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Abstract: DNA methylation is one of the epigenetic marks which has been studied intensively in
recent years for age predicting purposes in the forensic area. In order to integrate age prediction
into routine forensic workflow, the purpose of this study was to standardize and optimize a DNA
methylation-based protocol tailored to the Italian context. A previously published protocol and age-
predictive method was implemented for the analysis of 84 blood samples originating from Central
Italy. The study here presented is based on the Single Base Extension method, considering five genes:
ELOVL2, FHL2, KLF14, C1orf132, now identified as MIR29B2C, and TRIM59. The precise and specific
steps consist of DNA extraction and quantification, bisulfite conversion, amplification of converted
DNA, first purification, single base extension, second purification, capillary electrophoresis, and
analysis of the results to train and test the tool. The prediction error obtained, expressed as mean
absolute deviation, showed a value of 3.12 years in the training set and 3.01 years in the test set.
Given that population-based differences in DNA methylation patterns have been previously reported
in the literature, it would be useful to further improve the study implementing additional samples
representative of the entire Italian population.
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1. Introduction

In the last ten years, forensic genetics techniques, that enable investigators to infer
additional traits from an unidentified specimen, have been developed to reduce the number
of suspects, generate fresh leads in cold cases, or identify an unknown person or mass
casualty victims. In particular, these approaches concentrate on age, phenotypic traits (such
as eye, skin, and hair color), and biogeographic origin prediction. While the phenotypic
characteristics and biogeographical origins are mainly studied through the analysis of
specific SNP groups, age prediction is primarily conducted through the analysis of specific
epigenetics patterns [1,2].

DNA methylation is one of the epigenetic marks and it has been studied intensively in
recent years; in particular, measuring the DNA methylation levels of various genes is very
important across many forensic and medical areas. As already mentioned, the survival,
growth, and differentiation of cells are regulated by changes in the epigenetic state of
specific genes [3].

Assuming that scientific and technological progress in human epigenomics continues
to accelerate, we can imagine the establishment of an “epigenomic fingerprint” from crime
scene traces to answer various forensically relevant questions that cannot be detected
only through genetics. Furthermore, we expect to involve predicting forensically valuable
lifestyle and environmental information of an unknown trace donor in the near future [4].
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Nowadays, the three main forensic applications of methylation analysis are tissue type
determination of human biological traces, differentiation of monozygotic twins, and age
prediction of an unknown donor [5].

Aging is a very complex phenomenon; it is multi-dimensional in nature, from a
qualitative, quantitative, and inter-individual point of view [6]. We now have evidence
that aging is, at least in part, genetically and epi-genetically controlled. The control and
subsequent interruption of cellular activities demonstrate the cell’s programmed decision
to continue or discontinue maintenance procedures as it ages [7]. A chronological age
clock counts the years since birth. Individuals of the same chronological age may have
distinct biological ages and might have quite different amounts of age-related dysfunction,
pathology, and mortality risk and be considered to be of varied biological age. The scale of
chronological or biological age may match or diverge depending on both the individual’s
lifestyle and the presence of disease. While chronological age has been shown to be a
valuable tool in forensics, biological age may also be used to track the development of a
person suffering from an illness or seeking therapy for a medical condition [8].

Initially, clock models were created using a single sort of biomarker, that is DNA
methylation, which was used to predict chronological age. This first generation is referred
to as “chronological clocks”. A second generation of epigenetic clocks has been developed
that utilizes DNA methylation to forecast biological qualities such as time to death or
functional deterioration. These so-called “biological clocks” have been demonstrated to
predict better outcomes in specific disease patterns [8–10].

Different factors may contribute to defining individuals’ DNA methylation clocks. The
chronological component is associated with epigenomic maintenance, which guarantees
a most precise forensic age determination. Meanwhile, the biological component may be
positively influenced by physical exercises and a healthy diet, or negatively influenced by
epigenomic alterations, unhealthy habits (smoking, alcohol consumption, sedentariness),
diseases, species-specific effect, gender-specific effect, tissues/cells specific effect, and
environmental factors (air pollution, temperature, humidity, UV exposure, and pathogens).
Therefore, separating aging into distinct chronological and biological components has been
challenging, such that all clocks lay between the two extremes. Relative to this concept,
as illustrated in the figure below (Figure 1), defining the chronological and biological
drivers of these DNA methylation clocks will need a deep analysis separately. The precise
separation of these two elements due to particular sets of CpGs would result in more
powerful specialized clocks and independent mechanistic research, especially in the case of
legal measures of the human age [4,9–13].
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Another important concept in the study of epigenetics includes the distinction between
epigenetic drift and the epigenetic clock. In fundamentally separate mechanisms, epigenetic
drift and the epigenetic clock contribute to age-related DNA methylation alterations [14,15].

The study here presented is based on the Single Base Extension method, considering
five genes: ELOVL2 (located on 6p24.2), FHL2 (located on 2q12.2), KLF14 (on chromosome
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7q32), C1orf132, now identified as MIR29B2C (located on 1q32.2), and TRIM59 (located
on 3q25.33).

This study aimed to predict the age of different individuals starting from human bio-
logical samples collected from Italian volunteers. The development of this analysis method
was based on the original DNA methylation works of Jung et al. [16] and Cho et al. [17].
However, some modifications to the primer mixes for both the PCR and SBE reactions,
and to the annealing temperature were performed in order to optimize the protocol for
our laboratory. As stated above, the DNA methylation clock is influenced by different
factors; therefore, the age-predictive models previously proposed in the literature need
to be shaped on the specific population [16,17]. For this reason, a literature study was
considered necessary for the creation of a DNA methylation analysis protocol for forensic
application in the Italian context, where a specific protocol in this field has not yet been
proposed nor validated.

2. Results

A pool of 84 peripheral blood samples was analyzed in replicates following precise and
specific steps consisting on DNA extraction and quantification, bisulfite conversion, ampli-
fication of converted DNA, first purification, Single Base Extension, second purification,
capillary electrophoresis, and lastly, analysis of the results (as reported in Figure 2).
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Figure 2. Experimental workflow.

A DNA extract of each sample was bisulfite-converted twice and each converted
eluate was amplified twice, for a total of four replicates per individual sample. The four
amplification products followed the same downstream process and the SBE step was re-
peated once for each of them. After capillary electrophoresis, the methylation levels at
each locus (namely, ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, TRIM59) were calcu-
lated and initially inserted in the tool developed by Lee et al. [18]. However, given the
modifications performed on the original protocol and the different populations studied,
the data thus obtained were used to create a novel age-predictive tool. The samples’ repli-
cates were considered independent data, bringing the total number to 336 observations.
Two-thirds of the 336 samples were used as a training set to create a multivariate linear re-
gression model, and the remaining one-third of the samples made up the test set. Replicates
of the same sample were included in the same dataset.

For the training set, methylation levels vs. chronological age were plotted per each
locus using the ggplot2 package in R (Figure 3).
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Figure 3. Scatterplots displaying the correlation of DNA methylation levels at each of the five loci
studied with chronological age for all three datasets.

Pearson correlation coefficients r between chronological age and methylation levels at
each locus were calculated and they were evaluated according to the same rule of thumb
adopted by Jung et al. [16] (Table 1). Four loci, ELOVL2, C1orf132, FHL2, and TRIM59,
showed a strong correlation between chronological age and methylation levels, while
KLF14 showed a moderate correlation.

Table 1. Pearson correlation coefficient r of DNA methylation level variations with chronological age
and predicted in each of the five loci studied, for the training, test, and combined datasets. Correlation
for predicted age with chronological age in the three data sets is also displayed.

Correlation of DNA Methylation Levels with Chronological Age Correlation of Predicted Age
with Chronological AgeELOVL2 FHL2 KLF14 C1orf132 TRIM59

TRAINING SET 0.862 0.786 0.682 −0.823 0.753 0.779
TEST SET 0.940 0.852 0.651 −0.858 0.869 0.958
COMBINED 0.889 0.807 0.655 −0.831 0.791 0.950

As a reference, the correlation between chronological age and methylation patterns in
the test set and in the combined dataset (training and test set samples) was plotted (Figure 3)
and calculated (Table 1). The values obtained for the test set were higher than those of
the training set, especially in the case of TRIM59. An exception was KLF14, whose value
was slightly lower. The combined dataset showed a correlation between DNA methylation
levels and chronological age that mirrored the one observed in the training set.

A multivariate linear regression model was created with the training set using Mi-
crosoft Excel. The model was then applied to the test set for its validation. The multivariate
predictive model allowed for an estimation of the age (predicted age) of individuals based
on the methylation pattern of each gene, according to the following formula:

Predicted age (in years) = 73.8686066416537 × ELOVL2 DNA methylation level +
21.6625107564553 × FHL2 DNA methylation level + 47.5538289868233 × KLF14 DNA
methylation level −37.6472633609841 × C1orf132/MIR29B2C DNA methylation level +
4.49257531145724 × TRIM59 DNA methylation level +35.8493598840537.
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The correlation between predicted age and chronological age was plotted for the training,
test, and combined datasets and evaluated (Figure 4 and Table 1). The correlations observed
in the training set and test set resulted in strong and very strong values, respectively.
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The prediction accuracy of the model was assessed for both the training set and test
set separately, and for the combined set, by calculating the Mean Absolute Deviation
(MAD) for all the samples pooled together and for each age category (Table 2). In the
training set, the overall MAD had a value of 3.12 years, while the test set had a value
of 3.01 years. As can be seen from the MAD value, the prediction model’s output was
accurate and homogeneous, both for the training set and for the test set. With regard to
MAD values of each age category, in the training set the lowest MAD of 2.79 years was
found for the 41–50 age category while in the test set the lowest MAD of 2.41 years was
found for the youngest category (18–30 years). The highest MAD of 3.67 and 4.09 years in
training and test set, respectively, was observed for the 51–65 years of age category. The
combined dataset showed the lowest MAD value in the 31–40 years of age category, while,
as expected, the highest MAD was found in the 51–65 age category. The youngest category
showed the third lowest error value.

The four replicates of each sample were then analyzed as a group, the MAD for each
sample replicate group was calculated, and the results were evaluated based on the age
category the samples belonged to (Table 2). The maximum value for the MAD was around
4 to 6 years, across all age categories; however, five individuals showed a MAD greater
than 6 years, with a maximum value of around 8 years.

Four Loci Model Construction

Given the strong correlation of TRIM59 with chronological age observed in the simple
linear regression analysis, the results of the multivariate linear regression analysis high-
lighted a higher p-value for this locus (p = 0.374). Given this observation, a model with
four CpG sites was built excluding TRIM59. The four loci model showed the same age
correlation value as the model with five CpG sites (r = 0.945) explaining 89.2% of age
variation (adjusted R2 = 0.892). Applying this model, the age prediction was obtained
through the formula:
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Predicted age (in years) = 74.816 × ELOVL2 DNA methylation level + 22.601 × FHL2
DNA methylation level + 49.334 × KLF14 DNA methylation level—37.6771 × C1orf132
DNA methylation level + 36.3226.

Table 2. Mean Absolute Deviation (years) values calculated for both datasets separately in their
entirety and after dividing the samples into age classes (top rows). MAD was also calculated
considering the sample replicates as a group and according to their age class (bottom rows). The
same analysis was applied to the combined data set.

Mean Absolute Deviation (MAD) in Years

Entire dataset
MAD per age class

18–30 31–40 41–50 51–65

TRAINING SET 3.12 3.14 2.84 2.79 3.67
TEST SET 3.01 2.41 2.57 2.97 4.09

COMBINED 3.08 2.91 2.74 2.85 3.78

MAD per age class per sample replicates

18–30 31–40 41–50 51–65

MIN MAX MIN MAX MIN MAX MIN MAX

TRAINING SET 0.67 6.10 0.70 5.81 0.46 4.77 0.35 8.53
TEST SET 1.31 5.33 1.22 5.50 1.34 5.84 2.03 8.24

COMBINED 0.67 6.10 0.70 5.81 0.46 5.84 0.35 8.53

This model was able to estimate age with a correlation between predicted and chrono-
logical ages of 0.945 and MAD of 3.13 years in the training set and 0.958 and 3.04 years in
the test set. MAD values between predicted and chronological ages tended to increase with
age, slightly in the training set, and more in the test set (Figure 5).
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3. Discussion

Forensic genetics techniques’ recent advances have allowed investigators to acquire
additional information from their samples to reduce the number of suspects, generate fresh
leads in cold cases, or identify an unknown person or mass casualty victims. Among these
innovative techniques, age estimation through DNA methylation has recently attracted
great attention in the forensic community. The purpose of this study was to evaluate the
individual epigenetic age clock at the level of specific CpG sites to create a predictive tool
dependent on individual chronological age. Through a careful literature analysis, five
relevant loci (ELOVL2, FHL2, KLF14, C1orf132, and TRIM59) were identified. At these loci,
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the methylation status of each individual was studied, and the protocol thus developed was
used to create the prediction model for age estimation specifically in the Italian population.
The samples were analyzed as replicates and as mentioned before, two-thirds were used
for the training set, and thus for creating a multivariate linear regression model, whereas
the remaining one-third was used as a test set to validate the tool.

In the training set samples, the DNA methylation levels at each locus were correlated
with chronological age. Considering the linear regression trend of each of the five genes, it
can be observed that all genes presented hypermethylation with increasing age, except for
C1orf132, which showed a tendency to hypomethylation. This observation is in accordance
with a previous study by Correia Dias et al., who reported a positive correlation with age
for ELOVL2 and FHL2 genes, and a negative correlation with age for the C1orf132 gene [19].
The result of this observation was that, at C1orf132, younger people presented a much
higher level of methylation which then progressively decreased with increasing age, while
for the other four genes (ELOVL2, FHL2, KLF14, and TRIM59) the opposite was true: the
percentage of methylation increased with age [3,20].

As shown in Table 1, a strong correlation for ELOVL2, FHL2, C1orf132, and TRIM59
genes (0.7 < |r| ≤ 0.9) was observed, whereas a moderate correlation resulted for the
KLF14 gene (0.5 < |r| ≤ 0.7). These data are in agreement with what emerged from the
study of Cho et al., where the Pearson correlation index in KLF14 was lower in comparison
to the other genes analyzed [17].

The fact that the ELOVL2 gene had the highest Pearson coefficient reflects what
has already been indicated in the literature: ELOVL2 has been heralded as one of the
most reliable genes to be used in this type of analysis [17,21–23]. Indeed, Aliferi et al.,
highlighted the success of CpG markers located in the ELOVL2 gene region and how
this is probably due to their larger methylation range which improves age prediction
accuracy [24]. Moreover, other scholars have suggested its reliability as a multi-tissue
age-predictive marker also [16,25,26].

The second strongest correlation was observed in C1orf132, for which the Pearson
coefficient resulted to be –0.823. Comparing our results with those of Jung et al., it is possible
to highlight a difference in the outcome. Indeed, our value fell within the strong range of
correlation (0.7 < |r| ≤ 0.9) whereas Jung et al. had a moderate value (0.5 < |r| ≤ 0.7) [16].
This difference may be attributed to the different populations considered in the studies,
suggesting for this locus a higher correlation between methylation status and age for the
Italian population rather than the Korean one.

Additionally, a strong correlation for the FHL2 CpG site with individual chronological
age was observed, suggesting its reliability for use in the age prediction tool. This was
also highlighted by numerous studies which included the gene for the generation of an
age-estimating model [16,17,27,28].

As for the TRIM59 gene, a strong correlation with chronological age was found in our
population sample. This outcome is also supported by what was obtained by Jung and
colleagues in a pool of volunteers of Korean nationality and in the study conducted by
Zbiec-Piekarska on Polish people, albeit the latter analyzed a different CpG site [16,27].

Lastly, KLF14 gene methylation status had the second lowest Pearson correlation co-
efficient, with a value that fell within a moderate range of correlation (0.5 < |r| ≤ 0.7).
Nevertheless, its correlation was approximately near to what was reported in the litera-
ture [16,17,27].

Our results were then compared with previously published data. Comparison of DNA
methylation levels obtained in blood samples from Italian, Portuguese [29], and Korean
individuals [16] showed a strong and very strong correlation (|r| > 0.7) with age for all
the CpG sites, except for KLF14 in Italians and C1orf132 in Koreans (Table 3). The highest
correlation value with age was obtained for ELOVL2 in Italians and Portuguese individuals
and for FHL2 in Koreans.
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Table 3. Comparison of age correlation values in blood samples from individuals of Italian, Portuguese,
and Korean ancestry. For all populations, the analysis was performed at the same CpG sites.

Locus
Italians Portuguese Koreans

R R2 R R2 R R2

ELOVL2 0.862 0.744 0.951 0.904 0.879 0.773
FHL2 0.786 0.618 0.946 0.895 0.893 0.797
KLF14 0.682 0.465 0.791 0.625 0.777 0.604

C1orf132 −0.823 0.677 −0.924 0.854 −0.637 0.406
TRIM59 0.753 0.567 0.910 0.828 0.763 0.582

In the multivariate analysis, the CpGs in KLF14 and TRIM59 genes showed non-
significant age correlation values in Portuguese individuals; in Italians, only TRIM59
showed a non-significant correlation, while in Koreans all the five markers showed signifi-
cant age correlation. Age correlation similarities (i.e., ELOVL2 in Italian and Portuguese
individuals) and differences in specific markers suggest that methylation levels might be
population-specific and specific loci may be more suitable for different population groups
in order to estimate the chronological age.

Moreover, the predicted output of the model for each observation was correlated
with the sample’s respective chronological age. A strong correlation between the two was
observed in the training set, while a very strong correlation was observed in the test and
combined sets. This suggests that the trend of the multivariate linear regression model,
which allows age estimation, is actually influenced by the chronological age of individuals.

The prediction accuracy of the multivariate linear regression model, calculated as a
MAD, was evaluated for both the training and test datasets. This evaluation was performed
for the four sample replicates, considering them both as a single data observation and as
a group. The prediction error obtained had a value of 3.12 years in the training set and
3.01 years in the test set. In addition, these values were slightly lower than those reported
in the literature where the MAD values fell in the range from 3.48 to 5.75 years [16,22,27].
When considering the samples according to their age groups, an increase in the error range
corresponding to an increase in the chronological age of the samples was observed. The
progressively higher MAD value may be explained by the higher variability in methylation
levels of older people due to the accumulation of environmental factors, stressors, and
pro-methylation lifestyle habits.

The highest MAD observed per sample replicates was around 8 years for both the
training set and test set. Five were the samples with a Mean Absolute Deviation greater
than 6 years. These results were cross-referenced with the questionnaires filled out by
volunteers. It was noted that, in 80% of the cases (4 out of 5 samples), the high MAD
values observed may be attributed to past or present smoking habits. Indeed, as already
mentioned, many scholars have highlighted how these habits may influence the epigenetic
modifications of individuals [4,10–12]. However, other factors, which are not currently
under investigation, may be additional causes, which may have led to these results given
the high complexity of epigenetic regulation.

Indeed, given the relevance of age prediction in the scientific community, different
studies have focused on the development of age-predictive tools based on different types of
potential aging-related biomarkers. Nonetheless, the study of DNA methylation patterns
seems to be the most accurate and sensitive in terms of chronological age prediction and life
span evaluation [24,30]. Moreover, despite the impossibility of controlling all the possible
factors which can impact epigenetic variations, it remains important to outline a reliable
tool for age estimation to infer additional information from an unidentified specimen,
especially in the forensic context. However, even in this case, further studies are needed to
ensure that this tool reaches levels of accuracy and greater sensitivity in order to minimize
the divergences between chronological and predicted ages.

In our opinion, our findings have provided valuable insights that may serve as a
starting point. Most importantly, given the quantitative nature of the bisulfite-dependent



Int. J. Mol. Sci. 2023, 24, 5381 9 of 13

method of DNA methylation levels estimation, the analysis in replicates of the samples
minimized variability in the results, thus showing an improved outcome in the predictive
accuracy of the model. Additionally, our study can be considered as an opportunity to
delve deeper into the definition of the most informative loci for age estimation in the Italian
population. However, a number of subsequent steps would be appropriate to overcome
some aspects that could represent limits to this study. First, the implementation of a more
diverse pool of individuals, in terms of lifestyle habits, disease status, and environmental
factors that may influence DNA methylation patterns is advisable. In fact, the possible
correlation between these factors and methylation profiles has not been thoroughly investi-
gated, which could affect the prediction accuracy of this tool. Second, given that the study
was limited to 84 individuals, the investigation of a wider population, representative of the
Italian one, would be needed in order to increase the sensitivity of the predictive model
for age estimation, through, for example, the structuring of a multicenter collaborative
study. In addition, considering the limited amounts of DNA typically encountered in the
forensic context, further studies of the amount of starting material are needed to improve
the accuracy and reliability of age prediction for forensic analysis.

In conclusion, given the observed variability among different populations, new specific
markers are needed to better explain the age-related DNA methylation variance in different
population groups; however, the variation due to environmental effects and diseases will
always play a confounding role [31].

4. Materials and Methods
4.1. Sample Collection

The study was approved by the Ethical Committee of Perugia University, Umbria, Italy.
Written informed consent to sample collection and analysis was provided by all volunteers.
Additionally, volunteers filled out a general questionnaire pertaining to their age, gender,
lifestyle, and known pathologies (without specifying which ones), as they are factors that
may influence age prediction. The information was collected to aid the results’ analysis
in case of any observed inconsistencies. Otherwise, 84 individuals known to be healthy
were chosen for the study. Samples were collected from 44 females and 40 males aged
18–65, evenly distributed among four age classes: 18–30 years, 31–40 years, 41–50 years,
51–65 years of age. All volunteers were located in Central and Central-Northern Italy.

The samples consisted of peripheral blood samples collected with EDTA and they
were processed right after collection.

4.2. DNA Extraction and Bisulfite Conversion

Aliquotes of 200 µL of blood were extracted using QIAamp® DNA Mini Kit (Qiagen,
Hilden, Germany) and the DNA extracts were quantified using the QuantifilerTM Trio DNA
Quantification Kit (Applied Biosystems®, Foster City, CA, USA). Optimally, around 400 ng
total of DNA were bisulfite-converted using EZ DNA Methylation-DirectTM Kit (Zymo
Research, Irvine, CA, USA). A lower DNA yield was observed. Even if the kit’s manual
reported a yield of more than 80%, we found it to be slightly lower, so we assumed the
DNA recovery to be 60%.

The 84 samples were bisulfite-converted twice and both converted DNA eluates were
amplified twice, for a total of four replicates per sample.

4.3. Amplification of Converted DNA

The primers implemented for PCR amplification were those used by Jung et al. [16],
and Cho et al. [17], with modifications to the primers’ concentration mixtures. The modified
primers’ concentration for the PCR amplification is reported in Table 4.
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Table 4. First amplification 10× primer mix forward and reverse primers’ concentration.

AMPLIFICATION MIX
10× Primer Mix Concentrations

Fwd Rev

ELOVL2 1 µM 1 µM
FHL2 0.5 µM 0.5 µM
KLF14 0.5 µM 0.5 µM
C1orf132/MIR29B2C 1 µM 0.5 µM
TRIM59 0.5 µM 0.5 µM

Since the primer concentrations were adjusted, the annealing temperature was recalcu-
lated by using a dedicated tool by Thermo Fisher Scientific [32]. The best results were obtained
with the samples amplified with our modified primer mixture at a melting temperature of
54 ◦C. According to these specifics, four replicates of the same sample were amplified, and the
results obtained were consistent, with only negligible deviations observed.

For the PCR enrichment step, based on the converted DNA input suggested by Jung
et al. [16], 10 ng of converted DNA was amplified. Samples were diluted accordingly based
on the assumed yield of the bisulfite conversion. For a single sample, the amplification
reaction was prepared as follows:

6.25 µL QIAGEN® Multiplex PCR Master Mix 2× (Multiplex PCR Kit);
1.25 µL PCR PRIMER MIX 10×;
1 µL H2O;
4 µL bisulfite-treated DNA.

The amplification conditions consisted of an initial denaturation at 95 ◦C for 10 min,
followed by 45 cycles at 95 ◦C for 30 s, 54 ◦C for 30 s, and 72 ◦C for 30 s, and lastly an
extension at 72 ◦C for 5 min, then hold at 4 ◦C.

4.4. SNaPshot Protocol

The PCR amplification step was followed by an enzymatic cleanup, carried out by the
ExoSAP-ITTM Express PCR Product Cleanup reagent (Thermo Fisher Scientific, Waltham,
MA, USA), according to the manufacturer’s instructions.

The multiplex SBE reaction was carried out using the SNaPshotTM Multiplex Kit
(Thermo Fisher Scientific, Waltham, MA, USA). The same primers of Jung et al. [16], and
Cho et al. [17] were used, albeit their concentrations in the 10× primer mix were also
modified. All 100× SBE primers were diluted to achieve 10× primers at a concentration of
0.2 µM. Based on the SNaPshot™ Multiplex Protocol [33], the SBE reaction per each sample
wasprepared as follows:

5 µL SNaPshot™ Multiplex Ready Reaction Mix;
1 µL SBE PRIMER MIX 10×;
1 µL H2O;
3 µL ExoSAP™ purified DNA.

The temperature conditions in the thermal cycler for SBE were set as per the manufac-
turer’s instructions, and they consisted of 25 cycles of rapid temperature increase to 96 ◦C,
hold at 96 ◦C for 10 s, rapid temperature decrease to 50 ◦C, hold at 50 ◦C for 5 s, rapid
increase to 60 ◦C, hold 60 ◦C for 30 s, lastly a final rapid decrease to 4 ◦C and hold at 4 ◦C
until post-SBE purification.

The SNaPshot multiplex reaction was followed by enzymatic purification with Shrimp
Alkaline Phosphatase (SAP) (Thermo Fisher Scientific, Waltham, MA, USA) according
to the manufacturer’s instructions, meaning an incubation at 37 ◦C for 30–60 min. The
reaction mix per sample was the following:

12 µL H2O;
2 µL 10x SAP Reaction Buffer;
1 µL SAP;
5 µL Post-SBE Product.
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4.5. Capillary Electrophoresis

Capillary electrophoresis was carried out on the SeqStudioTM Genetic Analyzer, with
a POP-1 universal polymer. The GeneScan E5 module parameters were the same as the
kit’s protocol; however, the collection time was shortened from 24 min to 18 min. Firstly,
post-SAP SBE products were prepared in 0.5 µL sample tubes according to the following
mix for a single sample:

15 µL Hi-Di formamide;
0.15 µL GeneScan™-120 LIZ™ size standard;
1.5 µL post-SAP SBE product.

The sample data are then analysed by using GeneMapper® Software v 6.

4.6. Age Calculation and Prediction Model Construction

DNA methylation-based age prediction depends on the methylation levels at particular
CpG sites. The methylation degree at ELOV2 and FHL2 CpG sites, given that C and T are
detected, was calculated according to the formula:

IC

IC + IT
.

At KLF14, C1orf132 and TRIM59 sites, which had their SBE primers designed in
reverse and thus G and A were detected, the methylation levels were calculated using
the formula:

IG

IG + IA
.

where I is the intensity of either the methylated C or unmethylated C, meaning the height
of their electrophoretic peaks.

5. Conclusions

The main purpose of this study was to implement a protocol and method for age
prediction, and to define an age-predictive tool for the Italian population, given that some
differences among methylation levels in different populations were observed. For these
reasons, after a precise literature analysis we implemented a study protocol optimal for our
laboratory and trained and tested the tool with samples originating from Central Italy. The
samples were analyzed as replicates to determinate the DNA methylation level highlighting
a strong correlation both with chronological and predictive age, either in the training set
or in the test set. The deviation between the predicted age and the chronological age was
calculated through Mean Absolute Deviation given a mean value of approximatively 3 years
suggesting the reliability of the predictive model. Moreover, based on our experience, to
minimize the error rate of each sample, replicated analyses are suggested. Eventually,
despite our purpose to standardize DNA methylation analyses, protocol, and interpretation
patterns for forensic application in the Italian context, it would be useful to implement the
study with additional samples collecting more information about donors that would be
helpful for a future more detailed analysis.
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Gauthier, Q.; et al. A Collaborative Exercise on DNA Methylation-Based Age Prediction and Body Fluid Typing. Forensic Sci. Int.
Genet. 2022, 57, 102656. [CrossRef]

19. Correia Dias, H.; Cordeiro, C.; Corte Real, F.; Cunha, E.; Manco, L. Age Estimation Based on DNA Methylation Using Blood
Samples From Deceased Individuals. J. Forensic Sci. 2020, 65, 465–470. [CrossRef]

20. Tammen, S.A.; Friso, S.; Choi, S.-W. Epigenetics: The Link between Nature and Nurture. Mol. Asp. Med. 2013, 34, 753–764.
[CrossRef]

21. Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al.
Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [CrossRef]
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