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Abstract—This paper investigates remote sensing networks
and discusses different models to characterize the Value of
Information (VoI), a metric that describes how informative
the data transmitted by the sensors are. For each sensor,
the VoI evaluations comprise the average node-specific Age of
Information (AoI), the average cost spent for sending updates,
and the AoI of neighbor nodes, assumed to be correlated sources
of information and therefore benefiting the VoI of other sensors
nearby. We discuss how this metric can be tracked through
a two-dimensional Markov chain, but we also show how this
representation can be simplified by including the impact of
neighbor nodes within the transition probabilities, so as to obtain
a simpler model that gives the same insight in terms of VoI
evaluations.

Index Terms—Age of Information; Internet of Things; Data
acquisition; Networks; Modeling.

I. INTRODUCTION

Age of information (AoI) has recently emerged as a
useful performance metric for remote sensing applications
in the Internet of Things (IoT) [1], [2]. For many scenarios
of industrial, agricultural, or environmental monitoring and
surveillance, as well as for medical applications, updates
might be sporadic and of limited size [3]. Thus, more than
guaranteeing high throughput or low delivery delay, it is
critical to ensure that the information about the underlying
physical processes monitored is up-to-date [4].

In a scenario where a source transmits data to a destination,
AoI is defined as the time elapsed since the most recent
successful update received, and hence it captures the fresh-
ness of information from the destination’s standpoint [5]. This
concept can be expanded to consider that, if updates come for
free, it is straightforward to keep the AoI to low values, i.e.,
basically updating the information very frequently. However,
if there are some costs associated with exchanging data,
updates are not so frequent and the AoI increases. As a result,
it can be argued whether the benefit of achieving low AoI
(i.e., up-to-date information) is worth paying those costs [6],
[7]. For the sake of simplicity, here we will use a weighted
combination of the AoI (possibly from multiple sources, as
will be discussed later) and a transmission cost term, which
we will consider to be our “value of information” (VoI). In
the literature, similar approaches are adopted also including
other metrics, essentially conveying the same meaning of this
combination, to further describe the benefits coming from an
update compared to its cost, such as the stochastic decrease
of uncertainty [8] or a multi-parameter combination including
timeliness and relevance [9].

The generalization of this rationale to the case of mul-
tiple sensors coexisting in the same area opens some new
challenges. A basic extension of the underlying model would

imply to define and track the AoI/VoI for the specific sensors
separately, which is however appropriate only if they are
associated with different physical processes, independent of
one another [10]. In this case, when considering a specific
AoI/VoI, only an update from the corresponding sensor can
bring “fresher” information to the destination.

However, in many IoT applications, multiple sensors ac-
tually track correlated underlying processes, sometimes even
the same one [11], [12]. Since the general purpose of intro-
ducing AoI/VoI evaluations is to determine how often one
should update [13], considering the AoI/VoI from multiple
sources as totally unrelated would cause a storm of (often
redundant) updates.

Our goal is instead to consider situations where correlation
among sensors is explicitly kept into account to reduce
unnecessary updates. For mission-critical and emergency
monitoring, this would be particularly relevant to avoid
network congestion in the precise moment an alert is to
be raised, due to some recent updates suggesting a problem
or malfunctioning [14], [15]. At the same time, for energy-
constrained devices, limiting unnecessary exchanges of data
can prolong the lifetime [16].

While we recognize the importance of an efficient AoI/VoI
management under correlated sensed data (e.g., from sensors
in spatial proximity or tracking interconnected quantities), our
investigations in the present paper are not directed towards
mathematical optimization approaches but rather to the in-
volved modeling aspects. In more detail, we consider a VoI
model for data coming from a specific sensor, comprising
three ingredients: (i) the AoI of the data received from
that sensor; (ii) the transmission cost of the sensor; and
(iii) a further AoI-related term to account for some recent
information coming from other correlated sources, i.e., the
most up-to-date “neighbor sensor” that can benefit the AoI
of the sensor under consideration, to some extent.

For this VoI concept, we propose two different models,
both being discrete time Markov chains (MCs) [17], which
are compared. First, we consider a detailed evolution of a
two-dimensional state considering the sensor of interest and
adding a further dimension, to describe whether the most
recent update from one of the neighbor sensors can also
be useful to some extent. We will show that this model
admits a coherent evaluation especially in terms of when to
update. However, a further simplification is possible, which
is what described by the second MC model, where the
updates coming from neighbor sensors are simply merged
with the updates from the sensor of interests in the transition
probabilities. While this is clearly an approximation, it is
shown to be very good in terms of resulting evaluations



especially for what concerns the original purpose of assessing
the updating frequency. Thus, it emerges as a practical
instrument to be implemented in low-cost IoT devices to
enable a decentralized network control [7].

The rest of this paper is organized as follows. In Section
II we discuss the related work. Section III presents our
methodology and introduces the definition of the VoI, and
also the two MC models. Numerical results are presented in
Section IV to provide quantitative insight. Finally, Section V
concludes the paper.

II. RELATED WORK

Remote sensing systems with multiple quantities being
monitored at the same time are an immediate generalization
of standard AoI analyses [10], [11]. Also, considering correla-
tion in the monitored metrics has recently received significant
attention, since it allows for a more meaningful representation
of many IoT systems. Most of the proposed investigations
relates to how the presence of this correlation can be turned
into a more performing management of the updates, in terms
of scheduling efficiency or low energy consumption [12],
[16].

In [18], spatial correlation of information in a field under
monitoring is investigated from the perspective of determin-
ing the optimal spatial density of sensing points to achieve
an adequate and timely coverage of the process, so the
distribution of multiple sources is itself the parameter to
derive. The existence of many sensors is instead explicitly
addressed as an aspect to manage in [19], and is investigated
from a queueing theory perspective with continuous time. At
the same time, [20] goes further and investigates a proper
scheduling of the sources within a similar scenario. In both
these papers, there are multiple AoI values at the destination
depending on one specific sensor only, without correlation. In
[21], multiple sources are considered but they all monitor the
same process (hence, their correlation makes them alternative
to one another), their differences being instead in their
energy consumption and reliability, that can be traded off for
one another. Another paper considering multiple correlated
sources is [22], where a joint allocation and scheduling
problem is considered to minimize the AoI. However, the
scenario is that of wireless cameras capturing different but
possibly overlapping pictures, and the objective is a multi-
view optimization that is decomposed into smaller problems.

From the perspective of scheduling IoT devices to mini-
mize the average AoI, keeping into account a multiplicity of
correlated sources and exploiting their correlation, the main
reference is [5], where this problem, also considering different
types of devices, is formulated as an infinite horizon average
cost Markov decision process. The difference between all
these papers and our present contribution is that we do
not seek for an optimization exploiting the correlation of
neighboring sources, but rather we discuss its quintessential
characterization and we propose a low-complexity represen-
tation, which can in turn be exploited in simple IoT contexts
to determine efficient updating patterns.

To this end, it is worth mentioning that we specifically
focus on discrete time MC models, so our investigation can
be seen as an extension of [17]. The use of such models
allows for matrix-geometric approaches and is convenient in
many scenarios, where a discrete time axis can be considered

[23]. Also, this would make it immediate to merge these
investigations with the special cases where the source or the
channel follow an embedded MC [24]–[26].

Finally, the idea of VoI is often addressed as an expansion
to the plain concept of AoI and, as discussed, is subject to
different interpretations [6], [8], [9]. Our stance in the present
paper is that VoI is introduced as an extension of the AoI and
we will explicitly mean it to represent a linear combination
of the information freshness of correlated data coming from
different sensors and a cost term [23], even though different
expressions can be used to this end, with similar meaning but
more complex math.

III. METHODOLOGY

Consider a system with multiple sensors sending data to a
single receiver/collection point. We can think of the different
sensors as all monitoring correlated metrics of an underlying
process of interest. This can be the result of spatial corre-
lation, which would possibly expand to a specific geometric
structure of the sensor placement, such as a lattice or a grid
[18], [27], or a logical relationship among the underlying
metrics [5], as would be the case for biometric sensors for
the same individual - in this specific case, the relevance of
health tracking metrics would be directly connected to the
AoI of at least some of them, when not all [3].

We focus on a specific device i, and summarize the
correlation of its tracked metric with other measurements
from N different “neighbor sensors” in set N that can also
be tracked. All the sensors in N ∪ {i} adopt similar policies
for sending updates, acting without any coordination but
just being aware of their mutual correlation. The receiver is
interested in getting information about the process status of
sensor i but also somehow benefits whenever the information
in the neighbors is fresh. For this analysis, we consider a
discrete time axis divided into slots of the same duration
called epochs; in each epoch, sources can either update or
stay idle, and we assume that their transmissions are without
collisions. So the age of information for source i is

δi(t) = t− max
τ
(k)
i ≤t
{τ (k)i } (1)

where {τ (1)i , τ
(2)
i , ..., τ

(n)
i , ...} are the epochs where the ith

source sent an update. We remark that with this notation, the
AoI assumes value 0 for all the epochs t = τ

(k)
i where an

update is performed.
We consider the simplest possible operating model for

the sources, i.e., they decide in a random fashion, and
independently of one another, whether to send an update
or stay idle during the current time slot, and this decision
is made with identical and independent distributed (i.i.d.)
probability p. Thus, the average AoI at the receiver’s side for
the current source can be computed as a direct consequence
of its geometric distribution (starting from 0), i.e., [23]

E[δi] =
1

p
− 1 (2)

If we choose E[δi](p) as a metric to optimize, it is trivial to
note that the function is minimized for p∗ = 1. But this is
unrealistic in a real scenario, since the sensing/transmission
operations ought to be kept limited to avoid unnecessary
expenditures and strain of the sensor. To account for this,



we may include a cost term proportional to the transmission
rate according to a parameter c > 0. In this case, we can
define a penalty function

K1(p) = E[δi] + cp =
1

p
− 1 + cp (3)

where both terms combined into K1(p) (the expected AoI
and the average transmission cost) are better when set to a
low value. Thus, our goal may be seen as to find a penalty-
minimizing update probability p∗, which is promptly found as
p∗ =

√
1/c. Even though the result is immediate, it properly

accounts for the intuition that a higher cost decreases p∗. This
implies that c can be seen either as an external parameter
related to information update costs, e.g., in terms of energy
consumed [28], or as a virtual tunable parameter that is used
to regulate the frequency of updates in a distributed fashion
[23].

This setting can be extended from a modeling standpoint by
considering and exploiting the presence of multiple sources
providing correlated informaton. In this case, we look for
a possible further decrease in the transmission probability,
other than what expressed by the cost, since a situation where
fresh information coming from a neighbor sensor is strongly
correlated may make it pointless to update for the sensor of
interest too.

Thus, we extend this analysis by involving the N neighbors
of the sensor of interest, which are assumed to follow the
same rule of updating with probability p. Now, we consider
that the processes monitored by N neighbors are correlated
with that of the sensor of interest and if one of them sends
an update this can be in some way also useful to the sensor
of interest itself.

In order to quantify this usefulness, we decrease the AoI
of the sensor of interest, which in (2) is introduced as a
penalty (the lower, the better). We therefore insert a factor
that measures the difference between the age of the sensor of
interest and the age of the most up-to-date neighbor, whenever
this is lower than the age of the sensor of interest. Otherwise,
i.e., if the sensor of interest is more up-to-date than its entire
neighborhood, there is no benefit achieved by exploiting the
correlation. We obtain the following quantification that we
regard as the VoI Vi of sensor i (as opposed to the AoI that
is just based on the single sensor)

Vi = E
[
δi − α(δi −min

j∈N
δj) · 1(min

j∈N
δj < δi)

]
(4)

where α is a hyper-parameter used to weigh the benefit
that the most up-to-date neighbors has fresher information,
and 1(·) denotes a characteristic function (equal to 1 if the
Boolean condition is true, 0 if false).

Since we assume that all the sensors behave identically
for what concerns their updating policy, symmetry reasons
dictate that the sensor of interest is actually the one with the
freshest information in 1/(N+1) of the cases, in which case
the benefit of exploiting the correlated information is 0. In the
remaining cases, i.e., a fraction of N/(N + 1), the neighbor
with lowest AoI brings instead a decrease in the VoI of the
sensor of interest. The value of such AoI is the minimum of
N geometrically distributed variables, thus we can extend (4)
to

Vi =
1

p
− αN

N + 1

(1
p
− 1

1− (1− p)N
)
− 1 (5)

Even when the AoI is replaced by the VoI, the objective of
a cost-effective management is to minimize a penalty function
combining value and cost, i.e.,

minK2(p) = Vi + cp (6)

which results in a minimizing transmission probability p∗

that is promptly found as the solution of setting a first-order
derivative to 0. This means that, for sufficiently high cost c,
p∗ is the value for which dVi/dp = −c.

To expand the model from just an average value com-
putation to a full-fledged statistical characterization, we can
actually use a discrete time MC jointly tracking the AoI of
the sensor of interest and its neighborhood, which would
generalize to cases where the VoI does not follow from a
linear combination of ages through weight α. Remarkably,
since the AoI values can be seen as rewards of renewal
processes, whose cycles relate to an update from either the
sensor of interest or one of the neighbors, such a MC would
precisely track the VoI according to our proposed definition.

A. Complete MC model

To model the usefulness of the neighbors we propose a
triangular MC that works in the following way: M+1 states
1 are used to track the states where the sensor of interest i
is the most up-to-date and then M(M + 1)/2 states where
at least one neighbor has fresher information than node i, in
which case we simply track the AoI of the most up-to-date
neighbor.

A graphical representation of this is shown in Fig. 1. Two
sets of M + 1 nodes and M(M + 1)/2 nodes represent the
respective cases where (i) the sensor of interest i is most up-
to-date, in which case we track its AoI as the state; or, (ii)
another neighbor sensor is, in which case we track the infor-
mation of both AoI values of the node i and that neighbor.
Thus, each state k ∈ S, with |S| = (M+1)(M+2)/2, of the
MC is associated with either just value Ak, which represents
the AoI for the node i at state k, or Ak and Bk, the latter
being the AoI of the most up-to-date neighbor at state k, if
lower than Ak.

Given the probability of updating p (assumed to be the
same for all nodes) and the number of neighbors N , we
can create the triangular MC depicted, with 3 possibles
transitions: (i) the sensor of interest sends an update, whose
probability is p; (ii) node i does not update, but at least
one of its neighbors does, which happens with probability
(1− p)(1− (1− p)N ); or (iii) no one sends an update, and
the transition probability for this event is (1− p)N+1. Here,
we can exploit the renewal properties of AoI that whenever
a node (either the sensor of interest or a neighbor) performs
an update, it necessarily becomes the most up-to-date, where
if no sensor updates, the most up-to-date node remains the
same of the previous epoch.

The VoI of sensor i can be computed after evaluating the
steady-state probabilities πk of the chain being in state k
through

Vi =

(M+1)(M+2)
2∑

k=0

Ak · πk − α

(M+1)(M+2)
2∑

k=M+1

(Ak −Bk) · πk (7)

1The AoI ought to be unlimited, but for a tractable numerical evaluation,
we set a maximum AoI value of M .
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Fig. 1: Example of a complete MC model. Solid red arrows, blue dotted arrows, green
dotted arrows mean updates from no node, a neighbor but not the sensor of interest,
and the sensor of interest, respectively. States X in the top row imply that the sensor
of interest is the most up-to-date with AoI X , while states X,Y denote the AoI values
of the sensor of interest and the most up-to-date neighbor, respectively.

where the first summation considers the average AoI of node
i for all the states, whereas the second one accounts for the
cases where a neighbor is more up-to-date which decreases
the VoI as per (4).

Aside from numerical limitation for solving the MC, this
model is exact and allows to fully track the VoI model
presented above. We also remark that, differently from the
solution of (5) that only applies to the case of updates with
i.i.d. probability p for all epochs and all sensors, the MC
model can actually be extended to more elaborate scenarios
where the update rule is optimized [8], [11], [20], [22].

B. Scalar state MC

We now propose a simplification to the previous MC.
Instead of having a triangular structure with two-dimensional
states, we use a scalar state MC where each node represents
only an equivalent VoI of the node i. The assumption is that
we merge transitions including an update, assumed to happen
with probability t, regardless of whether it is coming from
the sensor of interest or one of the neighbors, where the latter
case is clearly weighted with a coefficient q < 1.

Within this model, we can consider only 2 transitions: the
MC advances to the next state with probability 1 − t and
returns to state 0 with probability t. The transition matrix P
of this MC is

P =


t 1− t 0 0 . . .
t 0 1− t 0 . . .
t 0 0 1− t . . .
...

...
...

...
. . .

 (8)

To take into account the usefulness of the neighbors we
consider:

t = p+ (1− p)(1− (1− p)N )q (9)

where p is the probability of update, N is the number
of neighbors and q is the probability that the update of a
neighbor is useful, in which case the VoI is reset to 0 even
though the update does not come from sensor i. In this
way, when at least one neighbor updates status, this updates
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Fig. 2: Comparison between VoI computed with complete MC and the corresponding
theoretical model with α = 0.1

becomes also useful for the sensor i with probability q as it
was fully informative and reset its AoI.

Analogously to the previous complete MC, we can set an
upper limit M to the AoI values tracked, and once evaluated
the stationary distribution vector πππ it is possible to compute
the VoI as

Vi =

M∑
k=0

k · πk (10)

Note that q = 0 and hence t = p leads back to the model
present in (2).

The scalar state MC can be made very similar to the
complete MC through a careful fine tuning of the parameter
q as a function of α, so as to match the performance at least
in the average sense. One can link the value of q and α given
the number of neighbors N and the transmission probability
p. By matching the average VoI of the two chains we obtain

1

p
− αN

N+1

(1
p
− 1

1−(1−p)N
)
−1 =

1

p+ (1−p)(1−(1−p)N )q

where the left side of the equality comes from (5) as the
average VoI, while the right side derive from (3) as the
average VoI for the scalar state MC. Then it is possible to
solve the equation for α or q. With a few simple algebraic
steps we arrive at

q(α) =
1

Z2(p,N)

(
p

1− p · Z1(p,N) · α
− p
)

(11)

where

Z1(p,N) =
N

N + 1

(
1

p
− 1

1− (1− p)N

)
and

Z2(p,N) = (1− p)(1− (1− p)N ) .

Both Z1(p,N) and Z2(p,N) are functions only of p and N
and so once these two parameters are set, they act as constant
terms of (11).
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Fig. 3: Comparison between VoI computed with scalar state MC and the corresponding
theoretical model with q = 0.1
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Fig. 4: VoI of the complete MC with α = 0.1 vs. the transmission probability p.

IV. RESULTS

We now present some numerical results to give a quanti-
tative insight of how the different models capture the under-
lying VoI and how suitable they are to perform some simple
management of the involved parameters. In particular, we are
interested in seeing whether setting a proper cost parameter
c can tune the update probabilities of the sensors, also when
correlation among multiple sensors is kept into account with
α = 0.1, which describes a limited but noticeable influence.

We first test if the two MCs correspond to the underlying
theoretical model. To do this, we choose a set of parameters
(N = 10, q = 0.01 and α = 0.1) and we compute the VoI
both theoretically through (5) and via the MCs as per (7)
and (10). The value of q = 0.01 is chosen according to (11)
for N=10 and α = 0.1, with p chosen as numerically fitting
most of the values of p∗ in the region of interest.

The results are plotted in Figs. 2 and 3 for the complete
and simplified MC, respectively. For both models, we can
observe that the MC correspond to the theoretical model, up
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Fig. 5: VoI of the complete MC with α = 0.1 vs. the cost coefficient c.
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Fig. 6: VoI of the scalar state MC with q = 0.01 vs. the transmission probability p.

to a computational bound imposed by the maximum number
of states of the MCs. To have a more robust comparison we
plot together with the unbounded theoretical VoI a bounded
version defined as

Vi,bound(p) = max(Vi(p),M) (12)

with M the maximum AoI used in the MCs.

A. Numerical Performance

In Figs. 4 and 5, we report the numerical results obtained
for the complete (triangular) MC, showing the VoI versus
the transmission probability p and how the VoI can be
set according to the cost coefficient c. These results were
obtained for α = 0.1.

In Figs. 6 and 7 we plot the numerical results obtained for
the simplified scalar state MC. More precisely, the figures
show the VoI versus the transmission probability p and how
VoI is set as a function of the cost coefficient c, respectively.

In both Figs. 5 and 7, we associate every value of c with
the optimal transmission probability p∗, to further compute
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Fig. 7: VoI of the scalar state MC with q = 0.01 vs. the cost coefficient c.
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Fig. 8: Comparison between complete (α = 0.1) and scalar state (q = 0.01) MCs
with N = 1 neighbor, VoI vs. transmission probability p.

the VoI. To obtain this probability, we compute the derivative
of the VoI in p (i.e., the curve in Figs. 4 and 6) and set
it equal to −c, since the overall penalty is set from (6) as
K2(p) = Vi + cp.

From inspecting Fig. 4 we can also infer how the number of
neighbors influences the VoI. More precisely, a higher number
of neighbors tends to decrease the VoI. This is coherent with
the intuitive idea that, the more nodes in the network, the
more likely is that they help each other with the updates. This
effect is more relevant for intermediate values of p, since for
p ' 1 or p ' 0, the impact of correlated sensors on the
updates is relatively limited.

Fig. 5 shows how the VoI changes, based on the cost factor
c. Also in this case, coherently with intuition, for a small
c we have a small VoI, while for a large c the VoI tends
to increase. This reflects the fact that for small values of
c the sensors pay a small price for each transmission and
therefore are encouraged to transmit as much as possible.
Similar conclusions can also be drawn for the simple MC
analyzing Figs. 6 and 7.
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Fig. 9: Comparison between complete (α = 0.1) and scalar state (q = 0.01) MCs
with N = 10 neighbors, VoI vs. transmission probability p.
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Fig. 10: Comparison between complete (α = 0.1) and scalar state (q = 0.01) MCs
with N = 1 neighbor, VoI vs. cost parameter c.

Finally, we compare the results obtained by the two MCs.
In Figs. 8 and 9, we show how the average VoI changes
based on the transmission probability p, for the number N
of neighbors set in the two figures to 1 and 10, respectively.
We can observe that for N = 1 (Fig. 8), the two MCs obtain
practically identical results, with the VoI values completely
overlapping. The difference is more visible for higher N ,
especially considering the range between p = 10−3 and p =
10−1.

In Figs. 10 and 11, we compare the two models to highlight
how similar they are in computing the VoI based on the
cost coefficient c. Analogous to Figs. 5 and 7, we evaluate
the VoI per each c, by considering the optimal transmission
probability p∗ for that specific point. The indirect setup of
a VoI value according to c, through its direct imposition of
p∗, i.e., by controlling the frequency of channel access in a
distributed fashion, can be regarded as the main goal of our
analysis. Thus, we can claim that even the simpler scalar state
MC can be effective for a local implementation onboard the
individual sensors.
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Fig. 11: Comparison between complete (α = 0.1) and scalar state (q = 0.01) MCs
with N = 10 neighbors, VoI vs. cost parameter c.

V. CONCLUSIONS

The assessment of freshness of information in resource-
constrained networks is an important topic that can be ad-
dressed through analytical frameworks revolving around the
VoI [4], [6], [9]. In this paper, we discussed a scenario with
multiple sensors sending correlated information to a data
collection point and we discussed how this can be captured
by discrete time MCs with different degrees of complexity.

In particular, we presented a simple model where the
impact of correlation is kept into account in the transition
probabilities of a MC with scalar state representing a modified
AoI including the freshness of multiple sources with different
weights [5], [26]. Such a model is shown to be effective in
characterizing basic updating policies with i.i.d. probabilities
and can therefore be a suitable solution for large scale de-
ployments of sensors with limited computational complexity
and energy.

Future developments may involve the analysis, in the
same spirit, of more advanced updating policies, still with
possible simplifications in the system state, to see whether the
simplified representation still allows for an efficient manage-
ment, and the implementation of this rationale within specific
applications for the IoT. Extensions to other related net-
working problems, which can be studied through MC-based
approaches, such as the insertion of automatic repeat request
(ARQ) in the transmission [15], [29] and/or measuring and
optimizing power consumption of the sensors, especially for
energy harvesting nodes [21], [28] can be subjects of future
investigations.
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