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Abstract
Virtual assembly has become a popular trend in recent years and is used for various purposes, including selective assembly 
and adaptive tooling. Monte Carlo approaches based on Finite Element Method (FEM) simulations are commonly used 
for production applications. However, during the design phase, when testing different configurations and design options, a 
variational method is more suitable. This paper aims to test different implementations of the Method of System Moments 
applied to the second-order tolerance analysis method when actual distributions, which are non-centered and non-normal, 
are used as input for the simulation. The study reveals that the simulation results can significantly vary depending on the 
simulation settings in some cases. As a result, a series of best practices are highlighted to improve the accuracy and reliability 
of the simulation outcomes.

Keywords Virtual assembly · Assembly simulation · Computer-aided tolerancing · Tolerance stack-up

1 Introduction

The need for a high volume of interchangeable parts in the 
modern industrial context first required the formalization 
of nominal dimensions and tolerances [1, 2]. Globalization 
and offshore outsourcing added complexity to tolerancing 
management, considering factors such as delivery time and 
assessing the quality of inbound batches. Alternatively, 
information, such as measuring reports, can be shared in 
real time by the supplier and used as a starting point for 
an assembly simulation. If the measured data is shared in 
its raw format (e.g., cloud point), it may be used to gen-
erate a “skin model” or non-ideal surface model [3, 4] of 

the manufactured parts, which can be used for the assembly 
simulation [4–7]. Statistical metrics could be shared instead 
(e.g., mean, standard deviation, cp, and cpk), and in this 
case, the smallest tolerance zone that fits the measured data, 
natural tolerance, could be defined. These fitted tolerance 
zones may be used for stack-up tolerance analysis [8, 9].

To perform tolerance analysis, many different models can 
be found in the literature. The vector-loop approach uses a 
kinematic model to represent the product variability [10, 
11]. The variational approach represents the deviations from 
nominal and assembly constraints using a set of mathemati-
cal equations [12]. The matrix approach uses a matrix to 
describe the small displacement of a feature in its tolerance 
zone or the gaps between parts [13]. An approach based on 
the Jacobian uses virtual joints associated with functional 
elements to simulate small displacements in terms of trans-
lations and rotations around a point of interest. Functional 
elements are collected in pairs creating a kinematic chain, 
both internal pairs, to describe part variation, and kinematic 
pairs, describing the link between parts in contact, are pos-
sible [14, 15]. The torsor approach assumes that the feature 
deviation within its tolerance zone can be described using 
small linear and angular dispersions that are described using 
the small displacement torsor [16, 17]. The approach based 
on Jacobian is used in conjunction with the torsor approach 
in the unified Jacobian-torsor model, the first one is used for 
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tolerance propagation, and the second is used to describe 
features variability [18]. The use of Tolerance-Map®, or 
T-Map®, to describe the multiple degrees of freedom con-
trolled by each tolerance zone brings an approach that allows 
deriving stack-up equations: the Minkowski sum is used to 
combine different T-Maps to find the result on a target fea-
ture [19].

Based on these models, different commercial CAT 
(computer-aided tolerancing) software solutions were 
developed, e.g., 3DCS by Dimensional Control Systems®, 
CETOL 6 sigma by Sigmetrix, and VisVSA by Siemens®.

In the context of the vector-loop model, different methods 
for solving non-linear tolerance analysis are possible, such 
as the linearized method, system moments, quadrature, reli-
ability index, Taguchi method, and Monte Carlo simulation. 
A review of these methods can be found in Kenneth and 
Spencer [11].

Gao et al. [20] compared the DLM (direct linearized 
method), a generalization of the vector-loop model, and 
Monte Carlo Simulation, finding that the DLM is accurate 
in determining the assembly variations, but it is not accu-
rate in predicting assembly rejects when highly non-linear 
constraints are in place, as mean shifts and skewed output 
distribution result from non-linearities. The SOTA (second-
order tolerance analysis) method was developed to combine 
the advantages of the Monte Carlo method with the com-
putation speed associated with the DLM. The SOTA uses 
the Method of System Moments (MSM) [21–23] to link the 
output statistical moments, and both first- and second-order 
models were developed. It proved to meet the expectation 
with a rejection estimation comparable to the Monte Carlo 
using  106 samples with a computational effort five orders of 
magnitude less [24].

The benefits of a second-order model for tolerance analy-
sis in the design phase were already discussed in the lit-
erature, as it can simulate highly non-linear assembly func-
tions with accuracy comparable to the ones obtained with 
the Monte Carlo simulation [24].

When highly non-normal input (i.e., non-normal distri-
butions), such as the ones that may result from actual pro-
duction batches, the behavior of the variational method (as 
the SOTA method) is not documented. The Monte Carlo 
simulation still represents an approach that can simulate 
such conditions by discretizing all the distributions into a 
finite number of samples that are combined by sampling the 
output distribution. A large number of samples are required 
to guarantee accuracy, resulting in high computational 
time. For this reason, the use of a variational method may 
be convenient.

The MSM, as presented in [23], allows two variations: a 
linear and a second-order approach, depending on the num-
ber of terms included in the Taylor series that approximate 
the assembly function. Another key aspect that needs to be 

considered is the expansion pole for the series, which can be 
chosen in different positions: nominal, tolerance midpoint, 
and input distribution mean.

This paper aims to compare different settings for MSM 
implemented in the SOTA method for statistical assembly 
simulation and/or partial assembly simulation, e.g., virtual 
assembly with parts including “as-designed” tolerances and 
others with “as-produced” natural tolerances. The partial 
assembly simulation represents a formal methodology to 
quantify the rejection rate when a batch is accepted by dero-
gation. In the context of this work on virtual assembly simu-
lation, reference is made to the tolerance stack-up, which 
allows the estimation of geometric variations in the final 
assembly. This estimation is based on the allowable varia-
tions assigned to each part’s functional features (tolerances).

2  Method of System Moments

2.1  Linear model limits

The scaled statistical moments of the output distribution 
using a linear model are found with Eqs. (1), (2), (3), and 
(4).

ui is the value that the output ( Ui ) assumes when all the 
input variables xj are set to the values where the sensitivities 
are quantified (expansion pole).

The sensitivities of the output ( Ui ) with respect to the 
input variable ( xj ) are represented by

�2j is the excess kurtosis ( �2j = �2j − 3 ) that represents the 
difference in kurtosis between the given distribution and a 
normal one. All the steps to get to the last set of equations 
are not displayed for the sake of brevity (Appendix).
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From Eq. (1), the mean of the output distribution depends 
only on the expansion point chosen for the Taylor series. 
From Fig. 1, it is possible to see that the mean value of the 
output depends on the shape of the functional equation that 
remaps the input distribution. Therefore, it can be assumed 
that both the functional equation derivatives and the input 
distribution parameters influence the mean of the output.

From Eq.  (2), the variance of the output depends on 
the slope of the functional equation and the variance of 
the input. At the same time, it is well known that equa-
tion �2(Ui) = E(Ui

2) −
[

E(Ui)
]2

= E(Ui
2) is always valid, 

being one of the possible definitions given to the variance. 
Since we have already discussed that the value of the mean 
depends on the full shape of the functional equation and the 
input distribution shape, it can be derived that the variance 
depends on these parameters too (higher-order derivatives of 
the functional equation and higher statistical moments) being 
the expected value for the square of the output distribution.

From Eq. (3), it is possible to see that the skewness of 
the output distribution depends only on the skewness of the 
distribution of the inputs: if the skewness of all the input dis-
tributions is null, the skewness of the output distribution is 
automatically null. This is proven wrong by looking at Fig. 1 
in which it can be seen that in the case of a non-linear func-
tional equation, the output distribution is asymmetric even if 
the input is normal. It is possible to state that the skewness 
of the output distribution is a function of the higher-order 
derivatives of the functional equation of the system.

From Eq. (4), it is possible to see that the output statistical 
distribution departs from normality ( �2 = 3 ) only if the input 
distributions are non-normal. In other words, it can be said 
that the excess kurtosis depends only on the excess kurtosis 
of the input variables. It is not possible to arrive at a proper 
conclusion from Fig. 1, since it is not possible to quantify 
the kurtosis for the output distribution that is displayed in 

the figure. A complete study on second-order equations is 
needed to determine which parameters the kurtosis depends 
on.

2.2  Second‑order model contributions

Using a second-order model equations from (1) to (4) 
becomes really complex [21–23]. The full second-order 
model, if the first four output’s statistical moments are 
desired, requires knowing the first eight statistical moments 
of the input distributions [23] as follows.

The scaled statistical moments of the output distribution 
are a function of the latter, but it is not possible to deter-
mine if they are also dependent on all the statistical moments 
involved in the E(Ui

n) definitions. It cannot be excluded that 
the contributions of higher statistical moments compensate 
each other.

The following considerations will be based on what is 
possible to graphically determine from Fig. 1 for a single-
input/single-output system.

By looking at Fig. 1, the shape of the statistical distribu-
tion stretches if it is mediated by a second-order functional 
equation: the model depends on the value of the functional 
equation while the mean of the output shifts from it. The 
deformation of the statistical distribution will be greater if 
the input distribution is more spread: the shift of the mean 
from the mode depends both on the second-order derivatives 
and the standard deviation of the input variables.

The effect of the second-order derivatives stretches the 
bell toward the positive direction and compresses it toward 
the negative direction. Therefore, it cannot be detected a 
clear direct influence on the output standard deviation by 
the second-order derivatives. At the same time, it can be 
assumed that the standard deviation depends both on the 
skewness and kurtosis of the input distribution: the input dis-
tribution statistical moments can accentuate or mitigate the 
deformation impressed by the functional equation second-
order derivatives. For example, if the input distribution in 
Fig. 1 had a negative skewness, it means that the probability 
on the area that extends the output probability toward the 
positive direction decreases with the effect of decreasing the 
spread of the output distribution.
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Fig. 1  Input and output probability distribution for a single-input/
single-output system, comparison among actual non-linear assembly 
function, linear approximation, and a quadratic approximation
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The skewness depends on the second-order derivative 
of the functional equation and the standard deviation since 
they deform the shape of the distribution. It is also pos-
sible to assume that the asymmetry of the output distribu-
tion depends on the skewness and kurtosis interaction with 
second-order derivatives since it was already discussed that 
they can increase or decrease the deformation of the output 
distribution. There is no graphical way to determine in which 
way the 5th or 6th statistical moments affect the distribution 
shape since there is no graphical interpretation for them.

For the kurtosis, it is possible to repeat the same consid-
erations made for the skewness.

3  Case study

Among commercial software, CETOL 6 sigma implements 
the SOTA method. One of the options of the software is 
the possibility to custom set different statistical distribu-
tions as input. Three different statistical distributions are 
supported: the uniform, the Gaussian (a.k.a. normal), and 
the SMLambda (Standard Moment Lambda) distributions 
[25]. While the normal and the uniform distributions are 
widely known, the SMLambda distribution is defined by 
four values: mean ( x or µ), standard deviation (σ), skew-
ness ( �1 ), and kurtosis ( �2 ). This distribution describes non-
symmetrical and non-normal distributions (see Fig. 2), but 
it comes with some limitations on skewness and kurtosis 
(Eq. (5)) [25]. The general expression for this distribution 
can be found in Ramberg et al. [26].

The software allows for both first-order and second-order 
tolerance analysis. However, the more detailed description 
provided by the second-order analysis comes with a higher 
computational cost. For a problem with n variables, more n2 
values need to be computed.

Both types of analysis allow the software to choose the 
central point of the expansion for the Taylor series: CAD 
nominal values, distribution mean, or tolerance midpoint. 
When tolerances are symmetrical with respect to the nomi-
nal values and the statistical distributions are symmetrical, 
these three points coincide [25].

Once measurements have been performed and the statisti-
cal moments are evaluated, it is possible to find values out-
side the limit given by the SMLambda distribution (Eq. (5)). 
However, strategies to find the best fitting SMLambda dis-
tribution to fit experimental data go beyond the aims of this 
work.

3.1  The assembly

The “Seat Latch” assembly, which is one of the training 
models in CETOL6sigma, was chosen as a case study. Real 
statistics were simulated for the “Side plate” part.

A virtual batch of 16 geometries was created using CAE 
process simulation: the nominal geometry was imported 
into MAGMASOFT, and the results for the metal casting 
simulation, obtained by changing process parameters, were 
exported as.stl files. The number of samples was chosen to 
obtain a discrete distribution with enough samples for fit-
ting with a continuous distribution, as illustrated in Fig. 4. 
In an actual industrial application, as many samples as pos-
sible should be used to obtain a representative continuous 
distribution. Since the SML distribution is based on distri-
bution moments and the higher moments are increasingly 
influenced by outliers, using too few samples can result in 
an overestimation of kurtosis and skewness in particular. For 
the sake of the case study, a simulated batch of 16 samples is 
considered a proper trade-off to obtain realistic non-normal 
distributions.

The samples with random deformations in size, shape, 
and orientation were inspected in GOM Inspect, where 
each feature’s real size (if applicable) and the deviations 
from nominal, in terms of translations and rotations, were 
exported (Fig.  3). These data were then converted into 
deviations expressed in the same reference system used in 
CETOL6sigma. For each dimensional variable, the first four 
scaled statistical moments about the mean were computed.

When the skewness and kurtosis values were out of 
acceptable limits, the closest admissible values were used 
to fit the SMLambda distribution to the real data.

(5)
−2 ≤ �1 ≤ 2

1.8 ⋅ �1
2 + 1.8 ≤ �2 ≤ 1.25 ⋅ �1

2 + 5.75

Fig. 2  SMLambda distribution with a mean value of 0, standard 
deviation, skewness, and excess kurtosis of 1, compared with a nor-
mal distribution (dashed line) and a uniform distribution (dash-dotted 
line) with same mean (0) and standard deviation (1)
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The moments were then used in the CETOL6sigma 
model to simulate the real distribution’s impact on tolerance 
stack-up. Two functional dimensions (outputs), “X-POS” 
and “Y-POS,” were selected for display. These dimensions 
describe the position, with respect to the side plate, of the 
hole where the cables that engage the mechanism are joint. 
The output statistical distribution was then recorded after 
performing four kinds of analysis among the six available:

• Linear analysis centered on the tolerance midpoint
• Linear analysis centered on the mean of the input distri-

bution
• Second-order analysis centered on the tolerance midpoint

• Second-order analysis centered on the mean of the input 
distribution

The analysis in which the pole of the Taylor expansion is 
set on the CAD nominal was not considered, as it was coin-
cident with the pole centered on the nominal value, since no 
asymmetric tolerances were present in the model.

4  Results

The simulated real distributions are significantly away from 
normality and could only be described by an SMLambda 
distribution (Fig. 4). The computed statistical moments are 
used as input variables.

4.1  Critical dimension “Y‑POS”

Figure 5 shows the results of the output statistical distribu-
tion for the linear and second-order analyses centered on the 
tolerance midpoint.

The output distribution is considerably different in the 
two cases: the mean shifts by −0.5216mm , ( 13.07% of the 
tolerance width), resulting in a different percentage of parts 
within tolerance (yield), 99.99% for the linear analysis and 
78.45% for the second-order analysis.

The results obtained by centering the Taylor expansion 
with the mean values of the input variables can be seen in 
Fig. 6.

A smaller difference in the mean can be noted ( 1.25% 
of the tolerance width), and the acceptability rate is now 
comparable ( 72.78% for the linear and 72.40% for the sec-
ond-order analysis). Nonetheless, it is noteworthy that the 
skewness changes sign.

Fig. 3  Simulated real geometries, surface comparison in GOM Inspect

Fig. 4  Distribution for rotation about y-axes for the cylinder marked 
as cylinder 2
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The differences when changing the expansion pole for 
the linear analysis can be noted by comparing Fig. 5a and 
Fig. 6a. The mean value shifts by 14.16% of the tolerance 
width, and the standard deviation shifts by 6.60% of the tol-
erance width, resulting in the yield given by the analysis 
centered with the input distribution means being less than 
1% away from second-order analysis yields (centered with 
the input distributions means).

Analyzing Fig. 5b and Fig. 6b, the differences in the out-
put distribution for a second-order analysis when the expan-
sion point is changed can be seen. The distribution shape is 
similar for both cases (negative skew), with the mean shift-
ing by 2.38% of the tolerance width. As a result, the accept-
ability rate goes from 78.44 to 72.40%.

For this critical dimension, the output distribution is 
heavily influenced by the types of analyses performed. As 

can be seen in Fig. 7, the distribution obtained with the 
linear analysis centered on the tolerance midpoint is far 
away from the others.

4.2  Critical dimension “X‑POS”

Considering now the critical dimension “X-POS,” a 
significantly different behavior can be noted. In Fig. 8, 
the four outputs are almost overlapped, meaning that 
this critical dimension is not influenced by the type of 
analysis.

Overall, the acceptability rate ranges from 82.35 to 
87.17% , the mean maximum difference is 5.12% of the 
tolerance width, and the standard deviation maximum dif-
ference is 1.65% of the tolerance width.

a) Output sta�s�cal distribu�on for the linear analysis 
centred with the input tolerance midpoint 

b) Output sta�s�cal distribu�on for the second-order 
analysis centred with the input tolerance midpoint 

Fig. 5  Output statistical distribution for the analysis centered with the input tolerance midpoint

a) Output sta�s�cal distribu�on for the linear analysis 
centred with the input distribu�ons means 

b) Output sta�s�cal distribu�on for the second-order 
analysis centred with the input distribu�ons means 

Fig. 6  Output statistical distribution for the analysis centered with the input distribution means
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5  Discussion

The analysis of the Method of System Moments showed 
that the linear model neglects many contributions to the 
final output, potentially leading to unreliable results. The 
simulated geometrical variation of the assembly cannot 
be deemed reliable.

5.1  The mean shift

It was shown that the mean of the output depends on both 
the curvature of the functional equation and the shapes of 
the input distributions. However, the linear model assumes 
that the mean of the output depends solely on the expansion 
pole, leading to a mean shift that can significantly impact 

Fig. 7  Comparison among the 
output statistical distribution 
obtained for the critical dimen-
sion “Y-POS”

Fig. 8  Comparison among the 
output statistical distribution 
obtained for the critical dimen-
sion “X-POS”
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the yield. This mean shift and its effect on yield due to the 
functional equation curvature were already discussed [20]. 
Additionally, the shape (skewness and kurtosis) of the input 
also has a similar impact, as it can either amplify or mitigate 
the mean shift caused by the functional equation curvature. 
However, in a tolerance stack-up with multiple inputs, each 
individual input shift may partially compensate for each 
other.

This effect was clearly observed in the case study. The 
critical dimension “Y-POS” exhibited a significant mean 
shift, while the “X-POS” showed almost no mean shift. 
Notably, both dimensions pertain to the same feature but in 
different directions. Hence, the same assembly can behave 
differently in terms of critical dimensions based on their 
specific directions.

5.2  Critical dimension “Y‑POS”

The critical dimension “Y-POS” is chosen for further discus-
sion regarding the influence of different types of analysis, 
as the other dimension (X-POS) has been found to be not 
influenced.

Among the four outputs, the one obtained with a linear 
analysis and the expansion pole centered on the tolerance 
midpoint is significantly different from the other three 
(Fig. 7). This indicates that the choice of the expansion 
pole is crucial when using a linear model. However, when 
the expansion pole is set to the input distribution mean, the 
results of the linear model are nearly overlapped with the 
second-order results. It is important to note that the skew-
ness changes sign when the second-order model is applied, 
indicating that the linear model fails to accurately determine 
the output distribution shape. Nevertheless, if the expansion 
pole is chosen carefully, the yield result can be close to the 
second-order results.

When comparing the second-order results, it can be 
observed that the differences are small when the expansion 
point is changed. This can be explained by the fact that the 
second-order model considers both the mean shift due to 
the functional equation curvature and the input mean. As a 
result, the choice of the expansion point has less impact on 
the output distribution shape in the second-order analysis 
compared to the linear analysis.

5.3  Partial assembly simulation

As postulated in the introduction, utilizing real statistics 
derived from actual production batches can constitute a for-
mal methodology for acceptance by derogation. In the case 
study, real statistics were obtained for a single part related to 
the assembly. By conducting the assembly simulation (tol-
erance stack-up), it is possible to statistically evaluate the 
effect of the actual batch on the final assembly.

In the event of a production batch being out of specifi-
cations, the influence on the final assembly quality can be 
determined, and the quantity of scrap can be quantified for 
further considerations. An economic evaluation of the losses 
arising from the use of the batch can be quantified, enabling 
a judicious decision on whether to accept or reject the batch.

Alternatively, performing the simulation using real sta-
tistics allows for the redesign of a part in the assembly, opti-
mizing its allowable variability (tolerances) to adapt to the 
existing parts already in production.

6  Conclusions

The paper aimed to compare different settings for MSM 
implemented in the SOTA method for statistical assembly 
simulation and/or partial assembly simulation using actual 
statistics as inputs, thereby conducting virtual simulation 
analysis. The software CETOL6sigma was used as a bench-
mark since it allows the use of such inputs.

Different behaviors were observed for different critical 
dimensions (outputs). Considering the critical dimension 
that presented significant differences, it is shown that dif-
ferent types of analysis lead to different results, particularly 
for yields, in the presence of non-linear inputs. The full 
second-order tolerance analysis was already proven to give 
better results in the presence of highly non-linear functional 
equations. In our study case, the assembly has a functional 
equation close to linearity, but highly non-linear inputs were 
used. This allowed testing the Method of System Moments 
with a non-linear (i.e., non-normal) input distribution with-
out interference from the assembly non-linearities. In the 
case of a non-linear assembly equation, it adds another layer 
of uncertainty that can lead to even larger discrepancies 
between the linear and second-order simulations.

The linear model centered on the nominal value simply 
cannot adequately represent reality. The result for this 
analysis gives an acceptability rate estimation that is 
completely different from the result of the second-order 
analysis. At the same time, the linear model centered on 
the input distribution means gives a result in line with the 
second-order analysis. Therefore, it can be concluded that, 
in the case of highly non-linear input distributions, the 
expansion pole for the Taylor series should be selected as 
the input distribution mean.

The following best practice can be extrapolated:

• For non-linear assemblies, e.g., when rotations are pre-
dominant, the second-order analysis should be used.

• For non-symmetric tolerance zones, the expansion point 
should be set on the tolerance midpoint or input distribu-
tion means.
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• For non-normal input distributions, the second-order analy-
sis should be used.

• When using real statistics, the second-order analysis cen-
tered on input distribution means should be used.

These best practices assume general validity since they 
come from the theoretical analysis of the interaction between 
the assembly equation with the input distribution (Sect. 2). 
The case study, in particular, enabled highlighting the effect of 
non-normal and non-centered input distributions, confirming 
the best practices. It also shows that different behaviors can 
occur along different directions, even for the same features. 
Therefore, in general, it is always advisable to check the lin-
earity assumption by performing a second-order analysis. The 
check should be performed for all critical dimensions in the 
model since the behavior of each dimension can be different.

What is presented in this paper is relevant to rigid assem-
blies. It is noteworthy that assemblies composed of deformable 
parts are not negligible in the industry. The assembly simula-
tion with flexible parts is a non-trivial task. Methodologies to 
simulate the constrained state of a deformable part are avail-
able in the literature, e.g., the Method of Influence Coeffi-
cient [27]. Deformable parts are often constrained hyperstati-
cally, allowing an increase in the rigidity of the component 
to a “rigid-like” state. The SOTA method, used in this study, 
requires an “isostatic” assembly to define an explicit assembly 
equation. A possible solution may be found in the distinction 
between the free state or “as-manufactured” state and the “as-
assembled” state, as presented in [28, 29]. The “as-assembled” 
state can then be considered as a rigid part. Real statistics shall 
then be derived by the simulated constrained state or by meas-
uring the part using appropriate functional fixturing. This solu-
tion shall be appropriately tested and validated.

Appendix

The four statistical raw moments, for the output, can be written 
as follows for a linear analysis [23, 25].

E(Ui) = 0

E(Ui
2) =

n
∑

i=1

bj
2�2(xj)
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where bj represent the sensibility of the output Ui with 
respect to the input variable xj:

The raw moments are used to find the central moments:

where u is the value that the output ( Ui ) assumes when all 
the input variables xj are set to the values where the sensi-
tivities are quantified (expansion pole).

By combining together these equations, it is possible to 
find the scaled moments of the output distribution.

where �2j is the excess kurtosis ( �2j = �2 − 3 ) that represent 
the difference in kurtosis between the given distribution and 
a normal one.
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