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We study the asymptotic behaviour of solutions of a
boundary value problem for the Laplace equation in
a perforated domain in R

n, n ≥ 3, with a (nonlinear)
Robin boundary condition on the boundary of
the small hole. The problem we wish to consider
degenerates in three respects: in the limit case, the
Robin boundary condition may degenerate into a
Neumann boundary condition, the Robin datum may
tend to infinity, and the size ε of the small hole where
we consider the Robin condition collapses to 0. We
study how these three singularities interact and affect
the asymptotic behaviour as ε tends to 0, and we
represent the solution and its energy integral in terms
of real analytic maps and known functions of the
singular perturbation parameters.

This article is part of the theme issue ‘Non-smooth
variational problems and applications’.

1. Introduction
This article is devoted to the study of the asymptotic
behaviour of solutions of a boundary value problem
for the Laplace equation in a perforated domain in
R

n, n ≥ 3, with a (nonlinear) Robin boundary condition
which degenerates into a Neumann condition on the
boundary of the small hole. The problem we wish
to consider degenerates in three respects. First, in the
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limit case, the Robin boundary condition may degenerate into a Neumann boundary condition
(i.e. the coefficient of the trace of the solution in the boundary condition may vanish). Second,
the Robin datum may tend to infinity. Finally, the size ε of the small hole where we consider the
Robin condition approaches the degenerate value ε = 0.

The behaviour of solutions to boundary value problems with degenerating or perturbed
boundary conditions has been studied by many authors. A family of Poincaré problems
approximating a mixed boundary value problem for the Laplace equation in the plane has been
studied by Wendland et al. [1]. A study of the convergence of the solution of the Helmholtz
equation with boundary condition of the type −ε(∂u/∂ν) + u = g to the solution with Dirichlet
condition u = g as ε → 0 can be found in the work of Kirsch [2]. Costabel and Dauge [3] studied
a mixed Neumann–Robin problem for the Laplace operator, where the Robin condition tends
to a Dirichlet condition as the perturbation parameter tends to 0. Boundary value problems
for Maxwell equations with singularly perturbed boundary conditions have been analysed, for
instance, by Ammari and Nédélec [4]. Also, singularly perturbed transmission problems have
been investigated by Schmidt and Hiptmair [5] by means of integral equation methods. Dalla
Riva and Mishuris [6] have investigated the solvability of a small nonlinear perturbation of a
homogeneous linear transmission problem by using potential-theoretical techniques. The present
article represents a continuation of the analysis done in [7], where the authors considered the
behaviour as δ → 0 of the solutions to the boundary value problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) = 0 ∀ x ∈ Ωo\Ω i,
∂

∂νΩo
u(x) = go(x) ∀ x ∈ ∂Ωo,

∂

∂νΩ i
u(x) = δFδ(u(x)) + gi(x) ∀ x ∈ ∂Ω i,

(1.1)

where Ωo and Ω i are sufficiently regular bounded open sets such that Ω i ⊆ Ωo. In this equation,
the superscript ‘o’ stands for ‘outer domain’ and the superscript ‘i’ stands for ‘inner domain.’ The
problem generalizes a linear problem that, under suitable assumptions, admits a unique solution
uδ for each δ > 0. When δ = 0, the problem degenerates into the Neumann problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) = 0 ∀ x ∈ Ωo\Ω i,
∂

∂νΩo
u(x) = go(x) ∀ x ∈ ∂Ωo,

∂

∂νΩ i
u(x) = gi(x) ∀ x ∈ ∂Ω i.

(1.2)

As is well known, this Neumann problem may have infinite solutions or no solutions, depending
on compatibility conditions on the Neumann datum. In [7] we proved that, under suitable
assumptions, solutions to (1.1) exist and that they diverge if the compatibility condition on the
Neumann datum for the existence of solutions to (1.2) does not hold. In [7], we considered
a Robin problem as a simplified model for the transmission problem for a composite domain
with imperfect (non-natural) conditions along the joint boundary. Such nonlinear transmission
conditions frequently appear in practical applications for various nonlinear multiphysics
problems (e.g. [8–15]). All such transmission conditions have been derived using formal
variational or asymptotic techniques (see e.g. [16–18]). However, accurate analysis of their
solvability and solution regularity has not been performed. One of the aims of the present paper
is to address this need. On the other hand, the problem in question, though simpler than most
of those arising in applications, is rich enough as it contains some features influencing the final
result. This refers not only to the condition itself but also the surface on which they hold.

In [7], we considered the case where the surface on which we consider the Robin condition is
the boundary of a fixed hole Ω i. Here, we wish to study the case where the hole becomes small
and degenerates into a point. Then a natural question arises: if we replace the set Ω i by a small
set εωi (with ε close to 0) and the parameter δ by a function δ(ε) possibly tending to zero as ε → 0,
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what happens? How does the geometric degeneracy (the set εωi collapsing to the origin when
ε = 0) interact with the possible degeneracy of the boundary condition if δ(ε) → 0 as ε approaches
0? We also observe that even though several techniques are available for the analysis of linear
problems, the presence of a nonlinear boundary condition requires a specific type of analysis
since, for example, existence and uniqueness of solutions is not immediately ensured.

The purpose of the present article is to give answers to these questions. Here we consider
only the case of dimension n ≥ 3. Indeed, our technique is based on potential theory, and the
two-dimensional case requires a specific analysis due to different aspects of the fundamental
solution of the Laplacian. In particular, if n = 2 the fundamental solution Sn of the Laplacian
equals (log |x|)/(2π ), whereas if n ≥ 3 the fundamental solution Sn is a multiple of 1/|x|n−2. This
leads to different rescaling behaviour of Sn(εx) and to different behaviour at infinity of single-layer
potentials, which are among our main tools in the analysis. We note that the set εωi when ε is close
to zero can be seen as a small hole in the set Ωo. The behaviour of the solutions to boundary value
problems in domains with small holes has long been investigated by the expansion methods of
asymptotic analysis. Such methods are mainly based on elliptic theory and allow the treatment
of a large variety of linear problems. As examples, we mention the method of matching outer
and inner asymptotic expansions of Il’in [19] and the compound asymptotic expansion method of
Maz’ya et al. [20,21], which allows the treatment of general Douglis–Nirenberg elliptic boundary
value problems in domains with perforations and corners. More recently, Maz’ya et al. [22]
provided asymptotic analysis of Green’s kernels in domains with small cavities by applying
the method of mesoscale asymptotic approximations (see also the papers [23–27]). Moreover, we
refer to Ammari and Kang [28] for several applications to inverse problems and Novotny and
Sokołowski [29] for applications to topological optimization.

Instead of the methods of asymptotic analysis, here we exploit the so-called functional-analytic
approach proposed by Lanza de Cristoforis in [30]. The goal of this approach is to represent
solutions to problems in perturbed domains in terms of real analytic maps and known functions
of the perturbation parameter. For a detailed presentation of the functional-analytic approach, we
refer to Dalla Riva et al. [31]. Here, we mention that the functional-analytic approach has been
used to analyse a nonlinear Robin problem for the Laplace equation by Lanza de Cristoforis [32]
and Lanza de Cristoforis and Musolino [33] and to analyse nonlinear traction problems for Lamé
equations by, for example, Dalla Riva and Lanza de Cristoforis [34–36] and Falconi et al. [37].

As a first step, we introduce the geometric setting in which we are going to consider our
boundary value problem. As the dimensional parameter, we take a natural number

n ∈ N\{0, 1, 2}.
Then, to define the perforated domain, we consider a regularity parameter α ∈ (0, 1) and two
subsets ωi and Ωo of R

n satisfying the following condition:

ωi and Ωo are bounded open connected subsets of R
n of class C1,α

such that 0 ∈ Ωo ∩ ωi and both R
n\ωi and R

n\Ωo are connected.

The set Ωo plays the role of the unperturbed domain, whereas the set ωi represents the shape of
the perforation. We refer, for instance, to Gilbarg and Trudinger [38] for the definition of sets and
functions of the Schauder class Ck,α (k ∈ N). We fix

ε0 ≡ sup{θ ∈ (0, +∞) : εωi ⊆ Ωo ∀ε ∈ (−θ , θ )}.
We note that if ε ∈ (0, ε0), the set εωi (which we think as a hole) is contained in Ωo and therefore
we can remove it from the unperturbed domain. We define the perforated domain Ω(ε) by setting

Ω(ε) ≡ Ωo\εωi

for all ε ∈ (0, ε0). When ε approaches zero, the set Ω(ε) degenerates to the punctured domain
Ωo\{0}. Clearly, the boundary ∂Ω(ε) of Ω(ε) consists of the two connected components ∂Ωo and
∂(εωi) = ε∂ωi. Therefore we can identify, for example, C0,α(∂Ω(ε)) with the product C0,α(∂Ωo) ×
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C0,α(ε∂ωi). Moreover, after a suitable rescaling, we can identify functions in C0,α(ε∂ωi) with
functions in C0,α(∂ωi). Having introduced the geometric aspects of our problem, we need to define
the boundary data. To do this, we fix two functions

go ∈ C0,α(∂Ωo) and gi ∈ C0,α(∂ωi).

Then we take a family {Fε}ε∈]0,ε0[ of functions from R to R and two functions δ(·) and ρ(·) from
(0, ε0) to (0, +∞). As we shall see, the function go represents the Neumann datum on the exterior
boundary ∂Ωo. The family of functions {Fε}ε∈]0,ε0[ will allow us to define the nonlinear Robin
condition on ε∂ωi, and δ(ε) will be the coefficient of a function of the Dirichlet trace in the Robin
condition. We will consider a non-homogeneous Robin condition, and thus the corresponding
datum will be gi(·/ε)/ρ(ε). Next, for each ε ∈ (0, ε0), we want to consider a nonlinear boundary
value problem for the Laplace operator. Namely, we consider a Neumann condition on ∂Ωo and
a nonlinear Robin condition on ε∂ωi. Thus, for each ε ∈ (0, ε0) we consider the following problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) = 0 ∀ x ∈ Ω(ε),
∂

∂νΩo
u(x) = go(x) ∀ x ∈ ∂Ωo,

∂

∂νεωi
u(x) = δ(ε)Fε(u(x)) + gi(x/ε)

ρ(ε)
∀ x ∈ ε∂ωi,

(1.3)

where νΩo and νεωi denote the outward unit normals to ∂Ωo and to ∂(εωi), respectively. Our aim is
to analyse the behaviour of the solutions to problem (1.3) as ε → 0. As we have already mentioned,
when ε tends to 0 the hole εωi degenerates into the origin 0. Moreover, if δ(ε) tends to 0 as ε →
0, the Robin condition may degenerate into a Neumann condition. Furthermore, we will also
allow the term ρ(ε) to tend to 0, which may generate a further singularity. An aspect we wish to
highlight in the present article is how all these singularities interact together. Our main results
are represented by theorems 4.4 and 4.6, which describe in detail the asymptotic behaviour of the
solutions as ε → 0, and theorem 4.7, which concerns the behaviour of the energy integrals of the
solutions. These results highlight the interactions of different scales. Moreover, as we will see, it
will be crucial to assume that the quantities εδ(ε) and εn−1/ρ(ε) have limits as ε → 0. Incidentally,
we observe that interactions of scales are well known to possibly cause strange phenomena in the
limiting behaviour of solutions. As an example, we mention the celebrated works of Cioranescu
and Murat [39,40] and of Marčenko and Khruslov [41], as well as the more recent articles of Arrieta
and Lamberti [42], Arrieta et al. [43] and Ferraresso and Lamberti [44]. We also mention the work
of Bonnetier et al. [45] concerning small perturbations in the type of boundary conditions and
of Felli et al. [46,47] on disappearing Neumann or Dirichlet regions in mixed eigenvalue problems.

We observe that in the present article, the boundary of the hole depends on ε simply through a
dilation. However, in the literature one can find examples where the geometry changes in a more
drastic way, as in the case of oscillating boundaries (see e.g. [42–44]). On the other hand, one
may also consider the case where the geometry is fixed and the boundary condition is changing,
as in [7].

This article is organized as follows. In §2, we analyse a toy problem in an annular domain. In
§3, we transform problem (1.3) into an equivalent system of integral equations. In §4, we analyse
this system and prove our main results on the asymptotic behaviour of a family of solutions and
the corresponding energy integrals.

2. A toy problem
As we have done in [7], we consider problem (1.3) in the annular domain

Ω(ε) ≡ Bn(0, 1)\Bn(0, ε) = Bn(0, 1)\εBn(0, 1),

i.e. we take Ωo ≡ Bn(0, 1) and ωi ≡ Bn(0, 1), where, for r > 0, the symbol Bn(0, r) denotes the open
ball in R

n of centre 0 and radius r. We will then set ε0 = 1, Fε(τ ) = τ for all τ ∈ R and all ε ∈ (0, ε0),
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go = a and gi = b, where a, b ∈ R. Moreover, we consider two functions δ, ρ : (0, 1) → (0, +∞). Then
for each ε ∈ (0, 1) we consider the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u(x) = 0 ∀ x ∈ Bn (0, 1)\Bn(0, ε),
∂

∂νBn(0,1)
u(x) = a ∀ x ∈ ∂Bn (0, 1),

∂

∂νBn(0,ε)
u(x) = δ(ε)u(x) + b

ρ(ε)
∀ x ∈ ∂Bn (0, ε).

(2.1)

As is well known, for each ε ∈ (0, 1) a solution uε ∈ C1,α(Ω(ε)) to problem (2.1) exists and is unique
(see [31], theorem 6.56). On the other hand, if instead we put ε = 0 in (2.1), the hole disappears
and we are led to consider the Neumann problem

⎧⎪⎨
⎪⎩

�u(x) = 0 ∀ x ∈ Bn(0, 1),
∂

∂νBn(0,1)
u(x) = a ∀ x ∈ ∂Bn(0, 1). (2.2)

As with any Neumann problem, the solvability of (2.2) is subject to compatibility conditions on
the Neumann datum on ∂Bn(0, 1). In this specific case of constant Neumann datum, problem (2.2)
has a solution if and only if a = 0. Obviously, if a = 0, then the Neumann problem (2.2) has a one-
dimensional space of solutions, which consists of the space of constant functions in Bn(0, 1); if
instead a 
= 0, problem (2.2) does not have any solution. On the other hand, if one considers the
behaviour of the unique solution uε of problem (2.1), the earlier remark clearly implies that in
general uε cannot converge to a solution of (2.2) as ε → 0 if the compatibility condition a = 0 does
not hold. Also, even if a = 0, we shall see that the solutions may diverge as ε → 0, depending
on the behaviour of the functions δ(ε) and ρ(ε) for ε close to 0. Moreover, one would like to
understand how the behaviour of δ(ε) and ρ(ε) affects the asymptotic behaviour of uε and whether
there is a ‘memory’ of the Robin condition. In the specific case of our annular domain and constant
data, we can construct explicitly the solution uε . Then we try to understand the behaviour of uε

as ε → 0. To construct explicitly uε , we search for a solution of (2.1) in the form

uε(x) ≡ Aε
1

(2 − n)|x|n−2 + Bε ∀ x ∈ Ω(ε),

with Aε and Bε chosen so that the boundary conditions of problem (2.1) are satisfied. By a
straightforward computation, we must have

uε(x) ≡ a
1

(2 − n)|x|n−2 + 1
δ(ε)

(
a

εn−1 − b
ρ(ε)

)
+ a

(n − 2)εn−2 ∀ x ∈ Ω(ε). (2.3)

We now note that we can rewrite equation (2.3) as

uε(x) ≡ a
1

(2 − n)|x|n−2 + 1
δ(ε)εn−1

(
a − b

εn−1

ρ(ε)
+ a

(n − 2)
δ(ε)ε

)
∀ x ∈ Ω(ε). (2.4)

In particular, if d0 ≡ limε→0 εδ(ε) ∈ R, r0 ≡ limε→0 εn−1/ρ(ε) ∈ R and a − br0 + a d0/(n − 2) 
= 0,
then uε(x) is asymptotic to (a − br0 + ad0/(n − 2))/(εn−1δ(ε)) as ε tends to 0, when x is fixed
in Bn(0, 1)\{0}. In conclusion, under suitable assumptions on the behaviour of δ(ε) and ρ(ε)
as ε → 0, we see that the value of the solution uε at a fixed point x ∈ Bn(0, 1)\{0} behaves like
1/(εn−1δ(ε)) and there is some sort of interaction of scales influencing the limiting behaviour of
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the solution. Similarly, if one considers the energy integral of uε , a direct computation shows
that

∫
Ω(ε)

|∇uε(x)|2 dx =
∫
Ω(ε)

∣∣∣∣∇
(

a
1

(2 − n)|x|n−2

)∣∣∣∣2 dx =
∫
Ω(ε)

a2 1
|x|2n−2 dx

= a2sn

∫ 1

ε

1
rn−1 dr = a2 sn

(n − 2)
1

εn−2 (1 − εn−2), (2.5)

where the symbol sn denotes the (n − 1)-dimensional measure of ∂Bn(0, 1). In particular, if a 
= 0,
the energy integral of the solution

∫
Ω(ε) |∇uε(x)|2 dx behaves like 1/εn−2.

Our aim is to recover and understand such behaviour of the solution and of its energy integral
in a more general situation, for both the geometry and the boundary conditions. Indeed, we will
show that the main features discussed above can be identified in the general solution (compare
(2.4) with (4.14) and (2.5) with (4.17)). We emphasize that one can derive a uniform asymptotic
solution by the methods of [20,21,26]. In particular, one can identify the uniform limit far from
the hole as a first approximation. Then one can correct such a limit in order to improve the
approximation on rescaled sets and repeat the procedure in order to reduce the error. We will
show in remarks 4.2 and 4.5 how one can deduce the above considerations from the results of §4
(which can thus be seen as analogous formulas in more general settings).

3. An integral equation formulation of the boundary value problem
As in [7], to analyse problem (1.3) for ε close to 0, we exploit the so-called functional-analytic
approach (see [31]). This method is based on classical potential theory, which allows one to obtain
an integral equation formulation of (1.3). First we need to introduce some notation. We denote by
Sn the function from R

n\{0} to R defined by

Sn(x) ≡ 1
(2 − n)sn|x|n−2 ∀ x ∈ R

n\{0}.

Since n ≥ 3, as is well known, Sn is a fundamental solution of the Laplace operator. By means of the
fundamental solution Sn, we construct some integral operators (namely, single-layer potentials)
that we use to represent harmonic functions (and thus, in particular, the solutions of problem
(1.3)). So let Ω be a bounded open connected subset of R

n of class C1,α . If μ ∈ C0(∂Ω), we introduce
the single-layer potential by setting

v[∂Ω , μ](x) ≡
∫
∂Ω

Sn(x − y)μ(y) dσy ∀ x ∈ R
n,

where dσ denotes the area element of a manifold imbedded in R
n. It is well known that if

μ ∈ C0(∂Ω), then v[∂Ω , μ] is continuous in R
n. Moreover, if μ ∈ C0,α(∂Ω), then the function

v+[∂Ω , μ] ≡ v[∂Ω , μ]|Ω belongs to C1,α(Ω) and the function v−[∂Ω , μ] ≡ v[∂Ω , μ]|Rn\Ω belongs
to C1,α

loc (Rn\Ω). The normal derivative of the single-layer potential on ∂Ω , on the other hand,
exhibits a jump. To describe the jump, we set

W∗[∂Ω , μ](x) ≡
∫
∂Ω

νΩ (x) · ∇Sn(x − y)μ(y) dσy ∀ x ∈ ∂Ω ,

where νΩ denotes the outward unit normal to ∂Ω . If μ ∈ C0,α(∂Ω), the function W∗[∂Ω , μ] belongs
to C0,α(∂Ω), and we have

∂

∂νΩ
v±[∂Ω , μ] = ∓1

2
μ + W∗[∂Ω , μ] on ∂Ω .

As we shall see in lemma 3.1, to represent the functions on Ω(ε) which are harmonic and
satisfy the boundary conditions, we will exploit single-layer potentials having densities with zero
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integral mean on ∂Ωo plus constants. Therefore, we find it convenient to set

C0,α(∂Ωo)0 ≡
{

f ∈ C0,α(∂Ωo) :
∫
∂Ωo

f dσ = 0
}

.

More precisely, in lemma 3.1 we represent a function u ∈ C1,α(Ω(ε)) such that �u = 0 in Ω(ε) as
a single-layer potential plus the ε-dependent constant ξ/(δ(ε)εn−1). The reason for the choice of
such a constant is that in view of the results of §2, we expect the presence of a constant behaving
like 1/(δ(ε)εn−1) as ε → 0 in the representation formula for the solutions of (1.3). The proof of
lemma 3.1 can be deduced from classical potential theory (cf. Folland [48], ch. 3, and Dalla Riva
et al. [31], proof of proposition 6.49).

Lemma 3.1. Let ε ∈ (0, ε0). Let u ∈ C1,α(Ω(ε)) be such that �u = 0 in Ω(ε). Then there exists a unique
triple (μo, μi, ξ ) ∈ C0,α(∂Ωo)0 × C0,α(∂ωi) × R such that

u(x) =
∫
∂Ωo

Sn(x − y)μo(y) dσy +
∫
∂ωi

Sn(x − εs)μi(s) dσs + ξ

δ(ε)εn−1 ∀ x ∈ Ω(ε).

By exploiting lemma 3.1, we can establish a correspondence between the solutions of problem
(1.3) and those of a (nonlinear) system of integral equations.

Proposition 3.2. Let ε ∈ (0, ε0). Then the map from the set of triples (μo, μi, ξ ) ∈ C0,α(∂Ωo)0 ×
C0,α(∂ωi) × R such that

− 1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy

+
∫
∂ωi

νΩo (x) · ∇Sn(x − εs)μi(s) dσs = go(x) ∀ x ∈ ∂Ωo (3.1)

and

1
2
μi(t) + εn−1

∫
∂Ωo

νωi (t) · ∇Sn(εt − y)μo(y) dσy +
∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

= εn−1δ(ε)Fε

( ∫
∂Ωo

Sn(εt − y)μo(y) dσy + 1
εn−2

∫
∂ωi

Sn(t − s)μi(s) dσs

+ ξ

δ(ε)εn−1

)
+ gi(t)

εn−1

ρ(ε)
∀ t ∈ ∂ωi (3.2)

to the set of functions u ∈ C1,α(Ω(ε)) that solve problem (1.3), which takes a triple (μo, μi, ξ ) to
∫
∂Ωo

Sn(x − y)μo(y) dσy +
∫
∂ωi

Sn(x − εs)μi(s) dσs + ξ

δ(ε)εn−1 ∀ x ∈ Ω(ε), (3.3)

is a bijection.

Proof. If (μo, μi, ξ ) ∈ C0,α(∂Ωo)0 × C0,α(∂ωi) × R, then we know that the function in (3.3) belongs
to C1,α(Ω(ε)) and is harmonic in Ω(ε). Moreover, if (μo, μi, ξ ) satisfies system (3.1)–(3.2), then the
jump formula for the normal derivative of the single-layer potential implies the validity of the
boundary condition in problem (1.3). Hence, the function in (3.3) solves problem (1.3).

Conversely, if u ∈ C1,α(Ω(ε)) satisfies (1.3), then lemma 3.1 for harmonic functions ensures that
there exists a unique triple (μo, μi, ξ ) ∈ C0,α(∂Ωo)0 × C0,α(∂ωi) × R such that

u(x) =
∫
∂Ωo

Sn(x − y)μo(y) dσy +
∫
∂ωi

Sn(x − εs)μi(s) dσs + ξ

δ(ε)εn−1 ∀ x ∈ Ω(ε).

Then the formula for the normal derivative of a single-layer potential and the boundary
conditions in (1.3) imply that (3.1) and (3.2) are satisfied. Hence, the map of the statement is a
bijection. �
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Now that the correspondence between the solutions of boundary value problem (1.3) and those
of the system of integral equations (3.1)–(3.2) is established, we wish to study the behaviour of
the solutions to system (3.1)–(3.2) as ε → 0. Note that if ε ∈ (0, ε0), we can write

εn−1δ(ε)Fε

( ∫
∂Ωo

Sn(εt − y)μo(y) dσy + 1
εn−2

∫
∂ωi

Sn(t − s)μi(s) dσs + ξ

δ(ε)εn−1

)

= εn−1δ(ε)Fε

(
1

εn−1δ(ε)

(
εn−1δ(ε)

∫
∂Ωo

Sn(εt − y)μo(y) dσy

+ εδ(ε)
∫
∂ωi

Sn(t − s)μi(s) dσs + ξ

))
∀ t ∈ ∂ωi.

We now wish to analyse equation (3.2) for ε small. As in [7], we need to make a structural
assumption on the nonlinearity, i.e. on the family of functions R � τ �→ εn−1δ(ε)Fε(τ/(εn−1δ(ε)))
for ε close to 0. So we assume the following:

there exist ε1 ∈ (0, ε0), m ∈ N, a real analytic function F̃ : R
m+1 → R

and a function η : (0, ε1) → R
m such that η0 = lim

ε→0
η(ε) ∈ R

m and

εn−1δ(ε)Fε

(
1

εn−1δ(ε)
τ

)
= F̃(τ , η(ε)) for all (τ , ε) ∈ R × (0, ε1).

(3.4)

As a simple example, one can take as Fε a small polynomial perturbation of the identity. For
example,

Fε(z) = z + h(ε)zm,

where m ∈ N\{0, 1} and h is a certain function from (0, ε1) to R. Then we have

εn−1δ(ε)Fε

(
1

εn−1δ(ε)
τ

)
= τ + h(ε)

(εn−1δ(ε))m−1 τm.

If

lim
ε→0

h(ε)
(εn−1δ(ε))m−1 ∈ R,

then one has

η(ε) = h(ε)
(εn−1δ(ε))m−1 and F̃(τ , η(ε)) = τ + η(ε)τm = τ + h(ε)

(εn−1δ(ε))m−1 τm.

On the other hand, one could also construct Fε starting from a given F̃ and η(ε). This would allow
one to generate more involved nonlinearities (if perhaps less natural).

Here, we observe that different structures of the nonlinearity may be tackled by modifying our
approach. Although the type of nonlinearity we consider is quite specific, we emphasize that our
techniques are not confined to linear boundary conditions and apply also in some nonlinear cases.
At the same time, we are also interested in the linear case, since the degeneracy appears there as
well. Therefore, for us, it is enough to include some (nonlinear) perturbations of the linear case.

4. Analytic representation formulas for the solution of the boundary value
problem

We observe that under the additional assumption (3.4), equations (3.1) and (3.2) take the forms

− 1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy

+
∫
∂ωi

νΩo (x) · ∇Sn(x − εs)μi(s) dσs = go(x) ∀ x ∈ ∂Ωo (4.1)
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and

1
2
μi(t) + εn−1

∫
∂Ωo

νωi (t) · ∇Sn(εt − y)μo(y) dσy +
∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

= F̃

(
εn−1δ(ε)

∫
∂Ωo

Sn(εt − y)μo(y) dσy + εδ(ε)
∫
∂ωi

Sn(t − s)μi(s) dσs + ξ , η(ε)

)

+ gi(t)
εn−1

ρ(ε)
∀ t ∈ ∂ωi, (4.2)

for all ε ∈ (0, ε1). We would like to pass to the limit as ε → 0 in equations (4.1) and (4.2). However,
to do so, we need to know the asymptotic behaviour for ε close to 0 of the quantities εδ(ε) and
εn−1ρ(ε), which appear in (4.2). Accordingly, we now assume that

d0 ≡ lim
ε→0

εδ(ε) ∈ R and r0 ≡ lim
ε→0

εn−1

ρ(ε)
∈ R. (4.3)

Motivated by (4.1) and (4.2), we replace the quantities εδ(ε), η(ε) and εn−1/ρ(ε) by the auxiliary
variables γ1, γ2 and γ3, respectively, and we now introduce the operator Λn ≡ (Λo

n, Λi
n) from

(−ε1, ε1) × R
m+2 × C0,α(∂Ωo)0 × C0,α(∂ωi) × R to C0,α(∂Ωo) × C0,α(∂ωi) defined by

Λo
n[ε, γ1, γ2, γ3, μo, μi, ξ ](x) (4.1)

≡ −1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy

+
∫
∂ωi

νΩo (x) · ∇Sn(x − εs)μi(s) dσs − go(x) ∀ x ∈ ∂Ωo (4.4)

and

Λi
n[ε, γ1, γ2, γ3, μo, μi, ξ ](t) (4.2)

≡ 1
2
μi(t) + εn−1

∫
∂Ωo

νωi (t) · ∇Sn(εt − y)μo(y) dσy +
∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

− F̃

(
εn−2γ1

∫
∂Ωo

Sn(εt − y)μo(y) dσy + γ1

∫
∂ωi

Sn(t − s)μi(s) dσs + ξ , γ2

)

− gi(t)γ3 ∀ t ∈ ∂ωi (4.5)

for all (ε, γ1, γ2, γ3, μo, μi, ξ ) ∈ (−ε1, ε1) × R
m+2 × C0,α(∂Ωo)0 × C0,α(∂ωi) × R.

Then, if ε ∈ (0, ε1), in view of definitions (4.4) and (4.5), the system of equations

Λo
n

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)
, μo, μi, ξ

]
(x) = 0 ∀ x ∈ ∂Ωo (4.6)

and

Λi
n

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)
, μo, μi, ξ

]
(t) = 0 ∀ t ∈ ∂ωi (4.7)

is equivalent to the system (4.1)–(4.2). Then if we let ε → 0 in (4.6) and (4.7), we obtain

− 1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy

+ νΩo (x) · ∇Sn(x)
∫
∂ωi

μi(s) dσs = go(x) ∀ x ∈ ∂Ωo (4.8)
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and

1
2
μi(t) +

∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

= F̃

(
d0

∫
∂ωi

Sn(t − s)μi(s) dσs + ξ , η0

)
+ gi(t)r0 ∀ t ∈ ∂ωi. (4.9)

Now we would like to prove for ε ∈ (0, ε1) the existence of solutions (μo, μi, ξ ) to the system
(4.6)–(4.7) around a solution of the limiting system (4.8)–(4.9). Therefore, we now further assume
that

the system (4.8)−(4.9) in the unknown (μo, μi, ξ ) admits

a solution (μ̃o, μ̃i, ξ̃ ) in C0,α(∂Ωo)0 × C0,α(∂ωi) × R.
(4.10)

We do not discuss here conditions on F̃ ensuring the existence of a solution of system (4.8)–(4.9).
However, they can be obtained by arguing as in [32], appendix C, or in [7].

We note that if (μ̃o, μ̃i, ξ̃ ) is a solution of the system (4.8)–(4.9), then by integrating (4.8) on ∂Ωo

and using the equalities
∫
∂Ωo

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μ̃o(y) dσy dσx = 1
2

∫
∂Ωo

μ̃o(y) dσy

(cf. [31], lemma 6.11) and
∫

∂Ωo νΩo (x) · ∇Sn(x) dσx = 1 (cf. [31], corollary 4.6), we obtain∫
∂ωi μ̃

i(s) dσs = ∫
∂Ωo go(x) dσx. In the following proposition, we investigate the system of integral

equations (4.1)–(4.2) by applying the implicit function theorem to Λn under suitable assumptions
on ∂τ F̃(d0

∫
∂ωi Sn(t − s)μ̃i(s) dσs + ξ̃ , η0), where ∂τ F̃ denotes the partial derivative with respect to

the variable τ of the function (τ , η) �→ F̃(τ , η).

Proposition 4.1. Let assumptions (3.4) and (4.3) hold. Let (μ̃o, μ̃i, ξ̃ ) be as in (4.10). Assume that

∫
∂ωi

∂τ F̃

(
d0

∫
∂ωi

Sn(t − s)μ̃i(s) dσs + ξ̃ , η0

)
dσt 
= 0

and, if d0 
= 0, also

∂τ F̃

(
d0

∫
∂ωi

Sn(t − s)μ̃i(s) dσs + ξ̃ , η0

)
≥ 0 ∀ t ∈ ∂ωi.

Then there exist ε2 ∈ (0, ε1), an open neighbourhood U of (d0, η0, r0) in R
m+2, an open neighbourhood V of

(μ̃o, μ̃i, ξ̃ ) in C0,α(∂Ωo)0 × C0,α(∂ωi) × R and a real analytic map (Mo, Mi, Ξ ) from (−ε2, ε2) × U to V
such that (

εδ(ε), η(ε),
εn−1

ρ(ε)

)
∈ U ∀ ε ∈ (0, ε2)

and such that the set of zeros of Λn in (−ε2, ε2) × U × V coincides with the graph of (Mo, Mi, Ξ ). In
particular, (Mo[0, d0, η0, r0], Mi[0, d0, η0, r0], Ξ [0, d0, η0, r0]) = (μ̃o, μ̃i, ξ̃ ).

Proof. From standard results of classical potential theory (see e.g. Dalla Riva et al. [31], Miranda
[49] and Lanza de Cristoforis and Rossi [50]), real analyticity results for integral operators with
real analytic kernel (see Lanza de Cristoforis and Musolino [51]), assumption (3.4) and real
analyticity results for the composition operator (Böhme and Tomi [52], p. 10, Henry [53] and
Valent [54], theorem 5.2), we deduce that Λn is a real analytic operator from (−ε1, ε1) × R

m+2 ×
C0,α(∂Ωo)0 × C0,α(∂ωi) × R to C0,α(∂Ωo) × C0,α(∂ωi). By standard calculus in Banach spaces, we
verify that the partial differential ∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ] of Λn at (0, d0, η0, r0, μ̃o, μ̃i, ξ̃ )
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with respect to the variable (μo, μi, ξ ) is given by

∂(μo,μi,ξ )Λ
o
n[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ](μo, μi, ξ )(x)

≡ −1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy + νΩo (x) · ∇Sn(x)
∫
∂ωi

μi(s) dσs ∀ x ∈ ∂Ωo

and

∂(μo,μi,ξ )Λ
i
n[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ](μo, μi, ξ )(t)

≡ 1
2
μi(t) +

∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

− ∂τ F̃

(
d0

∫
∂ωi

Sn(t − s)μ̃i(s) dσs + ξ̃ , η0

)(
d0

∫
∂ωi

Sn(t − s)μi(s) dσs + ξ

)
∀ t ∈ ∂ωi

for all (μo, μi, ξ ) ∈ C0,α(∂Ωo)0 × C0,α(∂ωi) × R. Now we want to show that the partial differential
∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ] is a homeomorphism from C0,α(∂Ωo)0 × C0,α(∂ωi) × R onto
C0,α(∂Ωo) × C0,α(∂ωi). Since ∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ] is the sum of an invertible operator
and a compact operator, one immediately verifies that it is a Fredholm operator of index 0.
Therefore, to prove that the operator ∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ] is a homeomorphism, it
suffices to prove that it is injective. So let us assume that

∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ](μo, μi, ξ ) = 0.

By integrating on the ∂Ωo equality

∂(μo,μi,ξ )Λ
o
n[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ](μo, μi, ξ )(x) = 0 ∀ x ∈ ∂Ωo

and using the equalities

∫
∂Ωo

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy dσx = 1
2

∫
∂Ωo

μo(y) dσy

(cf. [31], lemma 6.11) and
∫

∂Ωo νΩo (x) · ∇Sn(x) dσx = 1 (cf. [31], corollary 4.6), we obtain

∫
∂ωi

μi(s) dσs = 0. (4.11)

As a consequence,

−1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy = 0 ∀ x ∈ ∂Ωo,

and thus by [31], theorem 6.25, since
∫

∂Ωo μo dσ = 0 we have μo = 0. By (4.11) and the same
argument as in [33], proof of theorem 4.4, the equality

∂(μo,μi,ξ )Λ
i
n[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ](μo, μi, ξ )(t) = 0 ∀ t ∈ ∂ωi

implies that (μi, ξ ) = 0. In conclusion, we have shown that ∂(μo,μi,ξ )Λn[0, d0, η0, r0, μ̃o, μ̃i, ξ̃ ] is
injective and thus, being a Fredholm operator of index 0, also a homeomorphism. As a
consequence, we can apply the implicit function theorem for real analytic maps in Banach spaces
(cf. [55], theorem 15.3) and deduce that there exist ε2 ∈ (0, ε1), an open neighbourhood U of
(d0, η0, r0) in R

m+2, an open neighbourhood V of (μ̃o, μ̃i, ξ̃ ) in C0,α(∂Ωo)0 × C0,α(∂ωi) × R and a real
analytic map (Mo, Mi, Ξ ) from (−ε2, ε2) × U to V with (εδ(ε), η(ε), (εn−1/ρ(ε))) ∈ U for all ε ∈ (0, ε2)
such that the set of zeros of Λn in (−ε2, ε2) × U × V coincides with the graph of (Mo, Mi, Ξ ) and,
in particular, (Mo[0, d0, η0, r0], Mi[0, d0, η0, r0], Ξ [0, d0, η0, r0]) = (μ̃o, μ̃i, ξ̃ ). �
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Remark 4.2. If F is linear, system (4.8)–(4.9) simplifies to

− 1
2
μo(x) +

∫
∂Ωo

νΩo (x) · ∇Sn(x − y)μo(y) dσy

+ νΩo (x) · ∇Sn(x)
∫
∂ωi

μi(s) dσs = go(x) ∀ x ∈ ∂Ωo (4.12)

and

1
2
μi(t) +

∫
∂ωi

νωi (t) · ∇Sn(t − s)μi(s) dσs

= d0

∫
∂ωi

Sn(t − s)μi(s) dσs + ξ + gi(t)r0 ∀ t ∈ ∂ωi. (4.13)

Then, by arguing as in the proof of proposition 4.1, one verifies that system (4.12)–(4.13) in
the unknown (μo, μi, ξ ) admits a unique solution (μ̃o, μ̃i, ξ̃ ) in C0,α(∂Ωo)0 × C0,α(∂ωi) × R. By
integrating (4.12) and (4.13), we deduce that

1∫
∂ωi dσ

( ∫
∂Ωo

go dσ − d0

∫
∂ωi

∫
∂ωi

Sn(t − s)μ̃i(s) dσs dσt − r0

∫
∂ωi

gi dσ

)
= ξ̃ .

If we further assume that

Ωo = ωi = Bn(0, 1), go(x) = a ∀x ∈ ∂Bn(0, 1) and gi(t) = b ∀t ∈ ∂Bn(0, 1)

for some constants a, b ∈ R, then by the well-known identity
∫
∂Bn(0,1)

Sn(t − s) dσt = 1
2 − n

∀s ∈ ∂Bn(0, 1),

one obtains
1
sn

(
asn − d0

1
2 − n

asn − bsnr0

)
= ξ̃

and thus

ξ̃ = a − br0 + a
n − 2

d0.

Now that we have converted (1.3) into a system of integral equations for which we have
exhibited a real analytic family of solutions, we introduce a family of solutions to (1.3).

Definition 4.3. Let the assumptions of proposition 4.1 hold. Then we set

u(ε, x) =
∫
∂Ωo

Sn(x − y) Mo

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(y) dσy

+
∫
∂ωi

Sn(x − εs) Mi

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(s) dσs

+ Ξ [ε, εδ(ε), η(ε), (εn−1/ρ(ε))]
δ(ε)εn−1 ∀ x ∈ Ω(ε), ∀ε ∈ (0, ε2).

By propositions 3.2 and 4.1 and definition 4.3, we deduce that for each ε ∈ (0, ε2) the function
u(ε, ·) ∈ C1,α(Ω(ε)) is a solution to problem (1.3). In the following theorems, we exploit the
analyticity result of proposition 4.1 to prove representation formulas for u(ε, ·) and for its energy
integral in terms of real analytic maps. We start with the following theorem, which considers the
restriction of the solution u(ε, ·) to a set that is ‘far’ from the hole.

Theorem 4.4. Let the assumptions of proposition 4.1 hold. Let ΩM be a bounded open subset of Ωo such
that 0 
∈ ΩM. Then there exist εM ∈ (0, ε2) and a real analytic map UM from (−εM, εM) × U to C1,α(ΩM)
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such that ΩM ⊆ Ω(ε) for all ε ∈ (0, εM) and

u(ε, x) = UM

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(x) + Ξ [ε, εδ(ε), η(ε), (εn−1/ρ(ε))]

δ(ε)εn−1 ∀ x ∈ ΩM (4.14)

for all ε ∈ (0, εM). Moreover, if we set

ũM(x) ≡
∫
∂Ωo

Sn(x − y)μ̃o(y) dσy ∀ x ∈ Ωo,

we have that UM[0, d0, η0, r0] = ũM|ΩM
+ Sn|ΩM

∫
∂Ωo go dσ , and ũM solves the Neumann problem⎧⎪⎨

⎪⎩
�u(x) = 0 ∀ x ∈ Ωo,

∂

∂νΩo
u(x) = go(x) − ∂

∂νΩo
Sn(x)

∫
∂Ωo

go dσ ∀ x ∈ ∂Ωo.
(4.15)

Proof. Taking εM ∈ (0, ε2) small enough, we can assume that ΩM ∩ εωi = ∅ for all ε ∈ (−εM, εM).
In view of definition 4.3, it is natural to set

UM[ε, γ1, γ2, γ3](x) ≡
∫
∂Ωo

Sn(x − y)Mo[ε, γ1, γ2, γ3](y) dσy

+
∫
∂ωi

Sn(x − εs)Mi[ε, γ1, γ2, γ3](s) dσs ∀ x ∈ ΩM,

for all (ε, γ1, γ2, γ3) ∈ (−εM, εM) × U . By proposition 4.1 and real analyticity results for integral
operators with real analytic kernel (cf. [51]), we verify that UM is a real analytic map from
(−εM, εM) × U to C1,α(ΩM) and that equality (4.14) holds. By proposition 4.1, we also deduce
that UM[0, d0, η0, r0] = ũM|ΩM

+ Sn|ΩM

∫
∂Ωo go dσ and, by standard properties of the single-layer

potential (cf. [31], §4.4), that ũM is a solution of problem (4.15). The proof is complete. �

Remark 4.5. By proposition 4.1, remark 4.2 and theorem 4.4, if F is linear and

ξ̃ = 1∫
∂ωi dσ

( ∫
∂Ωo

go dσ − d0

∫
∂ωi

∫
∂ωi

Sn(t − s)μ̃i(s) dσs dσt − r0

∫
∂ωi

gi dσ

)

= 0,

we deduce that the value of the solution at a fixed point x ∈ Ωo\{0} is asymptotic to

1/(
∫

∂ωi dσ )
(∫

∂Ωo go dσ − d0
∫

∂ωi

∫
∂ωi Sn(t − s)μ̃i(s) dσs dσt − r0

∫
∂ωi gi dσ

)
δ(ε)εn−1 as ε → 0.

If we further assume that

Ωo = ωi = Bn(0, 1), go(x) = a ∀x ∈ ∂Bn(0, 1) and gi(t) = b ∀t ∈ ∂Bn(0, 1)

for some constants a, b ∈ R, then if

a − br0 + a
n − 2

d0 
= 0,

we deduce that the value of the solution at a fixed point x ∈ Bn(0, 1)\{0} is asymptotic to

a − br0 + a d0/(n − 2)
δ(ε)εn−1 as ε → 0.

Thus, we recover the result of §2 on the toy problem.

We now consider in theorem 4.6 the behaviour of the rescaled solution u(ε, εt).

Theorem 4.6. Let the assumptions of proposition 4.1 hold. Let Ωm be a bounded open subset of R
n\ωi.

Then there exist εm ∈ (0, ε2) and a real analytic map Um from (−εm, εm) × U to C1,α(Ωm) such that εΩm ⊆
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Ω(ε) for all ε ∈ (0, εm) and

u(ε, εt) = 1
εn−2 Um

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(t) + Ξ [ε, εδ(ε), η(ε), (εn−1/ρ(ε))]

δ(ε)εn−1 ∀ x ∈ Ωm

for all ε ∈ (0, εm). Moreover, if we set

ũm(t) ≡
∫
∂ωi

Sn(t − s)μ̃i(s) dσs ∀ t ∈ R
n\ωi,

we have that Um[0, d0, η0, r0] = ũm|Ωm
and ũm solves the (nonlinear) Robin problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u(t) = 0 ∀ t ∈ R
n\ωi,

∂

∂νωi
u(t) = F̃

(
d0u(t) + ξ̃ , η0

)
+ gi(t)r0 ∀ t ∈ ∂ωi,

limt→∞ u(t) = 0.

(4.16)

Proof. Taking εm ∈ (0, ε2) small enough, we can assume that εΩm ⊆ Ωo for all ε ∈ (−εm, εm). By
definition 4.3, we note that if ε ∈ (0, εm), then

u(ε, εt) =
∫
∂Ωo

Sn(εt − y)Mo

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(y) dσy

+
∫
∂ωi

Sn(εt − εs)Mi

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(s) dσs + Ξ [ε, εδ(ε), η(ε), (εn−1/ρ(ε))]

δ(ε)εn−1

= 1
εn−2

(
εn−2

∫
∂Ωo

Sn(εt − y)Mo

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(y) dσy

+
∫
∂ωi

Sn(t − s)Mi

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(s) dσs

)
+ Ξ [ε, εδ(ε), η(ε), (εn−1/ρ(ε))]

δ(ε)εn−1 ∀ t ∈ Ωm.

Accordingly, we set

Um[ε, γ1, γ2, γ3](t) ≡ εn−2
∫
∂Ωo

Sn(εt − y)Mo[ε, γ1, γ2, γ3](y) dσy

+
∫
∂ωi

Sn(t − s)Mi[ε, γ1, γ2, γ3](s) dσs ∀ t ∈ Ωm,

for all (ε, γ1, γ2, γ3) ∈ (−εm, εm) × U . By proposition 4.1 and real analyticity results for integral
operators with real analytic kernel (cf. [51]), we verify that Um is a real analytic map from
(−εm, εm) × U to C1,α(Ωm) and that equality (4.14) holds. By proposition 4.1, we also deduce that
Um[0, d0, η0, r0] = ũm|Ωm

and, by standard properties of the single-layer potential (cf. [31], §4.4),
that ũm is a solution of the (nonlinear) Robin problem (4.16). The proof is complete. �

Finally, we consider the energy integral
∫

Ω(ε) |∇u(ε, x)|2 dx when ε is close to 0.

Theorem 4.7. Let the assumptions of proposition 4.1 hold. Let ũm be as in theorem 4.6. Then there exist
εe ∈ (0, ε2) and a real analytic map E from (−εe, εe) × U to R such that

∫
Ω(ε)

|∇u(ε, x)|2 dx = 1
εn−2 E

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(4.17)

for all ε ∈ (0, εe). Moreover,

E[0, d0, η0, r0] =
∫
Rn\ωi

|∇ũm(t)|2 dt. (4.18)
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Proof. Let ε ∈ (0, ε1). By the divergence theorem, we have that∫
Ω(ε)

|∇u(ε, x)|2 dx =
∫
∂Ωo

u(ε, x)
∂

∂νΩo
u(ε, x) dσx −

∫
∂εωi

u(ε, x)
∂

∂νεωi
u(ε, x) dσx

=
∫
∂Ωo

u(ε, x)
∂

∂νΩo
u(ε, x) dσx − εn−1

∫
∂ωi

u(ε, εt)νωi (t) · ∇u(ε, εt) dσt.

Then, let UM and εM be as in theorem 4.4, with ΩM ≡ Ωo\Bn(0, rM) for some rM > 0 such that
Bn(0, rM) ⊆ Ωo. Then one verifies that if ε ∈ (0, εM),∫

∂Ωo
u(ε, x)

∂

∂νΩo
u(ε, x) dσx

=
∫
∂Ωo

UM

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(x)νΩo (x) · ∇UM

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(x) dσx.

Then, let Um and εm be as in theorem 4.6, with Ωm ≡ Bn(0, rm)\ωi for some rm > 0 such that
Bn(0, rm) ⊇ ωi. Then one verifies that if ε ∈ (0, εm),

εn−1
∫
∂ωi

u(ε, εt)νωi (t) · ∇u(ε, εt) dσt

= 1
εn−2

∫
∂ωi

Um

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(t)νωi (t) · ∇Um

[
ε, εδ(ε), η(ε),

εn−1

ρ(ε)

]
(t) dσt.

As a consequence, we set εe ≡ min{εm, εM} and

E[ε, γ1, γ2, γ3] ≡ εn−2
∫
∂Ωo

UM[ε, γ1, γ2, γ3](x)νΩo (x) · ∇UM[ε, γ1, γ2, γ3](x) dσx

−
∫
∂ωi

Um[ε, γ1, γ2, γ3](t)νωi (t) · ∇Um[ε, γ1, γ2, γ3](t) dσt

for all (ε, γ1, γ2, γ3) ∈ (−εe, εe) × U . We verify that E is a real analytic map from (−εe, εe) × U to R

and that equality (4.17) holds. Moreover, by the behaviour at infinity of ũm and the divergence
theorem on exterior domains (cf. [31], §§3.4 and 4.2), we verify that

E[0, d0, η0, r0] = −
∫
∂ωi

ũm(t)νωi (t) · ∇ũm(t) dσt =
∫
Rn\ωi

|∇ũm(t)|2 dt,

and accordingly equality (4.18) holds. �

5. Conclusion
We have studied the asymptotic behaviour of solutions of a boundary value problem for the
Laplace equation in a perforated domain of R

n, n ≥ 3, with a (nonlinear) Robin boundary
condition which may degenerate into a Neumann condition on the boundary of a small hole
of size ε. Under suitable assumptions, for ε close to 0, the value of the solution at a fixed point
far from the origin behaves as 1/(δ(ε)εn−1), where δ(ε) is a coefficient of a nonlinear function
of the trace of the solution in the Robin boundary condition. We have also investigated the
behaviour of the energy integral of the solutions as ε tends to 0: the energy integral behaves as
1/εn−2 multiplied by the energy integral of a solution of an exterior nonlinear Robin problem. In
particular, if δ(ε) = εr, then to satisfy assumption (4.3) we need to have r ≥ −1, and we have that
the value of the solution at a fixed point behaves as 1/εn−1+r, whereas the energy integral behaves
as 1/εn−2 (and such behaviour is not affected by the specific power δ(ε) = εr). As we have seen,
our study is confined to the case of dimension n ≥ 3. We plan to investigate the two-dimensional
case (which requires a different analysis due to the logarithmic behaviour of the fundamental
solution) in a forthcoming paper. Moreover, together with the study of the planar case, we wish
to include numerical examples.

Data accessibility. This article has no additional data.
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