different perspective. Indeed, these algorithms are designed
to solve different problems which are no more undecidable or in NP, for instance, they can be
used to find approximate solutions instead of exact ones (P), some techniques for switching
from approximate to exact solutions will be explained later in the chapter, or they may look
for patterns which are difficult to be identified by humans. In particular, we can transform our
problem of finding solutions to a system of quadratic coupled equations into a minimisation
(optimisation) condition. We first need to define the function to be minimised, which is
called the fitness or loss function in the Artificial Intelligence jargon. All our equations are
homogeneous, so of the form

f j(x[i]) = 0 with i = 1,...,n (6.1)

with x[i] labelling the parameters of the embedding tensor, n is the number of them, which
may depend on the uplifting conditions and/or the residual gauge symmetries and j labelling
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the equation in the system. Therefore, we define our fitness function by

f f it = ∑
j

f 2
j . (6.2)

Thanks to this definition, we can look for minima of this function and there will be no
problem in checking whether a candidate minimum is a global or a local one, because the
global minima verify f f it = 0, and correspond to solutions of the system of equations. In
the following, we are going to expose some of the optimisation algorithms, borrowed from
the Artificial Intelligence community, that have been used to look for minima of the fitness
function, such as Gradient Descent and Stochastic Gradient Descent, Genetic Algorithms
and Covariance Matrix Adaptation, then we will describe how, from the numerical solutions
it is possible to pass, in some cases to the exact solutions.

6.2 Optimization Algorithms

Many optimization algorithms have been tested and /or used in order to find solutions to the
quadratic constraints and the equations of motion. In this section we will present only the
most relevant.

6.2.1 Stocastic Gradient Descent

Stocastic Gradient Descent (SGD) [124–126] is a variation of the Gradient Descent algorithm
(GD) invented by Cauchy in 1847 [127]. Given a differentiable function F(X) and an initial
point X0 = {x1, ...,xn} in his domain, the algorithm (GD) consists in updating the position of
the point X in the following way

Xk+1 = Xk − γ∇F(Xk), (6.3)

with γ a small positive real parameter γ ∈ R+, named the learning rate. We can see that at
each step, the algorithm tells us to compute the gradient and to update the position by moving
in the opposite direction, exactly in the steepest descent direction. The learning rate can be
chosen to change in time in such a way that at each successive step it decreases in order not
to overshoot when we are near a minimum.
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Fig. 6.1 Gradient Descent visual representation

SGD, on the other hand, is designed for functions of the form

F(X) = ∑
i

fi(X), (6.4)

which is our case, or for instance, in supervised learning, each fi could be the i-th entry of
a dataset. The algorithm’s prescription is then to update X at each step by moving in the
opposite direction of the gradient of just one of the functions fi, the latter is changed at each
step. If the algorithm did not converge in one sweep of the whole set of fi, we repeat it
changing the order of them, in formula:

Xk+1 = Xk − γ∇ fi(Xk), Repeat for each i until a minimum is found. (6.5)

The condition for stopping the algorithm is that no major improvement is done in successive
steps for an entire sweep. This method will introduce larger fluctuations in the position
of the point with respect to GD. A compromise between GD and SGD is to compute the
gradient for a batch of functions fi and this is called mini-batch gradient descent, reducing
the fluctuations in the position. Different techniques to adapt the learning rate have been
developed in the years, such as RMSProp or AdaGrad [128], another interesting feature is
presented in the “momentum” adaptation [129]. The latter dictates to keep in memeory the
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variation ∆X at each step:

∆X =α∆X− γ∇ fi(X), (6.6)

X =X+∆X. (6.7)

with α a decay factor between 0 and 1, which takes into account how much information
coming from the previous step we keep for the next one. It is called “momentum” adaptation
because this remembers the physical momentum of a particle that at each step feels the action
of a driving force ∇ fi. This is also a method to avoid large fluctuation in the position.
It has been found, in our tests, that these algorithms are not very fast to converge for our
problem.

6.2.2 Genetic Algorithms

As many other algorithm techniques in the IT world, Genetic Algorithms (GA) [130] are
based on ideas borrowed from nature, indeed, the basic idea behind it is the principle stated
by Charles Darwin of the survival of the fittest individual [131]. Therefore, we have an
initial population, evaluate the fittest individuals in it by means of the fitness function, make
them reproduce, and conclude with a mutation step. This procedure is repeated generation
after generation, and in order to avoid reaching a point with a huge population, we remove
some individual from time to time based on the fitness function or on their age (measured in
number of generations). The reasons why all this procedure works are not certain and are still
debated. GAs are most often justified by means of the “Fundamental Theorem of Genetic
Algorithms”, known also by the name of Holland’s Schema Theorem. We will illustrate it
after having discussed in detail how GA works.
Let us introduce some vocabulary before, a phenotype e (also called individual) is a set of
properties (in our case a set of real numbers) that approximate a solution to the problem
(the parameters of the embedding tensor in the vacuum), e= {a1, ...,an}. The set of all
phenotypes is called population, P = {ei}, and we have a population for each generation
Gt , with t labelling the evolutionary step. Each ai present in e is called an allele, where i is
named locus and the set of alleles in a specific phenotype is called chromosome or genotype
or genome. The domain of the alleles is named gene pool and is usually represented by γ (not
to be confused with the learning rate). Therefore, in each evolutionary step, the population
evolves by means of reproduction and mutation. The initial population is selected randomly,
by instantiating random alleles from the gene pool, then for each phenotype, we evaluate
its fitness function, and based on it, we select the individuals which will reproduce. One of
the most common breeding selection criteria is roulette wheel selection, which is owing its
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name to the fact that the choice for reproduction is similar to a bet on the ball ending in one
of the sectors of a roulette wheel. Indeed, declaring that the total number of phenotypes is
N and that the fitness function of each individual is fi and positive (we can always make it
positive by adding a positive constant to it), we can define

S j =
j

∑
i=1

fi. (6.8)

The distance between two successive S j’s, d j = S j − S j−1 is just f j, the fitness of the
phenotype e j. A random number r ∈ [0,SN ] is generated, which corresponds to the ball
falling in one of the drawers of the roulette wheel, since the fitness functions are all positive,
there is a unique label j such that S j−1 ≤ r ≤ S j, consequently the phenotype e j is picked.
Another similar selection algorithm is stochastic universal sampling, which, to select k
parents, consists of drawing a random number r just once (for the roulette wheel selection,
it was chosen k times), then we define k evenly spaced intervals s j ≡ (r+ j/SN) mod SN ,
with j = 0,1, ...,k− 1 giving rise to k phenotypes ei such that Si−1 ≤ s j ≤ Si. With this
procedure, we increase both the probabilities of the fittest to be chosen at least once, but
also of other, less fit individuals to get reproduced. These two selection processes have some
drawbacks, mainly they are affected too much by the fitness function. Indeed, imagine there
is a phenotype that performs much better than the other, and this happens at the initial stages
usually, then it will be selected many more times than other individuals, forcing the algorithm
to converge fast and with high chances to end up in a local minimum/maximum, on the other
hand at later evolutionary stages, all the phenotypes will have more or less the same fitness
and therefore, the ones that are nearer to the minimum/maximum do not have any advantages
over the others with these algorithms, basically at the end there is no more evolutionary
pressure. One way to avoid this problem is to perform a tournament or a rank selection. In
tournament selection, k phenotypes are randomly selected from the population to compete
against each other, the individuals that win most often are chosen for the reproduction stage.
This method has the additional advantage of being applicable both to positive and negative
fitness functions. Being a random selection process, it does not present the same problems as
the previous algorithms based on fitness functions. Another useful advantage of tournament
selection is that it can also be used in cases where the fitness function is not defined, and the
best phenotype is chosen from the performance of each individual against others (like in the
game of chess, where there is no explicit fitness function). The parameter k is in charge to
fix the evolutionary pressure, as it grows, the probabilities of less fit individuals getting to
reproduce diminish. In addition, it is also possible to decide if each winner competes just
once or several times, in the latter case, the evolutionary pressure is high. We can also choose
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whether the winners are picked deterministically or that they win with a probability p, in the
former case the evolutionary pressure is again high.
Rank selection, instead, assigns a rank r j to the phenotypes present in the population, based
on their fitness fi, which does not have to be positive definite, in such a way that the fittest
has rank 1 and the least fit rank N. Then we define a normalised function:

f ′i =− ri

N
+

N +1
N

. (6.9)

The new fitness function is always positive and can be used in a roulette wheel selection,
with the fittest element picked N times more often than the least one. Obviously, there are
many choices for the newly defined fitness function, we could generalise it to:

f ′i =−a
ri

N
+b with a,b ≥ 0, (6.10)

in such a way that the ratio between the fittest and the least fit is

f ′1
f ′N

=
1
N

Nb−a
b−a

. (6.11)

By doing so, we can decide the amount of evolutionary pressure that we would like to
assign to the system. Indeed, the parameter a allows to modify it, when a → 0 there is no
evolutionary pressure at all, f ′1 = f ′N , when a → ∞, we end up with the previous case in which
the fittest is selected N times more frequently than the least one. Another choice for the new
fitness function is given by exponential rank selection, where the new function is given by

f ′i =
1− er−N

C
, (6.12)

with C a normalisation constant. In the end, elitist selection, can be implemented on top
of all the previously listed methods. It consists of carrying to the next generation Gt+1

the k fittest phenotypes present in the population. This guarantees that the best individuals
survive generation after generation, but at the cost of reducing the variance, which can cause
troubles when the size of the population is small, causing the algorithm to end prematurely
in a local minimum/maximum. The choice of the selection mechanism depends strongly on
the problem of interest, for the Travel Salesman Problem has been shown that tournament
selection behaves better than any other [132].
Once the selection of the parents has been carried out, we need to decide if any of them
survive to the next generation and how we generate the off-springs. For survival criteria
we can chose either between age-based survival or fitness-based survival. In the former,
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Fig. 6.2 Reproduction mechanisms in Genetic Algorithms

individuals can live for a fixed number of generations, and if we want to keep the size of the
population fixed we need to take this into consideration when generating the new offsprings.
In the latter case, the k fittest individual of a generation replace the least fit phenotypes from
the next one, which can be chosen by tournament, roulette wheel selection, etc...

Reproduction

There are various methods for reproduction, based on two main classes: cloning or elitist
selection and crossover where the genotype of the parents can be transmitted to their children
in different ways. Let us analyse the case of 2 parents and 2 children, each with a phenotype
consisting of N alleles ai , i = 1, ...,N:

• Single Point Crossover (SPX): a random locus s ∈ [1,N) is picked, the same for both
parents; the first child c1 takes alleles from 1 to s from the first parent p1 and alleles
from s+1 to N from the second parent p2. The other child c2 behaves in the opposite
way. In fig. 6.2(a) is depicted the case N = 5, s = 3.

• K-point Crossover (KPX): now the genotypes are split at K locations labelled by
various loci si, i = 1, ...,K, the alleles are picked alternatingly from p1 and p2 for c1

and in the opposite way for c2. SPX corresponds to the special case K = 1. See fig.
6.2(b) for K = 3 and si = (2,3,4).
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• Uniform Crossover (UX): c1 inherits each allele from p1 or p2 with a random choice
among the two, the second child c2 inherits each allele from the parent who did not
donate it to c1. In fig. 6.2(c) you can find the case (p2, p1, p1, p2, p1) for c1.

• Whole Arithmetic Recombination (WAX): the alleles of the child c1 are formed
from a linear combination of the alleles of the parents. First, we choose a number
r ∈ [0,1] and then we compute ac1

i = rap1
i +(1− r)ap2

i , analogously for the child c2 we
have ac2

i = rap2
i +(1− r)ap1

i . Obviously, if the alleles are integers, we need to round
the result at the nearest integer. r = 0 or r = 1 coincide with cloning. In fig. 6.2(d)
there is the case with r = 0.6.

• Heuristic Crossover (HX): as it is the case for WAX we pick a number r ∈ [0,1],
the alleles for the children are then formed by ac1

i = (1+ r)ap1
i − rap2

i and ac2
i =

(1+ r)ap2
i − rap1

i . Just as before, if the alleles are integers we need to round the result,
in addition, in this case the linear combination can produce alleles not in the gene pool,
if this happens, either we clip them or we repeat the process with a different number r.
Fig. 6.2(e) shows the case with r = 0.6.

Other types of crossover have been invented to deal specifically with problems such as the
travel salesman problem, where the alleles are integers, that can appear only once in the
phenotype. Then, the only allowed operation we can do on alleles is permute them, therefore,
these types of crossover are usually called permutation encodings, examples of these are

• Order-based Crossover (OBC): we pick a number k, which will fix the length of the
set of alleles that will be carried from the first parent p1 to the child. We also pick
a locus i for p1, such that alleles from ai to ai+k are transmitted to the child, at the
same loci i to i+k of the first parent’s phenotype, then fill the remaining positions with
alleles from p2 in such a way to avoid repetition of alleles. Fig. 6.2(f) illustrates the
case with i = 1 and k = 3.

• Position-based Crossover (PBX): Randomly pick a number of loci from p1 and carry
alleles at the same loci to c1, then fill the missing ones with alleles from p2 keeping
the order of appearance in p2. This case is presented in fig. 6.2(g).

Once the reproduction stage has been carried out, we conclude with the mutation stage.

Mutation

Just as was the case for reproduction, even for mutation, there are many possible mechanisms,
and we list here only the most relevant ones:
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Fig. 6.3 Mutation mechanisms in Genetic Algorithms

• Random Mutation (RM): a subset of alleles chosen in a random manner are substi-
tuted by others picked randomly from the gene pool, this is depicted in fig. 6.3(a).

• Swap Mutation (SWM): exchanges two alleles among them, used especially in
permutation encodings, because it preserves the distinctiveness of the alleles. Fig.
6.3(b) shows the case with alleles at loci i = 1 and i = 4.

• Scramble Mutation (SCM): pick an interval in the phenotype and randomly permute
the elements in it. Again, this can be used for permutation encodings. Fig. 6.3(c)
illustrates the case for the interval [2,4].

• Inversion Mutation (INVM): select an interval as in SCM and invert the position of
the alleles inside it. It is a special case of SCM and it is depicted in fig. 6.3(d) for the
interval [2,4].

• Insertion Mutation (INSM): pick an allele and move it to another locus of the
phenotype, then move all other alleles to the left or to the right. In fig. 6.3(e), the case
with allele at locus i = 4 moved to locus i = 2 is presented.

• Displacement Mutation (DM): this is similar to INSM, but now we pick and move a
whole interval, as depicted in fig. 6.3(f).
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Having reviewed the basics, we can now illustrate the Fundamental Theorem of Genetic
Algorithms [133].

Holland’s Schema Theorem

First of all, schemas are a set of individuals with the same properties, namely, the same alleles
at the same loci, the number of “fixed” alleles in the schemas is called order. For instance,
suppose that we have a set of phenotypes named H (schema), all with the same structure
{1,0,∗,∗,0,1,∗}, the order then is 4 and represented by o(H). We need also to introduce
the defining length δ (H) of schemas as the distance between the first and last fixed locus.
In our example δ (H) = 5. The statement of the theorem is that short (with small defining
length), low-order schemas with above-average fitness become exponentially dominant in
the following generations:

E(n(H,Gt+1))≥
n(H,Gt) f (H)

ft
[1− p]. (6.13)

E is the expectation values, n(H,Gt) is the number of individuals with schema H in the
population at generation Gt , f (H) is the average fitness for the schema H, while ft is the
average fitness of the population at generation Gt . p is the total probability that crossover or
mutation breaks the pattern of the schema:

p =
δ (H)

l −1
pc +o(H)pm, (6.14)

with pc the probability of crossover and pm the probability of mutation, l is the length of
the phenotype. Thus, schemas with shorter defining length or small order are less likely to
be disrupted. The inequality in the statement of the theorem is there in order to take care
of the non-vanishing possibility that a phenotype with schema H is produced by scratch
from mutation of an element not in the schema H in the previous generation. The theorem
works in the case of infinite population’s size but it fails to describe the reasons why genetic
algorithms work (when they indeed work) for finite sizes. Indeed, the theorem does not make
any distinction between cases in which GA performs well or poorly [134].
We present an example where GA is capable of finding the global minimum of a fitness
function with many local minima. The fitness function is given by

f f it(x,y) = 30x2 +12y2 +90sin(3x)+80sin(3y)+ x2y2, (6.15)

whose level curves are shown in fig. 6.4.
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Fig. 6.4 Level curves for the fitness function in eq. 6.15

We immediately see from fig. 6.4 that the fitness function can also become negative,
therefore, we use a 2-tournament selection process twice to choose the parents that get to
breed and produce 2 children with WAX crossover, where r is picked each time randomly,
and a 6-tournament selection mechanism for the survival selection, only among the children.
Then mutation is carried out by means of a Random Mutation mechanism, adding a random
number r < 0.2 to either the first or the second allele (x or y). We used a population of 1000
individuals. The results are shown in fig. 6.5, we can see that already after 4 generations
the algorithm converged (within an error ε) to the global minimum. Applying the GA to
our problem, for maximal supergravity in 7 dimensions with 45 variables (alleles) in each
phenotype, due to the presence of a multitude of sharp local minima, it did not converge to
global minima. This led us to search for new algorithms, such as CMA-ES.
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Fig. 6.5 Example of convergence after 4 generations for a Genetic Algorithm

6.2.3 Covariance Matrix Adaptation - Evolutionary Strategy (CMA-
ES)

CMA-ES, in short, CMA, is an evolution strategy (ES) algorithm that, as is the case for GA,
only needs the fitness function as accessible information [135–143]. Therefore, differently
from SGD, we do not require the function to be differentiable, it can also be not continuous.
CMA, as the name suggests, is based on the “adaption” of a normal distribution to the fitness
function under consideration (with its level curves). Let us analyse the algorithm in depth
and consider a multivariate normal distribution, N (m,C), which is determined by the mean
m ∈ Rn (in our case n is the number of free parameters in the embedding tensor) and by the
symmetric, positive definite covariance matrix C ∈ Rn×n. Covariance matrices are associated
with the ellipsoid {x ∈ Rn|xT C−1x = 1}, where the latter’s principal axis are the eigenvectors
of C, and squared axis length are the eigenvalues of the covariance matrix. We can always
diagonalize the covariance matrix by means of an orthogonal matrix B whose columns are
the eigenvectors of C with unit length, C = B(D)2BT . Then, it is also possible to write the
normal distribution as

N (m,C)∼ m+N (0,C)∼ m+C−1/2N (0,I)∼ m+BDBTN (0,I), (6.16)

with I the n×n identity matrix. At each step of the process, we generate a new population
of points (what we call off-springs in GA) by drawing them from a multivariate normal
distribution:

xg+1
j ∼N

(
mg,(σg)2Cg) with j = 1, ...,λ (6.17)

The superscripts g, g+1, etc. label the generation, λ is the population size and σg ∈ R+ is
the “overall” standard deviation (step size) at generation g. Now we need to explain how the
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mean, the covariance matrix and standard deviation are computed for the next generation
g+1.

The mean

The new mean mg+1 is simply selected with a weighted average of the µ best points of the
population:

mg+1 =
µ

∑
j=1

w jxg+1
j:λ , with

µ

∑
j=1

w j = 1 and w j > 0. (6.18)

w j ∈ R+ with j = 1, ...,µ are positive ordered weights, that is, w1 ≥ w2 ≥ ...≥ wµ > 0. If
w j = 1/µ for each j, we obtain the mean value for the best µ points. xg+1

j:λ represents the j-th

best individual of the population, meaning, f (xg+1
1:λ )≤ f (xg+1

2:λ )≤ ...≤ f (xg+1
λ :λ ). An essential

quantity is the variance effective selection mass

µe f f =
( µ

∑
j=1

w2
j
)−1

, (6.19)

it is possible to show, from the definition of w j that 1 ≤ µe f f ≤ µ and that µe f f = µ only
in the case in which all the weights are the same and equal to 1/µ . Usually, µ ≈ λ/2 and
wi ∝ µ − i+1.

The covariance matrix

Let us first define the empirical covariance matrix Cg+1
emp, which is nothing more than an

estimate of the covariance matrix Cg:

Cg+1
emp =

1
λ −1

λ

∑
i=1

(
xg+1

i − 1
λ

λ

∑
j=1

xg+1
j

)(
xg+1

i − 1
λ

λ

∑
j=1

xg+1
j

)T

. (6.20)

We are now going to modify this estimator, in order to obtain a maximum likelihood estimator
of Cg, by defining

Cg+1
λ

=
1
λ

λ

∑
j=1

(
xg+1

j −mg)(xg+1
j −mg)T

. (6.21)

The difference between Cg+1
emp and Cg+1

λ
is what is used as a mean value. The former utilises

the mean obtained from the entire population, thus estimating the variance of the sampled
points, the latter instead uses the mean obtained by 6.18 therefore estimating the sampled
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steps, xg+1
j −mg. We are going to modify again this estimator, and define

Cg+1
µ =

µ

∑
j=1

w j

(
xg+1

j:λ −mg
)(

xg+1
j:λ −mg

)T
. (6.22)

Cg+1
µ is an estimator for the variance of selected steps (the best/successful µ steps). We

have some conditions on µe f f in order for Cg+1
µ to be a reliable estimator. Indeed, µe f f

has to be large enough to prevent the condition numbers (that given a matrix A and a
linear system Ax=b, with x unknown, measure how sensitive the solution of the system
to a change in b is, high condition numbers imply that small changes in b generate huge
modifications in the solution) of Cg+1

µ to be smaller than 10 for the fitness function of the
sphere: fsphere(x) = ∑

n
i=1 x2

i ; empirically, it is seen that µe f f ≈ 10n is a good choice. To
avoid this problem for a small population we are going to modify the update of the covariance
matrix again.
In order to obtain an algorithm that converges faster, we need a small population, on the other
hand, to obtain a more global search the population has to increase. For small population,
also µe f f ≈ λ/4 (which is the choice to take to have reasonable w j) has to be small, then
Cg+1

µ is not a reliable estimator, in order to circumvent this, we define a new covariance
matrix that takes into consideration the information we have from previous generations. We
define C0 = I and a learning rate 0 < ccov ≤ 1, then

Cg+1 =(1− ccov)Cg + ccov

(
1

σg

)2

Cg+1
µ

=(1− ccov)Cg + ccov

µ

∑
j=1

w j

xg+1
j:λ −mg

σg

xg+1
j:λ −mg

σg

T

.

(6.23)

The step-sizes σg have been integrated to ensure that Cg
µ from different generations are

comparable. If ccov = 1 the covariance matrix collapses to Cg+1
µ and no information from

previous generations is retained, on the other hand, if ccov = 0, Cg+1 = C0 and there is no
learning. This kind of update, represented in 6.23 update, is called rank-µ update, because
the sum goes from 1 to µ . Eq. 6.23 is iterative and can be expanded as

Cg+1 = (1− ccov)
g+1C0 + ccov

g

∑
j=0

(1− ccov)
g− j
(

1
σ j

)2

C j+1
µ . (6.24)

Picking high values for ccov leads to degenerate covariance matrices, while small values
imply slow learning, a good choice is ccov ≈ µe f f /n2. Small population sizes λ lead to a
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large number of generations and therefore to a faster adaptation for the covariance matrix.
A final step is necessary in the update of the covariance matrix: cumulation. Indeed, we
did not use the information on the “signs” of the steps the strategy took generation after
generation. In order to do so, we introduce the evolution path. An evolution path is any
sequence of successive steps taken by the strategy, taking the sum of these steps is referred
as cumulation; for instance, for three steps we have

mg+1 −mg

σg +
mg −mg−1

σg−1 +
mg−1 −mg−2

σg−2 . (6.25)

Defining the 0-th-order evolution path p0
c = 0, we use exponential smoothing and define

iteratively

pg+1
c = (1− cc)pg

c +
√

cc(2− cc)µe f f
mg+1 −mg

σg , (6.26)

with 0 ≥ cc ≤ 1 a new learning rate for the evolution path, the normalisation factor√
cc(2− cc)µe f f is dictated by the demand that pg+1

c is extracted from a normal distribution
N (0,C). When cc = 0 there is no learning and pg

c = 0. Putting everything toghether, we
obtain the update of the covariance matrix:

Cg+1 =(1− ccov)Cg +
ccov

µcov
pg+1

c pg+1T
c

+ ccov

(
1− 1

µcov

) µ

∑
j=1

w j

xg+1
j:λ −mg

σg

xg+1
j:λ −mg

σg

T

,

(6.27)

with µcov ≥ 1 and it should be µcov = µe f f . Eq. 6.27 reduces to eq. 6.23 in the case µcov → ∞,
so information from the last generation is taken into consideration by the rank-µ update and
information from previous generations, instead, is exploited by the evolution path update,
which is relevant above all for small population’s sizes.

The step size

An evolution path is used also to update the step size σ with a method called cumulative
step size adaptation:

• Whenever the evolution path is long, the steps are going in the same direction (approx-
imatively), so they are correlated. Consequently, we can cover the same distance with
longer but fewer steps, and the step size must be increased.

• When the evolution path is short, the steps cancel among each other, and the step size
should be decreased.
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• The optimal situation is that the steps are totally uncorrelated and orthogonal with
respect to the previous and following ones.

We need to define what long- and short-evolution paths mean. In this respect, we compare
the latter with the expected length under random selection, which means that the steps are
uncorrelated with each other. If our strategy finds that the evolution paths are longer than the
uncorrelated ones, σ has to be increased, and vice versa.
The evolution path pg+1

c depends on its direction, therefore we define the conjugate path

pg+1
σ = (1− cσ )pg

σ +
√

cσ (2− cσ )µe f f (Cg)−
1
2

mg+1 −mg

σg , (6.28)

with 0 < cσ < 1 a learning rate and (Cg)−
1
2 ≡ Bg(Dg)−1BgT . Whenever (Cg)−

1
2 ̸= I it aligns

the step mg+1 −mg to the coordinate system produced by Bg. In particular BgT rotates the
system in such a way that the columns of Bg become the axis. (Dg)−1 rescales the length of
the axis so that they measure distances in the same way. Bg rotates everything back, allowing
one to compare the directions of the various steps. By adding the matrix (Cg)−

1
2 in eq.6.28

we ensure the independence of pg+1
σ from the direction of the steps. Then we compare the

length of pg+1
σ with the expected length of the evolution path obtained from random selection

E [||N (0,I)||] and define the step size

σ
g+1 = σ

g exp

(
cσ

dσ

(
||pg+1

σ ||
E [||N (0,I)||]

−1

))
, (6.29)

where dσ ≈ 1 is a damping parameter and E [||N (0,I)||] =
√

2Γ
(n+1

2

)
/Γ
(n

2

)
≈

√
n+

O(1/n) is the expectation value of the Euclidean norm for a multivariate normal distribution
with identity matrix as covariance matrix. From eq. 6.29 we can see that, whenever
||pg+1

σ ||> E [||N (0,I)||], σg increases and viceversa when ||pg+1
σ ||< E [||N (0,I)||].

It has been proved, in a survey about Black-Box optimizations [144], that CMA-ES outranked
other 31 optimization algorithms, and that its performance is outstanding for rugged, ill-
conditioned functions with large search dimensional spaces.

6.3 Results and Analysis

Various numerical analyses have been performed using the different algorithms described
above, as well as other not mentioned in this thesis. Upliftability constraints have been used
as well, in order to look only for vacua with a direct link to type IIA/IIB or 11-D supergravity.
CMA-ES has been able to find some Minkowski and Anti de Sitter vacua in 7-D, whose



6.3 Results and Analysis 121

presence has been confirmed by analytical computations with U(1) residual gauge symmetry
and the results have been presented in Chapter 4. Parallelization resulted to be fundamental in
making the process faster and allowing a more global search scan. Indeed, with CMA-ES we
need to choose a starting mean m0 and step size σ0, toghether with some hyper-parameters
such as the time allowed to carry the computations (‘timeout’ parameter), the minimum value
accepted for the fitness function in order to declare that a minimum was achieved (‘ftarget’
parameter), the precision of this result (‘tolfun’), the population size λ and whether or not to
activate elitist research. Parallelizing gave us the opportunity to choose more initial means
m0 at a time, thus scanning a broader area of the parameter space. Some useful “tricks” have
been used in order to adapt the algorithms to our specific problem and to render the analysis
of the numerical results faster.
First of all, we are dealing with systems of homogenous quadratic equations, therefore their
solutions pass always from the origin, this helps us in restricting the area of research, when
setting the initial mean for the multivariate normal distribution. On the other hand, we
must pay attention, because the origin of the reference system is a trivial solution for any
homogenous system of equations, therefore starting near to it can lead us always there. This
could be avoided by modifying the fitness function. Given a system of equation di = 0, where
i labels the equations of the system, the base fitness function is defined by f f it =∑

l
i(di)

2 with l
being the length of the system, then we can modify it in the following sense Ff it = f f it/∑

n
i x2

i ,
where xi represent the embedding tensor parameters and i runs over them. However, we
found that the following definition is more efficient:

Ff it =


f f it for ∑

n
i x2

i > threshold,

10000 for ∑
n
i x2

i ≤ threshold.

(6.30)

Basically, we create a step function, to avoid the algorithm to converge always in 0. The
threshold must be chosen in such a way as to leave enough parameter space near the origin to
complete a full scan without hitting the barrier too often. A technique to avoid the algorithm
to return to minima already found before has also been implemented. It consisted in adding
a multivariate normal distribution function centered on the minima on top of the fitness
function, as illustrated in fig. 6.6 and fig. 6.7b through the level curves. Basically what one
does is to add a series of umbrellas on top of the fitness function to stop the algorithm from
going in those directions already analised.
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(a) Example of fitness function Ff it without modifi-
cation

(b) Example of fitness function with a
Gaussian modification

Fig. 6.6 Modification of the fitness function after a minimum has been found by the algorithm.

In our case though, the solutions to the systems are manifold in the parameter space, so
an infinte amount of umbrellas would be needed to prevent the algorithm to find again the
vacuum structure under consideration. Just imagine to have a straight line in 2-dimensions
and start covering it with 2-dimensional multivariate normal distributions.

(a) level curves for a fitness function Ff it

without modification
(b) level curves for a fitness function with a Gaus-
sian modification

Fig. 6.7 Modification of the fitness function after a minimum has been found by the algorithm,
illustrated trough level curves.

In 5 and 7 spacetime dimensions, we were interested, above all, in (Anti)-de-Sitter vacua,
this information can be used to simplify further the numerical search. Indeed, taking into
consideration the potentials in 3.44, 4.1 and 4.29 written in terms of the fermion shifts 3.33
and 3.79 for 5 and 7 space-time dimensions respectively, we can see that potentials are always
written as the difference between 2 squared terms. For AdS we want to impose V =−k, with
k constant, we can always normalize k to be 1, so we need to add another equation (quadratic)
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to our system, analogously for dS we need to solve V = 1. We can always make a change of
variables to solve completely this new constraint, for instance, considering the case of AdS
vacua in 7D, calling zi the variables contained in Ad,abc

2 and xi the ones in Aab
1 :

zi → sinh[ψ]wi√
∑ j w2

j

,

xi → cosh[ψ]ui√
∑ j u2

j

.

(6.31)

This change of variables introduce one more variable, ψ , but it solves the constraint V =−1,
thus removing a bunch of solutions from the system. By doing so we will be certain that
the algorithm looks only for vacua with negative cosmological constant and the other vacua
disappeared from its landscape. Analogously, we can solve the constraint V = 1 for dS vacua
by exchanging sinh with cosh in eq. 6.31. For Minkowski vacua we just add one more
homogeneous quadratic equation (V = 0) to the system. The initial points have been chosen
in the following way, for what concerns the variables wi and ui in 6.31, we draw them from
normal distribution with mean 0 and a standard deviation σ = 4, instead, the starting points
for psi have been displaced evenly in an interval from 0.1 to 0.5 (note that the initial variables
scale exponentially with ψ so there is no need to reach high value of the latter). For the more
complicated cases, with huge systems and a lot of unkowns, we first evaluated the fitness
function on these starting points and already selected the best ones, setting an acceptance
threshold (this has been done after a careful analysis of the fitness function at hand and noting
that points who started with huge fitness function never reached an acceptable vacuum).
After GA or CMA has been implemented with all these modification, we proceeded to the
analysis of the results.
First of all, we removed the solution points which are near to each other, up to a certain
threshold which we set to be equal to 3σ , thus 3 times the step size, removing all the candidate
solutions corresponding to vacua already present in the set of solutions. Then, we studied the
residual amount of supersymmetry, the gravitini masses, the signature of the Cartan matrix
(providing the information about the number of compact and non compact generators of the
gauge group of the theory) and the rank of XPQ

R giving us the dimension of the gauge group.
With all these information, it is possible to group the solution points and extract some very
useful relations among them. Indeed, by plotting a variable, xi or zi, against all the other has
been possible to find some analytical relations, as it is shown in fig. 6.8.

Exploiting this relations, even by mean of linear fitting, it is possible to reduce the number
of variables, and in cases where the starting number of unknown is small enough we can find
an analytical solution. Indeed, the results found trough CMA, which showed at least an U(1)
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(a) Uncorrelated Variables (b) No dependance among the variables

(c) variables linearly related (d) Galois couple

Fig. 6.8 Correlation among the variables
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gaugings, have been confirmed by the analytical methods described previously and the result
are presented in Chapter 4 and Appendix C.

6.4 Summary

In this chapter we presented a number of numerical optimization algoritms, extensively used
in the Artificial Intelligence community, especially applied to Machine Learning techniques
such as backpropagation. Stochastic Gradient Descent computes the gradient for each
equation in the system and update the candidate solution point in the opposite directions,
Genetic Algorithms evolve a population based on the principle of the survival of the fittest to
find global minima for the fit function and CMA-ES adapt the covariance matrix to the level
curves of the fitness function. For our problem CMA-ES resulted to be the most promising
optimization algorithm and has been developed further. We provided also some techniques to
ease the numerical computations and to adapt these to our problme,in addition we described
some methods to analize the results and obtain analytical results from them.





Chapter 7

Conclusion

Since the discovery of supergravity [145], and its extended versions, it has always been
interesting to investigate and analyse the structure of the scalar potential and its minima.
There are several reasons for this study, spanning from phenomenology to cosmology, and
more came out after the formulation of the AdS/CFT conjecture. Due to the great interest
around this subject, many techniques have been developed along the years to compute
and examine the vacua of those theories. Particular attention has been given from the
scientific community to minima of maximally supersimmetric supergravities, the rationale
behind it being the fact that the field content and the Lagrangian are completely specified by
supersymmetry in these cases.
This work moves in this frame and further develops the community’s endeavour aimed
at better understanding the structures of supergravities and string theories and relating
the latter to cosmological and phenomenological observations. In particular, maximally
supersymmetric supergravities have been scrutinised in 5 and 7 spacetime dimensions, led by
the idea of relating our results to conformal field theories in 4 and 6 dimensions, respectively.
In order to accomplish this highly complicated task, involving NP problems, several methods
have been adopted throughout the work, in particular analytic techniques, first adopted in [49],
allowed for the scan of all the gaugings and of the whole space of theories in a simple way.
We have deepened this analysis, employing algorithms used in the realm of post-quantum
cryptography (Appendix D), therefore succeeding in pushing the analytical methods used
for scrutinising the vacua of supergravity theories further than what was previously possible.
We went even further and adopted a different perspective: instead of solving the system of
quadratic equations, we tried a direct minimisation of certain fitness functions related to
the system of quadratic constraints. Implementing and developing numerical optimisation
algorithms used nowadays, especially in the Artificial Intelligence universe, we have been
able to analyse deeply the parameter space for maximal gauged supergravity theories. In
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certain special cases, we also reconstructed or obtained the analytical solutions from the
numerical results.
Many aspects and ideas remain to be further developed; in particular, it would be interesting
to study the possible existence of “terminal theories”, namely theories that represent terminal
points for the RG flow such that any relevant deformation cannot be added to the CFT. They
are argued not to exist, thus, exploring this hypothesis from the gravity side in the case of
supersymmetric theories results of uttermost relevance. In addition, analysing the behaviour
of the cosmological constant for different space-time dimensions and different amounts of
supersymmetry is of interest to understand the behaviour of the cosmological constant and
to provide a better grasp on the cosmological constant problem [2]. Besides, very much
attention has been given in the last few years to de Sitter solutions of string theories and
supergravity theories thanks to the de Sitter conjecture [31], consequently, understending the
behaviour of dS spacetimes in various dimensions in supergravity is a priority. In the end,
knowing the structure of supergravities and string theory’s compactifications and truncations
is an inherently interesting aspect of the theory that needs further clarifications. Many
techniques and mathematical tools have been developed along the decades to tackle this
problem and hopefully many more will come in the future. There is plenty of work around
supergravity vacua at the horizon, and the way is not always paved.
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Appendix A

Dimensional Reduction

Kaluza–Klein reduction

First of all, we observe that all fields in (D+1)-dimensional space, with 1 dimension curled
on itself, satisfy the cylinder condition

Φ̂(xµ ,y+2πRy) = Φ̂(xµ ,y),

where, Ry is the radius of the compactifying circle. Therefore we can Fourier-expand them in
terms of eigenfunctions on the circle, namely

Φ̂(xµ ,y) = ∑
n

Φn(xµ)einy/Ry.

Once we insert this ansatz into the (D+1)-dimensional Klein–Gordon equation, we get

2̂Φ̂(xµ ,u) = 0 ⇒ [2+∂y∂
y]Φ̂ ≡

[
2−

(
n
Ry

)]
Φn(xµ) = 0.

Therefore, an infinite tower of massive states appears in D-dimensions, called Kaluza–Klein
modes. In the limit of very small compactification radius, the massive modes decouple from
the theory, and only the massless mode contributes to the effective field theory. Keeping this
in mind, it is possible to see what fields and simmetries arise when we include the vielbein
and p-form fields in the higher-dimensional theory. Let us first start with the reduction
of pure gravity from (D+N)-dimensions down to D-dimensions. The coordinates split as
xM → (xµ ,ym), µ = 0, ...,D− 1, m = 1, ...,N, analogously for flat indices A → (α,a). On
the N-torus the vielbein takes the form:
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EM
A =

eγφ eµ
α eφ/NVm

aBm
µ

0 eφ/NVm
a

 (A.1)

All components depend only on xµ . The matrix Vm
a is normalised by det V = 1 and γ = 1

2−D
is chosen such that the lower dimensional action is in Eisntein frame. The field content of the
D-dimensional theory is therefore: a vielbein, N vector fields, and N2 scalar fields. The ansatz
A.1 breaks the SO(1, D+N-1) Lorentz symmetry to SO(1,D−1)× SO(N). The second factor
can be used to remove part of the scalar fields in Vm

a, leaving 1
2N(N +1) physical scalars

in the reduced theory. Let us now see how the (D+N)-dimensional diffeomorphisms act on
these fields.

δEM
A = ξ

N
∂NEM

A +∂Mξ
NEN

A. (A.2)

Diffeomorphism with indices along the D-directions ξ µ(x) induce D-dimensional diffeo-
morphisms. While, diffeomorphisms with indices along the internal directions ξ m(x) induce
abelian gauge transformations for the Kaluza–Klein vector fields:

δBm
µ = ∂µξ

m.

There are some other diffeomorphisms that have to be considered. Such as linear diffeo-
morphisms in the N compactified coordinates, ξ m =−Λm

nyn, with Λm
n traceless. These do

not introduce any y-dependance on the fields of the D-dimensional theory, so are perfectly
reasonable. They induce a global SL(N) symmetry acting as

δΛVm
a = Λ

n
mVn

a, δΛBm
µ =−Λ

m
nBn

µ .

However, diffeomorphisms corresponding to constant rescaling of the N-Torus ξ m = λym are
peculiar. Because they induce an action on the D-dimensional vielbein, they do not constitute
an off-shell symmetry in D dimensions. However, combined with a proper rescaling of the
(D+N)-dimensional vielbein (the trombone symmetry), they result in an off-shell symmetry:

δλ φ = λN(D−2)φ , δλ Bm
µ =−λ (D−2+N)Bm

µ ,

which leaves eµ
α invariant. Thus, we can see that the scalars live on a coset manifold

GL(N)/SO(N).
Reductions of supergravity theories do not end here. Indeed, extended supergravities have
larger symmetry groups where GL(N) is embedded as a subgroup. These larger groups are
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due to the presence of p-forms present in the higher-dimensional theory.

AM1...Mp → (Aµ1...µp,Am1µ2...µp,Am1m2µ3...µp, ...,Am1...mp)

Giving rise to D-dimensional p-forms, (p-1)-forms, (p-2)-forms, etc. Their transformations
under SL(N) follow from the index structure of their internal indices. For what concerns the
GL(1) scaling transformations, it is possible to show [146] that:

Am1...mkµk+1...µp = λ ((D−2)k+(k− p)N)Am1...mkµk+1...µp.

Whenever N ≥ p the reduction introduces
(N

p

)
scalar fields Am1...mp in the D-dimensional

theory. So the question arises naturally, what happens to the (D+N)-dimensional gauge
transformations δAM1...Mp = p∂[M1ΞM2...Mp]? When we consider the transformations that are
linear in the compactified coordinates Ξm2...mp = ξm1...mpym1 , new global shift symmetries
arise

δξ Am1...mp = ξm1...mp.

These are not the only possible scalar fields that arise in a dimensional reduction of a p-
form. Indeed, it is well known that (D-2)-forms can be dualised into scalar fields. These
scalar fields also have a global shift symmetry δχφa = χa. All these symmetries form a
non-semisimple group of the type GL(N)⋉N with nilpotent N corresponding to the shifts.
In addition, the D-dimensional theory has dimN additional hidden symmetries, with no
obvious higher-dimensional origin. These symmetries, together with GL(N)⋉N , form the
semi-simple group G. The fact that the number of additional hidden symmetries is precisely
enough in order to form a semi-simple global symmetry group in D dimensions of course
heavily hinges on the field content of the higher-dimensional supergravity theory. Here, the
underlying supersymmetric structure that is preserved throughout the reduction plays its role.
It is also possible to show that the components of the flux parameters also transform under
the GL(1) scaling symmetry as

δλFm1...mp = λ ((D−2)p+N)Fm1...mp,

for the p-form field strengths with all indices along the compactified directions. Another
possible deformation of a compactification is the torsion of the internal torus, namely, a
vielbein ansatz made by Ea = Ẽm

a(x)ηm(y), with the one-form ηm(y) satisfying dηk =

T k
mnηm ∧ηn, where T k

mn is known as geometric flux. Also, the geometric flux transforms
under GL(1) as:
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δλ T k
mn = λ (D+N −2)T k

mn.

Scherk–Schwarz reduction

Scherk–Schwarz is basically different from Kaluza-Klein reduction in the dependence of
the fields on the compactification coordinates. This dependence is not arbitrary but takes a
particular form that depends on the symmetry of the higher-dimensional theory. Consider,
for example, expanding a (D+1)-dimensional complex scalar field S with the Fourier basis
on the circle

S(x,y) = eimy
∞

∑
−∞

e2πiny/L,

with L the length of the circle. The field, as it is, is not single valued in (D+1)-dimensions,
since S(x,y+L) = eimLS(x,y). However, this is acceptable whenever S is part of a theory
possessing the phase transformation S → eiαS as a global symmetry. Free theory has this
property. Thus, the multivalued field represents a non-trivial fibre bundle, which is effectively
continuous around the circle. In the limit as L → 0, in the effective theory we can ignore
all the fields Sn and keep only S0 which is a D-dimensional field of mass m (just insert
this in the (D+1)-dimensional Klein-Gordon equation). So, we see immediately that we
generate mass terms with this method of dimensional reduction. If this method is applied to
some, but not all the fields in a supermultiplet, supersymmetry gets broken. Now consider
a supergravity theory in D + E dimensions. If one can exploit symmetries of the theory
along the lines described above so as to generate masses for the gravitinos but not for the
graviton, supersymmetry in D dimensions will be broken. The breaking is guaranteed to be
spontaneous, because the local supersymmetry transformations in D + E dimensions can be
transcribed in D dimensions as part of the dimensional reduction. As an example, we can
compactify pure N = 1 supergravity from 4 to 3 dimensions. The Lagrangian is given by

L=− 1
4κ2 ER− 1

2
ε

λρµν
Ψλ Γ5ΓµDνΨρ .

The symmetries of this theory are: local supersymmetry, local Lorentz invariance, and general
coordinate transformations. Infinitesimally, they are:

δEM
A =−iκεΓ

A
ΨM +λ

A
BEM

B +∂Mξ
NEN

A +ξ
N

∂NEM
A, (A.3)

δΨM =
1
κ

DMε +
1
2

λ
AB

ΣABΨM +∂Mξ
N

ΨN +ξ
N

∂NΨM (A.4)
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In addition, there is also the global chiral symmetry: ΨM → eiaΓ5ΨM. Now, xµ = x0,x1,x2

and y = x3. Choosing the following y dependencies

ΨM(x,y) = eimΓ5y
ΨM(x), (A.5)

EM
A(x,y) = EM

A(x), (A.6)

the theory in 3 dimensions will contain mass terms for the gravitions while leaving the vielbein
massless. It is appropriate to decompose the 4-component spinors of four dimensions into
2-component spinors of three dimensions. Thus,

Γ
µ = γ

µ ⊗ τ3, µ = 0,1,2,

Γ
3 = 1⊗ iτ2,

Γ
5 = 1⊗ τ1,

where γµ are 2x2 Dirac matrices for D = 3 (for example, γ0 = σ3, γ1 = iσ1, and γ2 = iσ2).
A Majorana spinor Ψ in four dimensions takes the form

(
ψ1

iψ2

)
, where ψ1 and ψ2 are 2-

components Majorana spinors in D=3. Using local Lorentz transformations, it is possible to
put the vielbein in the following gauge:

EM
A =

eµ
α 2κAµφ

0 φ

 .

This implies δE3
A = 0 for A = 0,1,2, which using A.3 requires λ A

3 = iκφ−1εΓAΨ3, with
A = 0,1,2. Supersymmetry transformation for the dreibein then becomes:

δeµ
α =−iκε Γ

α
Ψµ +λ

α
32κAµφ =−iκε Γ

α
Ψ

′
µ ,

where we introduced Ψ′
µ ≡ Ψµ −2κAµψ and Ψ ≡ Ψ3. Now, to keep eµ

α independent of y,
it is necessary to take ε(x,y) = eimΓ5yε(x).
Substituting the y-dependence of A.5 and A.6 into a general coordinate transformation with
parameter ξ 3 ≡ ξ yields

δAµ =
1

2κ
∂µξ ,

δeµ
α = δφ = 0,

δΨ
′
µ = imΓ5ξ Ψ

′
µ ,

δψ = imΓ5ξ Ψ.
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We can see that Aµ is the gauge potential of an U(1) symmetry in D=3, and the charge is
proportional to the mass parameter. Indeed, putting everything together in the 4-dimensional
Lagrangian and dropping primes for Ψµ one gets the N=2, D=3 Lagrangian:

L=− 1
4κ2 φeR− 1

4
φ

3eFρλ Fρλ − 1
2

φε
µνρ

ψ
i
µ(Dνψρ)

i +meψ
i
µσ

µν
ψ

i
ν

+2eε
i j

ψ
i
σ

νρ(Dνψρ)
j − 1

4
iκφ

2
ε

i j
ε

µνρ
ψ

i
µγ

σ
ψ

i
ρFνσ − e

1
2

iκφFµνψ
i
γ

µ
ψ

ν i

+ e
1
2

iφψ
i
µγ

µ
ψ

iρ
∂ρ lnφ +L4,

where L4 represents terms quartic in fermions and

(Dνψρ)
i =

(
∂ν +

1
2

ω
0
νrsσ

rs
)

ψ
i
ρ +2κmAνε

i j
ψ

j
ρ .

Inserting the same substitution in the supersymmetry transformation laws gives:

δeµ
α =−iκε

i
γ

α
ψ

i
µ , (A.7)

δψ
i
µ =

1
k
(Dµε)i − 1

4
iε i j

φγ
ν
ε

jFµν +O(ψ2
ε), (A.8)

δAµ = φ
−1

ε
i j

ε
i
ψ

j
µ − iφ−2

ε
i
γµψ

i (A.9)

δψ
i =−m

κ
ε

i j
ε

j +
1
4

φ
2Fµνσ

µν
ε

i +
1

2κ
ε

i j
γ ·∂φε

j +O(ψ2
ε), (A.10)

δφ = κε
i j

ε
i
ψ

j. (A.11)

The variation of the gravitinos contains a constant in the coefficient of ε which means that
ψ i are two Goldston spinors. Therefore, it is possible to use supersymmetry invariance to
set ψ i = 0. Doing this, and letting ψ i

µ → φ−1/2ψ i
µ , eµ

α → φ−1eµ
α , and φ = eκσ , one finds

(putting back the quartic terms)

L=− 1
4κ2 eR+

1
2

e∂
µ

σ∂µσ − 1
2

ε
µνρ

ψ
i
µ(Dνψρ)

i

− 1
4

ee4κσ FµνFµν + eme−2κσ
ψ

i
µσ

µν
ψ

i
ν −

1
4

iκε
i j

ε
µνρe2κσ

ψ
i
µγ

σ
ψ

j
ρFνρ .

It should be noted that a shift of the σ field and scaling of Aµ correspond to a rescaling of
the mass m, thus only the combination m(e−2κσ0) where σ0 is the vacuum expectation value
of σ , has physical significance.
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Scherk and Schwarz Reduction with Difeomorphisms

The Scherk and Schwarz criterion for dimensional reduction can also be applied to general
coordinate transformations. We will show its application to Einstein’s theory. The algebra
for the general coordinate transformations, parametrised in the case of Einstein theory by
ξ µ̂(x,y), is given by

[δξ1
,δξ2

] = δξ3
, (A.12)

with
ξ

µ̂

3 (x,y) = ξ
σ̂
2 (x,y)∂σ̂ ξ

µ̂

1 (x,y)−ξ
σ̂
1 (x,y)∂σ̂ ξ

µ̂

2 (x,y). (A.13)

The reduction works by imposing

ξ
µ(x,y) = ξ

µ(x),

ξ
α(x,y) = [U−1(y)]α

β
ξ

β (x),
(A.14)

in the limit in which U → 1 one goes back to the usual Kaluza-Klein reduction. The algebra
of external diffeomorphisms is then the usual algebra for general coordinate transformations.
While, the commutator of an external diffeomorphisms with an internal one produces a new
internal transformation with parameter

ξ
α
3 =−ξ

σ
1 (x)∂σ ξ

α
2 (x), (A.15)

from this relation one observes that the parameters for internal transformations are space-time
scalars. The algebra of two internal transformations, on the other hand, gives an internal
transformation with parameter

ξ
γ

3 (x) = fαβ
γ
ξ

α
1 (x)ξ β

2 (x), (A.16)

with
fαβ

γ = (U−1)α
α ′
(U−1)β

β ′
(∂β ′Uα ′γ −∂α ′Uβ ′

γ). (A.17)

Of course, we want fαβ
γ to be constant, so that A.16 identifies a new internal parameter

that depends only on x. Choosing the y-coordinates to be a system of coordinates on the
manifold of a Lie group G, we can describe the generators of the group in terms of differential
operators

Lα(y) = (U−1)α
β

∂β . (A.18)
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Then, the second theorem by Lie guarantees that if

[Lα ,Lβ ] = fαβ
γLγ , (A.19)

the structure constants fαβ
γ are constant and given by A.17. Therefore, what happened here

is that from the internal diffeomorphisms we have been able to extract a Lie-algebra with the
same dimensions of the internal space. Obviously, we need to apply the same factorisation
technique we applied to the gauge parameters to the other fields in the theory. The general
rule is that each lower internal Greek index gets a factor of U(y), while upper internal Greek
indices are accompanied by a U−1(y) factor. Thus, the field content of Einstein’s theory,
contained in the D+n vielbein in a triangular parametrisation

Eµ̂
α̂ =

δ γEµ
s 2κAα

µ Φa
α

0 Φa
α

 , (A.20)

where δ = Det(Φa
α(x)), can be written as

Es
µ(x,y) = Es

µ(x),

Aα
µ (x,y) = [U−1(y)]α

β
Aβ

µ(x),

Φ
a
α(x,y) =Uβ

α (y)Φ
a
β
(x).

(A.21)

By doing so, the degrees of freedom do not change, and whenever 2 internal indices are
contracted among them, without derivatives, their y-dependance cancels. Recalling the
vielbein’s behaviour under general coordinate transformations

δEµ̂
α̂ = ξ

σ̂
∂σ̂ E α̂

µ̂
+E α̂

σ̂
∂µ̂ξ

σ̂ , (A.22)

one obtains the gauge transformations for the various fields:

δΦ
a
α(x) = fαβ

γ
ξ

β (x)Φa
γ(x), (A.23)

δΦ
α
a (x) = fβγ

α
ξ

β (x)Φγ
a(x), (A.24)

δAα
µ (x) =

1
2κ

∂µξ
α(x)+ fβγ

α
ξ

β (x)Aγ

µ(x), (A.25)

δEµ
s =0. (A.26)

It is immediately possible to see that Aµ
α plays the role of a gauge potential for the Lie group

G that has fαβ
γ as structure constants. The Hilbert-Einstein action is invariant under internal
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diffeomorphisms only if

∂β [(U
−1)

β

αU ] = 0, with U(y) = Det(Uα
β (y)). (A.27)

This equation, trnaslate into fαβ
β = 0, which is satisfied by all semi-simple Lie Algebras

(as well as other cases), but it must not be imposed if we want to include the Trombone
symmetry in our gaugings. Indeed, the Trombone is only a symmetry of the equations of
motion in any space-time dimension different from 2, and so does not obey this condition on
the trace of the structure constants.
It is possible to compute the D+n spin connections, obtaining

ω̂p,qr =δ
−γ [ωp,qr + γ(ηpqEσ

r −ηprEσ
q )∂σ ln(δ )],

ω̂p,qa =κδ
−2γFα

pqΦαa,

ω̂p,ab =
1
2

δ
−γ

Φ
α
a Ep

µDµΦαb −
1
2

δ
−γ

Φ
α
b Ep

µDµΦαa,

ω̂a,pq =−κδ
−2γFα

pqΦαa,

ω̂a,pb =
1
2

δ
−γ

Φ
α
b Φ

β
a Ep

σDσ hαβ ,

ω̂a,bc =
1
2

fαβ
γ(Φα

b Φ
β
c Φγa +Φ

α
b Φ

β
a Φγc −Φ

α
c Φ

β
a Φγb).

(A.28)

with, hαβ = Φa
αδabΦb

β
, and

Fα
µν =∂µAα

ν −∂νAα
µ −2κ fβγ

αAβ

µAγ

ν ,

DµΦ
a
α =∂µΦ

a
α −2κ fαβ

γAβ

µΦ
a
γ ,

DµΦ
α
a =∂µΦ

α
a −2κ fβγ

αAβ

µΦ
γ
a,

(A.29)

such that Fα
µν is the gauge covariant field strength and Dµ is the gauge covariant derivative.

We can see that the y-dependence vanished from the spin connections in A.28, so that the
D+n Ricci scalar R̂ is y-indpendent. Inserting everything in the Hilbert-Einstein action and
integrating on the internal manifold, one gets

S =
∫

dDxE
{
− 1

4κ2 R− 1
4

δ
2/(D−2)FµναFβ

µνhαβ − 1
16κ2 gµνDµhαβDνhαβ

+
1

4κ2(D−2)
gµν

∂µ ln(δ )∂ν ln(δ )−V (hαβ , fαβ
γ)

}
.

(A.30)
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The scalar potential, which depends on the choice of the gauge group, is given by

1
16κ2 δ

−2/(D−2) fαβ
γ [2 fγλ

αhβλ + fλρ
σ hγσ hαλ hβρ ]. (A.31)

Imposing that the potential is bounded from below, without the addition of a cosmological
constant (in 11 and 10 dimensional supergravities there is no such a term), one restricts the
choice of the gauge group from semi-simple Lie group to“flat-group”, more information
about this and about the reduction procedure in presence of matter fields can be found at
[63, 64].



Appendix B

Fermion Shifts at the Vacuum in the 5
dimensional Theory

In this appendix we provide an instance of the value of the fermion shifts generating the
vacua of table 4.7. For all examples, we have chosen a basis where either

Ω = 14 ⊗ iσ2 (B.1)

or
Ω = iσ2 ⊗14. (B.2)

A1. In the basis with Ω as in (B.1), the maximal AdS supersymmetric vacuum is easily
obtained by setting

A16 = A38 =−A25 =−A47 = g, Ai, jkl = 0. (B.3)

A2. In the basis with Ω as in (B.1), the non-supersymmetric SO(5) AdS vacuum follows
from choosing

A16 = A38 =−A25 =−A47 = g, (B.4)
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and

A1162 = A2251 = A3384 = A4473 = A5562 = A6651 = A7784 = A8873 =
g
4
, (B.5)

A1238 = A1274 = A2183 = A2147 = A3164 = A3245 = A4136 = A4325

= A5368 = A5647 = A6385 = A6457 = A7861 = A7258 = A8167 = A8275 =
3

16
g, (B.6)

A1364 = A2345 = A3182 = A4127 = A5278 = A6718 = A7456 = A8365 =
g

16
, (B.7)

A1678 = A2758 = A3568 = A4576 = A5243 = A6134 = A7214 = A8123 =
5

16
g. (B.8)

A3. In the basis with Ω as in (B.2), the SU(3) invariant AdS vacuum follows from

A15 = A26 = A37 =
7
9

im1, A48 =−im1, (B.9)

and

A1256 = A1357 = A2165 = A2367 = A3517 = A3276

= A5162 = A5317 = A6125 = A6273 = A7135 = A7236 =
i
9

g, (B.10)

A1548 = A2648 = A3748 = A5148 = A6248 = A7348 =
2
9

ig, (B.11)

A1234 = A2314 = A3124 = A5678 = A6587 = A7568 =
1

2
√

3
g, (B.12)

A4123 = A8567 =

√
3

2
g. (B.13)

A4. In the basis with Ω as in (B.1), the N = 2 AdS vacuum with U(2) residual symmetry
follows from

A14 =−A23 =
7

12
g, A56 =−i

g
2
, A78 = i

2
3

g, (B.14)
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and

A1124 = A2213 = A3324 = A4413 =− 5
24

g, (B.15)

A1275 = A1268 = A2157 = A2186 = A3457 = A3486 = A4375 = A4368 =
i
8

g, (B.16)

A1475 = A1486 = A2357 = A2368 = A3275 = A3286 = A4157 = A4168 =
g
8
, (B.17)

A1456 = A2365 = A3265 = A4156 =
g

24
, (B.18)

A1478 = A2387 = A3287 = A4178 =
g
6
, (B.19)

A7568 = A8567 =−i
g
6
, (B.20)

A7152 = A7345 = A8126 = A8436 = i
g
4
, (B.21)

A7154 = A7235 = A8416 = A8236 =
g
4
, (B.22)

A7128 = A7348 = A8127 = A8347 = i
g

12
. (B.23)

A5. In the basis with Ω as in (B.1), the N = 0 AdS vacuum with SU(2) × U(1)2 residual
symmetry follows from

A23 =−A14 =
1
3

√
2
5

g, A56 =−i
g
5
, A77 =−A88 = i

g
5
, (B.24)

and

A1124 = A2213 = A3324 = A4413 =
g

3
√

10
, (B.25)

A1456 = A2365 = A3287 = A4178 =
1

12

√
1− 2

5

√
6g, (B.26)

A1487 = A2378 = A3256 = A4165 =
1
12

√
1+

2
5

√
6g, (B.27)

A5164 = A5236 = A6145 = A6253 = A7148 = A7283 = A8174 = A8237 =
g

4
√

15
,(B.28)
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A5621 = A6521 = A7734 = A8843 = i
1

60

(
2+

√
6
)

g, (B.29)

A5634 = A6534 = A7721 = A8812 = i
1

60

(
−2+

√
6
)

g, (B.30)

A5678 = A6578 = A7765 = A8856 = i
g

15
. (B.31)

M1. The general CSS Minkowski vacuum in the basis with Ω as in (B.1), follows from

A11 = A22 =
m1

3
, A33 = A44 =

m2

3
, A55 = A66 =

m3

3
, A77 = A88 =

m4

3
, (B.32)

and

A1134 = A2234 =−m1

3
, (B.33)

A1156 = A1178 = A2256 = A2278 =
m1

6
, (B.34)

A3312 = A4412 =−m2

3
, (B.35)

A3356 = A3378 = A4456 = A4478 =
m2

6
, (B.36)

A5578 = A6678 =−m3

3
, (B.37)

A5512 = A5534 = A6612 = A6634 =
m3

6
, (B.38)

A7756 = A8856 =−m4

3
, (B.39)

A7712 = A7734 = A8812 = A8834 =
m4

6
. (B.40)

Obviously the vacua that appear in the context of our analysis have some of the masses
either set to zero or proportional to each other, in order to respect the correct U(2) residual
symmetry, but they are always subcases of the one presented here.

M2. The Minkowski vacuum from the SU(3,1) gauging appears in the basis with Ω as in
(B.1) by choosing

A34 = i
m1

3
, A56 = i

m2

3
, A77 = A88 =

m3

3
(B.41)
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and

A3124 = A4123 =−i
m1

3
, (B.42)

A3456 = A3478 = A4356 = A4378 = i
m1

6
, (B.43)

A5126 = A6125 =−i
m2

3
, (B.44)

A5346 = A5678 = A6345 = A6578 = i
m2

6
, (B.45)

A7712 = A8812 =−m3

3
, (B.46)

A7734 = A7756 = A8834 = A8856 =
m3

6
. (B.47)

M3. The first new Minkowski vacuum we found appears in the basis with Ω as in (B.1)
by choosing

A56 =−i
m2

3
, A77 = A88 =

m1

3
(B.48)

and

A5346 = A6345 = i
m2

3
, (B.49)

A5126 = A5678 = A6125 = A6578 =−i
m2

6
, (B.50)

A7734 = A8834 =−m1

3
, (B.51)

A7712 = A7756 = A8812 = A8856 =
m1

6
. (B.52)

M4. The new non-supersymmetric Minkowski vacuum appears in the basis with Ω as in
(B.1) by choosing

A23 =−A14 =
m1

3
, A58 =−A67 =

m1√
3

(B.53)

and

A1142 = A1478 = A2231 = A2387 = A3342 = A3287 = A4431 = A4178 =
m1

6
, (B.54)

A1485 = A1467 = A2358 = A2376 = A3258 = A3276 = A4185 = A4167 =
m1

3
√

2
, (B.55)
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A5182 = A5384 = A6127 = A6347 = A7126 = A7346 = A8215 = A8435 =
m1

4
√

3
, (B.56)

A5146 = A5236 = A6145 = A6235 = A7148 = A7238 = A8147 = A8237 =
m1

4
, (B.57)

A5568 = A6657 = A7768 = A8857 =
m1

2
√

3
(B.58)

A5542 = A6631 = A7742 = A8831 =
m1

2
. (B.59)

M5. The new N = 4 Minkowski vacuum appears in the basis with Ω as in (B.1) by
choosing

A56 =−i
m2

3
, A77 = A88 =

m1

3
(B.60)

and

A5126 = A6125 = i
m2

3
, (B.61)

A5346 = A5678 = A6345 = A6578 =−i
m2

6
, (B.62)

A7712 = A8812 =−m1

12
−

m2
3

8m2
, (B.63)

A7734 = A8834 =−m1

12
+

m2
3

8m2
, (B.64)

A7714 = A7732 = A8814 = A8832 =−1
8

√
4m2

1 −
m4

3

m2
2
, (B.65)

A7756 = A8856 =
m1

6
. (B.66)

D1. The de Sitter vacuum associated to the SO(3,3) gauging appears in the basis with Ω

as in (B.2) by choosing
Ai j = 0 (B.67)

and

A1278 = A1386 = A1476 = A2187 = A2358 = A2457 = A3168 = A3285 = m, (B.68)

A3465 = A4167 = A4275 = A4356 = A5283 = A5274 = A5346 = A6138 = m, (B.69)

A6147 = A6354 = A7182 = A7164 = A7245 = A8127 = A8163 = A8235 = m. (B.70)
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D2. The new de Sitter vacuum associated with the SU(3,1) gauging appears in the basis
with Ω as in (B.2) by choosing

A15 = A26 = A37 = 3 ig, A48 =−ig, (B.71)

and

A1265 = A1375 = A2156 = A2376 = A3157 = A3267

= A5126 = A5137 = A6152 = A6237 = A7153 = A7263 = ig, (B.72)

A1458 = A2468 = A3478 = A5184 = A6284 = A7384 = 2ig, (B.73)

A1287 = A1368 = A2178 = A2385 = A3186 = A3258 = A4167 = A4275 = A4356

= A5247 = A5364 = A6174 = A6345 = A7146 = A7254 = A8127 = A8163 = A8235 =

√
3

2
g,

A1467 = A2475 = A3456 = A5238 = A6183 = A7128 =
3
√

3
2

g. (B.74)





Appendix C

T-tensor at the Vacuum in the 7
dimensional Theory

In this appendix we provide an instance of the value of the irreducible USp(4) representations
composing the T-tensor generating the vacua of table 4.22. For all the examples, we have
chosen a basis where

Ω = 1⊗ iσ2. (C.1)

A1. The maximal supersymmetric Anti de Sitter vacuum was obtained by setting

Bs = κ, Bab
cd =Cab

cd =Cab = 0. (C.2)

A2. The SO(4) non-supersymmetric AdS vacuum follows instead by the choice

Bs = κ, Cab
cd =Cab = 0, (C.3)

B12
12 = B12

43 = B34
21 = B34

34 =
κ

6
,

B13
31 = B14

41 = B23
32 = B24

42 =
κ

12
.

(C.4)

There are other non-vanishing entries in the 14 representation, which are related by symme-
tries in the indices and therefore have not been reported here.
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M1.

Bs = κ1, C12 =C43 = κ2, (C.5)

B12
21 = B12

34 = B34
12 = B34

43 =
κ1

4
, (C.6)

B13
13 = B24

24 =
3κ1

4
, (C.7)

B14
41 = B23

32 =
κ1

2
, (C.8)

C13
13 =C24

24 =C32
23 =C41

14 =
κ2

2
. (C.9)

Again, the other entries are related by symmetries of the representation.
M2.

Bs = κ, C12 =C43 =
5
4

κ, (C.10)

B12
21 = B12

34 = B34
12 = B34

43 =
1
4

κ, (C.11)

B13
13 = B14

14 = B23
23 = B24

24 =
1
8

κ, (C.12)

B13
41 = B14

13 = B23
24 = B24

32 =
5i
8

κ, (C.13)

C14
13 =C23

24 =C31
14 =C42

23 =
5i
8

κ. (C.14)

Here, one needs always to keep in mind that there are other, non-reported entries of these
tensors which are related to the ones above by symmetries of representations.

M3.
Bs = κ1, C14 =C23 = 4iκ2, (C.15)

B12
21 = B12

34 = B34
12 = B34

43 =
1
4

κ1, (C.16)

B13
13 = B24

24 =
3
4

κ1, (C.17)

B14
41 = B23

32 =
κ1

2
, (C.18)
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C14
12 =C21

14 =C21
23 =C23

43 =C32
12 =C34

14 =C34
23 =C41

34 = iκ2, (C.19)

C13
11 =C13

33 =C42
22 =C42

44 = 2iκ2. (C.20)

Again, symmetries must be imposed on these tensors.





Appendix D

Relinearization and X-Linearisation
Algorithms

The Relinearization and X-Linearisation algorithms have been discovered with the purpose to
provide an attack to the Hidden Field Equations (HFE), a public-key cryptosystem introduced
in 1996. HFE is used nowadays for digital signature schemes. It is based on the difficulty to
find solutions to systems of multivariate quadratic (MQ) equations over a finite field (NP-
Hard). Due to this difficulty, the MQ problem is thought to be an example of Post-Quantum
Crittography. Now, we start with a quadratic system of equations:

∑
1≤i≤ j≤n

ai jkxix j = bk, with k = 1, ...,m (D.1)

with ai jk coefficients and k running over the equations of the system. The first step is to
linearise the system, namely, we define a set of new variables yi j = xix j, then we can solve the
new system of m linear equations in n(n+1)/2 variables. This linear system is underdefined,
therefore there is the need to introduce new equations. The second step, in fact, consists in
creating additional equations that impose the commutativity of the xi inside the yi j. Let us
define (i, j,k, l,m,n)∼ (i′, j′,k′, l′,m′,n′), which means that the two tuples are a permutation
of each other, then

(xix j)(xkxl)...(xmxn) = (xi′x j′)(xk′xl′)...(xm′xn′). (D.2)

These can be written in terms of the yi j variables and added to the set of equations. The set
of all the permutations can be solved by recurrent relinearization. The problem with this
algorithm is that when the degree of linearisation is high, many of these equations become
dependent. Indeed, it can be proved that “special” equations, linearly span all the other
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equations at fixed relinearisation degree, where special equations are of the form

yi1i2yi3i4 ...yir−1ir = y j1 j2y j3 j4...y jr−1 jr (D.3)

such that the y’s in this equation are the same except for two of them, whose indices have
been permuted.
To introduce XL-algorithm (eXtended Linearizations), on the other hand, we need some
further notation. First, given a system of multivariate quadratic equations l j, equations of
the form ∏

k
i=1 x j1 l j are said to be of type x jl and we denote the set of terms of degree k,

∏
k
i=1 x ji , by xk. We will consider the set of all polynomials ∏i x jil j with total degree ≤ D.

They span ID, that is, the space generated by xkl with 0 ≤ k ≤ D−2. ID ⊂ I , where I is the
ideal spanned by l j. XL algorithm contains as a special case Relinearization Algoritm. The
algorithm proceeds as follows:

• Multiply: Create the equations ∏
k
i=1 x jil j ∈ ID, with k ≤ D-2. (we are fixing the

degree of the equations at D).

• Linearize: Linearise the system as described before

• Solve: When the linearisation technique produces an equation with only one variable,
solve it with Berlekamp’s algorithm

• Repeat: Insert the root in the system, simplify, and repeat until every root is found.

It has been noted that, when the starting equations are homogeneous, we can use only
monomials of either even or odd degrees.
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